AMERICAN UNIVERSITY OF BEIRUT

DOES A SUBSIDIZED SCHOOL MEAL PROGRAM REDUCE ABSENTEEISM AND IMPROVE ACADEMIC PERFORMANCE OF PALESTINIAN REFUGEE SCHOOL CHILDREN?

by
REEM ALI HOTEIT

A thesis
submitted in partial fulfillment of the requirements for the degree of Master of Science to the Department of Epidemiology and Population Health of the Faculty of Health Sciences at the American University of Beirut

AMERICAN UNIVERSITY OF BEIRUT

DOES A SUBSIDIZED SCHOOL MEAL PROGRAM REDUCE ABSENTEEISM AND IMPROVE ACADEMIC PERFORMANCE OF PALESTINIAN REFUGEE SCHOOL CHILDREN?

by
REEM ALI HOTEIT

AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT RELEASE FORM

I authorize the American University of Beirut to: (a) reproduce hard or electronic copies of my thesis, dissertation, or project; (b) include such copies in the archives and digital repositories of the University; and (c) make freely available such copies to third parties for research or educational purposes.

X I authorize the American University of Beirut, to: (a) reproduce hard or electronic copies of it; (b) include such copies in the archives and digital repositories of the University; and (c) make freely available such copies to third parties for research or educational purposes after : One --- year from the date of submission of my thesis, dissertation, or project. Two - X- years from the date of submission of my thesis, dissertation, or project. Three --- years from the date of submission of my thesis, dissertation, or project.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank God for giving me the will, strength, ability, power and wisdom to keep going for completing this thesis and achieving this dream.
The completed work wouldn't have been possible without the support and encouragement of several people. It was really a remarkable experience!

Words are insufficient to express my deepest gratitude to my thesis advisor Dr. Hala Ghattas for her care, monitoring and guidance during all stages of my thesis.
I am grateful to Mr. Khalil El Asmar, who has been so helpful and cooperative in giving his feedback related to statistics and data analysis.
I express my sincere thanks to Dr. Lilian Ghandour who is my thesis committee member for her constructive comments and her constant encouragement.
I am very much thankful to Dr. Nadine Sahyoun who is an external thesis committee member for her valuable comments.
A special thanks to Ms. Zeina Jamaluddine for clarifying everything related to the research study and her help in coding.

I am forever indebted to my beloved family for their constant encouragement and support throughout my thesis progression. With great pleasure, I would like to give special thanks to my soul mate, Dr. Imad Bou Hamad for his continuous support, patience and inspiration during my years of study, and my dream of fulfilling this work wouldn't have been blossomed without your sacrifice and prayers. I am extremely fortunate to have you in my life.
My children Liyana, Rosalina, Amarena and Adam ...You are my treasure. I Love you to the moon and back. Sorry for the time I left you home and for missing a lot of opportunities to play and go out with you.

Last but not least, my mom for her unconditional love and support and my mother-in law for all of the sacrifices that you've made on my behalf.

Couldn't have done it without you all!

AN ABSTRACT OF THE THESIS OF

Reem Ali Hoteit for Master of Science
Major: Epidemiology

Title: Does A Subsidized School Meal Program Reduce Absenteeism and Improve Academic Performance of Palestinian Refugee School Children?

Background: Palestinian refugees are one of the most marginalized populations in the Middle East. High rates of poverty, food insecurity, low diet quality, increasing NCD burden, poor control of school food and high rates of dropout after brevet have been reported in this population, and are negatively associated with educational accomplishment. There is evidence in the literature that a healthy diet is necessary for adequate cognitive development and educational achievement, and school feeding interventions have led to improvements in attendance and academic achievement in low income countries. In the context of Palestinian refugees in Lebanon, an intervention aiming to improve child diets at school was implemented in schools run by the United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA).

Aim: The aim of the present analysis was to study the impact of a subsidized school nutrition intervention on school absenteeism and academic performance (Arabic and English languages and Mathematics grades) in school children attending UNRWA schools in Lebanon.

Methods: This school-based intervention study ran for the duration of the school year (8-months period). Two UNRWA schools were selected to receive a subsidized healthy school meal program in addition to nutrition education, whereas two control schools received nutrition education only. Data were collected from parents and children at the four schools at base line and at the 8-month end line using questionnaires focusing on sociodemographic and economic status, anthropometric measurements and anemia. School attendance records were collected by teachers on a daily basis and were returned to the study team at the end of each month. Official grades were obtained from the school at the end of the school year for Arabic and English languages and Mathematics.

Descriptive statistics were generated for the dependent and independent variables and were expressed as means and standard deviations (SD) for the continuous variables and as frequencies and percentages for the categorical ones. Simple and multivariate logistic regressions were conducted to test the association between the intervention and academic performance and to adjust for selected covariates.
For the school absenteeism outcome, negative binomial regression was conducted using a mixed effects model to obtain unadjusted and adjusted Incident Rate Ratio (IRR).

Results: The total number of children who participated in the study at baseline was 1433, with students aged 5-16 years (first to sixth grade). Significant differences were observed between the intervention and control groups at baseline regarding a number of socio-demographic and anthropometric measurements variables. Results from negative binomial regression models showed that the intervention had a significant negative relationship with school absenteeism when compared to the control group. Students who had low (1-3 months) and high (4-8 months) participation were at lower risk of being absent
compared to the control group [IRR: $0.77,95 \%$ CI: $0.66,0.90$, p-value<0.001 and IRR: $0.78,95 \%$ CI: ($0.68,0.88$, p-value=0.006], respectively. Females were at higher risk of absenteeism as compared to males [IRR: $1.19,95 \%$ CI: 1.05, 1.35 , p-value $=0.004$]. There were no significant associations between participation in the subsidized school meal intervention and academic performance in bivariate or multivariate analyses. Higher maternal education was associated with higher odds of performance in Arabic language ($\mathrm{AOR}=2.99,95 \% \mathrm{CI}=2.06-4.34$, p -value <0.001), English language $(\mathrm{AOR}=3.14,95 \% \mathrm{CI}=$ 2.16-4.58, p-value<0.001) and Mathematics $(\mathrm{AOR}=1.78,95 \% \mathrm{CI}=1.25,2.54$, pvalue <0.001). And for every one day increase in absence, the odds of being in the top half of the class decreased as follows: Arabic language (AOR=0.94, 95\%CI $=0.91-0.96$, pvalue <0.001), English language ($\mathrm{AOR}=0.92,95 \% \mathrm{CI}=0.89-0.94$, p-value <0.001) and Math ($\mathrm{AOR}=0.90,95 \% \mathrm{CI}=0.87-0.92 \mathrm{p}$-value<0.001).

Conclusion: The study results revealed a small but significant effect of the subsidized school meal intervention on reducing absences. In addition, no correlation was detected between the subsidized meal program and academic performance for the three subjects: Arabic and English language and Mathematics. More research is required to determine whether the sustained implementation of this subsidized program can increase both attendance and academic performance in the longer term.

CONTENTS

PageACKNOWLEDGEMENTS v
ABSTRACT vi
LIST OF ILLUSTRATIONS xi
LIST OF TABLES xii
LIST OF ABBREVIATIONS xiv
Chapter
I. INTRODUCTION 1
A. The Context of Palestinian Refugees in Lebanon 1

1. Education of Palestinian Refugees in Lebanon (PRL) 2
2. Food Security of Palestinian Refugees in Lebanon (PRL) 3
B. Nutrition and Educational Outcomes 3
3. Anemia and Cognitive and Educational Outcomes 4
4. Stunting, Obesity and Cognitive and Educational Outcomes 6
C. Interventions Conducted in Schools to Improve Nutritional Status and Educational Outcomes 8
5. Nutrition Education 8
6. School Feeding Programs 9
D. Conceptual Framework of the School Feeding Program 13
E. Healthy Kitchens Healthy Children Study 14
F. Aim, Hypothesis and Significance of the Study 15
7. Aim 15
8. Hypothesis 15
9. Significance 15
II. METHODOLOGY 16
A. Study Design and Population Group 16
B. Sampling Frame 18
C. Subject Selection and Recruitment 18
D. Study Phases and Data Collection Methods 19
10. Phase I: Baseline Assessment. 19
11. Phase II: Intervention 22
12. Phase III: End line 23
E. Intervention Profile 24
F. Ethical Approval 24
G. Measures 25
13. The Dependent Variables 25
14. The Independent Variables 26
H. Statistical Analysis 27
III. RESULTS 30
A. General Socio-demographic Characteristics of the Participating Children 30
B. Anthropometric Measurements of the Participating Children 32
C. School Absenteeism 33
D. Academic Performance 35
IV. DISCUSSION 45
A. Interpretation of Findings 45
B. Limitations 53
C. Conclusion 54
D. Recommendations 54
Appendices
15. Approval of Research 56
16. Child Assent Form 59
17. Parent Consent Form 61
18. Parents Survey 63
19. Parents Survey-Translated to Arabic 74
20. Child Survey 87
21. Child Survey-Translated to Arabic 94
22. Referral Letter 101
23. Invitation to Education Session on Anemia 102
24. Snack Meal Program 103
25. Average Nutritional Content of the Snacks 104
26. Sample Lesson Plan for Nutrition Education 105
27. Additional Tables 111
28. Graphs for the Academic Performance Distribution Across the Different Grades and Sections Among Schools 121
REFERENCES 124

ILLUSTRATIONS

Figure Page

1. Conceptual framework linking school meals with educational achievement 13
2. Summary of the sampling framework and distribution of the participants throughout the study 24
3. Distribution of absences (days per year) by intervention and control group 33
4. Distribution of the Arabic language grades among first to sixth grade classes in the four selected schools 121
5. Distribution of the English language grades among first to sixth grade classes in thefour selected schools122
6. Distribution of the Mathematics grades among first to sixth grade classes in the four selected schools 123
7. Detailed summary of the total absences of the participants in the study 124

TABLES

Table Page

1. List of variables and their description 28
2. Socio-demographic characteristics of participating children. 31
3. Anthropometric measurements of the participating children 32
4. Negative binomial regression for the outcome school absenteeism 34
5. Distribution of school performance in Arabic language and participation, socio- demographic and nutritional status 36
6. Distribution of school performance in English language and participation, socio- demographic and nutritional status 37
7. Distribution of school performance in Mathematics and participation, socio- demographic and nutritional status 39
8. Associations between intervention participation, co-variates and Arabic performance using simple logistic regression (Unadjusted OR) and multivariate logistic regression (Adjusted OR) 42
9. Associations between intervention participation, co-variates and English language performance using simple logistic regression (Unadjusted OR) and multivariate logistic regression (Adjusted OR) 43
10. Associations between intervention participation, co-variates and English language performance using simple logistic regression (Unadjusted OR) and multivariate logistic regression (Adjusted OR) 44
11. Descriptive statistics of school absenteeism of the children stratified by intervention and control groups 111
12. Negative binomial regression for the outcome absence per year and participation as binary 111
13. Negative binomial regression for the outcome absence per year and participation as continuous 11214. Associations between intervention participation (binary), co-variates and Arabicperformance using simple logistic regression (Unadjusted OR) and multivariate logisticregression (Adjusted OR)113
14. Associations between intervention participation (continuous), co-variates andArabic performance using simple logistic regression (Unadjusted OR) and multivariatelogistic regression (Adjusted OR)114
15. Associations between intervention participation (binary), co-variates and English language performance using simple logistic regression (Unadjusted OR) and multivariate logistic regression (Adjusted OR) 114
16. Associations between intervention participation (continuous), co-variates andEnglish language performance using simple logistic regression (Unadjusted OR) andmultivariate logistic regression (Adjusted OR)115
17. Associations between intervention participation (binary), co-variates and Mathematics performance using simple logistic regression (Unadjusted OR) and multivariate logistic regression (Adjusted OR) 116
18. Associations between intervention participation (continuous), co-variates and Mathematics performance using simple logistic regression (Unadjusted OR) and multivariate logistic regression (Adjusted OR) 117
19. Negative binomial regression for the outcome absence per year and participation, stratified by females 118
20. Negative binomial regression for the outcome absence per year and participation(binary), stratified by females 119

ABBREVIATIONS

/	Per
\%	Percent
<	Less than
>	Greater than
$=$	Equal to
\pm	Plus or minus
\leq	Less than or equal to
\geq	Greater than or equal
\$	US Dollar
AUB	American University of Beirut
BMI	Body Mass Index
CI	Confidence interval
CITI	Collaborative Institutional Training Initiative
cm	Centimeter
FAO	Food and Agriculture Organization of the United Nations
FFE	Food For Education
HAZ	Height-for-Age z-score
Hb	Hemoglobin
IDA	Iron Deficiency Anemia
IRB	Institutional Review Board
IRR	Incident Rate Ratio
IQ	Intelligence Quotient
kcal	Kilocalorie
kg	Kilograms
L.L.	Lebanese Pounds
LMICs	Low and Middle-Income Countries
n	Frequency
NBR	Negative Binomial Regression
NCD	Non-Communicable Disease
NE	Nutrition Education
NEI	Nutrition Education Intervention
OR	Odds Ratio
PRL	Palestinian Refugees in Lebanon
SD	Standard Deviation
SFPs	School Feeding Programs
UNESCO	United Nations Educational, Scientific and Cultural Organization
UNHCR	United Nations High Commissioner for Refugees
UNICEF	United Nations Children's Fund

UNRWA United Nations Relief and Works Agency
WFP World Food Program
WHO World Health Organization

CHAPTER I

INTRODUCTION

A. The Context of Palestinian Refugees in Lebanon

A recent survey conducted jointly by the American University of Beirut (AUB) and the United Nations Relief and Works Agency (UNRWA), estimated the number of Palestinian refugees residing in Lebanon to be between 260,000 and 280,000 (Chaaban et al., 2015) most of which (63.4%), are settled in 12 camps across the country. This marginalized population is denied civil, economic, political and social rights leading to deprivation and low socioeconomic status. Due to their presence in the camps with limited resources, they encounter a prolonged and devastating list of challenges, with implications on their quality of life (Chaaban et al., 2015).

The situation is not really improving, in fact in $2010,66.4 \%$ of Palestinian refugees were poor and 6.6% were extremely poor (Chaaban et al., 2010) whereby they couldn't meet their basic food nutrition and other non-food necessities. And in 2015, there was no significant change in poverty level since 2010 (Chaaban et al., 2015). Furthermore, higher poverty rates were observed for those living in the camps compared to those in the vicinities with variation between the different districts across Lebanon.

UNRWA has been providing basic health, education and social services to this population for over than 60 years since (1950s). Recent agreements between UNRWA and Lebanese hospitals granted Palestinians access to tertiary services such as specialized care (MAP, 2011). However, the cost is very high for hospital admissions and it is not affordable by
families due to poverty and limited amount is compensated by UNRWA (MAP, 2011).It is worth noting that only 5.5 \% of PRL have access to private health insurance (Chaaban et al., 2015).

According to the AUB survey 2015, about 40% of this population have chronic illness and 10% have functional disability (Chaaban et al., 2015).

Higher education level has been associated with lower prevalence of chronic and acute illness; and it may be that education is a protective factor through health literacy (Chaaban et al., 2015).

1. Education of Palestinian Refugees in Lebanon (PRL)

Considered a protective factor against poverty, education has been shown to lead to better life outcomes (Sorensen et al., 2015). UNRWA has 69 schools across the country and two vocational education centers. Palestinian children have limited access to public schools in Lebanon and private schools high tuition fees are not affordable to the majority of this population, therefore UNRWA educational services are considered vital, with 81% of children aged 5 to 16 years attending them. In Lebanon there are about 38,000 PRL students and according to the latest joint survey report, in 2015, between AUB and UNRWA , 97% of school aged children are enrolled at the elementary level and 61% at the secondary level (Chaaban et al., 2015). According to the same survey, about half of the teenagers leave school before finishing their education. The majority of them were males with school dropout rate of 5.8%, which is twice that of females 2.6%, and this rate increases with age because of the increased need to work to support their families (Chaaban et al., 2015; MAP, 2011).

2. Food Security of Palestinian Refugees in Lebanon (PRL)

In 1996, the World Food Summit specified that food security occurs when "all people at all times have access to nutritious, safe and sufficient food both physically and economically in order to sustain an active and healthy life" (FAO, 1996). Food insecurity is a major problem among PRL. A recent study assessing the status and prevalence of food security of the Palestinian refugees living in both camps and gatherings across Lebanon, revealed that overall 61% of PRL households are food insecure and 72% of the poor households experience severe food insecurity (Ghattas, Sassine, Seyfert, Nord, \& Sahyoun, 2015). In this community, food insecurity is correlated with lower total household expenditure and poor quality diets. Food insecure Palestinian households consume meat, dairy, fruit and vegetables less often than food secure households and both higher crowding index and lower education attainment have a direct positive relationship with food insecurity.

Food insecurity impacts children negatively, and has been associated with poor child nutritional outcomes in various contexts(Bhattacharya, Currie, \& Haider, 2004; Cook et al., 2004). There is also evidence linking food insecurity, child nutrition and educational outcomes.

B. Nutrition and Educational Outcomes

Child nutritional status has been associated with cognitive development and therefore has been hypothesized to affect educational outcomes. A recent systematic review of dietary intake and academic performance showed that there is a statistically significant relationship between nutritional intake and academic performance internationally (Burrows, Goldman, Pursey, \& Lim, 2017). From the literature, it is evident that there is a negative association between the different
components of malnutrition; stunting, underweight, overweight and anemia, and cognitive development (Granthammcgregor, 1995) .

1. Anemia and Cognitive and Educational Outcomes

According to World Health Organization (WHO), anemia, defined as low blood hemoglobin concentration level is a global public health problem affecting different ages and especially young children in both developing and developed countries (WHO, 2011). Globally, 43 \% of children are anemic (WHO, 2011). It is the most prevalent nutritional disorder in the Middle East. The Eastern Mediterranean Region occupies the second place in anemia burden globally after the African Region which has the highest proportion of anemia in children worldwide; and falls within the moderate to severe deficiency category (Mhanna, Rahal, Iskandarani, \& Hammoudi, 2016; WHO, 2011).

The risk factors for Iron Deficiency Anemia (IDA) are various and include low iron intake, low intake of vitamins B12 and folate, poor absorption from diet, different types of infections and genetic disorders. The most consistent indicator of anemia at the population level is the measurement of blood hemoglobin concentration (Hb concentration). The global mean hemoglobin concentration is $111 \mathrm{~g} / \mathrm{L}$ in children. Yet its concentration varies across regions and a threshold of $110 \mathrm{~g} / \mathrm{L}$ is categorized as anemia in children (WHO, 2011).

A recent UNRWA report showed that IDA is widespread among Palestinian refugees in Lebanon and six out of ten children under-five years of age are affected by IDA (UNRWA, 2012).

Low hemoglobin levels are correlated with poor mental and physical development, impaired immune function, increased fatigue and weakness (Bobonis, Miguel, \& Puri-Sharma,
2006). These reduced cognitive abilities and delayed psychomotor development result in poor academic performance and school attendance (Bobonis, Miguel, \& Sharma, 2004).

Various studies have found associations between IDA and decreased cognitive performance (Glazer \& Bilenko, 2010; Sachdev, Gera, \& Nestel, 2005). It was found that children who were anemic in infancy continue to have poor academic performance and cognition in the future (S. Grantham-McGregor \& Ani, 2001). Halterman et al. in his study, showed that the risk of scoring below average in Mathematics is greater than twice for anemic students compared to those having normal hemoglobin levels (Halterman, Kaczorowski, Aligne, Auinger, \& Szilagyi, 2001). Other studies conducted in Palestine (Abudayya, Shi, Abed, \& Holmboe Ottesen, 2011) and Saudi Arabia (Mamdooh, 2008) also showed a negative relationship between anemia and school performance.

On the other hand, a study conducted by Pollitt showed that there were no significant differences on Raven Intelligence Quotient (IQ) test between anemic and non-anemic students; however significantly poorer performance on achievement tests was linked to anemia (Pollitt, 1997). Providing iron supplementation was found to significantly improve test performance at school (Taras, 2005) especially for those who are seven years of age or above and are initially iron-deficient (Sachdev et al., 2005).

Furthermore, poor health as a result of anemia can also lead to lower school attendance (Hutchinson, Powell, Walker, Chang, \& Grantham-McGregor, 1997). An intervention was done on students in India by providing them iron supplements showed that the school absenteeism decreased significantly with increased iron levels (Bobonis et al., 2006).

2. Stunting, Obesity and Cognitive and Educational Outcomes

Other forms of malnutrition have also been associated with cognitive and educational outcomes.
Stunting is defined as an inadequate length/height for age of children that is an outcome of early prolonged exposure to malnutrition and specifically undernutrition (WHO, 2008). Stunting is categorized as a height-for-age z -score (HAZ) that is less than minus two standard deviations (-2 SD) below the reference standard mean (De Onis, Blossner, \& WHO, 1997). It is considered the most common indicator of chronic child undernutrition in low and middle-income countries (LMICs). And according to the latest joint United Nations Children's Fund (UNICEF) report, there were about 155 million stunted children under-five years of age in 2016 globally; with a 35 \% decrease since 1990. The Middle East region has 17 \% stunting levels in under-5 year old children. A UNICEF report on the situation of Palestinian children in the occupied Palestinian territory, Jordan, Syria and Lebanon estimated that about 20% of children-under-five are stunted (UNICEF, 2010).

Several studies have documented correlations between stunting and school achievement (Crookston et al., 2011; Poh et al., 2013; Sokolovic et al., 2014). A study showed that children who were stunted in between the ages of 9-24 months had significantly lower scores in Mathematics and language as compared to non-stunted when they were re-examined at 11-12 years of age (Chang, Walker, Grantham-McGregor, \& Powell, 2002). In Cambodia, a study revealed that stunted children scored lower than non-stunted children on all tests (Perignon et al., 2014).

In addition, a recent systematic review revealed that stunting has been associated with a negative impact on both physical and cognitive development (Hossain et al., 2017). Some of those consequences include poor cognition and educational performance.

Another study done in Palestine revealed an inverse relationship between stunting and school performance (Abudayya et al., 2011).

Limited research has been done in the Arab region on the effect of stunting and educational outcomes.

Obesity is an "abnormal and excessive fat accumulation that may impair health" as defined by the WHO. Body Mass Index (BMI) for age is used for measuring child's weight status and classifies overweight or obesity. According to WHO, overweight is a BMI-for-age greater than 1 standard deviation above the WHO Growth Reference median; and obesity is greater than 2 standard deviations above the WHO Growth Reference median. In 2016, over 340 million children and adolescents were either overweight or obese globally (WHO, 2017) . Furthermore, a new joint study by Imperial College London and WHO indicated that there has been a tenfold increase in childhood and adolescent obesity (aged five to 19 years) in the last four decades (Abarca-Gómez et al., 2017). Not to forget that the prevalence of obesity was about 20% or more in the Middle East as well in the same study.

The relationship between childhood obesity and academic achievement is of interest (Taras \& Potts-Datema, 2005) and BMI is a consistently significant predictor of academic achievement (Sigfúsdóttir, Kristjánsson, \& Allegrante, 2006).

The vast majority of studies revealed a correlation between body weight status and academic performance or GPA, revealing that normal weight students have higher cognitive and better school performance in both Mathematics and languages as compared to overweight children (Hjorth et al., 2016; Mo-suwan, Lebel, Puetpaiboon, \& Junjana, 1999; Veldwijk et al., 2012). However, a study done in Gaza Strip in Palestine on school children showed no association between BMI and school performance (Abudayya et al., 2011). Moreover, other studies indicated
consistent results of no correlation as well (Baxter, Guinn, Tebbs, \& Royer, 2013; Florence, Asbridge, \& Veugelers, 2008; Li, Dai, Jackson, \& Zhang, 2008).

On the other hand, the evidence linking child overweight and school absenteeism is inconsistent. A study in the United States of America indicated that overweight and obese elementary students were significantly more likely to miss school as compared to normal-weight children (12.2 days vs. 10.5 days) (Geier et al., 2007). Another study, revealed that more than one-third sick days annually were linked to the overweight and obese categories (Pan, Sherry, Park, \& Blanck, 2013). Contradictory results from other studies declared that there is no strong association between overweight and obesity and school absence, except among extremely obese children (Rappaport, Daskalakis, \& Andrel, 2011).

Considering the strong evidence on the impact of anemia and stunting on educational outcomes, and mixed evidence on the role of overweight and obesity, various interventions have been conducted aiming to improve nutritional status and educational outcomes.

C. Interventions Conducted in Schools to Improve Nutritional Status and Educational Outcomes

1. Nutrition Education

According to the Food and Agriculture Organization of the United Nations (FAO), the three pillars of development are nutrition, health and education. Good nutrition and the state of well-being are interconnected (WHO, 2016) and this can be reached by choosing appropriate kinds of good quality food.

