
AMERICAN UNIVERSITY OF BEIRUT

MACHINE LEARNING FROM LIMITED
TIME-SERIES DATA

by

REEM ABDULRAHMAN MAHMOUD

A dissertation
submitted in partial fulfillment of the requirements

for the degree of Doctorate of Philosophy
to the Department of Electrical and Computer Engineering

of Maroun Semaan Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
September 2022

AMERICAN UNIVERSITY OF BEIRUT

MACHINE LEARNING FROM LIMITED
TIME-SERIES DATA

by

REEM ABDULRAHMAN MAHMOUD

Approved by:

Dr. Zaher Dawy, Professor Chairperson of Committee

Electrical and Computer Engineering

Dr. Hazem Hajj, Professor Advisor

Electrical and Computer Engineering

Dr. Fadi Karameh, Associate Professor Member of Committee

Electrical and Computer Engineering

Dr. Wassim Elhajj, Professor Member of Committee

Computer Science

Dr. Brian Evans, Professor Member of Committee

Electrical and Computer Engineering

Dr. Khaled Shaban, Professor Member of Committee

Electrical and Computer Engineering

fk14
Pencil

Dr. Peter Kairouz, Staff Research Scientist Member of Committee

Electrical and Computer Engineering

Date of dissertation defense: August 25, 2022

Acknowledgements

I was never a one-favorite-quote kind of person. Today, my quote of the day
is “If you think you can or you think you can’t, you’re right.” as said by Henry
Ford. I write this ending a four-year journey of learning, adapting to beautiful
and challenging life changes, and growing as a person, a family, and a member of
my community. It is my faith that got me here today. Well, my faith and an
indispensable group of special individuals.

I am eternally grateful to so many who made this journey possible, but most
importantly, a pleasant one.

I am grateful to incredible teachers and mentors who have helped shape me
into the person I am today. In particular, I thank a particular group of mentors
whose guidance was particularly invaluable during my Ph.D. journey: Dr. Hazem
Hajj, the members of my committee - Dr. Zaher Dawy, Dr. Fadi Karameh, Dr.
Wassim Elhajj, Dr. Brian Evans, Dr. Khaled Shaban, and Dr. Peter Kairouz - Dr.
Abd-Elhamid Taha.

I am blessed to have had amazing colleagues supporting me along the way. Thank
you to my AUB MIND lab buddies, Ph.D. partners, and the ECE department who
shared my days with me during this journey. Thank you to my Zaka team for
making the Ph.D. experience unpredictable!

I cannot do justice to my family- those with whom I share blood and those with
whom I’ve come to share life: Farah and Hiba–the sisters I never knew I could have.
Nadine and Haya–the people who taught me the true meaning of friendship. My
brothers, uncles, aunts–the never failing support system.

To my husband, Ahmad, you are the everlasting rock I can always lean on.
To my daughter, Ayla, you are my shiniest ray of sunshine.
To my grandfather, Riad, you taught me kindness and generosity.
To my grandmother, Mariam, you taught me strength and selfishness.
To my mother, Dima, you taught me the meaning of perseverance and bravery.
To my father, Abdulrahman, you taught me unconditional love. I dedicate to

you this dissertation–my life’s work.
Above it all,

�
HAmÌ

�
'A�Ë@ �Õ

�
æ
�

��
K é�

�
J�

�
Ò
�
ª
	
J�K.�

ø

	
YË@ é

�
<ËYÒmÌ'@

1

Abstract
of the Dissertation of

Reem Abdulrahman Mahmoud for Doctorate of Philosophy
Major: Electrical and Computer Engineering

Title: Machine Learning from Limited Time-series Data

Time-series presents an important class of data in our everyday life and is becoming
predominant with the abundance of sensors and IoT devices, which as a result has
created opportunities for new machine learning (ML) applications. Unfortunately,
the vast amounts of data collected are unlabeled and annotation of such data for
ML becomes a challenge as it demands high monetary cost, labor, and time. This
work aims at developing methods to overcome data limitations for time-series and
advancing transfer learning approaches.

In the first objective of the work, we address the labeled data deficiency bottle-
neck when building personalized models for a group of target tasks. Most researchers
have approached the problem of learning personalized models through learning a
unique model per task. We present a new systematic approach for designing, evalu-
ating, and improving Multitask Learning models, which learn multiple target tasks
simultaneously and leverage information transfer across all tasks. We consider three
primary design components: features capturing the time dynamics in data, similarity
metrics reflecting degrees of commonality and uniqueness across entities, and gen-
eralization metrics to prevent overfitting. The framework enables the introduction
of efficient new MTL models and advances the prior state-of-the-art. The approach
is successfully applied and tested resulting in an MTL deep learning approach that
makes use of Convolutional Neural Networks (CNN) and Gated Recurrent Units
(GRU).

In the second objective of the work, we consider the case where new tasks emerge
for models that had been previously trained on sufficient labeled data (referred
to as ‘source’ data) but where the source data is no longer accessible, a common
scenario that arises due to lack of resources or privacy and security constraints.
The goal in such scenarios is to transfer knowledge from a pre-trained model to the
emerging new target tasks without sacrificing performance on the source data tasks,
a problem known as catastrophic forgetting. We propose a novel multi-objective

2

learning approach with three loss functions to minimize catastrophic forgetting,
prediction error, and generalization error where label shifts exist across the source
and target tasks. Under the first objective, the contributions of this dissertation are
two folds. We introduce an architecture supporting the multi-objective method and
targeting multitask prediction for time-seriesdata.

In the third objective of the work, we investigate the task transferability estima-
tion problem, which aims to provide an a priori estimate of the success of knowledge
transfer between a given pre-trained model of a source task and a dataset of a new
target task. Previous work has explored empirical and analytical solutions to the
transferability estimation problem with remaining limitations in how the transfer-
ability relationship is defined between the source and target tasks. We present a
method to show which representations extracted from a source pre-trained model are
most descriptive of source and target task transferability. We buildan interpretable
attention network that learns the optimal combination of pre-trained model rep-
resentations that hold the highest contribution to transferability across the source
and target tasks.Under the second objective, the contributions of the dissertation
are two folds. We introduce an attention-based transferability measure improving on
state-of-the-art transferability estimation and presenting an interpretable technique
to define the relationship between a source and target task.

We evaluate our proposed methods on a range of benchmark human activity
recognitiondatasets as a sensing application as well as benchmark computer vision
object detection datasets for evaluation against the state-of-the-art. Our proposed
work is shown to advance state-of-the-art methods under both dissertation objec-
tives.

3

Table of Contents

ACKNOWLEDGEMENTS 1

ABSTRACT 2

ABBREVIATIONS 10

1 Introduction 11
1.1 Research Objective 1: Multitask Learning 11
1.2 Research Objective 2: Lifelong Learning 13
1.3 Research Objective 3: Transferability Measures 15
1.4 Dissertation Contributions . 16
1.5 Dissertation Outline . 17

2 Background 18
2.1 Time-series Data . 18
2.2 Machine Learning . 19
2.3 Neural Networks . 20

2.3.1 Convolutional Neural Networks 22
2.3.2 Recurrent Neural Networks 23

2.4 Transfer Learning . 23

3 Literature Review 25
3.1 Traditional Transfer Learning . 25
3.2 Multitask Learning . 25

3.2.1 Single-task Personalized Modeling Approaches 26
3.2.2 Multitask Deep Learning Approaches 26

3.3 Catastrophic Forgetting in Neural Networks 27
3.3.1 Replay Methods . 27
3.3.2 Parameter Isolation Methods 28
3.3.3 Regularization-based Methods 28

3.4 Task Transferability Estimation . 29
3.4.1 Empirical Methods . 29
3.4.2 Analytical Methods . 30

3.5 Time-series Neural Network Architectures 30

4

4 Systematic Approach to Designing Multitask Learning Models for
Time-series Data 31
4.1 Overview . 31
4.2 Problem Definition . 32
4.3 Methods . 33

4.3.1 Multitask Learning Framework 33
4.3.2 Application of MTL Framework in Deep Learning for Time-

series . 35
4.4 Data & Experimental Setup . 38

4.4.1 Datasets . 38
4.4.2 Experimental Setup . 40

4.5 Results & Discussion . 41
4.5.1 Comparison against Baseline Models 41
4.5.2 Comparison against state-of-the-art 42

4.6 Broader Applications . 43

5 Multi-objective Learning to Diminish Catastrophic Forgetting in
Lifelong Transfer Learning 44
5.1 Overview . 44
5.2 Problem Definition . 45
5.3 Proposed Methods . 45

5.3.1 Catastrophic Forgetting Minimization 47
5.3.2 Robustness with End-to-End Representation Learning 48
5.3.3 Time-series Data Architecture 50

5.4 Data & Experimental Setup . 50
5.4.1 Datasets . 50
5.4.2 Experimental Setup . 51

5.5 Results & Discussion . 52
5.5.1 Single New Task . 52
5.5.2 Multiple New Tasks . 55
5.5.3 Ablation Analysis . 58

5.6 Broader Applications . 59

6 Measures for Transferability Estimation of Pre-trained Models 60
6.1 Overview . 60
6.2 Problem Definition . 60
6.3 Proposed Methods . 61

6.3.1 Log Expected Empirical Prediction Measure 61
6.3.2 Transferability with Multi-granular Representation Extraction 63
6.3.3 Interpretable Attention Networks for Learning Representation

Importance . 64
6.4 Data & Experimental Setup . 66

6.4.1 Implementation Details . 67
6.4.2 Datasets . 67
6.4.3 Pre-trained Models . 67

5

6.4.4 Transfer Learning Algorithms 68
6.4.5 Source-Target Settings . 68
6.4.6 Baselines . 68

6.5 Results & Discussion . 68
6.5.1 Transferability Measures vs. Transfer Accuracy 68
6.5.2 Evaluation under the Cross-domain Setting 69
6.5.3 Evaluation against Varying Design Parameters 70
6.5.4 Interpretation of iLEEP . 71
6.5.5 Applications of iLEEP and NLEEP+ 71

6.6 Broader Applications . 72

7 Conclusion & Future Directions 73
7.1 Multitask Learning Models for Time-series Data 73

7.1.1 Summary . 73
7.1.2 Open Research Directions . 73

7.2 Catastrophic Forgetting in Transfer Learning 74
7.2.1 Summary . 74
7.2.2 Open Research Directions . 75

7.3 Measures of Transferability Estimation 75
7.3.1 Summary . 75
7.3.2 Open Research Directions . 75

A Data Statistics of Chapter 5 Experiments 77

Bibliography 79

6

Illustrations

1.1 The learning spectrum of Machine Learning approaches. 12
1.2 The traditional extremities of the transferability estimation problem. 15
1.3 The dissertation outline divided across chapters. 17

2.1 A sample time-series data sequence collected from a 3-dimensional
accelerometer sensor. 19

2.2 A two-layer Neural Network architecture. [29] 21
2.3 The movement of the convolution operation in a layer of the CNN. [30] 22
2.4 A Convolutional Neural Network architecture. [30] 22
2.5 A Gated Recurrent Unit architecture. [31] 23
2.6 An example of a standard transfer learning setting of fine-tuning a

pre-trained model. 24

4.1 The figure shows two user entities under two activities: walking and
jumping. Both users are shown to share a common motion structure
in both activities while having unique dynamics under each activity. . 33

4.2 A hierarchical CNN-GRU network that is capable of handling time-
series sequences effectively by capturing rich dynamic features at mul-
tiple granularity levels in the network layers. 36

4.3 A hierarchical MTL CNN-GRU network that is capable of learning
unique entity models while also sharing common information across
similar entities through hard-parameter. 37

4.4 The proposed MTDL-TS hierarchical convolutional-recurrent network
structure is illustrated. The layers labeled Conv1, Conv2, Conv3,
Conv4, dense, and GRU1 are shared across all entities, and the GRU2
and softmax layers are designed to be entity-specific, that is, learned
with data that is unique to a layer’s assigned user. 38

4.5 Summary of results on the baseline pop-STDL, baseline pers-STDL,
MTFL-TS, and MTDL-TS models on ALKAN under 5 and 10 users. 41

5.1 Diagram detailing the architecture and different losses involved in the
learning stage of the proposed LOMA approach. 46

5.2 Comparing LOMA performance when Λo is varied between [0.05,0.95]
on old tasks in the objective function of Eq. 5.1 54

7

5.3 The plots present average performance across the 5 OPP users for
which the network is fine-tuned after being pre-trained with ALKAN
20 users. The training data size of ALKAN is reduced in orders
of magnitude to showcase robustness of the methods to limited pre-
trained data. (a) represents fine-tuning on OPP with no label shift,
and (b) represents fine-tuning on OPP with label shift. 57

6.1 An illustration of the multi-granular nature of representations that
are learned across shallow to deep layers in a network. The network
architecture shown is of VGG16 [34]. 64

6.2 Attention network architecture for interpreting the importance of
source pre-trained model representations. L is the number of layers in
the source pre-trained network, P is the size of the low-dimensional
input representation after being compressed through PCA, and ’?’
reflects an arbitrary input batch size. 65

8

Tables

4.1 Comparison of OMT and MTDL-TS on OPPORTUNITY 41
4.2 Comparison of MTDL-TS on OPPORTUNITY against traditional

baseline methods . 42
4.3 Comparison against state-of-the-art on DSA 43

5.1 Architecture Hyperparameters . 52
5.2 Experiments evaluated on 30 old tasks from UCI HAR and 4 new

tasks from OPPORTUNITY. Old and new tasks have similar labels
of basic locomotion activities. Results are shown in accuracy (%). . . 53

5.3 Experiments evaluated on 30 old tasks from UCI HAR and 4 new
tasks from OPPORTUNITY. Old and new tasks have different la-
bels of basic locomotion activities and gesture recognition activities,
respectively. Results are shown in accuracy (%). 53

5.4 Training combinations of new tasks from OPPORTUNITY simulta-
neously. 55

5.5 Training all target tasks from OPPORTUNITY in sequence. The
order of tasks as introduced to the model is: 1,2,3,4. 56

5.6 Training all target tasks from OPPORTUNITY in sequence. The
order of tasks as introduced to the model is: 4,3,2,1. 56

5.7 Summary of ablation analysis run on 5 experimental setups. Results
are shown in average accuracy (%) across all tasks. 58

6.1 Comparison of the Pearson correlation coefficients of iLEEP,NLEEP+,
NLEEP, and LEEP on the standard setting of the source and target
data having similar domain and label distributions. 69

6.2 Comparison of the Pearson correlation coefficients of iLEEP,NLEEP+,
NLEEP, and LEEP on the cross-domain setting where the source and
target data belong to different input domain distributions. 70

A.1 Summary of data statistics for ALKAN, DAS, OPPORTUNITY, and
UCI HAR. 78

9

Abbreviations

AE Autoencoder
CNN Convolutional Neural Network
DL Deep Learning
GRU Gated Recurrent Unit
iLEEP Interpretable LEEP
LEEP Log Expected Empirical Prediction
NLEEP Gaussian LEEP
NLEEP+ Improved Gaussian LEEP
LOMA Lifelong Learning Multitask Autoencoder
LSTM Long Short-Term Memory
ML Machine Learning
MTL Multitask Learning
NN Neural Network
RNN Recurrent Neural Network
TL Transfer Learning

10

Chapter 1

Introduction

Machine learning (ML) applications have been taking the world by storm. In order
to bring ML applications to reality, these ML models require vast amounts of labeled
data. Time-series presents a very important class of data in our everyday life from
power consumption, stock markets, and weather forecasting to context-aware sensing
from IoT devices. The abundance of such time-series data is an example of the large
opportunities present for new supervised ML applications. Unfortunately, most of
the data collected are unlabeled and annotation of such data becomes a challenge
as it demands high monetary cost, labor, and time. This has led to a limitation
in the availability of labeled time-series data sources that are sufficient for training
accurate ML models.

To overcome the limitations of labeled data, recent research has resulted in the
successful development of pre-trained ML models to improve the performance of
ML models on new tasks. Pre-trained ML models are typically fine-tuned to adapt
to new tasks or information. Transfer learning presents a promising paradigm of
techniques that use rich models pre-trained on large amounts of labeled data for
improving performance on new target tasks that suffer from limited labeled training
data. One such example is a deployed physical e-health application that has pre-
trained a neural network on large amounts of labeled data from old users (or tasks).
To introduce a new set of users to an existing model, labeled data for the new users
must be collected. Because this process is costly in both time and effort, leveraging
old knowledge from the pre-trained physical e-health neural network is important.
Despite the great success of using pre-trained models to learn new tasks, there
remain several challenges to overcome in order to achieve optimal transfer learning.

In this dissertation, we focus on three research challenges that address common
scenarios faced in transfer learning settings:

1.1 Research Objective 1: Multitask Learning

Under the first objective of the dissertation, we address the labeled data deficiency
bottleneck where prediction models for time-series data need to be developed for
unique entities (e.g. group of users, stocks, or houses) to predict categories that are
common across the entities (e.g. user emotions, stock exchange decisions, levels of

11

Population
Models

Personalized
Models

Multitask Learning
Models

Task
1

Task
2

Task
3

Task
1

Task
3

Task
2

Task
1

Task
3

Task
2

Task-specific Data:

Figure 1.1: The learning spectrum of Machine Learning approaches.

power consumption). The goal is to have personalized prediction models that are
unique to individual entities while achieving positive knowledge transfer by exploit-
ing the available commonality across entities.

Personalization in modeling is motivated by the fact that it is exhibited in many
natural human interactions. As an illustration, consider human activity recognition
for individual users, such as walking or climbing stairs. These high-level activi-
ties include information patterns that can be understood as shared group behavior
and other patterns that can be recognized as personalized to each user. On the
other hand, different people exhibit unique identifiers in low-level activities such as
posture, stride, and arm movements, since unique individuals vary with age, body
builds, and health conditions [1]. Accurate prediction from time-series sensing data
should be personalized to capture the unique descriptors of an individual or entity
being learned in a model. In practice, however, the limited size of personalized la-
beled datasets constitutes a bottleneck in achieving the desired performance in ML
models.

Most researchers have approached the problem of learning personalized models
by one of two extreme approaches, population or personalized models, as shown in
Fig. 1.1. Population models employ data collected from multiple entities to learn
one unified prediction model for all entities [2], [3], while personalized models learn
separate prediction models from each unique entity’s dataset [4], [5]. In both ex-
treme cases, one task is learned at a time from the data. As a result, these models
belong to a class of models called single task learning (STL). On the other hand, in
the middle region of Fig. 1.1, multitask learning (MTL) models, introduced by R.
Caruana [6], offer a tradeoff between both extremes where a compromise between
specificity and generality of a model is achieved by learning personalized entity mod-
els while allowing for information sharing across entities. MTL is a type of TL that
learns multiple target tasks simultaneously, leveraging their common information to
improve the performance of all tasks equally. Several works have highlighted the
superiority of MTL modeling in comparison to traditional STL methods, including
the work of X. Sun et al. [7] and P. Lui et al. [8]. Under the MTL scenario, we

12

optimize a model for multiple target tasks in parallel, that is, there is no source task
present and knowledge transfer is done across the target tasks in the model being
optimized.

While previous work sets strong grounds for MTL models, we present a new
systematic approach for designing, evaluating, and improving MTL models. This
work proposes a framework for systematically investigating and building accurate
personalized time-series MTL models while considering three primary design com-
ponents: features capturing the time dynamics in data, similarity metrics reflecting
degrees of commonality and uniqueness across entities, and generalization metrics to
prevent overfitting. The framework enables the introduction of efficient new MTL
models and advances the prior state-of-the-art. The approach is successfully applied
and tested resulting in an MTL deep learning approach that makes use of Convo-
lutional Neural Networks (CNN) and Gated Recurrent Units (GRU). The proposed
model is tested on the classification task of human activity recognition from sensing
devices and evaluated on benchmark datasets of OPPORTUNITY [9], UCI HAR
[10], DSA [11], as well as ALKAN [12] of human activity recognition in-the-wild.
The proposed method showed superiority in comparison to previous state-of-the-art
and baseline approaches, highlighting the strength of the proposed MTL systematic
design approach for personalized modeling of time-series data.

The work under this objective served as preliminary work and paved the way for
open research problems that we address in the second and third objectives of the
dissertation presented in Sections 1.2 and 1.3, respectively.

1.2 Research Objective 2: Lifelong Learning

Given an existing network trained on a number of pre-defined tasks, a key challenge
is to devise a method that can effectively update the model to handle new tasks
while leveraging and preserving old knowledge from pre-trained tasks. Traditional
fine-tuning has been heavily reported in the literature, proving to be very effective
in many applications. However, once a network is fine-tuned on a new (or target)
task, it is no longer concerned with maintaining performance on old (or source)
tasks. Federated Learning (FL) settings are an example of where preserving old
source task performance is important. In FL, a large number of users are leveraging
a global trained ML model on a cloud server. Moreover, these users participate in
updating the global model using local model updates through continuous rounds
of decentralized global model optimization. In every training round, a new set
of users are selected to update the global model. The users are not identifiable,
and the FL setting does not collect user data to a central location. As a result,
every round that the global model is updated with new user updates, the old user
model training is lost. Consequently, FL settings are an ideal scenario in practice
today where overcoming catastrophic forgetting can help maintain the global model’s
personalized performance for all participating users, old and new.

