
AMERICAN UNIVERSITY OF BEIRUT

DISTRIBUTED LOGISTIC CLASSIFIERS IN
SEMI-SUPERVISED SETTINGS

by

MAHA GERGES ISSA

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Engineering
to the Department of Electrical and Computer Engineering

of Maroun Semaan Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
August 2022

AMERICAN UNIVERSITY OF BEIRUT

DISTRIBUTED LOGISTIC CLASSIFIERS IN
SEMI-SUPERVISED SETTINGS

by

MAHA GERGES ISSA

Approved by:

Dr. Roula Nassif, Assistant Professor Advisor

Electrical and Computer Engineering

Dr. Ibrahim Issa, Assistant Professor Member of Committee

Electrical and Computer Engineering

Dr. Dany Abou Jaoude, Assistant Professor Member of Committee

Mechanical Engineering

Date of thesis defense: August 11, 2022

Dany Abou
Jaoude
2022.09.12
20:49:38 +03'00'

AMERICAN UNIVERSITY OF BEIRUT

THESIS RELEASE FORM

Student Name:
Last First Middle

I authorize the American University of Beirut, to: (a) reproduce hard or electronic copies of
my thesis; (b) include such copies in the archives and digital repositories of the University; and (c)
make freely available such copies to third parties for research or educational purposes

As of the date of submission of my thesis

After 1 year from the date of submission ofmy thesis .

After 2 years from the date of submission ofmy thesis .

After 3 years from the date of submission ofmy thesis .

Signature Date

Issa Maha Gerges

15/9/2022

Acknowledgements

I would like to disclose my sincere acknowledgment to everyone who have
helped and supported me in the accomplishment of this thesis.

First, my deepest gratitude goes to Dr. Roula Nassif who did me the honor of
accepting to be my thesis advisor. She always made herself available throughout the
research process of this thesis and during our preparation of a conference publication
based on the thesis research work, in collaboration with Ms. Elsa Rizk and Prof.
Ali H. Sayed. Dr. Nassif did not also hesitate in guiding me during the drafting of
this report. I am extremely fortunate to have received her continuous guidance and
support.

I am also grateful to my thesis committee members, Dr. Ibrahim Issa and Dr.
Dany Abou Jaoude, for providing their constructive feedback that helped me revise
and edit my work.

Additionally, I would like to express my sincere appreciation to the American
University of Beirut (AUB) Faculty and Staff for their efforts during my two-year
journey.

Finally, I would like to thank my amazing AUB colleagues who never hesitated
to stand by my side throughout all the stages of our academic journey. I also wish
to express my gratefulness to my family and friends for their contribution, support,
and encouragement.

1

Abstract
of the Thesis of

Maha Gerges Issa for Master of Engineering
Major: Electrical and Computer Engineering

Title: Distributed Logistic Classifiers in Semi-Supervised Settings

In network semi-supervised learning problems, only a subset of the network nodes is
able to access the data labeling. This thesis formulates a decentralized optimization
problem where agents represent classifiers that may observe different numbers and
types of features, and hence have individual decision rules to estimate, subject to
the condition that neighboring agents are more likely to have similar labels. To
promote such relationships, we propose to add to the individual logistic regression
costs a graph regularization term that allows to penalize the differences between the
labels at neighboring agents. Two regularization terms are investigated: a sparsity
promoting regularizer and a smoothness promoting regularizer. Streaming data
is assumed, and therefore, the stochastic (sub-)gradient descent method is used
to solve the regularized problem. We provide some important assumptions and
conditions that guarantee the stability and convergence of the proposed algorithm
in the mean-square-error sense. Simulation results show that collaboration among
neighboring agents, which is promoted through the added regularization term, can
lead to better classification results by decreasing the probability of error and by
improving the convergence rate. Those results are promising in semi-supervised
settings where some agents do not have access to labeled data points due to cost or
privacy reasons, and in applications with limited amount of data.

2

Table of Contents

ACKNOWLEDGEMENTS 1

ABSTRACT 2

ABBREVIATIONS 7

NOTATIONS 8

1 Introduction 9
1.1 Signal Processing on Graphs . 9
1.2 Decentralized Inference Over Graphs 9
1.3 Single-Task Estimation Problems . 10
1.4 Multitask Estimation Problems . 10
1.5 Heterogeneous Settings . 11

1.5.1 Heterogeneous setting 1: different types and numbers of features 11
1.5.2 Heterogeneous setting 2: semi-supervised setting 11

1.6 Problem Statement . 12
1.7 Thesis Outline . 13

2 Literature Review 14
2.1 Cooperative Strategies for Solving Network Estimation Problems . . . 14

2.1.1 Cooperation in single-task estimation problems 14
2.1.2 Cooperation in multitask estimation problems to promote pa-

rameter vectors smoothness 15
2.1.3 Cooperation in multitask estimation problems to promote graph

clustering . 15
2.1.4 Cooperation in multitask estimation problems to promote graph

piecewise constant transitions 15
2.1.5 Cooperation in multitask estimation problems to promote agents’

predictions smoothness . 16
2.2 Cooperative Strategies for Solving Network Classification Problems

in Semi-Supervised Settings . 16
2.2.1 Cooperation in semi-supervised learning problems where nodes

represent single data points 16

3

2.2.2 Cooperation in semi-supervised learning problems where nodes
carry local datasets . 17

2.3 Comparison to Our Approach . 18

3 Methodology 21
3.1 Initial Problem Definition . 21
3.2 Additional Regularizers . 22

3.2.1 Network Lasso regularization 22
3.2.2 Graph Laplacian regularization 23

3.3 Regularized Optimization Problem 23
3.4 Decentralized Semi-Supervised Multitask Learning Algorithm [1] . . . 24

4 Stability Analysis 27
4.1 Network Error Vector Recursion . 27
4.2 Assumptions . 29
4.3 Network Mean-Square-Error Recursion 29
4.4 Network Mean Error Recursion . 32
4.5 Network Mean-Square-Error Stability 33

5 Experimental Results 35
5.1 Synthetic Data Experiments . 35

5.1.1 Experiment 1 . 36
5.1.2 Experiment 2 . 37

5.2 Real Data Experiments . 38
5.2.1 Experiment 1 . 41
5.2.2 Experiment 2 . 43

6 Conclusion 45
6.1 Conclusion . 45
6.2 Future Research Work . 45

Bibliography 47

4

Illustrations

1.1 Random graph with 15 nodes where each node is connected by an
edge to four others, resulting in 30 edges. 10

1.2 Illustration of the two sources of heterogeneities in the data acquisi-
tion process. 12

3.1 Sign function sign(x) and its hyperbolic tangent approximations tanh(cx)
for several values of c [1]. 24

5.1 Clustered network structure (agents with the same color observe the
same label) [1]. 36

5.2 Synthetic data experiment 1: Network average validation loss while
fixing the informed nodes and using the network Lasso regularization
promoting sparsity (f(x) = |x|) [1]. 37

5.3 Synthetic data experiment 1: Network average validation loss while
fixing the informed nodes and using the graph Laplacian regulariza-
tion promoting smoothness (f(x) = x2) [1]. 38

5.4 Synthetic data experiment 2: Network average validation loss while
adopting the random sampling and using the network Lasso regular-
ization promoting sparsity (f(x) = |x|) [1]. 39

5.5 Synthetic data experiment 2: Network average validation loss while
adopting the random sampling and using the graph Laplacian regu-
larization promoting smoothness (f(x) = x2) [1]. 39

5.6 Illustration of the 139 weather stations (or network nodes) with the
informed nodes painted in black (with probability qk = 1) and spread
across the network. 42

5.7 Real data experiment 1: Illustration of the 139 weather stations along
with their class labels on March 13, 2014. The black color corresponds
to the label 1 (rainy or snowy day) whereas the copper color represents
the label −1 (non-rainy and non-snowy day). 43

5

Tables

5.1 Real data experiment 1: Network average testing error while fixing
the informed nodes and using the network Lasso regularization pro-
moting sparsity (f(x) = |x|). 41

5.2 Real data experiment 1: Network average testing error while fixing
the informed nodes and using the graph Laplacian regularization pro-
moting smoothness (f(x) = x2). 41

5.3 Real data experiment 2: Network average testing error while adopt-
ing the random sampling and using the network Lasso regularization
promoting sparsity (f(x) = |x|). 44

5.4 Real data experiment 2: Network average testing error while adopting
the random sampling and using the graph Laplacian regularization
promoting smoothness (f(x) = x2). 44

6

Abbreviations

Lasso Least Absolute Shrinkage and Selection Operator
MSE Mean Squared Error
SBM Stochastic Block Model

7

Notations

Lower-case letters Column vectors and scalars
Upper-case letters Matrices
Boldface letters Random quantities
Normal font letters Deterministic quantities
(·)⊤ Matrix or vector transposition
∥ · ∥ 2-norm of a matrix or Euclidean norm (ℓ2-norm) of a vector
∥ · ∥1 ℓ1-norm of a vector
| · | ℓ1-norm (absolute value) of a scalar
col{·} Operator stacking the column vector entries on top of each

other
diag{·} Operator creating a matrix by inserting each block argument

below and to the right of the one that precedes it

8

Chapter 1

Introduction

This introductory chapter, which contains parts from the introduction in [1], aims
at giving an overview of the field of this thesis. It also presents the study context
of this work by providing the motivations and the problem statement. Finally, an
outline of the organization of this thesis work is described.

1.1 Signal Processing on Graphs

Recently, the area of signal processing on graphs has been extensively explored due
to its various applications [2]. Graphs, which are common representations of data,
can be seen as a network containing several nodes where each node can represent a
data point or a process collecting data in a continuous manner. An example of such
networks or graphs is represented in Figure 1.1. As illustrated in this figure, graph
nodes can be connected by edges that are associated with weights reflecting the
similarities between these nodes. A network, such as the one depicted in Figure 1.1,
is represented by a graph G = {V , E , A}, where V = {1, . . . , N} denotes the set
of nodes (where N is the total number of nodes in the network), E denotes the
set of edges, and A is the adjacency matrix that contains the weights of the edges.
The neighborhood of node or agent k consists of all the agents that are connected
to k by an edge, and is denoted by Nk. Network structured problems appear in
several domains such as transportation networks, brain imaging, image processing,
and statistical and machine learning problems [2].