A well-balanced diet plays an essential role in children's educational outcome, especially by affecting their school performance which in turn influences their future education, career and health (Florence et al., 2008; Sorensen et al., 2015). Hence, establishing healthy eating practices
to improve the health of children is essential. Best practice states that nutrition knowledge should be communicated to children from an early stage in life (Pérez-Rodrigo \& Aranceta, 2001), where they get used to choosing a proper diet that promotes both their physical health and cognitive development for an active life. Therefore, this can be accomplished through nutrition education interventions (NEIs) where school is considered the most important place for nutrition education because children spend most of their time there.

A recent systematic review suggested that long-term nutrition education in school can help children achieve a healthy weight and therefore healthy growth (Price, Cohen, Pribis, \& Cerami, 2017). Many nutrition education interventions which were done around the world resulted in significantly increasing the nutrition knowledge, healthy food choices and a better change in attitudes and behaviors (Kaufman-Shriqui et al., 2016; Nguyen, 2016; Powers, Struempler, Guarino, \& Parmer, 2005). In addition, reviews conducted to assess the success of the schoolbased nutrition education (NE) interventions verified that teachers should be well-trained and the demonstrated interactive ways of teaching are more effective than traditional ways (Kupolati, MacIntyre, \& Gericke, 2014). A Well-designed and successfully implemented NEI can provide children with the necessary knowledge and skills toward healthy food choices and subsequently dietary behavior change (USDS, 2014) .

2. School Feeding Programs

A review of school meal standards in the United Kingdom dates the concept of school feeding programs (SFP) to the mid-19 ${ }^{\text {th }}$ century in Europe (Evans \& Harper, 2009). Going back to the literature, the benefits of SFPs are vast (Adelman, Alderman, Gilligan, \& Lehrer, 2008; Ahmed, 2004). Firstly, it was shown that poor nutrition among children had adverse effects on
educational outcomes including classroom engagement and participation (Ahmed, 2004). Secondly, malnourished students had irregular school attendance therefore resulting in a poor academic performance (Ahmed, 2004). Harper et al. highlights the fact that the implementation of school-meal programs is for providing a nutritional safety net for children through a free meal program, especially for those who are nutritionally vulnerable (Harper, Wood, \& Mitchell, 2008).

School meals were first introduced by the United Nations under the World Food Program (WFP) at the beginning of 1990s. In 2008, around 22 million children from 70 countries around the world received school meals from WFP (Bundy et al., 2009). WFP states that "SFP are far more than food-giving. They are an investment in the world's poorest children and in our common future and global stability" (WFP, 2010). They are recognized as a practice to increase school attendance, cognitive and academic performance, and improve nutritional status (Buttenheim, Alderman, \& Friedman, 2011).

Numerous studies studying the impact of SFP on educational outcomes were documented in the literature. However, this relationship is inconsistent.

There is evidence for the effect of school feeding interventions on attendance and academic performance in low-income countries where under-nutrition is common (Powell, Granthammcgregor, \& Elston, 1983). A study done in Jamaica on 115 children in a poor area, showed that both school attendance and arithmetic scores were improved only for the class who received standard school meal compared to the two classes that did not receive any meal (Simeon, 1998). Recently, a study conducted in Nigeria indicated improvement in both attendance and grades in children who were fed daily through a SFP (Taylor \& Ogbogu, 2016) .

A systematic review of the literature for studies done in developing countries indicated that Food For Education (FFE) and SFPs influence both health and nutrition and consequently increase school attendance, decrease the drop-out rate and positively impact academic performance (Lawson, 2012). In Bangladesh, SFP has raised school enrollment by 14.2%, and increased school attendance by about 1.3 days a month (Ahmed, 2004).

Improved academic performance has also been exhibited as a result of school feeding programs. Jomaa et al. stated that improving children's diets can have long-term effects on their academic performance (Jomaa, McDonnell, \& Probart, 2011). Various studies from around the world including Kenya, Philippines, Uganda, and Bangladesh indicated a better performance due to these feeding programs (Ahmed, 2004; Alderman, Gilligan, \& Lehrer, 2008; Jukes, Drake, \& Bundy, 2007; Tan, Lane, \& Lassibille, 1999; Whaley et al., 2003). The same study in Bangladesh, indicated a direct effect on academic performance through a 15.7% increase in test scores and better performance in Mathematics was observed (Ahmed, 2004).

In contrast, school meals were found to have no impact on the cognitive skills of children (Vermeersch \& Kremer, 2005) and better scores were linked to teachers' experience. A systematic review on school feeding programs revealed the weakness of these programs and minimal effects were indicated on both school attendance and academic performance and therefore, further research needs to be conducted to assess the effectiveness of these meals (Galloway et al., 2009).

The review in the preceding paragraphs indicated that there is mixed evidence about the significance of school meals on academic achievement. A review paper examining the link between school meals and educational outcomes in developing countries covering a 20 year
period, determined that the evidence on the impact of school meals on students' educational outcomes is inconclusive (Glewwe, Hanushek, Humpage, \& Ravina, 2011).

Additionally, there is evidence in the literature that school feeding programs have differential effects by gender. For example, in his study, Afridi discovered that the attendance among girls and not boys was increased by a national meal program in India (Afridi, 2011). Also, it was found that well-nourished girls have better attention span and were more involved in class discussion than boys (Bundy et al., 2009). According to Jomaa, children were motivated to attend school as a result of SFP implementation and especially girls and this, overall, positively affects educational outcomes (Jomaa et al., 2011).

Although school-based nutrition interventions are proven to be beneficial (Ahmed, 2004;
Jomaa et al., 2011; Taylor \& Ogbogu, 2016)no studies have previously investigated the relationship between a subsidized school meal program and both absences and academic performance in Palestinian refugee children in Lebanon.

D. Conceptual Framework Linking School Meals with Educational Achievement

The conceptual theoretical framework that summarizes the hypothesis of the present study is found in Fig. 1

Figure 1: Conceptual framework linking school meals with educational achievement
Source: (S. M. Grantham-McGregor, Chang, \& Walker, 1998; Jacoby, Cueto, \& Pollitt, 1998; Yendaw \& Dayour, 2014)

The conceptual theoretical framework guiding the present study shows there is a relationship between school meals and educational achievement through three pathways.

The first pathway indicates that greater school attendance result from school meals program and therefore encouraging students to participate and engage more in the education process and
finally resulting in a better academic performance (S. M. Grantham-McGregor et al., 1998; Yendaw \& Dayour, 2014). The second pathway indicates that improved cognitive behavior and better attention span of children will result from the alleviation of short-term hunger and consequently affecting educational outcomes. The third path shows that improved nutritional status through the school meal program, by providing healthy food, directly increases school attendance and students engagement and indirectly improves educational achievement. Therefore healthier nutrition is needed to increase school attendance and improve educational outcomes (Buttenheim et al., 2011) .

E. Healthy Kitchens Healthy Children Study

In the context of Palestinian refugees in Lebanon, the Healthy Kitchens Healthy Children study was designed to investigate the effect of an intervention that has the potential to target some of the root causes of food insecurity in Palestinian refugees, i.e. employment and incomegenerating potential of women, educational attainment, access to food-related assets and mental health.

This project study consisted of a two-pronged approach. The first was the establishment of community kitchens as small business enterprises where women were trained in food preparation, food safety and business entrepreneurship. The second was the development of a subsidized school food program for children aged 5 to 12 years catered by the trained women from the community kitchens. This study was conducted between 2014 and 2017.

F. Aim, Hypothesis and Significance of the Study

1. Aim

The primary aims of the present study are:

- To examine the association between participation in a daily subsidized school meal program and school absenteeism.
- To examine the association between participation in a daily subsidized school meal program and school performance; more specifically, Arabic and English languages and Mathematics grades.

2. Hypotheses

- There is a negative relationship between participation in subsidized school meal intervention and school absenteeism.
- There is a positive association between participation in subsidized school meal intervention and academic performance; more specifically, Arabic and English languages and Mathematics grades.

3. Significance

This study contributes to the literature on the impact of nutrition interventions on school absenteeism and academic performance. If this intervention is shown to be effective in its impact on school absences and academic performance, it has the potential to influence future educational potential, livelihoods and health of this marginalized population.

Additionally, this research is of importance since it can provide a constructive feedback for SFP implementers to help in scaling up and improving such programs.

CHAPTER II

METHODOLOGY

A. Study Design and Population Group

The current research component was designed as a school-based intervention study. The present analysis tests the impact of a community-based school nutrition intervention over 8months (October to May) on school absenteeism and academic performance of school children attending UNRWA schools in Lebanon. Data were collected at base line and end line using structured questionnaires and routine data collected by schools. This study thus investigates the effect of participation in the subsidized meal program on both school absenteeism and academic performance by comparing outcomes in those who participated with those who did not.

After receiving the Institutional Review Board (IRB) approval for the study at the American University of Beirut (AUB), four schools were selected to participate. The four schools were: Toulkarm, Yarmouk, Yaabod, and Ramallah. These schools were selected from Bourj El-Barajneh and Shatila camps.

- Bourj El-Barajneh Camp

Bourj El-Barajneh camp is located in the southern suburbs of Beirut, near Beirut International Airport and was established in 1948 by the league of Red Cross Societies to accommodate refugees who fled from the Galilee in northern Palestine .According to UNRWA, there are more than 18,000 registered refugees and it is considered the most overpopulated camp around Beirut with extremely poor living conditions(UNRWA, 2017 a). "Toulkarm" and "Yarmouk" participating schools are two of seven schools located in this camp in addition to one
health center and a job counselling and placement center. The study was conducted in these two schools in 2014-2015.

- Shatila Camp

Shatila camp is located in southern Beirut and was established in 1949 by the International Committee of the Red Cross (ICRC) to accommodate hundreds of refugees who fled from Amka, Majed al-Kroum and al-Yajour area villages in northern Palestine after 1948. According to UNRWA, there are more than 10,000 registered refugees in Shatila camp, two schools and one health center. The demographic profile in this camp shows that children aged 012 years constitute about 17% of the camp's population (UNRWA, 2017 b). The two big participating schools "Yaabod" and "Ramallah" in this project study are located in this camp and they participated in 2015-2016.

The four schools were approached by the study team who explained the overall aims and objectives of the study.

Eligible schools were matched on gender distribution, and geographic quarter (a proxy for socioeconomic status); one school from each pair was randomly allocated to the school nutrition intervention arm (subsidized healthy food sold at school + nutrition education) and the second to the control arm (nutrition education alone). The schools that received the subsidized meal program were Toulkarm and Ramallah and those that received nutrition education only were Yarmouk and Yaabod.

B. Sampling Frame

The four eligible schools approached are UNRWA elementary schools with students aged 5-16 years with a student population of 150-500 children each. The sample comprised first to sixth grade students. Sections varied in size and number between the different grades and across the four schools. The total number of children recruited at baseline was 1433. Around 200 students were chosen from each grade. Out of the 1433 children, 714 participated in the subsidized meal. The children, who chose to participate, received meals at a subsidized price (0.25USD/meal), 5 days a week during recess. Each meal provided about 314 kcal , and 12 g protein (30% daily requirement), according to the WFP recommendations for meals provided at schools (World Food Program, 2006). The study ran for the duration of the school year (approximately 8 months). A total of 71 children withdrew from the study throughout the school year, mainly due to migration. Therefore, end-line data was not collected for those students.

- Sample size calculation

The sample size of children was calculated in regards to the overall objectives of the study and in order to detect a 0.2 SD change in mean dietary diversity score of children with 80% power (at 95\% significance). This required a sample size of 400 children (2 schools) in each arm (accounting for 10% loss to follow up or non-response).

C. Subject Selection and Recruitment

At the beginning of each school year (2014-2015, 2015-2016), all parents were asked to come to the participating school during September/October with allocated specific dates for each grade. Data collectors presented the study and its objectives to the parents of schoolchildren and teachers. They explained what the study involved and took informed consent (their agreement to
participate in the study) of both parents and children before data collection (see appendices $\underline{2}$ and 3). Parents of participating children who agreed to participate were interviewed as privately as possible.

All first to sixth grade students attending the four selected UNRWA primary schools were approached. Data collection was conducted at each school, one class at a time.

D. Study phases and Data Collection methods

1.Phase I: Baseline Assessment

After receiving the IRB approval and prior to the implementation of the school feeding program, a set of baseline data were collected from all participating school children and their caretakers at intervention and control schools in the first month of the school years between 2014 and 2015 by the field surveyors. Standardized techniques and calibrated scales were used by the field surveyors to minimize bias.

- Questionnaire - Parent's Survey

The parent's survey included a multi-component questionnaire including: household demographics, employment, education, health of the child, assistance, living conditions index, household assets, income, and expenditure, current provision of child food at school, food security, coping strategies, knowledge, attitudes (see appendix 4).

The time taken to complete one survey with the parent was about 45 minutes.
Only questions related to household demographics, education, living conditions index and expenditure were analyzed for the present study.

Socio-demographic

Socio-demographic characteristics included information on gender, age, employment, education, health of the child, assistance by receiving any support, living conditions including crowding index which is defined as the number of persons living in the household divided by the number of rooms.

Economic

Total expenditure was calculated as total monthly household expenditure per capita in US dollars.

- Questionnaire -Children Survey

This section related to the child's nutrition and food security status (see appendix 6) and was assessed through:

- Anthropometric measurements (height, weight, waist circumference using standard procedures)
- Hemoglobin assessment was conducted on a finger-prick sample and measured using a portable HemoCue (Angelholn, Sweden)
- Breakfast recall and concurrent child's dietary diversity score (DDS according to FANTA guidelines)
- Child food security questionnaire
- Knowledge and attitudes

The time taken to complete a survey for a child was about 10 minutes.
For this study only anthropometric measurements and hemoglobin assessment will be considered.

Anthropometric Measurements

Weight and height of children were measured by the field surveyors using standardized techniques and calibrated equipment. Subjects were asked to remove shoes, socks, and any heavy clothing. Weight and height were measured to the nearest 0.1 kg with an electronic digital balance and height was measured to the nearest 0.1 cm with a stadiometer, respectively. Measurements were repeated twice and the mean was taken. BMI for age was then calculated according to WHO growth charts.

Iron Status Assessment

HemoCue machine was utilized to measure the hemoglobin levels in blood.
According to a recent review article, this machine is the mostly common used device worldwide because of its optimal performance (Sanchis-Gomar, Cortell-Ballester, Pareja-Galeano, Banfi, \& Lippi, 2013).

It has a sensitivity of 85% and specificity of 94% (Kruske, Ruben, \& Brewster, 1999; Mills \& Meadows, 1989). The results of the HemoCue machine were validated at the American University of Beirut Medical Center by comparing results of samples conducted through it with Complete Blood Count (CBC) results of the same blood samples measured at the hospital's laboratory on alternate days during data collection.

Before conducting finger prick, data collectors ensured that parental consent and child assent have been obtained and briefly described the procedure to the child in a simple way. If any hemoglobin value was less than $115 \mathrm{~g} / \mathrm{dl}$, a referral was given to the child's parent (see appendix 8) and an invitation letter was sent to his/her parents to attend an education session on anemia (see appendix 9).

2.Phase II: Intervention

Nutrition Education Intervention

Children were given nutrition education sessions by the supervisor around 3 times per year and the educational session included the following topics:

- The importance of diet diversity and how to achieve it.
- Physical activity and the importance of breakfast.
- Personal hygiene.

These lessons were followed up by activities mentioned in the IBSAR health guide (see appendix $\underline{12}$ for a complete lesson plan with its activities). Furthermore, the effectiveness of the education sessions were also monitored through short pre- and post-tests.

Parents and teachers were also invited to attend two nutrition education sessions per year.

Subsidized Meal Program Intervention

The children, who chose to participate, received meals at a subsidized price (0.25USD/meal). The subsidized meal program included a variety of snacks across the different weeks. According to a pre-planned weekly menu, children in the intervention group received a different snack, 5 days a week during recess. These snacks included dairy products such as Labne, complex carbohydrates such as bulgur wheat, meat and chicken, zaatar, vegetables and fruits (see appendix 10 for pre-planned list of snacks). The menu provided a variety of vitamins and minerals that is necessary for the growth of a child on a daily basis. The average nutritional content of each snack (for year one and two) were aimed to achieve 20-30\% of protein based on the recommended dietary allowance (RDA) for school aged children (see appendix 11 for the average nutritional content for snacks).

3.Phase III: End line Assessment

Again, consent and assent forms were signed at the end of each school year and data were collected using the same questionnaires with both parents and children, respectively. The same steps were followed as above in phase I with the addition of some questions related to program evaluation.

E. Intervention Profile

Figure 2: Summary of the sampling framework and distribution of the participants throughout the study

F. Ethical Approval

The Institutional Review Board (IRB) at the American University of Beirut (AUB) reviewed and approved all the procedures and protocols of this study (see appendix 1). After the reception of IRB approval, school directors were approached and the study was explained. Prior to data collection, all field surveyors or interviewers who were involved in this study received training sessions on ethical conduct of human research.

The study was conducted among a refugee population, which is considered vulnerable. For this reason, special precautions were taken to protect participant confidentiality, safety, and
autonomy. Precautions included: informing participants (both parents and students) of the aims of the study and their right to decline to participate, seeking consent/assent before any data collection, protecting confidentiality through password-protected files and locked storage facilities for any physical data collected, and partnering with UNRWA (whose mandate includes the protection of Palestinian refugees) in recruitment and intervention phases.

Please refer to appendix for the parent consent form and child assent form (see appendices $\underline{2}$ and 3).

G. Measures

1. The dependent variables:

The present study had four main outcomes:

- Outcome 1: School Absenteeism

School absenteeism defined as the number of days absent per year given that the standard length of a school year is 180 days. School attendance records were collected by teachers on daily basis and were returned to the study research team at the end of each month of the school year.

Academic Performance

- Outcome 2: Arabic language grades
- Outcome 3: English language grades
- Outcome 4: Mathematics grades

Academic performance refers to the "actual or real grades" that the students received during a specific trimester or during the year. For this research, academic achievement or academic performance were used interchangeably. The academic performance encompasses the
three main subjects mentioned above, where each one will be treated as an independent outcome. The relative median or the 50th percentile for each section per grade per school was taken as a cut-off point for the last semester grade (m4) before the final. A binary variable (table 1) was therefore generated with those who are greater than or equal to the median belonging to the top half of the class and those who are below the median belonging to the lower half of the class.

Official grades were obtained from the school at the end of the school year for Mathematics, Arabic and English languages.

2. The Independent variables

The main exposure for the four outcomes is participation in school meals. This variable was categorized as follows:

Control group refers to the group that did not receive a subsidized school meal. Low participation refers to students who participated in the SFP at least once and up to three months and high participation refers to the students who participated at least four months and up to eight months.

For School Absenteeism, the following variables were considered as independent covariates: Gender, age, maternal education, crowding index, total expenditures, stunting, weight status and anemia.

For Academic Performance, the following variables were considered as independent covariates: Gender, age, maternal education, school, crowding index, total expenditures, absence per year, stunting, weight status and anemia.

H. Statistical Analysis

All the data collected between 2014 and 2016 were collected using tablets on Open Data Kit (ODK) and downloaded on Microsoft Excel and all computations were conducted using STATA 14 statistical software. Z-anthrops package in STATA was used to calculate the z-scores for weight-for-age, height-for-age and BMI-for-age according to the WHO standards.

Descriptive statistics with numerical representations were generated for the dependent and independent variables. Graphical representations were generated for the school absenteeism outcome and the grades distribution across the different sections and grades in schools (See figures $\underline{3}, \underline{4}, \underline{5}, \underline{6}$. They were expressed as means and standard deviations (SD) for the continuous variables and as frequencies and percentages for the categorical ones. Independent t test was conducted for the continuous variables and Chi-squared test for the categorical ones. A frequency and proportion analysis were conducted to check the socio-demographic characteristics and the anthropometric measurements of the children stratified and compared across control and intervention groups. Bivariate analysis was conducted as well to check whether there is an association between the independent variable and the outcome. A p-value less than 0.05 was considered as statistical significance.

Class was taken as a random effect because heterogeneity is assumed to be at class level due to the difference in grading by teachers in different classes.

For the first dependent variable school absenteeism, unadjusted and adjusted incident rate ratios (IRR) were obtained for each independent variable by conducting negative binomial regression using mixed effects model taking class as a random effect. This method is used in accordance with the literature to test the hypothesis that the intervention is associated with school attendance (Barnett \& Nurmagambetov, 2011; Rappaport et al., 2011).

Regarding the academic performance outcome that encompasses the three subjects (Math, Arabic and English language), the relative median in each section per grade per school was taken as a cut-off point. Taking the class as a random effect, unadjusted and adjusted odds ratios (OR) were obtained for each independent variable by conducting simple and multivariate logistic regression for the academic performance dependent variable (Arabic and English languages and Mathematics).

In both logistic and negative binomial regression, the covariates that had a p-value ≤ 0.2 in the unadjusted model were eligible to enter into the adjusted full model, except for the covariates: participation in a school meal (main exposure), anemia and weight status (important variables in the literature) which were retained in all models.

The list, description and codes used for all the exposures are found in table 1.

Table 1: List of variables and their description

Variable	Type of Variable	Description/Coding					
Demographic Characteristics			$	$	Participation in School Meals (months)	Categorical	0=Control 1=Low Participation (One to three months) 2=High Participation (Four to eight months)
:---	:---	:---					
Age (years)	Continuous						
Sex of the Child	Categorical	1=Male 2=Female					
Maternal Education	Categorical	$0=$ up to Primary level-till grade 5 $1=$ up to Intermediate Level-Grade 9 2= with Baccalaureate and above					
School	Categorical	$1=$ Yarmouk $2=$ Toulkarm $3=$ Yaabod 4=Ramallah					
Expenditures (\$/month/capita)	Continuous	Sum of all expenditures per month/capita					

$\left.\begin{array}{|l|l|l|}\hline \text { Crowding Index } & \text { Categorical } & \begin{array}{l}0=\text { Not crowded } \\ (<3 \text { person/room) } \\ 1=\text { Crowded } \\ (\geq 3 \text { person/room) }\end{array} \\ \hline \text { Class } & \text { Categorical } & \begin{array}{l}1=\text { Grade 1 } \\ 2=\text { Grade 2 } \\ 3=\text { Grade 3 } \\ 4=\text { Grade 4 } \\ 5=\text { Grade 5 }\end{array} \\ 6=\text { Grade 6 }\end{array}\right]$

CHAPTER III

RESULTS

The total study sample size was 1433 children. At baseline, there were 679 students from the control schools (Yarmouk and Yaabod) and 746 students in total from the intervention schools (Toulkarm and Ramallah) out of which 235 students were enrolled in the Toulkarm intervention school and 511 students in Ramallah intervention school (see figure 2) . At end line, a total of 71 students dropped out from the study and therefore were not included in the analysis.

A. General Socio-demographic Characteristics of the Participating Children

The total number of children included in the present analysis was 1362 with an age range of 5 to 16 years and a mean (\pm S.D) of 8.92 years (2.01). Two thirds (67.40%) of the children were females (Table 2). Significant differences were observed between the intervention and control groups at baseline regarding a number of socio-demographic variables. The intervention group had a higher level of maternal education compared to the intervention group for up to intermediate level (33.77 \% vs. 27.83%) and with Bac and above (19.21% vs. 11.88%) with a pvalue <0.001. The mean expenditure ($\$ /$ month/capita) was significantly higher among the control group as compared to the intervention group (204 ± 115.31 vs. 179.78 ± 106.63, p-value <0.001). Compared to the control group, the crowding index was significantly higher among the intervention group (65.67% vs. 54.04 , p-value <0.001). In addition, the mean number of absences is significantly higher in the control group compared to the intervention group (5.58 days vs. $4.35 d a y s$, p-value <0.01). However, there were no statistically significant gender differences between the intervention and control groups and no differences in academic
performance in the three subject areas (Arabic and English languages and Mathematics).
Table 2: Socio-demographic characteristics of participating Children $(\mathrm{n}=1362) \dagger$.

