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ABSTRACT 

OF THE THESIS OF 

 

Reem Khalil Nassar  for           Master of Engineering 

               Major: Electrical and Computer Engineering 

 

 

Title: Seeing Through NAT to Detect Shadow IT: A Machine Learning Approach 

 

 

Network Address Translation (NAT) is present in many routers and Customer Premise 

Equipment (CPEs). It is used to distribute internet access to several local hosts. Most 

NAT devices implement Port Address Translation (PAT), which allows mapping multiple 

private IP addresses to a single public IP address. The private network behind a NAT 

becomes hidden from the public internet and only a single outward IP address will be 

visible to Internet Service Providers (ISP’s). With the proliferation of unauthorized wired 

and wireless NAT routers, internet subscribers can re-distribute an internet connection or 

deploy hidden devices, thus causing a problem known as shadow IT.  

 

To this end, it is of ISP’s interest to know how their services are used. This study will 

propose a method to detect NAT devices and identify the size of the network (number of 

hosts) hidden behind them. A supervised Machine Learning (ML) algorithm that uses 

aggregated network traffic flow features is proposed to detect NAT devices. Traffic 

features are aggregated within multiple window sizes to study the effect of feature 

aggregation on NAT detection. The host counting algorithm is processed by a machine 

learning approach on real network traffic features. This research demonstrates that 

eXtreme Gradient Boosting (XGBoost) performs best in NAT detection and hidden 

network size detection. Whereas the Random Forest (RF) classifier was more able to 

predict the exact number of hidden hosts than any other algorithm. The XGBoost NAT 

detection model can detect NAT devices with a 97.09% F1 score which significantly 

outperforms many state-of-the-art methods. The exact host counting model resulted in a 

65.53% F1 score, and the result increased to 90.63% after transforming the problem into 

a binary one. Most previous methods focused on achieving a high detection rate on given 

datasets instead of focusing on the model’s generalizability. However, this thesis focuses 

on the performance of the detection algorithms especially when the network data is 

subjected to intended obfuscation or even when there is an environment change. The 

performance of detection models dropped below 70% when testing the model in a new 

network environment. In this thesis we also focus on interpreting the behavior of the 

complex algorithm to enhance trust in the results, understand the generalizability, and 

explain the importance of feature aggregation in case of NAT. Two eXplainable Artificial 

Intelligence (XAI) methods are used to analyze the generalizability of a given feature set 

to different network environments or after performing obfuscation techniques. These 

methods are also used to study the sensitivity of the detection algorithms to the aggregated 

feature set extracted. Finally, this study uses transfer learning to build an optimized model 

that can work in case of any feature change in the network traffic data. 
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CHAPTER 1 

INTRODUCTION 
 

The number of users connected to the Internet is increasing daily. At the start of 

2022, the number of internet users reached about 4.95 billion which represents 62.5 

percent of the world’s total population [1]. The number of connected devices, including 

IoT, is estimated to reach around twenty-nine billion, and the number continues to 

increase [2]. To provide internet access for these devices, each must have its unique IP 

address. Yet, IPv4 addresses are becoming limited, and it turns out to be impossible to 

provide a unique IP address for each connected device. Although IPv6 is suggested to 

solve the address depletion problem, there is an issue in the transition to IPv6 as most of 

the internet traffic still carries IPv4 addresses [3].  

 

1.1 Motivation 

Network Address Translation (NAT) is a method suggested to allow multiple 

hosts to be connected to the internet using a single routable IP address. A NAT device 

connects the private network (non-routable IPs) to a public one (routable IP). It alters the 

source IP address of the packet received from the internal network into a registered IP 

address before forwarding the packet. Using an address remapping technique, a NAT 

gateway allows the private network to share a single public IP address [4]. Thus, internet 

users receive packets holding the same IP address but sent from different hosts behind a 

NAT. Correspondingly, these users send back packets to the same IP address. Using NAT 

tables, the NAT router can track all the connections and modify the destination IP address 
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of a packet received from the public network into the IP address of a certain host from 

the internal network.  

Implementing NAT in most routers and customer-premise equipment (CPEs) will 

allow Internet Service Providers (ISPs) to grant Internet access to users even if IPv4 

addresses are depleted. In addition, NAT routers can hide the identity of connected users 

and only the public IP address is revealed [5]. It thus provides security and anonymity by 

hiding the inner network topology [3]. However, this NAT property poses few problems 

to ISPs since it hinders their ability to know how their services are used or how large the 

inner network might be and manage it properly [6]. The subscriber or user can also use 

unauthorized NAT devices to illegally sell and redistribute an internet connection to other 

users. Therefore, it is of an ISP's interest to know if a single IP address might represent a 

large network in order to determine if it is facing a shadow IT situation [7].  

Detecting NAT devices only is not enough. It is important to also identify how 

many devices are connected to it. Any anomalous behavior of a NAT device can be 

caused by one of the end hosts behind it. One of the solutions to this problem is to block 

the IP address that is performing malicious behavior. However, in the case of NAT, this 

might affect other hosts in the internal network. To manage network traffic precisely, we 

need to distinguish the hosts behind one NAT gateway from traffic traces with the same 

source IP address [8]. This study will focus on detecting NAT devices and approximating 

the number of hosts behind them by analyzing passively collected internet traffic flows.  

 

1.2 Objectives 

This section outlines the concrete objectives of this thesis: 

1. Extracting aggregated flow features from passively collected data. 
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2. Evaluating different machine learning algorithms, comparing, and getting the 

one with the best performance on detecting NAT. 

3. Comparing ML NAT detect algorithm with a state-of-art traditional method. 

4. Build a cascaded classifier which will detect the number of hidden hosts from 

aggregated feature vectors that are predicted as data coming out from a NAT 

device. 

5. Evaluating multiple hosts counting models and using the best model. 

6. Analyzing the performance of selected algorithms on obfuscated data. 

7. Analyzing the performance of selected algorithms on new data. 

8. Explaining the model performance on obfuscated and new data. 

9. Analyzing the model’s sensitivity to the extracted network traffic features. 

10. Applying transfer learning to build an optimized model.  

 

1.3 Contributions 

In this thesis, the main objective is to present a machine-learning algorithm that 

can identify NAT devices using time aggregated traffic flow features of locally collected 

data. This method does not require any interaction with end-users, respects their privacy, 

and is not limited to specific types of operating systems. All previous NAT detection 

methods depend on detecting NAT using features extracted per flow which may lead to 

a high false-positive rate. For example, if the algorithm is using the time to live (TTL) 

value as a feature to detect NAT, some NAT devices are deployed in a way that could not 

decrement the TTL values and thus resulting in false predictions. To decrease the false 

positive rate and reduce the training time, aggregated features using different window 

sizes are used. Aggregating the network flows per time, resulted in extracting new 
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features that gives high evidence for the presence of NAT and have not been used in the 

literature before. 

To show the importance of flow aggregation per time in NAT detection, the 

classification results of multiple window sizes are compared. Aggregating features 

increases classification accuracy because it increases the chance of having more than one 

active user, especially when the time window size is large. Multiple machine learning 

algorithms are used at this stage to find the best one that can predict NATs. A comparison 

between the proposed technique results and those of the traditional method presented in 

[9] is done. 

Once the NAT detection model detects the presence of a NAT, then it is time for 

host number identification without being restricted to a specific type of operating system 

(OS). In this stage, two methods are applied. Multiclass classification for detecting the 

exact number of hosts and binary classification for detecting the network size. Binary 

classification is used to avoid being limited to a specific number of hosts in detection. 

Similarly, the host number identification approach is processed by multiple machine 

learning algorithms to find the one that gives the most accurate results. 

Then the focus will be on evaluating the generalizability of the models developed. 

Most of previous studies have focused on getting a high detection rate on a given dataset. 

Some have studied the model’s generalizability in case the hidden hosts use different 

types of operating systems as in [8]. None have taken into consideration the obfuscation 

techniques that are applied to network traffic and thus hinders the model’s ability to detect 

NAT devices or hidden network size. First, the model is evaluated by testing its 

predictions after obfuscating the training dataset. Multiple obfuscation scenarios are 

implemented by changing packet sizes related features, number of packets features, etc. 
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Then it is evaluated on new data collected in a different network environment. Then, to 

avoid treating the ML algorithm as a black box, understand the classification technique, 

analyze the model's ability to generalize, and study the usefulness of the new extracted 

features, eXplainable AI (XAI) is used. Finally, transfer learning is applied to build an 

optimized model that is able to detect NAT and approximate the number of hosts in case 

of any feature change in the network traffic. 

The proposed approach uses aggregated features to extract added features and 

build a more effective and realistic detection model. It also focuses on analyzing the 

generalizability of proposed approaches on other data, obfuscated and new. It is the first 

that analyzes the effect of obfuscating features on NAT detection and number of hosts 

prediction. It is the first that uses XAI to explain the implemented model performance 

ability to generalize. Finally, it is not limited to any type of operating system or number 

of hosts connected. 

 

1.4 Structure of Thesis 

In the rest of this thesis, Chapter 2 summarizes the existing works in the literature. 

Chapter 3 discusses the dataset used in this thesis, the fundamentals of feature extraction 

and selection, a description of preprocessing steps, the NAT detection mechanism, the 

host counting mechanism, the machine learning approaches, and explainable AI methods. 

Chapter 4 presents the evaluation of the different techniques employed using several 

performance metrics with analysis, in addition to XAI results. Chapter 5 concludes and 

gives directions for future work. 

  



 

 15 

CHAPTER 2 

LITERATURE REVIEW 
 

Despite the evidence that NAT allows for better use of the existing IPv4 address 

space for an organization, it is also sometimes employed by malicious internet subscribers 

to allow anonymous access to the Internet. NAT host identification is used to determine 

the number of hosts that are connected behind a NAT device. This can be valuable for 

network management purposes in order to get information on how many users and 

devices are connected to the network. There are different approaches proposed in the 

literature to detect NAT devices and identify the number of hosts behind the NAT. In 

addition, multiple approaches have been proposed to build a generalizable model and to 

explain any implemented “black box” model. In this chapter, some of the methods will 

be explained to gain a basic knowledge of how others have performed NAT detection, 

host detection and transfer learning, how to build a generalizable model, and how to 

explain and extend the machine learning black-box model. The related work can be 

divided into five categories (1) NAT detection, (2) NAT host profiling and number 

identification, (3) generalizability, (4) explainability, and (5) transfer learning. 

 

2.1 NAT Detection  

Multiple traditional methods have been suggested to identify NAT behavior. 

Krmicek et. al. [9] proposed three methods to detect NAT devices passively and reduce 

the false-positive rate. Their methods depend on the IP, TTL, and Identification fields, 

which in turn depend on previous approaches by Phaal [10] and Bellovin [6] respectively. 

They have also introduced new methods that depend on subnet TTL and the length of 
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TCP SYN packets. To reduce the false-positive rate, they aggregated the results of each 

implemented method. Orevi et. al. [11] proposed a De-NAT scheme, i.e., re-identifying 

the communication flowing out and into the NAT. Their method was based on IP 

Identification and TCP Timestamp. They limit their algorithm to specific operating 

systems like Windows 8, 10, and Android to use the properties of the TCP/IP stacks in 

these systems, such as the increment in the IP Identification field when packets are sent 

to the same destination. They applied their method by sending DNS requests to the same 

DNS resolver. What differentiates their method from previous ones is that they require 

only the DNS requests, not the whole traffic. 

A method based on application-level presence information is implemented by Bi 

et. al. [12]. Their method takes advantage of application layer fingerprinting where NAT 

gateways do not modify application layer information. Their algorithm is designed for 

NAT-aware routers that are usually used by ISPs to detect NAT gateways. They can 

detect NAT gateways based on the presence of fingerprints of instant messaging 

applications, the IP address of the application server, the registered TCP/UDP port 

numbers of the servers, and the specific format of certain instant messaging packets.  

Another passive method that is based on NetFlow data only was suggested by Yan 

et. al. [13]. This method relies on the Out-In Activity Degree for given network behavior. 

It shows enormous success in a large-scale network, where it reported an accuracy of 

92%. Lutu et. al. [14] proposed NAT Revelio to detect large-scale NAT as carrier-grade 

NAT and large-scale NAT without any previous knowledge of the testing environment. 