1.2 Decentralized Inference Over Graphs

Prior works have exploited the graph connectivity to solve different network esti-
mation and classification problems in a decentralized manner, assuming that agents
can communicate over the graph G = {V , E , A} [3]–[6]. This is referred to as decen-
tralized inference over graphs, which has received considerable attention over the
past two decades. In a decentralized implementation, and instead of establishing a
central processor that collects data from all the nodes to perform the optimization
task, each node estimates its decision rule locally. In other words, in a decentralized

9

Figure 1.1: Random graph with 15 nodes where each node is connected by an edge
to four others, resulting in 30 edges.

learning setting, each agent minimizes its own risk function by performing local com-
putations and collaborates with its neighboring agents by exchanging some estimates
with them. Compared to the non-cooperative approaches, appropriately designed
decentralized cooperative strategies have been shown to achieve better results in
terms of network performance [3], [4], [7].

1.3 Single-Task Estimation Problems

With some exceptions, most of the works on decentralized inference over graphs fo-
cus on consensus and diffusion optimization by considering variations of this prob-
lem [7]–[9]:

wo = argmin
w

NX

k=1

Jk(w) (1.1)

where Jk(w) represents a private cost function at agent k that depends on an M -
dimensional parameter vector w ∈ RM . Such problem is referred to as a single-task
estimation problem since all the N agents seek to estimate the same parameter
vector wo in (1.1) and reach consensus.

1.4 Multitask Estimation Problems

In modern machine learning applications, agents generate data in a highly non-
identically distributed manner. Such networks require more complex models and
flexible algorithms than traditional single-task implementations since their agents
may need to simultaneously estimate and track distinct tasks or objectives. Such

10

problems are referred to as multitask estimation problems. However, the tasks or
parameter vectors that agents seek to estimate can sometimes be related. Previous
efforts in this direction attempted to solve variations of the following regularized
multitask learning formulation [4]:

W⋆ = argmin
W

NX

k=1

Jk(wk) + ηR(w1, . . . , wN) (1.2)

where W = col{w1, . . . , wN} denotes the collection of parameter vectors across the
network, wk ∈ RM is the parameter vector or task at agent k, η > 0 is a regular-
ization strength, and R(·) is a regularization function promoting the relationships
between the tasks.

1.5 Heterogeneous Settings

The data acquisition process in machine learning applications can be affected by
several sources of heterogeneity. Such heterogeneities can have undesirable effects
on the learning process of the machine learning models. In the sequel, we present
two examples of heterogeneous settings.

1.5.1 Heterogeneous setting 1: different types and numbers of features

Assuming that network agents represent machine learning models, every agent should
have access to a set of features or attributes at every time instant. These features act
as input variables to every machine learning model and are essential for optimizing
the model. In a heterogeneous system setting, as in [10], agents might have access to
different types and numbers of features. For instance, in weather sensor networks,
some sensors might observe measurements related to wind speed, temperature, etc.,
whereas others might not have access to wind speed measurements or might observe
another set of features. An example of such heterogeneous setting is depicted in
Figure 1.2, where entries of the feature vectors with similar color correspond to the
same observed feature type. It is noticed that the length of the feature vectors and
the colors of their components vary between agents. Such heterogeneities can lead to
“different” learning abilities across the network. In other words, agents that observe
a small number of (relevant) features have limited learning abilities in comparison
with agents that have access to a large number of (relevant) features.

1.5.2 Heterogeneous setting 2: semi-supervised setting

Besides features types and numbers, another source of heterogeneity in the data
acquisition process can appear in machine learning problems, and particularly in
classification problems. Some agents in the network might have access to unlabeled
data points at a given time instant. This scenario arises in applications where label-
ing at some agents is costly and requires human assistance, or in other applications
where some agents are not willing to use their own labels in the training process

11

due to privacy concerns. This is referred to as semi-supervised learning, which is
used in machine learning applications where only a part of the data is labeled. An
illustration of this second heterogeneous setting is also shown in Figure 1.2, where
agents with the same color are observing the same label, and agents with a gray
color are unlabeled. This prevents these agents that have access to unlabeled data
points from properly learning their classification rules.

Figure 1.2: Illustration of the two sources of heterogeneities in the data acquisition
process.

1.6 Problem Statement

In this study, we focus on decentralized semi-supervised multitask learning in stream-
ing and heterogeneous data acquisition settings, where we consider the two sources
of heterogeneities that are illustrated in Figure 1.2: different types and numbers of
features and the semi-supervised setting. Each agent k is collecting at each time
instant i an Mk × 1 feature vector hk,i ∈ RMk , which corresponds to a collection
of observed attributes in a binary classification problem (where there exists only
two classes), and is interested in estimating its own decision rule wo

k. Agents with
a small number of observed attributes or agents that have access to unlabeled data
points can considerably benefit from cooperating with their neighbors since, in some
applications, they are more likely to observe similar labels. For instance, in weather
forecasting applications [11], if it is raining in a given city on a given day, it is
more likely that rain is also occurring in adjacent cities on this same day. However,
problem formulation (1.2) might not lead to a meaningful cooperation rule since,

12

in our considered setting, we need to promote the relationships between the labels
{γk}, instead of promoting the relationships between the tasks or parameter vectors
{wk}. To promote the labels’ relationships, we propose to add to the cost function
Jk(wk) a regularization term consisting of a weighted sum of ℓ1-norms (or squared
ℓ2-norms) of the differences between the labels.

1.7 Thesis Outline

The remainder of this thesis report is organized as follows:

• Chapter 2: This chapter summarizes previous works in the literature that are
related to this thesis. For each work, we briefly mention the tackled problem,
its adopted method, and its most important findings. We start by listing in
section 2.1 several cooperative strategies that were proposed to solve network
estimation problems, and then move to network semi-supervised learning prob-
lems in section 2.2. Finally, we give a detailed comparison between previous
works and our work to provide a clearer idea about its novelty (section 2.3).

• Chapter 3: In this chapter, we explain the methods that we employed to solve
our problem. First, we clearly define the objective of our problem in section
3.1. Then, we provide the mathematical definitions of our two proposed addi-
tional regularization terms in section 3.2. Section 3.3 gives the new regularized
problem, and finally section 3.4 explains how we solve it.

• Chapter 4: This chapter studies the behavior of our proposed algorithm. We
start by deriving the network error vector recursion in section 4.1. Then, we
list some useful assumptions in section 4.2. Sections 4.3 and 4.4 derive the
network mean-square-error recursion and the network mean error recursion,
respectively. Finally, the algorithm stability in the mean-square-error sense is
examined in section 4.5.

• Chapter 5: To demonstrate the advantages of our approach, we present in
this chapter results pertaining to synthetic data experiments (section 5.1) in
addition to real data experiments (section 5.2), while discussing them and
showing their significance.

• Chapter 6: Finally, this chapter concludes this thesis work by providing a brief
summary (section 6.1) and some recommendations that may improve future
research (section 6.2).

13

Chapter 2

Literature Review

This chapter provides a literature survey that gives a general overview about some
important concepts related to this thesis work. We start by listing several works
that proposed cooperative strategies between agents to help solve network estimation
problems. Then, we summarize various works that targeted network semi-supervised
learning problems. Finally, we provide a comparison that demonstrates how our pro-
posed approach is different from previous works in terms of the considered settings
and the proposed methods.

2.1 Cooperative Strategies for Solving Network Estimation
Problems

In a network structured estimation problem, the cooperation among neighboring
agents in the graph can be formulated in different ways. In this section, we present
several works that targeted such problems.

2.1.1 Cooperation in single-task estimation problems

In single-task estimation problems, i.e., when the agents that are observing the same
number of features are interested in estimating the same parameter vector or deci-
sion rule, diffusion strategies can be used [3]. An example of such strategies is the
Adapt-then-Combine (ATC) diffusion strategy that was proposed for distributed
online learners in an online machine learning problem. In this case, and at each it-
eration i, each agent k first applies a stochastic gradient descent update to minimize
its own risk function. Then, the resulting intermediate estimates are exchanged be-
tween neighboring nodes and are properly combined to obtain an updated estimate
of the decision rule at iteration i and at each agent k. Such strategies were shown
to ensure the convergence of each agent in the network to the solution that mini-
mizes the global objective function in (1.1), and at a similar rate to the centralized
implementation.

14

2.1.2 Cooperation in multitask estimation problems to promote param-
eter vectors smoothness

In multitask estimation problems, the agents are interested in estimating different,
though related, parameter vectors. In such case, properly designed multitask based
approaches can be used [4], and a regularization term can be added to the global
objective function to be minimized, as in (1.2). The aim of this regularization
is to encourage the relationships between the parameter vectors. One example of
such regularizer is the graph Laplacian regularization that is used to promote the
smoothness of a signal over the graph [5], [11], [12]. For instance, a multitask network
was considered in [5], where each agent is interested in estimating its own parameter
vector under the prior knowledge that this vector varies smoothly over the graph.
To solve this problem, a multitask version of the diffusion strategy [3] was proposed
where the stochastic gradient descent algorithm was also used, but the cooperation
rule was updated based on the use of the graph Laplacian regularizer to promote
the smoothness of the parameter vectors, which are considered the graph signal in
this case.

2.1.3 Cooperation in multitask estimation problems to promote graph
clustering

Another regularization term can be added to the global multitask optimization prob-
lem and is the extension of the Least Absolute Shrinkage and Selection Operator
(Lasso) to network structured problems. This regularizer is referred to as the net-
work Lasso regularizer, which is employed to promote the graph clustering [6]. In
this case, a weighted sum of ℓ2-norms of the differences between the parameter vec-
tors is added to the global loss function. The advantage of using this regularization
instead of the previously discussed graph Laplacian regularizer is encouraging pa-
rameter vectors at strongly connected nodes to be equal. This divides the network
into many clusters, where agents in the same cluster have a common solution for
the parameter vectors. This problem was solved by using an algorithm based on
the Alternating Direction Method of Multipliers (ADMM). The proposed approach
was tested on several problems and has demonstrated to achieve better results in
comparison with the unregularized frameworks: A higher accuracy was reached in
a classification example and a lower Mean Squared Error (MSE) was attained in a
regression example (where the target is to predict a real value instead of a label).

