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AN ABSTRACT OF THE THESIS OF 

Batoul Hussein Jishi           for            Master of Science  

                                                             Major: Physiology 

 

Title: Effect of the Immunomodulatory Drug EAP0503 on Mutant Nucleophosmin-1 Function                                                                     

          in Acute Myeloid Leukemia 

 

Nucleophosmin-1 mutation (NPM1c) represents one of the most frequent mutations in Acute 

Myeloid Leukemia (AML). In NPM1c AML, NPM-1 is aberrantly exported to the cytoplasm, 

contributing to leukemogenesis. Ribosomal biogenesis depends on NPM1 binding with the 

SUMO-specific protease SENP3 or the p14
Arf

 protein. While SENP3 catalyses desumoylation 

of NPM1/SUMO2 leading to 28S rRNA maturation; NPM1/p14
Arf

 binding counteracts this 

activity. p14
Arf

 binds and activates p53, through antagonizing its ubiquitin ligase MDM2. In 

this study, we explored the effect of NPM1c on the complex interaction with SENP3, p53, 

MDM2 and investigated the molecular basis of the immunomodulatory drug EAPB0503-

induced NPM1c degradation on this interaction. We used two AML cell lines, OCI-AML2 

and OCI-AML3 expressing NPM1 and NPM1c respectively. In vitro, the effect of EAPB0503 

on cell growth, cell cycle, expression levels and localization of NPM1c, SENP3, p53, P-p53, 

MDM2 and p21 were assessed. EAPB0503 inhibited OCI-AML3 proliferation in a time-

dependent manner and led to NPM1c degradation through p53 pathway activation. This was 

accompanied by restored NPM1 nucleolar localization in NPM1c AML cells. Importantly, 

NPM1c AML cells exhibited low basal levels of p53, and high basal levels of SENP3 and 

MDM2. EAPB0503 selectively degraded SENP3 in NPM1c AML cells, resulting in 

SUMOylation of NPM1c.  In vivo, immunocompromised mice were injected intravenously 

with either cell lines. EAPB0503 was administered intraperitoneally, every other day, for 3 

weeks. EAPB0503 selectively prolonged survival of OCI-AML3 xenograft mice, preserved 

the normal liver architecture, and reduced the number of bone marrow blasts along with 

NPM1c degradation, and p14
ARF

 upregulation. This study provides a rationale for the 

therapeutic use of EAPB0503 in NPM1c AML.  
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LITERATURE REVIEW 

CHAPTER 1: ACUTE MYELOID LEUKEMIA 

A. Overview and epidemiology 

Acute Myeloid Leukemia (AML) is a genetically heterogeneous and complex blood 

malignancy. AML is characterized by a clonal expansion of myeloid precursors with an 

increased proliferation rate and a reduced capacity to differentiate, resulting in the decreased 

production of normal mature blood cells and the accumulation of myeloblasts in the bone 

marrow (1). AML is one of the most frequent hematological malignancies in adults; it 

accounts for around 80% of acute leukemias (2). AML can occur at any age group with a 

median age of 68 in adults and a sharp increase of incidence with age (3). Patients older than 

60 have a poor prognosis, with an overall survival (OS) of less than 10% at 2-years (4).  

 

B. Classifications of AML 

AML is a highly polyclonal disease that evolves over time. It can present at diagnosis 

with multiple clones and multiple mutations. The first classification of AML was conducted 

by the French-American British (FAB) system in 1976 and divided AML into eight subtypes 

(M0 to M7) based on morphological appearance of the blasts and their immuno-histochemical 

features (Table 1) (5). 
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Table 1. French-American-British (FAB) of AML (5) 

FAB Subtype Name % of Adult AML 

patients 

Prognosis compared 

to average for AML 

M0 Undifferentiated 

acute myeloblastic 

5% Worse 

M1 Acute myeloblastic 

leukemia with 

minimal maturation 

15% Average 

M2 Acute myeloblastic 

leukemia with 

maturation 

25% Better 

M3 Acute promyelocytic 

leukemia (APL) 

10% Best 

M4 Acute 

myelomonocytic 

leukemia 

20% Average 

M4 eos Acute 

myelomonocytic 

leukemia with 

eosinophilia 

5% Better 

M5 Acute monocytic 

leukemia 

10% Average 

M6 Acute erythroid 

leukemia 

5% Worse 

M7 Acute 

megakaryoblastic 

leukemia 

5% Worse 

 

This FAB classification was useful for decades. However, the discovery of genetic 

alterations in AML subtypes was better to predict clinical classification. Hence, in 2001, a 

new classification of AML was established by World Health Organization (WHO) in 

collaboration with the Society for Hemato-pathology and the European Association of 
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Hemato-pathology (6). This classification was revised by WHO in 2008 and included other 

prognostic factors (7) (Table 2).  

 

Table 2. WHO classification of acute myeloid leukemia 2008 

AML with recurrent genetic abnormalities  

AML with t (8;21) (q22;q22); RUNX1-RUNX1T1  

AML with inv (16) (p13.1q22) or t (16;16) (p13.1;q22); CBFβ-MYH11  

Acute promyelocytic leukemia with t (15;17)(q22;q12); PML-RARα  

AML with t (9;11) (p22;q23); MLLT3-MLL  

AML with t (6;9) (p23;q34); DEK-NUP214  

AML with inv (3) (q21q26.2) or t (3;3) (q21;q26.2); RPN1-EVI1  

AML (megakaryoblastic) with t (1;22) (p13;q13); RBM15-MKL1  

AML with mutated NPM1*  

AML with mutated CEBPA*  

AML with myelodysplasia-related changes  

Therapy-related myeloid neoplasms  

AML NOS  

AML with minimal differentiation  

AML without maturation  

AML with maturation  

Acute myelomonocytic leukemia  

Acute monoblastic and monocytic leukemia  

Acute erythroid leukemia  

Acute megakaryoblastic leukemia  

Acute basophilic leukemia  

Acute panmyelosis with myelofibrosis  

Myeloid sarcoma  
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*These are provisional entities. WHO: World Health Organization, AML: Acute myeloid 

leukemia, RUNX1-RUNX1T1: Runt-related transcription factor 1; translocated to, 1 (cyclin 

D-related), CBFβ: Core-binding factor, subunit beta, RARα: Retinoic acid receptor α, MLL: 

Mixed lineage leukemia, MLLT3: Mixed lineage leukemia gene T3, RPN1-EVI1: 

Ribophorin1 gene-ecotropic virus integration 1 gene, RBM15-MKL1: RNA binding motif 

protein 15-megakaryoblastic leukemia 1, NPM1: Nucleophosmin member 1, CEBPA: 

CCAAT/enhancer-binding protein alpha, NOS: Not otherwise specified 

 

Advances in sequencing technologies led to the discovery of new genetic mutations 

including Fms-Like Tyrosine kinase 3 (FLT3), and Nucleophosmin-1 (NPM1). Thus, AML 

classification was further revised. In 2010, the European LeukemiaNet (ELN) classification 

attempted to standardize the risk stratification in adult AML patients, by incorporating 

recurrent somatic mutations (8). They proposed a novel classification correlating cytogenetics 

and selected molecular alterations with clinical findings and treatment outcomes. Four groups 

of ELN classification were distinguished: favorable, intermediate-I, intermediate-II, and 

adverse. The latest AML classification was further simplified and divided patients according 

to their baseline cytogenetics into three major risk sub-categories: favorable, intermediate and 

adverse (9) (Table 3). 

 

Table 3. 2017 ELN risk stratification of AML (9) 

Risk Category Genetic Abnormality  

Favorable t (8;21) (q22;q22.1); RUNX1-RUNX1T1  

inv(16) (p13.1q22) or t (16;16) (p13.1;q22); CBFB-MYH11  

Mutated NPM1 without FLT3-ITD or with FLT3-ITD 
low*

 

Biallelic mutated CEBPA  

Intermediate Mutated NPM1 and FLT3-ITD 
high 

Wild type NPM1 without FLT3-ITD or with FLT3-ITD 
low*

 (w/o 

adverse risk genetic lesions)  
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t(9;11) (p21.3;q23.3); MLLT3-KMT2Ad  

Cytogenetic abnormalities not classified as favorable or adverse  

Adverse t (6;9) (p23;q34.1); DEK-NUP214  

t (v;11q23.3); KMT2A rearranged  

t (9;22) (q34.1;q11.2); BCR-ABL1  

inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1)  

-5 or del(5q); -7; -17/abn(17p)  

Complex karyotype, monosomal karyotype  

Wild type NPM1 and FLT3-ITD 
high*

 

Mutated RUNX1 
Ϯ
 

Mutated ASXL1 
Ϯ
 

Mutated TP53h  

*Low, low allelic ratio (<0.5); high, high allelic ratio (>0.5); Ϯ these mutations should not be 

used as an adverse prognostic marker if they co-occur with favorable-risk AML subtypes. 

 

C.  Genetic alterations in AML 

While 50% of AML cases have chromosomal deletions or translocations (10), the 

remaining 50% are cytogenetically normal (CN-AML), with gene mutations (11). Exome 

sequencing in  AML patients led to the identification of more than 20 driver recurrent 

mutations (12). The most significant mutations are: Nucleophosmin 1 (NPM1) mutations, 

DNA Methyltransferase 3A (DNMT3A) mutations, Fms-Like Tyrosine Kinase 3 (FLT3) 

mutations, Isocitrate Dehydrogenase (IDH) mutations, Ten–Eleven Translocation 2 (TET2) 

mutations, Runt-Related Transcription Factor (RUNX1) mutations, CCAAT Enhancer 

Binding Protein α (CEBPA) mutations, Additional Sex Comb-Like 1 (ASXL1) mutations, 

Mixed Lineage Leukemia (MLL) mutations, Tumor Protein p53 (TP53) mutations, c-Kit 
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mutations, Splicing Factor Gene mutations and Cohesion Complex Members mutations 

(Figure 1) (13). 

 

Figure 1. Driver mutations in Acute Myeloid Leukemia (AML) (13)  

Driver events in 1540 patients with AML. Each bar represents a distinct driver lesion; the 

lesions include gene mutations, chromosomal aneuploidies, fusion genes, and complex 

karyotypes. The colors in each bar indicate the molecular risk according to the European 

LeukemiaNet (ELN) classification. (13) 

 

D. Clinical manifestations of AML 

AML symptoms result mainly from a shortage of normal blood cells. Non-specific 

symptoms in AML patients include fatigue, loss of appetite, thrombocytopenia, anemia and/or 

neutropenia (14) . AML patients may experience others symptoms like bruising, weakness, 

anxiety, dizziness, depression, bleeding, shortness of breath (15). In addition to infections of 

variable severity, splenomegaly and hepatomegaly are seen in approximately one third of 
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patients, especially in those with a monocytic or monoblastic morphologic subtype. 

Hemorrhagic manifestations including gingival bleeding, ecchymoses, epistaxis, or 

menorrhagia can also occur (16). In some patients, a serious bleeding diathesis can occur, 

particularly in the early phase of treatment, because the activation of the coagulation cascade 

by the leukemic blasts leading to hyper-fibrinolysis. The most serious complication is the 

intracranial bleeding, and can occur in 5% of patients (17). Moreover, chloroma, also called 

granulocytic sarcoma or myeloid sarcoma, is an extra-medullary manifestation of AML which 

was also reported as a rare manifestation of AML with an incidence of 2.5–9% (18). 

 

E. Current treatments of AML 

The genetic complexity of AML renders the outcome of standard treatments very 

variable among patients. For more than three decades, the standard treatment of AML 

remained unchanged. The last decade witnessed a better understanding of the molecular 

pathogenesis of AML. This linked different prognosis and response to therapy with different 

mutations and karyotypes, and offered the discovery of potential new therapeutic targets. As a 

result, selective treatment approaches and personalized therapeutic strategies targeting driving 

mutations are adopted in newly diagnosed or relapsing/refractory patients and others are 

object of clinical investigation (19).  

In newly diagnosed patients with AML, treatment with intensive chemotherapy is 

mainly dependent on the patient’s fitness that relies mostly on age, performance status, and 

comorbidities to achieve complete remission (CR) (20). Patients who achieve CR from the 

induction therapy, should receive convenient post-remission consolidation therapy (21). 

Patients with increased risk of relapse receive hematopoietic stem cell transplantation (HSCT) 
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in the first remission (Figure 2). Various transplant models were designed to optimize 

decision-making about these patient candidates. Patients with favorable AML related features 

receive post-remission consolidation therapy whereas those of adverse risk receive HSCT in 

the first remission (22). In intermediate risk patients, decision regarding chemotherapy versus 

HSCT is based on patient’s individual risk of relapse, donor source, performance status, 

comorbidities, and patient preference (Figure 2). 

HLA=human leukocyte antigen. HSCT=hemopoietic stem cell transplant 

Figure 2. Treatment plan of AML in adults (23). 
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1. Targeted therapy of AML 

AML remains a very aggressive leukemia with severe and complex prognosis. 

Increased survival among younger AML patients, with further intensification of 

chemotherapy, is limited by toxicity and compromised by reduced compliance. Older patients 

face several challenges, including an increased incidence of comorbidities, frequent functional 

impairment, higher mortality, and more aggressive disease biology with resistance to 

chemotherapy. AML treatment is witnessing more personalized approaches with specific 

targeting of driving mutations. Targeted therapies are designed according to driver mutations 

and molecular alteration in each AML subtype.  In 2017, several AML innovative drugs were 

approved by food and drug administration (Table 4) (24, 25). These include hypo-methylating 

agents, FLT-3 ITD inhibitors, Isocitrate-dehydrogenase (IDH) Inhibitors and monoclonal 

antibodies.   

Among the FLT3 inhibitors, Sorafenib belongs to the first generation inhibitors and 

proved potent activity against AML (26, 27). Sorafenib was either added to standard 

chemotherapy in the first-line induction therapy in AML, or used as maintenance therapy after 

allo-HCT (28-30). Giltertinib is among the second generation of FLT3 inhibitors, that was 

FDA approved for the treatment of adult relapsing patients or in refractory AML with a FLT3 

mutation (31). Among the FLT3 inhibitors, Midostaurin is an oral multi-targeted kinase 

inhibitor. A large randomized international study suggested that adding Midostaurin to 

induction and consolidation therapy, and its single-agent use during maintenance therapy, 

improved overall survival (OS) and event-free survival (EFS), in patients 18–60 years of age 

with de novo FLT3-positive AML (32).  
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In adult AML patients having complex karyotype with no NPM1 mutation, induction 

therapy is not effective alone and required the use of hypomethylating agents such as 

decitabine and azacitidine (33-35). 5-azacytidine and decitabine improve survival in AML 

patients. A phase III trial in elderly patients showed that azacytidine was associated with 

improved OS compared to patients who received common AML treatments (36).  

A meta-analysis of randomized studies demonstrated that Gemtuzumab ozogamicin 

(GO), a humanized monoclonal antibody anti-CD33 drug conjugate carrying calicheamicin, a 

potent DNA damaging toxin, can be safely added to conventional induction therapy. This 

combination reduced the risk of relapse and led to a significant survival benefit for patients 

with intermediate, and particularly favorable, cytogenetics (37, 38). 

 

Table 4. FDA approved targeted therapies for AML in 2017 

 Drug class Approved indication Clinical outcomes 

Midostaurin Multi-targeted kinase 

inhibitor (FLT3, 

VEGFR2, PDGFR, 

and KIT) 

Newly diagnosed FLT3-

mutated acute myeloid 

leukemia in adults (given in 

combination with 

chemotherapy) 

Chemotherapy and 

Midostaurin vs 

chemotherapy alone: 

median overall survival 

74∙7 months vs 25∙6 

months (HR 0∙78; 

p=0∙009) (32) 

Enasidenib IDH2 inhibitor Relapsed or refractory 

IDH2-mutated acute 

myeloid leukemia 

Overall response rate 

40∙3%, complete 

remission 19∙3%, and 

median overall survival 

9∙3 months (39) 

Gemtuzumab 

ozogamicin 

Anti-CD33 antibody-

drug conjugate 

Newly diagnosed CD33-

positive acute myeloid 

leukemia in adults and 

relapsed or refractory 

CD33-positive acute 

myeloid leukemia in adults 

or pediatric patients aged 2 

For newly diagnosed, 

chemotherapy plus 

Gemtuzumab 

ozogamicin vs 

chemotherapy alone: 

median event free 

survival 15∙6 months vs 
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years and older 9∙7 months (HR 0∙58; 

p=0∙0003) (40) and 

Gemtuzumab 

ozogamicin vs best 

supportive care: median 

overall survival 4∙9 

months vs 3∙6 months 

(HR 0∙69; p=0∙005) 

(38) For relapsed or 

refractory, overall 

response rate 33∙3%, 

complete remission 

26∙3%, and median 

overall survival 8∙4 

months(25) 

 

Other targeted therapies were also designed against AML. In Acute Promyelocytic 

Leukemia (APL) patients, an AML subtype, a combination of Arsenic trioxide (ATO) and 

All-Trans Retinoic Acid (ATRA) became a standard treatment and led to high cure rates (41, 

42). 