	$\begin{aligned} & \text { Total Sample } \\ & (\mathrm{n}=1362) \end{aligned}$	Intervention ($\mathrm{n}=714$)	$\begin{gathered} \text { Control } \\ (n=648) \end{gathered}$	p-value
Age (years)	8.92 ± 2.01	8.78 ± 1.96	9.08 ± 2.06	0.007*
Gender				0.078
Males (Ref=1)	444(32.60)	248(34.73)	196(30.25)	
Females	918(67.40)	466(65.27)	452 (69.75)	
Maternal education				<0.001**
Up to primary level ($\operatorname{Ref}=0$)	700(54.10)	416(60.29)	284(47.02)	
Up to Intermediate level	396(30.60)	192(27.83)	204(33.77)	
With Bac and above	198(15.30)	82(11.88)	116(19.21)	
School				<0.001**
Yarmouk (Ref=1)	242(17.77)	0 (0.00)	242(37.35)	
Toulkarm	228(16.74)	228(31.93)	0 (0.00)	
Yaabod	406 (29.81)	0 (0.00)	406(62.65)	
Ramallah	486(35.68)	486(68.07)	0 (0.00)	
Expenditures (\$/month/capita)	191.26 ± 111.39	179.78 ± 106.63	204 ± 115.31	<0.001**
Crowding Index ${ }^{\text {c }}$				<0.001**
Not Crowded (Ref=0)	519(39.74)	240(34.33)	279(45.96)	
Crowded	787(60.26)	459(65.67)	328(54.04)	
Class				0.009*
Grade 1 (Ref=1)	222(16.30)	121(16.95)	101(15.59)	
Grade 2	270(19.82)	167(23.39)	103(15.90)	
Grade 3	241 (17.69)	125(17.51)	116(17.90)	
Grade 4	226(16.59)	110(15.41)	116(17.90)	
Grade 5	226(16.59)	108(15.13)	118(18.21)	
Grade 6	177(13.00)	83(11.62)	94(14.51)	
Absence (days per year)	4.93 ± 5.22	4.35 ± 3.98	5.58 ± 6.25	<0.001**
Academic Performance				
Mathematics				0.869
Lower Half (Ref=0)	680(16.59)	358(50.14)	322(49.69)	
Top Half	682(13.00)	356(49.86)	326(50.31)	
Arabic Language				0.872
Lower Half (Ref=0)	661(48.53)	348(48.74)	313(48.30)	
Top Half	701(51.47)	366(51.26)	335(51.70)	
English Language				0.813
Lower Half (Ref=0)	668(49.05)	348(48.74)	320(49.38)	
Top Half	694(50.95)	366(51.26)	328(50.62)	

\dagger Independent t -tests were conducted for continuous variables and Chi-square tests were performed for categorical variables to test differences between groups.
b Percentages are within column
c Crowding index was calculated as the No. of persons living in the household per the No. of rooms
$* \mathrm{p} \leq 0.05$: significant and $* * \mathrm{p}<0.01$: highly significant

B. Anthropometric Measurements of the Participating Children

The mean for the height-for-age z-score (HAZ) for the children was -0.28 and that of the BMI-for-age z-score (BAZ) was 0.39. At baseline, only 5.6 \% of children were stunted, 70.39% had normal weight, 17.2% were overweight and 12.4% were obese. The prevalence of anemia in this population was 11.1%. Significant differences were observed between the intervention and control groups at baseline in BMI-for-age z-score (BAZ) and weight status. Compared to the intervention group, the mean BAZ for the control group was significantly higher ($0.53 \pm 1.27 \mathrm{vs}$. $0.27 \pm 1.24, \mathrm{p}$-value <0.001). Also, higher proportion of children were overweight and obese in the control group compared to the intervention group (19.24 vs. 15.42 and 15.09 vs. 10.09 , pvalue $=0.002$), respectively (table 3). No significant differences in HAZ, stunting and anemia were observed between the intervention and control groups.

Table 3: Baseline anthropometric measurements of the participating children $(\mathrm{n}=1362) \dagger$.

	Total Sample $(\mathbf{n}=\mathbf{1 3 6 2})$	Intervention $(\mathbf{n}=\mathbf{7 1 4})$	Control $(\mathbf{n}=\mathbf{6 4 8})$	\boldsymbol{p}-value
Height-for-age z-score (HAZ)	-0.28 ± 1.10	-0.28 ± 1.02	-0.29 ± 1.18	$\mathbf{0 . 9 0 7}$
BMI-for-age z-score (BAZ)	0.39 ± 1.26	0.27 ± 1.24	0.53 ± 1.27	$<\mathbf{0 . 0 0 1 * *}$
Stunting				$\mathbf{0 . 4 6 3}$
Not stunted (Ref=0)	$1234(94.41)$	$663(94.85)$	$571(93.91)$	
Stunted	$73(5.59)$	$36(5.15)$	$37(6.09)$	
Weight Status	$913(70.39)$	$517(74.50)$	$396(65.67)$	$\mathbf{0 . 0 0 2 *}$
Thin and Normal (Ref=0)	$223(17.19)$	$107(15.42)$	$116(19.24)$	
Overweight	$161(12.41)$	$70(10.09)$	$91(15.09)$	
Obese	$1092(88.93)$	$567(87.91)$	$525(90.05)$	$\mathbf{0 . 2 3 2}$
Anemia	$136(11.07)$	$78(12.09)$	$58(9.95)$	
No Anemia (Ref=0)				
Anemia				

C. School Absenteeism

Figure 3: Distribution of absences (days per year) by intervention and control groups

This graph (figure 3) represents the distribution of the total number of absences (days per year) for the control and intervention groups. It is highly skewed to the right with most children having low number of absences and those having high number of absences above 10 days are very small. And those who had the intervention had fewer number of absences compared to the control group. This was confirmed by data presented in table 2 where the mean absence (days per year) for the intervention group was significantly lower as compared to the control group (4.35 ± 3.98 vs. 5.58 ± 6.25, p-value <0.001).

- Negative Binomial Regression Analysis

Results from negative binomial regression models showed that the intervention had a negative significant relationship with school absenteeism when compared to the control group (table 4). And similar results were obtained when adjusted for covariates.

Students who had low (1-3 months) and high (4-8 months) participation were at lower risk of being absent compared to the control group [IRR: $0.77,95 \%$ CI: $0.66,0.90, \mathrm{p}$-value <0.001 and IRR: $0.78,95 \%$ CI: $(0.68,0.88$, p-value $=0.006]$, respectively.

Females were at higher risk of absenteeism as compared to males [IRR: 1.19, 95% CI: 1.05 , 1.35 , p -value $=0.004]$.The remaining covariates age, maternal education, total expenditure, crowding index, stunting, weight status and anemia appeared not to be significantly associated with school absenteeism as shown in table 4.

Table 4: Negative binomial regression for the outcome school absenteeism

	IRR	Unadjusted		IRR	Adjusted$\mathbf{9 5 \%} \mathbf{C I}$	P-value
		$\mathbf{9 5 \%}$ CI	\mathbf{P}-value			
Covariate						
Participation in School Meals						
Control (Ref=0)						
Low Participation	0.78	(0.67, 0.90)	<0.001 **	0.77	(0.66,0.90)	<0.001**
High Participation	0.75	(0.66, 0.84)	<0.001 **	0.78	(0.68,0.88)	0.006*
Age (years)	1.03	(0.94, 1.14)	0.450			
Gender						
Male (Ref=1)						
Female	1.17	$(1.05,1.31)$	0.005*	1.19	$(1.05,1.35)$	0.004**
Maternal Education						
Up to primary level ($\mathrm{Ref}=0$)						
Up to Intermediate level	1.06	(0.94, 1.20)	0.324	1.03	(0.90,1.16)	0.633
With Bac and above	0.87	(0.74, 1.02)	0.095	0.86	(0.73,1.02)	0.094
Expenditures (\$/month/capita)	0.99	(0.99, 1.00)	0.092	0.99	(0.99,1.00)	0.084
Crowding Index						
Not Crowded (Ref=0)						

Crowded $\quad 1.05 \quad(0.94,1.17) \quad 0.362$

Stunting
Not stunted $(\operatorname{Ref}=0)$
Stunted
Weight Status
Thin and Normal (Ref=0)
Overweight 0.93

Obese
1.04

$(0.80,1.08)$	0.362	0.95	$(0.82,1.11)$	0.569
$(0.89,1.23)$	0.566	1.01	$(0.85,1.19)$	0.897

Anemia
No Anemia(Ref=0)

Anemia	0.99	$(0.83,1.19)$	1.0	1.02	$(0.86,1.22)$	0.750

D. Academic Performance

The results of the bivariate analysis of each subject separately with the main exposure "participation in school meals" or the intervention showed that they were not significantly associated and thus the intervention did not improve the academic performance (tables $\underline{5}, \underline{6}, \underline{7}$). Maternal education and absence (in days) were significantly associated with the three subjects Arabic and English languages and Mathematics (p-value <0.001). Therefore, the proportion of students with good academic performance in the three subjects was higher amongst those with higher maternal education. The mean of absences among higher achievers was less than that of lower achievers for the three subjects Arabic (4.27 ± 4.86 vs. 5.64 ± 5.50), English language (3.97 \pm 4.42 vs. $5.93 \pm 5.77)$ and Mathematics $(3.78 \pm 3.83$ vs. $6.09 \pm 6.10)$ with a p-value <0.001.

In addition, the results showed that there is a significant relationship between Arabic and English languages and the following covariates: age, gender, maternal education, total expenditures and absence. Younger students appear to perform better with a mean $\pm \mathrm{SD}$ of age $(8.71 \pm 1.84$, p-value $<0.001 ; 8.79 \pm 1.86$, p-value $=0.014)$ for both Arabic and English languages respectively. Also, the proportion of students with better Arabic and English languages
performance was higher among the females (54.90%, p-value $<0.001 ; 53.16 \%$; p-value $=0.019$), respectively. Students with higher mean of expenditure (\$/month/capita) appear to be among the higher achievers in both Arabic and English languages as compared to those with lower mean of expenditure (\$/month/capita) (198.4 ± 112.4 vs. 183.5 ± 109.7, p-value $=0.01 ; 201.4 \pm 109.85$ vs. 180.5 ± 112.06, p-value <0.001), respectively.

Crowding Index appeared to have a significant relationship with English language only where the proportion of students with good performance was higher among those not living in crowded homes (56.45%, p-value $=0.002$).

Furthermore, border line significance appeared between anemia and Arabic language only where a higher proportion of lower achievers were anemic (55.15%, p -value $=0.05$).

Table 5: Distribution of school performance in Arabic language and participation, sociodemographic and nutritional status

School Performance Arabic				
	Top Half (\geq median)	Lower Half (< Median)	Total	${ }^{\text {a }}$ p-value
Mean \pm SD or $\mathrm{n}(\%)^{\text {b }}$				
Covariates				
Participation in School Meals				0.431
Control (Ref=0)	335 (51.70)	313 (48.30)	648(100)	
Low Participation	125 (48.08)	135 (51.92)	260(100)	
High Participation	241 (53.08)	213(46.92)	454(100)	
Total	701	661	1362	
Age (years)	8.71 ± 1.84	9.14 ± 2.15	8.92 ± 2.01	$<0.001 * *$
Gender				$<0.001^{* *}$
Male (Ref=1)	197 (44.37)	247 (55.63)	444 (100)	
Female	504 (54.90)	414 (45.10)	918 (100)	
Total	701	661	1362	
Maternal Education				$<0.001^{* *}$
Up to primary level (Ref=0)	312 (44.57)	388 (55.43)	700 (100)	
Up to Intermediate level	217 (54.80)	179 (45.20)	396 (100)	
With Bac and above	139 (70.20)	59 (29.80)	198(100)	
Total	668	626	1294	

School				0.931
Yarmouk ($\mathrm{Ref}=1$)	124(51.24)	118(48.76)	242(100)	
Toulkarm	113(49.56)	115(50.44)	228(100)	
Yaabod	211(51.97)	195(48.03)	406(100)	
Ramallah	253(52.06)	233(47.94)	486(100)	
Total	701	661	1362	
Expenditures (\$/month/capita)	198.4 ± 112.4	183.5 ± 109.7	191.2 ± 111.3	0.01*
Crowding Index ${ }^{\text {c }}$				0.075
Not Crowded (Ref=0)	284(54.72)	235(45.28)	519(100)	
Crowded	391(49.68)	396(50.32)	787(100)	
Total	675	631	1306	
Absence per Year	4.27 ± 4.86	5.64 ± 5.50	4.93 ± 5.22	$<0.001^{* *}$
Grade				0.983
Grade 1 (Ref=1)	118(53.15)	104(46.85)	222(100)	
Grade 2	140(51.85)	130(48.15)	270(100)	
Grade 3	125(51.87)	116(48.13)	241(100)	
Grade 4	115(50.88)	111(49.12)	226(100)	
Grade 5	116(51.33)	110(48.67)	226(100)	
Grade 6	87(49.15)	90(50.85)	177(100)	
Total	701	661	1362	
Stunting				0.109
Not stunted ($\mathrm{Ref}=0$)	643 (51.11)	591 (47.89)	1234 (100)	
Stunted	31 (42.47)	42 (57.53)	73 (100)	
Total	674	633	1307	
Weight Status				0.543
Thin and Normal (Ref=0)	480 (52.57)	433 (47.43)	913 (100)	
Overweight	110 (49.33)	113 (50.67)	223 (100)	
Obese	79 (49.07)	82 (50.93)	161 (100)	
Total	669	628	1297	
Anemia				0.05*
No Anemia (Ref=0)	583 (53.39)	509 (46.61)	1092 (100)	
Anemia	61 (44.85)	75 (55.15)	136 (100)	
Total	644	584	1228	
${ }^{\text {a }} \mathrm{p}$-value is derived from Pearson Chi-Square for all categorical variables and from independent samples T-test for all continuous variable ${ }^{\mathrm{b}}$ Percentages are within column ${ }^{\text {c }}$ Crowding index was calculated as the No. of persons living in the household per the No. of rooms *p ≤ 0.05 : significant and $* * p<0.01$: highly significant				

Table 6: Distribution of school performance in English language and participation, sociodemographic and nutritional status

	School Performance English Language		
	Top Half (\geq median $)$	Lower Half (<Median)	Total

Low Participation	122 (46.92)	138 (53.08)	260(100)	
High Participation	244 (53.74)	210(46.26)	454(100)	
Total	694	668	1362	
Age (years)	8.79 ± 1.86	9.06 ± 2.14	8.92 ± 2.01	0.014*
Gender				0.019*
Male (Ref=1)	206 (46.40)	238 (53.60)	444 (100)	
Female	488 (53.16)	430 (46.84)	918 (100)	
Total	694	668	1362	
Maternal Education				$<0.001^{* *}$
Up to primary level ($\operatorname{Ref}=0$)	308 (44.00)	392 (56.00)	700 (100)	
Up to Intermediate level	216 (54.55)	180 (45.45)	396 (100)	
With Bac and above	140 (70.71)	58(29.29)	198(100)	
Total	664	630	1294	
School				0.800
Yarmouk (Ref=1)	121(50.00)	121(50.00)	242(100)	
Toulkarm	111(48.68)	117(51.32)	228(100)	
Yaabod	207 (50.99)	199(49.01)	406(100)	
Ramallah	255(52.47)	231(47.53)	486(100)	
Total	694	668	1362	
Expenditures (\$/month/capita)	201.4 ± 109.85	180.5 ± 112.06	191.2 ± 111.3	$<0.001^{* *}$
Crowding Index ${ }^{\text {c }}$				0.002*
Not Crowded (Ref=0)	293(56.45)	226 (43.55)	519(100)	
Crowded	375(47.65)	412(52.35)	787(100)	
Total	668	638	1306	
Absence (days per year)	3.97 ± 4.42	5.93 ± 5.77	4.93 ± 5.22	$<0.001^{* *}$
Grade				0.932
Grade 1 (Ref=1)	111(50.00)	111(50.00)	222(100)	
Grade 2	134(49.63)	136(50.37)	270(100)	
Grade 3	128(53.11)	113(46.89)	241(100)	
Grade 4	113(50.00)	113(50.00)	226(100)	
Grade 5	120(53.10)	106(46.90)	226(100)	
Grade 6	88(49.72)	88(50.28)	177(100)	
Total	694	668	1362	
Stunting				0.305
Not stunted (Ref=0)	634 (51.38)	600 (48.62)	1234 (100)	
Stunted	33 (45.21)	40 (54.79)	73 (100)	
Total	667	640	1307	
Weight Status				0.622
Thin and Normal (Ref=0)	461 (50.49)	452 (49.51)	913 (100)	
Overweight	114 (51.12)	109 (48.88)	223 (100)	
Obese	88 (54.66)	73 (45.34)	161 (100)	
Total	663	634	1297	
Anemia				0.431
No Anemia (Ref=0)	569 (52.11)	523 (47.89)	1092 (100)	
Anemia	66 (48.53)	70 (51.47)	136 (100)	
Total	635	593	1228	

Table 7: Distribution of school performance in Mathematics and participation, sociodemographic and nutritional status

School Performance Mathematics				
	Top Half (\geq median)	Lower Half (<Median)	Total	${ }^{\text {a }}$ p-value
Mean \pm SD or $\mathrm{n}(\%)^{\text {b }}$				
Covariates				
Participation in School Meals				0.400
Control (Ref=0)	326(50.31)	322(49.69)	648(100)	
Low Participation	121 (46.54)	139 (53.46)	260(100)	
High Participation	235 (51.76)	219 (48.24)	454(100)	
Total	682	680	1362	
Age (years)	8.88 ± 1.92	8.96 ± 2.10	8.92 ± 2.01	0.422
Gender				0.538
Male (Ref=1)	217 (48.87)	227(51.13)	444 (100)	
Female	465(50.65)	453(49.35)	918 (100)	
Total	682	680	1362	
Maternal Education				$<0.001 * *$
Up to primary level ($\mathrm{Ref}=0$)	323(46.14)	377(53.86)	700 (100)	
Up to Intermediate level	209(52.78)	187(47.22)	396 (100)	
With Bac and above	122(61.62)	76(38.38)	198(100)	
Total	654	640	1294	
School				0.724
Yarmouk (Ref=1)	127(52.48)	115(47.52)	242(100)	
Toulkarm	109(47.81)	119(52.19)	228(100)	
Yaabod	199(49.01)	207(50.99)	406(100)	
Ramallah	247(50.82)	239(49.18)	486(100)	
Total	682	680	1362	
Expenditures (\$/month/capita)	198.32 ± 117.07	184.09 ± 104.9	191.09 ± 111.3	0.020*
Crowding Index ${ }^{\text {c }}$				0.138
Not Crowded (Ref=0)	275(52.99)	244(47.01)	519(100)	
Crowded	384(48.79)	403(51.21)	787(100)	
Total	659	647	1306	
Absence (days per year)	3.78 ± 3.83	6.09 ± 6.10	4.93 ± 5.22	<0.001**
Grade				0.664
Grade 1 (Ref=1)	108(48.65)	114(51.35)	222(100)	
Grade 2	125(46.30)	145(53.70)	270(100)	
Grade 3	121(50.21)	120(49.79)	241(100)	
Grade 4	116(51.33)	110(48.67)	226(100)	
Grade 5	116(51.33)	110(48.67)	226(100)	
Grade 6	96(54.24)	81(45.76)	177(100)	
Total	682	680	1362	
Stunting				0.366
Not stunted (Ref=0)	625(50.65)	609(49.35)	1234 (100)	
Stunted	33(45.21)	40(54.79)	73 (100)	
Total	658	649	1307	

Weight Status			0.697	
Thin and Normal (Ref=0)	$457(50.05)$	$456(49.95)$	$913(100)$	
Overweight	$118(52.91)$	$105(47.09)$	$223(100)$	
Obese	$79(49.07)$	$82(50.93)$	$161(100)$	0.363
Total	654	643	1297	
Anemia			$1092(100)$	
No Anemia (Ref=0)	$559(51.19)$	$533(48.81)$	$136(100)$	
Anemia	$64(47.06)$	$72(52.94)$	1228	
Total	623	605		

As in bivariate analysis, similar results were obtained in multivariate logistic regression, after adjustment for the different covariates in the model. Again, our main exposure (participation in school meals) did not show any significant association with the three subjects under the academic performance. The results are presented in tables $\underline{8}, \underline{9}$ and $\underline{10}$ for Arabic and English languages and Mathematics, respectively.

Again a strong correlation was found between the three subjects under academic performance and both maternal education and absenteeism (days per year). The odds of higher performance was associated with higher maternal education (with Bac and above) for Arabic $(\mathrm{AOR}=2.99,95 \% \mathrm{CI}=2.06-4.34, \mathrm{p}$-value<0.001 $)$, English language $(\mathrm{AOR}=3.14,95 \% \mathrm{CI}=2.16-$ 4.58, p -value <0.001) and Mathematics $(\mathrm{AOR}=1.78,95 \% \mathrm{CI}=1.25,2.54$, p -value <0.001).

For every one day increase in absence, the odds of being in the top half of the class decreases as follows: Arabic $(\mathrm{AOR}=0.94,95 \% \mathrm{CI}=0.91-0.96$, p-value <0.001), English language $(\mathrm{AOR}=0.92,95 \% \mathrm{CI}=0.89-0.94, \mathrm{p}-$ value $<0.001)$ and Mathematics $(\mathrm{AOR}=0.90,95 \% \mathrm{CI}=0.87-$ 0.92 p-value <0.001).

Also, as the age increases by one year, the odds of performing better decreases in both Arabic $(\mathrm{AOR}=0.90,95 \% \mathrm{CI}=0.84,0.95, \mathrm{p}$-value<0.001), and English language $(\mathrm{AOR}=0.93$, $95 \% \mathrm{CI}=0.88,0.99, \mathrm{p}$-value $=0.044$), which means that as students become older, their grades in school decrease.

Furthermore, anemia which had a borderline significant association with Arabic language performance lost its significance after adjustment.

All the remaining covariates including crowing index, stunting, weight status and total expenditure did not show any statistical significance after adjustment in the final models for the three subjects.

Therefore, there was no association between participation in the intervention and academic performance in Arabic and English languages and Mathematics.