2.1.4 Cooperation in multitask estimation problems to promote graph
piecewise constant transitions

In some applications, the optimal solutions of the parameter vectors for adjacent
nodes may share a large number of common entries. To handle such situations, a
new regularization term was suggested in [13] and [14] that is based on a weighted
sum of ℓ1-norms of the differences between the parameter vectors. Such regularizer
encourages sparsity and hence can promote the piecewise constant transitions of
the parameter vectors over the graph. Due to the non-differentiability of this ad-

15

ditional regularizer, the proposed approach to solve this problem was based on the
subgradient method in [14], while in [13] it was based on the proximal projection
operator where a closed form expression was derived to evaluate this operator for a
better efficiency. Simulation results in both [13] and [14] showed that cooperation
between agents, which is incorporated in the proposed regularization, can decrease
the network Mean Squared Deviation (MSD) and hence can lead to an improved
network performance in such scenarios.

2.1.5 Cooperation in multitask estimation problems to promote agents’
predictions smoothness

In heterogeneous machine learning applications where agents may observe different
numbers of features, combining or forcing smoothness on the parameter vectors
to be estimated is not possible. Furthermore, differences between these parameter
vectors cannot be computed. This is because the feature and parameter vectors have
the same dimension, which implies that the dimension of the parameter vectors is
inconsistent across the graph.

To solve network binary classification problems in such heterogeneous setting,
the graph Laplacian regularization was proposed in [10] to promote the graph sig-
nal smoothness, however, the graph signal considered in this case is the predicted
output of the agents or classifiers. This output pertains to the inner product of
the feature and parameter vectors. This proposed approach was introduced under
the prior information that labels at neighboring classifiers are more likely to be the
same. The problem was solved using the stochastic gradient descent algorithm and
the simulation results proved that the cooperative scenarios involving the proposed
regularization helped decrease the network average testing error.

2.2 Cooperative Strategies for Solving Network Classifica-
tion Problems in Semi-Supervised Settings

Cooperation among network agents has also been widely exploited to solve network
semi-supervised learning problems and has achieved good results [15]–[23]. This
section lists several works that have targeted such problems where agents in the
graph can either represent an individual data point or a classifier carrying a local
dataset.

2.2.1 Cooperation in semi-supervised learning problems where nodes
represent single data points

The problem of labeling a partially labeled graph has been considered in the machine
learning community, with the so-called semi-supervised learning on graphs [15]–[18].
Within this community, each node in the network represents a single data point,
the graph connections represent the similarities between these data points or their
feature vectors, and closer data points tend to have similar class labels. For instance,
in survey sampling, instead of surveying the whole population, only a subset of this

16

population can be selected to be surveyed and the remaining peoples’ preferences
are inferred based on features’ similarities [15].

Several strategies have been derived to classify partially labeled datasets under
the assumption that all data are available beforehand [15]–[21]. In [15] and [16],
the graph Laplacian regularization was used to solve the partially labeled datasets
classification problem, while in [17] a label propagation algorithm was derived. In
[19] and [20], the loss function to be minimized in the classification problem was
formulated as the sum of the empirical losses at the labeled nodes in addition to a
non-smooth total variation regularization based on the network Lasso. In [20], the
total variation term corresponds to a weighted sum of the ℓ2-norms of the differ-
ences between the parameters to be estimated, whereas in [19], it corresponds to a
weighted sum of the ℓ1-norms of the differences between the log odds ratios, which
are calculated as:

xk = log
P{γk = 1}
P{γk = −1} , (2.1)

where the scalar quantity xk represents the log odds ratio at agent k and γk is
the label at agent k (which can be either 1 or −1). Such non-smooth graph-based
regularization in [19] is used to encourage the sparsity of the differences between the
log odds ratios at neighboring nodes. In [21], a common model was studied where the
network was partitioned into two clusters, and the aim was to assign each unlabeled
node to one of the two clusters. For this purpose, a convex optimization problem,
which could also be formulated as a linear program, was solved by minimizing the
total variation of the indicator graph signal, which is a vector at each node indicating
to which cluster this node belongs (if the node belongs to the j-th cluster then the
j-th entry of this node’s vector is 1 and the remaining entry is 0).

2.2.2 Cooperation in semi-supervised learning problems where nodes
carry local datasets

In applications where devices generate local data samples, each device can be mod-
elled as an agent in a network carrying a local dataset, instead of representing a
single data point. Such settings have also been considered in the machine learning
community, and are referred to as networked federated learning [22], [23]. In [22],
each network node carries a local dataset that is also supposed to be available in
advance, and is interested in finding the parameter vector of its own model. The
network was assumed to be divided into several clusters and nodes within the same
cluster were supposed to have similar parameter vectors. To model applications
where accessing data may be costly, only a part of the local datasets was used for
the training process. To recompense this, a regularization function was added to
the training error of nodes within the training set. This regularization consisted of
an increasing function of the parameters’ differences to encourage their equality for
nodes within the same cluster. This proposed networked federated multitask learn-
ing algorithm was solved using the primal-dual method. The work in [23] is similar
to [22], but it specifically considered the ℓ1-norm function in the additional regular-
ization, which has led to a network Lasso formulation for the problem. Simulation

17

results showed that the proposed approach helped decrease the network MSE.

2.3 Comparison to Our Approach

This section is dedicated to explain the differences between the approach that we
are proposing in this thesis work and the previous methods in the literature that we
already summarized. First, our work handles cases where each agent in the network
aims to estimate its own parameter vector, which makes it different from the diffusion
strategies in single-task problems [3] (subsection 2.1.1) where agents need to agree
on a common solution. In the sequel, we focus on the differences between our work
and the previous methods in multitask learning and in semi-supervised settings,
particularly [11], [6], [10], [20], and [23]. The comparison that we are conducting is
based on four criteria:

• The parameter vectors dimensionality: whether they have the same dimension
for all the agents or their dimension is inconsistent over the graph (heteroge-
neous setting 1)

• The data acquisition setting: whether the data are available beforehand or are
acquired in a streaming manner

• The data labeling availability: whether the setting is supervised or semi-
supervised (heterogeneous setting 2), and in the latter case whether each agent
represents an individual data point or carries a local dataset

• The proposed additional regularization term: whether it is based on the net-
work Lasso or the graph Laplacian, in addition to the argument inside the
regularization function (parameter vectors, inner products of the parameter
and feature vectors, or labels)

Starting with the data acquisition setting, our proposed approach responds to
streaming data, while most of the previous works, with few exceptions, assume that
the data are available in advance. Approaches that respond to online streaming
data have the advantage that they can continuously learn and track the solution of
the problem when drifts in the data may occur. The works [11] and [10] consider
streaming data settings, however, they differ from our work in several ways, which
we explain in the sequel.

Moving to the parameter vectors dimensionality, four out of the five works that
are considered in this comparison assume that parameter vectors have the same
size for all the network agents, except [10] which considered that the dimensions of
the parameter vectors might be different. Such setting, which we referred to as the
heterogeneous setting 1 (subsection 1.5.1), allows for a better flexibility since it can
handle more complex problems where agents might have access to different numbers
and types of data measurements. In our work, we also consider this heterogeneous
setting, however, as previously stated, our approach is different from [10] and the
difference is clarified in the following paragraphs.

18

Considering now the data labeling availability, the works [11], [6], and [10] sup-
pose that all the network agents are continuously able to access the labels of their
data samples. This makes our approach different from [11] and [10] since, in our
case, we consider the heterogeneous setting 2 (subsection 1.5.2) where only a part of
the data samples is labeled. This semi-supervised setting is more suitable in several
applications (for instance, in applications where data labeling may be expensive).
The authors in [20] and [23] also handled semi-supervised settings, however, the
purpose of the work in [20] was to label a partially labeled dataset, and hence they
considered each network agent as an individual data point in the dataset. This
makes our work different from [20] since, in our problem, each agent is a classifier
observing several data points and the aim is to learn the decision rules of these clas-
sifiers. Finally, the difference between [23] and our approach lies in the parameter
vectors dimensionality, the data acquisition setting, and the proposed regularization
(which is lastly discussed).

The last criteria that we include in our comparison is the proposed additional
regularization term, in addition to the argument inside the regularizer. Regardless of
the function being used, most of the previous literature incorporated the parameter
vectors inside the regularization. The choice of the function depended on the prior
knowledge that the authors wished to promote, which are smoothness in the case
of the graph Laplacian regularization and clustering in the case of the network
Lasso regularization. However, in our work, promoting smoothness or clustering
of the parameter vectors is infeasible due to the inconsistency in their dimensions.
The work [10], which also considered such inconsistency, proposed to solve this
issue by encouraging the smoothness of the inner products of the parameter and
feature vectors, which are scalar values signaling the labels of the data samples. In
other words, if this inner product is positive (or negative), then the considered data
sample belongs to the positive (or negative) class. Even though the simulations in
[10] showed promising results, such approach may confront problems in applications
where the features are not in the same scale. For example, the inner product of
an agent receiving a temperature measurement (in degree celsius) might be a small
number, in contrast with the inner product of an agent only having access to the
altitude (in meters), which might be a large number. In such case, these numbers
do not have smooth transitions between these two agents, however, if they were of
the same sign, then the two agents are observing data arising from the same class.
In order to avoid such issues, usual approaches in machine learning are to rescale
the data so that no feature dominates the others. Examples of such approaches
include data normalization, which shifts all the features to the [0, 1] interval, and
data standardization, which transforms the features in a way that they all have a
zero mean and a unit variance. Such techniques are powerful and can lead to a
better model performance, however, they require statistical properties of the data,
such as the maximum, minimum, mean, and standard deviation. In online streaming
settings, such as in [10] and our work, these statistical properties are not available
beforehand, which rules out the use of normalization and standardization techniques.
Hence, to overcome this scaling problem, we propose in our work to incorporate the
predicted labels in the regularization function, which are either equal to 1 or −1

19

since we are dealing with a binary classification problem. We propose both the
network Lasso regularization, by using the ℓ1-norms of the differences between the
labels, and the graph Laplacian regularization, by using the squared ℓ2-norms of the
differences between the labels.

20

Chapter 3

Methodology

In this chapter, which appears in the second section of [1], we detail the methodology
steps that have led to our proposed algorithm. We start by explaining the initial
problem, then, we define the proposed additional regularization terms. We then
move to establish the new regularized problem, and finally, we present the resulting
decentralized semi-supervised multitask learning algorithm.