Activation of the PI3K/AKT/mTOR signaling pathway is very common in AML (43, 

44). Pan-PI3K, PI3Kδ, dual PI3K–mTOR and AKT inhibitors show anti-leukemic activity in 

vitro (45, 46) and some are currently in Phase I/ II trials (47, 48). In addition, a Phase I/II 

study of the mTOR inhibitor, everolimus, in combination with chemotherapy or azacitidine 

demonstrated good tolerability and high response rates in patients with relapsed AML (49) 

(50). 

Finally, venetoclax, a bcl-2 inhibitor is used in combination with demethylating agents 

such as decitabine or azacitidine (51) or low dose Cytarabine (52) and showed tolerable safety 

and favorable Objective Response Rate (ORR) in elderly AML patients. 
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CHAPTER 2: NUCLEOPHOSMIN-1(NPM1) 

A. NPM family 

 

Nucleophosmin/nucleoplasmin (NPM) is a family of three histone chaperones (NPM1, 

NPM2, and NPM3), with NPM1 being the prevalent form in all tissues (53). Members of this 

family exhibit conserved structural motifs; an N-terminal core domain, an acidic domain and 

a nuclear localization signal, associated with a less conserved, disorganized C-terminus region 

(54) (Figure 3). 

 

 

Figure 3. Domain representation of human NPM1, NPM2, and NPM3 proteins (54) 

Schematic structure of human NPM proteins All proteins share a core, hydrophobic domain 

(blue) responsible for oligomerization and chaperone activity, followed by an acidic domain 

(light green) required for ribonuclease activity. A basic domain (light orange) implicated in 

nucleic acid binding is common to NPM1 and NPM2, but absent in NPM3. Finally, only 

NPM1 exhibits a C-terminal aromatic stretch (purple) required for its nucleolar localization. 

In addition, NPM1 harbors nuclear-localization signals (NLS) (red), nucleolar-localization 

signal (NoLs, gray), nuclear export signal (NES) (blue cyan) and acidic clusters (A1, A2 and 

A3, dark green). 
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Striking differences in expression patterns, intracellular localization and function exist 

between the three members of NPM family (55).  The main functions of the three members 

are summarized in Table 5.  

NPM1 (also known as NO38, numatrin or B23) is a ubiquitously expressed nucleolar 

phosphoprotein that constantly shuttles between the nucleus and the cytoplasm (56). NPM1 is 

directly implicated in human tumorigenesis (57).  It is overexpressed in various tumors such 

as colon (58), ovarian (59) and prostate (60) carcinomas.  

 

 

Table 5. NPM family members 

NPM Family 

Member 
Known As Major function 

 NPM1 

B23 (61, 62) or 

numatrin (63) in 

mammals and NO38 in 

amphibians (64) 

 Ribosome Biogenesis (65) 

 Centrosome duplication (66)  

 Regulation of apoptosis through 

regulation of p53 and p14
ARF 

 (67) 

 DNA duplication (68) 

 Transcriptional regulation (69) 

 Histone chaperoning (70) 

NPM2 
Nucleoplasmin in 

amphibians 

 Binds to histones and mediates the 

assembly of nucleosomes from DNA 

and histone proteins (71),  

 De-condensation and remodeling of 

paternal chromatin after fertilization 

(72) 

NPM3 
NO29 in amphibians 

(73) 

 Ribosomal RNA biogenesis (74)   

 Paternal chromatin decondensation in 

mammals (75) 
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NPM1 is also known as B23 (61, 62) or numatrin (63) in mammals and NO38 in 

amphibians (64). NPM1 is mainly localized in the nucleolus (61) and has wide tissue 

distribution (76). It is involved in multiple cellular processes including ribosomal biogenesis 

(65). It is the most studied of all members of the Nucleophosmin family because of its 

frequent overexpression, mutations, rearrangement, and deletion in human cancers. 

NPM2 was isolated from the eggs and the oocytes of Xenopus laevis; it is the most 

abundant nuclear protein (77, 78). NPM2 binds to histones and mediates the assembly of 

nucleosomes from DNA and histone proteins (71), and it also facilitate the de-condensation 

and remodeling of paternal chromatin after fertilization (72). 

NPM3 is the most recent discovered NPM member (79), known as NO29 in 

amphibians (73). It is involved in ribosomal biogenesis by regulating NPM1 (74) and paternal 

chromatin de-condensation in mammals (75). 

 

B. NPM1 gene and the structure of its encoded protein 

NPM1 gene maps to chromosome 5q35 in humans and it contains 12 exons (53). It 

encodes three alternatively spliced isoforms: B23.1, B23.2, and B23.3. B23.1 is the dominant 

isoform (80); it is 37 kDa and consists of 294 amino acids (81). B23.1 is the only protein from 

the NPM family that has a unique RNA- binding domain at its C-terminus.  

NPM1 has distinct domains allowing it to play multiple functions (Figure 4). The N-

terminus contains a hydrophobic domain (82) involved in self-oligomerization (1-110 aa) and 

chaperone activity of NPM1 towards proteins, nucleic acids, and histones. It contains two 

leucine rich-nuclear export signals (NES) responsible for nucleo-cytoplasmic shuttling. The 
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first NES (42–49 aa) associates with ribosomal biogenesis (65), while the second NES 

sequence (94–102 aa) is required for centrosome localization (83).  

In the middle, there are two highly acidic regions that are required for the binding of 

basic histone and ribosomal proteins, and facilitate nucleosome assembly and chromatin 

remodeling (68, 84). Between the two acidic regions, a ribonuclease activity motif is essential 

for ribosome biogenesis, and one nuclear localization signal (NLS 190–197 aa) are present 

(85, 86). The basic domain lies between amino acids 189-243 and is considered essential for 

nucleic acid binding.  

The C-terminus of NPM1 (244-294 aa) has a nucleolar localization signal (NoLs) with 

two tryptophan residues at positions 288 and 290, which are critical for retaining NPM1 in the 

nucleolus. The shuttling property of NPM1 between the nucleolus, nucleus, and the cytoplasm 

is highly dependent on its NES, NoLs, and NLS motifs (87)(Figure 4). 

 

 

Figure 4. Structural and functional domains of wild-type NPM1 (88)  

NPM1 protein displays two nuclear export signal (NES) motifs (residues 42-49 and 94-102), a 

metal binding domain, two acidic regions (residues 120–132 and 160–188), a bipartite nuclear 

localization signal (NLS) motif (residues 152–157 and 190–197), a basic cluster inside a 

moderately basic region, and an aromatic region at the C-terminus unique to NPM isoform 1 

containing the nucleolar localization signal (NLS) with tryptophan residues 288 and 290 (88).  
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The Shuttling properties of NPM1 depend on its functional domains. NoLs motif allows 

NPM1 to migrate from the cytoplasm to the nucleoplasm. The interaction of the two NES 

with the Crm1/exportin 1 ensures its export back to the cytoplasm (83) (Figure 5). 

 

 

Figure 5. Mechanism of nucleo-cytoplasmic shuttling of NPM1 (89).  

The nuclear import of the protein (arrow) greatly predominates over the nuclear export (dotted 

arrow). Thus, NPM1wt mainly resides in the nucleolus. (76) 

 

C. NPM1 functions 

While the major NPM1 function is ribosomal biogenesis, it is still involved in multiple 

cellular processes including genome stability, centrosome duplication, DNA repair, inhibition 

of apoptosis, histone chaperoning, cell cycle regulation, and regulation of p14
ARF

-p53 

pathway (90-95) (Table 5). 
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1. Ribosomal biogenesis 

NPM1 is a key player in ribosomal biogenesis, contributing to cell growth and 

proliferation. NPM1 export signals and chaperoning capabilities aids in the transportation of 

ribosomal components from the nucleus to the cytoplasm (Figure 6). It aids in the processing 

and the assembly of ribosomes through its nucleocytoplasmic shuttling property. In addition, 

it has an intrinsic RNAase activity (65), it binds to nucleic acids (96), it is involved in 

processing of pre-RNA molecule (97) and chaperone activity (98) to prevent protein 

aggregation during ribosome assembly (99). A significant role of NPM1 is to mediate through 

a Crm1-dependant mechanism, the nuclear export of ribosomal protein L5/5S rRNA subunit 

complex (94). It interacts directly with several ribosomal proteins including RPL5 (94), RPS9 

(100), and RPL23 (101). In addition, blocking nucleocytoplasmic shuttling inhibits ribosome 

subunit export (102). Ultimately, NPM1 aids in several distinct stages of ribosomal 

biogenesis.   

 

 

 

 

 

 

 

 

 

 

 

Figure 6. NPM1 role in ribosome biogenesis (103) 
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NPM1 binds unduplicated centrosomes in the cytoplasm to prevent duplication, and 

dissociates to allow duplication. NPM1 also mediates nuclear export of pre-ribosomal 

proteins for ribosomal assembly.  

 

2. Maintenance of genome stability 

NPM1 maintains genomic stability. It is involved in both DNA repair mechanisms 

(104, 105) and centrosome duplication (90). Depletion of NPM1 led to genomic instability 

with dramatic changes in nuclear morphology as well as distortion of nucleolar structure 

(106). In resting state, NPM1 associates with unduplicated centrosomes preventing their 

duplication (107) (Figure 7). At late G1, it dissociates from the centrosomes (107), enabling 

proper chromosome duplication and during mitosis, it re-associates with the centrosomes at 

the mitotic spindle.  

NPM1 has a direct role in the repair of DNA lesions. It is involved in homologous 

recombination of DNA double-strand breaks (DSB) (104), and it is also involved in base 

excision repair pathway (108). 

 

3. Stress response and apoptosis regulation 

NPM1 interacts with the oncosupressors p53 and p14
ARF

 and their mediator (MDM2) 

to regulate cell proliferation and apoptosis (Figure 7 and 8). 

a. NPM1 and p53 

p53 is a tumor suppressor gene described as the “guardian of the genome”. It is 

activated upon cell stress inducers, such as DNA damage, hypoxia, or oncogene activation 

(109). Once activated, it induces cell cycle arrest, promotes senescence, or induces apoptosis 

(109, 110). There is an important functional link between nucleolar integrity, NPM1, and p53 
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stability (111). Any disturbance in the nucleolar or ribosomal function leads to NPM1 

delocalization from the nucleolus to the nucleoplasm to activate p53 (92). In fact, NPM1 

maintains p53 stability by interacting and inhibiting Hdm2/MDM2, a p53 E3- ubiquitin ligase 

leading to its degradation (112) (Figure 7).  

 

 

Figure 7. Regulation of apoptosis by NPM1 (54) 

In normal cells, p14
ARF

 and NPM1 form a dimer in the nucleoli, allowing MDM2 to target 

p53 for proteosomal degradation. Following a stress signal (DNA damage …), p14
ARF

 and 

NPM1 dissociate and relocate to the nucleus were they sequester MDM2, leading to the 

stabilization and activation of p53. p53 then induces the transcription of various genes 

involved in cell-cycle arrest, DNA repair and apoptosis. 
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b. NPM1 and p14
ARF 

p14
ARF

 is a nucleolar tumor suppressor protein that induces cell cycle arrest, or 

apoptosis due to oncogenic stress. NPM1 and p14
ARF

 control each other’s stability and 

activity (Figure 8).  NPM1 and p14
ARF

 associate to form a high molecular weight complex 

within the nucleolus (91). This stabilizes p14
ARF

 and delays its turnover (113) (Figure 8 a, c). 

An NPM1-interacting motif in the C-terminal region of p14
ARF

, which corresponds to its 

predicted nucleolar localization signal was recently identified (114). Interestingly, mutant 

p14
ARF

 doesn’t associate with NPM1 and their complex is unstable and functionally impaired. 

Additionally, inhibition of the proteasome machinery only partially restored the stability of 

p14
ARF

 mutants; hence, NPM1 protects p14
ARF

 from proteasome degradation (113). p14
ARF

 

inhibits MDM2, by delocalizing it from the cytoplasm to the nucleolus (Figure 8b) (115), 

which leads to p53 stabilization (116). Cells lacking p53 and NPM1 have high proliferation 

rate, and their p14
ARF

 protein is unstable and excluded from the nucleolus (67). Therefore, 

NPM1 maintains p14
ARF

 stability and its nucleolar localization.  

On the other hand, p14
ARF

 inhibits cell proliferation upon stress independently from 

MDM2-p53 axis (Figure 8d). It interferes with ribosomal biogenesis by inhibiting the 

production of rRNA (117). More importantly, p14
ARF

 promotes degradation of NPM1 by 

ubiquitylation and accelerated turnover (118) (Figure 8e). Several reports showed that p14
ARF

 

induces SUMOylation of many nucleolar proteins including NPM1 (160-163).  
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Figure 8. NPM and p14
ARF

 control each other’s stability and/or activity (57).  

a.Nucleophosmin (NPM) associates with p14
ARF

 in the nucleolus. Increased expression of 

both p14
ARF

 and NPM occurs in response to oncogenic stimulation. p14
ARF

 activates and 

promotes both p53-dependent (b) and p53-independent growth-arrest pathways (c–e). b. 

p14
ARF

 inhibits MDM2, which leads to p53 activation and the suppression of cell 

proliferation. c-e. Higher levels of NPM facilitate the accumulation of p14
ARF

 by stabilizing it, 

whereas p14
ARF

 negatively regulates ribosomal RNA processing (d), and even opposes NPM 

nucleo–cytoplasmic shuttling activity (e). 

 

In addition to its tumor suppressor role, p14
ARF 

is involved in the survival of cancer 

cells suggesting its pro-oncogenic function (119, 120)  

 

D. Post-translational modifications of NPM1 

Post-translational modifications (PTM) refer to covalent addition of functional groups 

on one or several amino acids. These include SUMOylation, ubiquitination and 

phosphorylation that aids in regulating the activity and the fate of many proteins including 

NPM1. 
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1. NPM1 SUMOylation 

The ubiquitin-related SUMO (SUMOylation) system is conserved in all eukaryotes 

(121) and three SUMO isoforms were identified in mammals (SUMO-1, SUMO-2, and 

SUMO-3) (122, 123). SUMOylation is a reversible reaction. The de-modification process is 

called de-SUMOylation and involves specific proteases, referred to sentrin specific 

Isopeptidase (SENP). Six SENP (SENP-1, 2, 3, 5, 6, 7) were identified in humans (124). 

SENP1 and SENP2 dissociate SUMO-1 and SUMO-2/3 proteins, while SENP3, 5, 6 and 7 

dissociate only SUMO-2/3 protein (125) (126). 

 

a. SUMOylation/de-SUMOylation and Ribosomal biogenesis 

The nucleolus is the main site for SUMOylation and de-SUMOylation. Among the six 

SENP proteins, SENP3 and SENP5 are heavily concentrated in the nucleolus (127, 128). 

Importantly, the tumor suppressor protein p14
ARF

, which is also localized in the nucleolus, is 

involved in the SUMOylation of several nucleolar proteins including NPM1 (129-133). 

p14
ARF

 inhibits the maturation of the 28S rRNA by interfering with NPM1 function (117, 

118). Conversely, restoration of functional NPM1 is achieved by SENP3, which is involved in 

the processing of 32S rRNA to 28S rRNA then to 5.8S rRNA (134). Consequently, SENP3 

and p14
ARF

 balance each other’s functions in modulating the SUMO status of NPM1, thus 

regulating ribosomal biogenesis (Figure 9). 
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Figure 9. p14
ARF

, SENP3, NPM1, and ribosomal biogenesis  

SUMOylation –DeSUMOylation of NPM-1 is a crucial part of the regulatory network 

controlling ribosome synthesis and cell proliferation 

 

2. NPM1 ubiquitination 

NPM1 is known to be mono-ubiquitinated by E3 ubiquitin ligase BRCA1-BARD1 

(BRCA1-associated RING domain protein) complex in a process not linked in protein 

degradation (135). In addition, it was reported that p14
ARF

 induces polyubiquitination and 

degradation of overexpressed NPM1 (67) while the ubiquitin specific peptidase 36 (USP36) 

deubiquitinates NPM1 leading to its stabilization (136).  
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CHAPTER 3: NPM1 MUTATIONS IN AML 

A. Types of NPM1 mutations 

NPM1 mutations are one of the most frequent mutations in AML accounting for 30% of 

the cases; and the most common genetic alterations (50-60%) in AML patients with normal 

cytogenetic karyotype (CN-AML) (137). Most NPM1 mutations are restricted to exon-12, are 

heterozygous and result in a dominant negative mutant for NPM1 altering its function. 

Immunohistochemistry staining of blasts from NPM1c-AML patients revealed that the wild 

type NPM1 (wtNPM1) dimerizes with NPM1c via a conserved N-terminal dimerization 

domain (138, 139). All these mutations lead to an ectopic translocation of the mutant protein 

(NPM1c) to the cytoplasm (140).  