In a dynamic environment where new tasks keep emerging, the continuous trans-
fer of knowledge risks forgetting previously learned tasks while fine-tuning the pre-
trained model for new tasks, a phenomenon known as catastrophic forgetting. In

13

such an environment of continuous learning, also called Lifelong learning (LL), it is
ideal to maintain performance on the previously trained source tasks while meeting
the needs of new incoming target tasks. A recent survey classified methods of LL
into three categories: replay, regularization-based, and parameter isolation methods
[13]. Since we are focusing on time-series applications, where IoT and edge de-
vices present low-resource challenges, we focus on regularization-based LL methods,
where data storage and computational capacity requirements for such methods are
suitable for low-resource settings.

In the second objective of the dissertation, we consider the case where new
additional tasks emerge for models that had been previously trained on large labeled
data (referred to as ‘source’ data) and where the source data is no longer accessible.
Given that sensing data are abundantly collected on edge devices (e.g. smartphones,
appliances, etc.) where resources are naturally limited and privacy/security concerns
emerge, we assume that data from previously trained tasks is no longer available.
Consequently, the goal in such a scenario is to transfer knowledge from the pre-
trained model to create an updated model for the emerging new target tasks.

Catastrophic forgetting is defined as a Neural Network’s (NN) tendency to for-
get old information learned in its parameters when new information is introduced
[14]. To overcome the problem of catastrophic forgetting, Li and Hoiem proposed
a method called Learning without Forgetting (LwF) to retain memory on old tasks
trained in a NN while learning new tasks through a hybrid multitask and knowl-
edge distillation network [15]. Their approach showed state of the art performance
but was sensitive to distribution shifts between the old and new tasks. Rannen, et
al. [16] extended the work of Li and Hoiem [17] by introducing autoencoders that
constrain new tasks’ feature space to minimize catastrophic forgetting between old
and new tasks. Both prior work focused on the development of architectures for
computer vision modalities which are not directly applicable to time-series data.

In this work, we address the problem of minimizing catastrophic forgetting for
time-series applications and the challenge of handling output distribution shifts be-
tween old and new tasks. As an example, consider the case of a task being a user
trained in our network, a label shift exists when old user output labels are locomotion
activities (e.g., walking), whereas new user output labels are hand gesture activities
(e.g., close fridge). We propose a multi-objective learning method with three loss
functions to minimize catastrophic forgetting, prediction error, and errors in general-
izing across label shifts, simultaneously. We present a hybrid approach that makes
use of knowledge distillation and multitask autoencoders to improve the learning
of new tasks with limited labeled data while minimizing catastrophic forgetting of
old tasks trained on data that are no longer accessible. We evaluated our proposed
approach for learning multiple new tasks under two settings, namely learning in par-
allel versus in sequence. For cases where the network needs to learn multiple new
tasks sequentially, we show that the sequence in which tasks are learned matters
and that starting with tasks that have the best individual performance results in
optimal average performance in the network. The proposed work was evaluated on
four benchmark human activity recognition datasets including ALKAN [12], DAS
[18], OPPORTUNITY [19], and UCI HAR [20]. The datasets were collected from

14

mobile sensing devices. Our experimental results showed a reduced occurrence of
catastrophic forgetting in neural network architectures compared to previous LwF
state-of-the-art loss functions and traditional methods of fine-tuning.

Brute-force optimizationEducated guess
A priori

Transferability
Estimation

Figure 1.2: The traditional extremities of the transferability estimation problem.

1.3 Research Objective 3: Transferability Measures

In the second objective of the dissertation, we consider the case where given a pre-
trained model that had been previously trained on large labeled data, we need to
determine if the pre-trained model will successfully transfer knowledge to the new
task and improve its performance. Ultimately, the goal in such a scenario is to
determine if a source pre-trained model is able to successfully transfer knowledge to
a new target task model.

Previous methods for determining if a pre-trained model is selected for transfer
to a target task fall into two extreme ends as shown in Figure 1.2. On one end, an
educated guess is taken to determine which source pre-trained model is most closely
related to the target task. There are two unreliable assumptions made with this
approach. The first assumption is that there is a clear definition of ’relatedness’
between a source pre-trained model and target task. The second assumption is
that the features extracted by a NN are interpretable and similar to the features
extracted by the mind human. On the other extreme, a brute-force search over a
pool of pre-trained models can help identify the best source pre-trained model by
optimizing each pre-trained model for the target task and quantitatively assessing
which model achieves highest transfer accuracy after being trained on the target
task [21]. Although accurate, a brute-force search requires heavy optimizations that
typically take place on highly complex, deep neural networks. Thus, this technique
is very computationally expensive.

To help with choosing the most adequate pre-trained model, the transferability
estimation problem has become more prevalent in recent literature. The goal is
to measure the amount of information that can be transferred from a source pre-
trained model to a target task model. Transferability estimation has been studied
both empirically and analytically in literature. Empirical methods typically require
expensive parameter optimization of the source pre-trained model [21]–[23]. On the

15

other end, analytical methods have devised measures that provide a priori informa-
tion on transferability without the need for expensive optimization [17], [24], [25].
However, existing analytical methods in literature suffer from limitations as they
either impose strong assumptions on the data distribution of the source and target
tasks or they are not easily interpretable.

The recent work of C. Nguyen et al. [17] presents a state-of-the-art measure,
called Log Expected Empirical Prediction (LEEP), that relaxes the assumptions on
the data distribution between source and target tasks. Nevertheless, the proposed
LEEP measure is restricted to tasks of a classification output nature. Y. Li et
al. [25] improved on the LEEP measure by generalizing it to be applicable to
tasks of different types including regression and unsupervised tasks. However, both
LEEP and the improved NLEEP measure [25] restrict their proposed measure to
only study the representations of the target task from the final, deep layers of the
source pre-trained model. Both prior works have developed analytical measures of
transferability but have not fully explored which layers in a NN are most relevant
for assessing the transferability relationship between a source pre-trained model and
target task dataset.

We propose a new method to learn which NN layers in a source pre-trained model
are most descriptive of source and target task transferability, thus, eliminating the
restriction on relying on final model outputs only. Our proposed interpretable mea-
sure, iLEEP, uses an attention-based network to learn the optimal combination of
pre-trained model representations that hold the highest contribution to transferabil-
ity across the source and target tasks.

The proposed work was evaluated on two benchmark computer vision datasets of
object recognition: CIFAR10 [26] and Domainnet [27]. The datasets contain camera-
captured images and images pertaining to different domains including paintings,
sketches, clipart, and quick drawings. Experimental results showed that our pro-
posed iLEEP measure advances two state-of-the-art analytical measures, LEEP and
NLEEP, by consistently outperforming them in transferability estimation across 120
experimental runs. Furthermore, iLEEP presents novel and intuitive interpretations
of the relatedness between source and target tasks.

Our experimental results show that our proposed iLEEP measure improves on
prior state-of-the-art analytical measures, LEEP and NLEEP.

1.4 Dissertation Contributions

The contributions of the dissertation are five folds:

1. A systematic approach for designing and evaluating MTL models for personal-
ized modeling from time-series data that is generic and applicable to any ML
model.

2. A multi-objective learning method with three loss functions for minimizing
catastrophic forgetting, prediction error, and errors in generalization across
label shifts, simultaneously.

16

3. An architecture supporting the multi-objective method and targeting multi-
task prediction for time-series data. The architecture is composed of a multi-
task autoencoder network with hierarchical convolutional and recurrent layers.

4. An interpretable transferability estimation method that learns an intuitive
mapping of the relationship between source and target tasks.

5. A new transferability measure, iLEEP, that learns from an attention-based
network the optimal combination of target representations for transferability
estimation.

1.5 Dissertation Outline

Figure 1.3: The dissertation outline divided across chapters.

The dissertation is organized as presented in Figure 1.3. In Chapter 2, we de-
fine important terms and concepts that are used throughout the dissertation. This
chapter is an optional read as it only covers background information that might be
common knowledge to the reader. Chapter 3 presents a review of previous work
on catastrophic forgetting and the transferability estimation problem. Chapter 4
covers the proposed work of the first objective of the dissertation, which served as
preliminary work and motivation for the second and third research objectives of
this dissertation. Then, Chapter 5 and Chapter 6 dive into the proposed methods,
experimental setup, results, and discussions under both primary objectives of the
dissertation. Finally, we summarize our findings and conclude the dissertation in
Chapter 7.

17

Chapter 2

Background

This dissertation focuses on developing methods to improve the performance of
supervised Machine Learning models on time-series data types with limited labeled
datasets. This chapter covers an overview of the concepts and terminologies that
are used throughout the dissertation.

2.1 Time-series Data

Time-series present a unique data type that exhibits unique characteristics in com-
parison to standard tabular data. A time-series dataset is typically composed of
sequences of data collected over consecutive and equal time intervals. The time-
series data is usually accompanied by a timestamp alongside the recorded sam-
ples to preserve the time element of the data. Some examples of time-series data
are the weather temperature, stock market prices, and road traffic collected over a
given time period. Moreover, data collected through sensing devices are classified as
time-series data types. Figure 4.1 represents a time-series sequence of locomotion
activities recorded from an accelerometer sensor on a human subject.

Time-series data are subject to different processing requirements due to several
unique characteristics. Some of the most common characteristics of time-series are
that they (1) have a dynamic nature in how the data evolves over time, (2)
show poor ML performance under the assumption that the data is identically and
independently distributed (IID), which is a typically valid assumption with other
data types, and (3) come from a generative distribution that could change over time,
which is referred to as the effect of non-stationarity in the data sequences. An IID
dataset describes a setting where the collection of random variables in the dataset
share a similar generative probability distribution and are assumed to be mutually
independent.

In this dissertation, we consider the dynamic nature of the time-series sequences
by considering ML models that can effectively learn from the dynamic evolvement
of the data samples over time. Moreover, the presented time-series datasets in the
experiments of this dissertation are processed to satisfy the IID and stationarity
assumptions.

18

Figure 2.1: A sample time-series data sequence collected from a 3-dimensional accelerom-
eter sensor.

2.2 Machine Learning

Machine Learning (ML) is a field that studies designing algorithms to allow ma-
chines to extract and make automated, intelligent decisions. The decisions taken by
ML models are intelligent in the sense that they cannot be programmed through
traditional software. On the contrary, ML extracts patterns and information present
in data that help deduce the needed decisions that would typically be carried out by
a human. However, the human is incapable of studying a large data size to extract
patterns, at least in an acceptable period of time. In formal terms, “A computer
program is said to learn from experience E with respect to some class of tasks T
and performance measure P , if its performance at tasks in T , as measured by P ,
improves with experience E.” [28]

Supervised ML is a class of ML that focuses on extracting patterns and informa-
tion from annotated datasets, that is, datasets where the desired answer is known
and recorded. The annotated dataset, D, is composed of tuples of input sam-
ples, x, and true output labels, y, such that D = {(xi, yi)}Ni=1. It is this annotated
dataset that reflects the experience E from which a ML model learns, specifically in
the supervised class of ML models.

To build the supervised ML models, the dataset is divided into two subsets, a
training subset that is used to develop the model and a testing subset that is used
to evaluate the model. There are a wide variety of ML models to be used that are

19

appropriate given certain traits of the dataset you are working with. Nevertheless,
all ML models share a common structure that involves a ML hypothesis, loss, and
objective function. We elaborate on each below:

1. ML Hypothesis: The hypothesis function g(f(x),w) is a potential ML
mapping function that learns the relationship between a given input and a
target output label through a set of parameters w, where f(x) is an input
feature mapping function that extracts a unique representation of the raw
input samples x.

2. ML Loss: The loss function L (or cost function) is a function that maps a
set of values to a single real number, which represents the ”cost”, or intuitively
the ”error”, in the output of the ML model. Thus, to learn the ML model, the
goal becomes to optimize the loss function such that it achieves a minimum
cost value.

3. ML Objective Function: The objective function defines the target you
wish to optimize for in order to learn the ML model. In essence, this objective
function could simply be reduced to a chosen loss function. However, the
objective function may include other factors of interest to optimize for, aside
from the loss function. For example, the objective function may include a
regularization term R that optimizes for model generalization as opposed to
solely minimizing model error in performance from the loss function. Eq.
2.1 represents an objective function that minimizes for two terms, loss and
regularization, respectively.

g(w|D, f) = argmin
w

[
L+R(w)

]
(2.1)

In this dissertation, we shed focus on applications of ML where the annotated
dataset suffers from limited data, such that D′ = {(xi, yi)}Ii=1, where I << N .
The exact definition of a limited dataset remains open in the literature. For the
purposes of our experiments, we present two scenarios that serve as a representation
of having a limited annotated dataset.

1. The target dataset has sample count I that is at least an order of magnitude
smaller than the source dataset sample count N . This is the scenario used in
the experimental setup of Chapter 5.

2. The target dataset has a sample count I that satisfies the ratio of I/K = 10,
where I is the number of training samples and K is the number of unique class
labels). This is the scenario used in the experimental setup of Chapter 6.

2.3 Neural Networks

Artificial Neural Networks, or simply Neural Networks (NN), are a subset of ML
models that are computationally designed to mimic the human neural structure.

20

Figure 2.2: A two-layer Neural Network architecture. [29]

Consequently, a NN is composed of neurons, which are the most basic processing
unit of the model. The neurons in a NN are interconnected across layers. For
example, Figure 2.2 shows a NN with an input layer of N inputs, a hidden layer
with M hidden units or neurons, and an output layer with K outputs, respectively
from left to right. The NN is a two-layer network since the input layer does not
contain weights to be trained and is usually not considered towards the layer count
of a NN. The overall NN hypothesis function is shown in Eq. 2.2 [29], where σ and
h(.) are non-linear mapping functions (or activation functions)of the output and
hidden layers, respectively.

yK(x,w) = σ

(M∑
j=1

w
(2)
Kjh

(N∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
K0

)
(2.2)

Neural networks showed great promise in their ability to learn complex, non-
linear relationships in data. Nevertheless, when it came to more complex, unstruc-
tured data types, such as images and text, new advancements were introduced to
NN. These advancements made it possible for NN to extract data-specific relation-
ships that made NN state-of-the-art models for image and text applications.

The next two sections briefly introduce Convolutional Neural Networks and Re-
current Neural Networks, which are two improved NN architectures for image and
sequence data types.

21

Figure 2.3: The movement of the convolution operation in a layer of the CNN. [30]

2.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) replaced the linear combination of inputs
and weights of the traditional neuron with convolution operations. These convolu-
tion operations essentially multiply a kernel, or matrix, of weights with the pixels
of an input image. As a result, a CNN is a very effective ML model for processing
images since it can learn relationships across neighboring pixels. Figure 2.3 shows
an example of the movement of the CNN kernel across an image in a particular
convolution operation.

Figure 2.4: A Convolutional Neural Network architecture. [30]

Figure 2.4 presents a sample CNN architecture that is taking as input the image
of a car and is being trained to label the object of the image into an output class,
such as car, truck, van, or bicycle. The CNN architecture is structured similarly to
a NN with convolutional layers stacked as hidden layers and composed of a number
of kernels (or filters) to be convolved with the input at a given layer to extract a
particular feature. The kernels are analogous to the neurons of a traditional NN
layer. The convolutional layer also passes the multiplication of the layer input and
kernel weights through an activation function, such as ReLU. A CNN can also include
different types of layer operations, such as pooling layers to help downsample the
size of the extracted features from a previous layer or fully connected layers (that

22

is, traditional NN layers) that are typically added at the end of a CNN to carry out
the classification on the extracted features of previous convolution layers.

Figure 2.5: A Gated Recurrent Unit architecture. [31]

2.3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) replaced the linear combination of inputs and
weights with a cell unit that introduced computations of a given input at a given
time instance, xt, with hidden states from previous layer outputs, ht−1. By involving
previous layer hidden states, the RNN units are capable of maintaining an element
of memory, thus making RNNs an effective NN architecture choice for sequence data
types such as text and time-series. Figure 2.5 shows three RNN units over timesteps
t− 1, t, and t+ 1.

Gated Recurrent Units (GRUs) are RNN networks composed of GRU units that
improve on basic RNN units, which were shown to suffer from exploding and van-
ishing gradient issues that limited the network’s ability to store long-term memory
(or hidden states). GRUs were introduced to overcome the exploding and vanishing
gradient problem.

2.4 Transfer Learning

Transfer Learning (TL) is a setting of ML where knowledge is leveraged from a
trained ML model to learn a new ML model. Typically, the previously trained ML
model, or pre-trained model, has been trained on a rich source domain and the
new ML model needs to be learned for a new target domain that is considered to
have limited data. A formal definition of TL says “Given a source domain Ds and
learning task Ts, a target domain Dt and learning task Tt, transfer learning helps
improve the learning of the target mapping function ft(.) in Dt using knowledge in
Ds and Ts, where Ds ̸= Dt and Ts ̸= Tt.” [32] A domain D consists of a feature space
X and a marginal probability distribution P (X). Given a specific domain, a task T
is defined by an output label space Y and a given mapping function f(.). A dataset
can then be composed of a single or multiple tasks typically belonging to the same
domain, where each task is composed of a set of data samples (x, f(x)), for example,

23

Figure 2.6: An example of a standard transfer learning setting of fine-tuning a pre-trained
model.

a task could be represented by x being accelerometer recordings of human activity
and f(x) is the accompanying label of the locomotion activity for the represented
activity of the given sample instance.

Figure 2.6 shows an example of what a transfer learning setting can look like in
practice. In the top portion of the figure, a rich dataset that belongs to a source
domain of camera-captured images, such as ImageNet [33], is used to train a VGG16
[34] neural network model in order to carry out predictions for the source task. Given
a limited target domain, we wish to train a ML model that is of high performance. If
we train the limited target domain on a new model with random weight initialization,
the model is most likely going to suffer in terms of performance, since the available
experience (that is, the dataset samples) for the model is limited. Thus, we can
transfer knowledge from the pre-trained VGG16 model to the new target domain to
improve the performance of the ML model that we wish to train.

The process of knowledge transfer is called fine-tuning. We can fine-tune a
network by freezing all pre-trained weights in VGG16, removing the output layer
from the pre-trained model, and adding and training a new output layer that has
random initialization for the new target domain. We can also choose to train more
layers in the model while using the pre-trained weights as starting points for the
training on the new target domain, as opposed to random weight initialization. The
intuition in such an example is that the new target domain is related to the rich
source domain, and as a result, it can benefit from the knowledge learned by the
pre-trained model. In the given example of Figure 2.6, it is valid to assume that
the target domain of hand sketched images can benefit from a source domain of
camera-captured images. Chapter 6 of the dissertation proposes measures that help
provide apriori information about the success of a pre-trained model in transferring
to a new domain.

24

Chapter 3

Literature Review

In this chapter, we conduct a literature survey that spans areas of traditional transfer
learning where the goal is to introduce new tasks to a pre-trained neural network
model [35]. We then summarize the literature on Multitask Learning (MTL) under
the first objective of the work. Next, we present an overview of lifelong learning
methods for overcoming the effects of catastrophic forgetting in neural networks,
which is what we address in the first objective of the dissertation. We cover an
overview of the literature on transferability estimation as part of the second objective
of the dissertation work. Finally, we briefly review the latest trends for neural
network architectures for time-series data types.

3.1 Traditional Transfer Learning

The most fundamental approach to leveraging pre-trained networks for new tasks is
traditional fine-tuning (FT). This is where pre-trained network parameters serve
as starting weight initializations when training on data for a new task. Here, a
primary design choice made is which network parameters to freeze, preserving old
knowledge, and which to train, learning new knowledge. In traditional FT, old
task data are not accessible and no weight is given to maintaining the performance
of old pre-trained tasks. On the other end of the spectrum, multitask learning
(MTL), also known as joint learning, is another traditional approach where all old
and new tasks are treated with equal importance [36]. In MTL, old and new task
data are assumed to be available, and tasks are trained simultaneously with the goal
of maximizing performance on all tasks [37]–[39].

In this work, old task data are assumed to be inaccessible. Thus, traditional
transfer learning methods fall short in addressing our target research challenges.

3.2 Multitask Learning

This section presents three outlooks on prior work: single-task learning (STL) and
Multitask Learning (MTL) modeling approaches.

25

3.2.1 Single-task Personalized Modeling Approaches

Models that fall under this category generally extract unique descriptors for users
using the time-series sensing data. For example, in the work of Kwapisz et al.
[4], user identification and authentication were modeled from accelerometer data of
users through extracting biometric identifiers that highlighted the existence of vital
unique markers in users’ sensing data. Their model was capable of identifying a
user, which could then be used to customize devices to the currently active user. In
another instance, Weiss et al. [40] proposed models for predicting user traits such
as gender, height, and weight from sensing devices. These traits are referred to as
”soft biometrics” and form another instance that highlights the existence of unique
markers in sensing data that identifies the individuality of a user.

