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ABSTRACT

OF THE DISSERTATION OF

Julia Wajdi El Zini for Doctor of Philosophy

Major: Electrical and Computer Engineering

Title: Theoretical Guarantees of Contrastive Learning in a Novel Explainable AI

Method and a Deep Fairness Evaluation Framework

Given the social implications of autonomous systems in high-stake areas, recent

years have witnessed an outpouring of research on designing explainable and fair

AI models. In this work, we consider the intersection of contrastive learning with

explainable AI and fairness evaluation schemes. Current methods that provide con-

trastive explainability do not simultaneously satisfy model-agnosticism, immutabil-

ity, semi-immutability, and attainability constraints. In the fairness framework,

existing metrics rely on statistical and causal tools that do not cover all bias cases

and do not leverage advances in contrastive learning.

To this end, we present CEnt, aContrastive Entropy-based explanation method,

to locally contrast the prediction of any classifier. CEnt generates contrastive exam-

ples and visual contrasts that achieve better proximity rates than existing methods

without compromising latency, feasibility, and attainability.
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We utilize contrastive sets to devise a novel individual fairness evaluation tech-

nique that respects attainability and plausibility by relying on a manifold-like dis-

tance metric. Inspired by counterfactual ExAI, we suggest three metrics to evaluate

the faithfulness of our metric and we study its interconnection with attainability

and plausibility. We demonstrate the effectiveness of our method at detecting bias

cases missed by other metrics that do not always satisfy faithfulness requirements.

Furthermore, we extend our fairness metric to textual settings by developing a

local method to detect bias cases in textual settings with little reliance on existing

ontologies. Our evaluation method computes the statistical mutual information

and the geometrical inter-dependency with the sensitive information embedding to

evaluate the fairness of a classifier. Likewise, we extend contrastive faithfulness

guarantees to natural language by relying on transformers’ encodings.

Lastly, we devise a novel mitigation strategy that operates in the latent space by

encouraging a classifier to have the same outcome when the latent representation

is perturbed with a sensitive direction. Our strategy is effective at diluting, even

removing, bias in classifiers without compromising performance.

Our work motivates follow-on research in the fields of contrastive explainable AI,

bias detection, and mitigation in deep networks. Generative models can be employed

to improve the privacy guarantees of our techniques and enhance the quality and

plausibility of the generated contrastive examples.
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Chapter 1

Introduction

Ever since their introduction, Deep Learning (DL) models are revolutionizing sev-

eral fields ranging from computer vision [1], [2] and machine translation [3]–[5] to

question answering [6]–[8], generative models [9]–[11] and complex decision making

tasks [12], [13]. AI-powered systems that mainly use DL models can make very ac-

curate predictions or decisions on a wide range of tasks. However, how credible and

trustworthy these predictions are if the reasoning behind them is a highly non-linear

enigma that cannot be easily deciphered?

The black-box nature of DL models gave rise to several criticisms of their non-

transparent predictions that are not easily traceable by humans. Relying more

and more on AI for decisions requires ethical decisions that are free from unjust

biases. The need for responsible AI systems that are transparent, explainable, and

accountable is more pronounced than the need for accurate smart systems in high-

stakes applications. Moreover, transparency is not only needed on the prediction

level; some situations require DL models that achieve transparency on the learning

level. For instance, DL models which learn from curated datasets might engender

bias [14], [15] that is not easy to detect due to the black-box nature of DL. Hence,

interpreting such models, on the encoding level, is crucial to ensure fair treatment

of individuals.
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These concerns led The US Federal Trade Commission to issue new guidelines

requiring AI systems to be open, explainable, and fair. Moreover, the General Data

Protection Regulation (GDPR) of the European Union mandates transparency for

algorithms and fair representation and treatment in AI systems. Whether or not

they operate in the European Union, industries that develop and use data-driven

systems are moving into ensuring these regulations. That being the case, data

and algorithmic accountability witnessed explosive growth mainly nurtured by the

invasive use of autonomous systems and the regulations imposed by legal institutions

on data and smart processes.

Accordingly, researchers are extensively engaged in the fields of accountability,

fairness, and explainability [16], [17]. This is reflected in developing methods to ex-

plain AI decisions and learned representations for different data types. Additionally,

researchers are working on providing fairness definitions and bias detection meth-

ods in numerous applications. This is mostly accompanied by several techniques to

neutralize learned representations and mitigate bias in decision-making systems.

