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ABSTRACT 

OF THE THESIS OF 
 

 

 

Zahraa Malek Al Sahili     for             Master of Engineering 

                  Major:  Electrical and Computer Engineering 

  

 

Title: Transferability of Graph Neural Networks for Time Series Application 

 

 

Transfer learning enabled machine learning tasks with scarce data to achieve superhuman 

performance in multiple domains like computer vision and natural language processing. 

However, knowledge transfer's success was mostly on grid structured data and using 

convolutional neural networks that assume local, hierarchical, and stationary data.  Time 

series data in several applications, specifically doesn't meet these assumptions. This renders 

traditional transfer learning irrelevant with the potential leading to negative transfer. After 

achieving superior performance on high-dimensional data like social networks and 

recommender systems, graph neural networks are currently applied to time series data. In this 

thesis, we investigate the transferability of graph neural networks on time series data 

compared to traditional time series algorithms. We also explore a new graph similarity 

approach and compare its effect on time series algorithms pretraining and negative transfer 

for pandemic time series forecasting. 
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CHAPTER I 

INTRODUCTION 

 

Time series applications have become a very active research area [1]. Various deep 

learning algorithms were able to achieve very high accuracy in multiple time series 

forecasting and classification fields. Unfortunately, these algorithms' success is based on 

sufficient labeled data availability. To achieve high performance in time series 

applications with scarce data, knowledge transfer from similar data should be adopted [2]. 

 Knowledge transfer using convolutional neural networks achieved superhuman 

performance in computer vision tasks with a limited amount of data like face recognition 

and medical imaging [3]. In addition, transfer learning reduces computational costs and 

increases the speed of deep neural network training [3]. Convolutional neural networks 

work efficiently on local, hierarchal, and stationary data. On the other hand, time series 

data may lack the assumptions, which causes traditional transfer learning to fail thus 

leading to a "negative transfer" outcome [4]. For example, transferring the forecast of 

covid cases from Uganda to Italy will result in a drop in the deep model accuracy instead 

of improving the model's performance [4]. 

Convolutional neural networks were extended to high dimensional unstructured 

data through graph neural networks (GNN). After achieving state of the art performance 

on high-dimensional graph applications like social networks and recommender systems, 

GNNs are currently applied to various time-serious applications [5-7]. From multivariate 
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time series forecasting to time series classification, graph neural network algorithms were 

able to outperform counterpart algorithms [5-7]. 

Another challenge for transferring knowledge in time series applications is data 

similarity. To select the appropriate source data for the target data, multiple metrics were 

proposed for graphs in general and for time series data specifically. These metrics 

include cosine similarity, correlation, and dynamic time rapping. However, further 

experimentations are needed to ensure the negative transfer mitigation. 

In this research, we aim to investigate transfer learning for time series applications. 

First, we propose using the first and second derivatives as a similarity metric to 

accompany correlation, cosine similarity, and dynamic time wrapping. We also 

investigate the effect of the first and second derivatives on fine-tuning models. Moreover, 

we research the transferability of various graph neural networks on time series forecasting 

and classifications. To the best of our knowledge, our research is the first to investigate 

the transferability of time series data through graph neural networks and the first to 

propose an attention-based spatio-temporal graph neural network.  

 The thesis consists of six chapters. Chapter I provides a brief introduction. In 

Chapter II, a survey on spatio-temporal graph neural networks is presented focusing on 

the algorithms and the applications. Chapter III includes a literature review on transfer 

learning for time series and on transfer learning in graph neural networks research. Then 

Chapter IV, discusses our contribution related to similarity metrics based on the hurricane 

model, from theory to experimental results. After that, Chapter V examines the 

transferability of spatio-temporal graph neural networks for pandemic forecasting from 
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proposing new algorithms to comparing the transferability of these algorithms. Finally, 

Chapter VI concludes our thesis while discussing future research plans.   
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CHAPTER II 

SPATIO-TEMPORAL GRAPH NEURAL NETWORKS 

 

A. Introduction 

Graph Neural Networks for time-varying graph data are used in well-known 

applications varying from multivariate time series data to social networks and 

audiovisuals and so-called Spatio-temporal graph neural networks. In this chapter, we 

provide a comprehensive review of spatio-temporal graph neural network algorithms 

while proposing a new taxonomy for introducing time to graph neural networks. 

 

B. Algorithms 

Spatio-temporal graph neural networks can be classified from an algorithmic 

perspective as spectral-based and spatial-based. Another classification category is the 

method time variant introduced: weather using another machine learning algorithm or 

defining time within the graph structure. 

 

1. Hybrid Spatio-Temporal Graph Neural Networks 

Hybrid Spatio-temporal graph neural networks constitute two main components: 

a spatial component and a time component (Figure 1). 

• Spatial Module 
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In hybrid Spatio-temporal graph neural networks, graph neural network algorithms 

are used to model the spatial dependencies in the data. 

 

-Spectral Graph Neural Networks 

Spectral GNNs are based on the spectral definition of the convolution operation. 

Early Spatio-temporal GNNs heavily relied on this spectral definition. For example, Yu 

et al. [8], used Chebyshev GNN in the STGCN algorithm. In addition, Cao et al.[9] used 

Spectral graph convolution to model the space domain in his StemGNN. Recently, 

Simeunivic et al [10] used spectral GCNs in his both algorithms: GCLSTM and 

CGTransfo. 

 

-Spatial Graph Neural Networks 

With the advances in spatial graph neural networks research, various researchers 

used spatial GNNs to model the spatial domain in spatio-temporal GNNs.Chen et al[11], 

used a recurrent graph neural network(RGNN) with skip connection to model spatial 

dependencies in traffic forecasting. However,  Wu et al. [12] used Graph 

Convolution neural networks GCNs with skip connection in his MTGNN algorithm. 