Their method is applied by performing six active tests against different elements, 

including one or more servers deployed on the public Internet. 
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Present NAT detection work is mostly based on machine learning approaches. 

Komarek et. al. [15] implemented an algorithm that detects NAT behaviors by using the 

IP-based features presented in HTTP access logs. These features include the number of 

(1) unique communicated IP addresses, (2) persistent connections, (3) unique operating 

systems and versions, (4) unique user agents, (5) unique browsers and versions, (6) 

downloaded bytes, (7) uploaded bytes, and (8) sent HTTP requests. They employ linear 

machine learning models, support vector machine (SVM), and logistic regression (LR), 

to find hidden patterns in the statistical data and thereby detect the presence of NAT. To 

have sufficient data to train their classifiers, they have generated artificial NAT traffic 

data by merging HTTP logs of multiple hosts. Their results show 94.75% accuracy with 

cross-validation. Although they have reached satisfactory results, as any other ML 

algorithm their classifier needs a lot of known samples to be well trained. 

Another machine learning algorithm that is based on statistical features derived 

from NetFlow is proposed by Abt et. al. [7] who used the same statistical features in [9]. 

Their approach was capable to work in real-time and achieves an accuracy of 89.35% on 

passively collected data. Yan et. al. [16] suggested a novel method that can detect large-

scale NAT using a semi-supervised deep neural network. They aimed to identify NAT 

for Internet of Things (IoT) devices. They applied their method to a small dataset with 

features extracted from network, transport, and application layers. After implementing 

and testing their method, they applied it to a real-world dataset and achieved up to 92% 

of precision and recall. 

Khatouni et. al. [17] proposed a machine learning approach to detect NAT using 

statistical features in passively collected flows. They also proposed an approach that 

detects NAT using aggregated application layer information as different browser versions 
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and several types of operating systems in each time window. They have applied multiple 

machine learning algorithms on traffic features extracted by multiple network traffic 

analyzers (NTA). Their results show that the decision tree (DT) classifier applied on 

features extracted by Tranalyzer NTA is the best. But their method suffers from the 

limitation that if all hosts use the same operating system, NAT cannot be detected. Also, 

if a device has two different versions of the same operating system this might result in 

two different browser versions and detect them as two different browsers and falsely 

identify them as NAT.  

 

2.2 NAT Host Profiling and Number Identification  

Multiple methods have been proposed in the literature to detect the number of 

hidden hosts. Previous studies have either proposed traditional methods or machine 

learning algorithms to count or identify hidden hosts. Bellovin [6] implemented one of 

the first traditional methods to count the hidden hosts behind a NAT device. His technique 

was passive and based on the IP header’s identification field (IPID). This method relies 

on the observation that the host in many operating systems increases the IPID field by 

one when it sends a new packet. This method can work only with specific operating 

systems and is limited in the case of randomized IPID generator as in FreeBSD OS. 

Another passive method that identifies hosts behind a NAT using IPID, SYN flag, 

TTL, and timestamp is proposed by Park et. al. [5]. This method was able to count the 

number of hidden devices and identify their OSs effectively. Yet, this method is limited 

to a specific number of OSs. Their method shows the highest accuracy when the hidden 

hosts are Linux-based and the lowest accuracy when OS is Windows. They reported a 

total average accuracy in their experiments of 84.44%.  
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Few studies proposed machine learning algorithms to count and identify hosts. A 

machine learning algorithm was proposed by Lee et. al. [18]. They proposed an actively 

supervised learning method based on port patterns. Their method can work remotely, and 

it achieved an F1 score of 90%. After identifying NAT devices, the behavior and status 

of the connected hidden hosts behind each NAT Device (NATD) can be investigated by 

monitoring packets with IP addresses for NATDs, not capturing all packets as in 

conventional methods. Rui et. al. [19] proposed an algorithm based on analyzing traffic 

with a Directed Acyclic Graph Support Vector Machine (DAGSVM) to detect hosts 

hidden behind a NAT device. Their method was composed of four steps. First, they 

prepared the traffic flow features for the SVM classifier. Then they trained the DAGSVM 

classifier to data containing n hosts. Third, the used features are linear thus they collected 

the traffic of one host and then get traffic models of n - 1 hosts. This process was made 

to predict data with more than n hosts. Finally, the model classifier can calculate the 

number of hosts. Their algorithm was successful in predicting the number of hosts greater 

than that in training data. However, the model started to fail with increasing number of 

hosts. 

Shukla et. al. [20] proposed a machine learning algorithm that can identify and 

count the total number of hosts masqueraded by a single IP address. They aimed to build 

a model that can identify if a hidden malicious behavior is out from a single or multiple 

hosts without being dependent on OS, IP addresses, and port numbers. Eight multi-class 

machine learning classifiers are trained on non-NATted traffic from 1116 hosts. This 

experiment aimed to find the best ML algorithm that can identify patterns in network 

traffic. RF classifier and decision tree outperform all other used algorithms. The RF 

classifier yields the highest results. So, it was used as a base model for their algorithm. 
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Each host is identified by its unique source IP and then marked as a unique class. Then 

they trained the model on data outward from multiple ordinary hosts and tested on 

NATted traffic data, and NATted and non-NATted malicious traffic. The model 

performance drops when testing it on a new dataset, but it is still able to count hosts. The 

algorithm reached an average testing performance of 91% when all datasets are used. 

Besides their algorithm outperforms the state of art signature-based approach and 

obtained a score of 66.66% which is higher than other benchmark studies. 

An algorithm that incorporates both supervised and unsupervised learning 

approaches to count and cluster network traffic was introduced by Mateless et. al. [21]. 

The network traffic features used are based on characteristics of operating systems, NAT 

behavior, and users’ habit. The algorithm is not only implemented on traffic data out from 

physical devices as Windows, Linux-based, iOS, and Android, but also on traffic data 

outward from containers, virtual machines, and load balancers. Counting the network 

entities behind a NAT is performed using a dedicated algorithm. Then the traffic features 

and the number of network entities counted are fed into a multiple clustering algorithms. 

They have applied the clustering algorithms to each type of OS separately and found that 

clustering Linux-based hosts are easier than Windows hosts. Their algorithm achieved 

87%, 81%, and 100% F1 measure for Linux, Windows, and containers on virtual 

machines respectively. Yet their model is incompatible with traffic modification, and 

when network traffic is a combination of multiple OSs.  

 

2.3 Generalizability 

It is significant to apply NAT detection methods in the real world, thus, to be able 

to apply them the model generalizability must be achieved. Gokcen et. al. [22] suggested 
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multiple machine learning approaches that can identify NAT-like behaviors by exploring 

specific patterns in the network traffic. They use NetMate2 to generate flows and exclude 

port numbers, IP identification, and payload information. To achieve a well-generalized 

classifier, they tested their algorithm on two different datasets. Yet the generalizability of 

their approach is still limited since they have built one model that is trained and tested 

twice. To illustrate, the implemented model is trained and tested on the first dataset, and 

then to prove its generalizability it is trained and tested again on the second dataset. They 

have reached a NAT class detection rate of 98.7% for the first data set and 98% for the 

second dataset using C4.5 algorithms. However, the detection rate dropped to 15% for 

the first dataset and 34% for the second one using a naïve approach.  

A NAT detection and host identification generalized approach was proposed in 

Zhang's thesis [8]. She examined the generalization of her proposed approach by 

comparing the classifier performance when trained on a specific dataset and tested with 

data taken from another one. First, she implemented three classifiers that are trained and 

tested on the same dataset (80% of data taken for training and 20% for testing). After 

reaching the best model, to study generalization, she performed experiments on the 

proposed model by training it from data in a specific dataset and testing it on data from 

another dataset. The implemented model achieves an accuracy of 100% when trained and 

tested on the same dataset, however other experiments reported lower accuracy (when 

tested on another dataset). In generalizability tests, the accuracy dropped to 25%, 57%, 

84%, and 86%, and surprisingly stayed at 100% in one case. The 100% was reported 

when the model was trained on a dataset with only Kali hosts behind the NAT and tested 

when only Windows hosts are behind the NAT. Then a host identification technique using 

TCP Timestamp is applied to the NAT detection dataset. However, they tested their 
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model on datasets that include only Kali and Windows operating systems and each dataset 

is traffic data collected over one day. 

 

2.4 Explainability  

Although explainable AI (XAI) is used to explain a black-box model, it has not 

been used before in NAT detection or host counting to explain how the model can take a 

decision. Arrieta et. al. [23] show that multiple methods can be used to explain the 

decision of black-box models. These methods can be divided into model agnostic that can 

be applied to all machine learning algorithms or model-specific implemented to explain 

the decision of a specific approach. In addition, they showed that these methods can work 

in several types of data such as tabular, graphs, images, etc., and can be divided into local 

XAI which can explain the decision of one entry, or global which explains the decision 

of the whole model.  

XAI methods have been previously used in security for such reasons as enhancing 

trust management in intrusion detection systems and enabling generalizability in each 

network environment. First, Mahbooba et. al. [24] have addressed the problem that AI 

cybersecurity models are becoming more complex. They have focused on enhancing trust 

in intrusion detection so that they can be understood by human experts easily. They have 

used the model agnostic XAI, by explaining these models by simplification. To do that 

they have performed feature engineering and built a decision tree (DT) model. Then they 

interpreted the feature importance based on DT entropy, and the rules they get from DT 

intrusion detection classification. Comparing their results to the state of art algorithms in 

the literature (SVM and logistic regression) show that DT has higher performance. To 

enable generalizability in securing IoT networks, Serhan et. al. [25] proposed an 
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explainable machine learning-based network detection system. They compared two 

feature sets (NetFlow and CICFlowMeter) in three datasets in different network 

environments. They showed that the NetFlow feature has better performance on ML 

model detection accuracy. To interpret the classification of ML models they have used 

Shapley Additive exPlanations (SHAP), which is an XAI method. They have compared 

the mean Shapely values, average values for each feature among all test samples, of 

different features in the three datasets to know the influence of each feature on the final 

model decision. Visualizing Shapely values for features identifies the features used by 

the model to make predictions. The importance of a key feature is indicated by how large 

its Shapely values are. Through SHAP they can detect whether the classifier is using the 

idle-based features in the attack detection stage. If the model decision was based on idle-

based features, they considered that the model withholds key security events to aid the 

detection performance. 

 

2.5 Transfer Learning 

Transfer learning was proposed to assist in building more accurate models in a 

certain domain by using knowledge from the source domain. Despite the fact that transfer 

learning has enormous applications in deep learning like natural language processing 

(NLP) [26], [27], some studies have utilized it for network security-related tasks. None 

of the previous studies used transfer learning to improve the detection of NAT devices 

and hidden network size. Zhao et. al. [28] applied transfer learning to detect unknown 

network attacks. They have proposed an approach called clustering-enhanced transfer 

learning to automatically find the relation between a new attack and a known attack. They 

have used multiple classification models such as DT and RF and evaluated the novel 
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transfer learning approaches by assessing the model performance on a dataset that 

contains different attack types or subtypes from training data. Their algorithm was 

efficient and validated the usefulness of transfer learning in discovering previously 

unseen attacks. Zhao et. al. [29] implemented another transfer learning method. In this 

study, they aim to use transfer learning to predict new attacks that are not present in the 

training data. Their algorithm was based on optimizing the representation of the model to 

be invariant to the modification of attack behaviors that are presented in the training set. 

This technique can be used with any common-based classifier. The algorithm was 

successful in identifying new attacks, but it depends on manual pre-settings of hyper-

parameters. 