NPM1 mutations are named in the alphabetical order according to their discovery time 

(types A, B, C & D and others) (141) (Figure 10). Mutation A is the most common mutation  

accounting for 80% of the cases (142).  It involves the duplication of TCTG (nucleotides 956–

959), creating an insertion at position 960 (143).  
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Figure 10. Types of NPM1 exon-12 mutations in AML (144) 

The variable sized nucleotide insertions in exon-12 result in a frameshift mutation and create 

a nuclear export signal (NES) motif. Red letters indicate nucleotides insertions in each type of 

mutations. 

 

B. Consequences of NPM1 mutations 

1. Abnormal trafficking of NPM1c 

All mutations of NPM1 result in a frameshift in their C-terminal domain. Hence, the 

last seven amino acids (WQWRKSL) are replaced with 11 different residues (137).  This 

mostly affects tryptophan residues 288 and/or 290 leading to the loss of the NoLs and creates 

an additional third NES (139). This additional NES motif enhances the binding of NPM1c 

protein to the nuclear export receptor exportin 1, and translocates it to the cytoplasm (Figure 

11).  
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Figure 11. Abnormal trafficking of NPM1c (144) 

Exon 12 mutations result in the loss of the C-terminal NoLs and a new NES is created. 

Exportin 1 binds to NES bearing NPM1c and exports it into the cytoplasm. 

 

2. NPM1c effect on interacting proteins 

Given its pleiotropic functions, NPM1 mutations drive leukemia through a 

combination of loss of functions and gain of functions in distinct cellular processes. Since 

p14
ARF

 is stabilized upon its interaction with NPM1, NPM1c is unable to stabilize p14
ARF

 in 

the cytoplasm, leading to its degradation and the reduction of its half-life (138, 145) (Figure 

12a). As a result, MDM2 will remain bound to p53, favoring its inactivation and its 

proteosomal degradation. Thus, p14
ARF

 delocalization inhibits its ability to induce cell cycle 

arrest and this may lead to leukemogenesis. In contrast, in p14
ARF

 null cells, NPM1c shows 
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normal anti-proliferative activity (138). Consequently, the perturbation in p14
ARF

 function is 

not sufficient to explain the leukemogenic transformation in NPM1 mutation.  

It was reported that wt-NPM1 regulates the turnover of the c-Myc oncoprotein, by 

stabilizing F-box protein Fbw7γ, an E3 ligase complex, and maintaining its nucleolar 

localization (146). NPM1c interacts with Fbw7γ, inducing delocalization to the cytoplasm and 

thus its degradation. As a result, Myc oncoprotein is overexpressed in cells expressing 

NPM1c (146) (Figure12b). Although high Myc levels induces p14
ARF

 and p53 dependent cell 

cycle arrest, cells expressing NPM1c have this pathway turned off due to p14
ARF

 cytoplasmic 

delocalization (146). These changes could lead to leukemogenesis. 

Transgenic mouse model expressing NPM1c showed that NPM1c alone is not 

sufficient to induce AML (147-150). Similarly, knock-in mouse models revealed the same 

outcome of myeloproliferation and features of NPM1c AML, but it couldn’t initiate leukemia 

(150). Thus the exact mechanism of NPM1c mutation driving AML is not yet defined.  

 

Figure 12. NPM1c and leukemogenesis (103). 
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 (a) NPM1c interacts with and sequesters p14
ARF

 to the cytoplasm, reducing its stability and 

causing its degradation; p53 ubiquitination by MDM2 causes p53 degradation, antagonizing 

growth inhibition; NPM1 haplo-insufficiency leads to supernumerary centrosomes. (b) 

NPM1c binds and delocalizes Fbw7γ to the cytoplasm, decreasing stability and causing 

degradation; without Fbw7γ, Myc oncogene levels increase, promoting growth and 

proliferation; NPM1c interacts with and inhibits caspase-6/-8, indirectly promoting growth. 

 

C. Targeted therapies in NPM1c AML 

Since important tumor suppressors are deregulated by NPM1c (p14
ARF

, p53, PTEN,…), 

NPM1c can be an excellent therapeutic target. Several drugs were designed to target multiple 

deregulated aspects in NPM1c. These include: 

1. NSC348884 

NPM1 exists in dimers and oligomers through its N- terminus oligomerization domain 

(57). NPM1c heterodimerizes with wtNPM1 and translocates it to the cytoplasm.  

NSC348884 (N, N, N′, N′-tetrakis [(5- methyl-1H-benzimidazol2-yl) methyl] ethane-1, 2-

diamine) was identified as an NPM1 inhibitor that disrupts its ability to oligomerize. 

NSC348884 induces apoptosis (151) and activates p53 and its downstream effector p21 in 

AML cell lines (152). Moreover, a synergistic effect was observed between NSC348884 and 

ATRA selectively in cells expressing NPM1c (153). 

2. Dactinomycin  

Dactinomycin (also known as actinomycin D), is considered one of the first antibiotics 

isolated from soil bacteria, and displaying an anticancer activity (154). It has a role in 

inhibiting ribosomal biogenesis by intercalating GC pairs, repressing the action of RNA 

polymerase I (155). Falini et al. reported the therapeutic advantage of dactinomycin in NPM1c 

AML patients in the absence of FLT3 ITD. Dactinomycin led to complete morphological and 
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immune-histochemical remission after two cycles of therapy and complete molecular 

remission after the fourth cycle (156). 

3. Selinexor 

Selinexor ((Z)-3-(3-(3, 5-bis (trifluoromethyl) phenyl)-1H-1, 2, 4-triazol-1-yl)-N′-

(pyrazin-2-yl) acrylohydrazide) is an orally bioavailable selective Exportin 1 (XPO1) 

inhibitor. Exportin 1 mediates the export of leucine rich nuclear export signal- dependent 

protein from the nucleus to the cytoplasm. NPM1c acquires a third NES which is a key player 

in leukemogenesis (89) (see Figure 11). Selinexor induces anti-leukemic effects in cultured 

and primary AML cells by inhibiting the translocation of NPM1c. It is also implicated in 

upregulating p53 and CEBPA and thus induces myeloid differentiation (157). The limitation 

of XPO1 inhibitors is a lack of specificity, whereby it targets, in addition to NPM1c, all 

shuttling proteins and molecules from the nucleus to the cytoplasm. 

4. Oridonin 

Oridonin is a bitter tetracycline chemotherapeutic agent used in Chinese medicine. Its 

use was reported in colon cancer, pancreatic cancer, and hepatocellular cancer as well as with 

hematological malignancies (158). Li et al. showed that oridonin induces apoptosis in NPM1c 

AML cell lines, restores nucleolar translocation of NPM1 and upregulates p53 and p14
ARF

 

(158). 

5. Avrainvillamide 

Avrainvillamide is a natural alkaloid product with an antiproliferative role on different 

cancer cell lines. It binds to several proteins, including NPM1c by S-alkylation of its cysteine 

residues (159). Mukherjee et al reported that avrainvillamide restores the nucleolar 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Mukherjee%20H%5BAuthor%5D&cauthor=true&cauthor_uid=25531824
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localization of NPM1c and proves that the interaction between avrainvillamide and Cys275 of 

NPM1c mediates this relocalization (160). 

6. All-trans retinoic acid and arsenic trioxide 

All-trans retinoic acid (ATRA) alone or in combination with arsenic trioxide (ATO) is 

used for the treatment of APL (161). In AML, some studies suggested that addition of ATRA 

to conventional chemotherapy improves survival, selectively in NPM1c AML patients (162). 

We and others showed that ATRA and ATO synergistically induce proteosomal degradation 

of NPM1c; leading to differentiation and apoptosis in AML cell lines or primary blasts 

derived from NPM1c AML (163). Treatment of a small number of NPM1c elderly AML 

patients with ATRA and ATO reduced bone marrow and peripheral blood blasts. However, 

blast counts re-increased upon discontinuation of treatment (163) suggesting that ATRA and 

ATO exert transient anti-leukemic activities.  

7. Epigallocatechin-3-Gallate (EGCG) 

Hoang et al showed that EGCG down regulates the expression of NPM1, inhibits cell 

proliferation, and induces apoptosis in cells expressing NPM1c by  but not in cells which have 

wtNPM1 (164). 
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CHAPTER 4: EAPB0503 

A. Imiquimod  

Imiquimod (Figure 13), (S-26308, R-837) (1-(2-methylpropyl)-1H-imidazo [4, 5-c] 

quinolin-4-amine), is the first member of the imidazoquinolone family, and belongs to the 

class of medications called immune response modifiers. This nucleoside analogue of the 

imidazoquinoline family was the first immune response modifier used for the treatment of 

infectious skin conditions and shown great anti-viral and anti-tumor activities in vivo (165). 

This agent was FDA approved in 1997 for the topical treatment of external peri-anal warts by 

increasing the activity of the body’s immune system.  This drug is also efficacious as a topical 

therapy for certain types of skin cancers: basal cell carcinoma, Bowen's disease, superficial 

squamous cell carcinoma, some superficial malignant melanomas, cutaneous B-cell 

lymphomas and actinic keratosis (166).   

 

Figure 13. Chemical structure of imiquimod 

 

The exact mechanism of action by which imiquimod activates the immune system is not 

yet known. Nevertheless, it is known that imiquimod activates immune cells by ligating the 
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Toll-like receptor 7 (TLR-7), commonly involved in pathogen recognition, on the cell surface 

(167). There is evidence that imiquimod, when applied to skin, can lead to the activation of 

Langerhans cells, which subsequently migrate to local lymph nodes to activate the adaptive 

immune system (167). Other cell types activated by imiquimod include natural killer cells, 

macrophages, and B lymphocytes.  

 

B. EAPB0503  

The initials EAPB stand for Equipe d’Accueil Pharmacochimie et Biomolécules (the 

laboratory where the compounds are being synthesized) and the numbers “0” for imidazo [1, 

2-a] quinoxaline series, “5” for methoxyphenyle, and “03” for methylamine substituents. 

1. Chemical structure 

Imiquimod (1-(2-methylpropyl)-1H-imidazo [4, 5-c] quinolin-4-amine) is made up of 

a quinoline component, a 1H-imidazole ring and a methylpropyle group. In EAPB0503 (1-(3-

methoxyphenyl)-N-methylimidazo [1, 2-a] quinoxalin-4-amine, the quinoline part is modified 

into quinoxaline, maintaining the three intracyclic nitrogen in the imidazoquinoxaline rings. 

Imidazoquinoxaline differ from Imiquimod by the presence of bridgehead nitrogen between 

the quinoxaline and imidazole rings, which both constitute the tricyclic heterocyclic core of 

the compounds. The amine (-NH2) group of the Imiquimod molecule is replaced by 

methylamine (-NHCH3) in EAPB0503. The methylamine group seems to be essential for 

increased potency of this compound (168). The methylpropyle group of the Imiquimod was 

substituted with 3-methoxyphenyle in EAPB0503, probably increasing polarity and binding 

properties of this compound (Figure 14).  
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Figure 14. Chemical structural differences between Imiquimod and EAPB0503  

 

2. Imidazoquinoxaline and cancer treatment 

EAPB0503 displays higher cytotoxicity than Imiquimod, against melanoma cells 

(169). EAPB0503 induced cell cycle arrest and apoptosis in chronic myeloid leukemia cells 

by degrading the fusion BCR-ABL oncoprotein (170). Importantly, our group demontsrated 

that EAPB0503 displays a potent and selective activity in NPM1c AML.  Indeed, Nabbouh et 

al. showed that EAPB0503 induces growth inhibition and apoptosis in NPM1c AML cell 

lines, in a time and dose dependent manner. Apoptosis was accompanied by the dissipation of 

MMP and PARP cleavage. EAPB0503 selectively targets NPM1c proteosomal degradation 

and restores wt-NPM1 to the nucleolus. In vivo, EAPB0503 selectively reduces leukemia 

bone marrow burden in NPM1c AML xenograft mice (171).  
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AIM OF THIS STUDY 

NPM1 is one of the most frequently mutated proteins in AML. Our group previously 

demonstrated that EAPB0503 exerts a selective and potent activity against NPM1c AML. In 

this study, we investigated the molecular basis of EAPB0503 potency. We explored its effect 

on the p53/MDM2 axis and SENP3/NPM1/p14
ARF

 interplay. We also examined the long-term 

effect of EAPB0503 on the survival, organ infiltration and NPM1/p14
ARF

 in NPM1c AML 

xenograft mice.  
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MATERIALS AND METHODS 

A. Cell lines 

OCI-AML2 (from Dr. H. de Thé) and OCI AML3 cells (from Dr. D Bouscary) (Table 

6) were used in this study. Cells were grown in minimum essential medium alpha (MEM-α) 

supplemented with 10 and 20% fetal bovine serum for AML2 and AML3 respectively. 

Primary AML cells from patients’ BM were extracted as described by (El Hajj et al. 2015) 

after approval by the Institutional Review Board at the American University of Beirut and 

after consented agreement of patients according to Helsinki’s Declaration. 

 

Table 6. Characteristics of the used AML cell lines 

AML cell 

line 

Description Origin and 

source 

Morphology FLT-3/ p21/p53 

status 

NPM-1 

status 

OCI-

AML3 

 

Acute 

myeloid 

leukemia 

 

Peripheral 

blood 

Male, 57 years 

Single, 

round to 

oval cells 

Wild-type Mutant 

OCI-

AML2 

 

Acute 

myeloid 

leukemia 

 

Peripheral 

blood 

Male, 65 years 

Single, 

round to 

oval cells 

 

Wild-type Wild-type 

 

B. EAPB0503  

EAPB0503 was synthesized as described by Deleuze-Masquefa et al (169, 172).  

Synthesis was further optimized by microwave-assisted chemistry (173). EAPB0503 powder 

was dissolved in dimethylsulfoxide (DMSO) (Amresco, OH, USA) at a stock solution of at 

0.1 M, aliquoted, and stored at -20°C. 
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C. Generation of cells expressing NPM1 or NPM1c 

Hela cells were transfected with PE-GFP expressing wt-NPM1 or NPM1c (from 

Clontech) using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s 

recommendations and were grown in Dulbecco’s modified Eagle’s medium. 

 

D. Cell viability 

OCI-AML2 and OCI-AML3 cells were seeded at a concentration of 2x10
5
/ml. Cell 

growth was assessed using the trypan blue exclusion dye assay. EAPB0503 was tested at the 

concentration of 1 μM as described (171). Cell viability and molecular studies were analyzed 

at three different time points of treatment (6, 24 and 48 hours).  

 

E. Immunoblotting 

After 6, 24 or 48h of treatment with EAPB0503, total protein was extracted in 50 μl of 

Laemmli buffer (Bio-Rad laboratories, Hercules, California, USA) added to the harvested 

pellets. Proteins were quantified using Nanodrop (Thermo Scientific, ND-1000, 

Massachusetts, USA). Equal amount of proteins were loaded on 12% SDS-PAGE gel and 

transferred onto nitrocellulose membranes, which were blocked and probed with the 

following antibodies (Table 7). 

 

 

Table 7. List of antibodies used this study 

Antibody Company Catalog Number Mouse/rabbit Dilution 

NPM1c  Thermo Fisher 

SCIENTIFIC 

PA1-46356 Rabbit 1:1000 
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SENP3 (D20A10) XP Cell Signaling 5591 Rabbit 1:1000 

MDM2 [2A10] Abcam ab16895 mouse 1:250 

p21 Waf1/Cip1 (12D1) Cell Signaling 2947 Rabbit 1:1000 

Phospho-p53 (Ser15) Cell Signaling 9284 Rabbit 1:1000 

p14
ARF

 Thermo Fisher 

SCIENTIFIC 

MA5-14260 mouse 1:200 

p53 (DO-1) sc-126 Santa Cruz 

Biotechnology 

D1717 mouse 1:200 

c-Myc (9E10) Thermo Fisher 

SCIENTIFIC 

13-2500 Mouse 1:200 

b-actin (8H10D10) Cell Signaling 3700 Mouse 1:1000 

GAPDH Abnova MAB5476 Conjugated 1:20000 

 

 

F. Immunofluorescence and confocal microscopy  

OCI-AML2 and OCI-AML3 were fixed with ice-cold methanol at -20°C for 20 

minutes and cytospun onto glass slides. Immunostaining was performed with a rabbit 

polyclonal antibody against NPM1c (Invitrogen), and a monoclonal anti-NPM1 recognizing 

both wt. and mutated NPM1c (Abcam mouse AB10530). Primary antibodies were revealed by 

Alexa Fluor 488– or Fluor 594–labeled secondary antibodies (Abcam). Staining of nuclei was 

performed with 4′, 6-diamidino-2-phenylindole (DAPI) (Invitrogen). Images were acquired by 

confocal microscopy using a Zeiss LSM710 confocal microscope (Zeiss, Oberkochen, 

Germany), and images were processed using Zen 2009 (Carl Zeiss). 