The significance and improvement brought by building personalized models as
opposed to population models, which do not account for unique entity characteris-
tics, was demonstrated by several authors. For example, the work of Chang et al.
[5] builds an activity advising system based on personalized modeling of a subject’s
pace-based activities. The models are unique to every subject and provide recom-
mendations on daily activity accounting for a subject’s personal schedule limitations.
Moreover, in [41], Paradiso et al. built personalized patient models for monitoring
the behavioral patterns of patients that suffer from mood disorders, such as those
suffering from depressive or manic episodes. These models were built with a patient’s
unique data, including sensing data sources and medical records, and the models
are used to assist in alerting physicians in cases of predicted patient relapses.

In these prior approaches, the extracted features are of a static nature and do
not capture dynamic characteristics in time-series data. Moreover, they made use
of static modeling approaches or clustering methods to classify their targets, thus,
not capturing time-dependency in prediction.

3.2.2 Multitask Deep Learning Approaches

There have been numerous presented work in the recent literature on MTL deep
methods, and the work we present here is focused on learning sequence data. Qiu
et al. [42] claim to be the first to model rainfall prediction with MTL by taking
advantage of multi-site features that are fed into a CNN network with common
and unique layers, that is, hard parameter sharing. Cirstea et al. [43] learn an
aggregation of CNN, RNN, and autoencoder networks for MTL correlated time-
series forecasting. Moreover, the recent work of Hara et al. [44] learns an MTL
LSTM network through hard parameter sharing for the problem of turn-taking in
conversational dialogues of human-computer interfaces.

With recent trends in Deep Learning, MTL has been incorporated into deep
models through several methods. In [8], Lui et al. propose three MTL setups with
recurrent neural networks (RNN), which effectively learn sequence information in
time-series data. The first includes a shared network layer across tasks followed
by separate task-specific layers, the second is composed of entirely separate task-
specific networks that can read information from one another, and the third is a
combination of both models that includes shared layers followed by task-specific

26

layers that can read information from one another. Their work shows superiority
for the first model, validating that allowing specific layers to share information
across tasks and specific layers to solely capture unique information achieves accurate
performance in MTL deep networks. In [45], Harutyunyan et al. develop a model to
predict multiple clinical diagnoses that are composed of a Long Short-term Memory
(LSTM) network that is shared across tasks followed by a task-specific multi-layer
perceptron (MLP) decoder. Yang et al. in [46] learn linguistic sequence tagging tasks
together in a unified model. They form a hierarchical network composed of a shared
feature encoding convolutional neural network (CNN) followed by separate task-
specific CRF models, allowed to partially share parameters with each other. Their
work has shown the effectiveness of using a shared CNN feature encoder followed
by an MTL prediction network. In [47], Tang et al. propose an MTL model for
“negatively correlated” tasks of speech recognition and speaker recognition, where
tasks are not directly extracted from similar domains. Their approach is based
on the idea of feeding the output of one task’s model to the input of another and
has shown promising performance of deep MTL modeling with tasks that are not
directly related.

M. Hassan et al. [48] built Deep Belief Networks (DBN) that are fed extracted
statistical features from intertial sensors that have been passed through a Kernel
PCA dimensionality reduction. In [49], S. Rokni et al. developed convolutional neu-
ral networks (CNN) for activity recognition and utilize traditional transfer learning
through adjusting the weights of the network’s top layers for new tasks. A. Ignatov
[50] also utilized a CNN for activity recognition; however, he investigated concate-
nating statistical features into the final flattened output layers of the CNN and
showed improved performance with the augmented features.

While prior work sets strong ground for MTL methods, none of the prior ap-
proaches have presented a systematic approach for designing and evaluating MTL
methods for personalized modeling from sensing data.

3.3 Catastrophic Forgetting in Neural Networks

Lifelong Learning (LL) solves the challenge of preserving performance on old tasks
when fine-tuning a pre-trained model and can be generally classified to fall into three
main categories: replay, parameter isolation, and regularization-based methods [13].

3.3.1 Replay Methods

Replay methods require either the storage of old task data or training a generative
model that is capable of generating pseudo-samples of the old task data. In our
problem, old task data was no longer accessible.

In the absence of data, replay methods focus on the generation of pseudo-samples
from generative models. Robins, et al. [51] used generated output labels from old
tasks to approximate task samples using constrained optimization. This approach
has been shown to be limited in terms of generating pseudo-samples that can cover

27

the entire space of old tasks. Generative adversarial networks [52] have since been
introduced and opened up the possibility of robust pseudo-sample generation [53].

Despite their success, replay methods in the absence of old task data require the
maintenance of generative models for pseudo-sample generation. This is unfeasible
when targeting sensing applications where models and data live on edge devices with
limited storage capacity and eminent privacy concerns.

3.3.2 Parameter Isolation Methods

Parameter isolation methods do not require the storage of old task data. Instead, this
class of methods focuses on introducing new network parameters for each introduced
task so that its learned parameters are frozen during the training of new tasks,
where these parameters are set as non-trainable parameters and their values are
constant during training [54], [55]. This implies that the performance of old tasks is
maintained during inference even after data is lost. Other works mask the network
parameters of old tasks when new ones are being trained, that is, these parameters
are hidden from the network during training by being set to zero [56], [57].

While parameter isolation does not require the maintenance of old tasks data,
it presents computationally demanding architectures where entirely new branches
are created in the network for each new task. Such computationally demanding
networks would not be feasible to live on sensing edge devices due to the limited
availability of resources, such as memory and battery life.

3.3.3 Regularization-based Methods

Similar to parameter isolation methods, regularization-based LL does not require
the storage of old task data samples. However, unlike parameter isolation, catas-
trophic forgetting is minimized through the introduction of a regularization loss in
the objective function. This implies a less computationally expensive resource re-
quirement in compared to parameter isolation, making regularization-based LL an
ideal scenario for our target problem.

One class of regularization-based method focuses on estimating task distribution
from model parameters and using the distribution as prior information when learning
new task data. Pfulb, et al. published one of the first studies on this method [58].
More recent works have examined how to estimate the importance of parameters for
computing prior information actively during task training [59]. One major constraint
in this class of regularization-based methods is the limitation in dealing with long
sequences of incoming tasks, which have been shown to have increased forgetfulness
of old tasks [60].

A second class of regularization-based methods focuses on data-driven methods
where the foundation of these approaches is built on knowledge distillation, which is
the process by which knowledge is transferred from a large model (often referred to
as a teacher model) to a smaller model (often referred to as a student model) [61].

Li and Hoiem [15] proposed a Learning without Forgetting (LwF) model that con-
straints the output labels of the fine-tuned network to remain close to the pre-trained
network recorded labels, and consequently, it does not allow the network parameters

28

of the old tasks to undergo large deviations from the original pre-trained network,
avoiding catastrophic forgetting of old tasks. One advantage of their approach is
that performance on the source domain is preserved without the need to store large
amounts of data from which source tasks were trained. Their work [15] reportedly
led to state of the art performance on tasks with little labeled data. Nevertheless,
one limitation was its sensitivity to domain shifts between old and new tasks, where
old and new tasks have different domains for classification labels. Rannen, et al.
[16] extended the work in [15] by adding an autoencoder that constrains the learned
feature representation of new tasks to remain close to old tasks. They were able
to mitigate the sensitivity to domain shifts between old and new tasks and thus
minimize catastrophic forgetting.

Prior state-of-the-art work in regularization-based LL [15], [16] has been de-
signed and evaluated for computer vision modalities. However, the methods used
for computer vision are not directly applicable to time-series applications. Moreso,
state-of-the-art is shown to suffer when dealing with scenarios of data drifts between
the source and target tasks. We address both challenges in our proposed work in
Chapter 5.

3.4 Task Transferability Estimation

Task transferability is a crucial characteristic of transfer learning problems, where a
metric is evaluated to assess to what extent source task representations can be used
to enhance performance on target task training. There has been more recent work
that investigates the question of task transferability in literature, and these works
can be characterized into two groups: empirical methods and analytical methods.

3.4.1 Empirical Methods

Many prior works on transferability estimation have taken an empirical approach
to studying what is being transferred during knowledge sharing [62]–[64]. These
approaches would train a model on the source task(s), fine-tune the model for the
target task(s), and finally carry out an assessment of task transferability.

T. Standley et al. [63] present a computational framework that exhaustively finds
the best task distribution across mini networks for optimal transfer. In [65], T. Yu
et al. show that poor performance in multitask learning, where several target tasks
are learned simultaneously, can be attributed to learning opposing gradients during
model optimization and training. They refer to this notion of learning opposing
gradients as suffering from a “triad conflict”. They propose a method to eliminate
the gradient interference across tasks by projecting the conflicting gradients.

The literature’s empirical methods on task transferability, though effective, re-
quire expensive optimizations and do not serve as a priori measures of transferability.

29

3.4.2 Analytical Methods

In contrast to the above works, there has been more recent work that focuses on
measuring task transferability prior to model training, and as a result, avoiding
unnecessary and expensive model optimization. A. Zamir et al. [66] present a
computational structure that maps the relationship across different vision tasks into
a task taxonomy space, where close task pairs are similar and thus present positive
transfer of knowledge. Despite its success, the work [66] presents limitations in
being specific to tasks presented in the vision domain and not applicable to broader
applications.

T. Yu et al. [17] presented a scoring metric of task transferability, Log Expected
Empirical Prediction (LEEP), that is computed without the need to optimize the
model parameters and provides an a priori measure of transferability. LEEP is shown
to achieve state-of-the-art performance on transfer learning and meta-learning tasks
within the vision domain, however, the metric shows limitations when applied to
cross-domain settings where the source and target input distributions are not simi-
lar. Moreover, the proposed LEEP measure is restricted to tasks of a classification
output. Y. Li et al. [25] improved on the LEEP measure by generalizing it to be
applicable to tasks of different types including regression and unsupervised tasks.

Nevertheless, both LEEP and the improved NLEEP measure [25] restrict their
proposed measure to only study the representations of the target task from the
final, deep layers of the source pre-trained model. They do not investigate the rela-
tionship between feature representations at different granular levels of the network,
thus, falling short in defining a clear relationship between source and target domain
distributions. We address the open challenges in our proposed work in Chapter 6.

3.5 Time-series Neural Network Architectures

Neural networks have been widely adopted in the literature on time-series classifica-
tion and prediction problems. Recurrent Neural Networks’ (RNN) ability to handle
time-dependency made them an adequate choice for modeling sequential informa-
tion in time-series data [67]. More so, researchers explored convolutional (CNN)
layers as well for time-series applications, where CNNs were seen to serve as ade-
quate feature extractors of the raw time-series signals, capturing the relationship
across time stamps and multiple channels of the data [68], [69]. In recent works, a
common architecture used for time-series classification and prediction problems is a
hybrid that combines CNN and RNN layers [38], [70]–[72].

30

Chapter 4

Systematic Approach to
Designing Multitask Learning
Models for Time-series Data

4.1 Overview

This chapter aims at addressing the data deficiency bottleneck where prediction
models for time-series data need to be developed for unique entities (e.g. group of
users, stocks, or houses) to predict categories that are common across the entities
(e.g. user emotions, stock exchange decisions, levels of power consumption). The
goal is to have personalized prediction models that are unique to individual entities
while achieving positive knowledge transfer by exploiting the available commonality
across entities. As an example, consider personalized activity recognition for indi-
vidual users, where activity can be approached by considering consecutive action
units to constitute high-level activities, such as walking or climbing stairs. These
high-level activities include information patterns that can be understood as shared
group behavior and other patterns that can be recognized as personalized to each
user.

This work proposes a framework for systematically investigating and building
accurate personalized time-series MTL models while considering three primary de-
sign components: features capturing the time dynamics in data, similarity metrics
reflecting degrees of commonality and uniqueness across entities, and generalization
metrics to prevent overfitting. The framework enables the introduction of efficient
new MTL models and advancing prior state-of-the-art. The approach is success-
fully applied and tested resulting in two models for personalized continuous activity
recognition. The first is an MTL deep learning approach that makes use of Convolu-
tional Neural Networks (CNN) and Gated Recurrent Units (GRU), and the second
advances on a previously developed MTL feature-based learning approach from the
work of Sun et al. [7].

The main contribution of Chapter 4 is a systematic approach for designing and
evaluating MTL models for personalized modeling from time-series data that is
generic and applicable to any Machine Learning model.

31

The proposed systematic approach is applied under two methods, feature-based
and deep learning based, which are tested on the classification task of human ac-
tivity recognition from sensing devices and evaluated on four benchmark datasets
including OPPORTUNITY [9], UCI HAR [10], DSA [11], as well as the in-the-wild
ALKAN [12] dataset. The proposed methods show superiority in comparison to pre-
vious state-of-the-art and baseline approaches as well as competitive results when
benchmarked against related work in literature, highlighting the strength of the
proposed MTL systematic design approach for personalized modeling of time-series
data.

The work in this chapter was published in Elsevier’s Applied Soft Computing
journal under a manuscript titled ‘A Systematic Approach to Multitask Learning
from Time-series Data’ [38].

4.2 Problem Definition

This work addresses the problem of designing accurate personalized multitask learn-
ing (MTL) models for prediction from time-series data. In this section, we describe
the problem motivation and introduce the MTL design components that are re-
quired to formulate an accurate MTL time-series solution. We focus on the class of
time-series problems of the following characteristics:

• For input, the developed model should be capable of receiving multiple time-
series channels, which may include multiple sensors (e.g. accelerometer and
gyroscope) and/or multi-dimensional sensors (e.g. 3-dimensional sensors with
x-, y-, and z-axes). The only constraint on the input is that the different
sensors and channels must be aligned in time.

• For the MTL model setup, the multiple tasks being learned simultaneously are
the different entities’ personalized models. To elaborate, each entity dataset
contains a set of target labels, where the labels belong to a similar category.
An example of this scenario is simultaneously learning models of different users
(i.e. entities) for the category of activity recognition (i.e. target labels).

Fig. 4.1 demonstrates the importance of having annotated data for different
users and the possibility of knowledge transfer between them. Consider the users
represented as entity t and entity t′ performing two sets of activities: walking and
jumping. The general motion structure of how these activities are carried out is
common to different users. On the other hand, examining the still-shot of user t
and user t′ walking, presented in Fig. 4.1, it is possible to detect small variations
in the posture of each user, which indicates descriptors that are unique to a given
user’s motion. For instance, user t′ is shown to have wider arm swaying motion and
wider foot strides in his walking stance in comparison to user t. Another example
is in the jumping difference between the two users, where user t′ is shown to have
higher elevation and wider arm stretch. Through recording how movements of users
vary over time, it is possible to learn the unique and common dynamic structure in
users’ motion patterns.

32

Figure 4.1: The figure shows two user entities under two activities: walking and jumping.
Both users are shown to share a common motion structure in both activities while having
unique dynamics under each activity.

4.3 Methods

4.3.1 Multitask Learning Framework

MTL Hypothesis
The MTL model takes as input xt,i, a data sample at index i belonging to a

user t, where the input at a given instant is a vector representing time samples from
an input window frame of the time-series sequence. The model then outputs ŷt,i,
a vector of class label predictions. Given the above, the MTL model hypothesis is
defined as GMTL in Eq. 4.1 for a total of T target users.

GMTL

(
xt,i, f,WT

)
=
[
g1(f(xt,i),w1), g2(f(xt,i),w2), ..., gT (f(xt,i),wT)

]
(4.1)

WT = {w1,w2, ...,wT}

GMTL is defined by a given user’s input data point xt,i, a feature mapping func-
tion f , and WT a weight matrix parameterizing the MTL model. GMTL is presented
as the concatenation of g1, g2, . . . , gT task-dependent models, commonly referred to
as single-task learning (STL) models, where each defines a mapping function be-
tween the model weights w1, w2, . . . , wT and input features f(xt,i). Finally, the
weight parameter matrix WT is defined as being the set of all STL models’ weight
parameters w1, w2, . . . , wT .

MTL Loss
In MTL, we are learning a composite model GMTL that is composed of a col-

lection of personalized STL models g1, g2, . . . , gT . The MTL model is taken as the
interplay between the two classical approaches of personalized and population learn-
ing. Consequently, the MTL loss, presented in Eq. 4.2, is defined as the aggregate

33

sum of two losses: the personalized loss of user t and the impact of the loss of user
t on the aggregate population loss on all other users t′.

The impact of a given user t on the losses of other users in the composite model
is evaluated through introducing a similarity measure simt,t′ that defines the degree
of relatedness between user t and user t′. As a result, simt,t′ defines the degree of
impact user t’s loss has on other users t′.

LMTL =
T∑
t=1

[
L(t)STL +

T∑
t′=1

(
simt,t′ ,L(t

′)STL

)]
(4.2)

The STL loss is defined as the classical logistic loss for the target problem of
classification from time-series windows.

L(t)STL = −yt,ilog(ŷt,i)− (1− yt,i)log(ŷt,i)

where recall ŷt,i is the output vector of class label predictions and yt,i is the
vector of true class labels.

MTL Objective Function
Finally, the proposed framework defines the generic objective function in Eq. 4.3

for learning an MTL personalized classification model.

GMTL(WT |D, f, g1...gT ,LMTL) = argmin
WT

[
LMTL +RMTL(WT)

]
(4.3)

The MTL objective learns the weight matrix WT given the input training dataset
D, choice of feature mapping function f , STL models g1, g2, . . . , gT , and MTL loss
function LMTL. The weight matrix WT is learned through a minimization of the
MTL loss for model accuracy and an MTL regularization for model generalizability.

In order to achieve efficient learning in the MTL solution for the target problem
of personalized classification from time-series data, we propose a generic MTL frame-
work that can apply to any ML solution through the design of three fundamental
components. Given a task-dependent dataset D and the MTL solution framework
of Eq. 4.3, developing the MTL solution requires the following:

1. The choice of feature mapping function f . The choice of features extracted
from time-series sequences greatly impacts the learning capability of an ML
model. It is crucial to design features that can capture the intrinsic dynamics
in time-series sequences. This is particularly prominent in applications where
accurate detection of transition events is naturally required, such as fraud
detection [73].

2. The choice of MTL loss function, particularly the similarity measure simt,t′

that defines the learning of the MTL model. By exploiting unique and common
information across tasks, the composite MTL model is bound to learn better,
since each task is capable of benefiting from experiences (i.e. data) of other
related tasks [74].

34

3. The choice of MTL regularizer. It is crucial to design a robustness measure
RMTL(WT) that is optimized aggregately across all tasks. Traditionally, STL
regularizers RSTL(wt) would optimize the generalization of every task model
separately and do not present a robust generalization metric for MTL solutions.

Finally, the choices of STL mapping functions g1, g2, . . . , gT and STL loss func-
tions L(t)STL are dependent on the target problem. In this work, we focus on the
problem of designing personalized classification models from time-series sensing data
and present the applicability of the proposed MTL framework under a deep learning
solution.

4.3.2 Application of MTL Framework in Deep Learning for Time-
series

In this section, we show how the framework can be used to derive a new MTL deep
learning for time-series (MTDL-TS) model composed of a hierarchical convolutional-
recurrent network. We build the network components by again addressing the same
three design elements of MTL models for time-series.

The input to the network can be composed of multiple sensor time-series se-
quences, where each sensor is labeled as Sk, k ∈ {1...K}. Each sensor generates
readings over time and across multiple channels, thus each sensor Sk’s reading is
of size {m(k) × n(k)}, where m(k) is the number of channels and n(k) is the number
of samples collected over time for sensor Sk. The sensor readings are fed into the
network in their raw form. Each input sequence is segmented into window frames of
size d. Sequence frames of all sensors Sk, k = 1..K are then stacked on top of each
other, with the constraint that the readings of different sensors must be aligned in
time, forming a 3-dimensional input matrix to the network. The input matrix X
is of size ({B ×M × d}), where B is the size of the input data batch fed into the
network at a given training iteration, M is the total number of channels from all
sensors Sk, and d is the size of the segmented window frames, which is set to be
fixed for all sensors.

Modeling Dynamic Features
In order to effectively learn from time-series data, we need to extract general

features that describe the underlying first-order statistics of the sequences as well as
dynamic features that capture the time-evolving nature and statistics of the time-
series sequences.

CNN’s have been shown to do well on extracting relevant information from raw
data in the form of feature map outputs from every convolutional layer. Shallow
layers of the network capture macro-level relationships existing in the input data,
while deeper convolutional layers capture more elaborate micro-level descriptors.
Moreover, RNNs have been heavily used for learning sequence or temporal data and
have been shown to outperform CNN’s in applications with time-series data [75].
Therefore, by aggregating the CNN with an RNN network and training them as
a single lumped network, the new lumped network would be capable of extracting
general macro-level descriptors from the CNN and rich temporal micro-level features

35

from the inherent nature of the RNN cells, which are capable of storing previous
states and learning long-term dependencies for new predictions.

Figure 4.2: A hierarchical CNN-GRU network that is capable of handling time-series
sequences effectively by capturing rich dynamic features at multiple granularity levels in
the network layers.

Standard RNN networks are incapable of learning long-term dependencies within
data sequences; thus, improved recurrent unit cells, such as the Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU), were developed to handle long-
term dependencies. In this paper, we build the proposed RNN network with GRU
units as they were shown to have similar performance to LSTM and in some cases
even superior performance [76], [77], while being more computationally efficient with
faster convergence behavior. The proposed network is composed of a multi-layer
stacked GRU which are shown to outperform single-layer architectures[78].