Table 8: Associations between intervention participation, co-variates and Arabic performance using simple logistic regression (Unadjusted OR) and multivariate logistic regression (Adjusted OR)

	Unadjusted			Adjusted		
Socio-demographic/ Nutrition Characteristics	OR	(95\%) CI	P-value	OR	(95\%) CI	P -value
Participation in school meals Control (Ref=0)						
Low Participation	0.86	(0.64,1.15)	0.324	0.97	(0.70, 1.36)	0.902
High Participation	1.05	(0.83,1.34)	0.650	1.03	(0.78, 1.36)	0.805
Respondent Gender						
Male(Ref=1)						
Female	1.52	$(1.21,1.91)$	<0.001**	1.49	$(1.15,1.94)$	0.003*
Respondent Age	0.63	(0.54, 0.74)	<0.001**	0.90	(0.84, 0.95)	$<0.001^{* *}$
Maternal Educational						
Up to primary level (Ref=0)						
Up to Intermediate level	1.50	$(1.17,1.93)$	<0.001**	1.49	$(1.14,1.95)$	0.003*
With Bac and above	2.92	$(2.08,4.11)$	<0.001**	2.99	(2.06,4.34)	$<0.001^{* *}$
School						
Yarmouk (Ref=1)						
Toulkarm	0.93	$(0.65,1.34)$	0.716			
Yaabod	1.02	(0.74, 1.41)	0.857			
Ramallah	1.03	(0.75, 1.40)	0.835			
Crowding Index ${ }^{\text {c }}$						
Not Crowded (Ref=0)						
Crowded	0.81	$(0.65,1.02)$	0.075	1.04	(0.80, 1.34)	0.739
Expenditures (\$/month/capita)	1.00	(0.99,1.00)	0.017*	1.00	(0.99,1.00)	0.470
Absence (days per year)	0.94	(0.92,0.96)	$<0.001^{* *}$	0.94	(0.91,0.96)	$<0.001^{* *}$
Stunting						
Not stunted $(\operatorname{Ref}=0)$	0.67	(0.42,1.09)	0.111	0.77	$(0.45,1.33)$	0.365
Stunted						
Weight status						
Thin and Normal (Ref=0)						
Overweight	0.87	$(0.65,1.17)$	0.385	0.88	(0.64, 1.22)	0.475
Obese	0.86	(0.62, 1.21)	0.412	0.82	$(0.56,1.19)$	0.301
Anemia						
No Anemia (Ref=0)						
Anemia	0.71	$(0.49,1.01)$	0.05	0.72	(0.49,1.05)	0.092

All analyses were adjusted for Class as random effect

Table 9: Associations between intervention participation, co-variates and English language performance using simple logistic regression (Unadjusted OR) and multivariate logistic regression (Adjusted OR)

	Unadjusted			Adjusted		
Socio-demographic/ Nutrition Characteristics	OR	(95\%) CI	P-value	OR	(95\%) CI	P -value
Participation in School Meals						
Control (Ref=0)						
Low Participation	0.86	(0.64,1.15)	0.314	1.04	(0.74,1.45)	0.807
High Participation	1.13	(0.89,1.44)	0.307	1.15	(0.87, 1.51)	0.316
Respondent Gender						
Male (Ref=1)						
Female	1.31	(1.04,1.64)	0.019*	1.19	(0.91, 1.54)	0.192
Respondent Age	0.65	(0.57, 0.76)	$<0.001^{* *}$	0.93	$(0.88,0.99)$	0.044*
Maternal Educational						
Up to Intermediate level	1.52	(1.19, 1.95)	$<0.001^{* *}$	1.55	$(1.18,2.03)$	0.01*
With Bac and above	3.07	(2.18, 4.31)	<0.001**	3.14	(2.16, 4.58)	$0.001^{* *}$
School						
Yarmouk (Ref=1)						
Toulkarm	0.94	(0.66, 1.36)	0.776			
Yaabod	1.04	(0.75, 1.43)	0.808			
Ramallah	1.10	(0.81, 1.50)	0.530			
Crowding Index ${ }^{\text {c }}$						
Not Crowded (Ref=0)						
Crowded	0.70	(0.56,0.87)	0.002*	0.87	(0.67,1.12)	0.297
Expenditures (\$/month/capita)	1.00	(1.000,1.002)	$<0.001^{* *}$	1.00	$(0.99,1.00)$	0.175
Absence (days per year)	0.92	(0.89,0.94)	$<0.001^{* *}$	0.92	(0.89,0.94)	$<0.001^{* *}$
Stunting						
Not stunted (Ref=0)						
Stunted	0.78	(0.48,1.25)	0.306			
Weight Status						
Thin and Normal (Ref=0)						
Overweight	1.02	(0.76, 1.37)	0.866	1.03	(0.75, 1.42)	0.841
Obese	1.18	(0.84, 1.65)	0.330	1.15	$(0.79,1.68)$	0.433
Anemia						
No Anemia (Ref=0)						
Anemia	0.86	(0.60,1.23)	0.431	0.89	(0.61,1.30)	0.558

All analyses were adjusted for Class as random effect

Table 10: Associations between intervention participation, co-variates and Mathematics performance using simple logistic regression (Unadjusted OR) and multivariate logistic regression (Adjusted OR)

	Unadjusted			Adjusted		
Socio-demographic/ Nutrition Characteristics	OR	(95\%) CI	P-value	OR	(95\%) CI	P-value
Participation in School Meals Control (Ref=0)						
Low Participation	0.85	(0.64,1.14)	0.304	0.98	(0.70,1.36)	0.909
High Participation	1.05	(0.83, 1.34)	0.635	1.03	(0.78,1.35)	0.817
Respondent Gender						
Male (Ref=1)						
Female	1.07	$(0.85,1.34)$	0.538			
Respondent Age	0.75	(0.64, 0.88)	<0.001**	0.99	(0.93, 1.05)	0.745
Maternal Educational Up to primary level ($\mathrm{Ref}=0$)						
Up to Intermediate level	1.30	(1.01, 1.66)	0.035*	1.37	$(1.04,1.79)$	0.022*
With Bac and above	1.87	(1.35, 2.58)	<0.001**	1.78	(1.25, 2.54)	<0.001**
School						
Yarmouk (Ref=1)						
Toulkarm	0.82	$(0.57,1.19)$	0.311			
Yaabod	0.87	(0.63, 1.19)	0.394			
Ramallah	0.93	$(0.68,1.27)$	0.674			
Crowding Index ${ }^{\text {c }}$						
Crowded (Ref=0)						
Not Crowded	0.84	(0.67,1.05)	0.138	0.98	(0.76,1.26)	0.908
Expenditures (\$/month/capita)	1.00	(1.0001,1.002)	0.022*	1.00	(0.99,1.00)	0.286
Absence (days per year)	0.90	(0.87,0.92)	$<0.001^{* *}$	0.90	(0.87,0.92)	<0.001**
Stunting						
Not stunted $($ Ref $=0)$ Stunted	0.80	(0.50,1.29)	0.367			
Weight Status						
Overweight	1.12	(0.83, 1.53)	0.444	1.05	(0.76, 1.44)	0.759
Obese	0.96	(0.68, 1.34)	0.817	0.87	(0.60, 1.26)	0.476
Anemia						
No Anemia (Ref=0)						
Anemia	0.84	$(0.59,1.21)$	0.364	0.85	$(0.58,1.23)$	0.401

All analyses were adjusted for Class as random effect

CHAPTER IV

DISCUSSION

A. Interpretation of Findings

This study intended to assess the impact of a subsidized school meal program on school absenteeism and academic performance. The outcomes of this study could inform the establishment of effective interventions and policies with the possibility to influence future educational potential of this marginalized population. Therefore, this chapter will discuss the research findings in the context of the relevant literature on the topic.

To date, no study has analyzed the effect of a subsidized school meal program on both school absenteeism and academic performance of Palestinian school children attending UNRWA schools in Lebanon.

There are two possible ways in which this program is hypothesized to impact school attendance and achievement. Firstly, improving diets would have an impact on concentration by relieving short term hunger and on cognitive performance. Additionally, improved diets could also protect from "sick days". Secondly, this subsidized program may act as an incentive to send children to school, and therefore attendance would be improved and indirectly then, so would performance.

- Intervention uptake and implications on analysis

Children in intervention schools were given the option of participating in the subsidized meal program. Throughout the school year, children opted in or out every month.

In order to answer the research question, data from the Healthy Kitchens, Healthy Children were analyzed. And the exposure variable (participation in a school meal program) was analyzed by number of months that children participated.

Analysis from the study looking at nutritional outcomes such as diet diversity (for example: consumption of fresh food and vegetables and sweet consumption) revealed that significant changes in the diet diversity score (DDS) of children appeared when participation in the program was of four months and above.

This threshold was therefore adopted in the analysis, assuming that educational outcomes are acting through improvement in nutritional practices. The participation variable was therefore categorized as control, low (one to three months) and high participation (four to eight months).

Similar results for both outcomes were obtained from additional analysis by taking the main exposure "participation in school meals" as binary and continuous (see appendix 13).

- School Absenteeism

The first aim of this study is to investigate the relationship between the subsidized school meal intervention and school absenteeism.

An examination of the data for students from grades one to six revealed that there is a statistically negative correlation between the intervention and number of days absent throughout the year. The study findings showed that children who participated in school meals had lower risk of being absent compared to the control.

The school absence outcome is a count data and the graph distribution of school absenteeism for both the intervention and control group is shown in figure 3. From the distribution, most students did not miss school and lower number of students missed the school more than 10 days. The analysis of absences for all students and across all schools showed that
the data did not fit a normal distribution. In addition, the detailed summary of the analysis revealed that the mean and variance were not equal (see figure7) and that the variance was 6 times larger than the mean. Therefore, Negative Binomial Regression (NBR) was considered for the analysis due to over dispersion. NBR is the same as Poisson but it takes over dispersion into consideration. Although a lot of Zeros were present, yet Zero-inflated regression model wasn't considered for this outcome because the Negative Binomial regression had a better log likelihood.

Results from table $\underline{4}$ showed that children in the high participation group were at lower risk of being absent by almost a day per year (IRR: $0.78,95 \% \mathrm{CI}:(0.68,0.88$, p-value $=0.006]$. This indicates that although the effect size of the intervention is relatively large (a 22% reduction in risk of absence), in this context, it translates into a relatively small effect in terms of absolute number of day's difference between control and intervention groups.

Therefore, it is statistically significant that the program reduces absences, but not to a great extent in this context due to the low overall absence rate. It is likely that in a different setting where numbers of absences are greater, a greater absolute effect would be detected.

This finding is in agreement with the literature. A study done in Jamaica on 814 children in elementary school that studied the effect of a breakfast intervention revealed small improvements in attendance rates for the intervention group versus the control group (Adelman, Alderman, et al., 2008). Larger effect of 3.1% point difference attendance rate for the undernourished children versus 1.9% point difference for the adequately nourished children was shown in the same study.

Evidence from Bangladesh showed that although there is a statistically significant impact of SFP on attendance, yet it was considered small. It was found that there is a decrease 1.34 days a month, but this number compared to our study is still considered high (Ahmed, 2004).

- Academic Performance

The second aim of this study was to assess whether participation in a subsidized school meal intervention improved the academic performance; more specifically, Arabic and English languages and Mathematics grades.

No significant association was detected between the subsidized school meal intervention and the three subjects: Arabic and English languages and Mathematics. We did however find a gender effect on absences and Arabic language.

In our study, the rationale behind taking the three subjects: Arabic and English languages and Mathematics separately is because much research has been done on nutrition and cognitive development that shows that different cognitive abilities are affected differentially by nutritional status. This indicates that the skills needed for Mathematics are different than those needed for languages. The distribution of the academic performance for the three subjects across the different grades and schools showed that grades one and two were skewed to the left (See appendix 14).

The academic performance for the three subjects was analyzed by taking the last trimester grade into consideration (m4), which was the last trimester before the final exam. The reason behind this choice was that we were interested in examining exposure over 8 months and therefore selected an outcome that is close to endpoint.

It is important to note that most studies in the literature assess academic performance through standardized tests and examine percentiles according to these tests. In our case no
standardized tests were available and we therefore took the grades allocated by teachers on these subjects. We categorized the performance variables according to the $50^{\text {th }}$ percentile or the median to examine students' relative performance per class. Categorization according to passing vs. failing was not an option for studying the outcome due to low variability of the data. Additionally, there was not a standard passing grade and mostly high grades were observed. As a matter of fact, the median in class depended on the teacher as well especially that each section had a different teacher. Therefore all analyses were stratified by class to adjust for the "teacher effect".

Multivariate logistic regression analysis showed that there is a significant negative association between age and both Arabic and English languages, but not for Mathematics. In our case, as students became older, they performed more poorly. This finding is contradictory to studies from the literature that did not declare any significant relationship between age and academic performance (DeMeis \& Stearns, 1992; Dietz \& Wilson, 1985; Morrison, Alberts, \& Griffith, 1997; Quinlan, 1996). On the other hand, various studies show evidence that older children outperform their younger peers in the same class. In a meta-analysis, it was concluded that older students performed better their younger peers in the same classroom (La Paro \& Pianta, 2000; Milling Kinard \& Reinherz, 1986). A rare retrospective cohort extending beyond elementary and studying the relationship between age and achievement scores, found that oldest students had "significantly higher achievement" than their peers in the same classroom in grade four, but these differences "disappeared by age 17" (Langer, Kalk, \& Searls, 1984). Furthermore, some studies indicated that language skills and not Mathematics are affected by age. For example, Vlachos recently indicated that older children had better scores than younger ones for the overall reading performance in languages (Vlachos \& Papadimitriou, 2015). It may be that in
the context of Palestinian refugees, older age in class is an indication of previous failure, or repeating classes in a context where poor refugee children are taken out of school to contribute to household income (ANERA, 2012; USDS, 2014).

Also, findings from our study indicated that a significant relationship exists between maternal education and child's academic performance in both languages and Mathematics. It was found that children whose mothers were highly educated appeared to perform better than their peers. Researchers found that there is a positive correlation between mothers' educational attainment and children's academic performance (Davis-Kean, 2005; Haveman \& Wolfe, 1995). In the United States, a national longitudinal survey of youth with an age range between 6 and 12 suggested that children perform better when their young mothers with low education complete additional schooling, unlike the increase of maternal education of older students which appear to have no impact on improving the school performance. The study also found that improvements were detected more in reading than math skills (Magnuson, 2007).

In terms of the main research question, the reason for not detecting a significant relationship between academic performance and the intervention could be due to the relatively short intervention period. Studies have shown that for an intervention meal program to be effective, longer time is needed for at least two years (da Cunha et al., 2013).

In fact, dietary interventions in schools have been found to impact the nutritional quality of the whole diet, and one study found improvement in reading performance, whereas concentration performance was not affected by school meals (Sorensen et al., 2015). It may also be that the grades given by teachers were not necessarily a good indicator of key skills such as reading that have been found to be most affected by school meals in the literature.

Our study did however find that absences were lower among good performant students, in line with the literature (Adelman, Gilligan, \& Lehrer, 2008; Morrissey, Hutchison, \& Winsler, 2014).

It may therefore be that the relationship between the intervention and academic achievement acts through school attendance. This means that there is a good argument of an indirect effect through absence. Future analyses should investigate whether there may be an indirect relationship between participation and school performance.

- Gender Difference

According to UNESCO, statistics from 157 countries regarding girl's enrolment in schools indicate that only one out of three countries had reached gender equality, in both primary and secondary education (UNESCO, 2010). Elimination of gender disparity wasn't attained among the millennium development goals in 2015 and it is among the SDG targets for 2030. In this study, which included a larger proportion of participating girls due to the inclusion of two all-girls schools, it is worth noting that we have an interesting gender effect even after controlling for other covariates. We find that irrespective of intervention, girls were more likely to have absences than boys. Therefore, additional stratified analyses were conducted by gender to see if the program worked differently for males and females (See tables 20 and 21), however, similar results were obtained. Previous studies showed that females were at higher risk of being absent compared to boys and one of the goals of SFPs was to increase the attendance of girls (Jomaa et al., 2011).

In our study, gender was found to play an important role in the Arabic but not English language or Mathematics with females performing better in Arabic. Our results are generally in accordance with the literature, which found that, historically, girls are thought to perform better than boys in linguistics (Halpern, 1986; Maccoby \& Jacklin, 1974).

One other study about gender differences in academic performance showed that girls outperformed boys in all the four subjects(Pomerantz, Altermatt, \& Saxon, 2002).

Other studies exploring the role of gender in scholastic attainment point out that are no clear-cut gender differences in verbal abilities such as spelling and reading for children before age 11 (Ross \& Simpson, 1971). According to the literature, reliable gender difference tend to emerge after age 11 (Shackleton \& Fletcher, 1984), with greater verbal performance and mathematical performance for girls and boys, respectively (Maccoby \& Jacklin, 1974). A review of 46-meta-analysis covering cognitive abilities including reading, showed that there were no significant differences between girls and boys (Wheldall \& Limbrick, 2010). Besides, no significant difference in math performance was found between boys and girls. The findings match a meta-analysis of 100 studies of gender difference in math performance, which indicated negligible gender difference of mathematics performance (Hyde, Fennema, \& Lamon, 1990).

- Anemia

According to WHO, any prevalence of anemia above 20% is considered high (Benoist, McLean, Egll, \& Cogswell, 2008). The proportion of anemic children in this study is 11%. For middle income countries, this is what we expect, and it is indicative that the issue, though not high, is significant. In fact, with 28% of children being either overweight or obese and 11% being anemic is an indication of population level dual burden.

Findings from bivariate and univariate analysis indicated that there is a borderline significant relationship between anemia and Arabic school performance. It was found that anemic children perform poorer compared to non-anemic children (OR: $0.71,95 \%$ CI: $0.49-1.01$,
p-value=0.05). However, this relationship lost its significance after adjustment for the different covariates in the final model.

This is in line with a study that evaluated the relationship between iron deficiency and standardized test score on US children of age 6 to 16 year-old; found that children with iron deficiency had higher risk of scoring below average on math tests (Halterman et al., 2001). Other studies in non-western contexts done showed that a significant negative relationship was found between anemia and academic achievement (More, Shivkumar, Gangane, \& Shende, 2013; Soleimani, 2011). Result revealed that achievement scores of anemic students were much lower than non-anemic children.

B. Limitations

There are however limitations to the current study. Many children were coming in and out of the program which means that students did not comply and participate as regularly in the subsidized school meal program; therefore, the total effectiveness of this program could have been affected.

It was only known that students paid for the snack meals and thus making it difficult to know if the child ate the whole meal or not due to the lack of continuous supervision.

Testing through regular school exams was the only method followed to monitor the students' academic performance, making it difficult to compare students across the same grade level and the different schools. Not to forget the different teaching strategies of the different teachers and the lack of a common grading scale at the same grade level as well. This will limit the generalizability of their performance across the same school for the same class level and across the different schools.

Since these children belong to socioeconomically marginalized communities, other factors such as chronic diseases or food security issues could have a direct effect on both attendance and school performance and should be taken into consideration in future analyses.

C. Conclusions

School feeding programs have gained popularity in many countries across educationalists, parents and legislators, but there is practically insufficient evidence of their success in affecting education outcomes in developing countries (McEwan, 2013).

The outcomes of the present study included both school absenteeism and academic performance of the three subjects: Arabic and English Languages and Mathematics for firstgrade to sixth-grade students. Negative binomial regression was performed on the school absenteeism and logistic regression on academic performance.

Few experimental studies have revealed a small effect on school attendance in developing countries and generally no or minimal effects on school performance. Our study results exhibit a significant small impact of the subsidized school meal intervention on reducing absences. It may be that an 8 month-long of intervention is not sufficient to see a change given that this feeding program provided about 313 kcal and 12 g protein (30% daily requirement). Overall, no correlation was detected between the subsidized meal program and the academic performance for the three subjects: Arabic and English languages and Mathematics.

D. Recommendations

More research is required to determine whether the sustained implementation of this subsidized program can increase both attendance and academic performance in the longer term. This could be done by a long-term intervention (greater than two years) using standardized tests
with a common grading scale across the different schools and through the random assignment of intervention to a larger number of schools that could be representative of the context. According to studies, nutrition education is of importance and its integration in the school curriculum through interactive teaching methods can enhance the health of the child and consequently both attendance and academic performance.

APPENDICES

APPENDIX 1
 Approval of Research

Institutional Review Board | لجنة الأخلاقيات
www. a ub.edu.lb

APPROVAL OF RESEARCH

April 28, 2014
Dr. Hala Ghattas
American University of Beirut
01-350000, Ext \# 4679
hg15@aub.edu.lb
Dear Dr. Ghattas,
On April 28, 2014, the IRB reyiewed the following profocol:

Type of Review:	Initial, Full Board (Follow Up, Expedited)
Project Title:	Health Kitchens Children Project -Phase II, a School Based Cluster Randomized Controlled Trial
Investigator:	Hala Ghattas
IRB ID:	FHS.HG. 02
Funding Agency:	The Nestle Foundation
Documents reviewed:	Received March 12, 2014 : Response Letter, Information Sheet addressed to School, Amended Proposal, Topics of Training Material for women Received March 13, 2014 : Amended IRB Application, Amended Child Assent (Education and Nutrition Intervention), Amended Child Assent (Education Intervention), Invitation to Parent Meeting (Education and Nutrition Intervention), Invitation to Parents Meeting (Education Intervention). Received April 23, 2014 : Response Letter, Amended Referral Sheet, Amended Consent Form addressed to women in community, Amended Parents' Consent (Education Intervention), Amended Parents' Consent (Education and Nutrition Intervention) Received January 16, 2014 : Parents survey, Children survey, Women's survey, Food purchase diary, Food safety training pre-post questionnaire

The IRB approved the protocol from February 13, 2014 to February 12, 2015 inclusive. Before December 12,2014 or within 30 days of study close, whichever is earlier, you are to submit a completed "FORM: Continuing Review Progress Report" and required attachments to request continuing approval or study closure.

If continuing review approval is not granted before the expiration date of February 12, 2015 approval of this research expires on that date.

Please find attached the stamped approved documents:

- Proposal,
- Information Sheet addressed to School,
- Topics of Training Material for women,
- Child Assent (Education and Nutrition Interyention),
- Child Assent (Edućation Intervention),
- Invitation to Parent Meeting (Education and Nutrition Intervention),
- Invitation to Parents Meeting (Education Intervention),
- Referral Sheet,
- Consent Form addressed to women in community,
- Parents' Consent (Education Intervention),
- Parents' Consent (Education and Nutrition Intervention),
- Parents survey,
- Children survey,
- Women's survey,
- Food purchase diary,
- Food safety training pre-post questionnaire.

Kindly, use copies of these documents to document consent.
It was noted by the IRB that Arabic Translation of the English approved documents will take place.
Kindly provide a copy of the translated version to the IRB prior to use in the study.
Thank you
The American University of Beirut and its Institutional Review Board, under the Institution's Federal Wide Assurance with OHRP, comply with the Department of Health and Human Services (DHHS) Code of Federal Regulations for the Protection of Human Subjects ("The Common Rule") 45CFR46, subparts A, B, C. and D, with 21CFR56; and operate in a manner consistent with the Belmont report, FDA guidance, Good Clinical Practices under the ICH guidelines, and applicable national/local regulations.

لجنة الأخلاقيات | Institutional Review Board
www. a ub.edu.lb

Sincerely,

```
Muracel Clintr
Michael Clinton, PhD
IRB Vice Chairperson
Social & Behavioral Sciences
Cc: Fuad Ziyadeh, MD, FACP, FASN
    Professor of Medicine and Biochemistry
    Chairperson of the IRB
    Ali K. Abu-Alfa, MD, FASN
    Professor of Medicine
- Director, Humann Research Protection Program
```


APPENDIX 2
 Child Assent Form

Institutional Review Boand
 imerican I Injversity of Beirur

7) SEP 2015

RECEIVED

استمارة مو افقة لطفل بالمشاركة
عنوان الدراسة: مطابخ صحية، أطفال أصحاء: تجربة مدرسية جماعبة عشوانية مراقبة الباحثون:
الالكتورة هلا غطاس، مركز البحث السكاني والصحي، الجامعة الأمريكية في بيروت الالكتورة نادين صهيون، قسم التخذية وعلوم الغذاء، جامعة ميريلاند، الولايات المتحدة الأمريكية

رقم البروتوكول:
العنوان: الجاععة الأمريكية في بيروت شار ع بلسي، بيروت، بينان
رقم الهاتف: 000 01-350 رقم التّحويلة: 4679
\qquad
الططل العزيز (تدخل تطيمي)،

$$
\begin{aligned}
& \text { • نطلب مكاك هنا المشاركة في جحث علمي. ثقام الأبحاث العلمية من أجل إيجاد طرق أفضل لمعالجة الناس او لكي نفهم بشكل } \\
& \text { أفضل كيف يفكر الاططفل بالاثشياء أو كيف يوكن أن يتصرف الكبار والصغار في مواقف مختلفة. } \\
& \text { • هذا الاستبيان سيشر ح لك عن هذا البحث لسماعتكّك في اتخاذ القرار بالمشاركة أو عدم المشاركة. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { المشاركة في البحث في أي وقتّ دون ان تتُترض لأي مشاكل. } \\
& \text { • إذا قررت أنك تريد الششاركة في البحث، ينبغي لشخص بالغ (عادة أحد الوالدين) أن يعطي الإذن بمشار كتك في البحث. }
\end{aligned}
$$

ماهو هاا البحك؟ سيحسن وضعهم الغذائي و عاداتهم الغذانية. سيساعينا ذلك في تقتير ما إذا كان هذا النوع من البرامتج مفيداً لمجتّمعانكم.

ما الأي سيتضمنه ذلك؟
إذا اخترّت المشّاركة في هذا البحث العلمي، فسيحصل التالي:

10 SEP 2015
APPROVED

يعبد

هل من مخاطر لهذا البحث؟

إن أخذ فياسات طولك و وزنك و محيط خصر كك لن يكون مؤلما، ولككلك قد تشعر ببعض الانز عاج لاضطر ارك للوقوف بدون حرالك بينما نقيس وزنك وطولكّ. وخزة الإصبع قد تكون مؤلمة قليلاُ في البداية ولكن سنضمدها فورأ.

مـا هي فواند هذا البحت؟ سيقدم لك هذا البحث معلومات مهمة عن الثنغذية.

هل لاي خيارات أخرى؟
يككلك أن نختار عدم الاشتنراك في هذا البحث.
هل سيمرفـ أحد أني مشارك في هنا البحث؟ لن نخبر أحدا أنكّ شُّاركت في هُذا البحث. فقط من هم في مدرستا سيعرفوفون، بما أننا سنطلب من تلاميذ آخرين أيضـا المشاركة. عند
 اسألنا لنخبرك المزيد عن أي شي لم تفهمه.

ماذا لو كنت لا أريد أن أقوم بذلك؟
 عقوبة. كل ما عليك فعله هو إعكلامنا بذلكك.

إذا كنت تريد المشاركة، رجاء قم بنوقيع اسمك أو طباعته.

لا، لا أريد أن أقوم بذللك
ن

APPENDIX 3
 Parent Consent Form

```
مشروع بحث تجريه الجامعة الأمريكية في بيروت مع وكالة الأمم المتحدة لإغائة وتشغغيل الفلسطينيين
```

الأهالي الأعزاء،
نود الحصول علي مو افتّكم بمشاركة طفلكم في هشروع بحث بعنوان "مطابخ صحبة، أطفال الهحاء". لقد تم اختيار مدرسة طفلكم، ، يعبد ؛
 الأطفال، تغذيتهم؛ وتركيز هم في المدرسدة.