Looking at existing approaches in Explainable AI (ExAI), several methods are

proposed to provide post-hoc interpretations by looking for input features, or sets

of features, that influence the model’s decision [18]–[20]. However, practitioners and

data subjects pose strong requirements on the usefulness aspect of explanations

which implies a selective, contrastive, and social process [21], [22]. This aspect en-

tails an actionable plan which serves as a constructive feedback when the prediction

is not favorable. As an example, a loan applicant is more interested in how to get

their applications accepted rather than the reason behind the rejection [23]. To

this end, ExAI is witnessing a new vein of methods explaining decisions through

contrastive learning motivated by the seminal work of [23]. These recourse meth-

ods (a.k.a counterfactual) search for a proximal input that can alter the prediction.

They often employ causal graphs, gradient-descent, discriminative, and evolutionary

15



algorithms to generate Contrastive Examples (CEs) while satisfying feasibility con-

straints [24]–[26]. Apart from being able to contrast the outputs of various models,

the most wanted desiderata of counterfactuals are plausibility, attainability, and di-

versity. While contrasting the output is successfully achieved by all methods, other

requirements partake in a trade-off and are rarely simultaneously satisfied. For in-

stance, some methods violate constraints [23], others do not always yield attainable

counterfactuals [27] or output a unique CE based on a proximity measure [28].

Similarly, focusing on fairness in AI literature, one could compile more than

twenty different definitions and metrics of fairness that were proposed over the course

of the past few years [29]. The simplest and most intuitive definitions are based on

the predicted and actual outcome for the different demographic distributions of

subjects such as group fairness, statistical parity, and equalized odds [29]. Other

definitions are not statistical, they rely instead on causal reasoning [30], [31]. These

definitions do not only differ from a theoretical perspective; their outcome might

also significantly disagree [32], [33]. In addition, the presented definitions cannot all

be satisfied at the same time as proved in [34]. Despite their potential, there are dis-

crimination cases that existing fairness metrics cannot directly detect. Those cases

are (1) non-tabular settings where protected (sensitive) attributes are not explicitly

reported, (2) situations where sensitive attributes are a legacy, (3) the comparison

of the individual to an un-attainable counterpart, and (4) the reliance on distance

metrics that do not reflect real-world similarity-based measures. On the other hand,

de-biasing classifiers remains a challenge especially when it currently relies on the

availability and the quality of analog associations and pre-defined parallels that are

specific to sensitive attributes [35], [36].

In this work, we extend contrastive learning to resolve the shortcomings of ex-

isting ExAI methods, fairness evaluation, and bias techniques. Our contribution

is four-fold. First, we design a Contrastive Entropy-based Explainability method,
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CEnt, under feasibility, immutability and semi-immutability constraints while satis-

fying proximity and user-defined costs. Given an observation x, CEnt samples k local

neighbors of x based on manifold-like distance approximated by Variational Auto-

Encoders (VAEs). Then, CEnt approximates a black-box machine learning model

by a decision tree in the local neighborhood. A graph is built on top of the trained

tree via a carefully-designed edge weighting scheme that compactly integrates the

constraints. A one-to-many graph search technique then serves as a diverse coun-

terfactual generation scheme in low-entropy decision sub-spaces. CEnt is the first

model-agnostic recourse method that does not pose differentiable requirements on

the black-box model and satisfies immutability and semi-immutability constraints.

It can also deal with categorical data and generate diverse counterfactuals that are

attainable according to the underlying data distribution while allowing for user-

defined feature costs. Our validation demonstrates the effectiveness of CEnt as it

yields proximate counterfactuals while achieving high attainability and low latency

and constraint violation rates. Our extension to imagery data and convolutional

neural networks (CNNs) shows that CEnt can derive visual contrasts that are min-

imal and more useful than traditional explainability methods such as LIME [37].

Lastly, CEnt can highlight weaknesses of textual classifiers by deriving adversarial

attacks.