 

 

 



 

38 

 

G. Proximity ligation assay (PLA) and confocal microscopy  

Hela cells were fixed with paraformaldehyde onto glass coverslips. Protein-protein 

interactions were visualized using the Duolink in situ proximity ligation assay (PLA) system 

(Olink Bioscience) following the manufacturer’s instructions. Anti-SUMO2/3 (Santa Cruz sc-

32873), anti-GFP (Santa Cruz (B-2): sc-9996) antibodies were used. Staining of nuclei was 

performed with DAPI (Invitrogen). Images were acquired by confocal microscopy using a 

Zeiss LSM710 confocal microscope (Zeiss, Oberkochen, Germany), and images were 

processed using Zen 2009 (Carl Zeiss). 

 

H. Xenograft Animal Studies 

NOD/Shi-scid IL2rγ-/- (NSG) mice were obtained from Jackson Laboratories (United 

States). All mouse protocols were approved by the Institutional Animal Care and Utilization 

Committee of the American University of Beirut. Three million OCI-AML3 or OCI-AML2 

cells were injected into the tail vein of eight-week-old mice (12 mice per group). 7 days post 

AML cells’ injection, mice were treated intraperitoneally with EAPB0503 (2.5mg/kg, 

50μg/mouse) every other day over a period of three weeks. EAPB0503 was dissolved in 

DMSO and diluted in equal volume of lipofundin (vehicle) before intraperitoneal 

administration to mice. Six mice per condition were sacrificed for bone marrow (BM) 

flushing, CD45 stain and organ infiltration while the remaining six mice were kept to monitor 

survival.   
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I. Human CD45 staining 

Three weeks post-treatment with EAPB0503, BM cells were flushed from the femurs and 

tibias of euthanized animals. Cell surface staining was performed on 100μl of the sample 

using 20μl of anti-human CD45 PerC-P antibody (BD#345809). Labeled samples were 

analyzed on a Guava flow cytometer. BM cells were also used to assess proteins p14
ARF

 and 

NPM1c levels by western blot. 

 

J. Histopathology  

Livers from either treated or untreated mice were fixed in neutral buffer formalin 

(Sigma-Aldrich), embedded in paraffin, sectioned, stained with hematoxylin and eosin, and 

examined by light microscopy. 

 

K. Statistical analysis 

All in vitro experiments described in this study were run in at least three independent 

experiments. Data were reported as the average ± standard deviations. Statistical analysis was 

done using Student’s t test p-value of less than 0.05 was considered as significant. 
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RESULTS 

A. EAPB0503 prolongs the survival of OCI-AML3 xenograft mice, reduces BM 

leukemia burden 

To assess the effect of EAPB0503 on NPM-1c AML xenograft mice, eight-week old NSG 

mice were intravenously injected with OCI-AML2 and OCI-AML3 cells. Seven days post-

injection, xenograft mice were treated intraperitoneally with EAPB0503 every other day over 

a period of 3 weeks, according to timeline described in Figure 15A. By the end of week four 

after AML cells inoculation, a group of six mice was assessed for survival. While untreated 

control mice, or OCI AML2 treated mice succumbed at day 40, EAPB0503 selectively 

prolonged the survival in OCI AML3 xenograft mice for up to 100 days (Figure 15B).  

To understand the molecular basis of this prolonged survival, a group of six mice were 

sacrificed at the end of treatment. BM cells of femurs and tibias were flushed, and stained for 

hCD45, a prototypic receptor-like protein tyrosine phosphatase expressed on all nucleated 

hematopoietic cells (174, 175). Flow cytometry analysis revealed that OCI-AML3 burden in 

the BM of xenograft mice was significantly reduced from 47% to 25% upon EAPB0503-

treatment (p<0.05) (Figure 15C), as compared to OCI-AML2 burden (24% in untreated versus 

34% in EAPB0503 treated mice) (Figure 15C).  
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Figure 15. EAPB0503 prolongs the survival and reduces the leukemia bone marrow burden in 

OCI-AML3 xenograft NSG mice.  
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(A) Eight-week-old female NSG mice were injected with OCI-AML2 or OCI-AML3 cells 

intravenously (12 mice per cell line per condition). EAPB0503 was intraperitoneally 

administered every other day for 3 weeks. By the end of week 3 of treatment, one group of six 

mice per condition was monitored for survival. The bone marrow of the remaining six mice 

per condition was harvested from femurs and tibias, and then stained with the anti-hCD45 

antibody. (B) Kaplan–Meier overall survival of untreated NSG mice injected with OCI-

AML2 or OCI-AML3 (n=6, Black line and Gray line respectively) or treated with EAPB0503 

(n=6, blue line and red line respectively). (C) Histograms showing the hCD45 PerCP 

percentage in xenograft animals (n=6 per condition). Black histograms show hCD45 stained 

BM from untreated OCI-AML3 and OCI-AML2 xenograft mice. Red histograms show 

stained BM-derived OCI AML3 and OCI-AML2 cells with the hCD45 antibody from 

EAPB0503-treated animals. The t-test was performed to validate significance. *, ** and *** 

indicate p values ≤ 0.05; 0.01 and 0.001, respectively. P-values less than 0.05 were considered 

significant.  

 

B. EAPB0503 decreases the leukemic infiltration into the liver of OCI-AML3 NSG 

mice:  

Liver failure due to blast infiltration was reported in AML patients (176). Upon sacrifice, 

gross pathology of the liver revealed pale color and white nodules in untreated xenograft 

mice. EAPB0503 treatment showed a normal gross macroscopy of livers (Figure 16A). 

Consistent with these results, H&E stain showed a clear infiltration of the liver with OCI 

AML3 cells in untreated xenograft mice. EAPB0503 treatment preserved the normal 

architecture of the liver with a very low number of infiltrating leukemic cells (Figure 16B). 

These results illustrate the potency of EAPB0503 against leukemic blast infiltration into the 

liver of NPM1c AML xenografted animals.  
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Figure 16. EAPB0503 reduced leukemic infiltration of OCI-AML3 blasts into the liver of 

xenograft mice. 

 (A) Gross pathology of livers of three representative untreated (upper panel) or EAPB0503-

treated (lower panel) OCI AML3 xenograft mice. (B) Histological analysis (H&E stain) of the 

liver of a representative untreated or EAPB0503 treated OCI-AML3 xenograft mice (left 

panel, magnification 10x, right panel, magnification 40x). 
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C. EAPB0503 induces NPM1c degradation and p14
ARF

 upregulation in the BM of OCI-

AML3 NSG mice  

Given that EAPB0503 prolonged the survival and reduced the BM leukemic burden 

exclusively in OCI-AML3 xenograft mice, we tested the expression level of NPM1c in the 

BM of treated versus untreated mice. Consistent with the beneficial selective effect of 

EAPB0503 against NPM1c AML xenograft mice, EAPB0503 induces NPM1c degradation 

and p14
ARF

 upregulation in the BM blasts of OCI-AML3 xenograft mice (Figure 17).  

Altogether, these results show the promising therapeutic potency of EAPB0503 in vivo 

and expand our previously published data to demonstrate prolonged survival and selective 

reduced leukemia burden in BM of NPM1c AML xenograft mice, following NPM1c 

degradation. 
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Figure 17. EAPB0503 induces NPM1c degradation in the BM of OCI-AML3 NSG mice 

A. Western blot of NPM1c in BM cells from NSG mice xenografted with OCI-AML3 or 

OCI-AML2 cells (2 representative mice out of six are shown), after in vivo treatment with 

EAPB0503. B. Western blot of p14
ARF

 in BM cells from NSG mice xenografted with OCI-

AML3 (2 representative mice out of six are shown). Eight-week-old NSG mice were injected 

with 3 million OCI-AML3 or OCI-AML2 cells intravenously. At day 7 post-leukemic cells 

injection, EAPB0503 was administered intraperitoneally every other day, over a period of 3 

weeks.  

 

D. EAPB0503 induces growth inhibition in OCI-AML3 cell line 

To further explore the molecular mechanisms of EAPB0503 potency, and due to the small 

amount of blasts obtained from BM of xenograft mice, we investigated the effect of this drug 

in vitro. We started by reproducing the results obtained by Nabbouh et al, and tested earlier 
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time points. For that purpose, we assessed the effect of EAPB0503 on the cell growth and 

viability of the two cell lines, OCI-AML2 and OCI-AML3, harboring wt-NPM1 and NPM1c 

respectively. We chose the optimal drug concentration of 1 μM representing the inhibitory 

concentration IC50 of the drug (171). Consistent with the published results, EAPB0503 

resulted in a pronounced and selective time-dependent growth inhibition of OCI-AML3 cells, 

at 24-, and 48-hours post-treatment (p<0.001, Figure 18). This effect wasn’t observed in OCI-

AML2 cells with similar growth after 24-, and 48-hours treatment compared to untreated 

controls. These results reproduce the selectivity of EAPB0503 against NPM1c AML cells. 

 

 

Figure 18. EAPB0503 induces selective growth inhibition in OCI-AML3 cells.  

Trypan blue assay of OCI-AML2 and OCI-AML3 cells at 24-, and 48-hours post-treatment 

with EAPB0503. Black histograms represent the percentage of viable cells. Red histograms 

represent the percentage of dead cells. The results represent the average of at least 3 

independent experiments. The t-test was performed to validate significance. *, ** and *** 
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indicate p values ≤ 0.05; 0.01 and 0.001, respectively. P-values less than 0.05 were considered 

significant.  

 

E. OCI-AML3 express high SENP3 and MDM2 and low p53 protein levels  

NPM1 interacts with p53 regulatory molecules MDM2 activating the MDM2-p53 

pathway (112). In addition, NPM1 is involved in ribosomal biogenesis through a balance 

between SENP3 and p14
ARF 

(134). We first screened the effect of NPM1c on the basal levels 

of SENP3 and demonstrated that, OCI-AML3 cells expressing NPM1c (Figure 19A), exhibit 

high levels of SENP3 as compared to OCI AML2 (Figure 19B). High SENP3 expression may 

indicate a sustained ribosomal biogenesis, presumably playing a role in protein synthesis 

supporting the leukemic properties of these cells.   

We then investigated the p53/MDM2 pathway and demonstrated that OCI AML3 express 

high MDM2 basal protein levels (Figure 19C). Consistent with this data, p53 basal levels 

were low and p53 was inactive in OCI AML3 (Figure 19D). Our results demonstrate that 

NPM1c inhibits p-p53 by upregulating its ubiquitin ligase MDM2, presumably to inhibit 

apoptosis and confer survival properties to these cells.  
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Figure 19. Basal level protein expression of cells expressing NPM1c and wt-NPM1.  

Western blot analysis of NPM1c (A), SENP3 (B), MDM2 (C), p53 and P-p53 (D) in OCI-

AML2 and OCI-AML3 cells depicted from one representative experiment out of at least three 

independent experiments.   

 

F. EAPB0503 induces NPM1c degradation as early as 6h and restores the wild type 

NPM1 nucleolar localization in OCI-AML3 at 24h post-treatment 

We tested the expression and localization of NPM1c after EAPB0503 treatment at 

earlier time points (6h) (171).  Upon treatment, EAPB0503 triggered NPM1c downregulation 

in a time dependent manner. Indeed, NPM1c degradation was initiated at 6 hours post-

treatment in OCI-AML3 cells (Figure 20A, P<0.001). Results were confirmed using 

Immunofluorescence assays (Figure 20B).  
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In NPM1c AML, NPM1c oligomerizes with wt-NPM1 and translocates it to the 

cytoplasm (140). Consistent with published reports, we observed the cytoplasmic localization 

of total NPM1 in untreated OCI-AML3 cells after probing with anti-NPM1 (wt+c) antibody. 

Upon treatment, EAPB0503 restored the nucleolar localization of the remaining NPM1 

protein in OCI-AML3 cells (Figure 20C, upper panel), whereas nucleolar localization of 

NPM1 was not affected in OCI-AML2 treated cells (Figure 20C, lower panel). While NPM1c 

degradation started at 6h, restoration of nucleolar localization of wt-NPM1 was not observed 

until 24h post-treatment with EAPB0503. Hence, our results demonstrate that NPM1c 

degradation occurs earlier than the re-localization of wt-NPM1 into the nucleolus.  
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Figure 20. EAPB0503 induces degradation of the NPM1c protein as early as 6h and restores 

the correct wt-NPM1 nucleolar localization after 24h of treatment of the OCI-AML3 cell line.  

(A) Western blot analysis of NPM1c in OCI-AML2 and OCI-AML3 cells depicted from one 

representative experiment. Black histograms and red histograms represent the densitometry of 

NPM1c/actin of untreated or EAPB0503-treated OCI-AML3 at 6-, 24-, or 48h in at least three 

independent experiments.  *, ** and *** indicate p values ≤ 0.05; 0.01 and 0.001, 

respectively. P-values less than 0.05 were considered significant. (B) Confocal microscopy 

analysis of NPM1 localization in OCI-AML3 cells after treatment with EAPB0503 for 24 

hours. NPM1c was stained with an antibody recognizing only NPM1c (red), and nuclei were 

stained with DAPI (blue). (C) Confocal microscopy analysis of NPM1 localization in OCI-

AML2 or OCI-AML3 cells after treatment with EAPB0503 for 24 hours. NPM1 was stained 

with an antibody recognizing both NPM1 (wt+c) (green), and nuclei were stained with DAPI 

(blue).  

  

G. EAPB0503 activates p53 signaling pathway in OCI-AML3 

We previously demonstrated that EAPB0503 induces apoptosis of NPM1c cells following 

activation of the p53 pathway (171). We investigated the time point at which this pathway is 

activated by exploring p53, its phosphorylated form P-p53, its downstream effector p21 and 

its ubiquitin ligase MDM2. P-p53 is upregulated significantly starting 24h post-treatment 

exclusively in OCI-AML3 cell line (p<0.001), with no significant effect in OCI-AML2 cell 

line (Figure 21A). Surprisingly, p21 upregulation was concomitant with the early degradation 

of NPM1c at 6h post-treatment (p<0.001) (Figure 21B), to reach its maximum 24 and 48h 

post-treatment, likely indicating that the activation of p21 might be p53-independent. In 

addition, we observed a gradual degradation of MDM2 protein levels, that reached its 

maximum at 48h post treatment selectively in OCI-AML3 cell line (p<0.001) (figure 21C). 

These results support the notion that p53 activation through its phosphorylation and MDM2 

degradation orchestrate the pro-apoptotic activity observed in NPM1c AML- EAPB0503 

treated cells. 
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Figure 21. EAPB0503 activates p53 signaling pathway and degrades its ubiquitin ligase 

MDM2.  

(A) Western blot analysis of p53, P-p53, and actin in OCI-AML3 and OCI-AML2 treated 

with EAPB0503 for 6-, 24-,, 48- hours as indicated, depicted from one representative 

experiment. Black histograms and red histograms represent the densitometry of the ratio P-

p53/p53 of untreated or EAPB0503-treated OCI-AML3 at 6-, 24-, or 48h in three independent 

experiments.  (B) Western blot analysis of p21 in OCI-AML3 and OCI-AML2 treated with 

EAPB0503 for 6, 24 48 hours as indicated, depicted from one representative experiment. 

Black histograms and red histograms represent the densitometry of p21/actin of untreated or 

EAPB0503-treated OCI-AML3 at 6-, 24-, or 48h in three independent experiments. (C) 

Western blot analysis of MDM2 in OCI-AML3 and OCI-AML2 treated with EAPB0503 for 

6, 24 48 hours as indicated, depicted from one representative experiment. Black histograms 

and red histograms represent the densitometry of MDM2/actin of untreated or EAPB0503-

treated OCI-AML3 at 6-, 24-, or 48h in three independent experiments.  *, ** and *** 

indicate p values ≤ 0.05; 0.01 and 0.001, respectively. P-values less than 0.05 were considered 

significant.  

 

H. EAPB0503 induces NPM1c degradation and activates p53 pathway in ex-vivo 

treated NPM1c AML blasts 

Primary blasts derived from the BM of three AML patients were treated with EAPB0503. 

Patient 1 has both NPM-1 and FLT-3 ITD mutations; patient 2 has only NPM-1 mutation, 

whereas patient 3 has wt-NPM-1. Consistent with our obtained results in vitro, EAPB0503 
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selectively degrades NPM1c and activates p53 signaling pathway in NPM1c AML patients 

(Figure 22). These results validate the efficacy of EAPB0503 on patient-derived blasts. 

Figure 22. EAPB0503 induces NPM1c degradation and p53 upregulation in NPM1c AML 

patients.  

Primary leukemic blasts were harvested from 3 patients and treated with 1 μM EAPB0503 for 

48h. Western blot analysis for NPM1c, p53, P-p53, and actin in treated AML blasts as 

indicated. 