Additionally, GCN was used in the Structural RNN algorithm [13]. 

Graph neural networks with attention mechanism (GAT) were used in [14,15]. In 

A2GNN,[14] Huang et al. used the GAT with an autograph learner to improve the 

forecasting performance. Moreover, Kan et al. [16] used GAT cascaded with a graph 

transformer and a hierarchical pooling mechanism in the HST-GNN implementation. 

More advanced spatiotemporal GNN algorithms were used for spatial modeling in 

[17,18]. Oreshkin et al. used Gated graph neural networks in the FG-GAGA algorithm. In 
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contrast, the Graph Isomorphism network was used by Kim et al. to model brain 

connectivity in brain graph representation. 

 

-Graph Transformers 

Two algorithms relied on graph transforms to model spatial dependencies: 

TransMOT and d Forecaster [19,20].In addition, Kan et al.[16] accompanied his GAT 

with a Graph transformer in his HST-GNN architecture. 

 

• Temporal Module 

To model the time domain, various machine learning algorithms can be involved. 

-1D-CNN 

Yu et al.[8] used a 1D-CNN to account for the time domain in his STGCN 

algorithm. Moreover, Wu et al [12], used an inception layer in the MTGNN 

implementation. Also, Cao et al. [9] used 1D CNNs with GLU units for the temporal 

module. 

 

-Recurrent Neural Networks 

Recurrent neural networks and their variants as Gated Recurrent units (GRUs) and 

Long Short Terms Memory units (LSTMs) were widely adopted in hybrid Spatio-

temporal GNNs to model the time domain. Jain et al [34] used RNNs in the structural 

RNN algorithm. On the other side, Oreshkin et al. used GRUs in FG-GAGA GNN while 

Chen et al. [11] used both GRUs and LSTMs in the MResGNN algorithm. In addition, 

[7,8,12] all used LSTMs as time modules. In the HST-GNN algorithm, Kan et al. [16] 

used 2 LSTMs with an attention mechanism within a wider encoder-decoder architecture. 
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-Transformers 

Recently, a huge focus was imposed on transformer architectures that were used 

to accompany the time domain. The transformer was used by [14, 20] in the TransMOT, 

Forecaster, STAGIN, and GCTransfo respectively. 

 

1.Hybrid-based Spatio-Temporal Graph Neural Networks 

 

2. Solo-Graph Neural Networks 

Another method to model time in spatio-temporal graph neural networks is to 

define the time frame within the GNN itself. Multiple approaches were proposed 

including: defining time as an edge, inputting time as a signal to the GNN, time modeled 

as a subgraph, and sandwiching other machine learning architectures inside the GNN 

(Figure 2).  

 

• Time as Edge 



 

 

 

16 

Kapoor et al. [19] used spatial GCN with skip connections to forecast covid. In his 

algorithm, time was defined as an edge and locations as graph nodes. Additionally, time 

was defined as an edge in USTGCN algorithms [20] which modified the space adjacency 

matrix to a space-time adjacency matrix. 

 

• Time as Signal 

Time as an input signal was used in GNN pure-based spatio-temporal GNNs. Zhang et al. 

[21] used temporal hierarchy modeling to input time to the GAT. The algorithm also 

included graph trimming and convolution diffusion to improve the performance. 

Moreover, Shen et al. [22] used a gated dilated casual block for the temporal input. The 

output of this block was inputted to a dynamic GCN. in parallel with the output of a similar 

double block for the spatial domain. Time was also inputted as a signal in the CasualGNN 

[23] algorithm. The algorithm is based on dynamic graph neural network with an attention 

mechanism and a casual module. 

• Time as Subgraph 

Li et al [24] modeled time as a subgraph within a graph isomorphism network 

(GIN). Moreover, Shao et al. [25] used a temporal similarity graph to account for the 

temporal domain, which was added to other spatial graphs to form a multigraph set that 

constructed the ASTGCN framework. 

 

• Time using Sandwiching  

Karimi et al. [26] used two 1D-CNNs to model time. In his architecture, the 1D-CNNs 

were sandwiched inside the GCN architecture as sub-modules. 
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Table 1.Summary of Spatio-temporal Graph Neural Networks 

Author Name Hybrid 

Algorit

hm 

GNN 

only 

Spectral 

Based 

Spatial 

Based 

Spatial 

Module 

Time 

Module 

Yu et al. STGCNGCN √  √  Chebyc

hev 

GNN 

1D-CNN 

Nicolivioi

u et al. 

RSTGCN √   √ Custom

(3D 

CNN) 

LSTM 

Chen et al. MResGNN √   √ RGNN GRU & 

LSTM 

Kapoor et 

al 

-  √  √ GCN; time added as 

an edge 

Wu et al. MTGNN √   √ GCN Inception 

layer 

Li et al. Unified GNN  √  √ GIN; time added as 

a subgraph module 

Cao et al. StemGNN √  √  Spectra

l GCN 

1D-CNN 

Oreshkin 

et al. 

FG-

GAGACN 
√   √ GGCN GRU 

Jain et al. Structural 

RNN 
√   √  RNN 

Karimi et 

al. 

St-GNN  √  √ GCN with 1DCNN 

sandwiched in the 

GNN 

Chu et al. TransMOT √   √ Graph 

transfor

mer 

Transfor

mer 

Kim et al. Forecaster √   √ Graph 

Transfo

rmer 

Transfor

mer 

Kim et al. STAGIN √   √ GIN Transfor

mer 
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• Time as Filter 

In Space-time Graph Neural Network [27], both time and space were introduced as 

multivariate integral Lipschitz filters inside the GCN. 