3.1 Initial Problem Definition

We consider an undirected weighted graph G = {V , E , A}. This network consists
of N = |V| nodes, where each node k represents a logistic regression classifier in-
terested in solving an online binary classification problem. Therefore, each agent k
is collecting data in a continuous manner. We first assume the supervised setting
where, at every time instant i, it is observing a feature vector hk,i ∈ RMk and the
corresponding class label γk(i) ∈ {−1, 1}. The objective is to construct a classifier
at each agent k to predict the label γk based on the knowledge of the feature vector
hk. To that end, each agent k can use a logistic regression machine [7], [24], [25]
that seeks an Mk × 1 vector wo

k, such that the predicted label at agent k and time
instant i is evaluated as:

bγk(i) = sign(h⊤
k,iw

o
k), (3.1)

where the operator sign(·) is the sign function and is evaluated for a scalar argument
x as follows:

sign(x) =





+1, if x > 0

0, if x = 0

−1, if x < 0

. (3.2)

The vector wo
k to be estimated is the minimizer of a risk function Jk(wk), namely:

wo
k ≜ argmin

wk

Jk(wk), (3.3)

with
Jk(wk) ≜ E ln

�
1 + exp

− γk(i)h

⊤
k,iwk

��
+

ρ

2
∥wk∥2, (3.4)

21

where the expectation in (3.4) is computed over the distributions of the random
data {hk,i,γk(i)} and where ρ is a positive parameter that controls the importance
of the relaxation term ∥wk∥2 = w⊤

k wk.
As previously stated, we consider that nearby classifiers are more likely to observe

the same label at each time instant i. The adjacency matrix A describes the graph
structure and connections. It is an N×N symmetric matrix with the (k, ℓ)-th entry
akℓ ≥ 0 reflecting the strength of the relation between nodes k and ℓ. For instance,
if node ℓ is connected to node k (i.e., ℓ ∈ Nk) and is more likely to observe the same
label as node k, then the weight akℓ should be large. If there is no edge connecting
nodes k and ℓ, then akℓ = 0.

3.2 Additional Regularizers

In heterogeneous data acquisition settings, the number of observed features differs
between agents. In such case, agents with a small number of (relevant) features are
probably not able to make decisions on their own. Additionally, even if the number of
observed features is enough, some agents may be affected by noise, which prevents
them from properly estimating their decision rules. Furthermore, some agents in
these heterogeneous settings may not have access to their true labels, which also
hinders the estimation tasks of these agents. These facts motivate us to find a
meaningful cooperation rule that allows agents with limited learning abilities to
benefit from the learning process of their neighbors. To that end, two regularization
functions are investigated in the following: the network Lasso regularization and the
graph Laplacian regularization [1].

3.2.1 Network Lasso regularization

If we let
bΓi = col{bγ1(i), . . . , bγN(i)} (3.5)

denote the collection of predicted labels from all the network nodes, we can derive
the cooperation rule by formulating a regularized optimization problem that employs
the total variation of the graph signal bΓi [26]

TV
bΓi

�
=
X

(k,ℓ)∈E
akℓ|bγk(i)− bγℓ(i)| (3.6)

as a regularizer. A small total variation is expected over the graph since the agents
that are observing the same label are more likely to be connected by an edge with a
large weight akℓ, in contrast with agents that are observing distinct labels. Hence,
incorporating this total variation term into the problem formulation can improve
the network performance. The non-smooth regularizer (3.6) is suitable for clustered-
network applications where agents are decomposed into clusters, and within each
cluster, agents are observing the same label.

22

3.2.2 Graph Laplacian regularization

Let the degree matrix D be a diagonal matrix where the k-th entry is evaluated as
follows:

[D]kk =
NX

ℓ=1

akℓ. (3.7)

If we let
L = D − A (3.8)

denote the Laplacian matrix, then the smoothness of the graph signal bΓi can be
measured in terms of the quadratic form of the graph Laplacian [2], [11]:

S
bΓi

�
=

�
bΓi

�⊤
LbΓi =

1

2

X

(k,ℓ)∈E
akℓ

bγk(i)− bγℓ(i)

�2
. (3.9)

The graph Laplacian regularizer (3.9) is suitable for applications where the smooth-
ness of the signal with respect to the underlying graph must be promoted. The
smaller S

bΓi

�
is, the smoother bΓi on the graph is.

3.3 Regularized Optimization Problem

Motivated by the previous discussion, we propose to solve the following optimization
problem at each agent k:

w⋆
k ≜ argmin

wk

Jk(wk) + rk

wk, {wℓ}

�
, (3.10)

with
rk

wk, {wℓ}

�
≜ η

X

ℓ∈Nk

akℓEf

bγk(i)− bγℓ(i)

�
, (3.11)

where the expectation is computed over the distribution of the random variables
{bγk(i)} and where η is a positive regularization parameter that ensures a tradeoff
between the fidelity to the measurements and the prior information on the rela-
tionships between the labels. The function f : R → R reduces to the absolute
value function f(x) = |x| in sparsity promoting settings (3.6) and to the quadratic
function f(x) = (x)2 in smoothness promoting settings (3.9). Since the function
f(·) can be non-differentiable (in the sparsity promoting setting), we employ the
subgradient approach [27] to solve problem (3.10). For a mathematical tractability,
and in order to be able to compute the subgradients in the optimization process, we
replace the non-smooth sign(·) function in bγk(i) = sign(h⊤

k,iwk) by a smooth approx-
imation given by the hyperbolic tangent function tanh(·) [28]. Therefore, instead of
solving (3.10), agent k solves the following optimization problem:

argmin
wk

Jk(wk) + erk

wk, {wℓ}

�
, (3.12)

23

where

erk

wk, {wℓ}

�
≜ η

X

ℓ∈Nk

akℓEf

tanh(ch⊤

k,iwk)− tanh(ch⊤
ℓ,iwℓ)

�
, (3.13)

and where the scalar constant c controls the slope of the tanh(·) function. Figure 3.1
illustrates the plot of sign(x) along with the plots of tanh(cx) for different values
of c. It can be observed that as c → ∞, the hyperbolic tangent approximation
approaches the standard sign(·) function.

Figure 3.1: Sign function sign(x) and its hyperbolic tangent approximations
tanh(cx) for several values of c [1].

3.4 Decentralized Semi-Supervised Multitask Learning Al-
gorithm [1]

Since the distributions of the random data {hk,i,γk(i)} are unknown, agent k will
need to learn directly from the observed data samples by replacing the true gradient
(and subgradient) vectors by their stochastic approximations. By using the gradient
(and subgradient) vectors of the loss functions as an approximation, we arrive at
Algorithm 1 for solving (3.12). Agent k starts with wk,−1, an initial random guess of
wo

k in (3.3). The semi-supervised setting is considered through the binary variable
ϵk(i) that is equal to 1 if agent k is able to access its true label at iteration i, and
0 otherwise. At each iteration i, agent k collects the feature vector hk,i, and also
collects the class label γk(i) when ϵk(i) = 1.

24

At every iteration i, agent k performs two steps, which are demonstrated in
Algorithm 1. The first step (3.15) is referred to as the self-learning step. We recall
that, in the stochastic setting, the true gradient vector ∇wk

Jk(·) of the risk Jk(·)
defined in (3.4) is unknown. Hence, agent k updates its estimate wk,i−1 in this
step by stepping in the opposite direction of the stochastic approximation for the
gradient vector of the risk Jk(·), scaled by a small positive step-size µ [7]. We employ
the following gradient approximation:

\∇wk
Jk(wk) = −γk(i) · hk,i exp

− γk(i)h

⊤
k,iwk

�

1 + exp

− γk(i)h

⊤
k,iwk

� + ρwk. (3.14)

It should be noted that the variable ϵk(i) is added to this step since the gradient
approximation cannot be computed when the label is not observed (i.e., when ϵk(i) =
0).

Algorithm 1: Logistic semi-supervised learning over multitask graphs

Initialize: wk,−1 for every agent k;
for every iteration i ≥ 0 do

for every agent k do
collect the feature vector hk,i;
set ϵk(i) to 1 if a label γk(i) is available, and to 0 otherwise;

ψk,i = wk,i−1 − µϵk(i)\∇wk
Jk(wk,i−1) (3.15)

wk,i = ψk,i − µ [∂wk
erk

ψk,i, {ψℓ,i}

�
(3.16)

end

end

In the second step (3.16), which is referred to as the social learning step, agent
k collaborates with its neighbors ℓ ∈ Nk by stepping in the opposite direction of the
stochastic approximation of the subgradient (or gradient) vector of the regularizer
erk

· , {ψℓ,i}

�
defined in (3.13), also scaled by the step-size parameter µ. In the spar-

sity promoting case (i.e., when f(x) = |x|), we employ the chain rule in [29, p. 42]
to evaluate the subdifferential of the regularization function erk

wk, {wℓ}

�
. The sub-

differential is a generalized concept for unnecessarily differentiable functions. More
specifically, the subdifferential of erk

wk, {wℓ}

�
at wk is the set of all the possible

subgradient vectors at wk, which reduces to a single vector if the function is differ-
entiable. Since, in the sparsity promoting case, erk

wk, {wℓ}

�
is not differentiable,

the subgradients are not unique. Hence, we should select a single form to be adopted
during the whole learning process. In our proposed algorithm, we choose to employ

25

the following subgradient approximation with respect to wk given wℓ:

[∂wk
erk(wk, wℓ) = η

X

ℓ∈Nk

akℓchk,i

�
1−

tanh

ch⊤

k,iwk

��2�

· sign
�
tanh

ch⊤

k,iwk

�
− tanh

ch⊤

ℓ,iwℓ

��
,

(3.17)

where the sign(·) operator is evaluated as in (3.2). Moving now to the smooth-
ness promoting case (i.e., when f(x) = (x)2), the regularization function becomes
differentiable and the gradient approximation with respect to wk given wℓ is:

[∂wk
erk(wk, wℓ) = η

X

ℓ∈Nk

akℓchk,i

�
1−

tanh

ch⊤

k,iwk

��2�

·
�
tanh

ch⊤

k,iwk

�
− tanh

ch⊤

ℓ,iwℓ

��
.

(3.18)

According to (3.17) and (3.18), agent k needs to collaborate with its neighbors
ℓ ∈ Nk by collecting from them the scalar values

�
tanh

ch⊤

ℓ,iψℓ,i

�	
to be able to

perform step (3.16). These values can be interpreted as the intermediate predictions
of the labels at neighboring agents and are interchanged as a message passing over
the graph.

26

Chapter 4

Stability Analysis

We now move to examine the stability of Algorithm 1 in the mean-square-error sense.
This chapter uses the results derived in the third section of [1] and is dedicated to
proving the following theorem.

