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AN ABSTRACT FOR THE THESIS OF 
 
 

Najat Bdeir for: Master of Science 
                          Major: Microbiology and Immunology 

 
Title:  In vivo characterization of the underlying immunologic mechanisms of disease 
modulation in the context of Toxoplasma gondii and influenza A virus co-infections 
 

Toxoplasma gondii (T. gondii), an obligate eukaryotic intracellular protozoan 
parasite, is the causative agent of toxoplasmosis. In immunocompetent individuals, T. 
gondii infections are usually asymptomatic; however, some patients may present with 
flu-like symptoms and sometimes lymphadenophathy. Contrarily, in 
immunocompromised patients, the infection may be life threatening. Another spectrum 
of the disease is congenital toxoplasmosis, which may lead to abortion, or severe fetal 
outcomes including mental retardation, hydrocephaly, microcephaly, chorioretinitis and 
impaired vision in newborn infants.  

Influenza A virus (IAV) is a major cause of acute respiratory tract infections in 
humans, which occasionally cause pandemics. Severe influenza infections are 
characterized by complications like pneumonia, encephalitis, and secondary bacterial 
pneumonia. Infection with T. gondii has been shown to modulate the outcomes of 
disease in the context of infection with other pathogens like Helicobacter felis, 
Trichinalla spiralis, and Mycobacterium avium. However, no studies investigated the 
disease outcome and underlying immunologic mechanisms of IAV infection in the 
context of acute toxoplasmosis. Therefore, the aim of this study is to characterize the 
effect of co-infections and the underlying immune response with these two pathogens in 
mice.  

Six-to-eight weeks old female BALB/c mice were intraperitoneally infected 
with tachyzoites of a type II T. gondii strain followed by the intranasal inoculation with 
IAV or vice versa. Mouse survival and weight change were monitored over the course 
of three weeks of infection. Acute toxoplasmosis was verified by western blot. Real 
time PCR and plaque assay (for IAV) were used for quantification of parasitic and viral 
loads within the lungs and peritoneal lavage, respectively, during the acute 
toxoplasmosis stage. In addition, quantitative real time PCR was used to quantify 
expression of pro and anti-inflammatory cytokines in the in the spleen and lungs of 
singly infected and co-infected mice on days 2 and 5 after IAV infection. Last but not 
least, the impact of the co-infections on the progression to chronic toxoplasmosis was 
assessed by quantifying the bradyzoite marker (BAG-1) in the brains of mice singly 
infected with the parasite or in the context of co-infection. To the best of our 
knowledge, no study investigated the outcome and immune mechanism involved in the 
case of a pre-existing acute T. gondii infection followed by a subsequence infection with 
IAV. Our results indicate that an acute infection with T. gondii followed by IAV 
infection few days later results in an aggravated disease outcome. Co-infected mice also 
displayed reduction of spleen IFN-γ, TNF-α, and IL-6, which led to attenuated 
tachyzoite clearance and delayed progression into chronic toxoplasmosis.  
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CHAPTER I 

INTRODUCTION 
	
	

A. Toxoplasma gondii 

1. Origins and history  
 

Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite 

discovered by Nicolle and Manceaux in North Africa (Nicolle and Manceaux 1908) and 

by Splendore in Brazil (Splendore 1908). The genus name is derived from the Greek 

word: toxon, meaning “arc” or “bow”, referring to the crescent shape of the organism, 

and the latter designation: plasma, meaning “life”.  

In 1937, Albers Sabin and Peter Olitsky established the first in vitro culture 

system of T. gondii and hypothesized transmission through ingestion of contaminated 

meat by the parasite (Sabin and Olitsky 1937). In 1939, the parasite was recognized as a 

human pathogen and the cause of a congenital disease (Wolf, Cowen, and Paige 1939). 

Two years later, acquired toxoplasmosis was described in a six-year-old boy who was 

admitted to the hospital for a headache after being hit with a baseball bat. The boy 

developed an enlarged spleen, neurological abnormalities, lymphadenopathy, and 

eventually died after thirty days of illness (Sabin 1941). Numerous reports described the 

identification of parasitic tissue cysts in brain autopsy slides (Kean and Grocott 1947) 

leading to the development of the Dye- test by Sabin and Feldman for the diagnosis of 

T. gondii (Sabin and Feldman 1948).  
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2. Taxonomy  
 

 T. gondii belongs to the phylum Apicomplexa, which includes many 

pathogenic protozoa of human and animals including Plasmodium spp, 

Cryptosporidium spp, and Eimeria spp. T. gondii is considered the pathogen of choice 

for studying the phylum apicomplexa due to its easy propagation and culture, as well as 

the efficiency in its genetic manipulation (knock-out, conditional knock-out, crispr 

cas9….) (Kim and Weiss 2004; Shen et al. 2017). 

T. gondii is the only species in the Toxoplasma genus and belongs to the family 

Sarcocystidae in the class coccidian (Tenter and Johnson 1997). All members of 

coccidia share an obligate intracellular nature and a conserved way of invasion actively 

involving the apical complex of these parasites (Katris et al. 2014). This class of 

intracellular pathogens also has the ability to infect a wide spectrum of hosts (Dubey 

2009). T. gondii is prevalent in many species and has a wide range of intermediate hosts 

(Lambert 2009). Figure 1 depicts the classification of some important apicomplexan 

parasites.  
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Figure 1. Classification of some of the most important apicomplexan parasites. 
Toxoplasma is highlighted in a red box. Adapted from 
http://www.ncbi.nlm.nih.gov/Taxonomy  
 

3. Stages of T. gondii life cycle 
 

The life cycle of T. gondii includes three infective stages: 1) the tachyzoite, 

which is the rapidly invasive and replicating stage within the intermediate host (Frenkel 

1973); 2) the bradyzoite, which is the slowly dividing stage in the tissue cysts (Frenkel 

1973); and 3) the sporozoite, which is the environmental stage found inside oocysts 

shed in felines’ feces and responsible for the transmission of the infection from the 

definitive host to the broad range of intermediate hosts (Dubey et al. 1997; Speer and 

Dubey 1998). An overview on each stage will be summarized below. 
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a. The tachyzoite 
 

 The tachyzoite is the most extensively studied stage of T. gondii. This invasive 

stage is crescent shaped and is approximately 2 x 7 µm in size (Dubey, Lindsay, and 

Speer 1998). Structurally, tachyzoites consist of various organelles and inclusion bodies 

including polar rings, rhoptries, apical rings, micronemes, endoplasmic reticulum, 

mitochondria, ribosomes and others (Sheffield and Melton 1968; de Souza and Souto-

Padrón 1978) (Figure 2a). Tachyzoites have the ability to penetrate any vertebrate 

nucleated cell and become incased within a parasitophorous membrane. Once within the 

vacuole, they divide by endodyogeny forming rosettes (Figure 2b) and continue to 

replicate until the host cell ruptures, thus releasing the parasites, which consequently 

infect neighboring cells (Goldman, Carver, and Sulzer 1958).  

  

   

Figure 2: Structure and organization of T. gondii tachyzoites. (A) Electron micrograph 
of a T. gondii tachyzoite in the parasitophorous vacuole (pv) of a human foreskin 
fibroblast. Note A, apicoplast; C, conoid; DG, dense granule; ER, endoplasmic retic- 
ulum; G, Golgi body; HCN, host cell nucleus; MN, micronemes; Mi, mitochondria; N, 
nucleus; NU, nucleolus; R, rhoptry (Clicher Jean-Francois Dubremetz). (B)| Rosette of 8 
tachyzoites inside the parasitophorous vacuole (Clicher Jean-Francois Dubremetz) 
 

A B 
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b. The bradyzoite 

  
Under the tight control of the host immune system, the rapidly dividing 

tachyzoites transform into slowly replicating bradyzoites that mostly form inside cysts 

within the brain and skeletal muscles of the intermediate host (Figure 3a) (Dubey, 

Lindsay, and Speer 1998). The bradyzoite stage is the hallmark of the chronic phase of 

toxoplasmosis and lasts for the whole lifespan in immunocompetent hosts. Bradyzoite 

cysts range in size from 50 µm to 70 µm and may contain up to 2000 bradyzoites that 

are, as the tachyzoites, crescent shaped but more rounded and approximately 1.5 µm x 7 

µm in size (Dubey, Lindsay, and Speer 1998; Fortier et al. 1996). Structurally, 

bradyzoites are more slender than tachyzoites, have a posteriorly located nucleus, and 

several amylopectin granules |(Figure 3b) (Fortier et al. 1996).  
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Figure 3: The structure and organization of T. gondii bradyzoites. (A) Transmission 
electron micrograph of a tissue cyst in the brain of a mouse with chronic toxoplasmosis. 
A, cyst wall; B, bradyzoites  (Cenci-Goga et al. 2011) (B) Electron micrograph of a T. 
gondii bradyzoite Am, amylopectin granule; Ce, centrioles; Co, conoid; Dg, electron-
dense granule; Ga, Golgi adjunct (apicoplast); Go, Golgi complex; Im, inner membrane 
complex; Mi, mitochondrion; Mn, microneme; Nu nucleus; Pm, plasmalemma; Rh, 
rhoptry.(Dubey, Lindsay, and Speer 1998) 

 

c. The sporozoite 
 

   T. gondii   sporozoites are the infective stages presenting inside sporulated 

A 

B 
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oocysts that are shed in cat feces. These forms are responsible for the transmission of 

the parasite to an intermediate host upon ingestion of contaminated food or water. 

Sporozoites are 2 by 6 to 8 μm in size with a subterminal nucleus. Structurally, 

sporozoites are similar to tachyzoites, but are more abundant in micronemes, rhoptries, 

and amylopectin granules. 

4. Transmission and life cycle 
 

 Intermediate hosts, including humans, become infected with T. gondii through 

1) ingestion of unwashed vegetables (O. Liesenfeld 1999), or meat products 

contaminated with oocysts or bradyzoite cysts, respectively (Jacobs, Remington, and 

Melton 1960; Dubey, Lindsay, and Speer 1998, 199), 2) congenitally by vertical 

transmission (Wolf, Cowen, and Paige 1939), and 3) rarely through blood transfusion 

(Herwaldt 2001)  and organ transplantation (Ryning et al. 1979). The complete life 

cycle of T. gondii involves a sexual cycle that is restricted to the feline gut epithelium 

and an asexual cycle that can occur in a broad spectrum of intermediate hosts (Jackson 

and Hutchison 1989)(Figure 4).  
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Figure 4: The life cycle of T. gondii. Sporozoites represent the infectious stages of T. 
gondii. They are contained in sporulated oocysts shed in cat feces. Sporulated oocysts 
are accidentally ingested mainly in contaminated food, by an intermediate host. Vertical 
transmission may also occur from infected mother to fetus (Dubey, Lindsay, and Speer 
1998)  

 

a. The sexual cycle 
 

The sexual cycle of T. gondii begins when a domestic cat or any other member 

of the Filedae family ingests bradyzoite cysts from an infected prey, which has acquired 

T. gondii through accidental ingestion of oocysts from the environment. Upon ingestion, 

bradyzoites are released leading to the dissociation of the cyst wall by the action of 

gastric proteolytic enzymes. Within approximately two days, bradyzoites infect 

enterocytes within the ileum of the definitive host and undergo a number of asexual 

multiplications leading to the formation of merozoites and schizonts (Frenkel 1973; 

Dubey, Lindsay, and Speer 1998). Following this event, micro and macrogametes are 

formed and fuse by gametogony leading to the formation of an oocyst, which is released 
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from the intestinal epithelium of the definitive host by disruption of the enterocyte wall. 