 

Zhang et 

al. 

ST-GDN  √  √ GAT; time as input 

using temporal 

herirachly 

modeling 

Shao et al. ASTGCN  √  √ Multi graph 

set;Time as 

Temporal similarity 

graph 

Huang et 

al. 

A2GNN √   √ GAT LSTM 

Simeunovi

c et al. 

GCLSTM √  √  Spectra

l GCN 

LSTM 

Simeunovi

c et al. 

GCTransfo √  √  Spectra

l GCN 

Transfor

mer 

Kan et al. HST-GNN √   √ Graph 

Transfo

rmer 

&GAT 

LSTM 

Hadous et 

al. 

Space-Time 

GNN 

 √  √ GCN; time as a 

filter 

Shen et al. T2GNN  √  √ Dynamic GCN: 

time as input signal 

Wang et 

al. 

CasualGNN  √  √ GAT; time as a 

signal 

Roy et al. USTGCN  √  √ GCN; time as an 

edge 
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2.Time Modelling in GNN only algorithm 

                         

C. Applications 

1.Multivariate Time series Forecasting 

Motivated by the power of GNNs in handling relational dependencies [28], spatio-

temporal GNNs were widely applied in multivariate time series forecasting. Applications 

include traffic forecasting, Covid forecasting, PV power consumption, RSU 

communication, and seismic applications. 

 

• Traffic 

 Transportation is considered a very important factor in every person’s life [28]. 

Based on a study conducted in 2015, U.S. drivers spend a daily average of 48 minutes 

behind the wheel [28]. Thus, an accurate real-time forecast of traffic conditions is of 

dominant importance for road users, private sectors, and governments. However, 
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traditional machine learning forecast systems fail to satisfy accuracy conditions due to the 

high nonlinearity and complexity of traffic flow [28]. In contrast and based on the power 

of GNNs in handling nonlinearities, spatiotemporal graph neural networks were widely 

applied in traffic forecasting in both aspects: long-term and short-term predictions. 

 

• Pandemic Forecasting 

 In a state of pandemic, the ability to accurately forecast the caseload is extremely 

important to the country level or the individual level [19]. With conventional algorithms 

considering forecasting pandemic cases as a closed loop based on previous cases and 

considering the spatial dependencies between neighborhoods in effecting pandemics, 

spatio-temporal graph neural networks were used to accompany both space and time in 

pandemics[19]. Several spatio-temporal graph neural network algorithms were proposed 

and found to achieve state of art COVID forecasting in the United States, United 

Kingdom, Germany, and worldwide. 

 

• PV 

Due to the rapid increase in the installation of commercial PV power plants, the 

operation and planning for reliable performance of PV systems is a crucial challenge [29]. 

Ensuring reliable performance includes monitoring the slow loss of electricity output and 

effective planning based on the PV power output. This reliability can be achieved by 

accurate power forecasting. Based on the ability of GNNs in capturing spatial and 

temporal dependencies, spatio-temporal graph neural networks were widely adopted to 
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forecast PV power [30] and were able to achieve achieved superior performance over 

other forecasting algorithms.  

 

• RSU communication 

As a special type of base station, Road Side Units (RSU) can be deployed at a low 

cost and effectively alleviate the communication burden of regional Vehicular Ad-hoc 

Networks (VANETs) [31]. Unfortunately, due to the limited energy storage and peak hour 

communication demands in VANETs, RSUs must adjust their participation in 

communication according to the requirements and allocate energy reasonably to balance 

the workload. [31] proposed a spatio-temporal graph neural network algorithm that 

forecasts RSU network load through inputting the historical information around RSU and 

the topological relationship between RSU. 

 

• Human Object Interaction 

Learning in the space-time domain remains a very challenging problem in machine 

learning and computer vision. The main challenge is how to model interactions between 

objects and higher-level concepts, within the large spatio-temporal context [32]. In such a 

difficult learning task it is critical to efficiently model the spatial relationships, the local 

appearance, and the complex interactions and changes that take place over time. [32] 

introduced a spatio-temporal graph neural network model, recurrent in space and time, 

suitable for capturing both the local appearance and the complex higher-level interactions 

of different entities and objects within the changing world scene.  

 



 

 

 

22 

2. Dynamic Graph Representation 

 Temporal graph representation learning has been considered a very important 

aspect of graph machine learning [33]. With limitations of existing methods in capturing 

powerful representations due to reliance on discrete snapshots of the temporal graph, [33] 

proposed a dynamic graph representation learning method using spatio-temporal graph 

neural networks. Moreover, [33] used spatio-temporal GNNs today dynamically represent 

brain graphs. 

 

3. Multiple object tracking 

Tracking multiple objects in videos heavily depends on modeling the spatial-

temporal interactions between objects. [34] proposed a spatio-temporal graph neural 

network algorithm that models spatial and temporal interactions among the objects.  

 

4. Sign Language Translation 

Sign languages, which engage visual-manual modalities to convey meanings, are 

the primary communication tools for the deaf and hard-of-hearing community [35]. To 

reduce the communication gap between spoken language and sign language users, 

machine learning is involved. Traditionally, neural machine translation has been heavily 

adopted while more advanced methods are needed to capture the spatial properties in sign 

languages. [35] presented a spatio-temporal graph neural network-based translation 

system, that is powerful in capturing spatial and temporal structures of sign language 
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which led to state of art performance compared to traditional neural machine translation 

methods. 

 

5. Technology Growth Ranking 

Understanding the growth rate of technologies is a core key to the technology 

sector's business strategy. In addition, predicting the growth rate of technologies and their 

relations to each other informs business decision-making in terms of product definition, 

marketing strategies, and research and development [36]. [36] proposed a methodology to 

predict technology growth ranking from social networks using spatio-temporal graph 

neural networks. 