 

2.6 Summary 

The approaches presented in this section are either signature-based which look for 

specific fields in IP, TCP, and HTTP header fields, or behavior-oriented that examine 

how the traffic from a NAT behaves as in Komarek et. al. [15]. The signature-based uses 

the special fields to gain information about the hosts behind a NAT as their number or 

type of operating system. These fields can also be used as an indicator of the presence of 

NAT. The behavior-oriented examines the network traffic and deduces patterns that 

indicate the existence of NAT devices. The most commonly used features are the number 

of packets sent and received, number of DNS requests, and number of bytes sent and 

received. In both methods, the accuracy of the implemented algorithm increases when 

there exist more active nodes hidden behind a NAT. Unfortunately, some of these 

methods were limited to the case where the traffic is unencrypted, and machine learning 

algorithms has less limitations in NAT detection than in counting the number of hosts. 
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They have not taken into consideration that aggregating network traffic will result in more 

features that have higher relation with NAT presence. Almost all the previous academic 

research was not deployed in real network environments. Instead of focusing on the 

model’s generalizability of these models, studies rather focused more on the performance 

of the detection algorithms on a given dataset. The authors in [8] and [23] depended only 

on testing or even training their model on a new dataset. They have not taken into 

consideration that if the model generalizes well on a new dataset this does not mean that 

it will generalize in all other datasets and can be practically implemented. They also have 

not taken into consideration that intentional obfuscation of some key features in the 

dataset may also affect the model performance and generalizability. In addition, they 

treated ML-based models as a black box, so they do not often take into consideration the 

importance of interpreting the behavior of the complex algorithm to enhance trust in the 

results and understand the generalizability. EXplainable Artificial Intelligence is 

suggested as a solution to interpret decisions taken by ML techniques. Through 

understanding what features are contributing to the model decision, explainable AI can 

help in maintaining and troubleshooting the practical implementation of these models. 

Finally, although transfer learning has multiple successful applications and is considered 

a promising area of machine learning, none have applied it to optimize model 

performance in a new network environment. 
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CHAPTER 3 

METHODOLOGY 
 

In this chapter, first, the datasets used to train and test the implemented models, 

and the network configuration are explained. Then the implementation of the NAT 

detection approach along with the generalizability test, explainability, and transfer 

learning are discussed. This is followed by presenting the methodology and details of the 

host counting algorithm. 

 

3.1 Datasets 

3.1.1 Wireless Setup Dataset 

To identify NAT behavior, a publicly available data set [30] is used. The dataset, 

“NAT Network Traffic Dataset,” is 20.4GB and composed of 294 capture files from 294 

tests. It consists of 112306 unique flows, thus considered large and permits us to 

accomplish an extensive assessment of several NAT detection approaches. Because we 

are working with aggregated flow features, these unique flows are aggregated within 

specific time window, yielding to 3497 aggregated samples at time equal 1 minute. The 

dataset was collected over two weeks in June 2020, with three sessions per day. Each 

session, morning, midday, and evening, consisted of seven different tests done by varying 

the devices connected to a NAT router and the application opened by devices behind 

NAT. The data set is labeled by the time and day of performing the test in addition to the 

number of devices connected along with the IP addresses and process name. Figure 1 

presents the experimental configuration for a local area network (LAN) with a NAT 

device. The tests are divided into two configurations: (1) Network with NAT, where the 
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NAT router is connected to a home router and then it is distributing an Internet connection 

to multiple devices with different operating systems to generate more realistic traffic data, 

and (2) Network without NAT. A full explanation of the data set is presented in [30]. For 

the rest of the thesis, we will refer to this data as “Wireless NAT Dataset”. 

To study the generalizability of the model when network data is subjected to 

intended obfuscation, multiple pattern-based features, such as features related to packet 

timing and sizes, are changed. Packet size-related features, time-related features, and 

number of packets related features are changed because they are highly related to the 

environment. To do this different obfuscation techniques like randomization, adding 

dummy bytes, padding, or even uniform features obfuscation are applied. After 

obfuscating all these features, multiple datasets are obtained. 

 

3.1.2 Wired Connection Dataset 

Another wired local area network was built to test the proposed detection and host 

number identification approach’s ability to generalize. This setup consists of a Cisco 1800 

router, a Cisco catalyst 2960 switch, two Windows devices, and two Linux devices, in 

Figure 1. Passive Wireless Measurement Network Setup 
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addition to a kali Linux desktop that acts as a NAT device. Figure 2 presents the complete 

setup to capture network traffic data. The dataset is 11.7GB and 79664 unique flows are 

used in testing. These unique flows are aggregated, and 980 samples are used in testing. 

Data was collected during three days in April 2022, with different combinations of hosts 

running and tasks opened on each. This dataset is collected within a different network 

environment, different setup connections, different devices, operating systems, and 

different applications opened. The OS used in this dataset are Windows desktops 

(windows 7 and windows 11), and Linux desktops (CentOS and Ubuntu).  Varity of 

applications are opened as gaming, shopping, social media, mail, video streaming, and 

google search. This difference is made to examine the generalization of the proposed 

method and describe the impact of different environments on NAT device detection and 

host number identification. For the rest of the thesis, we will refer to this data as “wired 

NAT Dataset”. 

 

3.2 Feature Extraction and Preprocessing 

The captured traffic traces should be preprocessed to extract features and build 

the detection classifiers. To this end, the Python library “Scapy” was used to generate the 

Figure 2. Passive Wired Measurement Network Setup 
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flows from the capture files and compute the statistical features. The flow is identified by 

the tuple source IP and port, destination IP and port, and protocol. Statistical features are 

extracted from packet traces and then flows are formed based on the tuple. A comma-

separated values (CSV) file is generated to store the flows, with the statistical features 

listed in Table 1. Then these features were aggregated in different time window sizes 

based on the flow start duration to extract the features presented in Table 2. Table 2 

contains more features in which some of them have not used before as the interarrival 

timing between flows and the number of flows sent in a specific window size. In case of 

NAT detection, more flows are sent and the timing between them is less because multiple 

devices are active. In addition to the packet, size, and other timing related features 

extracted per specific time window size instead of per flow. When all aggregate features 

are extracted, the data is transformed into CSV files. Since supervised machine learning 

is used, the features that represent data coming from NAT are labeled as NAT, and the 

other features are labeled as not NAT. This procedure is followed for both datasets 

introduced in section 3.1. 

TABLE 1: Features Extracted per Flow 

Features 

Protocol Smallest Packet Size 

TTL Total Packets 

Source IP Total Packets Sent 

Source Port Total Bytes Sent 

Destination IP Total Packets Received 

Destination Port Total Bytes Received 

Total Packet Size Flow Duration 

Largest Packet Size Interarrival Time 
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TABLE 2: Aggregated Features 

Number Feature Name 

1 Number of Unique Source IP during the time window 

2 Number of Unique Source Port during the time window 

3 Number of Unique Destination IPs during the time window 

4 Number of Unique Destination Port during the time window 

5 Number of Unique TTL Value during the time window 

6 Total Number Packets during the time window 

7 Average Number of Packets during the time window 

8 Total Bytes during the time window 

9 Average Bytes during the time window 

10 Total Number of Packets in the Forward direction during the time 

window 

11 Average Number of Packets in the Forward direction during the time 

window 

12 Total Bytes in the Forward direction during the time window 

13 Average Bytes in the Forward direction during the time window 

14 Total Number of Packets in the Backward direction during the time 

window 

15 Average Number of Packets in the Backward direction during the time 

window 

16 Total Bytes in the Backward direction during the time window 

17 Average Bytes in the Backward direction during the time window 

18 Total Number of TCP Packets during the time window 

19 Average Number of TCP Packets during the time window 

20 Total Number of UDP Packets during the time window 

21 Average Number of UDP Packets during the time window 

22 Number of DNS Requests during the time window 

23 Size of Largest packet during the time window 

24 Size of Smallest during the time window 

25 Minimum Flow Duration during the time window 

26 Maximum Flow Duration during the time window 

27 Mean Flow Duration during the time window 

28 Standard Deviation of the Flow Duration during the time window 

29 Minimum amount of time between two packets during the time window 

30 Maximum amount of time between two packets during the time window 

31 Number of Flows during the time window 

32 Maximum amount of time between two flows during the time window 

33 Minimum amount of time between two flows during the time window 

34 Mean amount of time between two flows during the time window 

35 Standard Deviation of the amount of time between two flows during the 

time window 
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3.3 NAT Detection 

This section presents the detailed methodology implemented to detect NAT. In 

this study, the aim is to evaluate different machine-learning-based approaches to different 

traffic flow features aggregated within multiple window sizes. This process aims to 

differentiate between a NAT device and an end host and study the effect of increasing 

time window size for aggregation on NAT detection. 

The machine-learning-based approaches used in detection are Random Forest 

(RF), Multilayer Perceptron (MLP), Naïve Bayes, k-Nearest Neighbors (kNN), eXtreme 

Gradient Boosting (XGBoost), and SVM. The NAT identification is considered as a 

binary classification problem with two labels, NAT or other (not NAT), thus the machine 

learning classifier has two classes. The RF classifier is chosen because it is easy for 

human experts to understand how this algorithm takes the decision. RF builds multiple 

decision trees using the if-then-else format and then merges the decisions of those trees 

to get more stable and accurate predictions. As for Naïve Bayes, it requires less training 

data and can predict the class of test data easily. kNN is used because it is considered one 

of the simplest approaches in machine learning algorithms and it is mostly used for 

classification. SVM shows its success in classification problems especially when classes 

are not linearly separable. MLP has the advantage of solving extremely complex 

problems by connecting many perceptrons. XGBoost is used due to its high accuracy, 

efficiency, and feasibility. It is a fast algorithm able to do parallel computation on a single 

machine using both tree learning algorithms and linear solver model. 

To train the ML algorithms the network traffic numerical features are 

preprocessed and represented by a feature vector. The vectors that represent the traffic 

consist of two kinds of sources: (1) an ordinary host, and (2) a NAT device. 
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For each algorithm, we build several models by varying the aggregation window 

size. To get more precise results we perform n-fold time-series cross-validation, where 

the dataset is divided into n subsets, where n is six. We perform nested time-series cross-

validation to separate training and testing data by time instead of randomly to get more 

precise results. Since we have a dataset collected over two weeks and separated by days 

it was easier to split the dataset. The nested time series cross validation is used because it 

provides an almost unbiased estimate of true error. This method is applied through 

starting with a small subset of data for training purpose (6 days for training) and check 

the model accuracy for the later data points. Then these data points are included as a part 

of the next training dataset in the next fold and another following subset is used for 

testing. In this way we will guarantee that the model is predicting the labels on an unseen 

data which is collected in a different day with different devices and applications opened. 

This way in cross validation will enhance the model’s generalizability. We evaluate our 

model based on the average performance of all predicted classes in cross-validation. 

 

3.4 Host Number Identification 

After predicting the presence of NAT devices, the aim now is to identify the 

number of hosts hidden behind them. This algorithm has great implications to understand 

the occurrence of hosts masked behind NAT devices for Internet service providers. To 

get the best model that can detect the approximate number of hosts hidden, multiple 

machine learning algorithms like RF, SVM, Logistic Regression (LR), kNN, XGBoost, 

and MLP are trained. The host counting problem is treated as multiclass classification 

and as a binary classification problem. First, the models are trained on data to detect the 

exact number of NAT devices (1,2,3, or 4). Then the problem is transformed into a binary 
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classification problem. The aim now is to detect the hidden network size where when 

there are a few devices hidden behind a NAT the label is changed to “Small NAT” else it 

is changed to “Large NAT”. This transformation will give evidence of the approximate 

number of devices, rather than the exact number of devices and it will not be limited to 

only four devices. Similar to NAT detection, n-fold nested time series cross-validation is 

used. 

 

3.5 Machine Learning Algorithms 

The detection and host number identification algorithms need to be efficient and 

classify classes correctly. The main goal behind this study is to detect shadow IT, thus, 

to detect it effectively multiple machine learning algorithms as mentioned in sections 3.3 

and 3.4 are applied. The algorithm that performs the best on the NAT traffic data is 

chosen. The models are implemented in a python environment which allows access to 

powerful artificial intelligence (AI) and machine learning libraries and frameworks. The 

libraries and frameworks provide easy access to classification, regression, clustering, and 

analysis. Using python libraries, we can implement a robust machine learning algorithm. 

All ML algorithms are implemented using scikit-learn library except for the XGBoost, 

the xgboost library is used. 

  

3.5.1 RF 

The RF classifier is an ensemble-based learning method that combines multiple 

decision tree models during its training process to yield an optimal predictive model [31]. 

It is widely used in classification problems due to its simplicity in implementation and 

fast operation [32]. The main reason that it is used is that it does not undergo overfitting 
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as it takes the average of all predictions of the combined decision trees. During the 

training phase, RF applies the so-called bagging technique. To illustrate, RF selects 

random samples from the training set and fits the trees with these samples. It repeats the 

above procedure by replacing the chosen samples with others [33].  