إليكم مـا سيحدث:

- فيّ بداية اللسنة سشُّألون بعض الاسنّلة عن عمر طفلكم، جنسه، درجته المدرسية وضعكم المعيشي وتحصيلكم العلمي، ووضع أسرتكم الغذاني.
- من ثم سئقبس طول طفلكم، وزنه ومحيط خصره، ونسأله بعض الأسئلة عن الأطعمة التي يتنّاولها. وسيقوم أخصائي متمرس بأخذ وخزة إصبع (2-3 قطرات من الدم) لتحديد حالات فقر الدم.
- ستقام جلسات ونشاطات متعلقة بالتغذذية مرة كل شهر للاتلاميذ، وبعض الجلسات ستخصص للمـلمين والأهل. خلال السنة اللدراسية
سنسأكم أيضأ بعض الأسنلة عن تجربتكم مع البرنامج لنرى ما إذا كنا بحاجة لادخال تحسينات.
- في نهاية السنة الدر اسية سنقوم بـَخذ نفس المقاسات ونَسالكم نفس الاسنلّة كمـا فعلنا في بداية الدراسـة.

$$
\text { - هذاً البحث مدته سنة در اسية كاملة، من أيلول } 2015 \text { - حزيران } 2016
$$

مـا هي منـفع ومخاطر هذا البرنامع؟

- سيشعر طفلكم بوخزة في إصبعه لدى أخذ بضع قطرات من الدم وسيشعره ذلك ببعض الانزعاج، ولكن ذلك سيتم على بد شخص متمرس سيحاول التخفيف من إي انز عاج. - إذا ما وجدنا أن طفلكم يعاني من فقز الدم أو سوء التغذية، فسنعلمكم بذللك عبر رسـالة تحتوي على معلومات الاتصـال بإحدى العيادات، نُاصحين إياكم بأخذه/ها إلى أُقرب مركز صحي للتأكد وأخذ الاجر اء المناسب. - سيحصل طفلكم على جلسات عن التغذذية والصحـة، مـا قد يحسن حالة طفلكم الغذائية وعادات الأكل لديه/ها.
- هذا البحث سيساعد في تقرير مـا إذا كان هكذا نوع من البر امـج مفيداً في مجنمعاتكم.

تـذكير: - إذا اخترتم عدم المشاركة أو اخترتم الانسحاب من الاراسة في أي مرحلة فأن ذللك لا يترنب عليه أي عقوبة أو فقدان لأي من اللمساعدات التي هي في الأصل من حقكم، ولن يؤثر ذلك على علاقنكّم بمدرسة اليرموك أو الجامعة الأهريكية في بيروت أو مستوسف

- كل المعلومات اللتي يتم جمعها ستستخدم حصر اللار اسة وليس لأي هدف آخر. مالم يئص القانون على غبر ذللك، فلن يطلع على ملفاتكم بشكل مباشر سوى الباحثين الأساسيين واللجنة الأخلاقية. نحن ملتزمون بحفظ خصوصية نتائج طفلكم.

Institutional Review Board
American University of Berirut

إذا كتّم مهتمين بمشاركةّ طفلكم في برنامتج "مطابخ صحية، أطفال أصحاء"، فإنا نطلب منكم الموافقةّ على الأشياء التاليةّ. الرجاء وضع إثشارة (V) في كل مريع إذا كنتم توافقون.	\checkmark
سأبيب على أسنلة متعلقة بعمر طفلي، جنسه، ودرجته المدرسية فبل بدء البرنامج في أبلول 2015، ومجددأ في نهاية البرنامج في	
سأجيب على الأسنلة المتعلقة بتجربتي مع البرنامج خلال السنة الار اسبة.	
أوافق على حضور طفلي لجلسات ثقافية متعلقة بالتغنية	

اللثبّ4	著	اسمـ الطفل:

hg15@aub.edu.lb : 01-350000 مقس: 4679. أو عبر البريد الإلكتروني
يكنني أبضاً الاتصـال باللجنة الأخلاقية في الجامعة الأمريكية بيبروت لمناقشة حقوقي وذلك على:
01-350000 مقسم: 5445 أو عبر ألبريد الالكتروني:

Institutional Review Board
American University of Beirut
10 SEP 295
APPROVED

APPENDIX 4
 Parents Survey

Parents Survey: Baseline - Healthy Kitchens, Healthy Children Project

IDENTIFICATION

PHID1 Neighborhood (dropdown)

1. Bourj al Barajneh
2. Sabra and Shatila

PHID2 Parent ID:
PHID3 School ID (dropdown):

1. Bourg al Barajneh - Yarmouk
2. Bourj al Barajneh - Toulkkram
3. Sabra, Yaabod
4. Shatila, Ramallah

Result Code

1. Completed
2. Partly completed
3. Postponed
4. Child Refused
5. Parent Refused
6. Other

Date 1: \qquad Start Time 1: \qquad
\qquad Start Time 2:

|_|-|

 |_|-|FCID Field Coordinator:

HOUSEHOLD DEMOGRAPHICS
First, we would like to ask you some questions about your household demographics.
GENDER: 1. Male 2. Female
AGE: In what month and year were you born? Month: \square Year: \square _

End Time 1:
End Time 2:
\qquad

HH1: Of the people who share a household with you, how many are...

1									
2									
3									
4									
5									
6									

HH1A: Children 5 years of age and under
HH1B: Children ages 6-18
HH1C: Adults ages 19-45
HH1D: Adults ages 46-64
HH1E: Adults 65 year of age and older

HH2: Who is the primary caretaker of the children listed here?

1. Father
2. Mother
3. Father and mother jointly
4. Grandmother
5. Other, specify \qquad

EMPLOYMENT

HH3: How many people in the household are currently employed full or part time? \square
HH4: How many people in the household contribute to the household income? \qquad
HH5: Are you currently employed?

1. Yes
2. No, and not seeking employment
3. No, but seeking employment

EDUCATION

EDU1: What is the highest level of education you have achieved?
1- Never Attended
2- Primary - not completed
3- Primary- completed
4- Intermediate level (has Certificate of Intermediate Education or Brevet)
5- General Preparatory Level(with Baccalaureate)
6- Vocational Preparatory Level (with Baccalaureate)
7 -Teacher Training College (completed)
8- Technical Institute
9 - Vocational School (completed)
10-College or University (with degree, BA)
11- College or University (without degree, BA)
12- Post Graduate (Masters, PhD)
13- Other, Specify
99- Don't Know
Key:

Level	Grades
Primary	$1-2-3-4-5-6$
Intermediate (up to Breve)	$7-8-9$
Secondary (up to Baccalaureate)	$10-11-12$

EDU2: If you are not the mother, what is the highest level of education the children's mother has achieved?

1- Never Attended
2- Primary - not completed
3- Primary- completed
4- Intermediate level (has Certificate of Intermediate Education or Brevet)
5- General Preparatory Level(with Baccalaureate)
6- Vocational Preparatory Level (with Baccalaureate)
7 -Teacher Training College (completed)
8- Technical Institute
9 - Vocational School (completed)
10-College or University (with degree, BA)
11- College or University (without degree, BA)
10- Post Graduate (Masters, PhD)
11- Other, Specify
99- Don't Know

HEALTH

Now, I would like to ask you some questions about the health of your primary-school-aged child(ren):

CHIL D1	$\begin{aligned} & \text { HEALT } \\ & \text { H1 } \end{aligned}$	$\begin{aligned} & \text { HEALT } \\ & \text { H2a } \end{aligned}$	$\begin{aligned} & \text { HEALT } \\ & \text { H2b } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HEALT } \\ & \text { H3 } \end{aligned}$	$\begin{aligned} & \text { HEALT } \\ & \text { H4 } \end{aligned}$	$\begin{aligned} & \text { HEALT } \\ & \text { H5 } \end{aligned}$	$\begin{aligned} & \text { HEALT } \\ & \text { H6 } \end{aligned}$	$\begin{aligned} & \text { HEALT } \\ & \text { H7 } \end{aligned}$
	Does (NAME) suffer from a chronic disease?	What is the disease? (do not specify more than two)		Is (NAME) disabled?	Has (NAME) suffered from an acute illness in the past 6 months?	What type of acute illness did (NAME) suffer from in the last 6 months?	Does (NAME) have any food allergies?	What is the allergy? (do not specify more than two)
	1. Yes \rightarrow HEALTH 2A 2. No \rightarrow HEALTH 3 99. Don't know	1. Diabetes 2. Any heart disease 3. Asthma 4. Epilepsy 5. Cancer 6. Other, specify 99. Dont ' know	1. Diabetes 2. Any heart disease 3. Asthma 4. Epilepsy 5. Cancer 6. Other, specify 99. Dont' know	1. Yes 2. No 99. Don't know	1. Yes \rightarrow HEALT H5 2. No \rightarrow NEXT SECTIO N 99. Don't know \rightarrow NEXT SECTIO N	1. Diarrhea / gastroenter itis 2. Flu, other upper respiratory infection (e.g. pharyngitis) 3. Lower respiratory infection (bronchitis, bronchioliti s, pneumonia) 4. Other infection or inflammatio n (eye, ear, nose, mouth, etc.) 5. Joint diseases or inflammatio n (anthropath	1. Yes 2. $\mathrm{No} \rightarrow$ ASSIST1 99. Don't know	List Foods

I am now going to ask you some questions about your household's income, living conditions, and any assistance you may receive.

ASSISTANCE

ASSIST1: Does your household receive any assistance from any organizations?
(Promt: financial assistance, such as rent support or other cash assistance)

1. Yes
2. No \rightarrow ASSIST2
3. Don't know \rightarrow ASSIST2

ASSIST1a: From whom do you receive this support? (dropdown)
UNRWA TO PROVIDE LIST OF RELEVANT ORGANIZATIONS
ASSIST1b: What is the basic value per month?

LL
ASSIST2: Do you receive any in-kind assistance from any organizations?
(Promt: such as diapers, baby kits, hygiene kits, food coupons, baby cereal, etc.)

1. Yes
2. No \rightarrow ASSIST3
3. Don't know \rightarrow ASSIST3

ASSIST2a: What form of in-kind assistance do you receive?

1. Sanitary baby kits
2. Hygiene kits
3. Food coupons
4. Food baskets
5. Baby cereal supplements
6. Other, specify \qquad
ASSIST2b: From whom do you receive this support? (dropdown)
UNRWA TO PROVIDE LIST OF RELEVANT ORGANIZATIONS
ASSIST2c: How much of your need was covered by this assistance?
7. All
8. About half
9. Some of my needs
10. Barely any of my needs
11. Don't Know

ASSIST3: Does anyone in your household receive assistance in the form of services from outside the household?
(Prompt: such as legal aid, health awareness seminars, remedial classes, counseling, recreational activities)

1. Yes
2. No \rightarrow HHOUS1
3. Don't know \rightarrow HHOUS1

ASSIST3a: How many individuals in your household benefit from a service such as this?

LIVING CONDITIONS INDEX

HHOUS1: How many rooms does your domicile have (excluding kitchen, bathroom, garage, unclosed balcony)?

HHOUS2: How many rooms do you use for sleeping?

HHOUS3: What is the approximate area of the home (prompt: compared to this room?)

Sqm.

HOUSEHOLD ASSETS, INCOME, \& EXPENDITURE

	Do you have at home?	How many? Write "zero" if none
HASSET5	Fridge	
HASSET6	Freezer	
HASSET7	Gas/ Electric Oven	
HASSET8	Microwave	

****Note to enumerator: all monetary values should be recorded as Lebanese Lyra (LL). Conversion rate used is $\mathbf{\$ 1}=1500 \mathrm{LL}$
$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { Amount (If no money was } \\ \text { spent place a zero in the } \\ \text { amount box) }\end{array} \\ -8 \text { If the family has the } \\ \text { item, but it was paid for my } \\ \text { someone else } \\ -99 \text { Don't Know }\end{array}\right\}$

How much does your family spend on the following?				
		$\begin{array}{l}\text { Amount (If no money } \\ \text { was spent place a zero } \\ \text { in the amount box) }\end{array}$	$\begin{array}{l}\text { Time Frame } \\ \text { l. }\end{array}$	
Daily				
2.	Weekly			
3. Fortnightly (every 2 wks)				
4.	Monthly			
5. Every 6 months				
6. Annually				
99. Don't Know				

HEXP22	Health Care		
HEXP23	Clothing		
HEXP24	Entertainment (Restaurants, DVDs)		
HEXP25	Tobacco		
HEXP26	Food		
HEXP27	Loans		
HEXP28	Other, specify		
HEXP29	What is the total?		

	Amount (If no money was earned, place a zero in the amount box) -99 Don’t Know	1. Daily 2. Weekly 3. Fortnightly (every two wks) 4. Monthly 5. Every 6 months 6. Annually 99. Don't Know
HINC1: Approximately how much is the household income (including income provided without work)?		

CURRENTPROVISION OF CHILD FOOD AT SCHOOL

I would like to ask you some questions about the type of food your child(ren) at school.
SFOOD1: Does/do your primary-school-aged child(ren) usually (more than half the time) eat something during the day at school?

1. Yes
 2. No \rightarrow SFOOD4
 99. Don't know \rightarrow SFOOD4

What does your child(ren) typically eat at school?

SFOOD2:	Food from home	Never	Some Days	Every Day	Don't know
\mathbf{a}	Sandwich	1	2	3	99
\mathbf{b}	Manoushe, fatayer, ma3jenat	1	2	3	99
\mathbf{c}	Fruit	1	2	3	99
\mathbf{d}	Vegetables	1	2	3	99
\mathbf{e}	Chips	1	2	3	99
\mathbf{f}	Biscuits	1	2	3	99
\mathbf{g}	Chocolate \& other sweets	1	2	3	99
\mathbf{h}	Juice	1	2	3	99
\mathbf{i}	Other, specify:	Never	Some Days	Every Day	Don't know
SFOOD3:	Food purchased (At school or on the way to school)	1	2	3	99
\mathbf{a}	Sandwich	1	2	3	99
\mathbf{b}	Manoushe, fatayer, ma3jenat	1	2	3	99
\mathbf{c}	Fruit	1	2	3	99
\mathbf{d}	Vegetables				

\mathbf{e}	Chips	1	2	3	99
\mathbf{f}	Biscuits	1	2	3	99
\mathbf{g}	Chocolate \& other sweets	1	2	3	99
\mathbf{h}	Juice	1	2	3	99
\mathbf{i}	Other, specify:	1	2	3	99

SFOOD4: How much money do you give per child to spend at school per day on average?
LL
(NOTE:If unknown = 99)
HOUSEHOLD DIETARY DIVERSITY
The following questions are about the specific types of food that you and people in your household eat. These questions apply to everyone in the household.

FOOD2: How often do members of your household eat the following foods (how many times per day, per week, per month)? Has anyone in your household eaten this type of food in the last 24 hours?

	Timeframe 1. Daily 2. Weekly 3. Monthly 4. Never 99 - Don't Know	Frequency enter 0 if never	Has anyone eaten this food In the last 24-hr? Yes=1, No=2, Don't Know $=99$,
a. Cereals (Bread, Rice,Burghol, Pasta, Frikeh, Manakish)			
b. Roots and Tubers (potatoes, beet root, carrot)			
c. Milk and Dairy products (Cheese, Labneh, Yoghurt, Kishk)			
d. Chicken and Meat			
e. Fish (Fresh/Canned)			
f. Eggs			
g. Pulses and legumes (lentils, chickpeas, beans, fava beans, green beans, peas)			
h. Vegetables			
i. Fruits			
j. Oils and fats (butter, vegetable oil, margarine, olive oil			
k. Sweets and chips (Chocolate/ Candies/ Desserts / Biscuits/ Ice-cream/ Fries)			
1. Beverages (Sodas/ Bottled Beverages/ Jellab/Tout)			
m. Wild plants/ herbs (Wild thyme, akkoub, khibbayze, hindbeh)			
n. Nuts(walnuts, almonds, peanuts)			

FOOD SECURITY

Now, I would like to ask you some questions about the availability and accessibility of food for your household. When we ask about situations where no food is available, what we mean is that there is no food available AND no money available to buy more food.

AFFS1. In the past 6 months, did you or any other adult in your household not eat for a whole day or go to bed hungry because there was not enough food?

1. Yes
2. No
3. Don’t know/Refused to answer

AFFS2. In the past 6 months, did you or any other adult in your household ever skip a meal because there was not enough food?

1. Yes
2. No
3. Don’t know/Refused to answer

AFFS3. In the past 6 months, did you or any other adult in your household ever cut the size of your meal because there was not enough food?

1. Yes
2. No
3. Don't know/Refused to answer

AFFS4. Did the following statement apply to your household in the last 6 months? "The food that we bought was not enough and we didn't have money to get more."

1. Yes
2. No
3. Don't know/Refused to answer

AFFS5. In the last 6 months, was there a time when you were concerned that you would run out of food for your household for the next month?

1. Yes
2. No
3. Don't know/Refused to answer

AFFS6. Are there any foods you feel your family does not eat enough of?

1. Yes
2. No
3. Don't know/Refused to answer

AFFS7. Which of these sentences applies the most to the food eaten by your household during the past 6 months?

1. We had enough to eat of the kinds of food we wanted (quantity and quality)
2. We had enough to eat but not always the kinds of food we wanted (only quantity)
3. Sometimes we did not have enough to eat (quantity)
4. Often we did not have enough to eat
5. Don't know/Refused to answer

COPING STRATEGIES

FS1. Did you ever do any of the following to ensure that you had enough food for you or your family?
(Choose all that apply)

1. Received money relatives outside Lebanon
2. Accepted gift
3. Worked more to obtain money for food
4. Borrowed money to obtain food
5. Borrowed food
6. Sold assets to obtain money for food (furniture, television, jewelry, car, etc.)
7. Reduced essential non-food expenditures such as education, health, etc.
8. Reduced the variety of food eaten
9. Have schoolchildren (6-15 years old) involved in income generation
10. Married children under 18
11. Asked for money from strangers
12. Could not do anything
13. Does not apply

FS2A. Does any member of your family reduce the quantity of food they eat in order to have more for other members of the household?

1. Yes, Almost every month
2. Yes, in some months but not every month
3. Yes, in only one or two months
4. Never \rightarrow Skip to KNOW1

FS2B. If FS2A was answered yes, who reduces the quantity of food consumed?

1. Female Adults
2. Male Adults
3. Female Children
4. Male Children
5. Adults
6. Children

FS2C. If FS2A was answered yes, quantity of food consumed is reduced for the benefit of whom?

1. Female Adults
2. Male Adults
3. Female Children
4. Male Children
5. Adults
6. Children

KNOWLEDGE

Now, I would like to ask your some questions about food preparation and consumption.
(knowledge of food safety)
PKNOW1: How long after being cooked should food be put in the refrigerator?

1. Directly after being cooked
2. After 1-2 hours
3. After 3-4 hours
4. Don't know
(knowledge of food safety)
PKNOW2: What is the best way to clean raw fruits and vegetables?
5. Wash them with water and then with vinegar
6. Wash them with water only
7. Wash them with water and soap
8. No need to wash them
9. Don't know
(knowledge of food safety/personal hygeine)
PKNOW3: To prevent germs from entering the body, you should:
10. Wash your hands with water and soap
11. Wash your hands with alcohol
12. No need to wash, our body fights off harmful substances
13. Don't know

(knowledge of basic nutrition)

PKNOW4: What are the main food groups?

1. Cooked meals, vegetables, fruits, beverage
2. Grains, vegetables, fruits, protein, dairy
3. Breakfast, lunch, dinner, snacks
4. Don't know
(knowledge of importance of breakfast)
PKNOW5: What happens if children have breakfast before going to school?
5. They get sleepy and are not able to concentrate in class.
6. They feel energized and perform well in class.
7. There is no effect of eating breakfast before school on children.
8. Don't know
(knowledge of healthy snacks)
PKNOW6: Which of the following is a healthy school snack for children?
9. Manoushe with juice
10. Chips and a juice box
11. Labneh Sandwich, piece of fruit, water
12. Don't Know

ATTITUDES

(perception of importance of dietary diversity)
PATT1: Do you think giving your child different types of food to eat each day is good, bad, or you are not sure?

1. Not good
2. You're not sure
3. Good

If not good: Can you tell me the reasons why it is not good?
(perceived barriers for children accessing healthy/nutritious food in school)
PATT2: How difficult is it for your child to get healthy/nutritious food at school each day?

1. Not difficult
2. So-so (in the middle)
3. Difficult

If difficult: Can you tell me the reason why it is difficult?

APPENDIX 5

Parents Survey-Translated to Arabic

استبيان الوالدين: نقطة البداية ـ مشروع مطابخ صحية، أطفال أصحاء

\qquad وفت الانتهاء 1: \qquad وقت البداية 1: \qquad التاريخ:

وفت الانتهاء 2: \qquad وقت البداية 2: \qquad الناريخ:

$$
\begin{aligned}
& \text { I_1_1 جامع البيانات DCID } \\
& \text { I_I_I المنسق الميداني FCID }
\end{aligned}
$$

نرغب أولاً في سؤالكم عن تكوين أسرتكم.
GENDER
 من بين الأشخاص الذين تتشارك السكن معهم، كم واحداً منهر HH1 I_1_1 أطفال في عمر 5 سنوات أو أقل 18 : HH1A
 I_I_1 بالغون في عمر 19-45 سنة :HH1C I_1_1 بالغون في عمر 65-64سنة :HH1D
I_l_l بالغون من عمر 65 فما فوق :HH1E

I__I_1 كم شخصاً في العائلة يعملون حالياً سواء بدوام كامل أو جزئي؟ HH3

	ر
المرطبة	الصفوف:
الابتاثيأية	1-6
المتوسط (حتى البريفيه)	7-9
الثانوية (حتى البكالوريا)	10-12

	التعليم
هو أعلى مستوى تحصل علمي وصلت إليه؟	ا ما هو : EDU1
.	. 1
2.	. 2
3.	. 3
4.	. 4
5.	. 5
¢. مستوى إعدالي مهني (مع بكالوريا)	. 6
7. كالية إعاد المعلمين (أكمل)	. 7
و.	. 8
9.	. 9
10. تعليم جامعي (متخرج/ حاصل على بلى بكالوريوس)	. 10
	. 11
13. تُليم عالي (ماجيستير، دكتوراه)	. 12
13. غير ذلك، حدد	. 13
9.9. لا أعرف	. 99

:EDU2
2. 2. البتدائتي - أكلم تكـلم
4. مستوى متوسط (لديها تعليم متوسط أو بريفيه)
5. مستوى اعدادي عام (مع باكالوريا)
6. مستوى اعدادي مهني (مع باكالوريا)
7. 7.
8. معهـ تقني
9. تعليم مهني (أكملت)
10. تعليم جامعي (بدرجة بكالوريوس)
11. 11. تعليم جامعي (بدون درجة بكالوريوريس)
12. تعليم عالي (ماجيستير، دكتوراه)
13. غير ذلك، حدد
99. لا أعرف

الصحة
الآن نريد أن نسألكم عن صحة أطفالكم الذين هم في سن التعليم الابتدائي

HEALTH 7	HEALTH6	HEALTH 5	HEALTH4	HEALTH 3	HEALTH2 b	HEALTH2 a	HEALTH1	CHILD 1
		أبي نوع من الأمر اض الحادة عانى منه المذكور خلال الأشهر الستة الماضية؟؟		هل لاى المذكور إعاقة؟؟	(لا تحدد أكثر	ما هو المرض? من اثثين)	مزمن؟ المذر يعني مرض مرض	
			1 1 \leftarrow HEALT H5 $\leftarrow \vee .2$ الفقرة التالية لا 99 أعرف الفقرة التالية					
								1

								2

سأسألكك الآن بعض الأسئلة عن وضعكم الاقتصادي، ظروفكم المعيشية، وعن أي مساعدات قـ تتلقونها. (المساعدات
(ASSIST1 : هل تنتقى عالْلّكم أي مساعدات من أي منظمات؟
(كمثال: مساعدات مالية، كمساعدة في أجرة البيت أو مساعدات نقدية)

1. 1

ASSIST2 $\leftarrow \vee$. 2
ASSIST2 2 . لا أعرف
ASSIST1a: ممن تتلقون هذه الدساعدة؟ (قائمة منسللة) انظر قائمة الأونروا

ASSIST2: هل تتلقون أي مساعدات عينية من أي منظمات؟ (كمثّال: حفاضات أطفال، معدات صحية للطفل، معدات للنظافة، قسائم طعام، مكملات غذائية من حبوب الأطفال..إلخ)

ASSIST3 3
ASSIST3 99 لا أعرف
: ASSIST2a

1. معدات صحية للاطفال
2. معدات نظافة
3.
4.
5. مكملات غذائية من حبوب الأطفال
6. غير ذلك، حدد

ASSIST2b
انظر قائمة الأونروا
ASSIST2c 1
2. نصفها تقريبا
3. بعضها
4. بالكاد تكفي
99. لا أعرف
(ل) هل يتلقى أي فرد في عائلتكم مساعدة على شكل خدمات من خارج العائلّة؟ (كمثال: مساعدة قانونية، ندوات تو عية صحية، صفوف علاجية، استشارات نفسية، نشاطات ترفيهية)

1 1
HHOUS1 $\leftarrow \searrow .2$
99. لا أعرف ب HHOUS1

I__ كم فرداً من عائلنكم يستفبد من هكذا خدمات؟ :ASSIST3a
مؤشر الظروف المعيشية
I__ كـ_ غ غرفة يحوي مسكنكم (باستثناء المطبخ، الحمام، المرآب، الشرفات المفنوحة)؟ :HHOUS1
I__I_l كم غرفة تستخدمون للنوم؟ :HHOUS3: ماهي المساحة التقريبية لمسكنك؟؟ (كمثال: مقارنة بهذه الغرفة؟)|_ـ_ ا_ متر مربع

الممتلكات المنزلية، الاخل، المصروف

كم واحدا؟ اكتب "0" إذا كان لا يوجد	هل لديكم في المنزل؟	
	براد	HASSET5
	ثلاجة	HASSET6
	فرن غاز أو كهرباء	HASSET7
	مايكروويف	HASSET8

1500 LL = \$1 ملاحظة: كل القيم المـادية يجب أن تسجل بالليرة اللبنانية. معدل التحويل

القيمة (إذا لم يصرف أي مبلغ من المال، ضع "0" في المربع الخاص بالقيمة) 8-. إذا كانت العائلة تمتنلك الثيء ولكن تم دفع ثمنه من قبل شخص آخر -99. لا أعرف	
	HEXP2
	HEXP3 مجموع ذلك?
	HEXP4 (بما في ذلك خدمة الثري جي 3G)
	HEXP5 . إذا كان في المنزل اشتراك محطات فضائية، ما هي فيمة الفانورة الثهرية؟

	القيمة (إذا لم يصرف أي مبلغ، ضع "0" في المربع الخاص بالقيمة 8- إذا كانت الأسرة تملك ذلك الشيء و لكن تم دفع القيمة من قبل شخص آخر 99- لا أعرف		
		أجرة البيّ	HEXP6
		الكهرباء	HEXP7
		اشتراه اك مولدة كهربائية	HEXP8
		مياه الشرب	HEXP9
		مياه الخدمة	HEXP10
		حفاضات الأطفال	HEXP11
		المنظفات/ مستلزمات التنظيف	HEXP12
		غاز الطبخ	HEXP13
		الفحم، ديزله، بنزين (أنواع وقود أخرى لغير حاجـات النقل)	HEXP14
		وقود النقل	HEXP15
		النقل العام (غبر المدرسي)	HEXP16
		مصاريف التعليم (أفساط، فرطاسِية .إلخ)	HEXP17

		الأقساط المدرسية الإبندائية و الثانوية	HEXP18
		الأفساط المدرسية المهنية و العليا	HEXP19
		النقل المدرسي	HEXP20
		الرعاية الصحية	HEXP21
		الملابس	HEXP22
		الترفيه (مطاعم، أقر اص ليزرية)	HEXP23
		التبغ	HEXP24
		الطعام	HEXP25
		غبر ذللك، حدر	HEXP26
		ما هو المجموع/ الإجمالي؟	HEXP27

	القيمة (إذا لم يكن هناك أي دخل مادي، ضع "0" في المربع المخصص) 99- لا أعرف	
		HINC1 في ذلك الاخل بدون عمل)؟

الغذائية الحالية للطفل في المدرسة

أود أن أطرح عليك بعض الأسئلة عن أنواع الطعام التى يتتاولـها طفلك فى المدرسة.
(SFOOD1: هل بتتاول طفلكم/أطفالكم الذين في سن التعليم الابتدائي شيئاً في العادة أثناء يومهم في المدرسة؟ 1.