 

6. Knowledge Graphs and Social Networks 

Real-world graphs like social networks and knowledge graphs are dynamic. For 

example, in a social network, new users join over time and users interact with each other 

through messages and post reactions. In addition, new events appear with time in 

knowledge graphs. To account for the evolving dynamic properties in graphs, [37] 

introduced a temporal graph neural network that can handle billions of nodes and edges 

and can jointly learn the temporal, structural, and contextual relationships on dynamic 

graphs.  
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7. Audio Visuals and Emotion Perception 

Effective dimension prediction from multi-modal data is becoming an increasingly 

challenging and important research area. For example, discriminative features from 

multiple modalities are critical to accurately recognizing emotional states. Motivated by 

their spatial and temporal power, [38] investigated spatio-temporal graph neural networks 

in audiovisuals. The framework achieved superior performance compared to traditional 

deep learning frameworks when experimented on emotional recognition applications. In 

addition, [38] proposed a spatio-temporal graph neural network that leverages emotion 

perception. 
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CHAPTER III 

RELATED WORK 

 

In this chapter, we present an overview of the previous work related to transferring 

learning on time series data and the transferability of graph neural networks. 

 

A. Transfer Learning on Time Series Data 

Fawaz et. al investigated transfer learning on time series classification tasks through 

convolutional neural networks [4]. [4] applied extensive experiments on UCR 85 datasets 

which is the current benchmark for time series classification tasks [4]. Experiments 

included pre-training models each on one of the UCR datasets and then fine-tuning models 

on the other 84 datasets resulting in 7140 different deep neural networks [4]. The fine-

tuned model performance was relative to the source data selected [4]. When a bad source 

dataset is used for pretraining, the optimization algorithm can be stuck in a local optimum 

resulting in negative transfer. To mitigate negative transfer, [4] suggests the usage of the 

Dynamic Time Warping method that measures inter-datasets similarities for source and 

target dataset selection [4]. Additionally, Ye et al. proposed a deep transfer learning 

framework resorting to convolutional neural networks (DTr-CNN)[2]. The selection of 

Space and target datasets was based on both Dynamic Time Warping (DTW) and Jensen-

Shannon (JS) divergence metrics [2]. The framework was evaluated on target datasets 

from real-world scenarios with limited labeled data [2]. 
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Gupta et. al [39] researched the transferability of recurrent neural networks on medical 

time series data. [39] compared two transfer learning pipelines: Domain adaptation 

through a universal time series extractor (TimeNet) and task adaptation through 

pretraining deep recurrent networks (HealthNet)[39]. Both pipelines were evaluated on 

phenotyping and mortality prediction and achieved classification performance 

improvement while minimizing dependence on hand-crafted features [39]. 

Forecasting hierarchical time series is a challenging and time-consuming process. To 

mitigate this problem, transfer learning was applied [40]. First, the time series is trained 

at the bottom level of the hierarchy using the proposed deep LSTM auto-encoder 

(DLSTM-AE) architecture [40]. Then, transfer learning is applied to the upper levels of 

the hierarchy [40]. The proposed transfer learning pipeline was compared with state of art 

approaches in two energy and tourism case studies and outperformed all counterpart 

models [40]. 

Domain selection is considered one of the main challenges in time series transfer 

learning research. Naive selection of source and target domains can lead to negative 

transfer learning. To mitigate negative transfer in pandemic time series forecasting, we 

propose using first and second derivatives as similarity metric. The metrics heavily rely 

on the hurricane model that is extensively discussed in chapter IV. 

 

 DTW Shanon 

Divergence 

First and 

Second 

Derivatives 

Classification Forecasting Transfer 

Learning 
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Fawaz 

et. al 

x   x  x 

Gupta 

et al. 

x x   x x 

Jaffer 

et al. 

  x  x  

Ours   x  x x 

 

 

B. Transfer Learning in Graph Neural Networks 

Lee et. al was the first to investigate transfer learning on graph-structured data. 

The proposed transfer learning framework is based on spectral graph neural networks and 

thus lacks the fine-tuning capability [41]. An extensive set of experiments was 

accomplished on four corpora (AG, DBP, YELP, and AMAZ) [41]. The knowledge 

transfer between task domains was most effective when the source and target domains 

possess high cosine similarity and correlation, while low similarity and correlation 

resulted in negative transfer [41]. Ruiz et al. introduced graphon NNs as limit objects of 

graph neural networks [41]. Graphons were experimented with as graph similarity metrics 

on graph neural network transfer learning schemes. Experiments concluded the existence 

of a tradeoff between discriminability and transferability of GNNs [42]. 

Yoa et. al introduced a new framework graph few shot learning (GFL)to improve 

the effectiveness of semi-supervised node classification by transferring knowledge 
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learned from auxiliary graphs to a new target graph [42]. GFL integrates both local node-

level and global graph-level knowledge to learn a transferable metric space [42]. 

Extensive experiments on four real-world graph datasets (Cola, PubMed, Reddit, Cita.) 

demonstrated the superiority of GFL over other algorithms from this research line (i.e., 

Matchingnet, Protonet) while achieving better performance than MAML [42]. 

Dai et. al proposed an adversarial domain adaptation framework classification 

[43]. The framework aims to leverage the label information in a partially labeled source 

network to assist node classification in a completely unlabeled or partially labeled target 

network [43]. The knowledge transfer is done through AdaGCN which combines 

adversarial domain adaptation and graph convolution. First, a semi-supervised learning 

component learns class discriminative node representations with given label information 

of the source and target networks [43]. Then, the adversarial domain adaptation 

component mitigates the distribution divergence between the source and target domains 

to facilitate knowledge transfer [43].  