To allow for the extraction of dynamical informative features from the input
sequences, we aggregate a CNN with a GRU network. The output of the last
convolutional layer is of the shape (B × d × filterlast), with filterlast being the
number of output channels of the last convolutional layer which is defined by the
number of filters in a given layer. In order to match the shape of the output of
the CNN to the accepted input shape to the upcoming RNN, we introduce a few
manipulations to the CNN’s output. First, we reshape the CNN output into a 2-
dimensional matrix of shape (B.d ×filterlast). We then feed the reshaped output
into a dense fully-connected layer, with its output dimensions set to match the size
of units present in the following RNN layer. This results in a matrix of shape (B.d
×rnnsize). The rnnsize variable defines the number of cell units present in the first
layer of the following network. The final matrix is ready to be fed into the RNN.
At this stage, a CNN network block concatenated with a GRU network block allows
for effective extraction of dynamical, informative features from the data sequences.
A typical architecture of the CNN-GRU network is demonstrated in Fig. 4.2, where
the number of layers is arbitrarily chosen for illustrative purposes.

Modeling Similarity Between Tasks
We operate with the premise that entities share features at the macro-level but

have unique characteristics at the micro-level. The macro-level common features
need to be further dissected by micro-level features. This premise aligns well with
MTL networks, where the first macro-network block is responsible for extracting
common features, and the second micro-network block per entity is responsible for
the unique features. The notion of having common layers followed by unique entity-
specific layers is commonly known as ”hard-parameter” sharing. An example of an

36

Figure 4.3: A hierarchical MTL CNN-GRU network that is capable of learning unique
entity models while also sharing common information across similar entities through hard-
parameter.

MTL CNN-GRU architecture is demonstrated in Fig. 4.3, where the number of
layers is arbitrarily chosen for illustrative purposes. The result is an MTL model
that is unique for each entity while leveraging common information across similar
entities for improved personalized models.

The similarity across entities is thus captured by having the macro-block learn
from all the entities’ data instances. The uniqueness, or dissimilarity, across entities
is captured by having the micro network individually learn from the entity-specific
data sequences only. In our proposed network, the macro-block is the CNN network
aggregated with the first layer of the RNN, while the micro-blocks per entity are the
entity-specific second layer RNN with the aggregated fully-connected output layer.

In the network design, each GRU layer is composed of 128 unit cells. The input
to the first layer GRU is the manipulated output of the CNN layer. The output of
the shared layer is then fed into the second layer GRU, which is entity-specific. The
output of the final entity-specific GRU layer is fed into an augmented entity-specific
dense layer that maps the output of the 128 GRU cells to the corresponding number
of class labels for a given user t. The output dense layer is a softmax layer with
cross-entropy minimization, which computes the final prediction probabilities of ŷt.
During a given training batch iteration, only one entity-specific GRU layer is active
and its weights are updated uniquely with the training data batch of that entity
(or user). The next training batch iteration would hold data from another user, in
which case the next entity-specific GRU layer is active and updated, and so on. This
training procedure is referred to as alternate training.

Modeling Robustness
To model robustness in a deep network, we need to impose a learning factor that

ensures model generalizability to unseen data. A common approach to improving
generalization of deep networks is applying the dropout phenomenon. We apply

37

Figure 4.4: The proposed MTDL-TS hierarchical convolutional-recurrent network struc-
ture is illustrated. The layers labeled Conv1, Conv2, Conv3, Conv4, dense, and GRU1
are shared across all entities, and the GRU2 and softmax layers are designed to be entity-
specific, that is, learned with data that is unique to a layer’s assigned user.

dropout to the GRU layers for enhanced generalization capability.

4.4 Data & Experimental Setup

4.4.1 Datasets

ALKAN: Human Activity Recognition in the Wild
ALKAN [12] is used as a large-scale activity dataset that was collected in a

natural, realistic environment where users collect their own data using their mobile
devices and throughout their regular daily lives. Data is collected using a single
accelerometer sensor embedded in users’ mobile devices from which data is sampled
at a 20 Hz frequency. The activity labels recorded include locomotion activities
such as walking/running/jumping as well as riding a bus/train/car to accommodate
transportation activities. For our experiments, we segment the sequences into win-
dow frames of 128 samples with a 50% overlap, covering frame periods of 6.4 seconds
that allows enough time to resemble a user’s activity state. For a fair comparison,
we follow the previously used approach for data organization of continuous activity
sequences [7], which is represented by concatenating the independent sequences of a
user. We use three subsets of the ALKAN dataset: 5 users, 10 users, and 20 users,
where each user’s data exhibits different instance count and different label sets.

The dataset was randomly split into an 80% training set, 10% validation set and

38

10% testing set. The validation set was used for hyperparameter tuning through
k-fold cross validation (k=10). After hyperparameters are selected, we retrain the
final model on the training and validation set (total of 90% of the original dataset)
and present performance results on the 10% testing set.

OPPORTUNITY: Human Activity Recognition in a Semi-controlled
Environment

OPPORTUNITY [9] is a widely used benchmark activity recognition dataset that
was collected in a controlled experimental setup using numerous on-body sensors
and a sensor-rich environment. The time-series data is collected from the sensor
modalities at a 30 Hz frequency. OPPORTUNITY provides a realistic representation
of continuous activity sequences with true transitional periods captured as a user
transitions from one activity to the next. The activity labels include locomotion
activities (walking, running, sitting, and lying down), gesture recognition (e.g. close
fridge), as well as high-level activities (e.g. making coffee). For our experiments
and similar to the ALKAN data segmentation approach, we focus on locomotion
activities and segment the sequences into window frames of 128 samples with a 50%
overlap, covering frame periods of 4.3 seconds that allows enough time to resemble
a user’s activity state. We use a subset of the data composed of 4 users and utilizes
the on-body accelerometer sensor modalities to predict locomotion activity labels.
We choose to use a subset with only on-body accelerometer sensors to mimic a
framework that is closer to how a user would collect data throughout his daily life.

The training and testing subsets are predefined in OPPORTUNITY as it is
widely used for benchmarking. We extract a validation set constituting 10% of
training data for hyperparameter tuning through k-fold cross validation (k=10).
After hyperparameters are selected, we retrain the final model on the predefined
training set and present performance results on the predefined testing set.

UCI Human Activity Recognition (HAR)
UCI HAR [10] is a commonly used benchmark dataset on human activity recog-

nition. The dataset is collected from 30 subjects performing six basic locomotion
activities including walking, walking upstairs, walking downstairs, sitting, standing,
and laying down. Data samples are collected from one smartphone allocated on the
subjects’ waists, corresponding to sensing data from accelerometer and gyroscope
sensors.

For this work, training and testing subsets are user-dependent. As a result, we
redistribute the train and test data across each subject’s collected data samples and
divide each subject’s data into 80% for model training and validation and 20% for
model testing.

Daily and Sports Activities (DSA)
Another commonly used benchmark human activity recognition dataset in lit-

erature is the Daily and Sports Activities (DSA) dataset [11]. It is composed of a
total of 19 activities carried out by a total of 8 subjects. The activities carried out
are of basic locomotion (e.g. sitting, jumping, cycling, etc) as well as more elaborate
activities (e.g. exercising on a stepper, exercising on a cross-trainer, etc.). Data is
collected from 5 units of sensing devices allocated on the subject’s torso, both right
and left arm, and both right and left leg. Each unit collects sensing data from a 3D

39

accelerometer, gyroscope, and magnetometer.
Similar to the setup for the UCI HAR dataset, training and testing subsets are

user-dependent and divided as follows: each subject’s data samples are randomly
divided into 80% for model training and validation and 20% for model testing.

4.4.2 Experimental Setup

In this section, we describe different model setups to be evaluated and discussed.
We present the MTFL-TS model, MTDL-TS model, and baseline models used for
benchmarking purposes.

Moreover, we use accuracy, or the recognition rate, as the primary evaluation
metric of the models on the human activity recognition tasks, where the goal is to
classify the correct activity label per window frame of the input time-series sequence.
The accuracy is defined as the number of correctly classified window frames divided
by the total number of frames being evaluated. To compute the overall accuracy of
the MTL model, we average the accuracy performance across all users being learned
in parallel.

MTDL-TS Setup
The proposed MTDL-TS model is implemented in Python using Google’s Ten-

sorflow platform1. The MTDL-TS model makes use of Tensorflow’s built-in 1-
dimensional convolution layers and GRU cells. We incorporate 80% dropout across
the GRU layers. We train the model through an ’alternate training’ method, where
the cost function is minimized by iteratively passing data batches from each user.
At each iteration, we update the parameters of the shared layers and the layers
unique to the given user, before training another user. We minimize the softmax
cross-entropy cost function on the output layer of the network, where minimization
is done through an Adam optimizer [79] that internally performs step size annealing
and achieves convergence with time-varying objective functions. Following standard
convention, the training batch size is chosen to be 128, and the model is trained for
10 epochs, where each epoch passes through the data of all users. We use the over-
all accuracy as a performance metric, where we average the accuracy performance
across all users being learned in parallel in the MTL model.

Setup of Baseline Models
For MTDL-TS, the baseline models are composed of an STL convolutional-

recurrent network that is similar in architecture to Fig. 4.4 while having all network
layers shared across all entities. For the personalized STL deep learning (pers-STDL)
model, an independent network is trained for every user’s unique dataset. Finally,
for the population STL deep learning (pop-STDL) model, a single network is trained
with all users’ dataset. The performance of the personalized baseline models is taken
as the average accuracy of all the personalized models, and the performance of the
population baseline models is taken as the accuracy of the single model itself.

1https://www.tensorflow.org/

40

Figure 4.5: Summary of results on the baseline pop-STDL, baseline pers-STDL, MTFL-
TS, and MTDL-TS models on ALKAN under 5 and 10 users.

Table 4.1: Comparison of OMT and MTDL-TS on OPPORTUNITY

Method Overall Accuracy
(%)

OMT 79.67
MTDL-TS 89.87

4.5 Results & Discussion

We evaluate our proposed MTDL-TS model under the ALKAN and OPPORTU-
NITY datasets. We compare MTDL-TS to baseline personalized and population
STL deep learning models, pers-STDL and pop-STDL, respectively. We also com-
pare our proposed MTDL-TS and MTFL-TS approaches in terms of accuracy and
provide insight into some of the practical strengths and limitations associated with
each of the two classes of machine learning models, that is, the feature-based and
deep learning models.

4.5.1 Comparison against Baseline Models

Fig. 4.5 shows the performance of the proposed MTDL-TS model in comparison to
baseline pers-STDL and pop-STDL baselines on two subsets of ALKAN, including 5
users and 10 users. The MTDL-TS model outperforms pers-STDL with an increase
of +1.42% on the subset of 5 users and of +3.34% as the group size is increased to
10 users. As the group size increases, more benefit is brought about by MTL, taking
advantage of richer shared information across the users. The MTDL-TS model also
outperforms the pop-STDL baseline model by +5.82% for 5 users and +11.46% for
10 users. Once again, the impact of group size is seen on the MTL performance in
comparison to baseline population models.

This proportional increase in group size and the performance of the MTL model
is consistent with the results shown for the MTFL-TS model in comparison to its
baselines. Another interesting result that is consistent with our expectations is that
personalized baseline models have outperformed the population baseline models.

41

Table 4.2: Comparison of MTDL-TS on OPPORTUNITY against traditional baseline
methods

Method Overall Accuracy
MTDL-TS 0.898
LDA 0.60
QDA 0.64
NCC 0.54
1-NN 0.82
3-NN 0.83

This stresses the importance of learning unique descriptors of entities within a model.
To build on that, the results on MTL validate the increased benefit of learning both
unique and common information present across groups of entities.

Finally, Table 4.2 presents the performance of the proposed MTDL-TS model
against traditional machine learning methods [80]. These methods include Lin-
ear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Near-
est Centroid Classifier (NCC), and k-Nearest Neighbor for k=1 (1-NN) and k=3
(3-NN). Table 4.2 further supports the dominant results of the MTDL-TS model.

4.5.2 Comparison against state-of-the-art

In this section, we present additional comparative results of the MTDL-TS model of
this work on two benchmark datasets: UCI HAR and DSA. Evaluation of MTDL-
TS on these datasets allows for comparison against recent state-of-the-art work on
human activity recognition [81], [82].

Table 4.3 shows that the proposed MTDL-TS model presents superior perfor-
mance to the work of Saeedi R. et al. [81] on the DSA dataset, where the work [81]
introduces a Manifold Learning-based Transfer Learning (MLTL) method. These
results potentially signify the strength of an MTL solution framework where tasks
are collectively optimized in parallel, taking advantage of common shared informa-
tion across different tasks. Moreover, Table 4.3 shows improved performance of our
MTDL-TS method in comparison to a mix of a Disc ensemble pruning and minimal
redundancy and maximal relevance (mRMR) pruning algorithm (Mix), as proposed
by J. Cao et al. [82].

These results highlight the significant impact of the presented systematic frame-
work for designing personalized MTL models for sensing applications, particularly
highlighting performance on the task of human activity recognition from time-series
data collected from a range of sensing devices (including wearable and smartphone
devices).

In summary, this work targets addressing the limitation of annotated data for
personalized models by making use of multitask learning. We propose an MTL
framework for accurate personalized predictions from sensing data that leverages
similarity across entities being learned together for enriching limited annotated
datasets and improved model generalization. The contributions of this work are

42

Table 4.3: Comparison against state-of-the-art on DSA

Method Dataset Overall Accuracy
(%)

MLTL [81] DSA 85 ±2
MTDL-TS DSA 90.21

Mix [82] OPP 88.82
MTDL-TS OPP 89.87

MTDL-TS UCI HAR 95.63

three folds. First, we propose a systematic method for formulating solutions of
MTL time-series models composed of three primary components: dynamic features,
similarity measures that capture commonality and uniqueness across entities, and
a robustness metric that enhances generalization capability. Second, we propose a
deep learning (MTDL-TS) solution for personalized classification from time-series
under the proposed framework. Third, we show superior performance against state-
of-the-art methods on three benchmark human activity datasets and one large-scale
human activity dataset in-the-wild.

The MTDL-TS model showed superior performance with an improvement of
up to 13% compared to the prior state-of-the-art and 11% compared to baseline
STL deep networks. The presented framework was tested on personalized human
activity recognition but can be generalized to a variety of other applications, such
as personalized smart metering and medical diagnostics. Moreover, the presented
deep learning approach can be readily applied to appropriately sampled time-series
raw data.

4.6 Broader Applications

The presented methods of this chapter can be directly extended to different types
of time-series problems, such as time-series forecasting applications, by using the
appropriate choice of STL loss function in Eq. 4.2. As an illustration of the ap-
plicability of the proposed design framework, we present the application to a deep
learning MTL model in Section 4.3.2, which can be followed similarly for any new
time-series application. As a result, the systematic approach to designing the MTL
models can be catered to any type of ML model and target time-series dataset by
using the appropriate choice for each design element presented in Section 4.3.1.

43

Chapter 5

Multi-objective Learning to
Diminish Catastrophic

Forgetting in Lifelong Transfer
Learning

5.1 Overview

In this chapter, we address the problem of overcoming catastrophic forgetting in a
neural network model that has been pre-trained on a source task and is to be fine-
tuned for a single or sequence of target task(s). The source task data is no longer
accessible, and the goal is to fine-tune the source pre-trained model on the target
task(s) while minimizing the forgetting of the source task originally trained.

The contributions of Chapter 5 are as follows:

1. A multi-objective learning method with three loss functions for minimizing
catastrophic forgetting, prediction error, and errors in generalization across
label shifts, simultaneously.

2. An architecture supporting the multi-objective method and targeting multi-
task prediction for time-series data. The architecture is composed of a multi-
task autoencoder network with hierarchical convolutional and recurrent layers.

We next present the proposed methods and evaluate the methods on four bench-
mark human activity recognition datasets: ALKAN [12], DAS [18], OPPORTU-
NITY [19], and UCI HAR [20], where data were collected from mobile sensing de-
vices. Our experimental results showed a reduced occurrence of forgetting compared
to previous state-of-the-art and traditional methods of fine-tuning.

The work in this chapter was published in ACM’s Transactions on Knowledge
Discovery from Data journal under a manuscript titled ‘Multi-objective Learning to
Overcome Catastrophic Forgetting in Time-series Applications’ [83].

44

5.2 Problem Definition

In a transfer learning setting, we are typically interested in using a source task
to improve performance on a target task through using knowledge learned from
the source task in the learning process of the target task. Typically, a pre-trained
model is then fine-tuned for the new target task with the sole objective of improving
performance on the target task. As a result, the source task knowledge is overwritten
with the new target task, and the fine-tuned model is no longer optimized for the
previously trained source task. This effect of overwriting the learned knowledge in
the model is known as catastrophic forgetting.

Scenarios arise in practice where preserving performance on the source task is
crucial, especially under continual or lifelong learning objectives where a model is
continuously optimized to new incoming tasks. In this chapter, we address the afore-
mentioned scenario of lifelong learning and present a proposed solution to minimize
the effect of catastrophic forgetting when fine-tuning pre-trained models to a stream
of incoming target tasks.

5.3 Proposed Methods

In this work, we focused on leveraging LL to minimize catastrophic forgetting in
neural networks trained on time-series data from sensing applications, such as human
activity context recognition. Given that sensing data is abundantly living on edge
devices, we assumed that data from previously trained tasks were no longer available
due to limitations in data storage, computational capacity, and privacy concerns in
storing personal data for long durations.

We propose a lifelong learning multitask autoencoder (LOMA) method to ad-
dress the problem of fine-tuning a network previously trained on a rich, source task
domain. This method enables training on new, target task(s) with limited labeled
training data while minimizing the performance impact of source tasks where data
are no longer accessible. The goal was to develop a method that can leverage knowl-
edge from pre-trained source tasks to improve the performance of one or multiple
new target tasks. However, in comparison to traditional FT methods, the challenge
is to preserve the performance on old tasks where training data are no longer acces-
sible. The assumption is that the network is pre-trained on a large, rich domain of
old tasks and that the new tasks suffer from limited labeled training data in compar-
ison to the rich source domain. In the inference phase, the network can accurately
make predictions on the target tasks and has minimal catastrophic forgetting on
the source tasks. Figure 5.1 presents the proposed LOMA model. Eq. 5.1 details
the objective function of the proposed model, highlighting the play that each loss
function has in Figure 5.1.

Θ∗ = argminΘ̂s,Θ̂o,Θ̂nΛoLkd(Y
o′ , Ŷ o′) (5.1)

+(1− Λo)Lce(Y
n, Ŷ n) + Lrc(X

n, X̂n) +RMT L(Θ)

45

Figure 5.1: Diagram detailing the architecture and different losses involved in the learning
stage of the proposed LOMA approach.

Θ∗ = θs∗, θo∗, θn∗

• o, n superscripts signify old source tasks and new target tasks.

• Θ∗
s,Θ

∗
o,Θ

∗
n are the optimal parameters for the shared layers, old task-specific

layers, and new task-specific layers, respectively, after network training is com-
pleted.

• Xn and X̂n are the true input sequences fed into the encoder network and the
reconstructed input sequences generated by the decoder network, respectively.

• Y n and Ŷ n are the true output labels and the recorded cross-entropy output
labels of the new target tasks, respectively.

• Y o′ are the recorded output labels of new tasks when generated from the old

tasks’ softmax layers from the pre-trained network, and Ŷ o′ are the cross-
entropy output labels of the new target tasks generated from the old task
softmax layers during network fine-tuning.

• Lkd,Lce,Lrc are knowledge distillation loss (described in Section 5.3.1), the
cross-entropy classification loss (described in Section 5.3.2), and autoencoder
reconstruction loss (described in Section 5.3.2), respectively.

• Λo ∈ (0, 1) is a meta-parameter that defines the extent to which we favor
preserving the loss on old tasks as opposed to new tasks in the objective
function.

• RMT L is the MTL ℓ2-norm regularization on all network parameters Θ.

The proposed LOMA model tackles the following challenges:

46

1. Minimizes catastrophic forgetting on old tasks in comparison to prior state of
the art, namely LwF [15] (Section 5.3.1).

2. Presents robust end-to-end representation learning between old and new tasks
(Section 5.3.2).

3. Handles time-series sensing data that is stochastic and non-iid in nature (Sec-
tion 5.3.3).

5.3.1 Catastrophic Forgetting Minimization

In order to accurately learn the new target task(s), we fine-tuned the LOMA network
pre-trained on the old source tasks. Using the pre-trained network as a starting point
boosts performance on new tasks, assuming that old and new tasks are related and
that the new task(s) suffer from limited labeled data availability.

In addition to accurately learning the new task(s), we aimed to preserve perfor-
mance or minimize forgetfulness on the old source tasks in the pre-trained model.
Without access to source domain training data instances, it was impossible to re-
train on old tasks and thus maintain equally sufficient performance on the source
and target tasks. As such, a knowledge distillation (KD) loss was introduced when
fine-tuning the network on the new tasks, following state-of-the-art LwF [15].