SFOOD4 $\leftarrow \searrow$. 2
99. لا أعرف ك

مـاذا يتتاول طفلكم/أطفالكم عادة في المدرسة؟

لا أعرف	كل بوم	أحياناً	أبدا	طعام من المنزل	SFOOD2:

99	3	2	1	سندويش	A
99	3	2	1	منقوش، فطاير،	B
99	3	2	1	فو اكه	C
99	3	2	1	خضار	D
99	3	2	1	شيبس	E
99	3	2	1	بسكويت	F
99	3	2	1	شوكو لا أو حلويات أخرى	G
				عصبر	H
99	3	2	1	غير ذلك، حدى	I
لا أعرف	كل بوم	أحياناً	أبدا	طعام يشتريه في المدرسة	SFOOD3:
99	3	2	1	سندويش	A
99	3	2	1	منقوش، فطّايرّ	B
99	3	2	1	فواكه	C
99	3	2	1	خضار	D
99	3	2	1	شيبس	E
99	3	2	1	بسكويت	F
99	3	2	1	شوكو لا أو حلويات أخرى	g
99	3	2	1	عصبر	H
99	3	2	1	غبر ذللك، حدد	I

\$/LL \qquad (و94 (7 (1 (أعرف)

التتوع الغذائي للأسرة

هذه الأسئلة مخصصة لأنواع محدة من الأغذية التي تتتاولونها في منزلكم. هذه الأسئلة متعلقة بكل أفراد الأسرة.
هم FOOD2: كم مرة تقريباً يتناول أفراد أسرتكم الأغذية التالية (كم مرة في اليوم، في الأسبوع، في الثهر)؟ هل تتاول أي فرد من أسرتكم هذا النوع من الطعام خلال الـ 24 ساعة الماضية؟

		4. 12.		
			.	
			الجذور والارنات (البطاطا، الشمندر)	.b
			الحليب و مشتقاته (الجبنة، اللبنة، اللبن، كثك)	.c
			الدجاج واللحوم	.d
			الأسماك (طاز ج/معلب)	.e
			البيض	.f

			8. البقوليات (الحدس، الحمص، الفاصوليا، الفول، الفاصولياء الخضراء، البازلاء)	
			الخضار .h	.h
			الفو اكه	. 1
			الزيوت و الاسم (زبدة، زيت نباتي، زبدة نباتية، زيت زيتون)	
			. السكريات والثيبس (شوكو لا، سكاكر، حلويات، بسكويت، أيس كريم، بطاطا مقلية)	
			جلاب، توت (مشروبات غازية، المشروبات المعلبة،	
			m هندبا)	
			n'n. الدكسرات (جوز، لوز، فول سوداني)	

الآن، سأطرح عليك بعض الأسئلة عن توفر الطعام أو إمكانية الحصول عليه لأسرتكم. عندما نسأل عن حالات عدم توفر طعام فإنتا نعني بذلك عدم توفر الطعام وعدم توفر المال لشراء المزيد

AFFS1: بالست شهور يلي مرات في شي شخص فوق ال-1 الما أكل لنهار كامل أو نام جوعان لأنو ما كن في أكل بكفه؟
1.
४. 2
99. لا أعرف / رفض الاجابة
(الست شهور يلي مرأت، في شي شخص فوق الـ1 من البيت أفا وجبه لأنو ما كان في أكل بكفي؟

1. 1 نـم

ע. 2
99. 8 أعرف / رفض الاجابة

AFFS3

1. 1
y. 2
2. لا أعرف / رفض الاجابة
. AFFS4 وما كان معنا مصاري نجيب أكتر"
3. نـم
४. 2
4. لا أعرف / رفض الاجابة

AFFS5

1. 1
2. لا أعرف / رفض الإجابة

AFFS6 1. 1 نعم
8.2
99. لا أعرف / رفض الإجابة

كيف بتوصفه الاكل يلي اكلتو بالعيلة بالست شهور يلي مر إت؟هلاً بس تأعتيك الاحتمالات بصير أوضح لإلك: 1.كان عنا أكل بكفي من ناحية الكمية والنو عية 2. 2. كان عنا كية كافية بس مش كل النواع يلي بـن 3. 3.مرات ما كان عنا كمية كافيه
4. في كثبر مرات ما كان عنا كمية كافيه
99. 7 أعلم| رفض الاجابة

استراتيجيات التأقلم
FS1. هل قمت يوماً بأي من الأشياء التالية لتضمن أن يكون لاى أسرتكم ما يكفي من الطعام؟ (اختر كل ما ينطبق)

1. تلقيت المال من أقرباء خارج جلبنان
2.
3. عملت أكثر للحصول على المال من أجل الطعام
4. استندت المال للحصول على الطعام 5.
5. بعت بعض الممتلكات للحصول على المال من أجل الطعام (أثاث، تلفزيون، مجوهرات، سيارة...إلخ)
6. خفضت من النفقات الأساسية الغير غذائية كالتعليم، الصحة..إلخ
7. قلت من تنوع الأغذية التي تتناولونها
8. جعلت أطفالك الذين في سن التطليم (6-15 سنة) يعطلون لزيادة الدخل

$$
\text { 10. زوجت أطفالاً دون سن الـ } 18
$$

11. 11. طلبت المال من الغرباء 12. 13. لم تستطع فعل شيء
1. لا ينطبق

FS2A. هل يقوم أي من أفراد أسرتك بتقليص كمية الطعام التي يتتاولونها ليتوفر بذلك المزيد لأفراد آخرين في أسرتكم؟ 1. نـمُ، تقريباً كل شهر
2.
3. نعع، فقط في شهر أو شهرين
4. أبداً

FS2B 1. الإناث البالغات
2. 2 الذكور البالغين
3. الإناث من الأطفال
4. 4 . الذكور من الأطفال
5. البالغون
6. 6

FS2C. إذا أجيب علىFS2Aبنعم، لصالح من يتم تقليص كمية الطعام؟

1. الإناث البالغات
2. الذكور البالغون

$$
\begin{aligned}
& \text { 3. الإناث من الأطفال } \\
& \text { 4. } 4 \text { الذكور من الأطفال } \\
& \text { 5. } \\
& \text { 6. الأطفال }
\end{aligned}
$$

المعرفة
الآن سأطرح عليك بعض الأسئلة عن تحضير الطعام واستههلاكه
(المعرفة بسلامة الغذاء)

1. مباشرة بعد طهوه
2. بعد 1-2 ساعة
3. بعد 3-4 ساعات
4. لا أعرف
(المعرفة بسلامة الغذاء)
. PKNOW2 1. غسلها بالماء و من ثم بالذل
5. غسلها بالماء فقط
6. غسلها بالماء و الصـابون
7. لا داعي لغسلها
8. لا أعرف
(المعرفة بسلامة الغذاء/النظافة الثخصبة)
لمنع الجراثثم من دخول الجسم، ينبغي عليك أن:
9. تغسل يدبك بالماء و الصـابون
10. تغسل بدبك بالكحول
11. لا داعي لغسلها، أجسامنا تحارب الأشباء الضارة
12. لا أعرف
(المعرفة بأساسيات التغذية)
.1 ما هي مجمو عات الغذاء الرئيسية؟
13. الوجبات المطهوة، الخضار، الفو اكه، المشروبات
14. الحبوب، الخضار، الفواكه، البروتينات، الألبان
15. الفطور، الغداء، العشاء، الوجبات الخفيفة
16. لا أعرف

PKNOW5 1. يصابون بالنعاس و لا يستطيعون التركيز في الصف 2. يشعرون بالنشاط و يؤدون بشكل جيد في الصف 3. لا يوجد أي تأثير لتناول الأطفال الفطور قبل المدرسة
99. لا أعرف

(القررة على فهم أهية التنوع الغذائي)
 1. ليس جيداً 2. غير متأكد/ة
3. جيد

إذا كان غير جيد: هل يككن أن تخبرني بأسباب ذلك؟
(العو ائق المتصورة لحصول الأطفال على أطعمة صحية/مغذية في المدرسة)
. PATT2 1. ليس صعباً
2. بعض الشيء (وسط)
3. صعب

إذا كان صعباً: هل يمكن أن تخبرني بأسباب ذلك؟

APPENDIX 6

Child Survey

Children Survey: Baseline - Healthy Kitchens, Healthy Children Project

IDENTIFICATION

HID1 Neighborhood
3. Bourj al Barajneh
4. 2.Sabra and Shatila

HID2 Child ID:
HID3 School ID (dropdown):
5. Bourj al Barajneh - Yarmouk
6. Bourj al Barajneh - Toulkkram
7. Sabra, Yaabod
8. Shatila, Ramallah

Date: \qquad Start Time 1: \qquad End Time 1:
Date: \qquad Start Time 2: \qquad End Time 2:

DCID Data Collector:
FCID Field Coordinator:
\qquad

Result Code

7. Completed
8. Partly completed
9. Postponed
10. Child Refused
11. Parent Refused
12. Other
\qquad

DIETARY DIVERSITY (dd)

	Yes=1, No=2, Don't Know=99
dd_brkt: For breakfast yesterday, did you eat any of the following types of foods?	
1. Cereals (Bread, Rice,Burghol, Pasta, Frikeh, Manakish)/ Roots or Tubers (potatoes, beet root)	
2. Vitamin A-rich plant foods (spinach, mloukhiyeh)	
3. Fruits or vegetables (tomato, plumb, apple, banana)	
4. Chicken, meat, fish (canned/fresh) (tawook, tuna, kafta)	
5. Eggs	
6. Pulses and legumes (lentils, chickpeas, beans, fava beans, green beans, peas)	
7. Milk and milk products (cheese, labneh, yogurt)	
8. Foods cooked in oil/fat (fried foods, French fries, chips)	
dd_schl: At school yesterday, did you eat any of the following types of foods?	
1. Cereals (Bread, Rice,Burghol, Pasta, Frikeh, Manakish)/	
Roots or Tubers (potatoes, beet root)	
2. Vitamin A-rich plant foods (spinach, mloukhiyeh)	
3. Fruits or vegetables (tomato, plumb, apple, banana)	
4. Chicken, meat, fish (canned/fresh) (tawook, tuna, kafta)	
5. Eggs	
6. Pulses and legumes (lentils, chickpeas, beans, fava beans, green beans, peas)	
7. Milk and milk products (cheese, labneh, yogurt)	
8. Foods cooked in oil/fat (fried foods, French fries, chips)	
dd_lnch: For lunch yesterday, did you eat any of the following types of foods?	
1. Cereals (Bread, Rice,Burghol, Pasta, Frikeh, Manakish)/	
Roots or Tubers (potatoes, beet root)	
2. Vitamin A-rich plant foods (spinach, mloukhiyeh)	
3. Fruits or vegetables (tomato, plumb, apple, banana)	
4. Chicken, meat, fish (canned/fresh) (tawook, tuna, kafta)	
5. Eggs	
6. Pulses and legumes (lentils, chickpeas, beans, fava	
beans, green beans, peas)	
7. Milk and milk products (cheese, labneh, yogurt)	
8. Foods cooked in oil/fat (fried foods, French fries, chips)	
dd_dnnr: For dinner yesterday, did you eat any of the following types of foods?	
1. Cereals (Bread, Rice,Burghol, Pasta, Frikeh, Manakish)/	
Roots or Tubers (potatoes, beet root)	
2. Vitamin A-rich plant foods (spinach, mloukhiyeh)	
3. Fruits or vegetables (tomato, plumb, apple, banana)	
4. Chicken, meat, fish (canned/fresh) (tawook, tuna, kafta)	
5. Eggs	
6. Pulses and legumes (lentils, chickpeas, beans, fava	

beans, green beans, peas)	
7. Milk and milk products (cheese, labneh, yogurt)	
8. Foods cooked in oil/fat (fried foods, French fries, chips)	
dd_snck: What about for a snack yesterday, did you eat any of these foods?	
1. Cereals (Bread, Rice,Burghol, Pasta, Frikeh, Manakish)/	
Roots or Tubers (potatoes, beet root)	

FOOD SECURITY

In the last SIX months (some time between the end of the last school year and today):

FS_CH1: Did you ever feel that your family was unable to buy expensive food items because they did not have enough money?

1. Sometimes/a little of the time
2. Often / a lot of the time
3. Never
4. Don't know/refused to answer

FS_CH2: Did you ever feel that there was less food in the house at certain times because your father/household head had not yet been paid?

1. Sometimes/a little of the time
2. Often / a lot of the time
3. Never
4. Don't know/refused to answer

FS_CH3: Did you ever feel that your parents were angry or frustrated because there wasn't enough food in the house?

1. Sometimes/a little of the time
2. Often / a lot of the time
3. Never
4. Don't know/refused to answer

FS_CH4: Did you ever go to a relative's or a friend's house to eat there because there wasn't any food available at home?

1. Sometimes/a little of the time
2. Often / a lot of the time
3. Never
4. Don't know/refused to answer

FS_CH5: Did you ever work or save money to help your parents when they did not have money to buy enough food?

1. Sometimes/a little of the time
2. Often / a lot of the time
3. Never
4. Don't know/refused to answer

FS_CH6: Did you worry that food at home would run out before your family got money to buy more?

1. Sometimes/a little of the time
2. Often / a lot of the time
3. Never
4. Don't know/refused to answer

FS_CH7: Did you ever feel tired or weak because there wasn't enough food to eat at home?

1. Sometimes/a little of the time
2. Often / a lot of the time
3. Never
4. Don't know/refused to answer

FS_CH8: Did it actually ever happen that food ran out before your family had money to buy more?

1. Sometimes/a little of the time
2. Often / a lot of the time
3. Never
4. Don't know/refused to answer

FS_CH9: Did you ever reduce the quantity of food you ate so that other family members could eat because there wasn't enough food or money to buy more?

1. Sometimes/a little of the time
2. Often / a lot of the time
3. Never
4. Don't know/refused to answer

FS_CH10: Has the size of your meals been cut because your family didn't have enough money for food?

1. Sometimes/a little of the time
2. Often / a lot of the time
3. Never
4. Don't know/refused to answer

FS_CH11: Did you have to skip a meal because your family didn't have enough money for food?

1. Sometimes/a little of the time
2. Often / a lot of the time
3. Never
4. Don't know/refused to answer

FS_CH12: Were you ever hungry but didn't eat because your family didn't have enough food?

1. Sometimes/a little of the time
2. Often / a lot of the time
3. Never
4. Don't know/refused to answer

FS_CH13: Has it ever happened that you felt hungry because your mother did not have money to make you anything to eat?

1. Sometimes/a little of the time
2. Often / a lot of the time
3. Never
4. Don't know/refused to answer

FS_CH14: Did you not eat for a whole day because your family didn't have enough money for food?

1. Sometimes/a little of the time
2. Often / a lot of the time
3. Never
4. Don't know/refused to answer

KNOWLEDGE

(knowledge of importance of breakfast)

CKNOW1: What happens if children have breakfast before going to school?
4. They get sleepy and are not able to concentrate in class.
5. They feel energized and perform well in class.
6. There is no effect of eating breakfast before school on children.
99. Don't know
(knowledge of importance of breakfast)
CKNOW2: Which of the following is a healthy school snack for children?
4. Manoushe with juice
5. Chips and a juice box
6. Labneh Sandwich, piece of fruit, water
99. Don't Know

(knowledge of basic nutrition)

CKNOW3: What are the main food groups?
4. Cooked meals, vegetables, fruits, beverage
5. Grains, vegetables, fruits, protein, dairy
6. Breakfast, lunch, dinner, snacks
99. Don’t know

(knowledge of basic nutrition)

CKNOW4: What do sweets and candies do to your health?

1. They give you energy and make you grow
2. They are mostly made of sugar and may cause tooth decay
3. Don't know
(knowledge of healthy lifestyle)
CKNOW5: How often should one exercise?
4. Twice a week for one hour each time
5. Every day for 30 minutes minimum
6. No need to exercise
7. Don't know
(knowledge of food safety/personal hygeine)
CKNOW6: To prevent germs from entering the body, you should:
8. Wash your hands with water and soap
9. Wash your hands with alcohol
10. No need to wash, our body fights off harmful substances
11. Don't know

ATTITUDES

(food preferences)
CATT1: How much do you like the flavor of green vegetables (spinach, including spinach fatayer, moloukhiya, siliq)?

1. Dislike
2. Not sure
3. Like

CATT2: How much do you like the flavor of chips?

1. Dislike
2. Not sure
3. Like

CATT3: How much do you like the flavor of laban wa khiyar?

1. Dislike
2. Not sure
3. Like

ANTHROPOMETRICS \& BLOOD SAMPLE

Anthropometric Measurements		Results Code Measured=1 Not Present=2 Refused=3 Other=6	Measurements	
Months	Age			
cm	Height			
kg	Weight			
cm	Waist circumference			
g / L	Hemoglobin			

APPENDIX 7
 Child Survey-Translated To Arabic

استبيان الأطفال: نقطة الانطلاق - مشروع مطابخ صحية، أطفال أصحاء
مسودة استنيان الأطفال: نقطة البداية - مشرو ع مطابخ صحية، أطفال أصحاء

dd_brkt	
	مناقش)/ الجذور أو الارنات (بطاطا، شمندر، الجزر)
	4 4 د. دجاج، لحم، سمك (معلب/طازج) (طاووق، تونا، ك
	5.
	6. الحبوبو البقوليات (عدس، حمص، فاصولياء، فاصولياء خضراء، باز لاء)
	7. 7 حليب أو مشتقاتها (جبنة، لبنة، لبن)
	8. أطعمة مطبوخة بالزيت/الاسم (مقالي، بطاطا مقلية،
	شيس)
dd_schl	
	1. الحبوب (الخبز، الأرز، البر غل، المعكرونة، الفريكة البريكة، مناقشش)/ الجذور والارنات (بطاطا، شمندر، الجزر)
	4. دجاج، لحم، سمك (معلب/ طاز ج) (طاووق، تونا، كفتّة
	5.
	6. الحبوب و البقوليات (عدس، حمص، فاصولياء، فول، فاصولياء خضر اء، بازلاء)
	8
	شيبس)
dd_lnch	
	1. الحبوب (الخبز ، الأرز، البر غل، المعكرونة الـرن، الفريكة، مناقشش)/ الجذور والارنات (بطاطا، شمندر، الجزر)
	3. فو اكه أو خضار (طماطم، خون، نها نفاح، موز)
	4. دجاج، لحم، سمك (معلب/ طاز ج) (طاووق، كفنّ)
	5. 5 بيض
	6. الحبوب والبقوليات (عدس، حمص، فاصولياء، فول، فاصولياء خضر اء، باز لاء)
	8. أطعة مطبوخة بالزيت/اللاسم (مقالي، بطاطا مقلية،
	شيس)
(dd_dnnr	
	مـناقبش)/ الجذور والارنات (بطاطّا شمندر، الجزر)
	3. 3 فو اكه أو خضار (طماطه، خوخ،
	4. دجاج، لحم، سمك (معلب/ طاز ج) (طاووق، كفنّة)

الأمن الغذائي
خلال الأشهر الستة الماضية (تقريباً بين موعد انتهاء السنة الدراسية الماضية و اليوم)
:FS_CH1

1. أحياناً لبحض الوقت
2. 2. أبآلبأ/ في الكثير من الأحيان
1. لا يعلم/رفض الإجابة
(FS_CH2 1. أحيانأر لبعض الوقت
2. 2. أبدأباً في الكثير من الأحيان
1. لا يعلم/ رفض الإجابة
 1. أحبانًاً/ لبعض الوقت

2. لا يعلم/ رفض الإجابة
 1. أحيانٍ/ لبعض الوقت
3. غ غالباً في الكثبر من الأحيان
 1. أحياناً/ لبعض الوقت
4. 2.
1. لا يعلم/ رفض الإجابة

2. أحياناً لبعض الوفت 32.
3. لا يعلم/ رفض الإجابة
:FS_CH7
4. أحياناً لبعض الوقت
5. 2. غالباً في الكثبر من الأحيان
1. لا يعلم/ رفض الإجابة
:FS_CH8 1. 3. 2. أباًّأباً في الكثبر من الأحيان
2. لا يعلم/ رفض الإجابة
(FS_CH9 المال لشراء المزيد؟ 1. أحياناً لبعض الوقت
3. 3 . أباًباً/ في الكثبر من الأحيان
4. لا يعلم/ رفض الإجابة

FS_CH10

1. أحياناً لبعض الوقت 3. 2. أبدأباً في الكثير من الأحيان
2. لا يعلم/ رفض الإجابة
:FS_CH11
3. 2. 2. غالْأًا في كثير من الأحيان
1. لا يعلم/ رفض الإجابة

竍 (FS_CH12

1. أحياناً لبعض الوقت
2. غالباً في كثير من الأحيان

保:CH13

1. أحياناً لبعض الوفت
2. 2
3. لا يعلم/ رفض الإجابة
:FS_CH14 1. أحياناً لبعض الوقت
4.
5.
6. لا يعلم/رفض الإجابة

المعرفة
(المعرفة بأهمية وجبة الفطور)

1.
2. يشعرون بالنثاط ويؤدون جيدا في الصف
3. ليس هناك أي تأثير لتنتاول الأطفال للفطور قبل المدرسة
4. لا يعلم
(المعرفة بأهية وجبة الفطور)
CKNOW2

1. منقوشة مع عصير
2.
3.
4. لا يعلم
(المعرفة بأساسيات التغذية)
CKNOW3
5. الأطعمة المطهوة، الخضار، الفو اكه، المشروبات
6. الحبوب، الخضار، الفو اكه، البروتينات، الألبان
7. الفطور، الغذاء، العشاء، التنالي
8. لا يعلم
(المعرفة بأساسيات التغذية)
:CKNOW4
9. تعطبك الطاقة وتجعلك تتمو
10.
11. لا يعلم
(المعرفة بأساليب الحياة الصحية)
CKNOW5
12. مرتين في الأسبو ع لمدة ساعة في كل مرة
13. كل كلو لمدة 30 دقيقة على الأقل
14. 3 . لا حاجة لممارسة الرياضة 4.
(المعرفة بسلامة الغذاء/النظافة الثخصية)
CKNOW6
15. تغسل يديك بالماء و الصابون
16.
17. 3.
1.