Hu et al. presented a transfer learning approach for graph data that is based on both 

pre-training graph neural networks at the level of individual nodes and the level of the 

entire graph [3]. This approach avoids negative transfer and improves generalization 

significantly across downstream tasks [3]. The proposed method was evaluated on node 

classification datasets for protein function prediction leading up to 9.4% absolute 

improvements in ROC-AUC compared to state of art non-pretrained models. Pretraining 

was less expressive for GCN, GraphSAGE, and GAT compared to pretraining using the 

most expressive GNN algorithm Graph GIN [3]. 
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Han et al. introduced a transfer learning paradigm that leverages self-supervised 

tasks as auxiliary tasks to help the target task [44]. [44] proposed combing different 

auxiliary tasks adaptively for fine tuning the target task. Meta-learning was implemented 

to weigh the target model. Extensive multitask learning and finetuning experiments on 

OAG_CS, Reddit, Lat-FM, and Bookkeeping datasets we accomplished for the proposed 

approach and achieved significantly better performance than existing state of art methods 

[44]. 

The second challenge is transfer learning for time series data is the algorithms’ 

transferability. In this thesis, we investigate the transferability of Spatio-temporal graph 

neural networks for pandemic forecasting using a meta learning based framework.  
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CHAPTER IV 

DOMAIN SELECTION 

 

A challenge for transferring knowledge in non-Euclidian data including time series 

applications is the data similarity and domain selection. To select the appropriate source 

data for the target data, multiple metrics were proposed for graphs in general and for time 

series data specifically. These metrics include cosine similarity, correlation, and dynamic 

time rapping. In this thesis, we propose a new similarity metric to mitigate negative 

transfer in pandemic forecasting based on the Hurricane forecasting model. 

 

A. Similarity Metrics in Literature 

Previously, three metrics for domain selection in time series applications were 

proposed: correlation, cosine similarity, and dynamic time warping. 

1.Correlation and Cosine Similarity 

Correlation and Cosine similarity are the most common metrics used for graph similarity. 

Similarity(A,B)= 
𝐴.𝐵

‖𝐴‖‖𝐵‖
=

∑ 𝐴𝑖×𝐵𝑖
𝑛
𝑖=0

√∑ 𝐴𝑖
2𝑛

𝑖=0 ×√∑ 𝐵𝑖
2𝑛

𝑖=0

(1) 

Corr(A,B)= 
∑ (𝐴𝑖 −𝐴̅)×(𝐵𝑖

𝑛
𝑖=0 −𝐵̅)

√∑ (𝐴𝑖 −𝐴̅)2𝑛
𝑖=0 ×√∑ (𝐵𝑖 −𝐵̅)2𝑛

𝑖=0

= 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦((𝐴 − 𝐴̅), (𝐵 − 𝐵̅))(2) 



 

 

 

31 

2.Dynamic Time Warping 

Dynamic time warping (DTW) is an algorithm used to measure similarity between 

two sequences which may vary in time or speed [45]. First, the two-time series are divided 

into equal points. Second, the Euclidean distance between the first point in the first series 

and every point in the second series is calculated. Third, the time wrap stage is reached by 

storing the minimum distance computed. Then, movement to the second point is done and 

the second step is repeated. Finally, the process is repeated step by step along with the 

points till all points are exhausted. The same process is recurred but with the second series 

as a reference point. To compute DTW, all the minimum distances that were stored are 

added [45]. 

 

B. First and Second Derivatives 

Following the hurricane model, we propose using the first derivative and second 

derivative for the target and source datasets selection. The derivatives will be computed 

at each time point using the below definitions: 

First derivative: 𝑔𝑖(𝑡) =
𝐴𝑖(𝑡)−𝐴𝑖(𝑡−Δ𝑡)

Δ𝑡
(4) 

Second Derivative: 𝑎𝑖(𝑡) = 𝑔𝑖(𝑡) − 𝑔𝑖(𝑡 − Δ𝑡)(5) 

 

C. Fractional Derivatives 

A fractional derivative is a derivative of any arbitrary order, real or complex, and 

was first proposed by Leibniz et al. in 1695. The proposition relied on the similarity 
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between the binomial theorem and the Leibniz rule for the fractional derivative of a 

product of two functions. After that, fractional calculus was introduced by one Abel et al. 

including the idea of fractional-order integration and differentiation, the mutually inverse 

relationship between them, the understanding that fractional-order differentiation and 

integration can be considered as the same generalized operation, and even the unified 

notation for differentiation and integration of arbitrary real order [46].  

Caputo fractional derivative of order α: 

Let 𝑓: 𝐼 ⊆ ℝ → ℝ be an element of 𝐶+∞([𝑎, 𝑥])(−∞ < 𝑎 < 𝑥 < +∞), with 𝛼 ≥ 0 and 

𝑛 = [𝛼] + 1, with [𝛼] being the integer part of 𝛼. Then, the Caputo fractional derivative 

of order 𝛼 of 𝑓(𝑥) is defined as follows: 

(𝑐𝐷𝑎
𝛼)𝑓(𝑥) = {

1

Γ(𝑛−𝑎)
∫

𝑑𝑛𝑓(𝑡)

𝑑𝑡𝑛

𝑑𝑡

(𝑥−𝑡)𝛼−𝑛+1 ,   𝛼 ∉ ℕ,
𝑥

𝑎

𝑑𝑛−1𝑓(𝑥)

𝑑𝑥𝑛−1 , 𝛼 = 𝑛 − 1 ∈ ℕ ∪ {0}.
(6) 

Riemann-Liouville fractional derivative of order α: 