 

3.5.2 SVM 

In classification, the main objective is to reach a model that has maximum 

performance on both training and test data. However, most of the traditional methods 

previously used in classification suffer from overfitting. The main idea of SVM is to build 

a model that separates classes in the training set by finding a hyperplane that can 

maximize the margin between them to avoid overfitting [34].  

 

3.5.3 MLP 

MLP is a well-known neural network that consists of three layers. The first layer 

which is the input layer receives the input features to be processed. The second layer 

which is the hidden layer is the computational engine of the algorithm. The final layer 

which is the output layer is where prediction and classification take place. MLP reduces 

the error through forward and backward propagation [35]. 

 

3.5.4 Naïve Bayes 

Naïve Bayes is a probabilistic classifier based on Bayes’ theorem. It assumes that 

each one of the features used in training has an independent and equal contribution to the 

predicted class. It is simple to implement and computationally fast. It is considered a basic 

classification approach [36]. 
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3.5.5 kNN 

The basic principle behind kNN is that it separates instances in a dataset based on 

equivalent properties shared between them. Thus, the additional information of any 

instance can be taken from points near it. In this algorithm k is an adjustable parameter 

and it is defined as the number of neighbors [37]. 

 

3.5.6 XGBoost 

Extreme Gradient Boosting is a supervised machine learning algorithm that tries 

to accurately predict the label of a vector by merging the estimates of multiple models 

[38]. It is used for both classification and regression problems. The XGBoost algorithm 

is composed of multiple trees [39]. The residual trees are built by computing the similarity 

score between leaves and the forecasting nodes to determine which variables are utilized 

as the roots and the nodes [40]. 

 

3.5.7 LR 

Logistic regression is a machine learning algorithm that predicts a discrete 

outcome by evaluating the probability of an event occurring. It uses the logistic sigmoid 

function to get the probability value and map it to the predicted class. It is an easy 

algorithm to implement but has a high probability of underfitting to occur [41]. 

 

3.6 Performance Metrics 

Instead of evaluating the approaches using the model accuracy, this study uses 

precision, recall, and F1-score as the evaluation metrics. It does not rely on model 

accuracy because it is a measure of the positive rate, and we are dealing with an 
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unbalanced dataset thus predicting the majority class and misclassifying the other might 

yield high accuracy. For multiclass classification, a confusion matrix is used to estimate 

the efficiency of the model in classifying each class. 

 

3.7 Generalizability Test 

This generalizability study aims to test the model’s ability in detecting NAT 

devices and host numbers when the dataset is subjected to intended obfuscation or even 

when the data is collected in a new network environment. For this reason, both detection 

and counting models first are tested on obfuscated datasets. The datasets are generated 

using different scenarios after changing the pattern of the traffic like the distribution of 

the number of packets, packet sizes, and timing-related features as discussed in section 

3.1.1. Besides the model is tested on the newly collected wired NAT dataset. This data is 

also subjected to intended obfuscation. In the generalizability test, we train the model on 

wireless NAT dataset without obfuscation and test it on other data samples. 

There are multiple obfuscation techniques that could be applied on traffic data 

which will lead to network traffic feature change. Obfuscation techniques could lead to a 

single feature change or multiple feature change. The obfuscation is done uniformly, by 

randomizing features, adding dummy bytes, or by padding bytes. First, a single traffic 

flow characteristic is obfuscated. For example, when choosing packet sizes, all features 

related to packet sizes presented in Table 2 are obfuscated. Then because the obfuscation 

scenario cannot be predicted and to build a model that can generalize even when 

obfuscation is used, multiple features are obfuscated together. To illustrate, the 

obfuscated traffic data has all features related to timing, packet sizes, and number of 
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packets obfuscated together. Thus, forming multiple datasets with features obfuscates but 

each time using specific type of obfuscation, as randomizing features for example.  

Then both NAT detection and host number identification models are trained after 

removing all features that can be affected by obfuscation. This step has been done to build 

a model with a high detection rate and less dependence on features that are highly related 

to the network environment or to mutable features that can be affected by obfuscation 

techniques. 

 

3.8 Explainability  

ML-based NAT detection and host number identification methods are a solution 

that simplifies building a detection algorithm without thinking about specific patterns in 

features that characterize NAT traffic data. They are both sophisticated and black-box 

models that achieve a high detection rate on specific datasets. Besides, most ML models 

are complex and hard to understand. XAI is used to enable the understanding ability of a 

model to generalize. Applying several methods in XAI will allow us to explain the 

model’s local and global decisions. Understanding the rules taken by a model to make 

decisions and the feature contribution will make evidence of model generalizability. By 

using the global and local explanations we can see the importance of the extracted feature 

and their contribution and relation with the NAT presence. The explainability models are 

implemented using the open-source library by Microsoft called InterpretML [42]. For the 

XAI approaches, Shapely Additive exPlanations (SHAP) is used to see how the model is 

choosing features in order to perform detection. SHAP will help in understanding the 

feature importance taken by the model on each dataset, and how each feature is affecting 

the model’s decision. SHAP can be used to explain both local and global decisions. The 
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Local Interpretable Model-Agnostic Explanations (LIME) method is used in order to 

explain the local decision of the model. LIME shows how each key feature value affects 

the decision for the data sample.  

 

3.9 Transfer Learning 

Different network environments have distinct characteristics. It is hard to find two 

network environments with similar traffic performance. For this reason, transfer learning 

is used to optimize model performance and allow rapid progress when testing in a new 

environment. Assuming that the new network environment data is a variation from the 

source data, a decision forest model M learned within a “source” domain can be refined 

using a training set sampled from a “target” domain. The model is optimized by trying to 

locally expand or reduce the tree around individual nodes for each tree structure and to 

modify the parameters associated with decision nodes. The transfer learning for RF 

implemented by Segev et. al [43] is used. This RF transfer technique uses two algorithms 

to build a learned model that can classify test data. First the RF model is implemented 

and trained on the source data. Then a small data portion from the target domain is taken 

to modify the RF classifier. First structure expansion/reduction (SER) algorithm is used. 

This algorithm searches greedily for locally optimal modifications of each tree structure 

by trying to locally expand or reduce the tree around individual nodes. The SER algorithm 

first will fit the target datapoints to the decision trees implemented by RF model. Then it 

will find the leaf where each target data point ends up. A new tree is implemented, 

classification error is computed, if the error is small the new tree is merged with the source 

model tree. This algorithm is applied on each tree in the RF model. Later the structure 

transfer (STRUT) algorithm is employed to adapts each tree trained on source domain to 
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target samples by setting new thresholds to the tree nodes. Another transfer learning 

algorithm is implemented for the XGBoost model. This technique will change the trees 

and their similarity score in the implemented model based on the target data. This will 

build an XGBoost model with same hyperparameters, same number of trees, but the trees 

in the model tweaked in order to enhance its performance on a new unseen data. 

To apply transfer learning a small sample of data called “target” is taken from the 

data collected in a wired connection setup. This data is taken in to modify the model 

trained on the source data and then test the transferred model on the data collected from 

the new network environment.  

  

3.10 Summary 

In summary, the first stage of this research was downloading the dataset. The used 

dataset was then preprocessed, and features were extracted. The extracted features were 

aggregated within multiple window sizes. The extracted features were also used in the 

supervised NAT detection classification and host counting tasks. Then the implemented 

model was tested using the performance metrics. The dataset was finally obfuscated, and 

new data was collected to test the model’s generalizability. XAI was used to help in 

explaining and analyzing the generalizability through explaining local and global 

decisions taken by the model and the feature importance. Finally transfer learning is 

applied to enhance the model performance to new environment. The above procedures 

are used in the experiments found in the next chapter.  
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CHAPTER 4 

EXPERIMENTAL RESULTS AND EVALUATION 
 

This chapter presents the experiments that were conducted along with their results 

and a discussion of those results. Section 4.1 presents the feature selection for training 

the machine learning algorithms. Section 4.2 explains the hyperparameter tuning for each 

machine learning algorithm. Section 4.3 discusses the NAT detection algorithm for model 

selection, comparison, generalizability test, model decision explanation, and transfer 

learning. Section 4.4 introduces the NAT host counting algorithm for model selection in 

multiclass classification as well as in binary class classification, generalizability test, 

model decision explanation, and transfer learning. Section 4.5 summarizes the chapter. 

 

4.1 Feature Selection 

The features presented in Table 2 are used to train the machine learning algorithms 

and to predict classes. To guarantee that the machine learning model is performing well, 

a good feature selection must be done for each algorithm. The feature importance is 

computed through information gain, where the decrease in entropy from the 

transformation of the dataset is evaluated. The information gain of each variable 

concerning the target variable is evaluated to compute the importance of each feature and 

select the key features to train the machine learning models on. 

 

4.1.1 Feature Selection for NAT Detection Model 

Figure 3 illustrates the importance of the features presented in Table 2 for the 

NAT detection algorithm. It shows the feature name on the y-axis and the importance 



 

 41 

parameter on the x-axis. The most important features in NAT detection are the number 

of DNS requests, min flow duration, min interarrival between packets, number of unique 

source IPs, number of unique TTL values, and mean interarrival between flows. To 

illustrate, the number of unique source IPs will be one if the traffic is coming out from 

NAT device whereas it will be equal to the number of ordinary hosts if the traffic is not 

coming out from NAT. The features whose importance is high, as presented in Figure 3 

can be highly related to the presence of NAT. To illustrate, when there are multiple hosts 

behind a NAT, there are more flows recorded in a specific time window each with a 

different duration, interarrival between packets, and number of DNS requests. Thus, when 

aggregating these features and taking the total or the minimum of a specific feature there 

is a high chance that the machine learning algorithm will find patterns in these features 

that are highly related to the target. Similarly, for the interarrival between flows, more 

hosts mean more flows are sent from different users which will minimize the interarrival 

between flows in a specific time window. The number of packets have a high impact on 

the model’s decision, and it is known that when NAT devices hide multiple active users, 

more packets will be sent and received. Figure 3 shows that unique destination IPs, total 

bytes, total bytes sent, the average number of TCP packets, maximum flow duration, and 

maximum interarrival time between packets are not of much importance. The maximum 

flow duration is not considered important in the case of NAT because while collecting 

the dataset in [30] there is a maximum time limit of 5 minutes where the applications used 

are still opened in case of the presence or absence of NAT. 
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4.1.2 Feature Selection for Multiclass Number of Host Detection Model 

For the multiclass problem, it is important to guarantee that all features used by 

the model are related to the task and have high importance. Figure 4 shows the importance 

of features in Table 2 in the host counting model. The figure shows that Interarrival min, 

Number of DNS Requests, Largest Packet Size, Total TCP Packets, and Average TCP 

Packets do not affect the model decision because they have low importance. Other 

features in the dataset are considered important and will help the model in making correct 

decisions. For example, Number of Flows is considered an important feature, and this is 

logical because when more hosts are behind a NAT, more flows will result. Similarly for 

the number of packets and bytes, when there are more hosts more packets will be sent 

which will lead to a higher total or average number of packets. 

  

Figure 3. Feature Importance for NAT Detection Algorithm 
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4.1.3 Feature Selection for Binary Number of Host Detection Model 

This technique is used in preprocessing to eliminate features that do not affect the 

ML model. Figure 5 shows the feature importance for binary host count approximation. 

It shows the relation of each feature with the predicted class. The TTL unique values have 

the highest coefficient and thus it highly affects the model’s prediction. It is shown in the 

literature that TTL has great evidence on NAT presence and in identifying the number of 

hosts. Similarly, the average bytes received feature is of secondary importance. This is 

because the higher the bytes the more devices we have. This study focuses on 

implementing an ML algorithm on aggregated network traffic features. Thus, if there are 

more devices more data is sent and thus the total number of bytes received to a specific 

IP address will be higher. The features that have no impact on the binary host 

approximation model are Unique Source IP, Largest Packet Size, Interarrival min, and 

Figure 4.  Feature Importance for the Multiclass Host Counting Model 



 

 44 

Int flow min. In the case of NAT, it is normal that the unique source IP will not give 

evidence of the network size behind a NAT because all active devices behind a NAT have 

a single shared source IP address. 