Theorem 1 (Network mean-square-error stability) Assuming that the com-
ponents of the feature vectors hk,i cannot grow infinitely, and under Assumptions 1,
2, and 3, if the step-size parameter µ satisfies:

µ <
2min1≤k≤N qkλk

min1≤k≤N qkλk

�2
+ β2

q,max

, (4.1)

then, in the limit, it holds that:

lim
i→∞

supE∥ewi∥2 ≤ O(µ) +O(µη2) +O(η). (4.2)

That is, for large i, and for a small enough step-size µ, Algorithm 1 is stable and
converges in the mean-square-error sense.

4.1 Network Error Vector Recursion

First, for each node k, we define the error vector ewk,i as:

ewk,i ≜ w◦
k −wk,i, (4.3)

and the intermediate error vector eψk,i as:

eψk,i ≜ w◦
k −ψk,i. (4.4)

We also define the gradient noise vector sk,i(·) as the difference between the true
gradient and its approximation at iteration i, namely,

sk,i(w) = ∇wk
Jk(w)− \∇wk

Jk(w). (4.5)

It is observed that the gradient approximation can be expressed as:

\∇wk
Jk(wk,i−1) = ∇wk

Jk(wk,i−1)− sk,i(wk,i−1). (4.6)

27

Now, by using the mean-value theorem for real arguments [7], we can write:

∇wk
Jk(wk,i−1)−∇wk

Jk(w
◦
k) = −Hk,i−1 ewk,i−1, (4.7)

where

Hk,i−1 ≜
Z 1

0

∇2
wk
Jk(w

◦
k − tewk,i−1)dt. (4.8)

By combining (4.6) and (4.7), we can write the gradient approximation in (4.6) as
follows:

\∇wk
Jk(wk,i−1) = −Hk,i−1 ewk,i−1 +∇wk

Jk(w
◦
k)− sk,i(wk,i−1). (4.9)

Subtracting w◦
k from both sides of (3.15) and (3.16), and using (4.9), we obtain:

eψk,i = (IMk
− µϵk(i)Hk,i−1)ewk,i−1 + µϵk(i)∇wk

Jk(w
◦
k)− µϵk(i)sk,i(wk,i−1), (4.10)

ewk,i = eψk,i + µ[∂wk
erk

ψk,i, {ψℓ,i}

�
. (4.11)

Substituting (4.10) into (4.11), we get that the error vector for agent k evolves
according to the following equation:

ewk,i = (IMk
− µϵk(i)Hk,i−1)ewk,i−1 + µϵk(i)∇wk

Jk(w
◦
k)− µϵk(i)sk,i(wk,i−1)

+ µ[∂wk
erk

ψk,i, {ψℓ,i}

�
.

(4.12)

We now denote the network error vector as follows:

ewi = col{ewk,i}Nk=1. (4.13)

Using the notation (4.13), we construct from (4.12) the following recursion for the
network error vector:

ewi = Bi−1 ewi−1 + µE ib− µE isi + µri, (4.14)

where

Hi−1 ≜ diag{Hk,i−1}Nk=1, (4.15)

Bi−1 ≜ I − µE iHi−1, (4.16)

b ≜ col{∇wk
Jk(w

◦
k)}Nk=1, (4.17)

E i ≜ diag{ϵk(i)IMk
}Nk=1, (4.18)

si ≜ col{sk,i(wk,i−1)}Nk=1, (4.19)

ri ≜ col
n
[∂wk
erk

ψk,i, {ψℓ,i}

�oN

k=1
. (4.20)

28

4.2 Assumptions

Before proceeding, we introduce some assumptions that are helpful in examining
the behavior of Algorithm 1. First, we introduce the following assumption on the
variable ϵk(i).

Assumption 1 (Semi-supervised modeling variable) The semi-supervised mod-
eling variable ϵk(i) is assumed to be Bernoulli randomly distributed, i.e.,

ϵk(i) =

(
1, with probability qk

0, with probability 1− qk
, (4.21)

with 0 < qk ≤ 1. It is also assumed that ϵk(i) is independent of all the other random
mechanisms in the networked system.

Furthermore, we introduce the following conditions on the twice differentiable costs
{Jk(wk)} and on the gradient noise processes {sk,i}, which are commonly assumed in
the literature [7]. It can be shown that these conditions are satisfied by the logistic
regression costs in (3.4) and by the gradient approximation (3.14).

Assumption 2 (Strong convexity) The Hessian matrix function ∇2
wk
Jk(wk) is

bounded from below and above as follows:

0 < λk,minIMk
≤ ∇2

wk
Jk(wk) ≤ λk,maxIMk

, (4.22)

where λk,min and λk,max are the smallest and largest eigenvalues of the Hessian matrix
at agent k, respectively.

Assumption 3 (Gradient noise process) The gradient noise process that is de-
fined in (4.5) is assumed to satisfy the following conditions for 1 ≤ k ≤ N :

E[sk,i(wk) | F i−1] = 0, (4.23)

E[∥sk,i(wk)∥2 | F i−1] ≤ β2
k∥wk∥2 + σ2

s,k, (4.24)

for some β2
k ≥ 0, σ2

s,k ≥ 0, and where F i−1 denotes the collection of the past iterates
{wk,j | ∀ k = 1, ..., N and j ≤ i− 1}.

4.3 Network Mean-Square-Error Recursion

Since w◦
k is the unique minimizer of the strongly convex function Jw(wk), the second

term on the right-hand side of (4.14) is zero, and we can write:

ewi = Bi−1 ewi−1 − µE isi + µri. (4.25)

Since the variable ϵk(i) modeling the semi-supervised setting follows a Bernoulli
distribution, we have that:

E(ϵk(i))2 = E(ϵk(i)) = qk. (4.26)

29

Squaring both sides of (4.25), computing the conditional expectation, and using
Assumptions 1 and 3, we obtain the following relation:

E[∥ewi∥2 | F i−1] = E[∥Bi−1 ewi−1∥2|F i−1] + 2µE[ew⊤
i−1B⊤

i−1ri|F i−1]

+ µ2E[∥E isi∥2 | F i−1] + µ2E[∥ri∥2 | F i−1].
(4.27)

Let us consider the mean-square-error recursion (4.27) and let us first examine the
third term on its right-hand side. By using Assumptions 1 and 3, the third term on
the right-hand side of (4.27) can be bounded according to:

E[∥E isi∥2 | F i−1] =
NX

k=1

E[∥ϵk(i)sk,i∥2 | F i−1]

=
NX

k=1

E(ϵk(i))2E[∥sk,i∥2 | F i−1]

(a)
=

NX

k=1

qkE[∥sk,i∥2 | F i−1]

(b)

≤
NX

k=1

�
qkβ

2

k∥ewk,i−1∥2 + qkσ
2
s,k

�

≤
�

max
1≤k≤N

qkβ
2

k

� NX

k=1

∥ewk,i−1∥2 +
NX

k=1

qkσ
2
s,k,

(4.28)

where in step (a) we use (4.26), while in (b) we extend condition (4.24) to the vector

ewk,i−1 with β
2

k and σ2
s,k denoting some positive scalar quantities. Hence, the third

term on the right-hand side of (4.27) can be upper bounded by:

µ2E[∥E isi∥2 | F i−1] ≤ µ2β2
q,max∥ewi−1∥2 + µ2σ2

q,s, (4.29)

where

β2
q,max ≜ max

1≤k≤N
qkβ

2

k, (4.30)

σ2
q,s ≜

NX

k=1

qkσ
2
s,k. (4.31)

Now, let us consider the fourth term on the right-hand side of (4.27). Assuming
that the components of the feature vectors hk,i cannot grow infinitely, the partial
sub-derivatives of the regularization functions erk

wk, {wℓ}

�
in (3.13) are bounded

by some ζ > 0 for 1 ≤ k ≤ N and for 1 ≤ m ≤ Mk as follows:

1

η

����
�d∂erk
∂wk

ψk,i, {ψℓ,i}

��

m

���� ≤ ζ, (4.32)

30

which implies that:

E[∥ri∥ | F i−1] ≤ ηζ

vuut
NX

k=1

Mk. (4.33)

Therefore, we have the following upper-bound for the fourth term on the right-hand
side of (4.27):

µ2E[∥ri∥2 | F i−1] ≤ µ2η2ζ2
NX

k=1

Mk. (4.34)

Let us now examine the first term on the right-hand side of (4.27). From Assump-
tion 2, we have:

(1− µϵk(i)λk,max)IMk
≤ IMk

− µϵk(i)Hk,i−1 ≤ (1− µϵk(i)λk,min)IMk
. (4.35)

For simplicity, we introduce the following approximation for the first term on the
right-hand side of (4.27):

E[∥Bi−1 ewi−1∥2|F i−1]
(a)
= ew⊤

i−1(I − µEHi−1 − µHi−1E + µ2Hi−1EHi−1)ewi−1

(b)≈ ∥(I − µEHi−1)ewi−1∥2,
(4.36)

where in step (a) we use the fact that:

E = EE i = EE2
i = diag{qkIMk

}Nk=1, (4.37)

and in step (b) we use the fact that the step-size µ is sufficiently small so that terms
that depend on higher order powers of the step-size can be ignored. Combining (4.16)
and (4.35), and using (4.36), we obtain the following upper-bound on the 2-induced
norm of the block diagonal symmetric matrix B′

i−1 ≜ I − µEHi−1:

∥B′
i−1∥ ≤ ν, (4.38)

with
ν ≜ max

1≤k≤N
{νk}, (4.39)

and where:
νk ≜ max

n
|1− µqkλk,min|, |1− µqkλk,max|

o
. (4.40)

For simplicity, we write ν in the following form:

ν ≜ max
1≤k≤N

n
|1− µqkλk|

o
, (4.41)

where:

λk =

(
λk,min, if |1− µqkλk,min| ≥ |1− µqkλk,max|
λk,max, otherwise

. (4.42)

31

Using the sub-multiplicative property of the induced matrix norms, we arrive to the
following inequality:

∥B′
i−1 ewi−1∥2 ≤ ∥B′

i−1∥
2∥ewi−1∥2

≤ ν2∥ewi−1∥2.
(4.43)

Let us finally consider the second term on the right-hand side of (4.27). Let ηϕmax

be a bound on the largest component of B⊤
i−1ri in absolute value for all i. Hence,

the second term on the right-hand side of (4.27) can be upper-bounded by:

2µE[ew⊤
i−1B⊤

i−1ri | F i−1] ≤ 2µ|E[ew⊤
i−1B⊤

i−1ri | F i−1]|
≤ 2µηϕmax · ∥E[ewi−1]∥1.