Let 𝑓: 𝐼 ⊆ ℝ → ℝ  be an element of 𝐿1([𝑎, 𝑥])(−∞ < 𝑎 < 𝑥 < +∞) , with 𝛼 ≥ 0  and 

𝑛 = [𝛼] + 1, with [𝛼] being the integer part of 𝛼. Then, the Riemann-Liouville fractional 

derivative of order 𝛼 of 𝑓(𝑥) is defined as  

(𝐷𝑎+
𝛼 )𝑓(𝑥) = {

1

Γ(𝑛−𝑎)

𝑑𝑛

𝑑𝑥𝑛 ∫
𝑓(𝑡)

(𝑥−𝑡)𝛼−𝑛+1 𝑑𝑡,   𝛼 ∉ ℕ,
𝑥

𝑎

𝑑𝑛−1𝑓(𝑥)

𝑑𝑥𝑛−1 , 𝛼 = 𝑛 − 1 ∈ ℕ ∪ {0}.
(7) 
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D. Covid Dataset 

The dataset used is the OWID covid dataset [47]. The dataset includes the 

confirmed cases and deaths per country from the COVID-19 Data Repository by the 

Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). 

The cases & deaths dataset is updated daily. It also includes the Hospitalizations and 

intensive care unit (ICU) admissions collected from official sources [47]. 

 

E. Hurricane Model 

The hurricane model is the pandemic forecasting model proposed by Jaffer et al. 

(2022) [48]for pandemic forecasting. The model forecasts the covid cases in a country x 

through computing: 

First derivative: 𝑔𝑖(𝑡) =
𝐴𝑖(𝑡)−𝐴𝑖(𝑡−Δ𝑡)

Δ𝑡
(4) 

Second Derivative: 𝑎𝑖(𝑡) = 𝑔𝑖(𝑡) − 𝑔𝑖(𝑡 − Δ𝑡)(5) 

After that, the model recalls the forecasts from other countries having the same first a 

second derivatives [48]. The forecast of covid cases in country x at time t is the weighted 

average of the countries having the same first a second derivatives (Figure 3) 
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3.Vanilla Hurricane Model with epsD1 = 0.005 and epsD2 = 0.0005 

 

F. Fractional Hurricane Model 

The fractional hurricane model is a modified version of the vanilla hurricane forecasting 

model. The modified model uses fractional derivatives instead of first and second 

derivatives. 

The experimental results using the fractional Hurricane model for UK pandemic 

forecasting surpassed the vanilla hurricane in both short and long-term forecasting. In 

Figure 4, we can see how the prediction (green) aliens with the actual observations (black) 

for the next 2 weeks. On the contrary, the predictions of the vanilla hurricane are far away 

from the actual cases. In addition, the fractional hurricane model achieved low forecast 
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error for the next 60 days compared to the vanilla hurricane resulting in degraded 

performance after two weeks of forecast (Figure 5). 

 

 

4.Fractional Hurricane Model with fractional orders  0.8 and 1.6 
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5.Absolute Forecast Error in UK 

 

G. Transfer Hurricane Model 

Following the superior performance of hurricane pandemic forecasting, we 

propose using first and second derivatives as metrics for transfer learning. First, the covid 

dataset is inputted to the hurricane model to select similar covid time series data. Then, 

the selected time series are used to pretrain a neural network. Finally, the pretrained model 

is used to fine tune the neural network that is targeted to forecast covid cases in the targeted 

country. We evaluated the proposed method on a neural basis expansion analysis for 

interpretable time series forecasting (NBEATS) [49] based transfer learning on the bias, 

MAE, MSE, and RMSE. 
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6.Schematic of the proposed transfer learning pipeline 

 

H. Experimental Results 

Table 2.Domain Selection Experimental Results for 180 days 

 United Kingdom 

 Bias MAE MSE RMSE 

ARIMA -156 2367 13811049 3716 

NBEATS -1445 2714 15678842 3959 



 

 

 

38 

Transfer 

Hurricane 

812 2421 15165708 3894 

 

ARIMA achieved the highest bias, MAE, MSE, and RMSE of -156, 2367. 

13811094, 3716 respectively. However, we were able to achieve positive transfer using 

NBEATS following the transfer hurricane approach, where transfer hurricane achieved 

812, 2421, 15165708, and 3894 compared to -1445, 2714, 15678842, and 3959 errors for 

NBEATS without transfer learning. 

 

I. Analysis and Discussion 

The transfer learning approach using NBEATS architecture was successful. Using 

the proposed metrics, transfer learning improved the NBEATS performance and resulted 

in less bias, MAE, MSE, and RMSE. This concludes that the proposed metrics are 

sufficient to mitigate the negative transfer phenomenon for pandemic forecasting. 

However, ARIMA surpassed both NBEATS and transfer hurricane, which urges further 

advances in our pipeline, including the intervention of fractional derivatives motivated by 

the successes of the fractional hurricane model. 
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CHAPTER V 

TRANSFER LEARNING FOR SPATIO-TEMPORAL GRAPH 

NEURAL NETWORKS 

 

A. Covid Dataset 

The dataset relies on Facebook’s human mobility between administrative NUTS33 

regions dataset for the spatial domain. The spatial data is collected directly from mobile 

phones that have the Facebook application installed and the Location History setting 

enabled. The spatio-temporal dataset focuses on 4 European countries: Italy, Spain, 

France, and England. The number of cases in the different regions of the 4 considered 

countries was gathered from owid dataset[50].  