Lkd(Y
o′ , Ŷ o′) =

Nn∑
t=1

[
ℓ(yo

′

t , ŷ
o′

t) +
No∑
t′=1

f(βt,t′ , ℓ(y
o′

t′ , ŷ
o′

t′))

]
(5.2)

ℓ(yo
′

t , ŷ
o′

t) = −
Dn∑
i=1

yo
′

i log ŷo
′

i

Eq. 5.2 presents the proposed KD loss where

• t reflects the task, where Nn is the total number of new target tasks and No

is the total number of old source tasks.

• i reflects the data instance, where Dn is the total number of data instances for
a given new target task t.

• yo
′

t are the recorded output labels of the new task t data samples i generated
from the old tasks’ softmax layers from the original pre-trained network prior
to any fine-tuning.

• ŷo
′

t are the output labels of the new task t data samples i generated from
the old tasks’ softmax layers during the network fine-tuning stage on the new
tasks.

• ℓ reflects the loss function, which for our purposes on the classification task of
human activity recognition is chosen to be the cross-entropy.

47

• βt,t′ resembles the network parameters that are shared across a new task t and
an old task t′ in the shared layers of the network. This similarity parameter
is zero for the network parameters that belong to task-specific layers.

• f(.) is the mapping function of the neural network architecture, particularly
in this case, a CNN-GRU network layers for the old tasks’ layers.

The main role of the KD loss during fine-tuning the pre-trained model for new
tasks is to minimize the effect of catastrophic forgetting of old tasks. The KD loss,
in Eq. 5.2, essentially computes a modified output label, ŷo

′
t , for the new tasks from

the old task softmax layers and constraints these modified output labels to remain
within a close bound the recorded output labels, yo

′
t , from the original pre-trained

network prior to any fine-tuning. Thus, the KD loss constraints the output labels to
remain close and consequently does not allow the network parameters of the old task
layers to undergo large deviations from the original pre-trained network, avoiding
catastrophic forgetting of old tasks.

yo
′

i =
(yoi∑

j y
o
j

)1/T
, ŷo

′

i =
(ŷoi∑

j ŷ
o
j

)1/T
(5.3)

yo
′

i and ŷo
′

i are the modified output labels from old task softmax layers for data
instance i summed over j, which iterates across all data instances. These modifica-
tions alter the traditional cross-entropy loss to increase the importance of smaller
probabilities, thus minimizing the forgetfulness of the network. A value of T greater
than 1 was recommended by Hinton, et al. [84] as it will increase the importance of
smaller probabilities. We set T = 2 for our experiments as suggested by [15].

5.3.2 Robustness with End-to-End Representation Learning

We propose a multitask autoencoder architecture that is capable of learning multiple
tasks simultaneously while learning end-to-end task representations. We describe
the multitask learning and autoencoder architectures in the sections below.

Multitask Learning
At its core, the LOMA model constitutes a base model, which is the neural net-

work topology chosen to learn any of our desired tasks. In this study, the base model
was a multitask learning network that learns multiple tasks simultaneously through
hard-parameter sharing [85]. The model is composed of a hierarchical structure of
a convolutional neural network (CNN) followed by a gated recurrent unit (GRU)
and shown in Figure 5.1. The CNN layers and first GRU layers of the encoder are
shared across tasks while the second GRU and softmax layers are task-specific to
their corresponding task in the encoder. In contrary, the decoder architecture de-
fines task-specific layers as the first GRU layer while the second GRU and remaining
CNN layers are shared across all tasks.

For the purpose of this work, the multitask network was composed of multiple
heads (or task-specific layers) for both old and new tasks. Lce is the traditional cross-
entropy loss function defined for multilabel classification, and aims to minimize the
classification error between target labels, Yn, and network output predictions, Ŷn.

48

Lce(Y
n, Ŷ n) =

Nn∑
t=1

[
ℓ(ynt , ŷ

n
t) +

Nn∑
t′=1

g(αt,t′ , ℓ(y
n
t′ , ŷ

n
t′))

]
(5.4)

ℓ(ynt , ŷ
n
t) = −

Dn∑
i=1

yni log ŷ
n
i

Eq. 5.4 presents the proposed LOMA cross-entropy classification loss where

• ŷnt , y
n
t are the predicted and true output labels for a given new task t, respec-

tively.

• ℓ reflects the loss function, which for our purposes on the classification task of
human activity recognition is chosen to be the cross-entropy.

• αt,t′ resembles the network parameters that are shared across a new task t
and another new task t′ in the shared layers of the network. This similar-
ity parameter is zero for the network parameters that belong to task-specific
layers.

• g(.) is the mapping function of the neural network architecture, particularly
in this case, a CNN-GRU network layers for the new task(s)’ layers.

Given that the old task data were no longer accessible during training of new
tasks, traditional multitask learning was no longer possible. This is where the knowl-
edge distillation of the LOMA model comes into play in order to preserve perfor-
mance on old tasks as described in Section 5.3.1.

Autoencoder
The proposed autoencoder architecture enforces improvements in generalizability

of the network which is expected to help mitigate the effects of negative transfer
that arises when tasks are sharing information during training. Through the shared
encoder and decoder layers, the encoded representation and reconstruction is being
learned and shared across the various tasks, enforcing representations to be shared
and restricting the occurrence of large distribution shifts that potentially arise from
the time-series data having distribution shifts in the features of different tasks, or
“covariate shift”.

Lrc(X
n, X̂n) = −

Dn∑
i=1

1

2
(x̂n

i − xn
i)

2 − λ
∑
k

KL(ρ||ρ̂k) (5.5)

∑
k

KL(ρ||ρ̂k) = ρ log
ρ

ρ̂k
+ (1− ρ) log

1− ρ

1− ρ̂k

Eq. 5.5 defines the reconstruction (RC) loss of the autoencoder along with a
Kullback-Leibler (KL) divergence penalty for sparsity enforcement [86]. The KL-
divergence penalty of ρ, which is a sparsity parameter that is typically defined close
to 0.05 [86], constraints the estimated ρ̂ to remain as close as possible to ρ across

49

all hidden units of the autoencoder - thus, enforcing the sparsity of the encoded
representations.

ρ̂k =
1

Dn

Dn∑
i=1

[
a
(l)
k (x(i))

]
where i is the number of samples, k is the hidden unit, l is the network layer,

Dn is the total number of samples, and x is a given input data sample for which the
sparse reconstruction is estimated.

5.3.3 Time-series Data Architecture

The network architecture is composed of a hierarchical structure of a convolutional
neural network (CNN) layer followed by gated recurrent unit (GRU) layers. The
hierarchy of a CNN followed by a GRU is an architecture design commonly used
in literature for time-series problems [67], [70]–[72]. Specifically, the multitask ar-
chitecture design was adopted following state of art work on multitask time-series
classification problems in the work of Mahmoud et al. [38]. The CNN layers are
capable of extracting feature representation from the time-series sequences through
one-dimensional convolution operations. The GRU layers are capable of capturing
short- and long-term dependency in the time-series sequences such that the stochas-
tic, time-varying nature of the data is sufficiently learned.

The layer hyperparameters are specified in Table 5.1. The time-series sequences
are segmented into fixed size windows and fed into the network. Each window is of
the size of 128 samples, with a 50% overlap existing across consecutive windows.

5.4 Data & Experimental Setup

We evaluated our proposed LOMA approach under the supervised task of human
activity recognition from wearable and mobile devices. Activity recognition was
chosen to evaluate the presented work for sensing domain applications as it has been
widely studied and provides a large array of well-established benchmark datasets
[87]. As such, it serves to provide a good illustration of the potential of lifelong
learning for time-series data.

5.4.1 Datasets

In our study, we evaluated the proposed LOMA multi-objective approach under 4
benchmark HAR datasets: ALKAN [12], DAS [18], OPPORTUNITY [19], and UCI
HAR datasets [20].

ALKAN [12] is a large-scale HAR dataset that is collected in a natural envi-
ronment from user smart phones while they go about their daily lives. The data is
collected from an accelerometer sensor which samples time stamps at 20 Hz. The
activity labels generated from users are mainly locomotion activities such as walk-
ing, running, and riding a bus. The dataset is collected from 20 user subjects which
are treated as separate tasks in our experiment.

50

The Daily and Sports Activities (DAS) [18] dataset is composed of a wide set
of 19 activities, across locomotion and high-level activities, which are performed by
8 user subjects. The dataset is collected using 5 sensor devices located on a user’s
torso, right and left arms, and right and left legs. Each sensing device samples data
at 25 Hz from a 3D accelerometer, gyroscope, and magnetometer.

OPPORTUNITY [19] was collected in a controlled experimental setup using
numerous on-body sensors and a sensor-rich environment. The time-series data
were collected from the sensor modalities at a 30 Hz frequency. The activity labels
include locomotion activities (e.g., walking, running, sitting, and lying down) and
gesture recognition (e.g., close fridge). For our experiments, we focused on both of
these label domains. The 4 user subjects from OPPORTUNITY represent different
tasks in our experiments.

UCI HAR [20] is a collection of results from 30 user subjects who performed six
basic locomotion activities, including walking, walking upstairs, walking downstairs,
sitting, standing, and laying down. Data samples were collected from one smart-
phone attached to the waist of each subject, and thus corresponds to sensing data
from accelerometer and gyroscope sensors. The time-series data were collected from
the sensor modalities at a 50 Hz frequency.

Under different experimental setups, we treat different datasets as the source
or target domains interchangeably to evaluate the proposed LOMA model’s perfor-
mance under various settings. Details of data count statistics, data splits, and label
distributions can be found in Appendix A.

5.4.2 Experimental Setup

Implementation Details
The proposed network was implemented in Python using Google’s Tensorflow.

The multitask network is trained using alternative training. This is an iterative
training process where at every iteration a batch is selected from task t to update
the shared layers and task-specific layers of task t in the network. In the next
iteration, task t + 1 batch is fed into the network, which again updates the shared
layers and task-specific layers of task t+ 1, so on so forth.

For experimental evaluation, we used the accuracy of human activity recognition
tasks, where the goal was to classify the correct activity label per window frame of
the input time-series sequence. Accuracy was defined as the number of correctly
classified window frames divided by the total number of frames being evaluated.
Table 5.1 presents the network architecture hyperparameters. The network was
trained using 128 batch size, 30 epochs, and 0.2 dropout across the GRU layers of
the encoder and decoder networks. The network hyperparameters, including batch
size, dropout rate, convolutional filter count, and GRU cells were chosen following
a grid search. The hyperparameter values with the best attained accuracy on the
validation set split from the grid range were selected for the final model evaluation
on the test set splits. The number of epochs for training were set using Tensorflow’s
early stopping criterion.

Baselines

51

We compared the proposed approach against (1) a variant of prior state of art
on Learning without Forgetting (LwF) [15] adopted for time-series neural network
architecture, (2) a traditional fine-tuning (FT) baseline, (3) a multitask learning
(MTL) baseline, and (4) a single-task learning (STL) baseline. State of the art
LwF is the encoder network with equal weighting given to both the knowledge
distillation and cross-entropy losses of Equation 1, where both are set to 1. FT
is the baseline network where traditional transfer learning is used to fine-tune the
pre-trained model with Λo = 0 in Eq. 5.1 on old tasks. STL is the baseline network
trained only on new tasks. Finally, MTL is the baseline network where all old and
new tasks are learned simultaneously. Here, the data for old tasks were available,
and so naturally, MTL was expected to serve as an upper baseline for the proposed
approach. Furthermore, we run an ablation analysis to evaluate the impact of the
different losses in the multi-objective learning function proposed in LOMA.

Table 5.1: Architecture Hyperparameters

Layers Hyperparameters Values
CNN Layer 1 Filter size 32

Kernel size (1,3)
Stride 1

CNN Layers 2, 3 Filter size 64
Kernel size (1,3)
Stride 1

CNN Layer 4 Filter size 72
Kernel size (1,3)
Stride 1

GRU Layers 1, 2 Cells 128

5.5 Results & Discussion

5.5.1 Single New Task

Comparison against State-of-the-art LWF
In the first setup of the experiment, we introduced one of four new tasks from

OPPORTUNITY with locomotion activity labels into the pre-trained model inde-
pendently. LwF mitigated catastrophic forgetting on old tasks by showing superior
performance on these tasks compared to FT, where preserving performance on old
tasks was neglected (Table 5.2). In comparison to LwF, LOMA performed even
better to mitigate catastrophic forgetting of old tasks, with comparable to improved
performance on new tasks. Furthermore, LOMA was able to better maintain per-
formance on old tasks. This behavior is likely attributed to the introduction of the
decoder network, which forces new task representations to remain bounded by the
distilled output of old task network parameters.

In the second setup of the experiment, we introduced one of four new tasks from
OPPORTUNITY with gesture activity labels into the pre-trained model indepen-

52

Table 5.2: Experiments evaluated on 30 old tasks from UCI HAR and 4 new tasks from
OPPORTUNITY. Old and new tasks have similar labels of basic locomotion activities.
Results are shown in accuracy (%).

UCI UCI User 1 UCI User 2 UCI User 3 UCI User 4
old new old new old new old new

LOMA - 81.32 82.11 84.09 82.22 77.3 81.69 82.5 73.20
LwF - 79.68 82.88 82.21 81.60 75.14 81.34 80.56 74.03
FT - 78.89 83.67 81.18 84.3 74.52 80.90 79.33 75.76
MTL 88.71 87.33 81.45 88.28 84.60 85.62 79.16 86.88 76.08
STL - - 80.76 - 83.08 - 79.23 - 73.65

Table 5.3: Experiments evaluated on 30 old tasks from UCI HAR and 4 new tasks from
OPPORTUNITY. Old and new tasks have different labels of basic locomotion activities
and gesture recognition activities, respectively. Results are shown in accuracy (%).

UCI UCI User 1 UCI User 2 UCI User 3 UCI User 4
old new old new old new old new

LOMA - 74.66 67.11 73.90 71.11 71.36 66.75 70.15 71.23
LwF - 69.43 66.78 71.04 72.86 65.53 66.21 67.70 72.40
FT - 71.8 66.09 72.67 74.32 70.1 68.26 67.58 70.88
MTL 88.71 81.23 67.38 80.67 71.64 79.12 68.44 74.57 67.02
STL - - 71.23 - 76.82 - 71.66 - 73.19

dently. In this setup, a label shift existed between the old and new tasks, where
labels of old and new tasks belonged to different distributions. We consistently wit-
nessed improved preservation of old task performance in LOMA compared to LwF
(Table 5.3). The interesting distinction with regards to label shifts between old and
new tasks was in the performance of FT compared to LOMA and LwF. We observed
superior performance of LOMA and LwF on users 1 and 4 in comparison to FT.

Comparison against the FT Baseline
Table 5.2 shows that FT performed better on new target tasks with no label shift,

given it was prioritizing the learning of new tasks and disregarding old pre-trained
ones. The advantage of LOMA is in its ability to significantly minimize catastrophic
forgetting of old tasks compared to FT, while achieving relatively equivalent per-
formance on new tasks. In comparison, where new tasks exhibit a label shift in
comparison to old tasks, we observed improved performance with LOMA compared
to FT on two of the newly introduced tasks, users 1 and 4 (Table 5.3).

Comparison against Single-task Learning (STL) Baseline
We also compared LOMA against STL performance on new tasks alone trained in

an encoder network from random weight initialization (Tables 5.2 and 5.3). Here the
encoder network had not been pre-trained on old tasks. The results show STL acted
as an upper bound on the performance of new tasks given that LOMA sacrificed
performance on new tasks to preserve old ones. We observed that FT exhibited
higher performance than STL in Table in the absence of label shifts on new tasks
(Table 5.2). This was expected since FT leveraged pre-trained knowledge from old
tasks to improve the learning of new tasks, especially given that the old tasks came
from a richer domain in comparison to the new ones.

53

Figure 5.2: Comparing LOMA performance when Λo is varied between [0.05,0.95] on old
tasks in the objective function of Eq. 5.1

STL exhibited superior performance to FT when a label shift existed between
old and new tasks (Table 5.3). FT a new task with a label shift seemed to negatively
impact performance when compared to the STL approach. STL was actually seen
as an upper bound for new tasks with label shift in all methods evaluated, including
LOMA, LwF, and MTL.

Comparison against Multitask Learning (MTL) Baseline
In the first experimental setup of Table 5.2, MTL is shown as the upper boundary

in performance on the old tasks, which was expected given that the model had full
access to the old task data and was trained simultaneously with the new tasks.

Interestingly, when a label shift existed between old and new tasks in the second
experimental setup in Table 5.3, MTL was negatively impacted by the introduction
of a task with a label shift. This is not unlikely given that MTL models are expected
to showcase their strength when tasks learned simultaneously do not exhibit large
distribution shifts.

To test the performance of our proposed LOMA method with tasks of varying
importance, we varied Λo between 0.05 and 0.95 in Eq. 5.1 to increase the weight of
the old task distillation output labels compared to new tasks being introduced into
the network. The results are shown in Figure 5.2.

When Λo = 0.05, LOMA was closely resembling the FT setup, where minimal
weight was given to preserve old tasks. Here we observed the lowest performance
on pre-trained UCI old tasks and the highest performance on new tasks for users
1, 2, 3, and 4. When Λo = 0.5, equal weight was given to the learning of old and
new tasks. In this case, the best combined performance across old UCI and new
tasks occurred for users 1, 2, 3, and 4. On the other end of the spectrum, when
Λo = 0.95, minimal weight was given to the learning of new tasks. Here the highest

54

Table 5.4: Training combinations of new tasks from OPPORTUNITY simultaneously.

UCI User 1 User 2 User 3 User 4 AVG
81.32 82.11 - - - 81.72
80.78 83.67 80.75 - - 81.73
78.61 81.45 79.04 78.56 - 79.41
77.33 81.25 77.69 77.73 74.23 77.65

performance was observed on old task UCI and the lowest was seen on new tasks
for users 1, 2, 3, and 4.

5.5.2 Multiple New Tasks

In the next set of experiments, we evaluated how the LOMA model would perform
when multiple new tasks are introduced. Here, we conducted two experimental
setups. The first setup involved training on multiple new tasks simultaneously.
That is, tasks were fed to the model for training in parallel. In the second setup,
we trained on the incoming new tasks sequentially. Note the experimental results
were run on OPPORTUNITY user subjects with locomotion labels (i.e., no label
shift between old and new tasks).

Simultaneous Training of New Tasks
We began by introducing all four new tasks into the model in parallel, where tar-

get tasks were trained simultaneously as seen in traditional MTL setups. In practice,
this setup assumes a waiting buffer period before all target tasks are available.

As more target tasks are trained simultaneously, the average performance of the
LOMA method dropped (Table 5.4). This outcome may be explained by the model’s
generalization overpowering its personalization aspect, where incoming tasks have
larger distribution shifts relative to the small task count.

We examined user 1, whose performance improved when trained in parallel with
user 2. However, the performance of user 2 dropped when trained simultaneously
with users 1 and 3. This outcome raises the question of when tasks would experience
a positive versus negative transfer of shared knowledge in the network. We present
two possible factors that may impact performance. First, noisy data might be having
a negative effect on the training of neighboring task parameters. For example, a
particular new user could have so many training samples that adding noisy data
(originating from users with distribution shifts) decreases performance.

Second, similar to MTL, learning tasks simultaneously is expected to improve
performance only if the training data introduces positive shared knowledge, partic-
ularly when a given task suffers from a limited training data count.

Sequential Training of New Tasks
Next, we examined the setup where multiple new target tasks are introduced

into the model sequentially. This setup was expected to be impacted by larger
catastrophic forgetting compared to simultaneous learning since the network be-
comes more susceptible to forgetting previously trained information with every new
trained task. This outcome was confirmed by the results presented in Tables 5.5

55

Table 5.5: Training all target tasks from OPPORTUNITY in sequence. The order of tasks
as introduced to the model is: 1,2,3,4.

UCI User 1 User 2 User 3 User 4 AVG
81.32 82.11 - - - 81.72
78.77 80.85 82.65 - - 80.75
72.40 78.45 79.21 81.32 - 77.85
68.33 72.67 71.82 78.41 76.55 73.56

Table 5.6: Training all target tasks from OPPORTUNITY in sequence. The order of tasks
as introduced to the model is: 4,3,2,1.

UCI User 1 User 2 User 3 User 4 AVG
82.5 - - - 73.20 77.85
74.34 - - 78.45 69.78 74.19
70.2 - 80.05 75.67 67.33 73.31
65.54 80.86 72.66 71.23 60.10 70.08

and 5.6. We observed that, as more tasks were added to the model sequentially, the
relevance of old tasks decayed exponentially. In this case, controlling the knob of
Λo may have an important impact on preserving old tasks.

Nevertheless, our data demonstrate that the performance of user 4 was better
following the introduction of users 1, 2, and 3 into the LOMA model compared to
when user 4 was introduced alone into the pre-trained model (Table 5.5). This is
most likely due to the feature distribution of user 4 being more closely related to
the new OPPORTUNITY user subjects as opposed to subjects from the UCI HAR
representing old tasks.