The unsporulated oocyst excreted within cat feces undergoes maturation and sporulation 

under the appropriate temperature and humidity in the external environment. As a result, 

an infective sporulated oocyst containing two sporocysts thatinclude four sporozoites 

each, will be formed (Frenkel 1973; Dubey 1998). 

b. The asexual cycle  
 

The asexual or intermediate life cycle begins upon the ingestion of sporulated 

oocysts in contaminated food or water. Digestive enzymes within the gastrointestinal 

tract mediate the release of sporozoites, which then invade the intestinal epithelium and 

differentiate into the rapidly dividing tachyzoite stage (Dubey 1997). The latter can 

rapidly replicate by endodyogeny within any nucleated cell and disseminate throughout 

the intermediate host tissues (Sheffield and Melton 1968). Approximately 5 days post- 

ingestion of oocysts, tachyzoites begin to differentiate into bradyzoites under the tight 

control of the host immune system. This leads to the formation of cysts, predominantly 

within the central nervous system and skeletal muscles (Frenkel 1973). Bradyzoite cysts 

within the brain are known to appear as early as 2 weeks post T. gondii infection, and 

reach their maximum peak within 4 weeks subsequent to infection (Chew et al. 2012). 

These bradyzoites may then differentiate back to tachyzoites and initiate acute infection 

within the new intermediate host, thus completing the asexual cycle (Dubey 1997).  

5. Genetics of T. gondii  
 

Despite the opportunity for genetic recombination in the feline host, T. gondii 

strains differ by 1% or less at the DNA sequence level (Saeij, Boyle, and Boothroyd 

2005). T. gondii presents eight strains according to their virulence. However, the most 

commonly used classification was proposed by Howe and Sibley who described three 
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clonal lineages known as types I, II, and III, based on restriction fragment length 

polymorphism (RFLP) analysis of the polymorphic surface antigen 2 (SAG2) (Howe et 

al. 1997; Sibley and Boothroyd 1992).  

These strains display a different lethal dose LD50 (which corresponds to the 

dose of parasites needed to kill 50% of infected animals) in mouse models. Accordingly, 

these strains elicit different host immune responses (Saeij, Boyle, and Boothroyd 2005). 

Type I strains are the most virulent with an LD50 =1 (Sibley and Boothroyd 1992), 

where one parasite is sufficient to generate high parasitic loads and a strong Th1 

response (Melo, Jensen, and Saeij 2011).  

In contrast type II strains incur intermediate virulence with an LD50 ranging 

between 102-103) and have been reported as the most commonly isolated type from 

humans worldwide (Sibley and Boothroyd 1992) .  

Type III T. gondii strains are associated with the lowest virulence with an 

LD50= 1>105 parasites (Saeij, Boyle, and Boothroyd 2005).  These strains are largely 

found in animals and may occasionally be associated with human toxoplasmosis (Howe 

et al. 1997). 

6. Clinical manifestations and complications 
 

In immunocompetent individuals, T. gondii infections are usually asymptomatic 

although some patients might have mild headaches, myalgia, and lymphadenopathy 

(Dubey, Prakask, and Beattie. 1988). Contrarily, in immunocompromised patients, the 

infection may be life threatening, whereby symptoms include apathy, dementia, motor 

seizures, ataxia, hemiparesis, coma, and ultimately leading to death if not treated (Luft 

and Remington 1992). Another spectrum of the disease is congenital toxoplasmosis, 
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where the severity of clinical outcome is inversely related to gestational age in primo 

infected women. T. gondii infection during the first trimester results in spontaneous 

abortion, while infection during later trimesters may result in chorioretinitis, intracranial 

calcifications, and hydrocephalus (McAuley 2014). 

7. T. gondii prevalence 
 

Toxoplasmosis in one of the most common worldwide zoonosis. The parasite is 

estimated to affect a third of the world’s population as indicated by the presence of 

specific IgG (Montoya 2002; Wam et al. 2016). It is worth noting that seroprevalence 

varies between countries and even within the same country depending on diet, social 

and cultural habits, geographic factors, routes of transmission, and climate 

(Studenicová, Bencaiová, and Holková 2006; Wam et al. 2016). The highest prevalence 

has been reported in warm and humid areas in tropical Africa and Latin America 

(Pappas, Roussos, and Falagas 2009). Higher seroprevalence rates in certain 

communities may be attributed to the consumption of raw meat products (Cook et al. 

2000).  

Furthermore, studies have shown seroprevalence to be more prominent in lower 

socioeconomic groups than in the middle and upper class groups. Higher socioeconomic 

communities have improved hygienic conditions, filtered water supplies, and clean 

feeding sources for cats. These factors contribute to a decrease in the T. gondii 

seroprevalence in such communities (Robert-Gangneux and Dardé 2012).  

A retrospective study conducted in 2010 on sera from hospitals and laboratories 

within Beirut revealed that the seroprevalence of T. gondii IgG antibodies ranged 

between 55 and 67%, whereas IgM antibodies were reported in nearly 7% of the 
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screened samples (Bouhamdan et al. 2010). This indicates a significant spread of the 

parasite among the Lebanese population and a high incidence of acute infections.  

 

8. The immune response to T. gondii 

a. Innate immunity 
 

Primarily, the host immune response to T. gondii compromises an interaction 

between the profilin-like protein (TgPRF) on the surface of the parasite with TLR-11 on 

dendritic cells, prompting the production of IL-12 by the activation of MyD88 pathway 

(Scanga et al. 2002). A deficiency in the MyD88 adapter protein results in complete loss 

of resistance to acute infection in mice systemically or orally infected with T. gondii, 

likely due to the dysfunctional production of IL-12 (Sukhumavasi et al. 2008; Scanga et 

al. 2002, 88). However, there are strain dependent differences in MyD88 dependence 

(Hunter and Sibley 2012), whereby both type I and III parasite strains induce STAT3/6 

constitutive activation and MyD88-dependent IL-12 production (Melo, Jensen, and 

Saeij 2011). In contrast, type II parasite strains stimulate NF-kB translocation and 

MyD88-independent IL-12 production by the interaction of TNF receptor associated 

factor 6 (TRAF-6) with IL-1R associated kinase 1 (IRAK1) to mediate signaling 

downstream of MyD88 (Rosowski et al. 2011).      

Monocytes or macrophages also induce the production of IL-12 as well as TNF-

α, by the interaction of glycosylphosphatidylinositol (GPI) anchored proteins with TLR-

2 and TLR-4 (Hunter and Sibley 2012) . The deletion of individual TLRs has modest 

effects on host susceptibility to infection, implying that multiple TLRs are involved in 

T. gondii immune recognition (Ricardo T. Gazzinelli and Denkers 2006).  
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It has been revealed that the central control mechanism for T. gondii growth 

requires IL-12 stimulation of adaptive CD4+ and CD8+ T lymphocytes, as well as innate 

type natural killer cells (NK) to release IFN-γ (R T Gazzinelli et al. 1993).   

IFN-γ stimulates the production of reactive oxygen and nitrogen intermediates, 

which lead to damage and growth impediment of the parasite within macrophages 

(Adams et al. 1990). Studies have also demonstrated the presence of an IFN-γ 

dependent, inducible nitric oxide (iNOS) independent mechanism for resistance against 

toxoplasmosis. This pathway relies on the IFN-γ dependent activation of immune 

related GTPases (IRGs), which leads to clearance of T. gondii from multiple cell types 

(Scharton-Kersten et al. 1997). 

b. Adaptive immunity  
 

Processes leading to the stimulation of adaptive immunity against T. gondii are 

less understood than mechanisms activating the innate immunity. Within the 

parasitophorous vacuole, T. gondii is shielded from mechanisms of antigen processing 

and presentation (Blanchard and Shastri 2010). Moreover, cells harboring the parasite 

have been demonstrated to display reduced expression of major histocompatibility 

complex (MHC) molecules (C. G. Lüder et al. 1998; C. G. K. Lüder et al. 2003; Hunter 

and Sibley 2012). Despite these evasion mechanisms, infection with type II T. gondii 

induces the activation of dendritic cells and a strong CD8+ T cell response, while type I 

parasites induce a weaker response (Tait et al. 2010). Prominent antigens presented on 

MHC class I molecules include dense granule GRA6, GRA4, GRA7, GRA3, GRA2 as 

well as rhoptry protein ROP7, ROP5, ROP16, and others (Hunter and Sibley 2012; 

Grover et al. 2014; Cao et al. 2015). These antigens are polymorphic, which might 

explain the strain-dependent effects on adaptive immunity. Antibodies mediate 
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resistance to secondary T. gondii infection (Sayles, Gibson, and Johnson 2000; Dupont, 

Christian, and Hunter 2012) and assist in clearance of parasites during acute infection. 

IgM initially acts on egressing tachyzoites by blocking cell invasion, mediating 

agglutination and enabling complement activation (Dupont, Christian, and Hunter 

2012).  

b. Immune response in T. gondii type II 
 
It has been well demonstrated that different types of T. gondii induce diverse 

immunological responses (Melo, Jensen, and Saeij 2011). Infection with type II 

parasites activates an early immune response leading to the massive production of pro-

inflammatory cytokines (e.g. IL-12, IFN-γ, …) early after infection. Cytokines produced 

by the early response prime the immune environment towards a Th1 type response and 

activate several T cell subtypes including NK, Th17, and Th1 cells (Figure 5) (Denkers 

and Gazzinelli 1998) .  

Genetic mapping identified a dense granule protein known as GRA15, which 

activates the NF-kB pathway independently of MyD88, leading to its translocation into 

the nucleus, and the eventual massive production of IL-12 and pro-inflammatory 

cytokines such as IL-1 β, IL-18, and IL-17 in type II strains (Rosowski et al. 2011). IL-

12 activates NK and T cells to produce IFN- γ, which is involved in the production of 

reactive oxygen and nitrogen intermediates, destruction of the PV, and autophagy 

(Melo, Jensen, and Saeij 2011).  
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Figure 5: The immune response to T. gondii type II (Melo, Jensen, and Saeij 2011). Type II 
T. gondii secrete different proteins to modulate the host immune responses including 
GRA15, GRA 14, ROP18, ROP5, leading to early activation of NF-κB in the infected 
cells and massive production of pro-inflammatory cytokines early after infection.  
 

B. The influenza virus 
 

1. Classification and antigenic types  

 
The influenza virus is a negative sense, single stranded, and segmented RNA 

virus belonging to the family of Orthomyxoviridae. Four influenza types (A-D) have 

been identified based on the nucleoprotein (NP) and matrix (M1) proteins (Webster et 

al. 1992; Bouvier and Palese 2008; Noda and Kawaoka 2010). These types have 

different degrees of pathogenicity, host specificity, and antigenic variation. Influenza A 

viruses (IAVs) have the broadest host range and infect a variety of animals including 

humans, pigs, and birds. Aquatic birds are considered the source for all IAVs in other 

species (Webster et al. 1992).  Influenza B viruses infect humans and occasionally seals 

(Baigent and McCauley 2003; Noda and Kawaoka 2010), while influenza C viruses 

benignly infect humans, pigs and dogs (Yuanji (Kuo Yuanchi) et al. 1983; Noda and 

Kawaoka 2010). Influenza D has been recently identified to infect cattle and pigs 

(CITE). 

IAV is further classified into subtypes based on the genetic and structural 

properties of its surface glycoproteins: the hemagglutinin (HA) and the neuraminidase 
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(NA). HA and NA exist in 16 and 9 genetically distinct subtypes, respectively. 