 

B. Spatio-Temporal Graph Neural Networks 

1.Graph Convolutional Neural Networks (GCN) 

Let graph G = (V, E) be of nodes V and edges E where n = |V | denotes the number 

of nodes. Then, given a country, a series of graphs are created, each corresponding to a 

specific date t, i. e., G (1), . . ., G(T). A single date’s mobility data is transformed into a 

weighted, directed graph whose vertices represent the NUTS3 regions and edges capture 

the mobility patterns. For example, the weight A (t) v,u of the edge (v, u) from vertex v to 
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vertex u denotes the total number of people that moved from region v to region u at time 

t. The GCN vanilla and the meta-based transfer learning approach heavily rely on [50]. 

 

2.Graph Attention Networks 

The Graph attention network (GAT) is a GCN network that introduces self-attentional 

layers to address the shortcomings of prior methods based on graph convolutions or their 

approximations. The attention weights 𝛼𝑖𝑗 are computed based on the nodes' 

neighborhood following the equations below [51]. 

 

𝑧𝑖
(𝑙) = 𝑊(𝑙)ℎ𝑖

(𝑙) ,                                                               (8) 

𝑒𝑖𝑗
(𝑙) = 𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 (𝑎⃗(𝑙)𝑇

(𝑧𝑖
(𝑙)‖𝑧𝑗

(𝑙))) ,                 (9) 

𝛼𝑖𝑗
(𝑙) =

exp (𝑒𝑖𝑗
(𝑙))

∑ exp (𝑒𝑖𝑘
(𝑙))𝑘∈Ɲ(𝑖)

 ,                                          (10) 

ℎ𝑖
(𝑙+1) =  𝜎 ( ∑ 𝛼𝑖𝑗

(𝑙)𝑧𝑗
(𝑙)

𝑗∈Ɲ(𝑖)

) ,                                  (11) 

 

3.Modified Graph Attention Networks 

In GAT, every node attends to its neighbors given its representation as the query. 

In addition, GATs use a static attention mechanism, thus it cannot express a controlled 

problem, from even fitting the training data. To remove this limitation, GATv2 introduces 
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a simple fix by modifying the order of operations resulting in a dynamic graph attention 

variant that is strictly more expressive than GAT [52].  

In this thesis, we propose two new STGNNs relying on GAT and GATv2 

algorithms. We experiment with the proposed algorithms on random samples for short-

term forecasting and achieved superior performance over the GCN vanilla. In addition, 

the state-of-art performer over random sub-samples is the modified GATv2 achieving an 

error of 4.67 only compared to 5.21 for GAT and 6.41 for GCN vanilla. 

 

C. Research Methodology 

Considering the algorithmic transferability challenge discussed in the literature, 

we investigate the transferability of three spatio-temporal graph neural network algorithms 

(GCN, GAT, and GATv2). The transfer learning pipeline heavily relies on a meta-learning 

approach, MAML [52]. 

MAML, or Model-Agnostic Meta-Learning, is a model and task-agnostic algorithm for 

meta-learning that trains a model's parameters such that a small number of gradient 

updates will lead to fast learning on a new task. 

In meta training, set aside a portion of D as a test task. T 

 

𝒟𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 = {(𝒟1
𝑡𝑟 , 𝒟1

𝑡𝑒𝑠𝑡), … , (𝒟𝑛
𝑡𝑟 , 𝒟𝑛

𝑡𝑒𝑠𝑡)} 

The goal is to approximate a learning problem  𝑝(∅𝑖|𝒟𝑖
𝑡𝑟 , 𝜃) using a neural network. 

Point estimation is used as such. ∅𝑖 = 𝑓𝜃(𝒟𝑖
𝑡𝑟). In adapting to the new task, 𝜃 is updated 

using   
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∅𝑖 =  𝜃 −  𝛼𝛻𝜃ℒ(𝜃, 𝒟𝒯𝑖

𝑡𝑟 )(12) 

Where 𝒟𝒯𝑖

𝑡𝑟is training data for the task and 𝛼 is the step size. The meta objective is. 

min
𝜃

∑ ℒ(∅𝑖 , 𝒟𝒯𝑖

𝑡𝑒𝑠𝑡  )𝒯𝑖 ~ 𝑝(𝒯) = min
𝜃

∑ ℒ(𝜃 −  𝛼𝛻𝜃ℒ(𝜃, 𝒟𝒯𝑖

𝑡𝑟  ), 𝒟𝒯𝑖

𝑡𝑒𝑠𝑡  ) 𝒯𝑖 ~ 𝑝(𝒯) (13) 

Finally, the model parameter 𝜃is meta updated using SGD. 

𝜃 ← 𝜃 − 𝛽 ∑ ℒ(∅, 𝒟𝒯𝑖

𝑡𝑒𝑠𝑡 )𝒯𝑖 ~ 𝑝(𝒯) (14) 

 

 

7. Meta-learning transfer approach 
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D. Experiments 

1.Attention-Based Pandemic forecasting 

The GNNs were trained using pytorch geometric framework and NVIDIA P100 

GPU or a maximum of 500 epochs with early stopping after 50 epochs of patience. Early 

stopping was introduced from the 100th epoch and onward. The batch size was set to 8 

and the optimizer used is Adam the batch size to 8. The learning rate and meta learning 

rate were set to  0.01. The evaluation is based on Mean absolute error on the test set: error 

= |yˆ (t) − y (t) | over time. 

 

8.MAE for 3 Days Forecast for STGNN forecasting in UK 
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Table 3 Mean of MAE for STGNN forecasting 

 Mean Error (3 days forecast) 

GCN 6.41 

GAT 5.21 

GATv2 4.67 

 

GATv2 achieved superior performance as a forecasting algorithm compared to 

GAT and GCN. Using average MAE, GATv2 had 4.67 error for the 3 days forecast 

compared to 5.21 for GAT and 6.41 for GCN over randomized selected samples (Table 

3). In addition, the GATv2 forecast error was more stable compared to dramatically 

increasing error for GAT and GCN as the forecasting days increases (Figure 8). 