 

4.2.  Hyperparameter Tuning 

Each of the algorithms has important parameters which highly affect the model 

performance. For example, RF requires the number of estimators, which is the number of 

decision tree classifiers before taking the average predictions, the maximum depth which 

represents how much the tree will expand to take the decision, and the criterion used to 

make the decision, entropy for information gain and ‘Gini’ for Gini impurity. SVM 

requires the kernel which specifies the mathematical function to calculate the hyperplane 

and C which is a hyperparameter used to control misclassifying errors. MLP requires the 

hidden layer sizes which represent the number of neurons in the layer, the activation 

Figure 5. Feature Importance for Network Size Detection 
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function, the solver for weight optimization, and the learning rate. KNN requires the 

number of neighbors to use by default k-neighbors queries. These parameters are chosen 

using “GridSearchCV” and cross-validation = 3. 

 

4.3 NAT Detection 

4.3.1 Model Selection 

To better evaluate the model performance, cross-validation is used. The data is 

separated by days using the nested time series cross validation. Starting with 9 days with 

a 70:30 split between training and test, the test data is fixed and equal to three days. After 

each fold new data is added, where a day from the test set is moved to the training set and 

a new day is combined with the test set to test the model’s accuracy on unseen data. Cross 

validation ends when the 14 days of data are all used 9 for training and 3 for testing. The 

data is separated into fourteen groups since the dataset represents traffic collected over 

two weeks. Each group represents a day that contains multiple data samples. The features 

with low importance as “AverageTCPPackets”, “TotalBytesSent”, and “Interarrivalmax” 

(refer to Figure 3) are removed.  

Multiple experiments were performed to assess the effectiveness of NAT 

detection using aggregated features from different time windows (duration of time series). 

Figures 6a, 6b, and 6c show the impact of the machine learning classifier and time 

window size on detection accuracy. Figure 6a shows that the XGBoost and RF models 

have high precision at all window sizes, but the highest value is recorded at a time window 

equal to 60 seconds. This means that both have low true negative rate thus the number of 

aggregated flows that are misclassified is low. The other machine learning models have 

lower precision scores than RF and XGBoost in different window sizes. At the time 
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window = 60 sec, RF, SVM and MLP have lower precision values than XGBoost, but 

also recorded a high precision at 60 seconds. But since we have an imbalanced dataset, 

predicting the majority class might lead to high precision, thus we cannot rely on the 

precision alone to evaluate the model performance. Figure 6b shows the recall of each 

machine learning classifier at different window sizes. Similarly, the XGBoost and RF 

classifiers reported higher rates, but all algorithms have a low recall. High precision but 

low recall means that one of the classes is mostly misclassified. The reported recall scores 

are below 80% for all window sizes except for RF at 60 sec and XGBoost. The lowest 

reported recall by XGBoost is about 70% at time window size equal to 30 sec. This means 

that the XGBoost model also reported high recall values at all window sizes. The overall 

performance of the system is shown in Figure 6c, which presents the F1 score. Since an 

ideal machine learning algorithm is that with high precision and recall, yielding a high 

F1-score, the detection reaches its peak when the aggregation window size is 60 sec. The 

obtained results show that the window size has a significant impact on the accuracy of 

NAT detection. For small window sizes, the model fails to find patterns in the features to 

detect the presence of NAT. XGBoost gives the best results with RF coming as the 

second-best algorithm. From this experiment we can conclude that increasing the time 

window sized to 1 min has improved the model detection rate. If we look at RF and 

XGBoost model, that are the best NAT detection models, we can conclude that the 

increase in window size enhance the detection rate. To illustrate the reported f1 score at 

time window = 50 sec is less than that reported at 1 min, similarly for other window sizes. 
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To compare the results obtained at a time window equal to 1 minute, Table 3 

summarizes the F1-score results after evaluating all algorithms. It proves that XGBoost, 

RF, and SVM outperform the other classification techniques. Besides Naïve Bayes and 

kNN failed to detect NAT devices. 

Table 3: Summary of Performance of all Approaches 

Algorithm  F1 score (%)  

XGBoost 97.09 

RF 96.90 

SVM 83.65 

MLP 77.04 

Naïve Bayes 48.45 

kNN 35.65 

 

(a) Precision of the Algorithms (b) Recall of the Algorithms 

(c) F1 Score of the Algorithms 

Figure 6.  Evaluation Metrics of Different ML Classifiers with Different Window Sizes 
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The second experiment is performed to see the model’s ability to classify NAT 

devices after excluding the source IP & port and destination IP & port. Since the best 

approach for NAT detection on our dataset is XGBoost, this test is done using the 

XGBoost model. Table 4 shows the F1-score for the XGBoost classifier when varying 

features. It shows that the model has its best performance when all extracted key features 

are utilized. Besides, when using statistical features and excluding the source IP & port 

and destination IP & port the system was still able to detect the presence of NAT 

effectively with a same F1 score reported in the presence of these features (97%). Thus, 

in the in the absence of IPs and ports the model depends on other features to detect NAT 

devices effectively with a high score.  

Table 4: Summary of Performance of RF Classifier while Varying Traffic Aggregated 

Features 

 

 Since it is shown in the literature that ML-based algorithms outperform 

traditional methods and addressed multiple limitations, we applied the OS passive 

fingerprinting NAT detection technique based on TTL values to the extracted aggregated 

flows. The performance of this algorithm is compared with the RF classifier results. This 

method was implemented in [9] and is based on the header TTL values of flows following 

the approach in [10]. As shown in Table 5, this method accomplished a high F1 score of 

92.9%; however, it is limited to specific operating systems. It uses the fact that the NAT 

router decrements the TTL value, thus it requires previous knowledge of the connected 

devices and their TTL range to be applied. Our proposed machine learning algorithm 

accomplished better results when we train our classifier on the extracted traffic features, 

Features F1 score (%) 

All features except source and destination IPs and ports 97 

All features 97.09 
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as shown in Table 4, where the algorithm reached an F1-score of about 97% when all 

features are used or when the source and destination IPs and ports are excluded. In 

addition, our approach is not dependent on specific operating systems, since the classifier 

learns from the extracted features, and can detect NAT behavior for new unseen data 

regardless of what is running on the hidden hosts. 

Table 5: Results Obtained when Applying TTL Range Method on Dataset 

Algorithm Precision Recall F1-score 

TTL Range Algorithm 100 86.77 92.92 

 

4.3.2 Generalizability Test 

 To evaluate the model's generalizability, multiple tests have been implemented. 

First, the model’s performance is tested on wireless NAT dataset after performing 

obfuscation. The different obfuscation scenarios are presented in Table 6. Then the 

model’s ability to detect NAT devices is tested on the wired NAT dataset, on both original 

data and after performing obfuscation. Two tests were done. First, we choose to assess 

the model generalizability on obfuscated and newly collected data in the presence of all 

important features presented in Figure 3. This test is labeled as test one. Then we choose 

to remove all features that could be affected after obfuscation, keeping unique source and 

destination IP and ports with the unique TTL values, to build a model that is not affected 

by any feature change. This test is labeled as test two. 

TABLE 6: Obfuscation Scenarios 

Obfuscating size-related features Uniformly 

Randomly 

By adding dummy bytes 

By padding them 

Obfuscating features related to packet counts Uniformly 

Randomly 

Obfuscation timing features as duration and time stamp Randomly 
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The results of assessing the model on obfuscated data resulting from changing 

features as explained in section 3.1.1 are presented in Table 7. Changing a single feature 

in the data does not highly affect the model’s decision. Changing packet-size features 

uniformly reported 96.33% F1 score; however, randomizing these features reported 

74.33% F1 score. Changing the number of packets related features uniformly and 

randomly and randomly changing the packet sizes have higher effect on the model’s 

decision as the model F1 score dropped by about 20%, 20%, and 22% respectively. By 

comparing these results with the feature importance presented in Figure 3, it is obvious 

that the number of packets related features have higher importance, and thus changing 

these features will affect the model’s performance. However, the model is still able to 

detect the presence of NAT and the lowest F1-score reported when obfuscating features 

related to a single characteristic is 74.33%.  

Sometimes in real network environments, multiple features would be obfuscated 

together. So, the model is evaluated on the data after performing intended obfuscation on 

all network features that can be affected by obfuscation. As shown in Table 7, the model 

fails in predicting NAT in case of uniformly obfuscating data or using randomization. For 

this reason, a test is done to see the model’s performance after removing all features that 

could be affected by obfuscation. The F1 score reported is 92.61%, it is about 4% less 

than that reported on the original data before obfuscation and before removing these 

features. This F1 score is high and shows the model’s ability to detect NAT even when 

fewer features are presented. This reported F1 score is higher than the F1 score reported 

in test 1 in many obfuscation scenarios (refer to Table 7). Comparing the data presented 

in test one and test two shows that it is better to remove all features that could be 

obfuscated when the network data is subjected to obfuscation. 
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TABLE 7: Results for Tests One and Two on Both Datasets Using the NAT Detection 

Model 

  

The second experiment done to test the model’s ability to generalize is repeating 

both tests one and two on new data collected in a different network environment (wired 

NAT dataset). Similarly, this data is subjected to intended obfuscation. The data is 

obfuscated in the same way the previous data features are mutated. Unfortunately, the 

model did not generalize as it reported an F1-score of 65.09% on the data before 

 
(1) Test 1 performed on wireless NAT dataset 
(2) Test 2 performed on wireless NAT dataset 
(3) Test 1 performed on wired NAT dataset 
(4) Test 2 performed on wired NAT dataset 

Dataset 1(1) 2(2) 3(3)   4(4)  

No Obfuscation 97.09 92.61 65.09 68.65 

Uniform obfuscation for sizes 96.33 92.61 49.56 68.65 

Random obfuscation for sizes 74.33 92.61 44.75 68.65 

Obfuscate sizes by adding dummy bytes 93.54 92.61 48.60 68.65 

Obfuscate sizes by padding them 96.10 92.61 47.38 68.65 

Uniform obfuscation of number of packets 77.10 92.61 51.58 68.65 

Random obfuscation of number of packets 76.31 92.61 54.28 68.65 

Random obfuscation of duration 96.78 92.61 47.95 68.65 

Random obfuscation of timestamp 91.85 92.61 46.29 68.65 

Obfuscate all features with uniform obfuscation of 

sizes and number of packets 

56.42 92.61 56.63 68.65 

Obfuscate all features with random obfuscation of 

sizes and number of packets 

57.39 92.61 53.25 68.65 

Obfuscate all features with random obfuscation of 

the number of packets and padding sizes 

57.08 92.61 55.97 68.65 

Obfuscate all features with random obfuscation of 

the number of packets and add dummy bytes to 

sizes 

57.83 92.61 54.78 68.65 

Obfuscate all features with uniform obfuscation of 

the number of packets and padding sizes 

58.31 92.61 53.81 68.65 

Obfuscate all features with uniform obfuscation of 

the number of packets and add dummy bytes to 

sizes 

54.10 92.61 56.20 68.65 

average 76.04 92.61 54.41 68.65 
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obfuscation. In test one the model performance in new environment is similar to the 

model performance on the wireless NAT dataset when multiple features are obfuscated. 

F1-score dropped more when testing the model on data after obfuscation. In test 2, the f1 

score increased by 3.56% however it is still low.  Thus, even after removing all obfuscated 

features to minimize the environment effect the model was not able to detect NAT devices 

effectively. This means that the model in both tests does not generalize. The NAT detect 

model failed in a new network environment where there exist different network 

connections, applications used by users, and devices. 

 

4.3.3 Explainability for NAT Detection 

XAI helps in explaining the model’s global and local decisions and thus 

understanding its ability to generalize. By explaining the model local decisions, we can 

see how a change in feature value can lead to false predictions. Besides by explaining the 

global decision we can understand the most features that contribute to model’s decision 

and how they are affecting the target variable. This experiment is done by explaining the 

global decisions by plotting the SHAP feature importance and seeing the key features that 

are highly affecting the model’s decision. Then we used LIME plot to see the model 

decision explanation for a local data sample. 