However, only three HA subtypes  (H1, H2, and H3) and 2 NA (N1 and N2) have 

caused human epidemics (Noda and Kawaoka 2010; Bouvier and Palese 2008; Fouchier 

et al. 2005).  

2. Virion structure and organization 
 

Influenza viruses are pleomorphic and may either be spherical (100 nm in 

diameter) (Stanley 1944; Noda and Kawaoka 2010; Bouvier and Palese 2008) (Figure 6, 

or filamentous with a length often beyond 300 nm (Chu, Dawson, and Elford 1949).  

The lipid envelope of IAV is traversed by tetrameric matrix protein (M2) ion channels 

and studded with HA and NA glycoprotein spikes with a one to four ratio; this envelope 

overlays a matrix (M1) protein that encloses the virion core (Noda and Kawaoka 2010; 

Bouvier and Palese 2008) (Figure 6).  

Internal to the M1 matrix, each of the 8 influenza RNA segments is associated 

to multiple copies of the arginine rich protein NP and the viral transcriptase consisting 

of three RNA polymerase components PB1, PB2, and PA to form the 

ribonucleocomplex (RNP) (Table 1). IAV genome encodes for at least 16 known 

proteins (Table 1) (Noda and Kawaoka 2010; Bouvier and Palese 2008; Cheung and 

Poon 2007). 
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Figure 6: Structure and composition of the influenza A virus (Shi et al. 2014) IAVs are 
enveloped, single-stranded, RNA viruses that contain eight gene segments that encode 
16 proteins. The non-structural segment encodes the nuclear export protein NS2 and the 
host antiviral response antagonist NS1; the matrix segment encodes the matrix protein 
M1, the ion channel protein M2; the hemagglutinin (HA) segment encodes the receptor-
binding glycoprotein HA; and the neuraminidase (NA) segment encodes NA. In 
addition, nucleoprotein (NP) and the components of the RNA-dependent RNA 
polymerase complex (PB1, PB2 and PA) are expressed from their respective genome 
segments. 
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Table 1: Summary for the roles of the major viral proteins during the life cycle of the 
IAV with their respective coding genes (Adapted from: Insight into Influenza Viruses of 
Animals and Humans | Sanjay Kapoor | Springer 2017) 
 
 

 

 
 

Genomic 

segment  

Protein  Role in the replication cycle 

4 HA Surface glycoprotein, receptor mediated 
endocytosis 

6 NA Surface glycoprotein, viral release 

5 NP RNA binding protein, regulation of RNP import 
into the nucleus for replication and transcription  

3 PA RNA Polymerase subunit, endonuclease activity  
Regulation of RNP import into the nucleus for 
replication and transcription 

2 PB1 

 

PB1-F2 

RNA polymerase subunit, endonuclease activity 
Regulation of RNP import into the nucleus for 
replication and transcription 
 
Involved in influenza-induced cell death 

1 PB2 RNA polymerase subunit, mRNA cap recognition  
Regulation of RNP import into the nucleus for 
replication and transcription 

7 M1 

M2 

Matrix protein, export of vRNP, assembly and 
budding  
Proton selective ion channel, endosomal fusion of 
viral envelope with endosomal envelope, 
assembly, and budding. 

8 NS1 

NS2/NEP 

Interferon antagonist protein, interacts with 
various host factors  
Nuclear export of vRNPs, control for accumulation 
of vRNA and mRNA 
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Figure 7: Electron micrograph of influenza A virus. A characteristic feature of the virus 
is its outermost layer of spike-like projections. These are the two viral surface 
glycoproteins, hemagglutinin (HA) and neuraminidase (NA), which are embedded in 
the lipid membrane of the viral envelope (“CDC H1N1 Flu | Images of the H1N1 
Influenza Virus” 2017).  
 

3. The replication cycle 
 

Recognition of sialic acid residues on the host cell surface by viral HA 

glycoproteins is the first step for virus entry (Figure 8). Following attachment, virus 

particles are uptake into the endosomes. Low pH within the endosome triggers a 

conformational changes of the HA precursor polypeptide (HA0), exposing a fusion 

peptide that mediates merging of the endosomal membrane with the viral envelope. The 

drop in the endosomal pH also triggers the opening of the M2 ion-channel on the virus 

envelope. The influx of hydrogen ions through M2 further acidifies the viral core and 

disrupts interactions between NRPs and M1 matrix proteins (X. Sun and Whittaker 

2013).   

Subsequent to membrane fusion, a pore is formed, allowing the release of viral 
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RNPs into the host cell cytoplasm. Viral protein nuclear localization signals (NLSs) 

traffic the released RNPs into the host cell nucleus, where synthesis of viral mRNA for 

viral protein translation and vRNA genomes for viral progeny takes place (Wu, Sun, and 

Panté 2007). RNA-dependent RNA polymerase (RdRp) heterotimer, composed of PA, 

PB1, and PB2, mediates the synthesis of a complementary RNA strand (cRNA) from 

which it will subsequently transcribe more vRNA segments for progeny viruses and 

mRNA transcripts for viral protein synthesis. The mRNA transcripts are polyadenylated 

and capped then exported to the cytoplasm and translated using host ribosomal 

machinery. Packaging of viral components depends on sequence-specific packaging 

signals identified within the 5’ and 3’ noncoding and adjacent coding sequences on each 

of the eight viral segments (Hutchinson et al. 2010). Once components for viral 

assembly are in order, the virus will bud from lipid raft domains on the apical surface of 

infected cells.  

Once budding is complete, the virus will remain attached to host cell sialic acid 

residues by HA glycoproteins. The latter association requires sialidase activity of the 

NA to release virions from the host cell (Iwatsuki-Horimoto et al. 2006; Bouvier and 

Palese 2008). NA is also thought to enhance viral infectivity by breaking down mucus 

in the respiratory tracts, thus allowing the virus to penetrate the respiratory epithelia 

(Matrosovich et al. 2004).  
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Figure 8: Influenza viral life cycle (Velthuis and Fodor 2016). Virus infection is 
initiated by binding viral hemagglutinin to sialic sialic acid residues on host cell 
receptors, followed by clathrin-mediated endocytosis. In the host cell, fusion of viral 
and endosomal membranes occurs at low pH, which enables the release of the 
segmented viral genome into the cytoplasm. The viral genome is subsequently 
translocated to the nucleus, where it is transcribed and replicated. Following synthesis in 
the cytoplasm, viral proteins are assembled into viral ribonucleoproteins (vRNPs) in the 
nucleus. Virus particles are assembled at the cell membrane, and the newly generated 
progeny virus buds into extracellular fluid. 
 

 

 4. Clinical symptoms and complications of influenza  
 

Influenza is an acute self-limiting respiratory disease with prominent systemic 

symptoms (Cox and Subbarao 1999). The virus may be transmitted through aerosols, 

large droplets, or direct contact with secretions or fomites (Tellier 2006).  The typical 

incubation time is 1-4 days with an average of 2 days (Cox and Subbarao 1999).  

 Uncomplicated influenza includes abrupt classical symptoms such as febrile 
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illness accompanied by  malaise, myalgia, sore throat, non-productive cough and rhinitis 

(Nicholson 1992). Among children, additional clinical manifestations such as otitis 

media, nausea, and vomiting are common (Peltola, Ziegler, and Ruuskanen 2003; Ryan-

Poirier 1995). Influenza illness is typically a self-limiting disease resolving within 3 to 7 

days in the majority of people; however, cough and malaise may persist for over 2 

weeks (Nicholson 1992).  

The most frequent complication of influenza is pneumonia, which may either be 

primary viral or secondary bacterial pneumonia (Rothberg, Haessler, and Brown 2008). 

Primary viral pneumonia presents as an acute illness that does not resolve 

spontaneously. Cough may be productive and accompanied by persistent fever. 

Secondary bacterial pneumonia is most often caused by Streptococcus pneumonia, 

Staphylococcus aureus, and Haemophilus influenzae (Schwarzmann et al. 1971). In the 

case of a secondary bacterial infection subsequent recurrence of fever occurs 4-14 days 

after the resolution of initial influenza symptoms. This is accompanied by dyspnea, 

productive cough, and pulmonary consolidation (Rothberg, Haessler, and Brown 2008).  

The risk for influenza complications and hospitalizations is especially high 

among people whom are over 65 years of age, young children, pregnant women, and 

people with underlying medical conditions (Rothberg, Haessler, and Brown 2008). Such 

conditions include obesity, heart disease, lung disease, diabetes, renal disease, etc. 

(Glezen, Decker, and Perrotta 1987). 

 

5. Global influenza burden with a focus on the Middle East 
 

Influenza is a contagious respiratory illness associated with a substantial global 

disease burden. The illness occurs in seasonal epidemics and may cause occasional 
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pandemics due to unpredictable antigenic shifts. Seasonal epidemics generally occur 

during the winter season for areas within temperate climate. In contrast, tropical regions 

exhibit an irregular pattern of outbreaks, which may occur during any time of the year. 

The World Health Organization (WHO) estimates an average of 3 to 5 million cases of 

severe illness from influenza resulting in 250 000 to 500 000 fatal illnesses worldwide 

per year and an estimated economic loss of 8 billion dollars in the US alone (“WHO | 

Influenza (Seasonal)” 2016) WHO reports have further indicated the central area of the 

Eastern Mediterranean Region (EMR) as an important area for influenza circulation. 

The EMR consists of 22 countries including Lebanon. The EMR countries are located 

under four of the eight global migratory flyways, and are therefore at risk of 

transmission of avian IAVs from migratory birds (natural reservoir) to local birds or 

animals that can potentially spread to humans (Kayali et al. 2013).  

6. The immune response to influenza 

a. Innate immunity 
 

The first line of defense against influenza is mediated by innate immunity, 

which encompasses the combined effects of rapid innate cellular responses and the 

physical barriers such as mucus and collectins (van de Sandt, Kreijtz, and Rimmelzwaan 

2012). Intracellular innate sensing of influenza is initiated due to an interaction of 

pattern-recognition receptors (PRRs) with viral RNA, the main pathogen associated 

molecular pattern (PAMP) of IAVs. This interaction yields the production of pro-

inflammatory cytokines and type I interferons with important antiviral activity (Killip, 

Fodor, and Randall 2015) (Figure 10). Antiviral immunity conferred by type I 

interferons can be exerted due to the inhibition of viral protein synthesis within host 

cells, the induction of interferon stimulated genes (ISGs) that may hinder viral 
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replication (Matzinger et al. 2013), and the stimulation of dendritic cells (DCs) to 

enhance antigen presentation and thus contribute to initiating adaptive immune 

responses. Alveolar macrophages are also involved in antiviral innate immunity and 

harbor two distinct and competing functions. Once activated, alveolar macrophages 

phagocytose influenza-infected cells, thus limiting viral spread. This activation, 

however, prompts the production of nitric oxide synthase 2 (NOS2) and tumor necrosis 

factor alpha (TNF- α) which contributes to influenza-induced pathology (Oslund and 

Baumgarth 2011).  

 

Figure 9: Interferon mediated immunity during IAV infections (McNab et al. 2015). 
Infected cells produce type I interferons (IFNs) in response to viral infection Feedback 
of type I IFNs onto infected and bystander cells leads to the induction of IFN-stimulated 
genes (ISGs), which function to block the viral replication cycle. Type I IFNs are also 
produced by, and act on, innate immune cells in response to viral infection and viral 
products. Type I IFNs acting on APCs can enhance the antigen-presenting function of 
these cells, and enhance antiviral function of adaptive immune cells. 