To further investigate the sequential learning setup, we examined whether the
order in which tasks are presented to the model impacts performance. Results in
Tables 5.5 and 5.6 demonstrate that the average performance of the model varied
according to the order of new users introduced (e.g., 1-2-3-4 versus 4-3-2-1). For
example, user 2 exhibited a performance of 82.65% when it followed the training
of user 1 (e.g., 1-2-3-4). However, when the order of tasks was reversed (e.g., 4-
3-2-1), the performance of user 2 dropped by -2.6% to 80.05%. This difference in
performance was also observed for the other tasks. This outcome raises interesting
questions about how tasks impact one another in the model.

Moreover, these results highlight the importance of understanding the optimal
order in which tasks should be introduced to maximize performance. To examine
this, we performed an experimental grid search across the four new tasks with 24
combinations to determine the optimal order in which tasks should be introduced
to the model. The optimal sequence of new tasks was found to be: 2-1-3-4. This
sequence exhibited (1) the highest average accuracy of the model after the intro-
duction of all tasks, and (2) the lowest drop in average accuracy after each new
task is trained. Sequence 2-1-3-4 had an average accuracy of 76.23% and an average
accuracy drop of 5.4% from beginning to end of the training sequence.

56

Figure 5.3: The plots present average performance across the 5 OPP users for which the
network is fine-tuned after being pre-trained with ALKAN 20 users. The training data
size of ALKAN is reduced in orders of magnitude to showcase robustness of the methods
to limited pre-trained data. (a) represents fine-tuning on OPP with no label shift, and (b)
represents fine-tuning on OPP with label shift.

These experimental results demonstrate that the order in which tasks are learned
matters. To further validate how the order impacts model performance, future stud-
ies can be performed to examine how the model is impacted by the error bounds
of a given task [88]. The preliminary hypothesis is that a task with ’noisier’ data
or that presents a larger distribution shift into the model would lead to lower per-
formance. This lower performance would likely be a result of lower generalization
capability of the model since a larger distribution shift would force the model to
tailor its parameters towards the newly learned shift. This effect is more prominent
when tasks are learned sequentially since, at the introduction of every new task,
the LOMA objective function (see Eq. 5.1) gives equal weighting to the new task
and all other old tasks. Finally, it would be very interesting for future studies to
investigate how the objective function can compute an order of tasks that produces
optimal performance in terms of a minimized average error bound.

Robustness against Limited Training Data
The results presented in Figure 5.3 highlight LOMA’s robustness in learning new

tasks when pre-trained with limited labeled data samples. For these experiments,
LOMA was pre-trained on ALKAN with 20 user subjects as the old tasks and fine-
tuned for OPPORTUNITY with 4 user subjects (a) with no label shift and (b) with
an exhibited label shift. The results in Figure 5.3 are averaged across the 4 user
subjects of OPPORUNITY.

Results are presented for 3 experimental setups where pre-training happens on
160,000, 16,000, and 1,600 data instances from the ALKAN old tasks to showcase
performance of LOMA and baseline methods under reductions in orders of mag-
nitude of the training data sizes. The figure demonstrates the robustness of the
proposed LOMA method under reduction in training data sizes in comparison to
prior state of art loss functions LwF and traditional FT methods. With LwF showing

57

Table 5.7: Summary of ablation analysis run on 5 experimental setups. Results are shown
in average accuracy (%) across all tasks.

Loss UCI OPP UCI ALKAN ALKANUCI ALKANDAS ALKANOPP
old(30) new(4) old(30) new(5) old(20) new(5) old(20) new(8) old(20) new(4)

+K+R 81.33 80.30 83.20 79.45 60.21 87.89 57.81 84.32 56.67 80.15
-R 79.39 79.96 81.47 76.57 57.5 86.43 55.04 81.56 57.04 78.96
-K-R 78.48 81.15 79.24 79.87 56.75 88.93 52.67 87.23 54.61 78.32

superior ability to handle limited data to traditional FT, the proposed combination
of knowledge distillation and reconstruction losses outperform state of art objectives
in ability to handle limited training data, even under the case of an existing label
shift in the label categories of the source and target domain.

5.5.3 Ablation Analysis

We conducted an ablation analysis to study the impact of the proposed knowl-
edge distillation and reconstruction loss functions presented in our proposed multi-
objective LOMA approach. The columns of Table 5.7 present the different exper-
imental setups that highlight the ’Source - Target’ datasets for that experiment.
Each experiment column reports performance on the old and new tasks, where the
number shown in the brackets indicates the number of tasks (or user subjects) for
each source and target dataset. The results in the table are reflecting the average
accuracy performance in (%) on all old or new tasks, respectively.

The presented results in the table cover evaluation of the following setups:

1. All losses (K+R): This case represents the full proposed LOMAmulti-objective
loss function with both knowledge distillation (KD) and reconstruction (RC)
losses.

2. No reconstruction loss (-R): The multi-objective loss function excluding the
RC loss.

3. No reconstruction and knowledge distillation (-K-R): The multi-objective loss
function excluding the RC and KD losses.

Table 5.7 summarizes 5 experimental setups that show the average accuracy
performance of the ablation analysis across all user subjects for old and new tasks
under different datasets. The results show consistent improvement of the proposed
multi-objective loss function, combining the KD and RC losses, over both old and
new tasks in comparison to eliminating the RC and KD losses. To be more spe-
cific, when exploring the comparison of the proposed multi-objective with both KD
and RC (K+R) against eliminating both losses (-K-R), we notice (1) a significant
average improvement of +3.494% on preserving old tasks’ performance across the
5 experiments conducted on 4 different datasets and setups of source-target pairs,
and (2) a minimal loss of -0.678% in average performance on new tasks. This min-
imal loss is expected and labeled as “minimal” since the (-K-R) setup reflects the

58

traditional fine-tuning setup which is considered to serve as an upper bound for our
proposed LOMA method on the old tasks.

Finally, when comparing the performance of the proposed multi-objective loss
(K+R) with case where the RC loss is eliminated (-R), we witness a consistent
improvement of +1.756% and +1.726% on old and new tasks, respectively. This
improvement is attributed to the presence of the reconstruction loss, which was
proposed as a mechanism to eliminate negative transfer across new tasks being
learned (shown successfully in the improvement witnessed on new tasks). However,
in addition to that, we can see that the RC loss has played a role in improving the
ability to preserve performance on old tasks. This can be attributed to the decoder
shared layers enforcing more shared representations across the old and new tasks,
and thus, further minimizing deviations in the learned parameters of old tasks.

In summary, the ablation study presented the following takeaways: (1) con-
sistent improvement of the proposed multi-objective loss function, combining the
KD and RC losses, over both old and new tasks, (2) a significant average improve-
ment of +3.494% on preserving old tasks’ performance across 5 experimental setups
conducted on 4 different datasets, (3) a minimal loss of -0.678% in average perfor-
mance on new tasks when compared to the upper bound of traditional fine-tuning
where both KD and RC losses are eliminated, and finally (4) the RC loss, which
was aimed at improving performance on new tasks by mitigating effects of nega-
tive transfer through improved generalization, was shown to further contribute to
enhanced performance on old tasks preservability.

5.6 Broader Applications

The presented methods of this chapter can be directly extended to different types
of time-series problems, such as time-series forecasting applications, by using the
appropriate choice of loss function and output layer activation function in the fine-
tuning of the pre-trained network and the new output branches introduced per new
target task, respectively.

59

Chapter 6

Measures for Transferability
Estimation of Pre-trained

Models

6.1 Overview

In this chapter, we address the problem of estimating task transferability between a
source pre-trained model and a target task. Once again, we follow the assumption
that the source task data is no longer accessible. The goal is to define a measure
of task transferability that serves as a priori knowledge of the success of transfer
from a source pre-trained model to a target task and does not require expensive
optimization.

The contributions of Chapter 6 are as follows:

1. A new measure, iLEEP, that learns from an attention-based network the op-
timal combination of target representations for transferability estimation.

2. An interpretable transferability estimation method that learns an intuitive
mapping of the relationship between source and target tasks.

We next present the proposed methods and evaluate the methods on two bench-
mark computer vision datasets: CIFAR10 [26] and Domainnet [27], where CIFAR10
contains camera-captured images and Domainnet presents images collected from
varying input domains including paintings, sketches, clipart, and infographics. We
show that our proposed iLEEP measure improves on prior state-of-the-art and
presents an interpretable, intuitive definition of transferability between a source
pre-trained model and target task.

6.2 Problem Definition

In a transfer learning setting, we are typically interested in using a source task
to improve performance on a target task through using knowledge learned from
the source task in the learning process of the target task. The source task is a

60

task, which has an abundant source of labeled training data samples, to be used to
help improve model training on our target task, which suffers from limited labeled
training data samples. Moreover, under our target problem scenario in this chapter,
we are dealing with a single source task and a single target task, where the source
task dataset is assumed to be no longer available. This may be due to the data being
lost, limitations in storage resources, or constraints related to privacy or security.

The target task is represented by dataset D, which contains input sample and
output label pairs such that D = {(x1, y1), (x2, y2), .., (xn, yn)}. The input samples
belong to domain XT = RN and can be of image, text, or time-series data types
that in return can be mapped to and represented by an N -dimensional vector. The
output labels belong to a finite domain Y .

The source task maps a given input domain XS = RN to a finite output domain
Z. In our settings, the input-output sample pairs for the source task are no longer
available, and thus, the source task can only be represented by a pre-trained model
θ, where θ represents the optimized parameter set of the pre-trained model that
maps the input domain to the output domain, XS and Z, respectively.

6.3 Proposed Methods

In this chapter, we focused on studying the underlying relationship between a pre-
trained model on a source task and a dataset of a new target task, for which we wish
to optimize the pre-trained model. Previous work has explored extracting feature
representations of the target task from the pre-trained model as a reflection of the
old source task’s closeness to the given target task. We elaborate on the prior state-
of-the-art techniques in Section 6.3.1 to serve as a background to the discussion of
our proposed methods.

6.3.1 Log Expected Empirical Prediction Measure

C. Nguyen et al. [17] first introduced the Log Expected Empirical Prediction (LEEP)
score, which serves as a measure to estimate the transferability between a pre-trained
source model and a target dataset. The LEEP score does not require expensive com-
putational fine-tuning of the pre-trained model and serves as an apriori assessment
of the success of transfer between the pre-trained model and the target dataset.

The LEEP measure is defined in Eq. 6.1, where P̂ (yi|z) is the empirical condi-
tional distribution of the target outputs Y given the source outputs Z and θ(xi)z
is the probability of a given source label z ∈ Z following the output distribution of
passing the target samples through the source pre-trained model, θ(xi).

LEEP(θ,D) =
1

n

n∑
i=1

log
(∑

z∈Z

P̂ (yi|z)θ(xi)z

)
(6.1)

The LEEP measure can be computed over three steps.
Step 1: Compute the dummy label distribution of the target dataset

θ(xi). To compute the dummy label distribution, we pass the input target instances

61

xi through θ to generate the distribution of outputs over Z, the source data output
domain, that is θ(xi). It is called ’dummy’ label distribution since it does not
represent the true target outputs and is likely entirely meaningless to the context
of the target outputs. θ(xi)z is then the probability of the source label given the
dummy label distribution θ(xi). The dimensions of θ(xi)z are then (Nn x Nz), where
Nn is the number of target training samples that are passed through the source pre-
trained model θ and Nz is the number of units in the last output layer of the source
pre-trained model.

Step 2: Compute the empirical conditional distribution P̂ (y|z). To
compute the empirical conditional distribution for all pairs of (y, z) ∈ Y x Z, we
first compute the empirical joint probability, P̂ (y, z). We then use the empirical
joint probability to compute the empirical marginal probability P̂ (z). Finally, we
use the results of the empirical joint and marginal distributions to compute the
empirical conditional probability P̂ (y|z) in Eq. 6.2.

P̂ (y|z) = P̂ (y, z)

P̂ (z)
, (6.2)

P̂ (y, z) =
1

n

∑
i:yi=y

θ(xi)z,

P̂ (z) =
∑
y∈Y

P̂ (y, z) =
1

n

n∑
i=1

θ(xi)z.

Step 3: Compute the LEEP measure using θ(xi) and P̂ (yi|z). Finally, we
compute the LEEP measure given a source pre-trained model and a target dataset
by plugging in the computed dummy label distribution, θ(xi), from step 1 and the
empirical conditional distribution, P̂ (yi|z), from step 2 into Eq. 6.1.

LEEP has shown great progress in successfully estimating the transferability
of a pre-trained model to a target task of interest without the need for expensive
optimization. However, LEEP suffered from multiple limitations such as (1) being
limited to tasks of a classification nature and (2) being prone to overfitting as the
dummy label distribution θ(xi) is extracted from the softmax layer of the pre-trained
network that has been optimized for the source task.

Y. Li et al. [25] proposed an improvement on LEEP, which they referred to
as Gaussian LEEP (or NLEEP), to overcome the two aforementioned limitations.
NLEEP advances LEEP by replacing the dummy label distribution θ(xi)z from the
softmax output of the pre-trained model by the posterior probability distribution,
P̂ (v|x), computed across Gaussian components v ∈ V . NLEEP extracts the fea-
ture representation of a forward pass of the target samples from the penultimate
layer of the source pre-trained network, that is, the layer before the output layer.
The extracted representation is then passed through Principal Component Analy-
sis (PCA) for a low-dimensional vector representation of the target input samples
x. Moreover, PCA also allows mapping all the layer representations into a unified
vector dimension. The low-dimensional vector representations are then fitted to a

62

Gaussian Mixture Model (GMM) P (s) =
∑

v∈V πvN (s|µv, σv), where s is the target
training dataset such that si

n
i . Moreover, V represents the clusters of Gaussian com-

ponents and πv are the learned Gaussian mixture weights. The posterior probability
distribution can be easily mapped to reflect the true target input samples, such that
P (v|x) = P (v|s) ∝ πvN (s|µv, σv).

The improved NLEEP measure is represented in Eq. 6.3, where P (v|x) has
replaced the dummy label distribution, θ(xi).

NLEEP(θ,D) =
1

n

n∑
i=1

log
(∑

z∈Z

P̂ (yi|z)′P (v|x)
)
, where (6.3)

P̂ (y|z)′ = P̂ (y, z)′

P̂ (z)′
,

P̂ (y, z)′ =
1

n

∑
i:vi=v

P (vi|x),

P̂ (z)′ =
∑
y∈Y

P̂ (y, z)′ =
1

n

n∑
i=1

P (vi|x).

As a result, NLEEP improves on LEEP by eliminating the reliance on the soft-
max classification output layer, making the NLEEP measure applicable to any type
of task including regression tasks and unsupervised tasks. Moreso, by evaluating the
transferability measure with the posterior probability of the GMM trained on the
target task (as opposed to the softmax layer trained on the source task), NLEEP
presents a more reliable measure of transferability for the target task.

Nevertheless, both LEEP and NLEEP are restricted to examining the final re-
sulting model representation of the source pre-trained model and do not account for
the varying representations extracted at shallow versus deep layers in the network,
which could bring forth added value when exploring the transferability relationship
between a source and target task.

6.3.2 Transferability with Multi-granular Representation Extraction

Deep neural networks have been shown to serve as effective feature extractors. Prior
work has demonstrated that the depth of the neural layers presents different stages
of granularity in the features extracted. In particular, it has been shown that shal-
low layers tend to extract low granularity features while deeper layers extract high
granularity features. For example, as shown in Figure 6.1, if we are passing the
image of a human face, shallow layers would extract finer features such as edges and
shades, mid layers would extract higher level facial features such as eyes and nose,
and deep layers would extract highest level features such as the target object of a
full face.

Motivated by the multi-granular representation extracted, we study the effec-
tiveness of looking at the softmax or penultimate layer representations as opposed
to all other layers in a pre-trained model for identifying the transferability of the

63

Input

Output

Convolutional layer + ReLu Pooling layer Fully-connected layer

Shallow
Representations

Deep
Representations

Mid-level
Representations

Figure 6.1: An illustration of the multi-granular nature of representations that are learned
across shallow to deep layers in a network. The network architecture shown is of VGG16
[34].

source pre-trained model to the target dataset. As a direct extension of prior work,
we propose the NLEEP+ score where we extract representations from all layers
of a source pre-trained model through a single, forward-pass of the target dataset
input samples. The extracted representations are passed through PCA to com-
press the high-dimensional representation vectors for a compact representation and
a common vector length across all representations. The PCA compressed represen-
tations are used to train a GMM clustering model. The result of the GMM model
is the posterior probability, P̂l(v|x), where l reflects the network layer from which
the GMM posterior probability was estimated. The P̂l(v|x) is used in Eq. 6.3 to
compute the NLEEP score of layer l. Finally, we average the NLEEP scores for
layers l = {1, .., L} to return the proposed NLEEP+ score, shown in Eq. 6.4.

NLEEP+(θ,D) =
1

L

L∑
l=1

(
1

n

n∑
i=1

log
(∑

z∈Z

P̂ (yi|z)′P̂l(v|x)
))

(6.4)

6.3.3 Interpretable Attention Networks for Learning Representation
Importance

Intuition dictates that different representation granularities will define different re-
lation elements between source pre-trained models and a target dataset. In the
previous section, we proposed an improved transferability measure, NLEEP+, that
evaluated the extreme case of using all layer representations from a pre-trained

64

INPUT
Extracted, compressed features from all pretrained network layers

Input dimensions: (?, L, P)

Single-layer, single-unit MLP
Layer weights dimensions: (?, P, 1)

Attention adjusted output state
ie: attention weights x inputs = a0 f 0 + a1 f 1 + .. + aL-1 f L-1

Attention output dimensions: (?, 1, P)

Attention weights
dimensions: (L, 1)

a0 a1 . . . aL-1

Activation + Softmax

AT
TE

N
TI

O
N

 L
AY

ER

Dense Layer

Output Layer

D
EN

SE

LA
YE

R
(S

)
O

U
TP

U
T

LA
YE

R

Figure 6.2: Attention network architecture for interpreting the importance of source pre-
trained model representations. L is the number of layers in the source pre-trained network,
P is the size of the low-dimensional input representation after being compressed through
PCA, and ’?’ reflects an arbitrary input batch size.

model to map the transferability relationship between a source task and a target
task. However, with the large parameter size of pre-trained models in literature
today, it becomes costly to extract representations and learn a GMM model across
all layers that could run high in count and dimension. Thus, in this section, we in-
vestigate the following question: Which layer representations will contribute
the most to the transferability estimation between a source pre-trained
model and a target dataset? .

Let’s take two example scenarios of how a source and target task transferability
relationship may vary. In the first example, we are given a set of source and target
tasks that are derived from a similar input domain and a similar output domain,
such as having both tasks’ datasets composed of camera-captured images with class
labels of the object in each image. In another example, we could be dealing with
source and target tasks that belong to a similar output domain but a different input
domain. For example, the source task may contain input image samples that are
captured by a camera, while the target task input images are hand-drawn images
of objects to be classified. The output domain is similar whereas we experience an

65

input distribution shift between the source and target. The assumption we make is
that the two scenarios will reflect a different transferability relationship given the
distribution shift that exists across the two distinct relationships.

Thus, we propose to learn an attention network that maps the PCA compressed
target representations from all layers of the source pre-trained model to the target
dataset output labels. The loss function of the attention network is being optimized
with the cross-entropy loss function to correctly classify the true target dataset
outputs. The attention network will learn a set of weights that combine linearly to
produce a weighted output from the attention layer to map correctly to the output
target labels. The attention weights that are learned are directly interpretable and
can be used to map the importance of the layer representation to the final target
output. Figure 6.2 showcases the attention network architecture of our proposed
work, where L is the number of layers in the source pre-trained network and P is
the size of the low-dimensional input representation after being compressed through
PCA.

We build upon the NLEEP+ measure by proposing interpretable LEEP (or
iLEEP) where we do not use all layer representations for an improved scoring of
transferability, but instead, we use the layer representations that are assigned an
attention weight larger than the average attention weighting across all layers. As a
result, we present a measure of optimized compromise between the computational
complexity (where we need to compute a forward pass, run PCA compression, and
train a GMM model for all layer representations) and the improved performance of
looking beyond only the penultimate layer of a source pre-trained network, which
is limited in representing the transferability estimation across varying source-target
distribution shifts. The iLEEP measure is presented in Eq. 6.5.

iLEEP(θ,D) =
1∑
S 1

L∑
l=1

al

(
1

n

n∑
i=1

log
(∑

z∈Z

P̂ (yi|z)′P̂l(v|x)
))

(6.5)

al =

{
al if al >

1
l

∑L
l=1 al

0 otherwise.

S = {l : al ̸= 0}

Both the NLEEP+ and iLEEP measures adopt the characteristics of LEEP,
where they are upper bounded by zero and negative. The larger the measure score,
that is, the smaller the absolute value of the score, the better the transferability
indicated between the given source pre-trained model and target dataset.

6.4 Data & Experimental Setup

We evaluated our proposed transferability measures under the supervised task of ob-
ject recognition using a pre-trained model and dataset benchmarks that are heavily
utilized and evaluated in the literature. As such, we can guarantee the effectiveness

66

of our proposed methods on well-established benchmarks, compare them to the prior
state-of-the-art, and set a solid ground for future explorations.