 

4.3.3.1 SHAP 

This experiment is done to understand how the NAT detection model is taking 

decisions, why it is not generalizing, and what are the most relevant features. It is 

important to see if the results taken by the model are realistic or not. SHAP feature 

importance is applied to see how feature importance is distributed in different datasets. It 
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computes the mean SHAP value of the most important features that affect the model’s 

decision. Figures 7 and 8 show the SHAP feature importance for test one on wireless 

NAT data and wired NAT data respectively. Each feature is affected equally in both 

classes which are shown in the equal distribution of blue and red colors. However, the 

distribution of feature importance is different, thus in wireless NAT dataset the number 

of DNS requests, interarrival min, the number of unique contacted destination IP’s, the 

largest packet size, and the mean of interarrival timing between consecutive flows have 

higher importance. Differently for the wired NAT dataset these features have different 

importance distribution. For example, the number of DNS requests turned to be the 

second contributing feature in the wired data. Similarly, the mean of the interarrival 

timing between flows is the most contributing feature in the mode’s decision. This means 

that the distribution of features in these two datasets is different. Although the TTL unique 

values might be an indication of the presence of NAT it has less importance in data two. 

This is because the TTL value is highly dependent on the operating systems and thus if 

there are two similar OSs behind NAT the TTL unique values will be one and thus leading 

to incorrect model decisions. Similarly, the number of flows sent is not contributing to 

the model’s decision for wired NAT data. We can illustrate this due to high user activity 

in the wired NAT data which made the number of flows in case of NAT and end host 

almost have the same distribution. This means that each network environment has its 

characteristics and thus the flow duration, the number of packets, and packet sizes are 

highly dependent on the time the application used is still opened. Thus, the higher the 

time the application is opened the higher number of packets sent, the larger the total bytes, 

and the higher the duration. In addition, the interarrival between flows represents the 

difference between the start time of two consecutive flows. And thus, there is no 
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guarantee that two different network environments will have the same number of devices, 

the same operating systems, the same application used, and the same time of activity. 

This makes the model generalizability harder. The SHAP feature importance shows that 

aggregated features extracted from the interarrival timing between flows are highly 

contributing the prediction. These new extracted features are highly related to the NAT 

presence since in case of NAT, more hosts are active thus more flows are sent and the 

interarrival timing is smaller. This made the distribution of interarrival timing features 

different between a NAT and end host, and thus made this feature relevant in case of NAT 

detection. 

Figure 7. SHAP Mean Absolute Value Plot for the Most Important 

Features for wireless NAT Dataset 
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Figures 9 and 10 show the feature importance after removing all features that can 

be changed due to obfuscation for the wireless NAT and wired NAT datasets respectively. 

The model still has only five features to depend on to decide so any high variation in a 

specific feature will lead to a higher change in model performance. All features in the 

model affect equally both decisions, this is seen by equal distribution of classes “End 

Host” and “NAT” in the figures. Both figures show same distribution of features in both 

datasets is different. However, Table 7 shows that the model failed to generalize in test 

two. This means that although the features have same distribution of importance and 

participation in prediction, it is not necessary that the model generalize. The model’s 

decision is based on the decision rules learned by the model from the training dataset. 

Both datasets are collected by varying the devices behind the NAT between 1 and 4, the 

distribution of TTL unique values is different in both datasets. The difference in operating 

Figure 8. SHAP Mean Absolute Value Plot for the Most Important 

Features for wired NAT Dataset 
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systems between both datasets is the reason. In addition, the activity of users is different. 

Thus, the decision rules learned from wireless data might not be applicable on wired data 

and the model fails to generalize even after removing all features that could be obfuscated. 

Because the remaining features in this test are still affected by the change in environment 

the local explanation in the next section will explain why the model failed to generalize 

more. This experiment shows that even the feature importance their contribution in 

prediction is the same, it is not necessary that the model would generalize.  

  

Figure 9. SHAP Mean Absolute Value for the Most Important Features for Wired NAT 

Dataset 

Figure 10. SHAP Mean Absolute Value for the Most Important Features for Wireless 

NAT Dataset 
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4.3.3.2 LIME 

This method is used to explain some local predictions in testing data. For NAT 

wired and wireless datasets, we used LIME to explain a data sample from test data before 

obfuscation, after obfuscating a single feature, and when all features are obfuscated. It is 

shown in Table 7 that in the NAT detection model obfuscating a single feature does not 

highly affect the model’s performance. We applied LIME method to a data sample from 

the wireless NAT data after obfuscating timestamp features to see how obfuscating a 

single feature might mislead the detection algorithm. Then because the model fails to 

predict NAT when multiple features are obfuscated, we chose to show the LIME decision 

explanation for the same data sample when all features are obfuscated uniformly.  

Figure 11 presents the prediction explanation for a wireless data sample before 

obfuscation. Figure 12 displays the prediction explanation for the same data sample 

presented in Figure 11 but after obfuscating timestamp features. Figure 13 illustrates the 

prediction explanation of the same data sample in Figures 11 and 12 but after obfuscating 

all features uniformly. The three figures show that the actual class for this sample is 

labeled as zero, i.e., this sample is traffic data outward from a NAT device. Looking at 

Figure 11, the predicted value by the RF model is 0.0165 which means that the model has 

a correct prediction. All figures are a two-sided bar plot where the left side is the feature 

value relation with NAT presence and the right side is the feature value relation to the 

ordinary host. Figure 11 shows that almost all key features in this sample are related to 

the NAT presence. After obfuscating timestamp features, the RF NAT detection model 

predicted value is 0.705 as shown in Figure 12. The RF classifier failed to classify this 

data sample. The model prediction is above 0.5 because after obfuscation the data sample 

has a high interarrival time between packets and interarrival between flows. This is 
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because in the case of an ordinary host only a single device is sending packets, however 

in the case of NAT multiple devices are active. More devices mean more packets and 

flows are sent which will decrease the interarrival time between packets and flows. In 

Figure 13 the model prediction is 0.998 which means that the model predicts this sample 

as an ordinary host. The main reason behind this false prediction is the high value of the 

minimum interarrival time between packets, a high number of DNS requests, and the 

average bytes received is higher. Thus, obfuscating most of the features will lead to a 

high change in the dataset which will cause false predictions. Even using random or 

uniform obfuscation of features, with the change of values of more features the model 

will start relating these values to the presence or absence of NAT based on the decision 

rules added by the model after being trained on the original form of data.  

  

Figure 11. LIME Explanation for a Wireless NAT Data Sample Before 

Obfuscation 
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Figures 14a and 14b show two samples from wired NAT dataset, one is classified 

correctly and the other is not classified correctly. In a new dataset, the distribution of 

features is different thus the model will start comparing these features to the decision 

rules. Both data samples have predicted as data coming out from end host because the RF 

model learned when the interarrival between packets is high, the number of packets is 

low, and there are less unique contacted destination IP addresses it is more likely that the 

data is coming out from a end host. 

Figure 12. LIME Explanation for a Wireless Data Sample after Obfuscating a 

Single Feature 

Figure 13. LIME Explanation for a Wireless Data Sample after Obfuscating 

Multiple Features 
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For test two, after removing all features that could be affected by obfuscation, 

LIME is applied for the wireless and wired NAT datasets before obfuscation. This 

experiment aims to study why the model failed to generalize even after removing all 

features that could be affected by obfuscation. Figures 15 and 16 show the LIME 

prediction explanation for a random sample taken from datasets 1 and 2. The samples 

represent the aggregated flow out from an ordinary host. The model predicts the sample 

in Figure 15 correctly but fails to predict the sample in Figure 16 which is drawn from a 

new environment. It seems that after removing all obfuscated features, the remaining 

(a) First Data Sample 

(b) Second Data Sample 

Figure 14. LIME Explanation for Two Data Samples Drawn from wired NAT 

Dataset 
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features values represents an ordinary host. The data sample in figure 16 resembles the 

data coming out from NAT device based on what the model have learned from the 

wireless NAT data. From the two figures we can see that a single source IP address is 

evidence for NAT presence. Besides the small values of destination IPs and ports are 

evidence for ordinary host. This means that, from training data, the model learned that in 

the presence of NAT device, the contacted IPs and ports are higher, and this is because 

there is more than one device active behind a unique single source IP address. However, 

in Figure 16 the data resembles the data coming out from NAT which leads to false 

predictions. 

Figure 15. LIME Explanation for a Data Sample Drawn from Test Sample of 

Data in Wireless NAT Dataset 

Figure 16. LIME Explanation for Data Sample Drawn from Wired NAT 

Dataset 
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4.3.4 Transfer Learning 

From previous experiments, it was obvious that it is hard to implement a model 

that will generalize in all network environments. Thus, transfer learning is used to transfer 

knowledge from the implementation to enhance the prediction in an unfamiliar 

environment. For this purpose, a small portion of wired NAT dataset (519 samples) is 

taken to make locally optimal modifications to each tree structure in the XGBoost model 

and thus has better performance in a new network environment.  

The results for testing the transferred model are presented in Table 8. Transfer 

learning is applied on both tests one and two. This table shows that transfer learning 

improves the model performance, where the performance on wired NAT dataset 

improved by 13% without obfuscation. The F1 score also increased by about 3% after 

transfer learning while removing all obfuscated features from wired NAT dataset. The F1 

score has an average of 72.72% in test one. This average is higher than the reported F1 

score on this data after removing all aggregated features that could be changed due to 

obfuscation. This means that the transferred model performs better in test one and in case 

of the wired data it is better to keep all features even if there is obfuscation. 

Table 8 also show the testing results after retraining the XGBoost NAT detect 

model on the wired NAT data. The results are presented on column “5(5)”. The F1 score 

reported is 77.13 before obfuscation. The performance of the retrained model is almost 

similar to the performance of the transferred model. This means that the transferred model 

is optimized and able to work in different network environments with the presence of 

obfuscation. Yet the results of the transferred model are not too efficient. For this reason, 

we applied transfer learning for RF because it has a high performance on the wireless 

NAT dataset as shown in Table 3. To verify the performance of the transferred model on 
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new data and if it can generalize to new network environments, we tested it on the 

wireless NAT dataset. The transferred model yields high performance on both datasets 1 

and 2. Testing it on wireless NAT dataset the F1 score dropped by 0.28% when there is 

no obfuscation and 0.15% after removing all obfuscated features. 

The testing results for the RF classifier after performing transfer learning are 

presented in Table 9. This RF transferred model is more efficient on wired NAT dataset 

than the XGBoost transferred model. The RF transferred model performance on wired NAT 

dataset improved where the reported F1 score without obfuscation is 88.31% and 83.28 

without obfuscation. These reported f1 scores are higher than the F1 scores of XGBoost 

transferred model on wired NAT data by 10.31% without obfuscation (test 1) and 5.15% on 

test two. Similar to the original model, the transferred model is not highly affected when 

changing features related to one network characteristic. However, the performance drops 

when all features are obfuscated thus, we conclude that when there is obfuscated data it is 

better to use the model after removing all features that could be obfuscated. To verify that 

this model can generalize in case of obfuscated data collected in new network environment, 

we tested it on the wireless NAT dataset. The transferred model yields high performance on 

both datasets 1 and 2. Testing it on wireless NAT dataset the F1 score dropped by 2.5% when 

there is no obfuscation and 2.78% after removing all obfuscated features. Thus, transfer 

learning improved the model performance for new data and enhances model generalizability. 
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Table 8: Results for Tests One and Two on Both Datasets using XGBoost NAT 

Detection Model after Transfer Learning 

Dataset 1(1) 2(2) 3(3)   4(4)  5(5) 

No Obfuscation 96.81 92.46 78.00 71.50 77.13 

Uniform obfuscation for sizes 95.89 92.46 72.90 71.50 77.38 

Random obfuscation for sizes 80.46 92.46 70.74 71.50 72.27 

Obfuscate sizes by adding dummy bytes 95.26 92.46 75.22 71.50 76.81 

Obfuscate sizes by padding them 96.08 92.46 77.41 71.50 76.38 

Uniform obfuscation of the number of 

packets 

77.11 92.46 72.13 71.50 89.48 

Random obfuscation of number of 

packets 

82.49 92.46 71.67 71.50 72.59 

Random obfuscation of duration 96.83 92.46 73.21 71.50 94.38 

Random obfuscation of timestamp 88.04 92.46 73.46 71.50 99.64 

Obfuscate all features with uniform 

obfuscation of sizes and number of 

packets 

61.46 92.46 69.18 71.50 72.44 

Obfuscate all features with random 

obfuscation of sizes and number of 

packets 

59.74 92.46 73.41 71.50 68.05 

Obfuscate all features with random 

obfuscation of the number of packets and 

padding sizes 

60.43 92.46 70.92 71.50 70.76 

Obfuscate all features with random 

obfuscation of the number of packets and 

add dummy bytes to sizes 

61.85 92.46 70.47 71.50 70.33 

Obfuscate all features with uniform 

obfuscation of the number of packets and 

padding sizes 

55.80 92.46 70.79 71.50 71.43 

Obfuscate all features with uniform 

obfuscation of the number of packets and 

add dummy bytes to sizes 

56.38 92.46 71.32 71.50 71.41 

average 77.64 92.46 72.72 71.50 77.36 

 