	
	

25	

 

b. Cellular immunity 
 

Infection with viruses leads to the induction of CD4+ T helper (Th) cells that are 

distinguished based on their cytokine expression profiles. Th-2 cells produce the 

cytokines IL-13 and IL-4 thus promoting B-cell responses, while Th-1 cells produce IL-

2 and IFN-γ, which prime the immune response towards cell mediated immunity 

(Kreijtz, Fouchier, and Rimmelzwaan 2011). Additional vital cytokines involved in cell 

mediated immunity against IAV include IL-6, an anti-inflammatory cytokine involved 

in neutrophil accumulation and neutrophil mediated viral clearance (Dienz et al. 

2012)and IL-10, an anti-inflammatory cytokine with a potent role in the reduction of 

lung inflammation (J. Sun et al. 2009). Naïve CD8+ cytotoxic T lymphocytes (CTLs) 

recognize and bind to viral epitopes associated with MHC class I molecules in the 

lymphoid tissues thus prompting their activation (van de Sandt, Kreijtz, and 

Rimmelzwaan 2012). Once CTLs reach the sites of infection, they recognize and 

eliminate virus-infected cells by cell lysis. Lytic activity is accomplished by the release 

of perforins that permeabilize the host infected cells, followed by the release of 

granzymes (GrA and GrB), which enter the cells and induce apoptosis (Metkar et al. 

2008). GrA also displays non-cytotoxic effects, which include the cleavage of viral and 

host cell proteins thus preventing the efficient replication of influenza viruses (van 

Domselaar and Bovenschen 2011). CTLs also have the ability to induce apoptosis of 

virus-infected cells by Fas/FasL activation. In addition, CTLs produce cytokines, which 

enhance MHC antigen presentation by stimulating MHC expression thus enhancing 

antiviral activity. Post-infection memory CTLs found in lymphoid tissue become active 

upon subsequent influenza infections. Considering that CTLs during influenza virus 
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infections may be directed to either NP, M1, and PA proteins all of which are highly 

conserved, CTLs thus display a high degree of cross reactivity between different 

subtypes of the IAVs (Kreijtz, Fouchier, and Rimmelzwaan 2011). 

c. Humoral immunity  

Humoral immunity encompasses the production of antibodies directed against 

different viral antigens, primarily the HA protein (Figure 11). Antibodies targeted 

against the HA protein play a dominant role in virus neutralization by interrupting the 

binding of the HA glycoprotein spike to host sialic acid residue receptors and 

preventing viral attachment.  HA antibodies may also contribute to phagocytosis of the 

viral particles by binding to Fc receptor- expressing cells (de Jong et al. 2000). 

Antibodies directed at NA also limit viral spread by inhibiting enzymatic activity and 

preventing the release of viral progeny (Rajendran et al. 2017). In addition, NP specific 

antibodies are able to activate complement mediated cells lysis of host-infected cells, 

through a mechanism yet to be clarified (Carragher et al. 2008). The occurrence of 

antigenic drifts and shifts, however, limits the effectivity of antibodies, leading to 

renewed host susceptibility (Laursen and Wilson 2013). Considering the mucosal 

tissues are the main entrance sites of influenza viruses, IgA and IgM are the main 

neutralizing antibodies to prevent pathogen entry and interrupt the viral life cycle. IgA 

antibodies are mainly directed against HA and NA viral glycoproteins. The isotype 

IgM is the hallmark antibody for primary immune response and initiates complement 

mediated neutralization of influenza viruses. However, in the event of a secondary 

infection, IgG is the predominant antibody involved in virus neutralization (Kreijtz, 

Fouchier, and Rimmelzwaan 2011). 
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Figure 10: Antibody mediated immunity to influenza virus (Subbarao and Joseph 
2007). Antibodies specific for HA block virus attachment, thereby preventing infection 
of cells, or they can prevent fusion. Antibodies specific for NA bind virus to the cell, 
thereby preventing the release of virions. Antibodies specific for M2 bind virus to the 
cell and prevent the release of viral particles into the extracellular fluid. 
 
 

C. Coinfections 

1. Definition 
 

Co-infection is defined as the concurrent or sequential infection with two or 

more pathogens; which encompasses both acute and chronic stages (Bakaletz 2004; 

Pasman 2012). Over 800 million people are estimated to suffer from helminth co-

infections (Hotez et al. 2007) and approximately one sixth of the global population is 

estimated to suffer from co-infections with globally important pathogens (Griffiths et al. 

2011) such as HIV (Lawn 2004), malaria (Muturi et al. 2006), hepatitis virus (Sagnelli 

et al. 2004), influenza virus (Stefanska et al. 2013), Leishmania (Alvar et al. 2008) , and 

dengue virus (Pancharoen and Thisyakorn 1998). Unlike infections with a single 

pathogen, co-infections display a duel facet. On one side of the spectrum, the co-
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existence of multiple pathogens may aggravate disease state and progression. On the 

other hand, coexistence of multiple pathogens may alleviate disease severity and 

progression (Ezenwa and Jolles 2011). Below, we summarize the results of studies 

which investigated co-infections involving T. gondii or IAV (Table 2). 

 

Table 2: Summary for the disease outcome of some co-infection models. 

 

2 Modulation of the immune response in mixed infections 

a. T. gondii and Helicobacter felis 
 

A study conducted by Stoicov et al. aimed to elucidate the underlying immune 

mechanisms that may occur due to an interaction between the two unrelated organisms: 

Helicobacter felis and T. gondii, which are two ubiquitous pathogens that can cause a 

spectrum of clinical diseases (Stoicov et al. 2004). Mice infected with H. felis showed 

higher mortality when challenged with T. gondii, as compared to control mice with H. 

felis infection alone. Further investigation demonstrated a blunted IFN-γ response to T. 

Infection model Outcome  Reference  

T. gondii and 
Helicobacter felis 

Aggravated disease outcome  (Stoicov et al. 2004) 

T. gondii and 
Nippostrongylus 
brasiliensis 

Unchanged disease outcome  (Oliver Liesenfeld, Dunay, 
and Erb 2004) 

T. gondii and 
Plasmodium berghei 

Attenuated disease outcome  (Settles et al. 2014) 

Influenza A virus and 
Trichinella Spiralis 

Attenuated disease outcome (Furze, Hussell, and 
Selkirk 2006) 

Influenza A virus and 
Nematospiroides dubius 

Attenuated disease outcome (Chowaniec, Wescott, and 
Congdon 1972) 

Influenza A virus and 
Pneumocystis murina 

Attenuated disease outcome (Wiley and Harmsen 2008) 

Influenza A virus and 
chronic T. gondii 

Attenuated disease outcome (O’Brien, Schultz-Cherry, 
and Knoll 2011) 
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gondii and higher parasite loads in co-infected mice compared with T. gondii single 

infection, co-infected mice also displayed areas of infarction and necrosis in the small 

bowel.   

Markedly, T. gondii infection induced H. felis – specific IgG2a/IgG1 isotype 

switch and aggravated H. felis gastritis and mucosal damage. Dual infection also led to 

the alteration of H. felis colonization, whereby mice infected with H. felis alone 

displayed higher bacterial load than dually infected mice. Furthermore, investigation of 

cytokines at the level of gastric mucosa revealed a shift from H. felis Th-2 response to a 

Th-1 profile in co-infected animals. This study demonstrates how dual infection may 

alter the immune response to co-existing pathogens and lead to altered disease outcome 

and progression to not only one, but both pathogens (Stoicov et al. 2004).  

b. T. gondii and Nippostrongylus brasiliensis 
 

 A study by Liensenfeld et al. in 2004 attempted to investigate whether 

infection with the helminth N. brasiliensis may affect T. gondii induced Th-1 immune 

response and immunopathology (Oliver Liesenfeld, Dunay, and Erb 2004).  

Mice co-infected with N. brasiliensis and T. gondii did not have an altered 

course of infection when compared with control mice harboring T. gondii alone. Both 

co-infected and T. gondii singly infected animals produced high levels of IL-12 and 

IFN-γ, developed similar intestinal immunopathology, and died at the same time as 

mice singly infected with T. gondii. Markedly, the immune response to N. brasiliensis, 

was down regulated in co-infected mice, as demonstrated by reduced blood eosinophil 

levels and reduced IL-4 levels in the spleen and mesenteric lymph nodes compared to 

control mice with N. brasiliensis alone. In contrast, oral administration of T. gondii 
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lysate prior to N. brasiliensis infection had only a minor and short-lived effect on N. 

brasiliensis Th-2 responses (Oliver Liesenfeld, Dunay, and Erb 2004).  

c. T. gondii and Plasmodium berghei  
 

Considering that previous studies have demonstrated that animals with chronic 

T. gondii infection can survive subsequent lethal doses of viruses, bacteria or protozoa 

(O’Brien, Schultz-Cherry, and Knoll 2011; Ruskin and Remington 1968; Mahmoud, 

Warren, and Strickland 1976; Charest et al. 2000), a previous study by Settles et al. 

aimed to explore a potential protective effect that T. gondii may induce in an 

experimental cerebral malaria (ECM) murine model (Settles et al. 2014). 

Chronic T. gondii infection followed by subsequent infection with P. berghei 

ANKA, a strain commonly used for the study of P. berghei induced ECM, significantly 

decreased mortality by 90% relative to mice singly infected with P. berghei (Settles et 

al. 2014). Furthermore, T. gondii co-infection reduced P. berghei ANKA parasitemia 

and prevented the onset of ECM, whereby 95% of co-infected mice did not display 

ECM symptoms. To further elucidate the immune mechanism involved, mice were 

intravenously injected with soluble T. gondii antigens (STAg) at various times post P. 

berghei ANKA infection. Subsequently, vascular leakage and parasite sequestration 

were reduced in the brain of co-infected infected mice. Brain T- cell and IFN-γ levels 

were also reduced and a strong Th-1 response characterized by increased levels of 

serum IFN-γ, IL12, IL-10, MCP1, and IL-6 levels were observed in co-infected mice.  

d. IAV and Trichinella spiralis  
 

T. spiralis is a nematode parasite responsible for trichinosis with an enteric 

stage known to induce a Th-2 immune response (Grencis, Hültner, and Else 1991; Kelly 

et al. 1991). In contrast, infection with IAV is initially controlled by innate immune 
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mechanisms prior to activation of a strong Th-1 immune response.  

A study conducted by furze et al, aimed to investigate the effects of the 

helminth T. spirlais on IAV infection (Furze, Hussell, and Selkirk 2006). For this 

purpose male NIH mice were infected with T. spirlais larvae then subsequently infected 

with IAV. Co-infection with the enteric stage T. spiralis enhanced recovery from IAV 

infection but had no effect on virus titer. Furthermore, co-infected mice displayed a 

marked reduction in early neutrophil influx into the broncheoaveolar lavage (BAL) 

accompanied by reduced lymphocyte infiltration, and reduced cytokine TNF-α and IL-

10 levels. Histological examination further confirmed the amelioration of pulmonary 

inflammation by co-infection with T. spiralis (Furze, Hussell, and Selkirk 2006). The 

study demonstrates how dual infection may alter immune responses and lead to the 

amelioration of disease pathology.  

e. IAV and Nematospiroides dubius 
 

Nematospiroides dubius currently known as Heligmosomoides polygyrus is a 

naturally occurring intestinal nematode in rodents (Pritchard et al. 1984) . Mice infected 

with IAV, 7 and 21 days after N. dubius infection displayed decreased virus titers and 

lung consolidation compared to control mice with IAV infection alone (Chowaniec, 

Wescott, and Congdon 1972). In addition, co-infected mice displayed significantly 

lower viral antibody titers when higher numbers of N. dubius parasites were introduced. 