(الليلوكيات الغذائية)
CATT1 : لأي درجة تحب طعم الخضراوات الخضراء (السبانخ، بما في ذلك فطائر السبانخ، ملوخية، سلق)؟ 1 1.
3. يحب

CATT2: لأي درجة تحب طعم الثيبس؟
1
2.
3. يحب

CATT3: لأي درجة تحب طعم اللبنة والخيار؟
1.
2.
3. يحب

قياسات الجسم و عينات الام

	كغ	الوزن
	سم	محيط الخصر
	غ/ليتر	الهيموغلوبين

APPENDIX 8
 Referral Letter

Referral Letter

From:
American University of Beirut (AUB) Research Team

Healthy Kitchens, Healthy Children Project
Bliss Street, Beirut, Lebanon
Date: \qquad

Dear Parent,
One measurement taken of your child during the research study, Healthy Kitchens, Healthy Children, at (SCHOOL NAME) \qquad identified an issue that may require further follow up by a pediatrician. Your child (NAME) \qquad was identified as having:
\square A hemoglobin of \qquad g/L
\square A weight-for-height of \qquad

We suggest you follow this up with a physician at the nearest the nearest UNRWA clinic:
UNRWA Health Center in Shatila Camp
Please take this letter along to the pediatrician. If you have any questions, please feel free to contact the primary investigator of this study, Dr. Hala Ghattas, at Tel: 961-1-350000 (Ext 4679) E-mail: hg15@aub.edu.lb

Sincerely,
AUB Research Team

APPENDIX 9
 Invitation to Education Session on Anemia

Invitation to Education Session on Anemia

From:
American University of Beirut (AUB) Research Team
Healthy Kitchens, Healthy Children Project
Bliss Street, Beirut, Lebanon
Date: \qquad

Dear Parent,
One measurement taken of your child during the research study, Healthy Kitchens, Healthy Children, at (SCHOOL NAME) \qquad identified that your child (NAME) \qquad may be at risk of anemia.

We would like to invite you to an informational session at (SCHOOL NAME) \ldots ______ where a nutritionist will provide you with helpful information and tips regarding nutrition and anemia.

We are holding an informational sessions on Date, Time, Location.

If you have any questions, please feel free to contact the primary investigator of this study, Dr. Hala Ghattas, at Tel: 961-1-350000 (Ext 4679) E-mail: hg15@aub.edu.lb

We look forward to seeing you there.
Sincerely,
AUB Research Team

APPENDIX 10

Snack Meal Program

Snack Meal Program

Meal Year 1

اللبّ	الخميس	الاربعاء	الثّلاثاء	الاثثين
بر غل بالبندورة (مع الخضرة) + لبن	اصابع كفتة + الخيار مع لبن	فطاير سبانخ + جزر	بطاطا بالكزبرة +	شوربة العدس بالحامض
باذنجان متبل + جزر / حتبل + جزر	ورق عنب بالزيت +	صفيحة بعلبكيه + الخيار مع لبن	فحية + فو اكه	مجدرة + سلطة الملفوف
الأرز مع الدجاج + فتوش	ملفوف محشي + لبن	فطائر الزعنر+ خيار	مهلبيه + فو اكه	رز بالخضار
برغل و حمص + لبن	مسخّ + سلطة	فطائر الز عتر(فلاحين)+ سلطة	أرزّ بالحليب +	ساندويش فاهيتا الدجاج

Meal year 2

Monday	Tuesday	Wednesday	Thursday	Saturday
lentile soup and apple	Borgol and banadour and salad	kafta and laban	Zaatar and cucumbe	Labneh sandwish and cucumber
chicken fahita	Wheat+ fruit	Bourgul and hummus and laban	Fatayer Spinich and carrot	riz and vegetables
riz and jdaj and laban	mouhallabieh and fruit	Hummus and carrot	Zaatar and cucumber	Mosakhan and salad
Moujadara and salad	Riz bahalib with apple	Malfouf and laban	Bourgul and hummus and salad	lahan bi agin and laban

APPENDIX 11
 Average Nutritional Content of the Snacks

Average nutritional content of the snacks (year 1 and year 2)

	Average/day	\% Recommended Amounts ${ }^{1}$
Energy (2000 kcal)	313.6	15.7
Protein (RDA $=40 \mathrm{~g}$)	12.7	31.7
Fat ($67 \mathrm{~g} / \mathrm{d}$)	9.1	13.6
Sodium (RDA $=1500 \mathrm{mg}$)	234.2	15.6
Vitamin A (RAE) (RDA=500 $\mu \mathrm{g}$)	253.0	50.6
Iron (RDA=8 mg)	3.4	42.7
Folate (Total) (RDA= $\mathbf{3 0 0} \boldsymbol{\mu \mathrm { g }}$)	98.0	32.7
Zinc (RDA $=8 \mathrm{mg}$)	1.3	16.5
Vitamin D (RDA=15 $\mu \mathrm{g}$) $)$	0.3	2.1
Calcium (RDA $=1300 \mathrm{mg}$)	147.2	11.3
Vitamin C (RDA $=45 \mathrm{mg}$)	13.0	28.9

These values are based on the recommended dietary allowance (RDA) for school aged children, WFP 2006

APPENDIX 12
 Sample Lesson Plan for Nutrition Education

Complete Lesson Plan with Activities-Grade 1

APPENDIX 13
 Additional Tables

Table 11: Descriptive statistics of school absenteeism of the children stratified by intervention and control groups

		Total Sample ($\mathrm{n}=1337$)	Intervention ($\mathrm{n}=700$)	Control $(n=637)$
	$\mathrm{n}(\%)^{\text {b }}$	Mean \pm SD , median	Mean \pm SD ,median	Mean \pm SD ,median
Gender				
Males (Ref=1)	444 (33.20)	$4.43 \pm 5.00,3$	$3.96 \pm 3.62,3$	$5.01 \pm 6.28,3$
Females	893 (66.79)	$5.19 \pm 5.31,4$	$4.55 \pm 4.16,3$	$5.84 \pm 6.22,4$
Maternal education				
Up to primary level ($\mathrm{Ref}=0$)	690 (54.37)	$4.96 \pm 5.12,4$	$4.36 \pm 4.08,3$	$5.85 \pm 6.25,4$
Up to Intermediate level	384 (29.62)	$5.26 \pm 5.60,3$	$4.48 \pm 3.87,3$	$6.00 \pm 6.76,4$
With Bac and above	195 (15.36)	$4.35 \pm 4.90,3$	$3.90 \pm 3.90,3$	$4.67 \pm 5.50,3$
Crowding Index ${ }^{\text {c }}$				
Not Crowded (Ref=0)	507 (39.57)	$4.81 \pm 5.14,3$	$4.09 \pm 3.84,3$	$5.41 \pm 5.96,4$
Crowded	774 (60.43)	$5.06 \pm 5.29,4$	$4.45 \pm 4.08,3$	$5.91 \pm 6.55,4$
Stunting				
Not stunted (Ref=0)	1212 (94.53)	$4.97 \pm 5.22,4$	$4.33 \pm 3.99,3$	$5.72 \pm 6.28,4$
Stunted	70 (5.47)	$4.34 \pm 4.46,3$	$4.51 \pm 4.23,4$	$5.06 \pm 5.29,4$
Weight Status				
Thin and Normal (Ref=0)	889 (69.88)	$4.91 \pm 4.46,3$	$4.34 \pm 4.10,3$	$5.65 \pm 6.23,4$
Overweight	222 (17.45)	$4.58 \pm 4.20,3$	$4.41 \pm 3.92,3$	$4.73 \pm 4.45,4$
Obese	161 (12.65)	$5.13 \pm 5.42,4$	$6.42 \pm 9.21,3$	$5.95 \pm 6.47,4$
Anemia				
No Anemia (Ref=0)	1071(88.88)	$4.92 \pm 5.21,4$	$4.36 \pm 3.95,3$	$5.52 \pm 6.23,4$
Anemia	134 (11.12)	$4.92 \pm 5.23,3$	$4.06 \pm 4.10,3$	$6.05 \pm 6.29,4$

Table 12: Negative binomial regression for the outcome absence per year and participation as binary

	Unadjusted			Adjusted		
	IRR	$\mathbf{9 5 \%}$ CI	\mathbf{P}-value	IRR	95\% CI	P -value
Covariate						
Participation in School Meals						
Control (Ref=0)						
Participated	0.77	$(0.69,0.86)$	<0.001**	0.77	$(0.69,0.87)$	<0.001*
Age (years)	1.03	$(0.94,1.14)$	0.450			
Gender						
Male (Ref=1)						
Female	1.17	$(1.05,1.31)$	0.005*	1.19	$(1.05,1.35)$	0.004**
Maternal Education						
Up to primary level ($\mathrm{Ref}=0$)						

Up to Intermediate level	1.06	$(0.94,1.20)$	0.324	1.03	$(0.90,1.16)$	0.633
With Bac and above	0.87	$(0.74,1.02)$	0.095	0.86	$(0.73,1.02)$	0.095
Expenditures (\$/month/capita) Crowding Index	0.99	$(0.99,1.00)$	0.092	0.99	$(0.99,1.00)$	0.085
Not Crowded (Ref=0) Crowded Stunting						
Not stunted (Ref=0) Stunted Weight Status Thin and Normal (Ref=0)	1.05	$(0.94,1.17)$	0.362			
Overweight Obese	0.87	$(0.68,1.11)$	0.227			
Anemia	0.93	$(0.80,1.08)$	0.362	0.95	$(0.82,1.11)$	0.572
No Anemia (Ref=0)	1.04	$(0.89,1.23)$	0.566	1.01	$(0.85,1.19)$	0.895
Anemia						

Table 13: Negative binomial regression for the outcome absence per year and participation as continuous

	Unadjusted			Adjusted		
	IRR	95\% CI	P-value	IRR	95\% CI	P-value
Covariate						
Participation in School Meals	0.96	(0.94, 0.98)	<0.001**	0.96	(0.94,0.98)	$<0.001^{* *}$
Age (years)	1.03	(0.94, 1.14)	0.450			
Gender						
Male (Ref=1)						
Female	1.17	$(1.05,1.31)$	0.005*	1.22	(1.07,1.38)	0.002**
Maternal Education						
Up to primary level ($\mathrm{Ref}=0$)						
Up to Intermediate level	1.06	(0.94, 1.20)	0.324	1.04	(0.91,1.18)	0.633
With Bac and above	0.87	(0.74, 1.02)	0.095	0.86	(0.75,1.05)	0.094
Expenditures (\$/month/capita)	0.99	(0.99, 1.00)	0.092	0.99	(0.99,1.00)	0.084
Crowding Index						
Not Crowded (Ref=0)						
Crowded	1.05	(0.94, 1.17)	0.362			
Stunting						
Not stunted (Ref=0)						
Stunted	0.87	$(0.68,1.11)$	0.227			
Weight Status						
Thin and Normal (Ref=0)						
Overweight	0.93	(0.80, 1.08)	0.362	0.96	$(0.83,1.12)$	0.647
Obese	1.04	(0.89, 1.23)	0.566	1.02	(0.86,1.21)	0.762
Anemia						
No Anemia (Ref=0) Anemia	0.99	$(0.83,1.19)$	1.0	1.01	(0.85, 1.21)	0.843

Table 14: Associations between intervention participation (Binary), co-variates and Arabic performance using simple logistic regression (Unadjusted OR) and multivariate logistic regression (Adjusted OR)

Socio-demographic/ Nutrition Characteristics	Unadjusted			Adjusted		
	OR	(95\%) CI	P-value	OR	(95\%) CI	P -value
Participation in school meals Control (Ref=0)						
Participated	0.98	$(0.79,1.21)$	0.872	1.01	$(0.79,1.29)$	0.906
Respondent Gender						
Male (Ref=1)						
Female	1.52	$(1.21,1.91)$	$<0.001^{* *}$	1.49	$(1.15,1.94)$	0.003*
Respondent Age	0.63	(0.54, 0.74)	$<0.001^{* *}$	0.89	(0.84, 0.95)	$<0.001^{* *}$
Maternal Educational						
Up to primary level ($\mathrm{Ref}=0$)						
Up to Intermediate level	1.50	$(1.17,1.93)$	<0.001**	1.49	$(1.14,1.95)$	0.003*
With Bac and above	2.92	$(2.08,4.11)$	$<0.001^{* *}$	2.99	(2.06,4.34)	<0.001**
School						
Yarmouk (Ref=1)						
Toulkarm	0.93	$(0.65,1.34)$	0.716			
Yaabod	1.02	$(0.74,1.41)$	0.857			
Ramallah	1.03	(0.75, 1.40)	0.835			
Crowding Index						
Not crowded (Ref=0)						
Crowded	0.81	$(0.65,1.02)$	0.075	1.04	(0.80,1.34)	0.749
Expenditures (\$/month/capita)	1.00	(0.99, 1.00)	0.017	1.00	(0.99, 1.00)	0.464
Absence (days per year)	0.94	(0.92,0.96)	<0.001*	0.94	(0.91,0.96)	<0.001**
Stunting						
Not stunted ($\mathrm{Ref}=0$)	0.67	(0.42,1.09)	0.111	0.77	(0.45, 1.34)	0.369
Stunted						
Weight status						
Thin and Normal (Ref=0)						
Overweight	0.87	$(0.65,1.17)$	0.385	0.88	(0.64, 1.22)	0.477
Obese	0.86	(0.62, 1.21)	0.412	0.82	(0.56, 1.19)	0.301
Anemia						
No Anemia (Ref=0)						
Anemia	0.71	(0.49, 1.01)	0.061	0.71	(0.49,1.05)	0.089

Table 15: Associations between intervention participation (Continuous), co-variates and Arabic performance using simple logistic regression (Unadjusted OR) and multivariate logistic regression (Adjusted OR)

Socio-demographic/ Nutrition Characteristics	Unadjusted			Adjusted		
	OR	(95\%) CI	P -value	OR	(95\%) CI	P-value
Participation in school meals	1.00	(0.97, 1.04)	0.737	0.98	(0.94,1.02)	0.584
Respondent Gender						
Female	1.52	$(1.21,1.91)$	$<0.001^{* *}$	1.50	$(1.15,1.95)$	0.002*
Respondent Age	0.63	(0.54, 0.74)	$<0.001^{* *}$	0.89	(0.84, 0.95)	$<0.001^{* *}$
Maternal Educational						
Up to Intermediate level	1.50	$(1.17,1.93)$	<0.001**	1.48	(1.13, 1.94)	0.004*
With Bac and above	2.92	$(2.08,4.11)$	<0.001**	2.98	(2.05,4.31)	<0.001 **
School						
Yarmouk (Ref=1)						
Toulkarm	0.93	$(0.65,1.34)$	0.716			
Yaabod	1.02	(0.74, 1.41)	0.857			
Ramallah	1.03	(0.75, 1.40)	0.835			
Crowding Index						
Not crowded (Ref=0)						
Crowded	0.81	(0.65,1.02)	0.075	1.04	(0.81,1.34)	0.731
Expenditures (\$/month/capita)	1.00	(0.99, 1.00)	0.017	1.00	$(0.99,1.00)$	0.483
Absence (days per year)	0.94	(0.92,0.96)	$<0.001^{* *}$	0.94	(0.91,0.96)	$<0.001^{* *}$
Stunting						
Not stunted (Ref=0)	0.67	(0.42,1.09)	0.111	0.77	(0.45, 1.33)	0.365
Stunted						
Weight status						
Thin and Normal (Ref=0)						
Overweight	0.87	$(0.65,1.17)$	0.385	0.88	(0.64, 1.22)	0.466
Obese	0.86	$(0.62,1.21)$	0.412	0.81	(0.56, 1.18)	0.286
Anemia						
No Anemia (Ref=0)						
Anemia	0.71	(0.49, 1.01)	0.061	0.71	(0.49,1.05)	0.088

Table 16: Associations between intervention participation (Binary), co-variates and English language performance using simple logistic regression (Unadjusted OR) and multivariate logistic regression (Adjusted OR)

	Unadjusted					Adjusted
Socio-demographic/	OR	(95%) CI	P-value	OR	(95%) CI	P-value
Nutrition Characteristics						

Participation in School Meals

Control (Ref=0)						
Participated	1.02	(0.82,1.26)	0.813	1.11	(0.86, 1.42)	0.404
Respondent Gender						
Male (Ref=1)						
Female	1.31	(1.04,1.64)	0.019*	1.19	(0.91, 1.54)	0.188
Respondent Age	0.65	(0.57, 0.76)	$<0.001^{* *}$	0.93	$(0.88,0.99)$	0.040*
Maternal Educational						
Up to primary level ($\operatorname{Ref}=0$)						
Up to Intermediate level	1.52	(1.19, 1.95)	<0.001**	1.54	$(1.18,2.02)$	0.001*
With Bac and above	3.07	(2.18, 4.31)	$<0.001^{* *}$	3.15	$(2.16,4.59)$	$<0.001^{* *}$
School						
Yarmouk (Ref=1)						
Toulkarm	0.94	(0.66, 1.36)	0.776			
Yaabod	1.04	(0.75, 1.43)	0.808			
Ramallah	1.10	(0.81, 1.50)	0.530			
Crowding Index						
Not crowded (Ref=0)						
Crowded	0.70	(0.56,0.87)	0.002*	0.86	(0.67,1.12)	0.285
Expenditures (\$/month/capita)	1.00	(1.000,1.002)	$<0.001^{* *}$	1.00	(0.99,1.00)	0.169
Absence (days per year)	0.92	(0.89,0.94)	$<0.001^{* *}$	0.92	(0.89,0.94)	$<0.001^{* *}$
Stunting						
Not stunted (Ref=0)						
Stunted	0.78	$(0.48,1.25)$	0.306			
Weight Status						
Thin and Normal (Ref=0)						
Overweight	1.02	(0.76, 1.37)	0.866	1.03	$(0.75,1.42)$	0.836
Obese	1.18	(0.84, 1.65)	0.330	1.15	$(0.79,1.68)$	0.445
Anemia						
No Anemia (Ref=0)						
Anemia	0.86	(0.60,1.23)	0.431	0.88	$(0.60,1.29)$	0.539

Table 17: Associations between intervention participation (Continuous), co-variates and English language performance using simple logistic regression (Unadjusted OR) and multivariate logistic regression (Adjusted OR)

		Unadjusted			Adjusted	
Nutrition Characteristics						
Participation in School Meals	1.01	(0.98, 1.05)	0.345	1.00	(0.96, 1.04)	0.733
Respondent Gender Male (Ref=1)						
Female	1.31	(1.04,1.64)	$<0.001^{* *}$	1.18	(0.91,1.54)	0.199
Respondent Age	0.65	(0.57, 0.76)	$<0.001^{* *}$	0.93	$(0.88,0.99)$	0.044*
Maternal Educational Up to primary level $(\operatorname{Ref}=0)$						
Up to Intermediate level	1.52	(1.19, 1.95)	$<0.001^{* *}$	1.53	$(1.17,2.01)$	0.002*

With Bac and above	3.07	(2.18, 4.31)	$<0.001^{* *}$	3.11	(2.14, 4.52)	$<0.001^{* *}$
School						
Yarmouk (Ref=1)						
Toulkarm	0.94	(0.66, 1.36)	0.776			
Yaabod	1.04	(0.75, 1.43)	0.808			
Ramallah	1.10	(0.81, 1.50)	0.530			
Crowding Index						
Not crowded (Ref=0)						
Crowded	0.70	(0.56,0.87)	0.002*	0.87	(0.67,1.13)	0.315
Expenditures (\$/month/capita)	1.00	(1.000,1.002)	$<0.001^{* *}$	1.00	(0.99,1.00)	0.185
Absence (days per year)	0.92	(0.89,0.94)	<0.001**	0.92	(0.89,0.94)	<0.001**
Stunting						
Not stunted (Ref=0)						
Stunted	0.78	(0.48,1.25)	0.306			
Weight Status						
Thin and Normal (Ref=0)						
Overweight	1.02	(0.76, 1.37)	0.866	1.02	$(0.74,1.41)$	0.859
Obese	1.18	(0.84, 1.65)	0.330	1.15	$(0.79,1.67)$	0.463
Anemia						
No Anemia (Ref=0)						
Anemia	0.86	(0.60,1.23)	0.431	0.89	(0.61,1.30)	0.554

Table 18: Associations between intervention participation (Binary), co-variates and Mathematics performance using simple logistic regression (Unadjusted OR) and multivariate logistic regression (Adjusted OR)

Crowded	0.84	$(0.67,1.05)$	0.138	0.98	$(0.76,1.26)$	0.897
Expenditures (\$/month/capita)	1.00	$(1.0001,1.002)$	0.022^{*}	1.00	$(0.99,1.00)$	0.282
Absence (days per year)	0.90	$(0.87,0.92)$	$<0.001^{* *}$	0.90	$(0.87,0.92)$	$<0.001^{* *}$
Stunting						
Not stunted (Ref=0)	0.80	$(0.50,1.29)$	0.367			
Stunted Weight Status Thin and Normal (Ref=0)						
Overweight	1.12	$(0.83,1.53)$	0.444	1.05	$(0.76,1.44)$	0.756
Obese	0.96	$(0.68,1.34)$	0.817	0.87	$(0.60,1.26)$	0.476
Anemia						
No Anemia (Ref=0)	0.84	$(0.59,1.21)$	0.364	0.84	$(0.58,1.23)$	0.392
Anemia						

Table 19: Associations between intervention participation (Continuous), co-variates and Mathematics performance using simple logistic regression (Unadjusted OR) and multivariate logistic regression (Adjusted OR)

Socio-demographic/ Nutrition Characteristics	OR	Unadjusted $(95 \%) \mathrm{CI}$	P -value	OR	Adjusted (95\%) CI	P-value
Participation in School Meals Respondent Gender Male (Ref=0)	1.005	(0.97,1.04)	0.754			
Female Respondent Age Maternal Educational Up to primary level (Ref=0)	$\begin{aligned} & 1.07 \\ & 0.75 \end{aligned}$	$\begin{aligned} & (0.85,1.34) \\ & (0.64,0.88) \end{aligned}$	$\begin{aligned} & 0.538 \\ & <0.001^{* *} \end{aligned}$	0.98	(0.93, 1.04)	0.704
Up to Intermediate level	1.30	(1.01, 1.66)	0.035*	1.36	(1.04, 1.78)	0.024*
With Bac and above School	1.87	(1.35, 2.58)	<0.001**	1.78	$(1.25,2.53)$	<0.001**
Toulkarm Yaabod	$\begin{gathered} 0.82 \\ 0.87 \end{gathered}$	$\begin{gathered} (0.57,1.19) \\ (0.63,1.19) \end{gathered}$	$\begin{gathered} 0.311 \\ 0.394 \end{gathered}$			
Ramallah Crowding Index Not crowded (Ref=0)	0.93	(0.68, 1.27)	0.674			
Crowded	0.84	(0.67,1.05)	0.138	0.98	(0.76,1.26)	0.907
Expenditures (\$/month/capita)	1.00	(1.0001,1.002)	0.022*	1.00	(0.99,1.00)	0.289
Absence (days per year)	0.90	(0.87,0.92)	$<0.001^{* *}$	0.89	(0.87,0.92)	$<0.001^{* *}$
Stunting						
Not stunted $(\operatorname{Ref}=0)$ Stunted	0.80	(0.50,1.29)	0.367			
Weight Status Thin and Normal (Ref=0)						

Overweight	1.12	$(0.83,1.53)$	0.444	1.05	$(0.76,1.44)$	0.762
Obese	0.96	$(0.68,1.34)$	0.817	0.87	$(0.60,1.26)$	0.466
Anemia						
No Anemia (Ref=0)	0.84	$(0.59,1.21)$	0.364	0.84	$(0.58,1.23)$	0.392

Table 20: Negative binomial regression for the outcome absence per year and participation, stratified by females