 

I. EAPB0503 induces SENP3 degradation in OCI-AML3 and enhances the 

SUMOylation of NPM1c by SUMO2/3 

NPM1 is involved in ribosomal biogenesis through interplay between SENP3 and p14
ARF

 

via cycles of SUMOylation/deSUMOylation. It is well documented that p14
ARF

 SUMOylates 

NPM1 prohibiting ribosomal biogenesis. Conversely, the nucleolar deSUMOylating enzyme 

SENP3 deSUMOylates NPM1 switching ribosomal biogenesis on (134, 177). We investigated 
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the effect of EAPB0503 on SENP3 and the SUMOylation status of NPM1c. EAPB0503 

induced degradation of SENP3 starting 24h post treatment to reach a highly significant 

degradation 48h post-treatment (figure 23A).  

We then analyzed the effect of EAPB0503 on endogenous SUMO2/3 conjugation with 

wt-NPM1 or NPM1c in Hela transfected cells, using proximity ligation Duolink assays 

(PLA). We first confirmed the nucleolar localization of wt-NPM1 and the cytoplasmic 

localization of NPM1c in Hela transfected with PE-GFP wt-NPM1 and NPM1c plasmids 

respectively (Figure 23B).  Importantly, our results demonstrate that EAPB0503 induces 

NPM1c SUMOylation by SUMO2/3 at 6 hours post-treatment, while no effect was noticed on 

Hela cells expressing wt-NPM1 (Figure 23B). These results demonstrate that EAPB0503 

induces SUMOylation of NPM1c, and degrades SENP3. These results suggest that SENP3 

degradation may lead to the inhibition of ribosomal biogenesis in these cells.  
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Figure 23. EAPB0503 degrades SENP3 and enhances SUMOylation of NPM1c.  

(A) Western blot analysis of SENP3 in OCI-AML3 and OCI-AML2 treated with EAPB0503 

for 6-, 24-, 48 hours as indicated, depicted from one representative experiment. Black 

histograms and red histograms represent the densitometry of the ratio SENP3/actin of 

untreated or EAPB0503-treated OCI-AML3 at 6-, 24-, or 48h in three independent 

experiments.  The t-test was performed to validate significance. *, ** and *** indicate p 

values ≤ 0.05; 0.01 and 0.001, respectively. P-values less than 0.05 were considered 

significant. (B) Confocal microscopy analysis of maximal projections of Z-stacks of NPM1 

and SUMO2/3 interaction by PLA assay, in Hela cells transfected with PE-GFP wt-NPM1 or 

PE-GFP NPM1c after their treatment with EAPB0503 for 6 hours (as indicated). Duolink red 

dots represent endogenous SUMO2/3 interactions with wt-NPM1 or NPM1c. Nuclei were 

stained with DAPI (blue).  

 

J. EAPB0503 induces c-Myc oncoprotein degradation in OCI-AML3 

It was reported that c-Myc oncoprotein is upregulated in cells expressing NPM1c due to 

the delocalization of its E3 ligase Fbw7ɣ to the cytoplasm favoring its degradation (146). We 

tested the effect of EAPB0503 on c-Myc oncoprotein. Interestingly, our data demonstrates 

that EAPB0503 induces a significant c-Myc oncoprotein degradation 24h post-treatment in 

OCI-AML3 (p<0.001). But the effect of EAPB0503 on c-Myc expression is not exclusive to 

OCI-AML3; it also affects OCI-AML2 c-Myc expression levels upon treatment. This 

suggests the effect of the drug on c-Myc activity is not related to NPM1c which requires 

further investigations in this pathway (Figure 24).  
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Figure 24. EAPB0503 induces c-Myc oncoprotein degradation in OCI-AML3 cell line.  

Western blot analysis of c-Myc, and actin in OCI-AML3 and OCI-AML2 treated with 

EAPB0503 for 6, 24 48 hours as indicated, depicted from one representative experiment. 

Black histograms and red histograms represent the densitometry of the c-Myc/actin of 

untreated or EAPB0503-treated OCI-AML3 at 6-, 24-, or 48h in three independent 

experiments.  The t-test was performed to validate significance. *, **and *** indicate p 

values ≤ 0.05; 0.01 and 0.001, respectively. P-values less than 0.05 were considered 

significant 
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DISCUSSION AND CONCLUSION 

NPM1 mutations characterize one third of AML patients (137). Although NPM1c 

alone does not induce leukemia, however it mediates malignancy as observed in transgenic or 

knock-in mice (150). Recent studies showed that therapies targeting NPM1c, inducing its 

degradation lead to inhibition of proliferation and cell death of leukemic cells (153, 163, 171, 

178). In line with these findings, we demonstrated that EAPB0503 selectively degrades 

NPM1c and restores the intracellular localization of wt-NPM1 in OCI-AML3 cells, degrades 

NPM1c in AML blasts, and reduce tumor burden in the BM of OCI-AML3 xenograft mice 

(171). 

Imidazoquinoxalines are promising anticancer drugs based on their activities on T-cell 

leukemia, melanoma, CML, and AML (165, 169, 171). In this study, we deciphered the 

molecular mechanisms associated with NPM1c degradation and its subsequent induced cancer 

cell death. We showed that EAPB0503 leads to a progressive degradation of NPM1c as early 

as 6h post-treatment. This seems to be involved in the triggering of mechanisms, ultimately 

leading to cell death of NPM1c-expressing cells. We broadened our findings on p53 

activation, to characterize the time point and the other important players in the p53 pathway in 

EAPB0503-treated cell lines and ex-vivo blasts. While NPM1c degradation started at 6h, p53 

activation through MDM2 degradation was not observed before 24h post-treatment. 

Interestingly, p21 activation is concomitant with the early degradation of NPM1c, suggesting 

a p53-independent activation of this protein (Table 8, Figure 25). 

NPM1 SUMOylation and de-SUMOylation regulate ribosomal biogenesis through a 

tight balance of interaction with either p14
ARF

 or SENP3 (134). Our study reveals that 
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EAPB0503 is inducing degradation of SENP3 in OCI-AML3 and enhancing the 

SUMOylation of NPM1c by SUMO2/3 in Hela cells expressing NPM1c. Although those 

observations were made utilizing reporter (GFP) in Hela cells, different sources of antibodies 

against p14
ARF

 did not lend themselves to the in vitro experiments. One lot of antibody 

obtained initially, was utilized in the in vivo experiments and revealed the upregulation of 

p14
ARF

, soon after which the antibody became corrupted. Attempts to replenish it were 

frustrated by the fact that it was discontinued and antibodies from other sources have 

negligible if any activity. Based on the observed sequential regulation of SUMO2/3, 

degradation of SENP3 and upregulation of p14
ARF

, it can be deduced that EAPB0503 may 

exert its effect on ribosomal biogenesis and protein synthesis in NPM1c AML (Table 8, 

Figure 25).  

What strengthens these data in our obtained in vivo results, whereby EAPB0503 

significantly prolonged survival and alleviated leukemia burden in both BM and livers of 

NPM1c xenograft mice, following NPM1c degradation and p14
ARF

 upregulation.   

This ongoing project will soon benefit from the acquisition of different NPM1c expressing 

cells, in addition to the tools required to Crisper SENP3 and observe its mediated effect on 

NPM1c degradation and the ribosomal biogenesis pathway. Exploring those pathways might 

identify other key players to be used in targeted therapy and enhance the efficacy of the drug.  

 Since SUMOylation followed by ubiquitylation mediates proteasomal degradation of 

proteins, it is essential to study EAPB0503 NPM1c-induced proteasomal degradation by 

investigating other post-translational modifications, mainly ubiquitylation.  
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Furthermore, performing several molecular investigations on patient-derived blasts 

will cement our in vitro observation, especially when coupled to co-culture experiments to 

mimic the in vivo niche and the potential effect of the drug on the mesenchymal stem cells.  

 

Table 8. Effect of EAPB0503 on p53/MDM2 axis and NPM1c/SENP3/SUMOylation 

interplay in NPM1c AML 

             Time (hours) 

 

Protein                         

6 24 48 

p53 upregulation basal level 

 

basal level 

 

basal level 

 

p-p53 upregulation basal level 

 

++ 

 

basal level 

 

p21 upregulation + 

 

++ 

 

++ 

 

MDM2 degradation + 

 

++ 

 

+++ 

 

NPM1c degradation + 

 

++ 

 

+++ 

 

SENP3 degradation + 

 

++ 

 

+++ 

 

NPM1c SUMOylation 

by SUMO2/3  

++ 

 

basal level 

 

basal level 
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Figure 25. Suggested Mode of action of EAPB0503 in AML.  

 

EAPB0503 leads to proteasomal degradation of NPM1c. It activates p53 through degradation 

of MDM2 and activates p21, leading to apoptosis. EAPB0503 perturbs the balance 

SENP3/P14
ARF

/NPM1c presumably affecting ribosomal biogenesis.    
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Abstract: Acute myeloid leukemia (AML) is one of the most frequent, complex, and heterogeneous
hematological malignancies. AML prognosis largely depends on acquired cytogenetic, epigenetic,
and molecular abnormalities. Despite the improvement in understanding the biology of AML,
survival rates remain quite low. Animal models offer a valuable tool to recapitulate different AML
subtypes, and to assess the potential role of novel and known mutations in disease progression.
This review provides a comprehensive and critical overview of select available AML animal models.
These include the non-mammalian Zebrafish and Drosophila models as well as the mammalian rodent
systems, comprising rats and mice. The suitability of each animal model, its contribution to the
advancement of knowledge in AML pathophysiology and treatment, as well as its advantages and
limitations are discussed. Despite some limitations, animal models represent a powerful approach to
assess toxicity, and permit the design of new therapeutic strategies.

Keywords: Zebrafish; Drosophila; rats; mice; NPM-1; FLT3 ITD; ETO-1; IDH1/2

1. Introduction

Acute myeloid leukemia (AML) is an aggressive and heterogeneous hematological group of
neoplasms characterized by increased proliferation of myeloid progenitor cells and a reduced capacity
to differentiate. This results in the accumulation of myeloblasts in the bone marrow (BM), which
negatively impacts hematopoiesis and leads to BM failure [1]. AML is one of the most common
acute leukemia in adults [2]. Its incidence rate is 2.5 per 100,000 cases/year and the median overall
survival (OS) is approximately nine months [3]. AML treatment and prognosis largely depend on the
patients’ age [4–6]. AML was historically divided into eight major groups according to cell morphology
and immune phenotype (M0 to M7) [7]. This classification has been revised several iterations since
then [8–12]. Exome sequencing in AML patients led to the current classification through identification
of more than 20 driver recurrent mutations [13]. These mainly include Nucleophosmin-1 (NPM1),
DNA methyltransferase 3A (DNMT3A), Fms-like tyrosine kinase-3 (FLT3), isocitrate dehydrogenase (IDH),
Ten–Eleven Translocation 2 (TET-2), Runt-related transcription factor (RUNX-1), CCAAT enhancer binding
protein α (CEBPA), additional sex comb-like 1 (ASXL1), mixed lineage leukemia (MLL), tumor protein p53
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(TP53), c-KIT [14]. These mutations dictate the response to treatment, rates of complete remission,
disease-free survival, overall survival, and classify AML into three prognostic risk factors (favorable,
intermediate, and adverse) (Table 1).

Animal models provide an excellent tool to understand the biology of pathological mechanisms
involved in human diseases. Diverse animal species were used to answer pivotal questions related to
disease progression, genetic mutations, immunity, and response to treatment. Among these models,
Zebrafish was exploited to generate different mutations mimicking several subtypes of human AML.

Table 1. 2017 European LeukemiaNet (ELN) prognostic groups according to genetic abnormalities of
acute myeloid leukemia (AML) [12].

Prognostic Group Genetic Mutations and Abnormalities

Favorable

• t(8;21)/RUNX1-RUNX1T1
• inv(16) or t(16;16)/CBFB-MYH11
• Mutated NPM1 without FLT3-ITD
• or with FLT3-ITD low *
• Biallelic mutated CEBPA

Intermediate

• Mutated NPM1 and FLT3-ITD high *
• Wild-type NPM1 without FLT3-ITD or with FLT3-ITD low *
• t(9;11)/MLLT3-KMT2A
• Cytogenetic abnormalities not classified as favorable or adverse

Adverse

• t(6;9)/ DEK-NUP214
• t(v;11q23.3)/KMT2A rearranged
• t(9;22)/BCR-ABL1
• inv(3) or t(3;3)/GATA2,MECOM(EVI1)
• Complex karyotype
• Monosomal karyotype
• Wild-type NPM1 and FLT3-ITD high *

• Mutated RUNX1

1 
 

Ϯ 

• Mutated ASXL1

1 
 

Ϯ 
• Mutated TP53

* Low, low allelic ratio (<0.5); high, high allelic ratio (>0.5);

1 
 

Ϯ these mutations should not be used as an adverse
prognostic marker if they co-occur with favorable-risk AML subtypes.

2. Zebrafish: Characteristics and Relevance to Human Blood Malignancies

Danio rerio, commonly known as Zebrafish, shares genetic and molecular mechanisms of
hematopoiesis with humans [15]. This model offers many advantages, including low-cost, optically
transparent embryos, high fecundity, rapid embryogenesis, and short gestation time. The genome
editing in zebrafish was known since 1970s, when the first transgenic zebrafish was generated by
inserting naked linear DNA [16]. Since then, the genetic manipulation of this model evolved to include
clustered regularly interspaced short palindromic repeats (CRISPR) technology [17], which renders
zebrafish an attractive model for studying specific gene involvement and for drug screening in blood
malignancies [18–20].

During normal zebrafish hematopoiesis, both the primitive and definitive waves arise from the
mesoderm germ layer under the control of the Transforming Growth Factor beta (TGF-β) superfamily
proteins, known as bone morphogenic proteins (BMP such as bmp2b and bmp7) [21–23]. The generated
transient primitive erythroid and myeloid cells are essential for the embryonic development, while the
hematopoietic stem cells (HSCs) and progenitor cells (HSPCs) produce blood lineages in the adult
fish [24]. In the below section, we will provide an overview of AML models of Zebrafish (summarized
in Table 2).
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2.1. AML Models of Zebrafish

2.1.1. Spi-1: MYST3/NCOA2-EGFP

MYST3 (MOZ) is a member of the MOZ, YBF2, SAS2, TIP60 (MYST) family of histone
acetyl-transferases (HAT), while NCOA2 (TIF2) is a member of the p160 HAT family [25–28]. The first
AML model in Zebrafish was created by expressing the fusion protein, MYST3/NCOA2 (MOZ/TIF2).
This fusion targets hematopoietic cells under the control of spi-1 (pu.1), an early myeloid promoter [29].
pu.1 is an ETS-domain transcription factor expressed in both immature lymphoid/hematopoietic cells
and myeloid cells during zebrafish hematopoiesis [30]. Cells expressing pu.1 differentiate into myeloid
progeny, whereas cells with low pu.1 expression shift to the erythroid fate [31]. After an extended latent
period, a small percentage of transgenic fish developed AML [29]. These animals presented with an
extensive invasion of kidneys by myeloid blast cells, proving the oncogenic potency of MYST3/NCOA2
fusion gene [29]. Although this model is useful as a chemical library screen, especially for compounds
that target epigenetic regulation of gene expression [29], the long latency and low incidence waned the
enthusiasm for its use.

2.1.2. hsp70: AML1-ETO

A chromosomal translocation between chromosomes 8 and 21 (t(8;21)(q22;q22)) occurs in 12–15%
of AML patients [32]. This chromosomal rearrangement yields a fusion transcription factor encoding
AML1 (RUNX1) linked to ETO, forming the AML1-ETO fusion product [33–35]. This translocation was
introduced under the control of the heat shock promoter hsp70 in zebrafish embryos (hsp70: AML1-ETO).
Transgenic Zebrafish recapitulated the human AML features, at both the cytological and transcriptional
levels [36]. The expression of this fusion protein led to the accumulation of non-circulating hematopoietic
cells, whereby the intermediate cell mass was enriched with myeloperoxidase positive neutrophils
and morphologically immature hematopoietic blasts [36]. The disruption of definitive hematopoiesis
led to switching the cells fate from the erythroid to the myeloid lineage [36]. Overexpression of the
transcription factor reversed the observed phenotypes, implicating scl, as major player downstream
of AML1-ETO [36]. This model enabled the screening of a small molecule library and discovery of
compounds that antagonize the activity of AML1-ETO in the hematopoietic progenitor cells (HPCs) [36].
Inhibition of COX-2 and β-catenin signaling antagonized AML1-ETOs effects on HPCs differentiation
and may have implications in human AML [37].

2.1.3. MYCN: HSE: EGFP

MYCN (N-myc) proto-oncogene is upregulated in many types of hematological malignancies [38,39]
including 20 to 40% of pediatric AML patients [40]. To unravel the molecular and transcriptional
networks by which MYCN induces malignancy, Shen et al. established a transgenic embryonic zebrafish
model, Tg (MYCN: HSE: EGFP), expressing the murine MYCN under a heat shock promoter [41]. MYCN
overexpression induced immature myeloid blast cell expansion and reprogrammed the hematopoietic
cell fate through MYCN downstream-regulated gene 1b (ndrg1b) and other lineage-specific
hematopoietic transcription factors regulation [41]. The primitive hematopoiesis was enhanced
through scl and lmo2 upregulation. Furthermore, erythroid differentiation was blocked through
downregulation of gata1, while myelopoiesis was promoted by pu.1 overexpression [41]. This model
presents a high AML incidence (∼75% of transgenic zebrafish) and a rapid onset occurrence, providing
a platform for whole-organism chemical suppressor screens, to identify compounds that can reverse
MYCN function in vivo [41].