The decrease in viral antibody titers was hypothesized to be the result of reduced 

synthesis of antibodies in the parasitized host due to decreased antigenic stimulation 

from diminished viral replication, immunosuppressant effects of the parasite, and the 

competition between viral and parasitic antigens (Chowaniec, Wescott, and Congdon 

1972).  
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f. IAV and Pneumocystis murina 
 

Mice infected with Pneumocystis murina followed by IAV infection 2 weeks 

later demonstrated an accelerated rate of viral clearance and an accelerated appearance 

of influenza specific neutralizing antibodies in serum and BAL (Wiley and Harmsen 

2008). Furthermore, co-infected animals displayed reduced mortality and inflammatory 

cytokine levels in the BAL relative to control mice with IAV infection alone. There was 

no significant increase in CD8+ and NK cells recovery from BAL of co-infected mice at 

the time where accelerated viral clearance was observed.  In absence of an antibody 

response, virus clearance in co-infected animals showed no significant alteration relative 

to controls. These results indicate the role of influenza virus specific antibodies in viral 

clearance, which is dependent on the temporal association with the resolution of 

ongoing pneumocystis infection (Wiley and Harmsen 2008).  

g. IAV and T. gondii  
 

The increased rate of drug resistance raises an urgent need for the development 

of new therapies for the treatment of influenza infection (Hayden 2009; Ilyinskii, 

Thoidis, and Shneider 2008). One such therapeutic mechanism involves boosting the 

Th1 antiviral response by the use of non-harmful microbes (Pulendran 2004). A study 

conducted by O’Brien et al. attempted to identify a possible approach to enhance the 

antiviral Th1 type response during infection with a highly pathogenic avian influenza 

(HPAI) A/H5N1 through utilizing a chronic T. gondii infection (O’Brien, Schultz-

Cherry, and Knoll 2011).  

Mice chronically infected with T. gondii and challenged with a lethal dose of 

the HPAI H5N1 displayed enhanced survival and reduced lung virus titers when 
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compared with mice singly infected with H5N1. Furthermore, mice administered with 

non-infectious extracts of T. gondii (STAgs) prior to IAV infection demonstrated 

decreased viral titers and inflammation in the bronchium and alveolus compared to IAV 

control mice. In order to better understand the role of IFN-γ in STAg mediated 

protection, IFN-γ receptor knockout mice were infected with IAV followed by STAg 

injection. IFN-γ knockout mice did not survive IAV infection; hence suggesting an 

important role for IFN-γ in STAg mediated survival. Experiments also indicated NK 

cells as source for IFN-γ, which is both necessary and sufficient for survival. 

The study of immune interactions between multiple pathogens in the framework 

of a complex host is of great interest given the high prevalence of co-infections on a 

global scale. The study by O’brien et al. examined the immune modulation that occurs 

from an infection with H5N1 IAV in concurrence with chronic T. gondii and 

demonstrated the role of STAg in ameliorating influenza induced pathology and illness. 

This study however, neither attempted to explore the effect of a concurrent infection 

between IAV and the acute stage of T. gondii, nor the effect of the co-infection on T. 

gondii induced immune response and pathology.  

Considering that a chronic T. gondii infection was able to induce a protective 

effect on IAV infected mice, we speculated that the active immune response during 

acute toxoplasmosis might also have beneficial effects on the murine host.  

A murine model for the co-infection of influenza virus A/Puerto Rico/8/34 

strain with type II T. gondii tachyzoites was previously established at our lab (German, 

2016). Surprisingly, the infection with 100 tachyzoites of T. gondii followed by IAV on 

the next day led to 60% mortality, while an infection with T. gondii then IAV four days 
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later led to 40% mortality. The parasitic load in the peritoneum of co-infected mice on 

days 3 and 5 was higher than that observed in T. gondii control mice. In contrast, viral 

load in co-infected mice was significantly lower than in IAV control mice (German, 

2016). These data suggested that mice could be dying due to a worsening parasitic 

infection induced by the virus despite that attenuation of the viral infection by the 

parasite. The current study further examines the underlying immune response in co-

infected mice and paves the way for further studies regarding the immune interactions 

that occur.  
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CHAPTER II 

MATERIALS AND METHODS 
  

A. Culture methods and titration 

1. Parasite culture 
 

T. gondii Type II strain (Pru Δku80)  (kindly provided by Drs Maryse Lebrun 

and Jean Francois Dubremetz from France) was maintained by serial passages in 

Human Foreskin Fibroblasts (HFFs) grown in modified Eagle medium (DMEM) 

(Lonza) supplemented with 10% fetal calf serum (FCS) and 2 mM glutamine 1% 

penicillin –streptomycin and kanamycin (Lonza). Media containing freshly egressed 

tachyzoites was collected and separated from host cell debris by centrifugation at 1200 

rpm for 5 minutes. Parasites were counted on a haemocytometer under a light 

microscope and diluted to the desired count for subsequent mice infections.  

2. IAV propagation 

  
The influenza A/Puerto Rico/8/34 virus strain (obtained from Dr. Richard 

Webby at St. Jude’s children’s hospital) was propagated in Madin Darbey canine kidney 

(MDCK) cells. One day prior to infection, cells were seeded at a density of 3*106 cells 

per 175 cm2 flask. On the next day, cells were inoculated with 0.01 MOI (multiplicity of 

infection) of the virus, then incubated for one hour with gentle rotation every 15 

minutes.  After incubation was complete, the inoculum was replaced with 25 ml of viral 

infection media (VIM) containing 0.2 g/ml TPCK-trypsin. Once extensive cytopathic 

effect occurred, the culture supernatant was collected and centrifuged at 10,000 rpm to 

clear cell debris. Media was then harvested, aliquoted, and stored at -80 °C for later use. 
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Viral titration was performed using plaque assay to determine viral titer.  

3. Titration 
 

MDCK cells were seeded at 8*105 cells per well in a 6-well plate one day prior 

to the assay. Upon reaching confluency, cells were washed two times with PBS++ 

(phosphate buffered saline with calcium and magnesium). Wash media was then 

aspirated from the wells then 10-fold dilutions of viral stock were added to each well 

starting at 103 and reaching 108 fold dilutions. Plates were then incubated at 37 °C for 1 

hour with gentle rotation every 15 minutes. Once incubation was complete, the 

inoculum was removed and cells were covered with 2 ml of 1% agarose nutritive 

overlay and dishes were left to incubate at 37 °C. Three days later, the agarose overlay 

was removed and cells were stained with crystal violet solution.  

The viral stock was calculated as follows:  

[Virus stock] (pfu/ml) = (observed plaque number x dilution power)/ volume of viral 

dilution used (ml)  

B. In vivo experiments 

1. Ethical statement  
 

All murine protocols were approved by the Institutional Animal Care and Use 

Committee (IACUC number: #1604374) of the American University of Beirut. All 

animals were housed in specific facility with a 12h ON/OFF light cycle. Animals were 

sacrificed by cervical dislocation after deep anesthesia with isoflurane. 

2. Survival evaluation: 

For survival evaluation, Six to eight week-old female BALB/c mice were used. 

The following groups of mice were presented: 7 mice were infected intraperitoneally 
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with 250 tachyzoites of T. gondii,14 mice were intranasally inoculated with 2.4*105 pfu 

of IAV, and 23 mice per group of co-infection were infected with both pathogens.  

Coinfection with the two pathogens was done either 1 or 4 days apart Experimental 

design for each group is presented (Figure 11).  Mice were monitored for survival and 

weight loss over the course of 21 days and mice losing 30% of their body weight were 

euthanized by cervical dislocation for humane reasons. Survival experiments were 

repeated three times. 

	

Figure 11: Timelines of infections for survival experiments. (A) Co-infection with T. 
gondii prior to IAV infection; (B) Co-infection with IAV prior to T. gondii  
 

 

A 

B 
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On day 7 post-infection, blood was collected by eye prick from T. gondii 

infected mice then western blot was performed using the sera of mice on tachyzoites 

extracts to check for the potential presence of Ig and thus for the verification of acute 

toxoplasmosis. 

For determining the progression into chronic phase, surviving mice until week 4 

were sacrificed and their brains were harvested. The bradyzoite marker (BAG-1) was 

used to quantify bradyzoites by real-time PCR as described later.  

 

C. Verification of acute T. gondii infection by western blot 
 

On day 7 post T. gondii infection, approximately 0.05 to 0.1 ml of blood was 

withdrawn from the retro-orbital sinus of each mouse infected with T. gondii alone or 

co-infected with IAV. Blood collection was done by the insertion of a hematocrit 

capillary tube through the conjunctiva membrane of the medial canthus of the right eye. 

Blood was centrifuged at 13,000 rpm for 15 min and sera were then collected.  

Freshly egressed T. gondii tachyzoites were obtained from a T25 culture flask 

then boiled in Laemmli SDS-PAGE sample buffer and allowed to run on a previously 

prepared 12% polyacrylamide gel. Separated bands were then transferred onto a 

nitrocellulose membrane overnight at 30V. The following day, transfer strips were 

blocked and incubated with 10 µl of the previously isolated mouse sera over night at 

4°C. Strips were then washed and incubated with anti-mouse HRP (Horseradish 

peroxidase)-conjugated secondary antibodies (1:5000) and a luminal chemiluminescent. 

Seropositivity was confirmed by the observation of a characteristic complex banding 

pattern produced by autoradiography.  
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D. Titer determination and cytokine study 
 

Groups of 6-8 week old female BALB/c mice were infected according to Figure 

12. Three to five mice from each group were then sacrificed on days 2 or 5 post IAV 

infection. Lungs and spleen were harvested and peritoneal lavage was collected for 

RNA extraction and cytokine profile. RNA extraction was performed using the Trizol 

method. Parasitic and viral titer were determined by quantification of the tachyzoite 

specific marker SAG-1 and the IAV M gene in the mice peritoneal lavage and lungs, 

respectively. IAV titer in the lungs was also determined by plaque assay as previously 

described.  

	

Figure 12: Experimental timeline for determining virus and parasitic loads and the 
underlying inflammatory responses 

 

E. RNA extraction 
 

Total RNA was extracted using the Trizol extraction method. Briefly, 1ml of 

Trizol were added to the peritoneal lavage pellets or harvested organ homogenates 

followed by a brief vortex, mixture was left to stand for 5 minutes. 200μL of 
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chloroform were added and the mixture was vortexed for 1 minute, followed by 

centrifugation at 15000g for 10 minutes. After obtaining a clear aqueous-organic 

interphase, the upper phase containing the total RNA was gently taken, transferred into 

a new Eppendorf tube and precipitated by adding 500μL of isopropanol. After 

centrifugation at 15000g for 10 minutes, the obtained pellet was washed twice with 70% 

ethanol and the RNA pellet was allowed to air-dry for few minutes to remove excess 

ethanol. The obtained precipitated RNA was resuspended in 40μL of nucleases-free 

water. RNA concentration was then quantified using the Nanodrop (ND-1000) 

spectrophotometer.  

F. cDNA synthesis 
 

For cDNA synthesis, the reaction mixture was prepared as presented in Table 3. 

The mixture was then incubated for 5 min at 25°C, 60 min at 42°C, then for 5 min at 

70°C. 