(4.44)

4.4 Network Mean Error Recursion

To proceed with our analysis, we should examine the behavior of the mean error
vector to find an upper-bound for the term in (4.44). Taking expectations of both
sides in (4.25), and using condition (4.23), we arrive at the following recursion for
the mean error vector:

E[ewi] = E[Bi−1 ewi−1] + µE[ri]. (4.45)

Using notation (4.16), and using the fact that E = EE i, we get:

E[ewi] = (I − µ EHi−1)E[ewi−1] + µE[ri], (4.46)

which can be alternatively written as:

E[ewi] = B′
i−1E[ewi−1] + µE[ri]. (4.47)

Iterating (4.47) starting from i = 1, we get:

E[ewi] =
i−1Y

j=0

B′
jE[ew0] + µ

i−1X

j=1

�
E[rj]

i−1Y

k=j

B′
k

�
+ µE[ri]. (4.48)

The first term on the right-hand side of (4.48) converges to zero as i → ∞ if the
matrices B′

j are stable, which is ensured by a small enough step-size µ. Additionally,

the series µ
Pi−1

j=1

�
E[rj]

Qi−1
k=j B′

k

�
converge as i → ∞ since B′

k are stable and E[rj]

are bounded according to (4.32). The third term is also bounded according to (4.32).
Hence, for a sufficiently small µ, and as i → ∞, the mean error vector converges to
a small region of the order of µη, i.e.:

lim
i→∞

supE[ewi] ≤ O(µη). (4.49)

32

4.5 Network Mean-Square-Error Stability

Since the mean error vector E[ewi−1] converges to a small region as i → ∞ for a
sufficiently small µ, ∥E[ewi−1]∥1 can be upper bounded by some constant κ > 0.
Hence, we can rewrite (4.44) as follows:

2µE[ew⊤
i−1B⊤

i−1ri | F i−1] ≤ 2µηϕmaxκ. (4.50)

Substituting (4.29), (4.34), (4.43), and (4.50) in (4.27), and taking expectations
again to eliminate the conditioning on F i−1, we arrive at:

E∥ewi∥2 ≤
�
ν2 + µ2β2

q,max

�
E∥ewi−1∥2 + µ2

�
σ2
q,s + η2ζ2

NX

k=1

Mk

�
+ 2µηϕmaxκ. (4.51)

To simplify the notations, we introduce the following scalars:

α ≜ ν2 + µ2β2
q,max, (4.52)

τ ≜ µ2
�
σ2
q,s + η2ζ2

NX

k=1

Mk

�
+ 2µηϕmaxκ, (4.53)

and hence, we can rewrite (4.51) more compactly as:

E∥ewi∥2 ≤ αE∥ewi−1∥2 + τ. (4.54)

Iterating (4.54) starting from i = 1, we get:

E∥ewi∥2 ≤ αiE∥ew0∥2 +
i−1X

j=0

αjτ, (4.55)

which can be alternatively written as:

E∥ewi∥2 ≤ αiE∥ew0∥2 + τ
1− αi

1− α
. (4.56)

Taking the limit as i → ∞, and if 0 < α < 1, we get:

lim
i→∞

supE∥ewi∥2 ≤
τ

1− α
. (4.57)

Since, from Assumption 1, we have that 0 < qk ≤ 1 for 1 ≤ k ≤ N , a sufficiently
small step-size µ ≪ 1 ensures that:

ν2 = 1−O(µ), (4.58)

and therefore,

1− α = O(µ). (4.59)

33

Hence, the upper-bound in (4.57) can be rewritten as follows:

lim
i→∞

supE∥ewi∥2 ≤
τ

1− α

≤ O(µ2) +O(µ2η2) +O(µη)

O(µ)

≤ O(µ) +O(µη2) +O(η).

(4.60)

To ensure that 0 < α < 1, we need:

0 < ν2 + µ2β2
q,max < 1, (4.61)

max
1≤k≤N

n
(1− µqkλk)

2
o
+ µ2β2

q,max < 1. (4.62)

A small enough step-size µ ≪ 1 also ensures that 0 < ν2 < 1, therefore we get:

(1− µ min
1≤k≤N

qkλk)
2 + µ2β2

q,max < 1, (4.63)

µ2(min
1≤k≤N

qkλk)
2 − 2µ min

1≤k≤N
qkλk + µ2β2

q,max < 0, (4.64)

µ

(min
1≤k≤N

qkλk)
2 + β2

q,max

�
< 2 min

1≤k≤N
qkλk. (4.65)

Therefore, we arrive at condition (4.1) on the step-size µ to ensure that 0 < α < 1
and to achieve the upper-bound in (4.60), and hence finally arrive at Theorem 1 that
illustrates the network behavior in the mean-square-error sense when considering the
proposed Algorithm 1.

34

Chapter 5

Experimental Results

To illustrate the effectiveness of the proposed decentralized semi-supervised multi-
task learning algorithm, several experiments were conducted on synthetic and real
data, and their results are presented and discussed in this chapter. Those results
appear in the fourth section of [1].

5.1 Synthetic Data Experiments

Two synthetic data experiments were conducted by creating a network using the
signal processing on graphs toolbox [30]. The network structure was generated
according to the Stochastic Block Model (SBM) [31]. The graph parameters were
chosen such that the network consists of N = 50 nodes, divided equally into two
clusters. The probability of connection between nodes in the same cluster was set
to 0.2, while the probability of inter-cluster connection was 0.01. The edge weights
are random numbers, where intra-cluster edges weights follow a normal distribution
N (2, 0.2) while inter-cluster edges weights are small random numbers between 0 and
1. The resulting network is illustrated in Figure 5.1. The difference between the two
conducted experiments is in the selection of the agents that are able to observe their
true labels. One experiment was conducted by fixing the informed nodes at all the
time instants, while in the other experiment, random sampling was adopted similarly
to [32]. At every time instant or iteration i, the true labels γk(i) were generated by
a random choice between 1 and -1 for agents in the first cluster, and the opposite
label was assigned for agents in the second cluster. Agents were observing different
numbers of features, where the number of features Mk of agent k was randomly
chosen from a discrete set of values ranging between 1 and 5. The m-th entry of the
feature vector hk,i was generated according to the following equation:

[hk,i]m = γk(i).ek(i) + vk(i), (5.1)

where ek(i) and vk(i) are randomly generated from the Gaussian distributions
N (m, 0.5) and N (0, 1), respectively. The quantity vk(i) is intended to represent
the zero-mean additive noise affecting the sensors of agent k at iteration i. After
some hyper-parameter tuning, we set µ, c, and ρ equal to 0.01, 10, and 0.05, respec-

35

Figure 5.1: Clustered network structure (agents with the same color observe the
same label) [1].

tively. The parameter vector wk was initialized to a vector of zeros at every agent k
before starting to run Algorithm 1.

Every agent k was tested on a separate validation set of J = 100 samples at
every iteration i. The validation loss is calculated as follows:

VL(i) =
1

2N

NX

k=1

1

J

JX

j=1

|γk(j)− sign(h⊤
k,jwk,i)|

!
. (5.2)

At last, we distinguish between the performances of the non-cooperative and co-
operative scenarios with different choices of η based on the validation loss metric.

5.1.1 Experiment 1

This experiment was conducted by assuming that, within each cluster, only one node
is observing a label. This results in two informed nodes in the whole network, and
these informed nodes were fixed at every iteration. In other words, the probability
qk of these two nodes is set to 1, while the probability of the remaining nodes is
set to 0. It should be noted that this setting was not studied in Chapter 4 since it
was assumed that 0 < qk ≤ 1, however, we include the results of this experiment
to illustrate the findings in such scenario. Figures 5.2 and 5.3 report the results
in terms of validation loss for 500 iterations. These results were averaged over 20
Monte-Carlo runs. Figure 5.2 pertains to the obtained results using the network
Lasso regularizer that is used to promote sparsity, whereas Figure 5.3 illustrates

36

the results of smoothness promoting using the graph Laplacian regularizer. Three
different values of η were considered: 0, illustrating the non-cooperative scenario,
0.001 and 0.01.

Figure 5.2: Synthetic data experiment 1: Network average validation loss while
fixing the informed nodes and using the network Lasso regularization promoting
sparsity (f(x) = |x|) [1].

The results for both ℓ1-norm and squared ℓ2-norm settings indicate that for
η = 0 (non-cooperative case), the validation loss remains constant, approximately
0.48, during the whole learning process. Such value is considerably high since it is
close to 0.5, which can be achieved by a random guess. This is possibly because
the nodes with probability qk = 0 were not able to update their estimates in the
first step (3.15) since their semi-supervised modeling variable ϵk(i) is always equal
to 0, and neither able to perform the second update step (3.16) since η is equal to 0.
Hence, most of the network nodes kept their parameter vectors equal to the initial
random guess wk,−1.

On the other hand, when the network agents collaborate with each other by
setting η > 0, the network average validation loss considerably decreases in both ℓ1-
norm and squared ℓ2-norm settings. When using the sparsity promoting regularizer
(Figure 5.2), the loss reaches around 0.2 and 0.12 for η = 0.001 and η = 0.01,
respectively. Additionally, in Figure 5.3, i.e., when promoting the graph signal
smoothness, the loss reaches around 0.05 and 0.1 for η = 0.001 and η = 0.01,
respectively. Therefore, this suggests that cooperation is useful in such scenarios
to help decrease the network classifiers’ testing losses. Those results are promising
since, in various applications, data labeling is not always possible due to several
reasons: expensiveness, human assistance requirement, and privacy concerns.

5.1.2 Experiment 2

This experiment was conducted by assuming that each agent in the network is
observing its true label with a probability qk = 0.1 ∀k. The values of η that were

37

Figure 5.3: Synthetic data experiment 1: Network average validation loss while
fixing the informed nodes and using the graph Laplacian regularization promoting
smoothness (f(x) = x2) [1].

considered are 0, 0.001, and 0.005. The results are shown in Figures 5.4 and 5.5
for 500 iterations and are averaged over 20 Monte-Carlo runs. Similarly, Figure 5.4
represents the obtained results when using the network Lasso regularizer, while
Figure 5.5 demonstrates the results when the graph Laplacian regularizer is used.