2.1.4. FLT3-ITD and NPM1c+ Models in Zebrafish

FLT3-ITD and NPM1 are two major players in defining the prognosis and response to treatment
in AML patients. FLT3 is a tyrosine kinase receptor that plays a major role in hematopoiesis through
the regulation of proliferation, differentiation, and apoptosis of HPCs [42]. It is highly expressed on
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leukemic blasts of 70–100% of AML patients [43,44]. Several mutations occur in the FLT3 receptor,
the most common of which leads to an internal tandem duplication (ITD) [45]. FLT3-ITD occurs in 20%
of AML patients and is strongly associated with poor prognosis [46,47]. NPM1, a shuttling protein
between the nucleoplasm and the cytoplasm, plays several roles, notably ribosomal biogenesis [48,49].
NPM1 is mutated (NPM1c+) in around 30% of AML patients with normal karyotype [50]. NPM1c+ is
continuously translocated to the cytoplasm contributing to leukemogenesis [50].

FLT3-ITD plays a role in embryonic primitive and definitive hematopoiesis in zebrafish. Transgenic
zebrafish embryos with human FLT3-ITD showed expansion and clustering of myeloid cells [51].
Thus far, the impact of FLT3-ITD on adult zebrafish remains underexplored.

Bolli et al. generated a transgenic zebrafish model expressing NPM1c+, which perturbed primitive
hematopoiesis by promoting the early expansion of pu.1+ myeloid cells [52]. This phenotype was
even more pronounced in a p53-deficient background [52]. An increase in the number of gata1+/lmo2
indicating expansion of erythro-myeloid progenitors (EMPs) was also observed. These EMPs highly
expressed both c-myb and CD41 but not RUNX1, suggesting a disruption of definitive hematopoiesis
where these cells could be the main target of NPM1c+. This model provides a tractable in vivo
system for the study of the mechanisms through which hematopoietic development is perturbed in the
presence of NPM1c+ [52].

Transgenic zebrafish models expressing either human FLT3-ITD or NPM1 proteins under the
control of pu.1 promoter were also generated [53]. For that purpose, spi-1: FLT3-ITD-2A-EGFP/CG2
expressing mutant FTL3-ITD and spi-1: NPM1-Mut-PA/CG2 expressing mutant NPM1 constructs
were designed. This double mutant transgenic fish (FLT3-ITD/NPM1.Mut) exhibited an accelerated
rate of myeloid leukemogenesis [53]. By the age of six months, around 66% of the transgenic fish
produced significantly increased precursor cells in the kidney marrow along with dedifferentiated
myeloid blasts [53].

2.1.5. Spi-1: CREB-EGFP

The cAMP response element binding protein (CREB) plays a major role in hematopoiesis through
the regulation of proliferation and differentiation of myeloid progenitor cells [54]. Overexpression
of CREB is associated with immortalization, growth factor-independent proliferation and blast-like
phenotype in BM progenitor cells [55]. CREB is highly expressed in BM samples of both adult and
pediatric AML patients [56]. Tregnago et al. generated a transgenic zebrafish model (spi-1: CREB-EGFP)
expressing the CREB gene downstream pu.1 promoter in the myeloid cell lineage. CREB overexpression
resulted in upregulation of erythroid and myeloid genes, altering primitive hematopoiesis. Among
adult transgenic zebrafish, 80% of the fish developed AML after 9–14 months through the blockage of
myeloid differentiation [57]. These fish showed aberrant expression of a set of 20 genes in common
with pediatric AML. The most intriguing is the CCAAT-enhancer-binding-protein-δ (C/EBPδ) that acts
downstream CREB. It resulted in impaired myeloid differentiation that could be reversed through
inhibition of the CREB-C/EBPδ axis. These findings are complementary with the data obtained by
screening for CREB and C/EBPδ in pediatric AML patients, offering an opportunity to test for novel
therapeutics through this model [57].

2.1.6. Spi-1: SOX4-EGFP

SOX4 is a transcription factor belonging to the SOX (Sry-related high-mobility groupbox)
family [58]. In AML patients, SOX4 overexpression results in poor prognosis and short overall
survival [59]. SOX4 was reported to contribute to the leukemic phenotype of C/EBPα mutant AML
in murine models as well as in human AML. C/EBPα protein typically inhibits the self-renewal of
leukemic cells and restores cellular differentiation. SOX4 overexpression results in C/EBPα inactivation,
enabling leukemic cells proliferation and AML development [60,61].

Lu et al. generated a transgenic zebrafish model Tg (spi-1:SOX4-EGFP) expressing SOX4 protein
downstream the spi-1 myeloid promoter. Early developmental stages of transgenic zebrafish did not
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reveal a difference of expression of SOX4. However, by the age of five months, Tg (spi-1:SOX4-EGFP)
zebrafish kidneys started showing mild vacuoles in the renal tubule which evolved into effacement,
distorted structure, and increased infiltration of myeloid cells by the ages of 9 and 12 months. A higher
number of myeloid progenitor cells and excess blast cells with focal aggregation were observed in the
kidney marrow blood cells of 9-, 12-, and 15-months old fish but not younger ones, highlighting that
myeloid transformation is age-dependent [59].

2.1.7. IDH 1/2 Mutation

Mutations identified in a family of enzymes involved in the citric acid cycle, isocitrate
dehydrogenases 1/2 (IDH1/2), account for 16% of AML patients [62]. These mutations substitute
arginine residue almost exclusively at codon 132 in IDH1 (IDH1-R132H) and codons 140 and 172 in
IDH2 [62]. To study the involvement of IDH in AML, zidh1 was either suppressed or deleted and
resulted in the blockage of differentiation and accumulation of early myeloid progenitor cells, while
decreasing macrophage and natural killer progenitor cells [63]. The importance of IDH1 mutation was
asserted when plasmids of IDH1-R132H were injected into zebrafish embryos [63]. An increase in
2-hydroxyglutarate (2-HG) level, a reduction of 5-Hydroxymethylcytotsine (5-hmC), and an expansion
of myelopoiesis were obtained in these embryos. A human IDH1-R132H–specific inhibitor significantly
ameliorated both hematopoietic and 2-HG responses in human but not zebrafish IDH1 mutant
expression [63]. This result is not surprising and highlights some of the drawbacks using Zebrafish as
a model for human diseases. On the other hand, studies on zidh2 were restricted to the regulation of
embryonic hematopoiesis in zebrafish but with no relevance to the human AML [63].

Even with the drawbacks of not possessing many mammalian-like organs, zebrafish still provides
an excellent, affordable, and rapid platform for evaluating several aspects of AML. The variations in the
biological microenvironment might impede drug delivery and performance in humans. Additionally,
zebrafish are ectothermic (cold-blooded), so their physiology is not identical to humans, which might
affect enzyme kinetics and metabolism. The genetic diversity detected between individual zebrafish
belonging to the same strain confounds data and could be misleading [64]. The sparsity of reagents to
study zebrafish at the molecular level is contrasted by the abundance of mouse-specific reagents.

3. Rodent Models

Due to the complexity and heterogeneity of AML in humans, rodent models have been instrumental
in providing a platform for answering pivotal questions related to AML pathogenesis, disease
progression, and developing new effective therapeutic approaches. Among these models, rats and
mice represent the closest accepted mammalian models to AML.

3.1. Rats

Several transplantable leukemia rat models were established using carcinogens, radiations, and
pollutants [65–67].

Transplantable Rat Models

Acute Myeloid Leukemia/ Chronic Meylogenous Leukemia (AML/CML) leukemia: Repeated
intravenous injections of 7, 12-dimethylbenz (a) anthracene (DMBA) into WOP/H-Onc strain or
Wistar/H-Onc strain, induced leukemia in 10% of the rats in 5–9 months. This leukemia has myeloid
characteristics as revealed by hematological and histological examination, as well as infiltration of
myeloid blasts into several organs (BM, liver, spleen, and lymph nodes). This myeloid nature showed
similarities with both human CML (as demonstrated by high peroxidase and Sudan black B positive
cells and reduction in alkaline phosphatase positivity) and human AML (non-specific esterase activity,
highly reduced in the peripheral blood but slightly reduced in BM). These findings do not support the
use of these rats as an exclusive AML model [68].
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Brown Norwegian Myelogenous Leukemia (BNML): The transplantable promyelocytic leukemia
in BN rat (BNML) was first described in 1971. This slow growing leukemia shares many common
characteristics with AML, including the disappearance of normal hematopoiesis [69]. Similarities
in in vitro colony forming assays between AML patients and BNML rats validated it as a model for
AML [70,71]. Several therapeutic modalities were optimized using this model; these include the
combination of anthracyclines, [72,73] Ara-C, [74,75], 4′-(9-acridinylamino) methanesulfon-m-anisidide
(AMSA) [76], and other therapeutics [77–79]. One of the most significant advantages in the BNML model
is its contribution to the improvement of minimal residual disease (MRD) detection by karyotyping [80]
and multidimensional flow cytometry [81,82].

3.2. Mice

Mice offer an invaluable model due to their small size, cost-effectiveness, and easy maintenance,
availability of research tools, and ease of manipulation to produce and recapitulate several human
diseases, including cancer. Since hematopoiesis in mice has been well characterized, they provide a
reasonably reproducible model to study AML pathogenesis and potential therapies. Murine AML
models include induced, transgenic animals, and humanized mouse models (Table 3) among others.

3.2.1. Chemically-Induced Model

AML models were generated using the L1210 and p388 cell lines, isolated from DBA/2 mice
chemically exposed to the carcinogen 3-methylcholantrene [83]. These models were transplantable
and provided a platform for testing chemotherapeutic drugs, studying their kinetics, and evaluating
their anti-leukemic effectiveness [84]. The L1210 model was used to screen anthracyclines [85] and
antimetabolites [86,87] including Cytarabine [88]. The p388 model was used to investigate the efficacy
of natural products as topoisomerase II inhibitors [89]. These models allowed significant improvement
in the treatment of AML, including the currently used Cytarabine [90]. The main limitation of using
these animal models is the induction of more lymphoid than myeloid leukemia, and the needed
prolonged exposure to those carcinogens to develop leukemia [91].

3.2.2. Radiation-Induced Model

The correlation between radiation and leukemia was established in patients exposed to x-rays,
and survivors of nuclear attacks. Among this cohort of subjects, children presented mostly with ALL,
whereas adults were more prone to CML and AML [92–95]. All established radiation-induced AML
models carry deletions on chromosome 2, where the hematopoietic transcription factor Sfpi1/pu.1 is
located [96].

RF Model

The RF strain was developed by Furth in 1933 at the Rockefeller Institute [97]. In this model,
myeloid leukemia was developed following exposure to fission neutron irradiation or gamma
irradiation [98]. In the RF model, a single dose of ionizing radiation-induced myeloid leukemogenesis
in 4–6 months, with symptoms reminiscent to human AML [99]. Flt3-ITD mutations were identified in
10% of RF mice [100], which correlates with the occurrence of this mutation in human AML [101].

SJL/J Model

This model is characterized by high spontaneous frequency of reticulum cell neoplasm type B
at an early age [102]. The radiation-induced AML in this model is similar to the secondary human
AML occurring after irradiation of Hodgkin disease patients [103]. The efficient development of
AML required the addition of promoting factors, such as corticosteroids and growth factors, colony
stimulating factor CSF-1, known to be high in AML patients [104].
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C3H/He and CBA Models (CBA/Ca, CBA/Cne, and CBA/H)

These models were generated in 1920, by cross-breeding Bragg albino with DBA mice. While
C3H/He was specifically selected for the high incidence of mammary tumors [105], CBA was selected
for a lower incidence of mammary tumors. The C3H/He was detected 24 h after irradiation in
BM cells; this indicates that chromosomal 2 alteration is responsible for the initiation of myeloid
leukemogenesis [106]. CBA showed chromosome 2 and 4 aberrations [107,108]. Moreover, an 8%
decrease in DNA methylation was observed after exposure to radiation. This hypomethylation
played a role in leukemogenesis [109]. The CBA model is considered the most favorable model in
radiation-inducedAML because of low spontaneous leukemia incidence (0.1 to 1%), high incidence of
AML after exposure to radiation or benzene, with lower latency, compared to other models, and more
importantly, it mimics human AML at the cytological, histopathological, and molecular levels.

3.2.3. Virally Induced Leukemia Models

Murine leukemia viruses (MuLV) induce non-B and non-T cell leukemia in mice [110,111] and are
considered among the simplest retroviruses that shed light on the pathogenesis of leukemia [112,113].
A model was created by injecting cell-free filtrates, including replication-deficient spleen focus forming
virus (SFFV) and a replication-competent Friend MuLV [114,115]. It was noticed that the same infection
of MuLV induces several subtypes of AML (Table 4), resembling French–American–British (FAB)
classification of human AML [116]. Furthermore, MuLV-induced AML led to the discovery of several
genes with a significant role in the regulation of growth, death, lineage determination, and development
of hematopoietic precursor cells [117]. MuLV induced AML is considered a critical landmark for
understanding the pathogenesis of human AML, since it unraveled relevant unknown oncogenes to
leukemogenesis (Table 4).

3.2.4. Transposon Models

Sleeping Beauty (SB) transposon is an insertional mutagenesis system, allowing overexpression or
inactivation of specific genes depending on the transposon orientation and integration site [118,119].
SB consists of a mobilized piece of DNA, transposon, and a transposase enzyme [120]. In a transgenic
animal with a humanized NPM1c+ knock-in allele, this system enhanced the incidence and onset
of AML in NPM1c+ mice [121]. An advantage of this model was the identification of mutations in
leukemia genes [121].

3.2.5. Transgenic Models: Single Mutation

PML-RARα t(15;17)

Acute promyelocytic leukemia (APL) is a subtype of AML, characterized by t(15;17) chromosomal
translocation, resulting in the promyelocytic leukemia-retinoic acid receptor α (PML-RARα) fusion
protein [122,123]. PML-RARα was expressed in three mouse models under the myeloid regulatory
promoters. Under the CD11b promoter, transgenic mice showed abnormal myelopoiesis and increased
radiation sensitivity, however, did not develop any leukemia [124]. Mice expressing the transgene
under the human cathepsin G (HCG) and human MRP8 (hMRP8) promoters [124–126] developed APL
phenotypes after a long period of latency [125,126]. These two models recapitulated the remissions
seen after all trans-retinoic acid (ATRA) treatment in human APL [125,126].

AML1-Eight-Twenty One Oncoprotein

AML1-Eight-Twenty One oncoprotein (ETO) chimeric product, encoded by the t(8;21), occurs
in around 12–15% of AML [32]. Knock-in mice expressing AML1-ETO is embryonic lethal due
to the complete absence of liver-derived definitive hematopoiesis [127,128]. Embryonic livers
contained dysplastic multilineage hematopoietic progenitors that had an abnormally high self-renewal
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capacity in vitro, a phenotype typical of leukemic cells [129]. To bypass the embryonic lethality,
inducible transgenic models were generated. These mice expressed AML1-ETO in their BM progenitor
cells [130,131]. Although abnormal maturation and proliferation of progenitor cells were observed,
mice failed to develop leukemia [130,131]. Expression of AML1-ETO under the control of hMRP8
promoter was unable to develop AML until their exposure to a robust DNA-alkylating mutagen,
N-ethyl-N-nitrosourea [132]. To further enhance AML development, this mouse model was modified
by either the expression of other factors or mutations in tyrosine kinases such as c-KIT, FLT3-ITD,
or the TEL- platelet-derived growth factor receptor β (PDGFbR) [133,134].

CBFB-MYH11

The beta subunit of the core binding complex (CBFB) is a heterodimeric core-binding transcription
factor, with a critical role in hematopoiesis [135]. CBF products, due to chromosomal translocations,
account for approximately 25% of pediatric and 15% of adult AML patients [136]. The translocation
Inv(16) (p13;q22) is a result of the binding of CBFB subunit to the tail region of the smooth muscle myosin
heavy chain (SMMHC) gene, MYH11 [137]. The resulting fusion protein (CBFB-MYH11) competes with
the binding of CBF to target genes, disrupting transcriptional regulation, thus contributing to leukemic
transformation [137]. Similar to embryos with homozygous mutations in AML1 [128], knock-in
embryonic mice (Cbfb+/Cbfb-MYH11) lacked definitive hematopoiesis and died during gestation [138].
Chemically or retrovirally induced mutations in heterozygous CBFB-MYH11 adults led to AML
development [138,139]. A conditional knock-in mouse model expressing CBFB-MYH11 fusion protein
in adult mice (Cbfb+/56M) was also generated [140] and led to AML development in 90% of the mice
within five months [140].