We use the Pearson correlation coefficient to evaluate the performance of a given
transferability measure between a source pre-trained model and a target data. The
Pearson correlation coefficient is computed between the transferability measure and
the transfer accuracy, which is the final test accuracy on the source pre-trained
model after it has been fine-tuned for the given target task.

6.4.1 Implementation Details

The proposed methods were implemented in Python using Google’s Keras Tensor-
flow deep learning framework. For experimental evaluation, we assess the perfor-
mance of our transferability measures by computing the Pearson correlation and
Kendall tau correlation [89] between the resulting NLEEP+ and iLEEP measures
for a source pre-trained model and target dataset pair and the final transfer ac-
curacy of the pre-trained model after it is optimized for the target dataset. For
transfer accuracy, we consider two settings: retraining the pre-trained model head
and fine-tuning the entire pre-trained model layers with the target dataset.

6.4.2 Datasets

CIFAR10 [26] is an object recognition dataset composed of real images and their
accompanied class label for the object contained in the image. CIFAR10 is a subset
of the Imagenet dataset and contains 50,000 training samples and 10,000 testing
samples of (32x32x3) dimension. The dataset is balanced and is composed of 10
class labels. All experimental results on CIFAR10 are the result of five averaged
trial runs.

DomainNet [27] is an object recognition dataset composed of images from 6
different input domains including clipart, quickdraw, sketch, painting, inforgraphic,
and real (or camera-captured) images. The sample count per domain is 48,129,
172,500, 69,128, 72,266, 51,605, and 172,947, respectively. The dataset contains
images of (300x300x3) dimension, is imbalanced, and is composed of 345 class labels
per domain. We evaluate our measures under 4 domains of DomainNet: clipart,
quickdraw, sketch, and painting. Since our source model is pre-trained on ImageNet,
we eliminate the real domain since we use DomainNet to evaluate domains that differ
from real, camera-captured images. We also eliminate the infographic domain due
to high noise in labels. All experimental results on DomainNet are the result of five
averaged trial runs.

6.4.3 Pre-trained Models

In our experiments, we consider two pre-trained model architectures: VGG16 [34]
and ResNet18 [90]. Both models have been pre-trained on ImageNet [33], which is
composed of more than a million samples of real, camera-captured images with 1000
class labels.

67

6.4.4 Transfer Learning Algorithms

When evaluating the transferability measures, we evaluate against the final transfer
accuracy of the source pre-trained model on the target task for two transfer learning
algorithms. First, we consider a transfer learning algorithm where we only retrain
the head of the pre-trained model from scratch on the target task, which we refer
to as Retrain Head in the table results. Second, we consider the transfer learning
algorithm where we fine-tune the entire source pre-trained model weights with the
target task, which we refer to as Fine-tune in the table results.

6.4.5 Source-Target Settings

We present experimental results under two source-target settings. The first we refer
to as standard setting, describing the scenario where both the source and target
tasks share similar input domain and output label distributions. Under this setting,
we consider ImageNet and CIFAR10 as the source and target tasks, respectively,
where they both share a similar input domain of camera-captured, real images and
a similar label distribution of object classes. This is specifically the case since
CIFAR10 is a subset of the ImageNet dataset. The second setting is the cross-domain
setting where the source and target tasks share a similar output label domain but
have a distribution shift in the input domain. Under this setting, we consider the
scenario where our source task is ImageNet and the target task is DomainNet. While
both datasets share a similar output label distribution of object classes, DomainNet
contains images from different input domains such as sketched or painted images.

6.4.6 Baselines

We compared the proposed measures against the state-of-the-art LEEP score [17]
and NLEEP [25]. By outperforming LEEP, we guarantee improvements against
more basic measures of transferability such as NCE [91] and H scores [92], which
were shown to be outperformed by our LEEP baseline through extensive experiments
in the prior work of Nguyen et al. [17].

6.5 Results & Discussion

6.5.1 Transferability Measures vs. Transfer Accuracy

Table 6.1 presents the results of Pearson correlation coefficient scores for the pro-
posed and state-of-the-art transferability measures. Our results show that our pro-
posed iLEEP and NLEEP+ are consistently effective in measuring the transfer-
ability between VGG16 and ResNet18 pre-trained models and the target CIFAR10
dataset, under the standard setting.

Evaluation against State-of-the-Art
We can see from Table 6.1 that both our proposed measures consistently out-

perform state-of-the-art, LEEP and NLEEP. We witness consistent improvement

68

Table 6.1: Comparison of the Pearson correlation coefficients of iLEEP, NLEEP+,
NLEEP, and LEEP on the standard setting of the source and target data having similar
domain and label distributions.

TL Algorithm Source model Source data Target data Target properties LEEP [17] NLEEP [25] NLEEP+ iLEEP iLEEP vs NLEEP+
∆coef

Retrain Head VGG16 ImageNet CIFAR10 Similar labels, similar domains, 0.878 0.903 0.984 0.973 -1.11%
ResNet18 balanced. 0.822 0.897 0.956 0.944 -1.26%

Fine-tune VGG16 0.841 0.899 0.988 0.981 -0.71%
ResNet18 0.825 0.870 0.983 0.979 -0.41%

Retrain Head VGG16 ImageNet CIFAR10 Similar labels, similar domains 0.654 0.831 0.930 0.895 -3.76%
ResNet18 balanced, small. 0.589 0.844 0.926 0.872 -5.83%

Fine-tune VGG16 0.562* 0.796 0.877 0.849 -3.19%
ResNet18 0.641* 0.802 0.858 0.822 -4.19%

* Not statistically significant with p-value > 0.05.

in the Pearson correlation coefficients of iLEEP in comparison to both prior state-
of-the-art measures. More so, NLEEP+ shows the best performance in terms of
the Pearson correlation values. This, however, comes at the expense of added com-
plexity in the extraction of network representations across all layers, as opposed to
LEEP and NLEEP, which only require extracting representations from only the
output classification or penultimate layer, respectively.

iLEEP vs. NLEEP+ The last column of Table 6.1 highlights the percentage
decrease in the Pearson correlation coefficient of iLEEP in comparison to NLEEP+.
Under the standard setting evaluated on CIFAR10, we can see that the percentage
decrease of iLEEP is no more than -1.26% across 4 experimental setups. Under the
standard setting with a small data sample size where N/K=10 (N is the number of
training samples and K is the number of unique class labels), the percentage decrease
of iLEEP does not exceed -5.83% in comparison to NLEEP+ across 4 experimental
setups.

The aforementioned percentage decrease is a result of a -52.2% and -47% decrease
in the dimension of representations extracted to compute iLEEP in comparison to
NLEEP+. As a result, iLEEP requires less storage and computational resources.
This highlights the promising performance of iLEEP as it presents a compromise be-
tween the enhanced transferability capabilities of NLEEP+ and the computational
advantage of LEEP and NLEEP.

6.5.2 Evaluation under the Cross-domain Setting

Table 6.2 presents the results of Pearson correlation coefficient scores for the pro-
posed and state-of-the-art transferability measures under the cross-domain setting.
The presented results highlight the strength of the proposed iLEEP and NLEEP+
measures in evaluating transferability where a distribution shift exists across the in-
put domain of the source pre-trained model and the target dataset. Specifically, this
strength is highlighted in comparison to the performance of both previous LEEP
NLEEP measures, which display a much lower correlation between their transfer-
ability estimation and the transfer accuracy under the cross-domain setting. This
behavior is consistent across 4 domains of the DomainNet dataset. As a result, we
conclude that through extracting richer representations of multi-granular features

69

Table 6.2: Comparison of the Pearson correlation coefficients of iLEEP, NLEEP+,
NLEEP, and LEEP on the cross-domain setting where the source and target data be-
long to different input domain distributions.

TL Algorithm Source model Source data Target data Target properties LEEP [17] NLEEP [25] NLEEP+ iLEEP

Retrain Head VGG16 ImageNet DomainNet/Clipart Cross-domain, 0.668 0.721 0.879 0.829
ResNet18 imbalanced. 0.588 0.721 0.911 0.809

Fine-tune VGG16 0.605 0.723 0.930 0.880
ResNet18 0.513 0.750 0.920 0.912

Retrain Head VGG16 ImageNet DomainNet/Quickdraw Cross-domain, 0.566 0.673 0.819 0.754
ResNet18 imbalanced. 0.605* 0.646 0.889 0.784

Fine-tune VGG16 0.564 0.644 0.826 0.809
ResNet18 0.557* 0.649 0.859 0.795

Retrain Head VGG16 ImageNet DomainNet/Sketch Cross-domain, 0.565 0.780 0.884 0.827
ResNet18 imbalanced. 0.618 0.682 0.887 0.833

Fine-tune VGG16 0.572 0.688 0.897* 0.873
ResNet18 0.583 0.673 0.870 0.861

Retrain Head VGG16 ImageNet DomainNet/Painting Cross-domain, 0.532* 0.741 0.926 0.814
ResNet18 imbalanced. 0.626 0.736 0.820 0.780

Fine-tune VGG16 0.566 0.696 0.840 0.776
ResNet18 0.536 0.693 0.866 0.823

* Not statistically significant with p-value > 0.05.

from the source pre-trained model, our proposed iLEEP and NLEEP+ measures
are capable of handling cross-domain settings in comparison to previous work.

6.5.3 Evaluation against Varying Design Parameters

Impact of Architecture
We run experiment trials under two different source pre-trained models: VGG16

and ResNet18. The results are shown in Table 6.1 and 6.2. By analyzing the re-
sults, it is clear that the effectiveness of the proposed transferability measures is
consistent across varying architectures. On average, the Pearson correlation coeffi-
cients of the ResNet18 model are slightly lower than those of VGG16. However, the
presented experiments cannot present conclusive findings on how the depth of the
pre-trained model architecture may impact performance. Nevertheless, both iLEEP
and NLEEP+ are consistently capable of measuring the success of transfer from
the source pre-trained models to the target task and are consistently outperforming
previous state-of-the-art under both architectures.

Impact of Sample Size
The second set of experimental trials in Table 6.1 is conducted on a small data

regime (N/K=10). We again see consistent improvement in the proposed iLEEP and
NLEEP+ measures in comparison to previous work, however, we detect a higher
percentage decrease in iLEEP compared to NLEEP+ under the small data regime.
This may be due to the limited information being captured across a smaller target
sample size in iLEEP versus NLEEP+, since NLEEP+ is capturing a richer repre-
sentation across all layers of the source pre-trained model. However, the percentage
decrease remains significantly low (no lower than -5.83% in comparison to a 47&-
52.2% reduction in the dimensions of extracted representations between iLEEP and
NLEEP+.

70

Impact of Label Size
Table 6.1 presents results of the transferability measures on CIFAR10, which

contains 10 class labels, whereas Table 6.2 presents results on DomainNet, which
contains 345 class labels per domain. For the two experiment setups, we see con-
sistent effectiveness of the proposed measures in measuring transferability and in
outperforming previous state-of-the-art across the varying size of the class label sets
of CIFAR10 and DomainNet.

6.5.4 Interpretation of iLEEP

As we investigated the attention-based representations learned through the iLEEP
measure, we found some interesting behavior that was consistent across the experi-
mental trials run under the standard setting and the cross-domain setting.

Under the standard setting with CIFAR10 as the target dataset, the attention
scores learned by the attention-based network consistently highlighted the relevance
of the first 1-2 and the last 3-4 convolutional layers with both VGG16 and ResNet18
architectures. Intuitively, the focus on the last convolutional blocks and layers is
expected as the high-level representations are likely to be shared in a source-target
transfer where the label distributions are similar. It was interesting to also see
shallow layers highlighted under this setting, reflecting that there are indeed shared
low-level features being represented across both source and target domains. This,
again, aligns with intuition since CIFAR10 is a subset of the source ImageNet dataset
on which the pre-trained models were trained. Thus, the input distributions are
shared, and thus, relevant in assessing transferability.

Moreover, the cross-domain setting with DomainNet also witnessed similar con-
sistent behavior in the attention scores assigned to the representations extracted for
evaluating transferability. Under the cross-domain setting, the first 1-4 and the last
3-4 convolutional layers with both VGG16 and ResNet18 architectures were scored
as relevant to measuring transferability. The focus on the last convolutional blocks
and layers is aligned with the intuition from the standard setting since we are still
dealing with similar label distributions across DomainNet and ImageNet. However,
it was interesting to see that high relevance was given to more shallow layers. This
highlights that low-level features seem to serve as strong identifiers of how close the
input distributions of the source and target are, and as a result, strong identifiers of
whether transferability across source and target will be high or low.

6.5.5 Applications of iLEEP and NLEEP+

Our proposed iLEEP and NLEEP+ measures quantify the success of transferability
of knowledge between a given source pre-trained model and a target dataset. As a
result, a direct consequence application is to use the measures in the selection of the
best model for a target dataset from a zoo of given source pre-trained models.

Aside from pre-trained model selection, the transferability measures can prove
to be useful in continual learning [83] where a sequence of incoming tasks are to be
learned and choosing the order in which to introduce tasks is important. Moreover,

71

the measures may also be extended to support multitask learning scenarios [38] as
well where multiple target tasks are learned in parallel.

6.6 Broader Applications

The proposed metrics in this chapter were evaluated on a computer vision benchmark
of object recognition as a standard benchmark for the state-of-the-art. With a par-
ticular focus on time-series applications under this work, the next extension required
to evaluate these metrics on time-series applications is to develop rich, benchmark
time-series pre-trained models, which are lacking in literature today. Moreover, it is
also important to extend the empirical study to evaluate source-target relationships
where a label shift exists (e.g., using ImageNet object recognition as the source pre-
trained model and ImageNet for object localization as the target dataset) and where
a cross-domain, cross-label shift exists (e.g., using ImageNet object recognition as
the source pre-trained model and PASCAL VOC [93] for semantic segmentation as
the target dataset).

The applicability of the metrics to new pre-trained models and datasets is straight-
forward since the metric computation relies on extracting the network representa-
tions from different layers in the architecture. Thus, there is no restriction on the
type of network, including fully-connected, convolutional, recurrent, or transformer
architectures. Consequently, the developed metrics can also be extended to evaluat-
ing the transferability of state-of-the-art language models, which are heavily utilized
in research and production.

72

Chapter 7

Conclusion & Future Directions

In summary, this dissertation aims to use existing resources, such as pre-trained
ML models, to improve the performance when learning new tasks that have limited
labeled time-series data. Many scenarios arise where pre-trained models need to
be fine-tuned to adapt to new tasks or information. Transfer learning presents a
promising paradigm of techniques to improve performance on new target tasks,
nevertheless, there remain several open challenges to achieving optimal transfer
learning. We focus on three research challenges that address common scenarios
faced in transfer learning settings.

7.1 Multitask Learning Models for Time-series Data

7.1.1 Summary

We addressed the labeled data deficiency bottleneck in building personalized models
for a group of target tasks. We presented a new systematic approach for design-
ing, evaluating, and improving Multitask Learning (MTL) models for time-series
data. These MTL models learn multiple target tasks simultaneously and leverage
information transfer across all tasks. We consider three primary design components:
features capturing the time dynamics in data, similarity metrics reflecting degrees of
commonality and uniqueness across entities, and generalization metrics to prevent
overfitting. The proposed framework enables the introduction of efficient new MTL
models and advances the prior state-of-the-art. We successfully applied and tested
the design framework, and as a result, presented a MTL deep learning model that
makes use of a hierarchical architecture of Convolutional Neural Network (CNN)
and Gated Recurrent Unit (GRU) layers. The resulting MTL deep learning model
that was designed using the proposed framework was evaluated on 4 benchmark
human activity recognition datasets and was shown to outperform a collection of
previous state-of-the-art methods.

7.1.2 Open Research Directions

Two prominent challenges remain open in building MTL models. The first challenge
is related to the computational complexity associated with adding more tasks in

73

MTL models. We explore this research direction in the second objective of the work
by investigating how we can minimize catastrophic forgetting when fine-tuning a
pre-trained model with a single new task. However, it is possible to approach this
question from a different approach, such as looking into compressing the number of
tasks to train by clustering tasks into related groups. Hierarchical clustering can
be used to break down the computational complexity of training a large number
of tasks in parallel in an MTL architecture, for instance. With such a direction of
work, several questions may arise such as (1) which tasks should be clustered and
learned together? (2) should tasks be clustered by looking at the raw, data level or
should intermediate representations be extracted to better represent the relatedness
of tasks? (3) what type of clustering relationships can be used to define relatedness
across tasks?

The second challenge is related to establishing a formal characterization of the
relationship across multiple target tasks trained in the MTL models. In this dis-
sertation, we study a transferability estimation metric under objective three which
looks at the relationship between a source pre-trained model and a single target
task. However, with multiple target tasks introduced to a model, the transferabil-
ity relationship becomes more complex, and it is vital to understand how the target
tasks impact one another, positively and negatively, that is boosting or deteriorating
the performance of other tasks.

7.2 Catastrophic Forgetting in Transfer Learning

7.2.1 Summary

We considered the scenario where we seek to adapt pre-trained models that had
been previously trained on a source task, where the data is no longer accessible, to
new target tasks that have limited labeled data. We wish to improve performance
on the target task while maintaining performance on the source task. The challenge
is to overcome the effect of catastrophic forgetting in the pre-trained neural network
while fine-tuning the network on the new target task data. We proposed LOMA,
a Lifelong Multitask Autoencoder network, that is trained using a multi-objective
loss function with knowledge distillation, prediction error, and reconstruction error
losses. We evaluated the proposed approach on sensing data under human activity
recognition tasks where evaluations are run under four benchmark datasets. Ex-
perimental results showed minimized catastrophic forgetting compared to baseline
methods of fine-tuning and multitask learning as well as prior state-of-the-art LwF.
An ablation analysis study highlighted the relevance of the proposed knowledge dis-
tillation and reconstruction losses by showing an average improvement of +3.5%
on preserving old tasks. Moreover, when we evaluated the performance of learning
new tasks in sequence, we found that the order in which new tasks are introduced
sequentially matters.

74

7.2.2 Open Research Directions

A direct extension of the work conducted under this research objective is to inves-
tigate methods that would learn the optimal order in which tasks are introduced
to a model under a continual learning setting, where multiple tasks are queued to
be learned. Moreover, there remains open space to explore the best combination
and weighting of the multiple loss functions of the defined multi-objective learning
function in Eq. 5.1 of Chapter 5.

Another open challenge that arises from the first objective of the work is the
computational complexity of introducing a large number of tasks, which is conse-
quently represented by additional output layer parameters per task. Once again,
future work can investigate introducing clusters of new tasks as opposed to a single
task at a time. Thus, a new output parameter branch would be learned for the
entire cluster of new tasks, as opposed to introducing a new set of parameters per
unique task.

7.3 Measures of Transferability Estimation

7.3.1 Summary

We studied the transferability estimation problem between a pre-trained model
trained on a source task and a new target dataset. Here, the goal in such a sce-
nario is to determine a priori and without the need for expensive optimization if
the source pre-trained model will transfer knowledge successfully to the new tar-
get task and, as a result, render an accurate model fine-tuned for the target task.
We propose a new method to learn which feature representations extracted from a
source pre-trained model are most descriptive of the source and target task trans-
ferability relationship, thus, eliminating the restriction on relying on final model
outputs only. We presentan interpretable transferability measure, iLEEP, that uses
an attention-based network to learn the optimal combination of pre-trained model
representations that hold the highest contribution to transferability across the source
and target tasks.The proposed work was evaluated on two benchmark computer vi-
sion datasets of object recognition, and the experimental results showed that our
proposed iLEEP measure has superior performance to two prior state-of-the-art an-
alytical measures, LEEP and NLEEP, with the added benefit of being intuitive and
interpretable.

7.3.2 Open Research Directions

In order to extend the transferability measures to time-series-based models, a need
arises for developing benchmark, rich pre-trained time-series models. There is a lack
of such models in literature today. It has become essential to create such standards
for the sensing domain. It is also important to establish a clear understanding of the
type of pre-trained models needed for time-series. It is also important to identify
the application of time-series (if there is a specific one) that could serve as a ground
foundation for all others, that is, similar to what we see with object recognition for

75

the computer vision domain and with text generation/classification for the natural
language processing domain.

Moreover, future directions can investigate the standardization of the interpre-
tation derived from iLEEP in the layers that contribute to the transferability esti-
mation between the pre-trained source model and the target dataset. That is, we
need to understand if there are specific layers that define the relation of transfer-
ability under various distribution shift settings of cross-domain, cross-task, common
domain and task, and cross-domain and cross-task relations. Finally, future work
can look into the extension of iLEEP and its feasibility for new classes of tasks such
as unsupervised and semi-supervised tasks.

76

Appendix A

Data Statistics of Chapter 5
Experiments

Table A.1 presents summary of statistics on datasets used in our experiments of
Chapter 5 specifying the count statistics, splits between training and testing, cate-
gory of labels, and distribution of labels across the dataset.

At each experimental setup, one dataset is selected to serve as the old tasks’
domain and another is selected to serve as the new tasks’ domain. When dividing
the dataset into training and testing, user subjects (or tasks) are equally sampled
into each subset along with the different label categories through the use of stratified
sampling techniques.

77

Table A.1: Summary of data statistics for ALKAN, DAS, OPPORTUNITY, and UCI
HAR.