In this random sampling setting, no significant difference is observed between
the steady-state validation losses of the non-cooperative (η = 0) and the cooper-
ative (η = {0.001, 0.005}) implementations. In all these implementations, and for
both ℓ1-norm and squared ℓ2-norm settings, the network validation loss converges to
approximately 0.05. The reason why the loss reached in the non-cooperative case in
this experiment (0.05) is lower than the loss of the non-cooperative case of the first
experiment (0.48) could be that all the network agents in the random sampling set-
ting were given a chance to update their parameter vectors in the first step (3.15).
Although the final cooperative and non-cooperative losses are identical (for both
sparsity and smoothness promoting settings), one key observation in this experi-
ment is that cooperation improves the network convergence rate. For example, as
illustrated in Figure 5.4, the network converges after approximately 10 iterations
when η = {0.001, 0.005}, while more than 70 iterations are required to converge in
the non-cooperative case. A similar behavior is also observed in Figure 5.5 when
using the smoothness promoting regularizer. Such finding is encouraging when the
data are limited to a small number of samples, for instance, in medical applications
with insufficient amount of data from patients and privacy restrictions to share them.

5.2 Real Data Experiments

After checking the effectiveness of our proposed algorithm on synthetic data, we pro-
ceed to validate its efficacy in real applications. Hence, we chose to test Algorithm 1

38

Figure 5.4: Synthetic data experiment 2: Network average validation loss while
adopting the random sampling and using the network Lasso regularization promot-
ing sparsity (f(x) = |x|) [1].

Figure 5.5: Synthetic data experiment 2: Network average validation loss while
adopting the random sampling and using the graph Laplacian regularization pro-
moting smoothness (f(x) = x2) [1].

39

on a weather dataset, the Global Historical Climatology Network - Monthly (GHCN-
M) dataset [33], [34]. This dataset contains historical climate measurements from
a large number of weather stations spread across the world. In our experiments,
we limit our study to the measurements that were previously considered in [11],
i.e., that belong to 139 stations located in the United States of America (USA) and
that were collected during the period ranging from 2004 to 2017. The aim is to
predict the rain (or snow) occurrence in each station based on five daily collected
measurements, which are the features in this classification problem and consist of:

• Mean temperature

• Mean dew point

• Mean visibility

• Mean wind speed

• Maximum sustained wind speed

In order to run our simulations, we use the code of the experiments conducted
in [11] to collect the daily measurements and to construct an undirected weighted
graph G = {V , E , A}, where each node represents a station. Hence, the total number
of nodes is N = |V| = 139. Let Nk,0 define the set of the 4-nearest neighbors of
node k, which are evaluated based on the geographical distance between nodes or
stations. The edges’ weights of the adjacency matrix A are generated according to:

akℓ =
pkℓ + pℓk

2
, (5.3)

where the value pkℓ is calculated as in [35]:

pkℓ =
exp(−d2kℓ)qP

m∈Nk,0
exp(−d2km)

P
n∈Nℓ,0

exp(−d2ℓn)
, ℓ ∈ Nk,0, (5.4)

where dkℓ is the geodesic distance between the nodes k and ℓ, which is defined as
the number of edges of the shortest path between k and ℓ. Similarly to the synthetic
data experiments, the feature vector at agent k and iteration i is denoted by hk,i,
which is a vector of size M = 5 containing the five measurements at station k and
day i. The label γk(i) is equal to 1 if rain or snow happened at station k and day
i, and −1 otherwise.

In our experiments, the dataset is split into training and testing sets in the same
way as in [11]. The data samples from 2004 till 2012 were taken for training, i.e.,
for estimating the parameter vector wo

k of each node or classifier k, resulting in 3288
training instances (3288 days). The testing set, which is intended to measure the
accuracy of these classifiers, includes the remaining data (2012 till 2017), resulting in
J = 1826 testing samples (1826 days). As in [11], the first estimate of the parameter
vectors was generated using the standard normal distribution before starting to run
Algorithm 1 on the training set. This first estimate was fixed for all the experiments

40

that we run for different choices of η for a fair comparison. Heuristically, we set µ,
c, and ρ equal to 3 · 10−4, 10, and 2 · 10−5, respectively. Similarly to the previous
section, we also conducted two experiments by fixing the informed nodes in the
first one and adopting random sampling in the second one. Finally, to compare
between the non-cooperative and cooperative scenarios, the network performance is
evaluated on the testing set by calculating the testing error as:

1

2N

NX

k=1

1

J

JX

j=1

|γk(j)− sign(h⊤
k,jwk,∞)|

!
, (5.5)

which is defined in a similar manner to (5.2), but the difference is that wk,∞ refers
to the average of the last 200 estimates of the parameter vector at node k, as in [11].

5.2.1 Experiment 1

This experiment was conducted by fixing seven informed nodes (with probability
qk = 1) at all the training days while all the remaining network nodes continuously
have a probability qk = 0. Figure 5.6 illustrates the constructed network of weather
stations with the black nodes representing the informed nodes in the network. Only
these seven informed nodes were able to access their labels and update the estimates
of their parameter vectors at the first step of Algorithm 1. Table 5.1 lists the network
average testing losses for several values of the regularization strength η when using
the network Lasso regularizer (promoting sparsity). Additionally, Table 5.2 reports
the results when using the graph Laplacian regularizer (promoting smoothness).

Table 5.1: Real data experiment 1: Network average testing error while fixing
the informed nodes and using the network Lasso regularization promoting spar-
sity (f(x) = |x|).

Regularization
strength η

0 0.01 0.1 0.5 1 10 50

Testing error 0.4891 0.4675 0.4271 0.3919 0.3933 0.3942 0.423

Table 5.2: Real data experiment 1: Network average testing error while fixing the
informed nodes and using the graph Laplacian regularization promoting smoothness
(f(x) = x2).

Regularization
strength η

0 0.01 0.1 1 10 20 50

Testing error 0.4891 0.3897 0.4013 0.3934 0.3944 0.3955 0.4003

The results, for both sparsity and smoothness promoting settings, show that the
testing error in the non-cooperative scenario (η = 0) is somewhat high (0.4891). This

41

Figure 5.6: Illustration of the 139 weather stations (or network nodes) with the
informed nodes painted in black (with probability qk = 1) and spread across the
network.

is because uninformed nodes could not properly estimate their parameter vectors
since their true labels were not available during the whole training phase, similarly
to the first synthetic data experiment. On the other hand, by allowing the agents
to collaborate (η > 0), the testing error decreases in the two considered settings: It
reaches its smallest value (0.3919) for η = 0.5 in the ℓ1-norm setting, while the best
performance in the squared ℓ2-norm setting is achieved for η = 0.01 (0.3897). This
demonstrates that the proposed Algorithm 1 has led to a decrease of the testing loss
in this classification problem. It is worth noting that a higher value of η resulted in
a slightly higher testing loss in both considered settings. This increase in bias could
be the result of giving more importance to the regularization term than the logistic
loss.

In Figure 5.7, we illustrate the labels of the 139 network nodes on March 13,
2014, with Figure 5.7a representing the real labels and Figure 5.7b pertaining to
the predicted labels. The black color represents the positive class (rain or snow
occurrence), while the copper color belongs to the negative class. The additional
brown color in Figure 5.7b belongs to the predictions where bγk(i) = sign(h⊤

k,iw
o
k) = 0.

In such cases, both 1 and −1 values for the predicted labels can be accepted since
both predictions are of equal probabilities. The average network testing loss reached
on this specific day is 0.1871, which can be observed from the graphs since most of
the nodes predictions agree with their real labels. One key observation is that the
real labels in Figure 5.7a approve that neighboring classifiers in some applications
are most likely to observe data samples belonging to the same class.

Although the results of this experiment validate the results of the first synthetic

42

(a) Real labels. The structure illustrates
that nearby classifiers are more likely to ob-
serve similar labels.

(b) Predicted labels. The extra brown color
represents the predictions where bγk(i) =
sign(h⊤

k,iw
o
k) = 0.

Figure 5.7: Real data experiment 1: Illustration of the 139 weather stations along
with their class labels on March 13, 2014. The black color corresponds to the label
1 (rainy or snowy day) whereas the copper color represents the label −1 (non-rainy
and non-snowy day).

data experiment, the error decrease in the latter is more noticeable than the decrease
in this real data experiment. This could be the result of the imperfect clustering
of the data in the real scenario. In other words, by comparing Figure 5.1 to Figure
5.7a, it is observable that the perfect data clustering that was created by the SBM
is not always encountered in real applications, where the presence of outliers affects
the clustered structure of the data. Additionally, in this experiment, all the network
agents had access to five measurements, therefore, none of them was suffering from a
lack of features in comparison to others. Accordingly, those facts might be limiting
the performance of our proposed Algorithm 1 in this real data experiment.

5.2.2 Experiment 2

Similarly to the synthetic data experiment 2, each network agent in this experiment
was also collecting its label with a probability qk = 0.1 ∀k. The results that were
obtained using the network Lasso regularizer are listed in Table 5.3 and the results
when the graph Laplacian regularizer is used are summarized in Table 5.4.

In this experiment, the smallest testing loss is also achieved in a cooperative
setting. It is equal to 0.3798 (η = 1) in the ℓ1-norm setting, and equal to 0.3752
(η = 0.01) in the squared ℓ2-norm setting. However, the difference between these
values and the testing errors reached in the non-cooperative case is slight. These
results are in accordance with the findings obtained in the synthetic data experiment
2 (subsection 5.1.2) since no significant difference existed between the final validation
losses of the non-cooperative and cooperative scenarios.

43

Table 5.3: Real data experiment 2: Network average testing error while adopting
the random sampling and using the network Lasso regularization promoting sparsity
(f(x) = |x|).

Regularization
strength η

0 0.01 0.1 0.5 1 10 50

Testing error 0.3811 0.3811 0.3802 0.3827 0.3798 0.3827 0.3852

Table 5.4: Real data experiment 2: Network average testing error while adopting the
random sampling and using the graph Laplacian regularization promoting smooth-
ness (f(x) = x2).

Regularization
strength η

0 0.01 0.1 1 10 20 50

Testing error 0.3904 0.3752 0.3808 0.3822 0.3822 0.3855 0.3822

44

Chapter 6

Conclusion

In this final chapter, we highlight the main takeaways of this thesis and then provide
some future research directions.