Mutant Nucleophosmin-1 (NPM1c+)

Mutations in the Nucleophosmin-1 (NPM1) gene represent one of the most frequent genetic
aberrations in AML [141] and account for 30% of AML patients [50]. Transgenic mice harboring the
NPM1c+mutation developed myeloproliferation in BM and spleen, supporting a role of NPM1c+ in
AML [142]. Chou et al. generated a knock-in transgenic mouse model by inserting the most frequent
mutation, TCTG called mutation A, in the C-terminus of wt-NPM1 [143]. Mice homozygous for
the transgene encountered embryonic lethality, whereas one-third of the heterozygotes (Npm1wt/c+)
developed the fetal myeloproliferative disease but not AML [143]. Conditional expression of NPM1c+
with further genetic manipulations resulted in two models [121,144]. In one model, one-third of the
transgenic mice developed leukemia after a long period of latency associated with AML features [144].
In the other model, the expression of humanized NPM1c+ in the hematopoietic stem cells caused HOX
overexpression, enhanced self-renewal, and expanded myelopoiesis [121].

Fms-Related Tyrosine Kinase 3 Internal Tandem Repeats

The second most common genetic aberrations in de novo AML patients occur in the fms-related
tyrosine kinase 3 internal tandem repeats (FLT3-ITD) gene on chromosome 13. These associate with
poor prognosis and short overall survival (OS) [145]. A transgenic mouse model expressing FLT3-ITD
under the vav hematopoietic promoter was created [146]. The majority of transgenic mice developed a
myeloproliferative syndrome (MPS) characterized by megakaryocytic hyperplasia and thrombocytosis
but not AML [146]. In FLT3-ITD knock-in mice, loss of FLT3 wild-type allele contributed to myeloid
expansion and aggressiveness of the MPS disease [147]. Several other models expressing this mutation
also revealed MPS but not AML [148,149].

Mixed Lineage Leukemia (MLL)

The translocation t(9;11)(p22;q23) produces the fusion product MLL-AF9 [150,151]. In one
model, embryonic stem cells were generated from an in-frame fusion of AF9 with exon 8 of mouse
MLL [152]. Other models conditionally expressed MLL-AF9 [153]. These models developed only
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AML despite the widespread activity of the MLL promoter [152,153]. Conditional expression of
MLL-AF9 in long-term hematopoietic stem cells (LT-HSC) produced aggressive AML with extensive
tissue infiltration, chemo-resistance, and expressed genes related to epithelial-mesenchymal transition
in solid cancers [154]. MLL early introduction results in abnormalities of myeloid cell proliferation
and differentiation [155]. Moreover, HOXa9 was found to be essential for the MLL-dependent
leukemogenesis in vivo [156].

The translocation t(4;11)(q21;q23) produces the fusion product MLL-AF4. This translocation is
associated with pro-B-ALL and rarely AML [157]. Although several models have been established
for this translocation, only few models resulted in AML. MLL-AF4 models generated using both a
knock-in [158] and Cre-inducible invertor model [159] produced large B-cell lymphoma rather than the
immature acute leukemia observed in humans [158,159]. The MLL-AF4 expression in hematopoietic
precursors, during mouse embryonic development, developed long latency B-cell lymphoma [159,160].
Furthermore, MLL-AF4 knock-in followed by in vitro inducible transduction generated mice with both
AML and pre-B-ALL as well as a few MLLs [161].

Leukemia with the t(11;19)(q23;p13.3) translocation express MLL-ENL fusion proteins capable of
malignant transformation of myeloid and/or lymphoid progenitor(s). Immortalized cells containing
MLL-ENL proviral DNA or enriched primary hematopoietic stem cells transduced with MLL-ENL
induced myeloid leukemia in syngeneic and SCID recipients [162]. Using an in vitro B-cell
differentiation system, retroviral transduction of MLL-ENL generated a leukemia reminiscent of
human MLL-ENL ALL [163]. Other models expressed MLL-ENL-ERTm, the ligand-binding domain
of the estrogen receptor modified to specifically recognize synthetic but not endogenous estrogens,
using retroviral transduction approach [164]. Several other models were generated encountering more
mutation along with MLL-ENL [165,166].

IDH 1/2

A conditional knock-in mouse model was created by inserting the mutated human IDH1 (R132H)
into the endogenous murine idh1 locus. IDH1 (R132H) was expressed in all hematopoietic cells under
the vav promoter (vav-KI mice) or specifically in cells of the myeloid lineage (LysM-KI mice) [167].
Transgenic mice showed increased number of early hematopoietic progenitors and developed
splenomegaly and anemia with extramedullary hematopoiesis, characteristics of a dysfunctional
BM niche, along with partial blockage in myeloid differentiation [167]. Moreover, LysM-KI cells have
hypermethylated histones and changes to DNA methylation similar to those observed in human IDH1-
or IDH2-mutant AML, demonstrating the induction of leukemic DNA methylation signature in the
mouse model [167].

3.2.6. Transgenic Models: Compound Transgenic Mouse Models

K-RAS-G12D + PML-RARα

4% and 10% of APL patients with PML-RARα fusion had oncogenic N-RAS and K-RAS mutations,
respectively [168,169]. The conditional expression of oncogenic K-RAS and PML-RARα in mice
induced a rapid-onset and highly penetrant, lethal APL-like disease [170].

These mice may be used to test for the therapeutic efficacy of inhibitors of RAS post-translational
modifications and RAS downstream signaling [170].

N-RASD12 + BCL-2

N-RAS, a protein belonging to the family of RAS GTP-ases, is mutated in patients at risk of
leukemic transformation after chemotherapy and/or radiotherapy [171]. N-RAS mutation at codon
12 is the most frequent abnormality in myelodysplastic syndromes (MDS), associated with AML
transformation and poor OS [172]. B-cell lymphoma 2 (BCL-2) protein is an apoptosis regulatory
protein. BCL-2 is overexpressed in AML patients [173], which blocks the differentiation of myeloid
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progenitors [174]. Both mutants have been previously identified as risk factors for AML in MDS
patients [172].

Two murine models of initiation and progression of human MDS/AML were generated [175].
The transplantable model expressing hBCL-2 in a primitive compartment by mouse mammary tumor
virus–long terminal repeat (MMTVtTA /TBCL-2/NRASD12) represents human MDS, whereas the
constitutive MRP8 [BCL-2/NRASD12] model is closer to AML [175]. Both models showed expanded
leukemic stem cell (Lin−/Sca-1+/c-Kit+) populations. hBCL-2 is observed in the increased RAS-GTP
complex within the expanded Sca-1+ compartment [175]. The difference of hBCL-2 oncogenic
compartmentalization associates with the pro-apoptotic mechanisms in MDS and the anti-apoptotic
in AML mice [175]. Downregulation of hBCL-2 in MDS mice partially reversed the phenotype and
prolonged survival; however BM blasts and tissue infiltration persisted [175]. This model revealed that
the two candidate oncogenes BCL-2 and mutant N-RAS can cooperate to give rise to malignant disease
with a penetrance of around 80% and a latency period of 3 to 6 months [175].

Mixed Lineage Leukemia-Partial Tandem Duplication + FLT3-ITD

Mixed lineage leukemia-partial tandem duplication (MLL-PTD) is expressed in 5 to 7% of cytogenetically
normal (CN)-AML patients [176,177]. Approximately 25% of these patients have constitutive activation
of FLT3-ITD, conferring a poor prognosis [178]. To recapitulate the MllPTD/WT:flt3ITD/WT AML found in
humans, a double knock-in mouse model was generated by expressing these two mutated genes under
their respective endogenous promoters [179]. After a period of latency, this model developed AML
with a short life span, extensive extramedullary involvement, and increased aggressiveness [179].
Reminiscent of this subtype of AML in humans, these transgenic mice have normal chromosomal
structures, reduced MLL-WT expression, loss of FLT3-WT, and increased total FLT3 expression [179–182].
Moreover, increased HOXA9 transcript levels were observed, rendering this model valuable for the
assessment of epigenetic modifying agents combined with tyrosine kinase inhibitors [179].

NUP98-HOXD13 + FLT3-ITD

The chromosomal translocation t(2;11)(q31;p15) leads to the fusion of Nucleoporin (NUP98),
a structural component of the nuclear pore complex, to the homeobox protein NHD13 (HOXD13),
inducing leukemogenesis [183]. NUP98-HOX fusions are observed in human and murine MDS [184].
Clinical and experimental evidence demonstrated that high rate of FLT3-ITD mutations was observed
in patients with NUP98 translocations [185]. High-level transcriptional expression of NUP98-HOX
correlated with higher transcript levels of FLT3 and an increased incidence of FLT3 activating
mutations [185]. A novel model combining an FLT3-ITD mutation with NHD13 (HOXD13) was
generated using their respective endogenous promoters [186]. Initially, these transgenic mice developed
leukemia with both primitive myeloid and lymphoid origin. Later, strictly myeloid leukemia with
minimal differentiation were monitored [186]. Indeed, NHD13 transgene enhanced the overexpression
of the HOX genes, HOXA7, HOXA9, HOXB4, HOXB6, HOXB7, HOXC4, and HOXC6 [186], shown to
play an important role in HSC self-renewal and are upregulated in acute leukemia [187–189]. Nevertheless,
mice encountered a spontaneous loss of heterozygosity with a high frequency, resulting in the loss of
WT FLT3 allele, [186], a characteristic of patients with FLT3-ITD mutations [180]. These transgenic mice
provide a model to study the molecular pathways underlying MDS-related AML [186].

NPM1c+/FLT3

NPM1c+ and FLT3-ITD double mutations are found in about 40% of AML patients [190].
A compound transgenic mouse model with a double mutation in NPM1 and FLT3 was generated
by crossing conditional Npm1flox−cA/+ with constitutive Flt3ITD/+ mice [191]. Inducing recombination
of Npm1flox−cA in hematopoietic stem cells was accomplished by crossing the double heterozygous
mice into Mx1-Cre transgenic mice [191]. Double mutant mice developed AML and died by the age
of 31–68 days. Peripheral blood showed increased leukocyte counts, reduced numbers of circulating
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B and T lymphocytes along with a marked population of immature blasts, while BM cells exhibited
increased self-renewal potential [191]. Solid organs were infiltrated with abnormal myeloid cells
inducing splenomegaly and hepatomegaly by the time of death, highlighting the role of this double
mutation in leukemogenesis [191].

N-RAS-G12D + CBFB-MYH11

A knock-in mice (NrasLSL-G12D; Cbfb56M) with an allelic expression of oncogenic N-RASG12D and
CBFB-MYH11 developed leukemia in a cell-autonomous manner, with a short median latency and
high leukemia-initiating cell activity [192]. Mice displayed an increased survival of pre-leukemic
short-term HSCs and myeloid progenitor cells with a sustained blocked differentiation induced by the
fusion protein [192]. NrasLSL-G12D; Cbfb56M leukemic cells were sensitive to pharmacologic inhibition
of the MEK/ERK signaling pathway [192], highlighting the importance of this pathway in AML and
proposing MEK inhibitors as potential therapeutic agents in inv16/ N-RASG12D AML [192].

NPM1c + N-RAS-G12D

One of the most common mutations with NPM1c+ is the N-RAS mutation occurring in 20%
of NPM1c+ AML patients [190]. NPM1 and N-RAS double mutant transgenic mice (Npm1cA/+;
NrasG12D/+) developed high penetrance, enhanced self-renewal capacity in hematopoietic progenitors,
and AML-like myeloid differentiation bias [193]. At the genomic level, frequent amplification of
the mutant N-RAS-G12D allele was observed, along with other somatic mutations in AML driver
genes [193]. Within the HOX genes, which were overexpressed, HOXa genes and downstream targets
were crucial for the survival of the double-mutant mice [193].

WT1-R394W + FLT3-ITD

Wilms tumor 1 (WT1) is a zinc finger transcriptional regulator of target genes implicated in
cell differentiation and quiescence [194]. Mutations in WT1 occur in 10–15% of CN-AML, and it
is frequently associated with mutations in several genes [194,195]. FLT3-ITD and WT1 mutations,
when present concomitantly, identify a group of AML patients that fail to respond to the standard
induction chemotherapy, which results in poor OS [195,196]. Double mutant mice Flt3+/ITD/Wt1+/R394W

displayed manifestations of shortened survival, myeloid expansion in the BM, anemia, and erythroid
dysplasia [197]. Although this model did not appear sufficient to consistently recapitulate human
AML, it demonstrated that the combined mutations resulted in a more aggressive disease than either
mutant genotype [197].

3.2.7. Humanized Models

Humanized mouse models, injected with AML cell lines or patient-derived AML blasts, offered a
faster approach and were instrumental in studying different aspects of AML. Several models were
attempted to study AML in Nude mice with little success [198,199]. This section will focus on promising
models for AML studies.

SCID Mice

The severe combined immuno-deficient (SCID) mice lacking B and T cell immunity [200], represent
essential humanized AML mouse models [201]. Indeed, patient-derived AML cells engraftment
enabled the identification of leukemia-initiating cells (LIC), expressing CD34+ CD38− surface markers,
recapitulating the human HSCs signature [202]. Engraftment of AMLs from different FAB classes into
SCID mice reflected their intrinsic biologic behavior, suggesting a clinical correlation to the growth and
dissemination of these leukemic subtypes [203]. However, lack of species cross-reactivity of cytokines
and the innate host immunity against human AML cells resulted in poor engraftment of the BM [204].
In an attempt to overcome these limitations, exogenous human cytokines and growth factors were
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provided, which resulted in better engraftment of human cells [202,204–206]. One limitation of this
model is the “leakiness” of the SCID mutation occurring in around 10% of the mice [207]. These mice
present functional B and T cells, enhanced natural killer (NK) cell activity, and complement activation
decreasing the engraftment efficiency [208]. An attempt to bypass this problem uses radiation and/or
anti-asialo-GM1 antibody pretreatment. Unfortunately, it reduced the survival of the host, rendering
this model unsuitable for human xenograft [209,210].

NOD/SCID Mice

To further improve tumor engraftment, a non-obese diabetic (NOD/SCID) model exhibiting
further impairment of NK activity, reduced mature macrophage, and total lack of B and T cells
was generated [211]. This model yielded higher engraftment rates with fewer human AML
cells, yet with preserved morphological, phenotypical, and genotypical characteristics of the AML
donors [212–215]. This model was used successfully in the screening for new therapeutics in
AML [216]. In addition, human AML cells engraftment enabled the fractionation of LICs (CD34+

CD38−) into CD34+/CD71−/HLA-DR [217], CD34 Thy1 hematopoietic stem cells [218] and CD34/CD117
(or ckit) [219] subpopulations. Nevertheless, the NOD/SCID model presents the limitation by which
higher engraftment rates required the supplementation of human cytokines or transplantation of
growth-factor producing cells [220,221]. Moreover, long term engraftments (more than 8.5 months)
were disabled due to the development of thymic lymphomas and restoration of NK cells activity during
this period [211]. A variant with NOD/SCID background is the NSS model (N/S-S/GM/3) expressing
Steel factor (SF), granulocyte macrophage-colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3)
human growth factors was generated [222]. NSS displayed enhanced engraftment of pre-leukemic
myeloid cell cultures, as well as primary human AML samples, suggesting that the NSS mouse is a
better host for at least a subset of AML samples [223].

NSG Mice

NOD/SCID mice were further immunosuppressed to generate the NOD/SCID b2-microglobulin
null mice with a complete abolishment of the NK cell activity [224]. Importantly, a NOD/SCID
IL2-Rγ−/− or NSG model was generated by deletion or truncation of the gamma chain of IL-2R [225].
In addition to all the abnormalities of their predecessors, NSG mice possess a defective production of
IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 as well as a severe impairment of the dendritic cell (DC) and their
capacity to produce interferon γ (IFN-γ) upon stimulation [225,226]. Engraftment of newborn NSG
mice with human CD34+ HSCs leads to the generation of a complete hematopoietic system, including
red blood cells and platelets [226]. Studies revealed a significantly higher potential of AML cells
engraftment in adult NSG mice in comparison to previous immunodeficient hosts [227,228]. Attempts
to create different subtypes of AML were successful in NSGs [228]. NSG mice xenotransplanted with
five well-characterized AML cell lines established AML models of particular relevance and significance
to drug-sensitivity studies [228]. These models were exploited to study the in vivo potency of an
Imidazoquinoxalines immunomodulatory drug, EAPB0503, and showed its specific activity in NPM1c+

AML subtype [229]. The usability of NSG model allowed the evaluation of the effect of a synthetic
retinoid ST1926, or its encapsulated form in nanoparticles (ST1926-NP). El-Houjeiri et al. demonstrated
that ST1926-NP is more potent in NSG injected with THP-1 cells [230]. MOLM-13-injected NSG mice
showed strong efficacy to chemotherapy (cytarabine, 50 mg/kg) and 5+3 regimen of daunorubicin
(1.5 mg/kg) [231]. These models enabled the in vivo tracking of UCB-NK cells, demonstrating their
capability to migrate to BM and inhibit progression of human leukemia cells. Administering a low
dose of human IL-15 enhanced survival of these mice, emphasizing the role of innate immunity in AML
outcome [232]. In that sense, utilization of NSG model enabled the assessment of the combination of
HSPC-NK cell adoptive transfer with the hypomethylating agents (HMAs), azacitidine (AZA), and
decitabine (DAC). Cany et al. signified that the therapeutic combination exerted a significant delay in
AML progression in these mice [233].
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Table 2. A summary of generated AML Zebrafish models and their contribution to the understanding of the disease.