  

 
(1) Test 1 performed on wireless NAT dataset 
(2) Test 2 performed on wireless NAT dataset 
(3) Test 1 performed on wired NAT dataset 
(4) Test 2 performed on wired NAT dataset 
(5) Retrain the XGBoost model on wired NAT using test 1 
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TABLE 9: Results for Tests One and Two on Both Datasets using RF NAT Detection 

Model after Transfer Learning 

Dataset 1(1) 2(2) 3(3)   4(4)  

No Obfuscation 94.17 89.90 88.31 83.23 

Uniform obfuscation for sizes 89.97 89.90 87.65 83.23 

Random obfuscation for sizes 77.16 89.90 84.13 83.23 

Obfuscate sizes by adding dummy bytes 92.37 89.90 87.73 83.23 

Obfuscate sizes by padding them 91.28 89.90 87.06 83.23 

Uniform obfuscation of the number of packets 82.96 89.90 83.48 83.23 

Random obfuscation of number of packets 85.96 89.90 81.78 83.23 

Random obfuscation of duration 94.22 89.90 87.93 83.23 

Random obfuscation of timestamp 71.75 89.90 83.38 83.23 

Obfuscate all features with uniform obfuscation of 

sizes and number of packets 

42.69 89.90 81.70 83.23 

Obfuscate all features with random obfuscation of 

sizes and number of packets 

36.24 89.90 70.48 83.23 

Obfuscate all features with random obfuscation of 

the number of packets and padding sizes 

36.33 89.90 70.33 83.23 

Obfuscate all features with random obfuscation of 

the number of packets and add dummy bytes to 

sizes 

36.33 89.90 69.61 83.23 

Obfuscate all features with uniform obfuscation of 

the number of packets and padding sizes 

55.80 89.90 74.35 83.23 

Obfuscate all features with uniform obfuscation of 

the number of packets and add dummy bytes to 

sizes 

57.51 89.90 69.56 82.23 

average 69.64 89.90 80.49 83.23 

  

4.4 Host Number Identification  

4.4.1 Model selection 

We can treat the host counting problem either as a multiclass classification 

problem or a binary classification problem. Both wireless and wired NAT datasets have 

four classes. The classes represent the number of devices connected behind the NAT 

 
(1) Test 1 performed on the dataset presented in section 3.1.1 
(2) Test 2 performed on the dataset presented in section 3.1.1 
(3) Test 1 performed on the dataset presented in section 3.1.2 
(4) Test 2 performed on the dataset presented in section 3.1.2 
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within the aggregated time window. The number of devices is varied from one up to four 

based on the test done. Previous studies have implemented multiple algorithms to either 

approximate or find the exact number of hosts. Yet these studies are still limited to certain 

operating systems, or the maximum number of hosts hidden. In this thesis, the aim is to 

find a model that can detect the hidden network size without being limited to a specific 

type of OS or a maximum number of hosts in training data. For the second model, the 

multiclass problem is transformed into a binary classification problem. This will improve 

the classification, make more realistic predictions, and will not be limited to only four 

devices. The model will predict if the number of devices is few (<= 2) or many (>2).  

The proposed approach consists of a cascade of classifiers where the data coming 

out from the NAT detection algorithm is fed to a machine learning classifier to detect the 

size of the network. Similarly, nested time series cross-validation is used, and multiple 

machine learning algorithms are applied in case of multiclass and binary classification to 

find the best algorithm that can detect the size of the network. For this multiclass 

classification problem, the F1 score resulting after applying the machine learning 

algorithms is presented in Figure 17. In this figure, the red bars represent the F1 scores of 

the models proposed to detect the exact number of active devices behind the NAT. The 

green bars represent the F1 scores obtained by the models proposed to approximate the 

size of the network. In multiclass classification the RF classifier has the highest F1 score, 

whereas in the binary classification problem the XGBoost outperforms other algorithms. 

The binary classification model has higher F1 score than the multiclass in all implemented 

ML algorithms. This means that the approximate host count model gives more accurate 

results than the exact host count model. Besides, the highest F1 score reported by the 

multiclass model is about 62% which is considered low. Yet the binary model reported a 
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high F1 score which is about 90%. In this case, it is better to use the binary model because 

we are using data labeled with four classes and thus a multiclass model will not generalize 

in case there exist a higher number of devices. 

Although the multiclass problem yields a low F1 score, it is important in 

multiclass classification problems to see the confusion matrix in order to understand the 

model performance in each class. Figure 18 shows the confusion matrix of the Random 

Forest model. The confusion matrix shows that the model is more likely to make wrong 

predictions between near classes. The model shows that about 30% of the data labeled as 

two, i.e., there are two active devices behind NAT, is classified as one by the model. 

Similarly for the other two classes about 25% of the data belonging to class 4 is classified 

as 3 and 37% belonging to three is classified as four. Thus, a high percentage of near 

classes is misclassified which makes the F1 score for the counting model, i.e., multiclass 

model, is low. Although the model has a low F1 score, it has a low margin of error where 

Figure 17. F1 Scores for Different Machine Learning Algorithms for Binary and 

Multiclass Host Counting Models 
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it is making wrong predictions between near classes. In this case, the machine learning 

algorithm is not able to define fingerprints for near classes by examining the aggregated 

flow generated by the hosts. The performance of the model is expected because not all 

devices behind a NAT need to be active at the same time, or their activity starts together. 

Thus, even though in this time window there are two devices connected behind the NAT 

it might be that the first device activity starts at the beginning of this time window whereas 

the second device started almost at the end. This leads to a small number of flows coming 

out from device two which made the data resemble the case where there exists only one 

hidden device. Since the model fails to find patterns to differentiate between near classes, 

it is hard to predict the exact number of hosts in the presence of NAT. 

 

4.4.2 Generalizability Test 

Since the XGBoost classifier outperformed all other machine learning algorithms 

in the binary host counting experiments, we have evaluated its immunity to obfuscation 

and change in environment. The model generalization test is done on both wireless NAT 

Figure 18. Confusion Matrix to Explain Predictions 

in Multiclass Host Classification Model 
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dataset after obfuscation and wired NAT dataset with and without obfuscation. This test 

is performed by conducting the network size approximation experiment on the training 

data and then using the unseen data as a testing dataset to study the generalization. We 

implement the generalization test on the binary host counting model because it can detect 

the network size more easily. Similar to NAT detection, we test the XGBoost model on 

obfuscated data in the presence of obfuscated features (test one) and after removing all 

obfuscated features (test two).  

We started with assessing the model’s ability to adapt properly to obfuscated data 

drawn from the same distribution of the dataset used in training the model. This 

experiment is done using the obfuscated versions of wireless dataset. The F1 scores 

obtained are presented in Table 10. The table shows that the model performance when 

there is only one feature obfuscated is not highly affected except for random obfuscation 

of packet sizes. The lowest scores reported for other single feature obfuscated datasets is 

70.86% and 52.70% which is about 20% and 58% less than the F1 score reported on the 

data before obfuscation. This score is reported when obfuscating the features that are 

related to number of packets and packet sizes randomly. This means that the random 

obfuscation of packets and their sizes is highly affecting on the model’s decision. 

However, the model fails to approximate the number of devices when multiple features 

are obfuscated, and thus removing all obfuscated features in this case leads to less false 

predictions. Test two resulted in an F1 score equal to 76.81 which is higher than multiple 

scores reported in different obfuscation scenarios especially when multiple features are 

obfuscated. The host counting model was able to generalize when the testing data is 

obtained from the same distribution of the training data, even after obfuscation.  
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Table 10: Results for Tests one and two on Both Datasets Using the Host Counting 

Model 

 

We performed another experiment to test the model’s ability to generalize on data 

captured in a different network environment. This experiment is done on wired NAT 

dataset before and after obfuscation. Although the model reported high results on wireless 

NAT dataset, it fails to approximate devices in the wired NAT dataset. Table 10 shows a 

low F1 score reported by the XGBoost model in both tests on original and obfuscated 

data. The highest F1 score in this experiment is reported in test one is 64.52% and resulted 

 
(1) Test 1 performed on wireless NAT dataset 
(2) Test 2 performed on wireless NAT dataset 
(3) Test 1 performed on wired NAT dataset 
(4) Test 2 performed on wired NAT dataset 

Dataset 1(1) 2(2) 3(3)   4(4)  

No Obfuscation 90.63 76.81 64.52 82.58 

Uniform obfuscation for sizes 80.52 76.81 66.50 82.58 

Random obfuscation for sizes 52.70 76.81 38.55 82.58 

Obfuscate sizes by adding dummy bytes 84.48 76.81 54.40 82.58 

Obfuscate sizes by padding them 81.12 76.81 63.33 82.58 

Uniform obfuscation of number of packets 85.36 76.81 63.62 82.58 

Random obfuscation of number of packets 70.86 76.81 55.33 82.58 

Random obfuscation of duration 86.03 76.81 61.63 82.58 

Random obfuscation of timestamp 89.73 76.81 64.52 82.58 

Obfuscate all features with uniform obfuscation of 

sizes and number of packets 

55.19 76.81 55.98 82.58 

Obfuscate all features with random obfuscation of 

sizes and number of packets 

74.02 76.81 55.25 82.58 

Obfuscate all features with random obfuscation of 

the number of packets and padding sizes 

71.38 76.81 52.02 82.58 

Obfuscate all features with random obfuscation of 

the number of packets and add dummy bytes to 

sizes 

74.87 76.81 51.96 82.58 

Obfuscate all features with uniform obfuscation of 

the number of packets and padding sizes 

62.80 76.81 63.83 82.58 

Obfuscate all features with uniform obfuscation of 

the number of packets and add dummy bytes to 

sizes 

71.12 76.81 61.53 82.58 

average 75.39 76.81 58.20 82.58 
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before obfuscating this data. This score is still low and thus the model is not able to 

properly detect the network size behind a NAT. However, in test two the F1 score 

increased to reach 82.58%. Removing the features that could be changed due to 

obfuscation in the counting model improved the model’s performance on new data even 

after obfuscation. As in NAT detection, the model built from wireless NAT dataset cannot 

correctly predict the size of the network on data captured in a new network environment 

in test one. The counting model was able to generalize and detect the network size 

effectively in case of obfuscation and environment change in test two. 

 

4.4.3 Explainability of Host Counting 

In host profiling experiments XAI is used to explain the model’s ability to 

generalize and the low performance of multiclass model. SHAP mean absolute value for 

key features is plotted to see how the model is taking decisions and how the features are 

related to the class. SHAP is used to explain the reason the model fails to generalize and 

why the multiclass model has such a low performance. LIME is used in order to plot 

samples from datasets and see what makes the model generalizability harder. 

 

4.4.3.1 SHAP 

The host counting model fails to generalize when testing it on unseen data for test 

one. To explain the model’s ability to generalize, XAI is applied. To generate global 

explanation the absolute mean SHAP value for most key features is calculated. This value 

is plotted in a bar graph to show the SHAP feature importance. SHAP feature importance 

is an explainable method that illustrates how the proposed model is taking decisions. 

Figures 19 and 20 present the feature importance of both wireless and wired NAT datasets 
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respectively for test one. The red color represents “Small NAT” where the network behind 

NAT device contains more than two devices. The blue color represents “Large NAT” 

where the number of devices behind the NAT is less than or equal to 2. The distribution 

of red and blue colors is equal in both figures for all features. This means that both classes 

use these features equally. Figures 19 and 20 show that TTL unique values has the highest 

absolute mean SHAP value and thus it has the highest effect on the model’s decision. 