6.1 Conclusion

In this study, we tackled a network semi-supervised online binary classification prob-
lem in a heterogeneous setting where classifiers may observe different numbers and
types of features. We considered a prior knowledge that neighboring classifiers are
more likely to observe data samples belonging to the same class, which is commonly
encountered in many practical scenarios. To encourage the similarities between the
labels of neighboring agents, we proposed to add a graph regularization term to
the logistic loss function. Two additional regularization terms were proposed: the
network Lasso regularization (promoting sparsity) represented by the ℓ1-norms of
the differences between the labels and the graph Laplacian regularization (promot-
ing smoothness) represented by the squared ℓ2-norms of the differences between the
labels.

The proposed regularized problem was solved using the stochastic (sub-)gradient
descent approach since the data were received in an online streaming manner. This
resulted in an algorithm of two steps: a self-learning step and a social learning
step. This algorithm’s stability was studied in the mean-square-error sense, and
assumptions and conditions were derived to ensure its convergence. The synthetic
and real data experimental results indicate that, when fixing the nodes that are
observing their true labels, the cooperation between neighboring agents helps in
decreasing the validation and testing errors. Furthermore, the results obtained when
randomly selecting the informed nodes demonstrate that the collaboration among
agents mainly helps in accelerating the convergence speed of the algorithm.

6.2 Future Research Work

Two directions for future research may be investigated to possibly improve this
work. The first one is to try to minimize the network Lasso regularization function
differently, by employing the proximal operator for instance, since the subgradient

45

descent method might not necessarily be a descent method. The second future
research recommendation is to consider variations of the hyperbolic tangent function
tanh(·), as in [36] for instance, because the tanh(·) function might sometimes suffer
from the vanishing gradient problem [36]–[38].

46

Bibliography

[1] M. Issa, R. Nassif, E. Rizk, and A. H. Sayed, “Decentralized semi-supervised
learning over multitask graphs,” in 2022 56th Asilomar Conference on Signals,
Systems, and Computers, October 2022.

[2] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains,” IEEE Sig. Process.
Mag., vol. 30, no. 3, pp. 83–98, 2013.

[3] A. Sayed, S.-Y. Tu, J. Chen, X. Zhao, and Z. Towfic, “Diffusion strategies
for adaptation and learning over networks: An examination of distributed
strategies and network behavior,” IEEE Signal Processing Magazine, vol. 30,
pp. 155–171, May 2013.

[4] R. Nassif, S. Vlaski, C. Richard, J. Chen, and A. H. Sayed, “Multitask learning
over graphs: An approach for distributed, streaming machine learning,” IEEE
Signal Process. Mag., vol. 37, no. 3, pp. 14–25, 2020.

[5] R. Nassif, S. Vlaski, and A. H. Sayed, “Distributed inference over multitask
graphs under smoothness,” in 2018 IEEE 19th International Workshop on Sig-
nal Processing Advances in Wireless Communications (SPAWC), 2018, pp. 1–
5.

[6] D. Hallac, J. Leskovec, and S. Boyd, “Network lasso: Clustering and opti-
mization in large graphs,” in Proc. ACM SIGKDD, Sydney, Australia, 2015,
pp. 387–396.

[7] A. H. Sayed, “Adaptation, learning, and optimization over networks,” Found.
Trends Mach. Learn., vol. 7, no. 4-5, pp. 311–801, 2014.

[8] D. P. Bertsekas, “A new class of incremental gradient methods for least squares
problems,” SIAM J. Optim., vol. 7, no. 4, 1997.

[9] A. Nedić, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “Distributed subgra-
dient methods for multi-agent optimization,” IEEE Trans. Automat. Contr.,
vol. 54, no. 1, pp. 48–61, 2009.

[10] E. Rizk, R. Nassif, and A. H. Sayed, “Network classifiers with output smooth-
ing,” in Available as arXiv:1911.04870, Oct. 2019.

47

[11] R. Nassif, S. Vlaski, C. Richard, and A. H. Sayed, “Learning over multitask
graphs—Part I: Stability analysis,” IEEE Open Journal of Signal Processing,
vol. 1, pp. 28–45, 2020.

[12] J. Chen, C. Richard, and A. H. Sayed, “Multitask diffusion adaptation over
networks,” IEEE Trans. Signal Process., vol. 62, no. 16, pp. 4129–4144, 2014.

[13] R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Proximal multitask learn-
ing over networks with sparsity-inducing coregularization,” IEEE Trans. Sig-
nal Process., vol. 64, no. 23, pp. 6329–6344, 2016.

[14] R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Multitask diffusion lms
with sparsity-based regularization,” in 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp. 3516–3520.

[15] M. Belkin, I. Matveeva, and P. Niyogi, “Regularization and semi-supervised
learning on large graphs,” in Proc. Conf. Learning Theory, Banff, Canada,
2004, pp. 624–638.

[16] R. K. Ando and T. Zhang, “Learning on graph with laplacian regularization,”
in Proc. Adv. Neural Inf. Process. Syst., Cambridge, MA, USA, 2006, pp. 25–
32.

[17] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data with
label propagation,” Technical report, 2002.

[18] D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Schölkopf, “Learning with
local and global consistency,” in Proc. Adv. Neural Inf. Process. Syst., 2003,
pp. 321–328.

[19] H. Ambos, N. Tran, and A. Jung, “Classifying big data over networks via
the logistic network lasso,” in 2018 52nd Asilomar Conference on Signals,
Systems, and Computers, 2018, pp. 855–858.

[20] N. Tran, H. Ambos, and A. Jung, “Classifying partially labeled networked data
via logistic network lasso,” in ICASSP 2020 - 2020 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 3832–
3836.

[21] A. Jung, “Clustering in partially labeled stochastic block models via total vari-
ation minimization,” in 2020 54th Asilomar Conference on Signals, Systems,
and Computers, 2020, pp. 731–735.

[22] Y. SarcheshmehPour, Y. Tian, L. Zhang, and A. Jung, Networked federated
multi-task learning, 2021.

[23] Y. Sarcheshmehpour, M. Leinonen, and A. Jung, “Federated learning from big
data over networks,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process,
Toronto, Canada, 2021, pp. 3055–3059.

[24] D. W. Hosmer and S. Lemeshow, Applied Logistic Regression, 2nd. Wiley, NJ,
2000.

[25] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th. Academic
Press, 2008.

48

[26] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise
removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60, no. 1, pp. 259–
268, 1992.

[27] Y. Nesterov, Introductory lectures on convex optimization: A basic course.
Springer, 2004.

[28] D. Ciulin, “About sign function and some extensions,” in Innovations and Ad-
vanced Techniques in Systems, Computing Sciences and Software Engineering,
E. Khaled, Ed., Springer, Dordrecht, 2008, pp. 148–153.

[29] F. H. Clarke, Optimization and Nonsmooth Analysis. Wiley New York, 1983.

[30] N. Perraudin, J. Paratte, D. Shuman, et al., “GSPBOX: A toolbox for signal
processing on graphs,” ArXiv e-prints, Aug. 2014.

[31] E. Abbe, “Community detection and stochastic block models: Recent devel-
opments,” Journal of Machine Learning Research, vol. 18, no. 177, pp. 1–86,
2018.

[32] P. Di Lorenzo, P. Banelli, E. Isufi, S. Barbarossa, and G. Leus, “Adaptive
graph signal processing: Algorithms and optimal sampling strategies,” IEEE
Transactions on Signal Processing, vol. 66, no. 13, pp. 3584–3598, 2018.

[33] J. H. Lawrimore, M. J. Menne, B. E. Gleason, et al., Global Historical Clima-
tology Network - Monthly (GHCN-M), Version 3. NOAA National Centers for
Environmental Information, 2011.

[34] H. Lawrimore, M. J. Menne, B. E. Gleason, et al., “An overview of the global
historical climatology network monthly mean temperature data set, version 3,
j,” 2011.

[35] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs,”
IEEE Transactions on Signal Processing, vol. 61, no. 7, pp. 1644–1656, 2013.

[36] B. Xu, R. Huang, and M. Li, “Revise saturated activation functions,” CoRR,
vol. abs/1602.05980, 2016.

[37] M. M. Lau and K. Hann Lim, “Review of adaptive activation function in deep
neural network,” in 2018 IEEE-EMBS Conference on Biomedical Engineering
and Sciences (IECBES), 2018, pp. 686–690.

[38] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” in Proceedings of the Thirteenth International Con-
ference on Artificial Intelligence and Statistics, Y. W. Teh and M. Tittering-
ton, Eds., ser. Proceedings of Machine Learning Research, vol. 9, Chia Laguna
Resort, Sardinia, Italy: PMLR, May 2010, pp. 249–256.

49

	ACKNOWLEDGEMENTS
	ABSTRACT
	ABBREVIATIONS
	NOTATIONS
	Introduction
	Signal Processing on Graphs
	Decentralized Inference Over Graphs
	Single-Task Estimation Problems
	Multitask Estimation Problems
	Heterogeneous Settings
	Heterogeneous setting 1: different types and numbers of features
	Heterogeneous setting 2: semi-supervised setting

	Problem Statement
	Thesis Outline

	Literature Review
	Cooperative Strategies for Solving Network Estimation Problems
	Cooperation in single-task estimation problems
	Cooperation in multitask estimation problems to promote parameter vectors smoothness
	Cooperation in multitask estimation problems to promote graph clustering
	Cooperation in multitask estimation problems to promote graph piecewise constant transitions
	Cooperation in multitask estimation problems to promote agents' predictions smoothness

	Cooperative Strategies for Solving Network Classification Problems in Semi-Supervised Settings
	Cooperation in semi-supervised learning problems where nodes represent single data points
	Cooperation in semi-supervised learning problems where nodes carry local datasets

	Comparison to Our Approach

	Methodology
	Initial Problem Definition
	Additional Regularizers
	Network Lasso regularization
	Graph Laplacian regularization

	Regularized Optimization Problem
	Decentralized Semi-Supervised Multitask Learning Algorithm issa2022

	Stability Analysis
	Network Error Vector Recursion
	Assumptions
	Network Mean-Square-Error Recursion
	Network Mean Error Recursion
	Network Mean-Square-Error Stability

	Experimental Results
	Synthetic Data Experiments
	Experiment 1
	Experiment 2

	Real Data Experiments
	Experiment 1
	Experiment 2

	Conclusion
	Conclusion
	Future Research Work

	Bibliography