Dataset Count
Statistics

Data
Splits

Label Cate-
gory

Distribution of Labels

[Activity ID]:[Perc. of Samples]:[Description]
ALKAN
[12]

Total Sam-
ple Count:
167,391
Total Tasks:
20
Labels Count:
7

Train: 90%
Test: 10%

Locomotion
activity

A1: 13: Walk
A2: 16: Stand
A3: 19: Lie
A4: 21: Sit
A5: 9: Walking upstairs
A6: 9: Walking downstairs
A7: 13: Run

DAS [18] Total Sample
Count: 35,625
Total Tasks: 8
Labels Count:
19

Train: 80%
Test: 20%

Locomotion
and high-level
activity

A1: 7: Sitting
A2: 8: Standing
A3: 8: Lying on back
A4: 9: Lying on right side
A5: 5: Ascending stairs
A6: 5: Descending stairs
A7: 4: Standing in an elevator still
A8: 3: Moving around in an elevator
A9: 5: Walking in a parking lot
A10: 7: Walking on a treadmill in flat position
A11: 4: Walking on a treadmill in inclined po-
sition
A12: 5: Running on a treadmill with a speed
of 8 km/h
A13: 5: Exercising on a stepper
A14: 6: Exercising on a cross trainer
A15: 7: Cycling on an exercise bike in hori-
zontal position
A16: 5: Cycling on an exercise bike in vertical
position
A17: 2: Rowing
A18: 3: Jumping
A19: 2: Playing basketball

OPP [19] Total Sample
Count: 35,312
Total Tasks: 4
Labels Count:
9

Train: 80%
Test: 20%

High-level ac-
tivity

A1: 14: Open and close the fridge
A2: 13: Open and close the dishwasher
A3: 11: Open and close 3 drawers
A4: 16: Open and close door I
A5: 14: Open and close door 2
A6: 10: Turn on and off the lights
A7: 9: Clean table
A8: 6: Drink (standing)
A9: 7: Drink (sitting)

OPP [19] Total Sample
Count: 15,810
Total Tasks: 4
Labels Count:
4

Train: 80%
Test: 20%

Locomotion
activity

A1: 24: Walk
A2: 19: Run
A3: 27: Lie
A4: 30: Sit

UCI [20] Total Sample
Count: 20,598
Total Tasks:
30
Labels Count:
6

Train: 70%
Valid: 10%
Test: 20%
*This
dataset was
used for
the model’s
hyperpa-
rameter
tuning.

Locomotion
activity

A1: 19: Walk
A2: 14: Stand
A3: 15: Lie
A4: 23: Sit
A5: 14: Walking upstairs
A6: 15: Walking downstairs

78

Bibliography

[1] K. Jordan, J. H. Challis, and K. M. Newell, “Walking speed influences on gait
cycle variability,” Gait & posture, vol. 26, no. 1, pp. 128–134, 2007.

[2] R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, et al., “Emotion recognition
in human-computer interaction,” IEEE Signal processing magazine, vol. 18,
no. 1, pp. 32–80, 2001.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105.

[4] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Cell phone-based biometric
identification,” in 2010 Fourth IEEE International Conference on Biometrics:
Theory, Applications and Systems (BTAS), IEEE, 2010, pp. 1–7.

[5] H.-Y. Chang, Z. Li, S. Das, et al., “A personalized pacing system for real-
time physical activity advising,” in 2017 IEEE/ACM International Confer-
ence on Connected Health: Applications, Systems and Engineering Technolo-
gies (CHASE), IEEE, 2017, pp. 266–267.

[6] Rich Caruana, “Multitask learning: A knowledge-based source of inductive
bias,” Proc. of the 10th Int’l Conference in Machine Learning, 266–267, Jul.
2017.

[7] X. Sun, H. Kashima, and N. Ueda, “Large-scale personalized human activity
recognition using online multitask learning,” IEEE Transactions on Knowledge
and Data Engineering, vol. 25, no. 11, pp. 2551–2563, 2012.

[8] Liu, Pengfei and Qiu, Xipeng and Huang, Xuanjing, “Recurrent neural net-
work for text classification with multi-task learning,” arXiv preprint arXiv:1605.05101,
2016.

[9] R. Chavarriaga, H. Sagha, A. Calatroni, et al., “The opportunity challenge: A
benchmark database for on-body sensor-based activity recognition,” Pattern
Recognition Letters, vol. 34, no. 15, pp. 2033–2042, 2013.

[10] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public
domain dataset for human activity recognition using smartphones.,” in Esann,
2013.

79

[11] B. Barshan and M. C. Yüksek, “Recognizing daily and sports activities in two
open source machine learning environments using body-worn sensor units,”
The Computer Journal, vol. 57, no. 11, pp. 1649–1667, 2014.

[12] Y. Hattori, S. Inoue, and G. Hirakawa, “A large scale gathering system for ac-
tivity data with mobile sensors,” in 2011 15th annual international symposium
on wearable computers, IEEE, 2011, pp. 97–100.

[13] M. De Lange, R. Aljundi, M. Masana, et al., “A continual learning survey:
Defying forgetting in classification tasks,” arXiv preprint arXiv:1909.08383,
2019.

[14] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, et al., “Overcoming catastrophic
forgetting in neural networks,” Proceedings of the national academy of sci-
ences, vol. 114, no. 13, pp. 3521–3526, 2017.

[15] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 40, no. 12, pp. 2935–2947,
2018.

[16] A. Rannen, R. Aljundi, M. B. Blaschko, and T. Tuytelaars, “Encoder based
lifelong learning,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 1320–1328.

[17] C. Nguyen, T. Hassner, M. Seeger, and C. Archambeau, “Leep: A new mea-
sure to evaluate transferability of learned representations,” in International
Conference on Machine Learning, PMLR, 2020, pp. 7294–7305.

[18] B. Barshan and M. C. Yüksek, “Recognizing daily and sports activities in two
open source machine learning environments using body-worn sensor units,”
The Computer Journal, vol. 57, no. 11, pp. 1649–1667, 2014.

[19] R. Chavarriaga, H. Sagha, A. Calatroni, et al., “The opportunity challenge: A
benchmark database for on-body sensor-based activity recognition,” Pattern
Recognition Letters, vol. 34, no. 15, pp. 2033–2042, 2013.

[20] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public
domain dataset for human activity recognition using smartphones.,” in Esann,
vol. 3, 2013, p. 3.

[21] T. Standley, A. Zamir, D. Chen, L. Guibas, J. Malik, and S. Savarese, “Which
tasks should be learned together in multi-task learning?” In International Con-
ference on Machine Learning, PMLR, 2020, pp. 9120–9132.

[22] B. Neyshabur, H. Sedghi, and C. Zhang, “What is being transferred in transfer
learning?” Advances in neural information processing systems, vol. 33, pp. 512–
523, 2020.

[23] X. Su, Y. Jiang, S. Guo, and F. Chen, “Task understanding from confusing
multi-task data,” in International Conference on Machine Learning, PMLR,
2020, pp. 9177–9186.

80

[24] K. You, Y. Liu, J. Wang, and M. Long, “Logme: Practical assessment of pre-
trained models for transfer learning,” in International Conference on Machine
Learning, PMLR, 2021, pp. 12 133–12 143.

[25] Y. Li, X. Jia, R. Sang, et al., “Ranking neural checkpoints,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 2663–2673.

[26] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from
tiny images,” 2009.

[27] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang, “Moment match-
ing for multi-source domain adaptation,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2019, pp. 1406–1415.

[28] T. M. Mitchell and T. M. Mitchell, Machine learning, 9. McGraw-hill New
York, 1997, vol. 1.

[29] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning,
4. Springer, 2006, vol. 4.

[30] S. Saha, A comprehensive guide to convolutional neural networks — the eli5
way, Available at https://towardsdatascience.com/a-comprehensive-

guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

(2018/12/15).

[31] S. Kostadinov,Understanding gru networks, Available at https://towardsdatascience.
com/understanding-gru-networks-2ef37df6c9be (2017/12/16).

[32] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions
on knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.

[33] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in 2009 IEEE conference on computer
vision and pattern recognition, Ieee, 2009, pp. 248–255.

[34] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[35] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Transfer
learning for time series classification,” in 2018 IEEE International Conference
on Big Data (Big Data), IEEE, 2018, pp. 1367–1376.

[36] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp. 41–75,
1997.

[37] Y. Zhang and D.-Y. Yeung, “A regularization approach to learning task rela-
tionships in multitask learning,” ACM Transactions on Knowledge Discovery
from Data (TKDD), vol. 8, no. 3, pp. 1–31, 2014.

[38] R. A. Mahmoud, H. Hajj, and F. N. Karameh, “A systematic approach to
multi-task learning from time-series data,” Applied Soft Computing, vol. 96,
p. 106 586, 2020.

81

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be
https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be

[39] X. Lu, Z. Yu, C. Liu, Y. Liu, H. Xiong, and B. Guo, “Inferring lifetime status
of point-of-interest: A multitask multiclass approach,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 14, no. 1, pp. 1–27, 2020.

[40] G. M. Weiss and J. W. Lockhart, “Identifying user traits by mining smart
phone accelerometer data,” in Proceedings of the fifth international workshop
on knowledge discovery from sensor data, ACM, 2011, pp. 61–69.

[41] R. Paradiso, A. Bianchi, K. Lau, and E. Scilingo, “Psyche: Personalised mon-
itoring systems for care in mental health,” in 2010 Annual International Con-
ference of the IEEE Engineering in Medicine and Biology, IEEE, 2010, pp. 3602–
3605.

[42] M. Qiu, P. Zhao, K. Zhang, et al., “A short-term rainfall prediction model
using multi-task convolutional neural networks,” in Data Mining (ICDM),
2017 IEEE International Conference on, IEEE, 2017, pp. 395–404.

[43] R.-G. Cirstea, D.-V. Micu, G.-M. Muresan, C. Guo, and B. Yang, “Correlated
time series forecasting using multi-task deep neural networks,” CIKM, 2018.

[44] K. Hara, K. Inoue, K. Takanashi, and T. Kawahara, “Prediction of turn-taking
using multitask learning with prediction of backchannels and fillers,” Listener,
vol. 162, p. 364, 2018.

[45] Harutyunyan, Hrayr and Khachatrian, Hrant and Kale, David C and Gal-
styan, Aram, “Multitask Learning and Benchmarking with Clinical Time Se-
ries Data,” arXiv preprint arXiv:1703.07771, 2017.

[46] Yang, Zhilin and Salakhutdinov, Ruslan and Cohen, William W, “Transfer
learning for sequence tagging with hierarchical recurrent networks,” arXiv
preprint arXiv:1703.06345, 2017.

[47] Tang, Zhiyuan and Li, Lantian and Wang, Dong, Multi-task recurrent model
for speech and speaker recognition. IEEE, 2016, 1–4.

[48] M. M. Hassan, M. Z. Uddin, A. Mohamed, and A. Almogren, “A robust hu-
man activity recognition system using smartphone sensors and deep learning,”
Future Generation Computer Systems, vol. 81, pp. 307–313, 2018.

[49] S. A. Rokni, M. Nourollahi, and H. Ghasemzadeh, “Personalized human activ-
ity recognition using convolutional neural networks,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[50] A. Ignatov, “Real-time human activity recognition from accelerometer data us-
ing convolutional neural networks,” Applied Soft Computing, vol. 62, pp. 915–
922, 2018.

[51] A. Robins, “Catastrophic forgetting, rehearsal and pseudorehearsal,” Connec-
tion Science, vol. 7, no. 2, pp. 123–146, 1995.

[52] I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative adversarial
nets,” in Advances in neural information processing systems, 2014, pp. 2672–
2680.

82

[53] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep gen-
erative replay,” in Advances in Neural Information Processing Systems, 2017,
pp. 2990–2999.

[54] J. Xu and Z. Zhu, “Reinforced continual learning,” in Advances in Neural
Information Processing Systems, 2018, pp. 899–908.

[55] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, et al., “Progressive neural net-
works,” arXiv preprint arXiv:1606.04671, 2016.

[56] C. Fernando, D. Banarse, C. Blundell, et al., “Pathnet: Evolution channels
gradient descent in super neural networks,” arXiv preprint arXiv:1701.08734,
2017.

[57] J. Serra, D. Suris, M. Miron, and A. Karatzoglou, “Overcoming catastrophic
forgetting with hard attention to the task,” arXiv preprint arXiv:1801.01423,
2018.

[58] B. Pfülb and A. Gepperth, “A comprehensive, application-oriented study of
catastrophic forgetting in dnns,” arXiv preprint arXiv:1905.08101, 2019.

[59] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic
intelligence,” Proceedings of machine learning research, vol. 70, p. 3987, 2017.

[60] S. Farquhar and Y. Gal, “Towards robust evaluations of continual learning,”
arXiv preprint arXiv:1805.09733, 2018.

[61] Q. Wang, L. Zhan, P. Thompson, and J. Zhou, “Multimodal learning with
incomplete modalities by knowledge distillation,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2020, pp. 1828–1838.

[62] B. Neyshabur, H. Sedghi, and C. Zhang, “What is being transferred in transfer
learning?” Advances in neural information processing systems, vol. 33, pp. 512–
523, 2020.

[63] T. Standley, A. Zamir, D. Chen, L. Guibas, J. Malik, and S. Savarese, “Which
tasks should be learned together in multi-task learning?” In International Con-
ference on Machine Learning, PMLR, 2020, pp. 9120–9132.

[64] X. Su, Y. Jiang, S. Guo, and F. Chen, “Task understanding from confusing
multi-task data,” in International Conference on Machine Learning, PMLR,
2020, pp. 9177–9186.

[65] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn, “Gradient
surgery for multi-task learning,” Advances in Neural Information Processing
Systems, vol. 33, pp. 5824–5836, 2020.

[66] A. R. Zamir, A. Sax, W. Shen, L. J. Guibas, J. Malik, and S. Savarese,
“Taskonomy: Disentangling task transfer learning,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 3712–3722.

[67] B. Lindemann, T. Müller, H. Vietz, N. Jazdi, and M. Weyrich, “A survey on
long short-term memory networks for time series prediction,” Procedia CIRP,
vol. 99, pp. 650–655, 2021.

83

[68] J. Yang, M. N. Nguyen, P. P. San, X. Li, and S. Krishnaswamy, “Deep con-
volutional neural networks on multichannel time series for human activity
recognition.,” in Ijcai, Buenos Aires, Argentina, vol. 15, 2015, pp. 3995–4001.

[69] C. A. Ronao and S.-B. Cho, “Human activity recognition with smartphone
sensors using deep learning neural networks,” Expert systems with applications,
vol. 59, pp. 235–244, 2016.

[70] R. D. Chambers and N. C. Yoder, “Filternet: A many-to-many deep learning
architecture for time series classification,” Sensors, vol. 20, no. 9, p. 2498,
2020.

[71] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher, “Deepsense: A unified
deep learning framework for time-series mobile sensing data processing,” in
Proceedings of the 26th International Conference on World Wide Web, 2017,
pp. 351–360.

[72] J. Wang, T. Sun, B. Liu, Y. Cao, and H. Zhu, “Clvsa: A convolutional lstm
based variational sequence-to-sequence model with attention for predicting
trends of financial markets,” arXiv preprint arXiv:2104.04041, 2021.

[73] T. Patterson, N. Khan, S. McClean, et al., “Sensor-based change detection for
timely solicitation of user engagement,” IEEE Transactions on Mobile Com-
puting, vol. 16, no. 10, pp. 2889–2900, 2017.

[74] Rich Caruana, “Multitask Learning,” Machine Learning, vol. 28, no. 1, 41–75,
1997.

[75] N. Y. Hammerla, S. Halloran, and T. Plötz, “Deep, convolutional, and recur-
rent models for human activity recognition using wearables,” arXiv preprint
arXiv:1604.08880, 2016.

[76] X. Fan, H. Zhang, C. Leung, and C. Miao, “Comparative study of machine
learning algorithms for activity recognition with data sequence in home-like
environment,” in 2016 IEEE International Conference on Multisensor Fusion
and Integration for Intelligent Systems (MFI), IEEE, 2016, pp. 168–173.

[77] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555,
2014.

[78] W. Min, B. Mott, J. Rowe, and J. Lester, “Deep lstm-based goal recognition
models for open-world digital games,” in Workshops at the Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

[79] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[80] H. Sagha, S. T. Digumarti, J. d. R. Millán, et al., “Benchmarking classification
techniques using the opportunity human activity dataset,” in 2011 IEEE Inter-
national Conference on Systems, Man, and Cybernetics, IEEE, 2011, pp. 36–
40.

84

[81] R. Saeedi, K. Sasani, S. Norgaard, and A. H. Gebremedhin, “Personalized hu-
man activity recognition using wearables: A manifold learning-based knowl-
edge transfer,” in 2018 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), IEEE, 2018, pp. 1193–
1196.

[82] J. Cao, W. Li, C. Ma, and Z. Tao, “Optimizing multi-sensor deployment via en-
semble pruning for wearable activity recognition,” Information Fusion, vol. 41,
pp. 68–79, 2018.

[83] R. A. Mahmoud and H. Hajj, “Multi-objective learning to overcome catas-
trophic forgetting in time-series applications,” ACM Transactions on Knowl-
edge Discovery from Data (TKDD), 2022.

[84] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural net-
work. nips deep learning workshop,” arXiv preprint arXiv:1503.02531, 2014.

[85] Z. Gao, D. Liu, K. Huang, and Y. Huang, “Context-aware human activity and
smartphone position-mining with motion sensors,” Remote Sensing, vol. 11,
no. 21, p. 2531, 2019.

[86] A. Ng et al., “Sparse autoencoder,” CS294A Lecture notes, vol. 72, no. 2011,
pp. 1–19, 2011.

[87] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for sensor-
based activity recognition: A survey,” Pattern Recognition Letters, vol. 119,
pp. 3–11, 2019.

[88] X. Wang and J. G. Schneider, “Generalization bounds for transfer learning
under model shift.,” in UAI, 2015, pp. 922–931.

[89] M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30,
no. 1/2, pp. 81–93, 1938.

[90] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[91] A. T. Tran, C. V. Nguyen, and T. Hassner, “Transferability and hardness of
supervised classification tasks,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 1395–1405.

[92] Y. Bao, Y. Li, S.-L. Huang, et al., “An information-theoretic approach to
transferability in task transfer learning,” in 2019 IEEE International Confer-
ence on Image Processing (ICIP), IEEE, 2019, pp. 2309–2313.

[93] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes (voc) challenge,” International Journal of
Computer Vision, vol. 88, no. 2, pp. 303–338, Jun. 2010.

85

	ACKNOWLEDGEMENTS
	ABSTRACT
	ABBREVIATIONS
	Introduction
	Research Objective 1: Multitask Learning
	Research Objective 2: Lifelong Learning
	Research Objective 3: Transferability Measures
	Dissertation Contributions
	Dissertation Outline

	Background
	Time-series Data
	Machine Learning
	Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks

	Transfer Learning

	Literature Review
	Traditional Transfer Learning
	Multitask Learning
	Single-task Personalized Modeling Approaches
	Multitask Deep Learning Approaches

	Catastrophic Forgetting in Neural Networks
	Replay Methods
	Parameter Isolation Methods
	Regularization-based Methods

	Task Transferability Estimation
	Empirical Methods
	Analytical Methods

	Time-series Neural Network Architectures

	Systematic Approach to Designing Multitask Learning Models for Time-series Data
	Overview
	Problem Definition
	Methods
	Multitask Learning Framework
	Application of MTL Framework in Deep Learning for Time-series

	Data & Experimental Setup
	Datasets
	Experimental Setup

	Results & Discussion
	Comparison against Baseline Models
	Comparison against state-of-the-art

	Broader Applications

	Multi-objective Learning to Diminish Catastrophic Forgetting in Lifelong Transfer Learning
	Overview
	Problem Definition
	Proposed Methods
	Catastrophic Forgetting Minimization
	Robustness with End-to-End Representation Learning
	Time-series Data Architecture

	Data & Experimental Setup
	Datasets
	Experimental Setup

	Results & Discussion
	Single New Task
	Multiple New Tasks
	Ablation Analysis

	Broader Applications

	Measures for Transferability Estimation of Pre-trained Models
	Overview
	Problem Definition
	Proposed Methods
	Log Expected Empirical Prediction Measure
	Transferability with Multi-granular Representation Extraction
	Interpretable Attention Networks for Learning Representation Importance

	Data & Experimental Setup
	Implementation Details
	Datasets
	Pre-trained Models
	Transfer Learning Algorithms
	Source-Target Settings
	Baselines

	Results & Discussion
	Transferability Measures vs. Transfer Accuracy
	Evaluation under the Cross-domain Setting
	Evaluation against Varying Design Parameters
	Interpretation of iLEEP
	Applications of iLEEP and NLEEP+

	Broader Applications

	Conclusion & Future Directions
	Multitask Learning Models for Time-series Data
	Summary
	Open Research Directions

	Catastrophic Forgetting in Transfer Learning
	Summary
	Open Research Directions

	Measures of Transferability Estimation
	Summary
	Open Research Directions

	Data Statistics of Chapter 5 Experiments
	Bibliography