Table 3: Components and volumes of the cDNA synthesis reaction 

RNase/DNase free water containing 5 µg of template RNA 11 µl 
random primers 1 µl 
5X Reaction Buffer 4µl 
Ribolock RNase Inhibitor(20U/µl) 1µl 
10 Mm dNTP Mix 2µl 
RevertAid M-MuLV RT (200U/µl) 1µl 
Total Volume 20µl 

 

G. Quantitative real time PCR (qRT PCR)  
 

Syber green-based qRT PCR was performed using the BIORAD machine 

(CFX384). The mix contained 2 µL of template cDNA (100 µg/ µL), 0.5 µL (0.1µM) of 

each primer mix (forward and reverse), 5 µL buffer containing 20 mM Tris-HCl , 100 



	
	

41	

mM KCl, 7 mM MgCl2, 0.4 mM each dNTP (dATP, dCTP, dGTP, TTP), stabilizers, 

0.05 unit/ml Taq DNA Polymerase, JumpStart Taq antibody, SYBR Green, and 2.5µL 

of RNase free water. The mouse glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

was used as a reference gene to which all the expression results of the target genes were 

normalized. Primer sequences utilized and their corresponding annealing temperature 

are given in Table 4.  

The PCR reaction consisted of a DNA denaturation step at 95°C for 3 minutes, 

followed by 40 cycles (denaturation at 95°C for 15 seconds, annealing at each primer’s 

specific temperature for 60 seconds, extension at 72°C for 30 seconds). For each 

experiment, reactions were performed in duplicates and expression of individual genes 

was normalized to GAPDH values. The threshold cycle (Cq) corresponds to the cycle at 

which there is a significant detectable increase in fluorescence.  

The expression of each target gene was then calculated using the Livak method 

(Schmittgen & Livak, 2008) (expression ratio=2-ΔΔCq), where:  

ΔCq = Cq (target gene) – Cq (GAPDH reference gene) 

ΔΔCq = ΔCq (test group) –ΔCq (control group)  
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Table 4: Sequences and annealing temperatures of utilized primers in qt RT PCR. 

Primer  Sequences (5’-3’) Annealing 
temperature 
(oC) 

GAPDH F 5’-CATGGCCTTCCGTGTTCCTA-3’ 56.2 
R 5’-CCTGCTTCACCACCTTCTTGAT-3’ 

BAG-1 F 5’-GTCGGGCTTGTAATTACTCGGG-3’ 60.5 
R 5’-GCGGAGAAAGTGGACGATGG-3’ 

SAG-1 F 5’-ACTCACCCAACAGGCAAATC-3’ 56.6 
R 5’-GAGACTAGCAGAATCCCCCG-3’ 

IFN-γ F 5’-TGGCTCTGCAGGATTTTCATG-3’ 58.6 
R 5’-TCAAGTGGCATAGATGTGGAAGAA-

3’ 
TNF-α F 5’-CCACGTCGTAGCAAACCACC-3’ 59.9 

R 5’-GGTGAGGAGCACGTAGTCGG-3’ 
IL-6 F 5’-CCATCCAGTTGCCTTCTTGGG-3’ 58.1 

R 5’-GGTCTGTTGGGAGTGGTATCCT-3’ 
IL-10 F 5’-ATAACTGCACCCACTTCCCA-3’ 59.2 

R 5’-TGGACCATCTTCACTACGGG-3’ 
 

H. Statistics 

All data from in vivo experiments were analyzed in Microsoft Excel, as 

averages with standard deviations. Statistical significance was also analyzed using 

Microsoft Excel’s two-tailed Student’s t-tests and reported as * for p-value between 

0.05 and 0.01, ** for p-value between 0.01 and 0.001, and *** for p-value less than 

0.001.  
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CHAPTER III 

RESULTS 
 

A. IAV infection subsequent to acute toxoplasmosis increases host mortality 
compared to singly infected mice 

1. T. gondii followed by IAV on day 1  
 

We first wanted to address the effect of preexisting T. gondii infection on IAV 

infection outcome. Mice were infected by T. gondii on day 0, then subsequently by IAV 

on day 1 (Figure 11). In order to confirm that an active infection with T. gondii took 

place, serum IgG antibodies against the parasite can be detected one week post-infection 

by western blot using T. gondii antigens. A complex banding pattern indicates an 

infection with T. gondii (Erlich et al. 1983). In our infection model, 95-98% of the sera 

from T. gondii infected groups yielded a complex banding pattern with a major band at 

30 kDa corresponding to the SAG-1 antigen indicating successful infection (Figure 13).  

None of the mice infected with the parasite alone lost weight (Figure 14 A) or 

succumbed to infection (Figure 14 B). In sharp contrast, mice singly infected with IAV 

or with T. gondii followed by IAV alone displayed severe weight loss reaching its 

trough on day 7 in case of singly infected mice. Whereas surviving mice co-infected 

with the parasite and IAV one day apart displayed delayed recovery. (Figure 14 A). 

Mice singly infected with IAV alone displayed 50% mortality, whereby 7/14 mice died 

on days 6 and 7 with a median survival of 14 days (Figure 14 B). Similar mortality rate 

was observed in the context of co-infection of T. gondii then IAV on next day, with a 

median survival time of 18 days recorded whereby mortality occurred 6 to 15 days post 

infection (Figure 14 B). Hence, no significant change in survival was recorded in co-
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infected mice relative to our IAV control. 

2. T. gondii followed by IAV on day 4  
 

We then wanted to assess whether a delay of 4 days between T. gondii and the 

subsequent IAV infection would affect mice survival. In this context, mice displayed a 

rapid reduction in body weight soon after IAV was introduced and resulted in 

pronounced mortality, whereby survival was a mere 26%. This implicates a more 

aggravated disease outcome when time between infections is increased (Figure 14 B). In 

addition, the median survival time for co-infected mice was 11 days whereby mortality 

occurred between days 6 and 15. Therefore, when IAV infection occurs 4 days apart 

from T. gondii infection mortality is increased and the median survival time is reduced 

by 3 days compared IAV single infection. 

B. Infection with T. gondii subsequent to IAV infection does not alter disease 
outcome in mice 

1. IAV followed by T. gondii on day 1 
 

Since our results showed no impact of T. gondii on a subsequent IAV infection 

the next day, we wondered whether IAV infection taking place one day previous to T. 

gondii infection would impact mice survival. Mice singly infected with IAV displayed 

rapid weight loss (Figure 15 A) and 50% mortality, whereby 7/14 mice died on days 6 

and 7 (Figure 15 B). Upon infection with IAV one day prior to T. gondii infection, mice 

displayed rapid weight reduction until day 5 (Figure 15 A) and 44% mortality was 

recorded with deaths occurring between days 5 and 11 (Figure 15 B). Surviving mice 

co-infected with the parasite and IAV one day apart displayed delayed recovery (Figure 

15 A). Hence, the survival of mice was not altered due to co-infection compared to the 

IAV single infection control. 	
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2. IAV followed by T. gondii on day 4 
 

We then wanted to examine whether a longer delay between IAV and a 

subsequent T. gondii infection would impact mice survival. Mice infected with T. gondii 

4 days subsequent to IAV infection displayed substantial weight reduction (Figure 15 

A) and 34% mortality, with deaths occurring between days 5 and 10 (Figure 15 B). 

While mice survival seemed to be barely altered in the co-infected group, mice failed to 

recover as quickly as IAV singly infected mice as can be deduced from the weight loss 

profile (Figure 15 B).  

C. IAV but not T. gondii load is increased in the context of co-infection 
 

Since the infection model in the order IAV subsequent to T. gondii resulted in 

prominent disease aggravation, we decided to focus on elucidating the underlying 

immune mechanisms modulating survival within this infection model. For this purpose, 

we speculated that the aggravated disease outcome might be attributed to enhanced viral 

and parasitic replication. Considering that lungs are the target site for viral replication, 

viral titer was determined by plaque assay of lung supernatants. Because of the 

commonly used intraperitoneal mode of injection of T. gondii tachyzoites in mice, the 

peritoneum is the privileged site for macrophage recruitment and tachyzoite replication. 

Hence peritoneal lavage was also collected and qt RT PCR was performed to determine 

the parasitic load.  

Mice co-infected with T. gondii and IAV one day apart displayed significantly 

higher viral titer relative to IAV singly infected mice on day 2 after IAV infection 

(Figure 16). In contrast, mice infected with T. gondii followed by a subsequent IAV 

infection on day 4 did not display a significant difference in lung virus titers compared 

to IAV single infection (Figure 16).  
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On day 5 post IAV infection, a subset of mice infected with T. gondii followed 

by IAV on day 1 displayed viral clearance, while the rest displayed viral titer similar to 

IAV control (Figure 16). Similarly, no significant difference was recorded between mice 

infected with T. gondii followed by IAV on day 4 and IAV alone control mice (Figure 

16). Our results implicate an increased viral replication in the context of mixed IAV and 

T. gondii infection occurring one day apart.  

As previously demonstrated, mice co-infected one day apart did not display a 

change in survival rate relative to IAV control, however, these mice showed elevated 

viral replication. Furthermore, mice co-infected 4 days apart displayed a more 

aggravated disease outcome, yet did not demonstrate a significant change in viral titer. 

Hence, we conclude that disease outcome in the context of co-infection cannot be solely 

attributed to virus replication and the host immune response could be responsible for 

this outcome.  

But we first wanted to rule out whether disease modulation is due to alteration 

of parasitic load in co-infected mice. Therefore, peritoneal lavage was collected from 

mice singly infected with T. gondii or co-infected with T. gondii and IAV. Parasitic load 

was evaluated by quantifying the tachyzoite marker SAG-1 by qRT PCR. At day 2 post 

IAV infection, no significant change in the parasite load was recorded in the co-infected 

mice relative to mice singly infected with T. gondii regardless of the duration between 

infections (Figure 17).  In addition, no significant change in parasite load was observed 

on day 5 between T. gondii control and co-infected mice, suggesting that the parasite 

replication is not altered as a result of co-infection (Figure 17). 

Considering these results, we speculated that the immune response initiated in 

the advent of co-infection is responsible for the rise of viral titer and not the direct effect 
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of the co-existing pathogens themselves. Hence an in vitro model of co-infection was 

designed whereby IAV was titrated in the presence of different concentrations of T. 

gondii tachyziotes on MDCK cells. Cells singly infected with T. gondii did not show 

any cytopathic effect and hence no disturbance of the monolayer was noted. In the 

context of coinfection, plaques indicated no significant change in virus titer relative to a 

single infection with IAV (Figure 18). We hence confirmed that the elevation of viral 

replication in mice co-infected one day apart is not the result of the co-existing 

pathogens on one another but rather might be a result of the immune environment 

induced.  

In order to further understand the underlying mechanisms governing host 

survival and viral replication, we decided to focus our study on the assessment of the 

host immune response in the context of IAV and T. gondii co-infection. On a scientific 

level, the study of co-infection will increase our understanding of pathogen-pathogen 

interactions within the complex setting of a host. Many studies have identified T. gondii 

as a protective pathogen during co-infection (Settles et al. 2014; Santiago et al. 1999; 

Mahmoud, Warren, and Strickland 1976), however this role is highly dependent on the 

induced immune environment, whereby studies have indicated aggravated outcomes 

resulting from a hyperactive immune response (Stoicov et al. 2004). In the context of T. 

gondii and IAV, studies have indicated a protective immune response against IAV 

resulting from the expression of IFN-γ and its modulatory role on other cytokines 

(O’Brien, Schultz-Cherry, and Knoll 2011), we hence focused our study on the 

assessment of some vital pro- and anti-inflammatory cytokines which may have 

significant role in modulating disease outcome.  
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D. Co-infection induces a decrease in pro-inflammatory IFN-γ levels in the spleen 
of mice 

 
In the context of acute T. gondii infection, IFN-γ activates effector mechanisms 

including the induction of reactive oxygen species, tryptophan degradation and 

autophagy (Melo, Jensen, and Saeij 2011). IFN- γ also plays a role in viral clearance by 

stimulation of antigen presentation and upregulation of major histocompatibility 

proteins MHC-I and MHC-II (Ramos and Fernandez-Sesma 2015). 