	Unadjusted			Adjusted		
	IRR	$\mathbf{9 5 \%}$ CI	P-value	IRR	$\mathbf{9 5 \%}$ CI	P-value
Covariate						
Participation in School Meals						
Control (Ref=0)						
Low Participation	0.78	(0.65, 0.93)	0.007 *	0.77	$(0.66,0.90)$	<0.001**
High Participation	0.77	$(0.66,0.88)$	<0.001 **	0.78	$(0.68,0.88)$	0.006*
Age (years)	1.00	(0.95, 1.05)	0.848			
Maternal Education						
Up to primary level ($\mathrm{Ref}=0$)						
Up to Intermediate level	0.99	$(0.86,1.14)$	0.964	1.01	$(0.88,1.17)$	0.794
With Bac and above	0.88	(0.73, 1.06)	0.200	0.88	$(0.73,1.07)$	0.214
Expenditures (\$/month/capita)	0.99	(0.99, 1.00)	0.336			
Crowding Index						
Not Crowded (Ref=0) Crowded	1.04	(0.91, 1.18)	0.533			
Stunting						
Not stunted (Ref=0)						
Stunted	0.86	(0.64, 1.17)	0.357			
Weight Status						
Thin and Normal (Ref=0)						
Overweight	0.92	(0.78, 1.09)	0.376	0.94	$(0.79,1.12)$	0.560
Obese	0.99	(0.82, 1.20)	0.974	0.98	(0.81,1.19)	0.858
Anemia						
No Anemia(Ref=0) Anemia	0.97	(0.78, 1.20)	0.791	0.98	(0.79, 1.22)	0.917

Table 21: Negative binomial regression for the outcome absence per year and participation (binary), stratified by females

	Unadjusted			Adjusted		
	IRR	$\mathbf{9 5 \%}$ CI	P-value	IRR	95\% CI	P-value
Covariate						
Participation in School Meals						
Participated	0.77	$(0.68,0.87)$	<0.001 **	0.78	$(0.68,0.89)$	0.000*
Age (years)	1.00	$(0.95,1.05)$	0.848			
Maternal Education						
Up to primary level (Ref=0)						
Up to Intermediate level	0.99	$(0.86,1.14)$	0.964	1.01	$(0.88,1.17)$	0.808
With Bac and above	0.88	(0.73, 1.06)	0.200	0.88	(0.73,1.07)	0.222
Expenditures (\$/month/capita)	0.99	(0.99, 1.00)	0.336	0.99	(0.99,1.00)	0.084
Crowding Index						
Not Crowded (Ref=0) Crowded	Not Crowded (Ref=0)					
Stunting						
Not stunted (Ref=0)						
Stunted	0.86	$(0.64,1.17)$	0.357			
Weight Status						
Overweight	0.92	$(0.78,1.09)$	0.376	0.95	(0.79,1.13)	0.567
Obese	0.99	(0.82, 1.20)	0.974	0.98	(0.81,1.18)	0.849
Anemia						
No Anemia(Ref=0) Anemia	0.97	$(0.78,1.20)$	0.791	0.98	(0.79, 1.22)	0.986

APPENDIX 14

Graphs for the Academic Performance Distribution across the Different Grades and Sections among Schools

Figure 4: Distribution of the Arabic language grades among first to sixth grade classes in the four selected schools

Figure 5: Distribution of the English language grades among first to sixth grade classes in the four selected schools

3 Ramallah

5 Yarmouk

\square
1 Ramallah
2 Yarmouk

2 Ramallah
 $\square \square \square \square$ $\square \square \square$

6 Toulkarm

6 Yaabod

c_b_Percent_ForeignLang_m4
Graphs by group(c_b_cgrade c_b_school)

Figure 6: Distribution of the Mathematics grades among first to sixth grade classes in the four selected schools

Figure 7: Detailed summary of the total absences of the participants in the study

c_b_Total_Absence				
	Percentiles	Smallest		
18	0	0		
58	0	0		
10%	0	0	Obs	1337
25%	1	0	Sum of Wgt.	1337
50%	4		Mean	4.939417
		Largest	Std. Dev.	5.226179
75%	7	37		
908	11	39	Variance	27.31294
95%	15	43	Skewness	2.50487
998	26	46	Kurtosis	13.11071

REFERENCES

Abarca-Gómez, L., Abdeen, Z. A., Hamid, Z. A., Abu-Rmeileh, N. M., Acosta-Cazares, B., Acuin, C., . . . Aguilar-Salinas, C. A. (2017). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. The Lancet.
Abudayya, A., Shi, Z., Abed, Y., \& Holmboe Ottesen, G. (2011). Diet, nutritional status and school performance t among adolescents in Gaza Strip.
Adelman, S., Alderman, H., Gilligan, D. O., \& Lehrer, K. (2008). The impact of alternative food for education programs on learning achievement and cognitive development in Northern Uganda. Unpublished manuscript.
Adelman, S., Gilligan, D., \& Lehrer, K. (2008). How effective are food for education programs?: A critical assessment of the evidence from developing countries (Vol. 9): Intl Food Policy Res Inst.
Afridi, F. (2011). The impact of school meals on school participation: evidence from rural India. Journal of Development Studies, 47(11), 1636-1656.
Ahmed, A. U. (2004). Impact of feeding children in school: Evidence from Bangladesh. Washington, DC: International Food Policy Research Institute.
Alderman, H., Gilligan, D. O., \& Lehrer, K. (2008). The impact of alternative food for education programs on School Participation and Education Attainment in Northern Uganda. Draft, World Bank, IFPRI, and University of British Columbia.
ANERA, A. N. E. R. A. (2012). Palestinian Refugees in Lebanon. 3, 9.
Barnett, S. B. L., \& Nurmagambetov, T. A. (2011). Costs of asthma in the United States: 2002-2007. Journal of allergy and clinical immunology, 127(1), 145-152.
Baxter, S. D., Guinn, C. H., Tebbs, J. M., \& Royer, J. A. (2013). There is no relationship between academic achievement and body mass index among fourth-grade, predominantly AfricanAmerican children. Journal of the Academy of Nutrition and Dietetics, 113(4), 551-557.
Benoist, B. d., McLean, E., Egll, I., \& Cogswell, M. (2008). Worldwide prevalence of anaemia 19932005: WHO global database on anaemia. Worldwide prevalence of anaemia 1993-2005: WHO global database on anaemia.
Bhattacharya, J., Currie, J., \& Haider, S. (2004). Poverty, food insecurity, and nutritional outcomes in children and adults. Journal of health economics, 23(4), 839-862.
Bobonis, G. J., Miguel, E., \& Puri-Sharma, C. (2006). Anemia and school participation. Journal of Human resources, 41(4), 692-721.
Bobonis, G. J., Miguel, E., \& Sharma, C. P. (2004). Iron deficiency anemia and school participation. Poverty Action Lab.
Bundy, D., Burbano, C., Grosh, M., Gelli, A., Jukes, M., \& Drake, L. (2009). Rethinking School Feeding: Social Safety Nets, Child Development, and the Education Sector. Rethinking School Feeding: Social Safety Nets, Child Development, and the Education Sector, 1-166. doi: 10.1596/978-0-8213-7974-5
Burrows, T., Goldman, S., Pursey, K., \& Lim, R. (2017). Is there an association between dietary intake and academic achievement: a systematic review. Journal of Human Nutrition and Dietetics, 30(2), 117-140. doi: 10.1111/jhn. 12407
Buttenheim, A., Alderman, H., \& Friedman, J. (2011). Impact evaluation of school feeding programmes in Lao People's Democratic Republic. Journal of Development Effectiveness, 3(4), 520-542.
Chaaban, J., Salti, N., Ghattas, H., Irani, A., Ismail, T., \& Batlouni, L. (2015). Survey on the Socioeconomic Status of Palestine Refugees in Lebanon: 2015: Beirut: AUB and UNRWA.
Chang, S., Walker, S., Grantham-McGregor, S., \& Powell, C. (2002). Early childhood stunting and later behaviour and school achievement. Journal of Child Psychology and Psychiatry, 43(6), 775-783.

Cook, J. T., Frank, D. A., Berkowitz, C., Black, M. M., Casey, P. H., Cutts, D. B., . . . Levenson, S. (2004). Food insecurity is associated with adverse health outcomes among human infants and toddlers. The Journal of nutrition, 134(6), 1432-1438.
Crookston, B. T., Dearden, K. A., Alder, S. C., Porucznik, C. A., Stanford, J. B., Merrill, R. M., . . . Penny, M. E. (2011). Impact of early and concurrent stunting on cognition. Maternal \& child nutrition, 7(4), 397-409.
da Cunha, D. T., Fiorotti, R. M., Baldasso, J. G., de Sousa, M., Fontanezi, N. M., Caivano, S., .. . Camargo, M. C. R. (2013). Improvement of food safety in school meal service during a long-term intervention period: a strategy based on the knowledge, attitude and practice triad. Food control, 34(2), 662-667.
Davis-Kean, P. E. (2005). The influence of parent education and family income on child achievement: the indirect role of parental expectations and the home environment. Journal of family psychology, 19(2), 294.
De Onis, M., Blossner, M., \& WHO. (1997). WHO global database on child growth and malnutrition.
DeMeis, J. L., \& Stearns, E. S. (1992). Relationship of school entrance age to academic and social performance. The Journal of Educational Research, 86(1), 20-27.
Dietz, C., \& Wilson, B. J. (1985). Beginning school age and academic achievement. Psychology in the Schools, 22(1), 93-94.
Evans, C., \& Harper, C. (2009). A history and review of school meal standards in the UK. Journal of Human Nutrition and Dietetics, 22(2), 89-99.
FAO, F. a. A. O. o. t. U. N. (1996). Rome Declaration on World Food Security and World Food Summit Plan of Action. World Food Summit
Florence, M. D., Asbridge, M., \& Veugelers, P. J. (2008). Diet quality and academic performance. J Sch Health, 78(4), 209-215; quiz 239-241. doi: 10.1111/j.1746-1561.2008.00288.x
Galloway, R., Kristjansson, E., Gelli, A., Meir, U., Espejo, F., \& Bundy, D. (2009). School feeding: Outcomes and costs. Food and Nutrition Bulletin, 30(2), 171-182.
Geier, A. B., Foster, G. D., Womble, L. G., McLaughlin, J., Borradaile, K. E., Nachmani, J., . . . Shults, J. (2007). The relationship between relative weight and school attendance among elementary schoolchildren. Obesity, 15(8), 2157-2161.
Ghattas, H., Sassine, A. J., Seyfert, K., Nord, M., \& Sahyoun, N. R. (2015). Prevalence and correlates of food insecurity among Palestinian refugees in Lebanon: Data from a household survey. PloS one, 10(6), e0130724.
Glazer, Y., \& Bilenko, N. (2010). Effect of iron deficiency and iron deficiency anemia in the first two years of life on cognitive and mental development during childhood. Harefuah, 149(5), 309-314, 335.

Glewwe, P. W., Hanushek, E. A., Humpage, S. D., \& Ravina, R. (2011). School resources and educational outcomes in developing countries: A review of the literature from 1990 to 2010: National Bureau of Economic Research.
Grantham-McGregor, S., \& Ani, C. (2001). A review of studies on the effect of iron deficiency on cognitive development in children. The Journal of nutrition, 131(2), 649S-668S.
Grantham-McGregor, S. M., Chang, S., \& Walker, S. P. (1998). Evaluation of school feeding programs: some Jamaican examples. The American journal of clinical nutrition, 67(4), 785S-789S.
Granthammcgregor, S. (1995). A Review of Studies of the Effect of Severe Malnutrition on MentalDevelopment. Journal of Nutrition, 125(8), S2233-S2238.
Halpern, J. Y. (1986). Reasoning about knowledge: an overview. Paper presented at the Proceedings of the 1986 Conference on Theoretical aspects of reasoning about knowledge.
Halterman, J. S., Kaczorowski, J. M., Aligne, C. A., Auinger, P., \& Szilagyi, P. G. (2001). Iron deficiency and cognitive achievement among school-aged children and adolescents in the United States. Pediatrics, 107(6), 1381-1386.
Harper, C., Wood, L., \& Mitchell, C. (2008). The provision of school food in 18 countries. School Food Trust.

Haveman, R., \& Wolfe, B. (1995). The determinants of children's attainments: A review of methods and findings. Journal of economic literature, 33(4), 1829-1878.
Hjorth, M. F., Sørensen, L. B., Andersen, R., Dyssegaard, C. B., Ritz, C., Tetens, I., . . . Sjödin, A. (2016). Normal weight children have higher cognitive performance-Independent of physical activity, sleep, and diet. Physiology \& behavior, 165, 398-404.
Hossain, M., Choudhury, N., Abdullah, K. A. B., Mondal, P., Jackson, A. A., Walson, J., \& Ahmed, T. (2017). Evidence-based approaches to childhood stunting in low and middle income countries: a systematic review. Archives of Disease in Childhood, archdischild-2016-311050.
Hutchinson, S. E., Powell, C. A., Walker, S. P., Chang, S. M., \& Grantham-McGregor, S. M. (1997). Nutrition, anaemia, geohelminth infection and school achievement in rural Jamaican primary school children. European journal of clinical nutrition, 51(11), 729-735.
Hyde, J. S., Fennema, E., \& Lamon, S. J. (1990). Gender differences in mathematics performance: a meta-analysis: American Psychological Association.
Jacoby, E. R., Cueto, S., \& Pollitt, E. (1998). When science and politics listen to each other: good prospects from a new school breakfast program in Peru. The American journal of clinical nutrition, 67(4), 795S-797S.
Jomaa, L. H., McDonnell, E., \& Probart, C. (2011). School feeding programs in developing countries: impacts on children's health and educational outcomes. Nutr Rev, 69(2), 83-98. doi: 10.1111/j.1753-4887.2010.00369.x

Jukes, M. C., Drake, L. J., \& Bundy, D. A. (2007). School health, nutrition and education for all: levelling the playing field: CABI.
Kaufman-Shriqui, V., Fraser, D., Friger, M., Geva, D., Bilenko, N., Vardi, H., .. . Shahar, D. R. (2016). Effect of a School-Based Intervention on Nutritional Knowledge and Habits of LowSocioeconomic School Children in Israel: A Cluster-Randomized Controlled Trial. Nutrients, 8(4). doi: Artn 234
10.3390/Nu8040234

Kruske, S., Ruben, A., \& Brewster, D. (1999). An iron treatment trial in an Aboriginal community: Improving non-adherence. Journal of paediatrics and child health, 35(2), 153-158.
Kupolati, M. D., MacIntyre, U. E., \& Gericke, G. J. (2014). School-based nutrition education: features and challenges for success. Nutrition \& Food Science, 44(6), 520-535.
La Paro, K. M., \& Pianta, R. C. (2000). Predicting children's competence in the early school years: A meta-analytic review. Review of educational research, 70(4), 443-484.
Langer, P., Kalk, J. M., \& Searls, D. T. (1984). Age of admission and trends in achievement: A comparison of Blacks and Caucasians. American Educational Research Journal, 21(1), 61-78.
Lawson, T. M. (2012). Impact of School Feeding Programs on Educational, Nutritional, and Agricultural Development Goals: A Systematic Review of Literature. Michigan State University.
Li, Y., Dai, Q., Jackson, J. C., \& Zhang, J. (2008). Overweight is associated with decreased cognitive functioning among school-age children and adolescents. Obesity, 16(8), 1809-1815.
Maccoby, E. E., \& Jacklin, C. N. (1974). Myth, reality and shades of gray: What we know and don't know about sex differences. Psychology Today, 8(7), 109-112.
Magnuson, K. (2007). Maternal education and children's academic achievement during middle childhood. Developmental psychology, 43(6), 1497.
Mamdooh, A. (2008). Prevalence of Iron Deficiency Anemia among Female Elementary School Children in Northern Jeddah, Saudi Arabia. JKAU Med Sci, 15, 63-75.
MAP, M. A. f. P. (2011). TERMINAL DECLINE? PALESTINIAN REFUGEE HEALTH IN LEBANON.
McEwan, P. J. (2013). The impact of Chile's school feeding program on education outcomes. Economics of Education Review, 32, 122-139.
Mhanna, R. G., Rahal, M., Iskandarani, M., \& Hammoudi, D. (2016). Incidence and risk factors associated with iron deficiency anaemia among hospitalised Lebanese infants. International Journal of Pharmacy Practice, 24(3), 203-208.

Milling Kinard, E., \& Reinherz, H. (1986). Birthdate effects on school performance and adjustment: A longitudinal study. The Journal of Educational Research, 79(6), 366-372.
Mills, A., \& Meadows, N. (1989). Screening for anaemia: evaluation of a haemoglobinometer. Archives of Disease in Childhood, 64(10), 1468-1471.
Mo-suwan, L., Lebel, L., Puetpaiboon, A., \& Junjana, C. (1999). School performance and weight status of children and young adolescents in a transitional society in Thailand. International Journal of Obesity, 23(3), 272-277.
More, S., Shivkumar, V., Gangane, N., \& Shende, S. (2013). Effects of iron deficiency on cognitive function in school going adolescent females in rural area of central India. Anemia, 2013.
Morrison, F. J., Alberts, D. M., \& Griffith, E. M. (1997). Nature-nurture in the classroom: Entrance age, school readiness, and learning in children. Developmental psychology, 33(2), 254.
Morrissey, T. W., Hutchison, L., \& Winsler, A. (2014). Family income, school attendance, and academic achievement in elementary school. Developmental psychology, 50(3), 741.
Nguyen, B. T. (2016). Nutrition education intervention to increase nutrition knowledge and healthy food choices among fourth-and Fifth-graders in East Lubbock, Texas: A promised neighborhood project.
Pan, L., Sherry, B., Park, S., \& Blanck, H. M. (2013). The association of obesity and school absenteeism attributed to illness or injury among adolescents in the United States, 2009. Journal of Adolescent Health, 52(1), 64-69.
Pérez-Rodrigo, C., \& Aranceta, J. (2001). School-based nutrition education: lessons learned and new perspectives. Public health nutrition, 4(1a), 131-139.
Perignon, M., Fiorentino, M., Kuong, K., Burja, K., Parker, M., Sisokhom, S., . . Wieringa, F. T. (2014). Stunting, poor iron status and parasite infection are significant risk factors for lower cognitive performance in Cambodian school-aged children. PloS one, 9(11), e112605.
Poh, B. K., Rojroonwasinkul, N., Le Nyugen, B. K., Budiman, B., Ng, L. O., Soonthorndhada, K., . . . Parikh, P. (2013). Relationship between anthropometric indicators and cognitive performance in Southeast Asian school-aged children. British Journal of Nutrition, 110(S3), S57-S64.
Pollitt, E. (1997). Iron deficiency and educational deficiency. Nutrition reviews, 55(4), 133-141.
Pomerantz, E. M., Altermatt, E. R., \& Saxon, J. L. (2002). Making the grade but feeling distressed: Gender differences in academic performance and internal distress. Journal of Educational Psychology, 94(2), 396.
Powell, C., Granthammcgregor, S., \& Elston, M. (1983). An Evaluation of Giving the Jamaican Government School Meal to a Class of Children. Human Nutrition-Clinical Nutrition, 37(5), 381388.

Powers, A. R., Struempler, B. J., Guarino, A., \& Parmer, S. M. (2005). Effects of a nutrition education program on the dietary behaviour and nutrition knowledge of second-grade and third-grade students. J Sch Health, 75. doi: 10.1111/j.1746-1561.2005.tb06657.x
Price, C., Cohen, D., Pribis, P., \& Cerami, J. (2017). Nutrition Education and Body Mass Index in Grades K-12: A Systematic Review. Journal of school health, 87(9), 715-720.
Quinlan, L. (1996). The Effects of School Entry Age and Gender on Reading Achievement Scores of Third Grade Students.
Rappaport, E. B., Daskalakis, C., \& Andrel, J. (2011). Obesity and other predictors of absenteeism in Philadelphia school children. Journal of school health, 81(6), 341-344.
Ross, J. M., \& Simpson, H. (1971). The national survey of health and development: 1. Educational attainment. British Journal of Educational Psychology, 41(1), 49-61.
Sachdev, H., Gera, T., \& Nestel, P. (2005). Effect of iron supplementation on mental and motor development in children: systematic review of randomised controlled trials. Public health nutrition, 8(2), 117-132.
Sanchis-Gomar, F., Cortell-Ballester, J., Pareja-Galeano, H., Banfi, G., \& Lippi, G. (2013). Hemoglobin point-of-care testing: the HemoCue system. Journal of laboratory automation, 18(3), 198-205.

Shackleton, V. J., \& Fletcher, C. (1984). Individual differences, theories and applications: Taylor \& Francis.
Sigfúsdóttir, I. D., Kristjánsson, A. L., \& Allegrante, J. P. (2006). Health behaviour and academic achievement in Icelandic school children. Health education research, 22(1), 70-80.
Simeon, D. T. (1998). School feeding in Jamaica: a review of its evaluation. The American journal of clinical nutrition, 67(4), 790S-794S.
Sokolovic, N., Selvam, S., Srinivasan, K., Thankachan, P., Kurpad, A., \& Thomas, T. (2014). Catch-up growth does not associate with cognitive development in Indian school-age children. European journal of clinical nutrition, 68(1), 14-18.
Soleimani, N. (2011). Relationship between anaemia, caused from the iron deficiency, and academic achievement among third grade high school female students. Procedia-Social and Behavioral Sciences, 29, 1877-1884.
Sorensen, L. B., Dyssegaard, C. B., Damsgaard, C. T., Petersen, R. A., Dalskov, S. M., Hjorth, M. F., . . . Egelund, N. (2015). The effects of Nordic school meals on concentration and school performance in 8-to 11-year-old children in the OPUS School Meal Study: a cluster-randomised, controlled, cross-over trial. British Journal of Nutrition, 113(8), 1280-1291. doi: 10.1017/S0007114515000033

Tan, J.-P., Lane, J., \& Lassibille, G. (1999). Student outcomes in Philippine elementary schools: An evaluation of four experiments. The World Bank Economic Review, 13(3), 493-508.
Taras, H. (2005). Nutrition and student performance at school. Journal of school health, 75(6), 199-213.
Taras, H., \& Potts-Datema, W. (2005). Obesity and student performance at school. Journal of school health, 75(8), 291-295.
Taylor, A. D., \& Ogbogu, C. O. (2016). The Effects of School Feeding Programme on Enrolment and Performance of Public Elementary School Pupils in Osun State, Nigeria. World Journal of Education, 6(3), 39.
UNESCO. (2010). Global Education Digest 2010: Comparing Education Statistics Across the World: Unesco.
UNICEF. (2010). The Situation of Palestinian Children in the Occupied Palestinian Territory, Jordan, Syria and Lebanon. UNICEF, Jordan.
UNRWA. (2012). The Annual Report of the Department of Health
UNRWA. (2017 a). Where We Work - Camp Profiles-Shatila-Camp. from https://www.unrwa.org/where-we-work/lebanon/shatila-camp
UNRWA. (2017 b). Where We Work - Camp Profiles-burj-barajneh-camp
USDS. (2014). 2014 Country Reports on Human Rights Practices
Veldwijk, J., Fries, M. C., Bemelmans, W. J., Haveman-Nies, A., Smit, H. A., Koppelman, G. H., \& Wijga, A. H. (2012). Overweight and school performance among primary school children: the PIAMA birth cohort study. Obesity, 20(3), 590-596.
Vermeersch, C., \& Kremer, M. (2005). School meals, educational achievement, and school competition: evidence from a randomized evaluation (Vol. 3523): World Bank Publications.
Vlachos, F., \& Papadimitriou, A. (2015). Effect of age and gender on children's reading performance: The possible neural underpinnings. Cogent Psychology, 2(1), 1045224.
WFP. (2010). Change Lives: School Feeding, the Millennium Development Goals and Girls’ Empowerment: Rome, World Food Programme (WFP).
Whaley, S. E., Sigman, M., Neumann, C., Bwibo, N., Guthrie, D., Weiss, R. E., . . . Murphy, S. P. (2003). The impact of dietary intervention on the cognitive development of Kenyan school children. The Journal of nutrition, 133(11), 3965S-3971S.
Wheldall, K., \& Limbrick, L. (2010). Do more boys than girls have reading problems? Journal of Learning Disabilities, 43(5), 418-429.
WHO. (2008). Training Course on Child Growth Assessment. Geneva, WHO, 2008.
WHO. (2011). The global prevalence of anaemia in 2011.
WHO. (2016). Nutrition.

WHO. (2017). Obesity and Overweight factsheet from the WHO. Health.
Yendaw, E., \& Dayour, F. (2014). Effect of the National School Feeding Programme on Pupils’ Enrolment, Attendance and Retention: A Case Study of Nyoglo of the Savelugu-Nantong Municipality, Ghana.