Zebrafish Model Zebrafish Manipulation Model Features and Major Findings References

spi-1: MYST3/NCOA2-EGFP Transgenic expression of human MYST3/NCOA2 fusion under the
spi-1/pu.1 promoter

First AML model in zebrafish
1.1% of transgenic fishes expressing the transgene developed AML after
long latency

[29]

hsp70: AML1-ETO Transgenic expression of human AML1-ETO fusion under hsp70
promoter

A phenotype similar to human AML
Disruption of definitive hematopoiesis: the switch of cell fates from erythroid
to myeloid through gata1 downregulation and pu.1 overexpression
AML1-ETOs effects on HPCs differentiation was mediated through
Cycloxygenase-2 (COX-2) and β-catenin signaling pathways

[36,37]

mRNA: NPMc+ mRNAs injection into 1-cell–stage embryos followed by morpholinos
(MOs) targeting npm1a and npm1b

Perturbation of primitive and definitive hematopoiesis
Alterations in the expression of major transcription factors (pu.1+, mpx+,
csf1r+, c-myb, CD41, RUNX1)

[52]

HSE-MYCN-EGFP Induction of murine N-myc gene through heat-shock promoter

AML development with high incidence and rapid onset
Enhancement of primitive hematopoiesis through alteration of transcription
factors (pu.1, gata1, scl, lmo2, p27kip and p21cip1)
Activation of major cancer signaling pathways

[41]

IDH1/2 mutants

Knockdown of zebrafish idh1 and idh2 (zidh1 and zidh2) by morpholino
knockdown and Transcription activator-like effector nuclease
(TALEN-)mediated mutagenesis

zidh1 suppression/deletion is correlated with a blockage of differentiation of
the myeloid lineage
zidh1 effects definitive hematopoiesis exclusively
zidh2 affects primitive hematopoiesis exclusively

[63]

Transgenic expression of human IDH1 mutation Embryos recapitulated the features of human AML

FLT3-ITD-2A-EGFP spi-1:
NPM1-Mut-PA spi-1:

Transgenic expression of human FLT3-ITD or/and NPM1 mutations
under the spi-1 promoter

Myeloproliferative neoplasm (MPN) development as a result of a single
mutation.
66.6% of double mutant transgenic fish showed increased precursor cells in
the kidney marrow along with dedifferentiated myeloid blasts.

[53]

spi-1: CREB-EGFP Expression of CREB-EGFP under spi-1 promoter in myeloid lineage
Alteration of primitive hematopoiesis in embryos
AML development in 79% of adult fishes by 9–14 months
Aberrant expression of 20 genes diagnosed in pediatric AML

[57]

Spi-1: SOX4-EGFP Expression of SOX4 protein downstream the spi-1 promoter
Increase in the number of myeloid progenitor cells and blast cells in the
kidney marrow
Distortion of the kidney structure

[59]
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Table 3. A summary of generated AML mice models and their contribution to the understanding of the disease.

Mouse Model Manipulation Outcomes and Major Findings References

Chemically-Induced Model

Transplantable AML models were generated
using the L1210 and p388 cell lines, isolated
from DBA/2 mice chemically exposed to the
carcinogen 3-methylcholantrene.

Provide a platform for testing
chemotherapeutic drugs, studying their
kinetics, and evaluating their anti-leukemic
effectiveness (mainly Cytarabine)

[83,84,90]

Radiation- Induced Model
RF model

Myeloid leukemia was developed following
exposure to fission neutron irradiation or γ
irradiation

FLT3-ITD mutations were identified in 10%
of RF-AML mice which correlates with the
occurrence of mutation of human AML

[98,100,101]

SJL/J model

The radiation induced AML (RI-AML) in
this model, is similar to the secondary
human AML occurring after irradiation of
Hodgkin disease patients

The efficient development of AML in this
model was achieved by adding promoting
factors, corticosteroids and growth factors
like colony stimulating factor CSF-1, known
to be high in AML patients

[103,104]

C3H/He and CBA models (CBA/Ca,
CBA/Cne, and CBA/H)

These models were generated by cross
breeding Bragg albino with DBA mice

CBA model is considered the most favorable
model in RI-AML
High incidence of AML after exposure to
radiation or benzene with lower latency
compared to other models,
Mimics human AML at the cytological,
histopathological, and molecular levels.

[107,108,234]

Virally-induced leukemia models MuLV Murine leukemia viruses (MuLV) induce
non-B and non-T cell leukemia in mice

Same infection of MuLV induces several
subtypes of AMLthat resembles FAB
classification
Identifies unknown oncogenes contributing
to leukemogenesis.

[112,113,116,117] +
Table 2

Transposon models

Sleeping Beauty (SB) transposon is another
insertional mutagenesis system, allowing
overexpression or inactivation of specific
genes depending on the transposon
orientation and integration site

Identification of mutations in leukemia
genes, which provided new pathogenetic
insights and potential therapeutic targets in
NPM1c+ AML

[118,119,121]
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Table 3. Cont.

Mouse Model Manipulation Outcomes and Major Findings References

Trans-genic
models

Single mutation

Promyelocytic Leukemia protein
(PML)-RARα t(15;17)

Expressing PML-RARα
under CD11b promoter

Abnormal myelopoiesis and increased
radiation sensitivity
No AML development

[124]

Expressing PML-RARα under human
cathepsin G (HCG) promoter

APL phenotype after long latency period
Remission seen after All Trans Retinoic Acid
(ATRA) treatment in APL

[125]

Expressing PML-RARα under human MRP8
(hMRP8) promoter

APL phenotype after long latency period
Remission seen after ATRA treatment in APL [126]

AML1- Eight-Twenty One
oncoprotein (ETO)

Knock-in of AML1-ETO into mouse embryos
(AML1-ETO/+)

Absence of liver-derived definitive
hematopoiesis
Embryonic lethality

[127,128]

Expressing AML1-ETO in adult bone
marrow progenitor cells

Abnormal maturation and proliferation of
progenitor cells
No AML development

[130,131]

Expressing AML1-ETO under human MRP8
(hMRP8) promoter

AML development after exposure to
N-ethyl-N-nitrosourea [132]

CBFB-MYH11

Knock-in embryonic mice
(Cbfb+/Cbfb-MYH11)

Lack of definitive hematopoiesis
Embryonic lethality [138]

Chemical/ retroviral mutagens on
heterozygous CBFB-MYH11 adults AML development [138,139]

Conditional knock-in adult mice (Cbfb+/56M) AML development in 90% of mice after 5
months [140]

Mutant Nucleophosmin-1
(NPM1c+)

Knock-in mice expressing NPM1 with
mutation A (NPM1c+)

Homozygotes encountered embryonic
lethality
1/3 of the heterozygotes (Npm1wt/c+)
developed fetal myeloproliferative disease
but not AML

[143]
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Table 3. Cont.

Mouse Model Manipulation Outcomes and Major Findings References

Expression of NPM1 with mutation A
(NPM1c+) under the pCAG promoter

1/3 of the transgenic mice developed
leukemia after a long period of latency [144]

Expression of humanized NPM1c+ in the
hematopoietic stem cells

HOX overexpression
Enhanced self-renewal
Expanded myelopoiesis

[121]

Fms-related tyrosine kinase 3
internal tandem repeats (FLT3-ITD)

Expressing FLT3-ITD under the vav
hematopoietic promoter

Myeloproliferative syndrome (MPS)
Megakaryocytic hyperplasia and
thrombocytosis
No AML development

[146]

FLT3-ITD knock-in mice with lost FLT3
wild-type allele

Myeloid expansion and aggressiveness of
the MPS disease
No AML development

[147]

Mixed Lineage Leukemia (MLL)

Embryonic stem cell formed by in-frame
fusion of AF9 with exon 8 of mouse MLL AML development [152]

Conditional expression of MLL-AF9 using
programmed interchromosomal
recombination

AML development [153]

Conditional expression of MLL-AF9 in
LT-HSC

Aggressive AML
Extensive tissue infiltration
Chemoresistance
Expression of genes related to
epithelial-mesenchymal transition (EMT) in
solid cancers

[154]

Early introduction of MLL Abnormalities of myeloid cell proliferation
and differentiation [155]

IDH 1/2
Expressing IDH1/2 under the vav promoter
(Vav-KI mice) or specifically in cells of the
myeloid lineage (LysM-KI mice)

Increased number of early hematopoietic
progenitors
Splenomegaly
Anemia
Extramedullary hematopoiesis,
characteristics of a dysfunctional BM niche
and partial blockage in myeloid
differentiation
Induction of leukemic DNA methylation
signature in mouse model

[167]
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Table 3. Cont.

Mouse Model Manipulation Outcomes and Major Findings References

Compound mutations

K-RAS-G12D + PML-RARα
Constitutive expression of K-RAS and
PML-RARα

Rapid-onset and highly penetrant, lethal
APL-like disease [170]

N-RAS12D + BCL-2

MMTVtTA /TBCL-2/NRASD12
Expression of hBCL2 in a primitive
compartment by mouse mammary tumor
virus–long terminal repeat

MDS development
Expanded leukemic stem cell
(Lin−/Sca-1+/c-Kit+) populations
Increased apoptosis
Malignant disease with a penetrance of
around 80% and a latency period of 3 to 6
months

[175]

MRP8 [BCL-2/NRASD12]
Constitutive expression of BCL-2 under
human MRP8 promoter

AML development
Expanded leukemic stem cell
(Lin−/Sca-1+/c-Kit+) populations
No apoptotic cells
Malignant disease with a penetrance of
around 80% and a latency period of 3 to 6
months

[175]

MLL-PTD + FLT3-ITD Expressing MLL-PTD and FLT3-ITD under
their respective endogenous promoters

Latent AML with a short life span, extensive
extramedullary involvement and increased
aggressiveness
Normal chromosomal structures
Reduced MLL-WT expression
Loss of FLT3-WT and increased total FLT3
expression
Increased HOXA9 transcript levels

[179]

NUP98-HOXD13 + FLT3-ITD
Expressing FLT3-ITD and NHD13 (HOXD13)
under their respective endogenous
promoters

Myeloid leukemia with minimal
differentiation
Overexpression of several HOX genes
Spontaneous loss of heterozygosity with a
high frequency, resulting in the loss of WT
FLT3 allele

[186]

NPM1c+ - FLT3 Crossing conditional Npm1flox−cA/+ with
constitutive Flt3ITD/+ mice

AML development
Lethality by the age of 31-68 days
Modified blood cell counts
Immature blasts in BM
Myeloid cells infiltration into organs
Splenomegaly and hepatomegaly

[191]
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Table 3. Cont.

Mouse Model Manipulation Outcomes and Major Findings References

N-RAS-G12D + CBFB-MYH11 Allelic expression of oncogenic N-RASG12D

and CBFB-MYH11

Leukemia development in a cell-autonomous
manner with a short median latency
High leukemia-initiating cell activity
Increased survival of pre-leukemic
short-term HSCs and myeloid progenitor
cells with blocked differentiation
Leukemic cells were sensitive to MEK/ERK
inhibitors

[192]

NPM1c + N-RAS-G12D Conditional expression of NPM1c+ and
N-RAS-G12D

AML-like myeloid differentiation bias
Hematopoietic progenitors with high
penetrance and enhanced self-renewal
capacity
Frequent amplification of the mutant
N-RAS-G12D allele
Somatic mutations in AML driver genes
Overexpression of HOX genes

[193]

WT1-R394W + FLT3-ITD Crossing Flt3+/ITD mice with Wt1+/R394W

mice

MDS/MPN development
Shortened survival
Myeloid expansion in the BM,
Anemia
Erythroid dysplasia

[197]

Xenograft/humanized models

SCID mice Autosomal recessive mutation

Lack of B and T cells
Retained innate immunity and cytokines
Identification of leukemia initiating cells
(LIC)
Poor engraftment of human AML cells in the
BM

[200]

NOD/SCID mice
NOD/SCID model:
Express additional mutations

Impairment of NK activity
Reduced mature macrophages
Total lack of B and T cells
Fractionation of LIC into subpopulations

[211]

NSS model
(N/S-S/GM/3): variant of NOD/SCID mice
expressing SF, GM-CSF and IL-3

Better host for a subset of AML [222,223]

NSG mice Deletion or truncation of the γ chain of IL-2R

Defective production of major interleukins
and IFN-γ
Impairment of dendritic cells
Complete abolishment of the NK cell activity
Higher engraftment capacity of human AML
cells than previous models

[224]
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Table 4. Murine leukemia virus (MuLV) induced AML models: Major gene discoveries and their involvement in different French–American–British (FAB)
AML subtypes.

MuLV Virus Mouse Strain AML Subtype FAB Classification Major Gene Discoveries References

CasBrM-MuLV NFS Granulocytic M1 or M2 His-1 [235,236]
CasBrE MuLV NIH Swiss Myeloid M1 or M2 Fli-1 [237–239]

Endogenous ecotropic MuLV AKXD-23 Granulocytic M1 or M2 Evi-1 [240,241]
Friend-MuLV C57BL/6 Granulocytic M1 or M2 Ccnd1 [237,242,243]
Friend-MuLV DBA/2 Myeloblastic M1 or M2 Evi-1, & c-myb [244–246]

M-MuLV BALB/c Promonocytic M5 c-myb [246,247]

B ecotropic MuLV BXH-2 Myelomonocytic M4
c-myb, HOXa7, HOXa9, Meis1, CBFa1, SOX4,
Hhex, Rarg, Sharp1, Ccnd3, Cdc25l, RASGRP,

Clabp, Hmgcr, Nf1, & Il17r
[248–255]
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4. Drosophila Melanogaster

AML1-ETO

The chromosomal translocation t(8:21)(q22;q22) is frequent and common in AML. It represents up
to 40% of AML subtype M2 of the FAB classification [256]. The fusion gene resulting in this translocation
encodes for the chimeric protein AML1-ETO, which contains the N-terminus of AML1 (including its
DNA binding domain) and most of the ETO protein [33,257], and inhibits the expression of AML1 target
genes leading to leukemogenesis [258]. The detailed molecular mechanism governing this interference
is poorly understood, which enticed the generation of several animal models to understand its mode
of action. AML1-ETO alone is not sufficient to induce leukemia unless accompanied by secondary
mutations [130,131,259]. The simplicity of genetics and ease of manipulation in Drosophila presents it
as an attractive model to study this complex translocation. In addition, Drosophila hematopoiesis is
comparable to that of mammals [260]. Two AML1-ETO models of genetically engineered Drosophila
were generated. In the first model, AML1-ETO is a constitutive transcriptional repressor of AML1
target genes. In the second model, AML1-ETO dominantly interferes with AML1 activity by potentially
competing for a common co-factor [261]. The transcription factor Lozenge (Lz) that is similar to human
AML1 protein is necessary for the development of crystal cells, one of the major Drosophila blood cells,
during hematopoiesis [262]. Using these models and by comparison with loss-of-function phenotypes
of Lz, AML-1-ETO was shown to act as a constitutive transcriptional repressor [261]. Osman et al.
reported that AML1-ETO inhibits the differentiation of crystal cell lineage, and induces an increase
in the number of circulating LZ+ progenitors. Moreover, large scale RNA interference screen for
suppressors of AML1-ETO in vivo showed that calpainB is required for AML1-ETO-induced leukemia
in Drosophila. Surprisingly, calpainB inhibition in Kasumi-1 cells (AML patient cell line carrying
t(8;21) translocation) leads to AML1-ETO degradation and impairs their clonogenic potential [263].
Another study identified pontin/RUVBL1as a suppressor of AML1-ETO. Indeed, PONTIN knock-down
inhibits the proliferation of t(8;21) positive cells, and that PONTIN is essential for Kasumi-1 clonogenic
potential and cell cycle progression [264]. Thus, AML1-ETO can be recapitulated in Drosophila blood
for investigating its mechanism and identifying potential targeted therapeutics for this AML subtype.

Despite advances in our understanding of many molecular mechanisms, in vitro research falls
short in determining overall effect of treatment modalities or drug discovery. AML is an intricate
disease where culture consisting of a single cell line system, can never recapitulate the complexity of the
disease. In the difficulty of obtaining primate models of AML, small rodents, zebrafish, and Drosophila
with well characterized genetic background and relative ease of manipulation, are the backbone of
current work where leukemic cells are interfaced with the host immunity, metabolic environment and
importance of the niche ation. Not one model is sufficient to address all posed questions. However,
collectively, these models have expanded our knowledge and understanding of several pathways and
important players in AML pathogenesis.
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