IFN- γ was not detectable within the lungs of singly infected and co-infected 

mice on days 2 and 5. Hence, IFN- γ does not contribute to host survival within mice 

singly infected with IAV. However, in the context of the spleen, IAV singly infected 

and co-infected mice displayed decreased levels of IFN- γ expression relative to T. 

gondii control mice (Figure 19), implicating virus-induced reduction of spleen IFN-γ 

expression in co-infected animals. However, on day 5 post IAV infection, no IFN- γ 

expression was detectable in the spleens of the control and co-infected groups (Figure 

19). Reduced IFN- γ levels may have a role in reduced control of parasitic replication, 

however, parasite titers were not significantly altered between co-infected mice relative 

to T. gondii control, implying a possible compensation provided by other cytokines. We 

hence decided to look at TNF- α, a vital cytokine for the control of both IAV and T. 

gondii infections.  

 
E. Co-infection induces an increase in the pro-inflammatory TNF-α levels within 
the lungs but not the spleen 
      

During toxoplasmosis, TNF-α acts as a vital inflammatory cytokine that is 

produced mainly by macrophages following IFN-γ induction (Dupont, Christian, and 

Hunter 2012). Moreover, TNF-α synergizes with IFN-γ to initiate the production of 
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reactive nitrogen species to impede viral growth (Chang, Grau, and Pechère 1990). In 

the context of IAV infection, TNF-α acts as a mediator of lung inflammation and 

immunopathology, whilst having important anti-influenza activity that is important for 

viral clearance and disease resolution (Suzuki et al. 2000).  

A dramatic elevation in TNF- α expression was observed in the lungs of mice 

infected with T. gondii followed by IAV one day apart compared to IAV singly infected 

mice (Figure 20). However, mice infected with IAV 4 days after T. gondii infection 

showed no significant change in TNF- α expression relative to IAV control mice.  

In sharp contrast, T. gondii control mice showed no detectable expression of 

TNF- α in the lungs on day 2 (Figure 20). On day 5, TNF- α levels decreased in all 

groups relative to day 2, although co-infected mice maintained higher transcript levels 

than singly infected mice (Figure 20). On day 2 after IAV infection, mice singly 

infected with IAV or co-infected with T. gondii and IAV one day apart displayed 

significant decrease in TNF-α expression in the spleen compared to the T. gondii control 

group. However, TNF- α transcript levels at day 5 are significantly higher in co-infected 

mice relative to our T. gondii alone control (Figure 21).  

The observed elevation of TNF- α within the lungs of mice co-infected one day 

apart indicates the hyperactivity of this antiviral cytokine in the immune response 

against IAV, which may enhance viral clearance, and hence contribute to host survival 

despite the elevated virus titer.  

F.	Co-infection induces a decrease in IL-6 transcript levels within the lungs and 
spleen	

 
IL-6 is a co-stimulatory cytokine molecule which plays an important role in 

controlling parasite growth (Jebbari et al. 1998). In case of IAV infection, IL-6 

promotes  neutrophil accumulation and neutrophil-mediated virus clearance (Dienz et al. 
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2012).   

On day 2 after IAV infection, our results indicate reduced expression of IL-6 in 

the lungs of mice singly infected with T. gondii relative to IAV control mice (Figure 

22). In contrast, co-infected mice do not display significant alteration of IL-6 transcript 

levels in the lungs, implicating that the presence of T. gondii in co-infected mice does 

not affect IAV-induced IL-6 expression (Figure 22). On day 5 after IAV infection, IL-6 

expression levels decrease in co-infected mice, eventually reaching levels comparable to 

T. gondii control (Figure 22). On day 2 after IAV infection, co-infected mice displayed 

reduced IL-6 levels within the spleen relative to T. gondii control. This decrease, 

however, is recovered on day 5, whereby all mouse groups displayed similar IL-6 

transcript levels (Figure 23). Considering that levels of IL-6 expression within the lungs 

and spleen were not significantly altered, we decided to investigate IL-10 as another 

anti-inflammatory cytokine, which might better explain the immune response induced 

and the corresponding outcome on host survival.  

 

G. Co-infection induces an increase in IL-10 transcript levels within the lungs and 
spleen 

 
IL-10 is a potent anti-inflammatory cytokine that acts by controlling IL-12 

induced Th-1 type immune responses during T. gondii infections (Lu, Huang, and 

Kasper 2003). In addition, studies have demonstrated the role of IL-10 as an important 

anti-inflammatory response for the reduction of virus-induced lung pathology 

(Cunningham 2009).  

On day 2 after IAV infection, our results indicate elevated levels of IL-10 

expression in lungs of T. gondii control mice compared to mice infected with IAV alone 
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(Figure 24). Similarly, co-infected mice displayed higher IL-10 expression, implicating 

T. gondii induced IL-10 expression in co-infected animals. However, on day 5 after IAV 

infection, both co-infected and singly infected mice were recorded to have decreased IL-

10 expression levels (Figure 24).  

On day 2 post IAV infection, IAV singly infected mice and co-infected groups 

did not display a change in IL-10 transcript levels within the spleen relative to mice with 

T. gondii alone. In sharp contrast, IL-10 levels dramatically increased for all groups on 

day 5 post IAV infection. This increase however, is more pronounced in co-infected 

animals (Figure 25). Hence, the elevation of IL-10 levels within the lungs and spleen of 

co-infected animals might act as a buffer to balance the effects of inflammatory 

cytokines and contribute to host survival in co-infected animals.  

 

H. Co-infection induces a decrease in BAG-1 expression levels 
 

Since in a previous study by Gigley et al. it was shown that a co-infection 

between an attenuated T. gondii strain (cps-1-1) and the type II ME49 strain of T. gondii 

was able to provide protection against chronic toxoplasmosis (Gigley, Fox, and Bzik 

2009),  we then wanted to monitor the progression to chronic toxoplasmosis in the 

context of co-infection by IAV and T. gondii. The bradyzoite specific marker (BAG-1) 

was quantified using qRT PRC in the brain lysates of mice sacrificed 4 weeks after T. 

gondii infection. A significant decrease in BAG-1 expression was noted in all co-

infected mice groups relative to mice infected with T. gondii alone (Figure 26). We 

hence conclude that the immune response induced in the context of IAV and T. gondii 

co-infection, is protective against chronic toxoplasmosis by partially restricting the 

progression into the chronic phase through the inhibition of bradyzoite encystment.  
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Figure 13: Verification of acute T. gondii infection. BALB/c mice were infected, 
intraperitoneally with T. gondii alone, infected with IAV followed by T. gondii on days 
1 or 4, or with T. gondii followed by IAV on days 1 and 4. Sera were collected from T. 
gondii mono-infected and co-infected mice. Western blot was performed to verify acute 
infection. A complex banding pattern indicates seropositivity for acute T. gondii 
infection.  
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Figure 14: Weight change (A) and survival rate (B) for mice infected with IAV 
subsequent to T. gondii. BALB/c mice were infected intraperitoneally with T. gondii 
alone, intranasally with IAV alone, or infected with T. gondii followed by IAV either on 
days 1 or 4. Mice were monitored for 21 days post T. gondii infection. (co-infected mice 
have total n=23 per group, IAV control micehave n=14, and T. gondii control mice have 
n=7).  
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Figure 15: Weight change (A) and survival rates (B) for mice infected with IAV prior 
to T. gondii. BALB/c mice were infected intranasally with IAV alone, intraperitoneally 
with T. gondii alone, or infected with IAV followed by T. gondii on days 1 or 4. Mice 
were monitored for 21 days post T. gondii infection. Results are pooled from 3 
experiments (co-infected mice have total n=23 per group, IAV control mice have n=14, 
T. gondii control mice have n=7).  
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Figure 16: IAV replication is enhanced in the context of mixed T gondii and IAV 
infection administered 1 day apart. Mice were infected intranasally with IAV alone, 
intraperitoneally with T. gondii alone, or co-infected with T. gondii followed by IAV on 
days 1 or 4, (n=3-5 for each group). Virus titer was determined by plaque assay of 
BALB/c lung supernatant. Results are expressed as mean + SD, * for p-value between 
0.05 and 0.01, ** for p-value between 0.01 and 0.001, and *** for p-value less than 
0.001. 	

	

 

Figure	17: Mixed IAV and T. gondii infection does not alter parasite replication. 
BALB-c mice were infected intranasally with IAV alone, intraperitoneally with T. 
gondii alone, and co-infected with T. gondii followed by IAV on day 1 or 4, (n=3-5 for 
each group). Parasite titer in the peritoneal lavage was determined by qtRT PCR pellets. 
Results are expressed as mean + SD, * for p-value between 0.05 and 0.01, ** for p-
value between 0.01 and 0.001, and *** for p-value less than 0.001.	
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Figure 18: T. gondii does not alter IAV replication in vitro. MDCK cells were seeded in 
6-well plates one day prior to infection. Upon reaching confluency, 100 µL containing 
increasing concentrations of T. gondii tachyzoites and 100 µL of serially diluted virus 
was added to each well. Plates were incubated for 1 hour followed by the addition of an 
agarose overlay. Plates were incubated for 3 days, and then stained to count plaques and 
determine the titer.  
	

 

Figure 19: Mice infected with T. gondii followed by IAV the next day display 
decreased IFN- γ expression in the spleen. BALB/c mice were infected intranasally with 
IAV alone, intraperitoneally with T. gondii alone, and co-infected with T. gondii 
followed by IAV on day 1 or 4, (n=3-5 for each group). Parasite titer in the peritoneal 
lavage was determined by qtRT PCR pellets. Results are expressed as mean + SD, * for 
p-value between 0.05 and 0.01, ** for p-value between 0.01 and 0.001, and *** for p-
value less than 0.001.	
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Figure 20: Mice infected with T. gondii followed by IAV the next day display an 
increased TNF-α cytokine expression in lungs. BALB/c mice were infected intranasally 
with IAV alone, intraperitoneally with T. gondii alone, or co-infected with T. gondii 
followed by IAV on days 1 or 4, (n=3-5 for each group).  % expression was determined 
by qRT PCR and groups were compared to IAV control on day 2.  Results are expressed 
as mean + SD, * for p-value between 0.05 and 0.01, ** for p-value between 0.01 and 
0.001, and *** for p-value less than 0.001. 
	

	
 

 
Figure 21: Mice infected with T. gondii followed by IAV the next day display 
decreased TNF-α cytokine expression in spleen. BALB/c mice were infected 
intranasally with IAV alone, intraperitoneally with T. gondii alone, or co-infected with 
T. gondii followed by IAV on days 1 or 4, (n=3-5 for each group).  % expression was 
determined by qRT PCR and groups were compared to IAV control on day 2.  Results 
are expressed as mean + SD, * for p-value between 0.05 and 0.01, ** for p-value 
between 0.01 and 0.001, and *** for p-value less than 0.001.	
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Figure 22: Mice infected with T. gondii followed by IAV the next day display unaltered 
IL-6 expression in the lungs. BALB/c mice were infected intranasally with IAV alone, 
intraperitoneally with T. gondii alone, or co-infected with T. gondii followed by IAV on 
days 1 or 4, (n=3-5 for each group).  % expression was determined by qRT PCR and 
groups were compared to IAV control on day 2.  Results are expressed as mean + SD, * 
for p-value between 0.05 and 0.01, ** for p-value between 0.01 and 0.001, and *** for 
p-value less than 0.001. 
	