Thus, any change in TTL unique values might lead to false predictions. The average bytes 

received is the second important feature for wireless NAT data. However, in wired NAT 

dataset, looking at Figure 20 we can find that the average bytes received is not highly 

contributing to the prediction. The two datasets are different, they have different 

distribution of features and the fingerprints gained from the training data cannot be 

applied to the test data to make correct decisions. Figure 20 shows that the number of 

flows sent during the time aggregation widow size is an important feature that is 

contributing to the decision. In addition, the minimum interarrival time between flows 

has a high contribution in prediction. This means that these two new extracted features 

are beneficial in network size detection. Not only these two features are relevant but also 

aggregating features enhances the prediction rate because it increases the chance that 

more hosts would be active. 
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Figure 20. SHAP Mean Absolute Value for the Most Important Features for 

Wireless NAT Dataset 

Figure 19. SHAP Mean Absolute Value for the Most Important Features for 

Wired NAT Dataset 
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The second experiment was done to see the SHAP feature importance for both 

datasets when removing all features that can be affected by obfuscation. Yet the 

generalizability test results show that even in this test the proposed model is able to 

generalize in a new network environment. Figures 21 and 22 show the SHAP feature 

importance for the host counting model in test two. For wireless NAT dataset, looking at 

Figure 21 we can see that the TTL unique values are of the highest importance followed 

by the number of unique destination IPs. The features have equal effects on both classes.  

Similarly for the wired NAT dataset the feature distribution is similar to wireless dataset 

after removing all aggregated features that could be changed due to obfuscation. Although 

these remaining features are highly dependent on environment the model still able to 

generalize. To illustrate, the TTL unique values is the most important feature which has 

the highest SHAP mean absolute value, so it is the most contributing feature in the 

model’s decision. In case of small NAT, the maximum number of hidden hosts is set to 2 

in this experiment thus whatever the environment is the values will be either 1 if the two 

devices have same OS or 2 if the devices are from different OS. This made the decision 

rules learned from wireless NAT data applicable to the wired NAT data. 

Figure 21. SHAP Mean Absolute Value for the Most Important Features for Wireless 

NAT Dataset 
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Explainable AI is also used to understand why the multiclass host counting model 

was not able to detect the exact number of hosts. Figure 23 shows the mean SHAP values 

for the key features used by the model. The color bar which represents each class for each 

feature is not distributed evenly across the classes. This means that TTL unique values 

gives evidence when there exist 1 or 4 hosts connected since the color range for these two 

classes is larger. So, the model can differentiate between class 1 and 4 easily. However, 

it has minimum effect on detecting the other two classes. This made a bias between class 

near classes. To illustrate wired NAT dataset contains four devices with two operating 

systems, Linux and windows. This made the TTL unique values equals either 1 or 2. This 

led to the bias where when there are 2 devices with the same OS behind NAT the TTL 

unique value will be one and the model will predict this case as there is only a single 

device behind the NAT. Some features like average number of packets received are 

affecting equally all classes. 

  

Figure 22. SHAP Mean Absolute Value for the Most Important Features for Wired 

NAT Dataset 
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4.4.3.2 LIME 

Using LIME, we plotted the binary classifier decision explanation for data 

samples taken from wireless and wired NAT datasets. This plot represents how each 

feature value is affecting the model prediction. Figures 24, 25, and 26 show the LIME 

prediction explanation for the same data sample for wireless NAT dataset before 

obfuscation, after obfuscating timestamp features, and when obfuscating all features 

uniformly. Figures 27 and 28 correspond to the LIME explanation for the wired NAT 

dataset. From the figures we can conclude that when the total TTL unique value is two, 

there is evidence for a large network behind a NAT. When the number of TTL unique 

values is one, there is evidence for a small network hidden behind a NAT. This cannot be 

generalized since for a network that consists of many devices with the same operating 

system, the total TTL values will be one, but the network hidden is large. Yet the figures 

Figure 23. SHAP Mean Absolute Value Plot for the Most Important 

Features in wireless NAT Dataset 
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show that there are multiple important features that can help the model in making a correct 

decision. In Figures 24 and 25 the model predicts the class correctly although the 

timestamp features are obfuscated in Figure 25. Yet when multiple features are 

obfuscated, the models fail to find a pattern in the data which will be predicted correctly 

when applying the decision rule. For the new environment the model was able to predict 

the sample when there are few devices behind the NAT (<=2) but when the number of 

devices increases the model fails. To illustrate, there are some values that can be 

considered as a small network based on the decision rules of the RF classifier. To 

illustrate, Figure 26 shows that when the total and average TCP packets, and average 

bytes received are low the model is able to predict that there are few devices behind a 

NAT than for a large network. 

  

Figure 24. LIME Explanation for Data Sample Drawn from Wireless NAT Dataset 
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Figure 27. LIME Explanation for Data Sample Drawn from Obfuscated 

Version Wireless NAT Dataset 

Figure 26. LIME Explanation for a Sample in Wired NAT Dataset 

Figure 25. LIME Explanation when all Features are Obfuscated 
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Figures 29 and 30 show two data samples taken from test two after removing all 

obfuscated features for the two classes for wireless NAT dataset. Both samples are 

predicted correctly with high efficiency. The LIME plot shows that a sample with one 

unique TTL value and small values of unique destination IP and port, and unique source 

port represent the class when there are <=2 hosts hidden. On the other hand, when the 

TTL unique values are greater than or equal to 2 and the unique destination IP and port, 

and unique source port values are high, the sample belongs to large hidden network. 

Figures 31 and 32 represent two data samples from wired NAT dataset, one predicted 

correctly and the other wrongly predicted. The one with wrong prediction has two TTL 

unique values and higher values of destination IP and source port than the decision rule 

but it corresponds to a small hidden network. The data taken from a new environment 

corresponds, in Figure 31, represents an ordinary host. The high number of destination IP 

and source port corresponds to a high activity. Whereas based on the model, which is 

trained on wireless NAT dataset, high activity means that there is a NAT device. Yet, this 

data sample is coming out from an ordinary host, and this leads to a false prediction. 

Figure 28. LIME Explanation for a Sample in Wired NAT Dataset 
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Figure 31. LIME Explanation for a Sample in Wireless NAT Dataset 

Figure 30. LIME Explanation for a Sample in Wired NAT Dataset 

Figure 29. LIME Explanation for a Sample in Wireless NAT Dataset 
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4.5 Comparison Between Benchmark and Proposed Method 

 Table 11 presents a comparison between some benchmark studies and our 

proposed approach. Previous studies either concentrate on NAT detection using ML or 

host counting. Each proposed approach yields excellent results on the datasets used by 

authors. Yet authors in [20] stated that their algorithm outperforms all previous methods. 

It is the first that focuses on detecting whether malicious traffic is coming from a single 

host or from multiple hosts. Authors in [20] stated that using the same data in training 

and testing the implemented algorithm performs much better than using another dataset 

in testing. This is also confirmed in our algorithm and the results are reported in tables 7 

and 9 where the highest F1 score is when testing the model is evaluated using a test sample 

from the dataset used in training. Testing the model on a new data with different 

distributions leads to a reduction in model’s performance. Although the model in [20] 

gives satisfactory results on their dataset, as illustrated before there is no guarantee that it 

will perform well on all network environments. In addition, the authors have stated that 

their method is not dependent on port numbers, but they have used the destination ports 

Figure 32. LIME Explanation for a Sample in Wired NAT Dataset 
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as a feature to train the ML algorithm. Their method is limited to the number of classes 

used in training. Trying their algorithm in our dataset yields a 33.23% F1 score which is 

much less than the F1 score in both multiclass and binary host counting models. Authors 

in [21] implemented an algorithm to count and cluster IP traffic using machine learning. 

Unlike our proposed algorithm their algorithm works after separating traffic from 

different OSs. In addition, their algorithm works perfectly on their dataset, but it is 

incompatible with features obfuscation.  

Table 11: Comparison Between our Proposed Algorithm and Previous Studies 

Objective Shakula et al [20] Mateless et al [21] Proposed 

algorithm 

Detecting NAT devices x x ✓ 

Identifying network size 

or number of hosts hidden 
✓ ✓ ✓ 

Handling traffic 

obfuscation 

x x ✓ 

Handling new 

environment 
✓ x ✓ 

Handling malicious traffic ✓ x x 

  

4.6 Summary 

 This section presents the results and discussion of all implemented experiments 

in NAT detection and host number counting. It shows that the higher the time window 

aggregation the better the detection results. It shows that the implemented model cannot 

generalize and predict NAT or approximate devices in an unfamiliar environment. Yet 

after removing all aggregated features that could be changed due to obfuscation, the 

XGBoost network size detection model was able to generalize in the new environment. 

It is hard in the case of NAT detection to detect the exact number of devices. Host 

approximation is better than exact detection and it is not limited to a specific number of 

devices. Transfer learning has optimized the model such that is able to detect NAT in a 
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new network environment. When we have obfuscation, it is better to remove all 

obfuscated features because the obfuscation scenario used cannot be predicted.  
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CHAPTER 5 

CONCLUSION 
 

The main goal behind this thesis is to detect NAT devices through a supervised 

machine learning algorithm, approximate the number of hidden devices behind the 

detected NAT device using a machine learning approach, and study the generalizability 

of both models. This research was performed on a publicly available dataset [30] and the 

generalizability test was performed on obfuscated versions of the data and a new dataset 

collected at a wired network in the university labs. This thesis provides an ML approach 

to network features extracted from passively collected traffic data without being limited 

to a specific operating system. The model has high performance thus it can be used as a 

tool to help ISPs detect NAT devices and know how large the network is behind them.  

The NAT detection model uses a machine learning algorithm to find features in 

the traffic data that give evidence for NAT presence. Among all machine learning 

algorithms implemented on different window sizes, the XGBoost classifier was the best 

at a time window equal to one minute. The detection model uses only features that 

influence NAT presence, this step is done through feature engineering and selecting the 

most appropriate features. The algorithm was performing much better than the traditional 

algorithm presented in [9]. The NAT detection algorithm is trained and tested on a dataset 

captured on different dates with a different number of hosts, different applications used, 

and different operating systems. This dataset is used to remove all limitations when 

assessing the model’s ability to generalize. Based on the results it was shown that the 

model can detect NAT effectively on a dataset even after obfuscation, however, it fails to 

detect NAT devices in a new environment. After using explainable AI, it is extremely 
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hard to build a model that would be generalizable to general network environments since 

each environment has its characteristics. Even though the data set used to train the model 

has different variations, OS, and application uses, one cannot guarantee that another 

network will use the same operating systems or run the same application, or keep the 

application opened at the same time. Thus, packet sizes, number of packets, and 

interarrival time would be different. Besides after aggregation two datasets collected in 

different environments would not resemble each other. For this reason, transfer learning 

is used, and it is seen from the experiments that transfer learning builds an optimized 

model that has reliable performance in new environments. 

The host counting model is also based on a machine learning approach that will 

search for patterns in traffic data that give evidence of the hidden network size. Two 

methods were adopted: exact host number identification and host count approximation. 

In host identification, XGboost and RF models show the best performance. The detection 

accuracy was low however, because the model was making wrong predictions for near 

classes. This is because we are depending on features presented in Table 2 and these 

features are highly affected by the number of packets sent in a flow, the size of packets, 

the duration, and when the application is opened. Thus, there is no guarantee that multiple 

users behind a NAT will be active at the same time. Thus, even though flow aggregation 

will decrease the number of false predictions, it was not able to prevent these predictions 

between near classes. So, the problem is transformed into a binary problem where the 

size of the network hidden is predicted. In this way, the model is not limited to a specific 

number of hosts. The XGBoost model gives a promising result in host approximation 

even after obfuscating the data. It also cannot generalize after removing obfuscated 

features. Yet when having all the features, it was hard to generalize because each 
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environment has its characteristic. In case of network size detection, it is better to remove 

all obfuscated features in case of obfuscation or environment change. 

Using aggregated features improves the detection rate in both NAT detection and 

counting models. Both number of flows extracted per the time aggregation window size 

and the interarrival timing between flows are relevant to the detection algorithm. In both 

counting and NAT detection they are highly contributing based on the SHAP feature 

importance. These new features and the aggregation decrease the false predictions. 

Based on this research there are some studies that should be tackled in the future: 

1. Training and testing the counting model on data that contains more 

devices. 

2. Find a way to remove the bias in exact host counting model and remove 

the limitation on the maximum number of hosts predicted. 

3. Include IoT devices instead of using only desktops, laptops, and mobile 

phones. 

4. Study if there is a way to normalize network traffic features such that the 

environment effect is removed.  
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