 

2. Transferability of Spatio-temporal GNNs on Subsamples 

The experiments were conducted on TL-GCN, TL-GATv2, and TL-GAT over 3 

randomly selected test samples. The GNNs were trained for a maximum of 300, 500, 800, 

and 1000 epochs with early stopping after 50 epochs of patience. Early stopping was 

introduced from the 100th epoch and onward. The batch size was set to 8 and the optimizer 

used is Adam the batch size to 8. The learning rate and meta learning rate were varied 

between 0.01 and 0.001. The evaluation is based on Mean absolute error on the test set: 

error = |yˆ (t) − y (t) | over time. 
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9.MAE for 3 Days Forecast for TL-STGNN forecasting in UK on submsamples 

 

Table 4.Mean of MAE for UK forecasting for 3 days on Subsamples 

GATv2 achieved superior performance as a forecasting algorithm compared to 

GAT and GCN. However, on samples, transfer learning using GAT resulted in better 

performance compared to GATv2 and GCN. TL-GAT had an MAE of 4.967error for the 

Model Up to next 3 days 

GCN 6.41 

GAT 5.21 

GAT_v2 4.66 

TL-GCN 5.42 

TL-GAT 4.97 

TL-GATv2 5.27 
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3 days forecast compared to 5.27 for TL-GATv2 and 5.42 for TL-GCN over randomized 

selected samples (Table 4).  

 

3. Transferability of Spatio-temporal GNNs  

The experiments were conducted on ARIMA, GCN, GCN-LSTM, TL-GCN, TL-

GATv2, and TL-GAT over 40 test samples. The GNNs were trained for a maximum of 

300, 500, 800, and 1000 epochs with early stopping after 50 epochs of patience. Early 

stopping was introduced from the 50th ,100th, 150th ,300th epoch and onward. The batch 

size was set to 8 and the optimizer used is Adam the batch size to 8. The learning rate and 

meta learning rate were varied between 0.01 and 0.001. The evaluation is based on Mean 

absolute error on the test set: error = |yˆ (t) − y (t) | over time. 

 

Table 5.Optimal Hyper-parameters 

Hyper-parameter Optimal value 

Number of epochs 500 

Early stopping 150 

Batch size 8 

Meta-learning rate 0.001 

Learning rate 0.001 

optimizer Adam 
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10.MAE for 3 Days Forecast for TL-STGNN forecasting in UK 

 

Table 6. Mean of MAE for UK forecasting for 3 days 

 

 

 

Model MAE 

ARIMA 13.77 

GCN 6.36 

GCN_LSTM 6.41 

TL-GCN 6.05 

TL-GAT 6.28 

TL-GATv2 5.92 



 

 

 

48 

Transfer learning using GATv2 over 40 samples achieved the state of art 

performance compared to GAT and GCN. Using average MAE, TL-GATv2 had 5.92 error 

for the 3 days forecast compared to 6.28 for TL-GAT and 6.05 for TL-GCN over 

randomized selected samples (Table 6). In addition, the TL-GATv2 and TL-GAT forecast 

error was more stable compared to dramatically increasing error for TL-GCN (Figure 11). 

 

 

E. Discussion 

Transfer learning on the modified attention-based graph neural networks resulted 

in a better performance compared to the vanilla graph convolutional neural networks and 

vanilla graph attention networks. Considering that it is the most expressive graph neural 

network, this validated our assumption on the relationship between transferability and 

expressivity for time varying graphs. In addition, the proposed approach surpassed 

traditional forecasting models like ARIMA. Furthermore, the modified GAT attention 

network that achieved 5.92 MAE surpassed the graph attention network that achieved an 

error of 6.28. This assures the importance of the recently introduced adaptive attention, 

especially when compared to the experimental results on randomized subsamples. To add, 

the modified version was more robust to negative transfer compared to vanilla GAT which 

resulted in the abruptly improve in performance of GATv2 compared to degraded 

performance of GAT when trained on larger samples. However, GNN-based models are 

very computationally expensive and time-consuming. ARIMA-based models need a few 

minutes of training compared to hours of training using GNNs in the same settings. 

Nevertheless, pandemic applications are not designed for online settings and are used by 
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governments that don't restrict computational needs. Finally, we suspect with more data 

availability we expect to have better performance through connecting our similarity metric 

approach with the transferability of GNNs research direction. 
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CHAPTER VI 

CONCLUSION 

 

A. Thesis Contribution 

The contribution is two folded. We attempted to improve the transferability of 

spatio-temporal graph neural networks for time series applications. First, we diagnosed 

the challenges in transfer learning in both time series and graph neural networks: domain 

selection and transferability of algorithms. Second, we surveyed the spatio-temporal graph 

neural networks while proposing a new taxonomy for the corresponding algorithms. 

Moving to the domain selection challenge, we proposed a new similarity metric for 

mitigating negative transfer in pandemic forecasting based on the Hurricane model. We 

then tackled the second challenge, the transferability of GNNs by proposing a new 

transformer-based spatio-temporal graph neural network and evaluating its transferability 

using a meta-learning-based pipeline referenced to other graph neural networks. 

 

B. Future Work 

In the future, we plan to investigate further transfer learning research. The priority 

will be to run extensive experiments to validate our assumptions. Next, we plan to expand 

the similarity metric to fractional calculus relying upon the fractional hurricane model. In 

addition, we will investigate the effect of modern meta learning algorithms like reptile on 



 

 

 

51 

transferability of STGNNs. Finally, we explore more the transferability of spatio-temporal 

GCNs on more complex time-varying structures.
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