	

	
Figure 23: Mice infected with T. gondii followed by IAV display decreased IL-6 
expression in the spleen. BALB/c mice were infected intranasally with IAV alone, 
intraperitoneally with T. gondii alone, or co-infected with T. gondii followed by IAV on 
days 1 or 4, (n=3-5 for each group).  % expression was determined by qRT PCR and 
groups were compared to IAV control on day 2.  Results are expressed as mean + SD, * 
for p-value between 0.05 and 0.01, ** for p-value between 0.01 and 0.001, and *** for 
p-value less than 0.001 
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Figure 24:Mice infected with T. gondii followed by IAV the next day display increased 
IL-10 expression in the lungs. BALB/c mice were infected intranasally with IAV alone, 
intraperitoneally with T. gondii alone, or co-infected with T. gondii followed by IAV on 
days 1 or 4, (n=3-5 for each group). % expression was determined by qRT PCR and 
groups were compared to IAV control on day 2.  Results are expressed as mean + SD, * 
for p-value between 0.05 and 0.01, ** for p-value between 0.01 and 0.001, and *** for 
p-value less than 0.001 
 
 

 
 
Figure 25:Mice infected with T. gondii followed by IAV display increased IL-10  
expression in the spleen. BALB/c mice were infected intranasally with IAV alone, 
intraperitoneally with T. gondii alone, or co-infected with T. gondii followed by IAV on 
days 1 or 4, (n=3-5 for each group).  % expression was determined by qRT PCR and 
groups were compared to IAV control on day 2.  Results are expressed as mean + SD, * 
for p-value between 0.05 and 0.01, ** for p-value between 0.01 and 0.001, and *** for 
p-value less than 0.001 
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Figure 26: Infection with T. gondii followed by IAV or vice versa decreases BAG-1 
expression in the peritoneal lavage. BALB/c mice were infected intranasally with IAV 
alone, intraperitoneally with T. gondii alone, co-infected with T. gondii followed by 
IAV on days 1 or 4, or co-infected with IAV followed by  T. gondii on days 1 or 4. % 
expression was determined by qRT PCR and groups were compared to IAV control on 
day 2.  Results are expressed as mean + SD, * for p-value between 0.05 and 0.01, ** for 
p-value between 0.01 and 0.001, and *** for p-value less than 0.001 
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CHAPTER IV 

 DISCUSSION 
	
  

One sixth of the global population is estimated to suffer from co-infections with 

globally important pathogens (Griffiths et al. 2011). Such pathogens include influenza, a 

major respiratory virus with serious disease burden (Rothberg, Haessler, and Brown 

2008) and T. gondii, an obligate intracellular parasite with a wide range of intermediate 

hosts (Lambert 2009). O’Brien et al. previously demonstrated that a chronic infection 

with T. gondii can confer a protective effect against HPAI A/H5N1 infection (O’Brien, 

Schultz-Cherry, and Knoll 2011). In contrast, our results show that in the context of 

acute toxoplasmosis, a low pathogenicity IAV infection occurring within few days after 

T. gondii infection, results in an aggravated disease outcome. This outcome seemed to 

depend on the timing and order of infection since infected mice with IAV first then T. 

gondii did not display a similar disease burden when compared to IAV single infection. 

Moreover, the enhanced disease severity was not associated with prominent changes in 

virus or parasitic loads neither in the lungs nor in the peritoneal lavage, respectively, 

suggesting that the observed disease modulation is mediated by the host immune 

response.  

Indeed, a similar enhancement of disease severity was previously demonstrated 

in the context of mixed infections between T. gondii and H. felis (Stoicov et al. 2004). 

This was attributed to a blunted IFN-γ response resulting in delayed parasitic clearance 

(Stoicov et al. 2004). Worth noting, IFN-γ is the major mediator of resistance to T. 

gondii infection (Melo, Jensen, and Saeij 2011). This cytokine acts by the activation of 
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effector mechanisms including tryptophan degradation (Fujigaki et al. 2002; Engin et al. 

2012), autophagy (Krishnamurthy et al. 2017), and reactive oxygen and nitrogen species 

induction (Adams et al. 1990; Engin et al. 2012). IFN-γ also plays a vital role in IAV 

infections by inhibiting viral replication (Yuk et al. 2016) and up-regulating the 

expression of MHC I and MHC II (Killip, Fodor, and Randall 2015). In this study, mice 

infected with T. gondii then IAV 4 days apart had higher, albeit not statistically 

significant, parasitic loads on day 5 post-infection compared to mice singly infected 

with T. gondii. These mice also displayed significantly lower IFN-γ expression levels in 

their spleens on day 2 post-infection compared to T. gondii alone infected mice. 

Whereas mice infected with IAV alone had significant reduction in IFN-γ levels similar 

to co-infected mice. These findings suggest that IAV infection results in an attenuated 

IFN-γ production accompanied by a delayed clearance of the parasite in the context of 

co-infection with the virus and the parasite 4 days apart. Interestingly, when co-

infections were only 1 day apart, mice were able to clear the parasite similar to those 

infected with T. gondii alone. This could be due to the smaller window of time between 

infections, which allowed mice to control T. gondii replication before IFN-γ was 

dampened due to the subsequent virus replication.  In line with these findings 

suggesting delayed tachyzoite clearance, co-infected mice displayed significantly 

decreased abundance of the bradyzoite marker (BAG-1) suggesting a delayed or more 

controlled progression into the chronic stage of toxoplasmosis in mice with mixed 

infection relative to those infected with the parasite alone. 

Surprisingly, we were not able to detect IFN-γ expression in the lungs on day 2 

or 5 post IAV infection, indicating a possible IAV strain specific IFN-γ induction. 

Hence, IFN-γ does not induce an antiviral response in the strain of IAV used in our 
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infection model.  

Several studies of IAV co-infections with other pathogens including fungi and 

neamtodes have described attenuated disease outcomes (Furze, Hussell, and Selkirk 

2006; Wiley and Harmsen 2008; Chowaniec, Wescott, and Congdon 1972; O’Brien, 

Schultz-Cherry, and Knoll 2011). In contrast, our model of IAV and T. gondii co-

infection revealed enhanced disease severity and increased viral replication. Hence, we 

assessed TNF-α, a major cytokine often examined in IAV co-infections with critical 

roles in promoting inflammation, increasing MHC class I protein expression on target 

cells, and boosting the effect of cytotoxic T-cells. Elevated expression of TNF-α has 

been demonstrated to induce severe lung immunopathology and ultimately death 

(Hussell, Pennycook, and Openshaw 2001). Furze et al. previously demonstrated 

amelioration of influenza-induced pathology in mice co-infected with T. Spiralis that 

was partially attributed to reduced inflammation because of a reduction of lung TNF-α 

in co-infected mice. In contradiction, recent emerging evidence has demonstrated an 

immune regulatory role for TNF-α (Damjanovic et al. 2011; Singh et al. 2007), whereby 

a study by Damjanovic et al. revealed that TNF- α plays a role in the control of lung 

inflammation by regulation of MCP-1. Our results indicated elevated expression of lung 

TNF-α and enhanced viral replication in mice co-infected one day but not four days 

apart. However, mice co-infected one day apart had higher survival relative to mice co-

infected 4 days apart, and similar survival compared to mice with IAV alone. This 

suggests that the increase in TNF-α expression in lungs of co-infected mice might have 

an immune regulatory role that reduces inflammation and ultimately lead to the 

observed enhanced survival in mice co-infected one day apart..  Moreover, our results 

indicated a reduction of spleen TNF-α in synchrony with the reduction of IFN-γ in co-
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infected mice. This dampened expression of IFN-γ and TNF-α in the spleen could lead 

to the delayed tachyzoite clearance as well as the delayed or more controlled 

progression into the chronic stage of toxoplasmosis. Indeed, TNF-α is an important 

inflammatory cytokine in the context of T. gondii, whereby it synergizes with IFN-γ for 

macrophage activation and the inhibition of parasite replication (Filisetti and Candolfi 

2004).  

The dramatic reduction in spleen IFN-γ and TNF-α on day 5 after IAV infection 

coincided with a dramatic increase in IL-10 cytokine levels in co-infected and singly 

infected mice. This is consistent with previous studies indicating that a heightened IL-10 

response dampens IL-12 expression, and in turn leads to the reduction of IFN-γ and 

TNF-α expression (Couper, Blount, and Riley 2008). IL-10 counters the harmful effects 

of an exaggerated Th-1 inflammatory response which produces TNF-α, IFN-γ and NO 

during T. gondii infection (Filisetti and Candolfi 2004). Our results indicate that mice 

co-infected one or four days apart retain the anti-inflammatory effect of IL-10 on T. 

gondii induced pathology. IL-10 is also vital for the control of lung inflammation, 

whereby a previous study by Sun et al. demonstrated an aggravated pulmonary 

inflammation and increased mortality in IL-10 deficient mice (J. Sun et al. 2009). IL-10, 

however, does not have an effect on viral replication (J. Sun et al. 2009), thus limiting 

its role to the alleviation of virus-induced immunopathological inflammation. In this 

study, we noted an increase in IL-10 expression in co-infected mice and mice with T. 

gondii alone, relative to IAV singly infected mice. This indicates that the presence of T. 

gondii in co-infected mice enhances IL-10 expression. This elevation, however, was not 

strong enough to induce a reduction in lung TNF-α of co-infected mice.  

Furthermore, we investigated the role of IL-6 as another anti-inflammatory 
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cytokine involved in both IAV and T. gondii infections. In the context of IAV, IL-6 

plays an important role in neutrophil accumulation and neutrophil mediated clearance of 

viral infection (Dienz et al. 2012). Additionally, IL-6 is a costimulatory molecule with 

important implications during early T. gondii infection, leading to a reduction in 

parasitic growth (Jebbari et al. 1998). Our results showed a reduction of IL-6 levels 

within the spleen on day 2 post IAV infection; however, this decrease was transient, and 

IL-6 levels were recovered on day 5. These observation suggest that early IL-6 

reduction coupled with reduced TNF-α and IFN- γ may have contributed to the delayed 

tachyzoite clearance in co-infected mice. Additionally, our results indicate that lung IL-

6 levels in mice infected with T. gondii alone are significantly lower than those 

observed in IAV control mice. In contrast, co-infected mice do not display significant 

alteration of IL-6 mRNA expression, thus the presence of T. gondii maintains lung IL-6 

expression in co-infected mice, counteracting IL-6 suppression due to IAV. 

Our study provides important data that could be used to further elucidate the 

complex interaction between two clinically important pathogens, IAV and T. gondii. 

According to our findings, an acute infection with T. gondii followed by IAV a few days 

later, results in an aggravated disease outcome. This may be attributed to a reduction of 

spleen IFN-γ, TNF-α, and IL-6 levels in co-infected mice which led to delayed 

tachyzoite clearance and delayed progression into chronic toxoplasmosis. In addition, it 

is proposed that a synergy between peak cytokine production is required to maintain 

host survival, whereby co-infection when there is a shorter time between infections 

results in a less aggravated disease outcome.  

Although transcription is the primary level at which gene expression is 

controlled, it does not always mirror the protein levels due to the action of repressors, 
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which may inhibit translation (Cooper 2000). Therefore,, follow-up studies are required 

to assess cytokine protein expression. Additionally a more holistic profile of cytokines 

using more times points is essential. Such studies should be ideally coupled with 

histopathological examinations of the lungs and spleen of co-infected mice to better 

understand the underlying mechanisms of disease modulation. Influenza infections can 

sometimes lead to unexplained complications in otherwise healthy individuals. The role 

of un-noticed co-infections with other pathogens like T. gondii as a cause of such 

complications should be further assessed clinically. 	
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