Second, we present a Faithful Contrastive Fairness (FCF) as an individual fair-

ness metric [38] that considers concentric neighbors around an individual and com-

putes the corresponding contrastive cost. We define the contrastive cost to be the

change required in the input features to modify a classification from an unfavorable

outcome to a favorable one (or vice versa). A prediction is considered fair if these

costs do not entail a change in the protected attribute or its dependents. More

importantly, the neighborhood is derived based on a manifold-like distance metric

computed by auto-encoders that account for data density and attainability. In the
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same vein, we consider the assessment schemes, and we target a novel evaluation as-

pect of the plausibility and attainability aspect of the generated counterfactuals. We

argue that counterfactuals should (1) meet textual attainability from a grammatical

and semantic perspective, (2) convey connectedness to their original counterparts,

and (3) satisfy local algorithmic stability. Accordingly, we extend proximity, con-

nectedness and stability, in the context of faithfulness [39], [40], fairness frameworks

and we propose tangible measures to quantify them. We empirically demonstrate

how our metric satisfies faithfulness guarantees and detects bias cases missed by

other methods.

Third, we extend contrastive fairness evaluation to textual settings where sen-

sitive attributes are not explicitly manifested. We study the decision of a deep

textual classifier by approximating its boundary in a local neighborhood. A model

f is deemed fair if the computed decision boundary does not encode any sensitive

information. We compute the sensitive attribute (SA) through Principal Compo-

nent Analysis (PCA) or as a multivariate random variable with different realizations.

Accordingly, we propose two measures inspired by geometrical analogies and mutual

information. Within the Natural Language Processing (NLP) context, we extend

the evaluation of contrastive faithfulness to textual data and we evaluate two state-

of-the-art contrastive explanations models based on the proposed metrics. We study

the effectiveness of our evaluation scheme on deep transformers and convolutional

models in NLP using different SAs.

Finally, we devise a methodology to mitigate bias in classifiers and ensure our

proposed contrastive fairness. The mitigation strategy can be incorporated during

training to yield an inherently fair model. Alternatively, it can be used to neutralize

a classifier in the latent space with no assumptions on the underlying classifier. More

importantly, our mitigation scheme is not limited to tabular data; it can be extended

to classifiers that operate on imagery and textual inputs. Our strategy is the first
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augmentation technique that operates on the latent rather than the input space

of classifiers. This alleviates the need for SA ontologies as a preparatory manual

step. We demonstrate how our metric significantly reduces textual bias without

compromising prediction quality. Additionally, we show that our mitigation yields

an improvement in existing fairness metrics such as equality of opportunity and

equalized odds.

The contribution of this dissertation can be summarized as follows.

• Objective I: We consider counterfactual explainability and we propose a novel

contrastive explanation method.

– We formulate a novel counterfactual explainability method, which min-

imizes the edit cost through graph search by employing a manifold-like

distance metric learned by VAEs.

– We extend our method to computer vision settings to derive visual con-

trasts between two confusing classes.

– We extend CEnt to textual settings where we use the Bag-of-words rep-

resentation to generate adversarial attacks on textual classifiers.

• Objective II: We consider fairness and we propose a novel faithful contrastive

fairness (FCF) evaluation scheme.

– We present FCF, the first fairness definition that can be extended to non-

tabular data and that accounts for data distribution and attainability.

– We devise a manifold-like distance computed by auto-encoders to derive

similarities that reflect application-specific constraints.

– We devise faithfulness evaluation of fairness measures and suggest corre-

sponding quantification steps.
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• Objective III: We extend the contrastive fairness evaluation and faithfulness

guarantees to textual data

– We quantify the sensitive attribute information in textual classifiers by

applying PCA on the embeddings of predefined analogies.

– We study the fairness of a classifier through metrics inspired by geomet-

rical relationships and mutual information.

– We extend faithfulness evaluation to textual data and we benchmark

existing models accordingly.

• Objective IV: We suggest latent and contrastive bias mitigation methods to

operate in pre- and post-hoc settings.

– We devise an inherent bias mitigation technique to enforce contrastive

fairness for classifiers during training.

– Alternatively, we suggest the first augmentation technique that operates

on the latent space to provide fairness guarantees at modest performance

costs with little reliance on word ontologies.

The rest of this dissertation is organized as follows. First, we present the ter-

minology that we follow in this work in Chapter 2 and we survey existing work

on explainable AI, fairness evaluation, and bias mitigation in Chapter 3. Then,

we examine the methodology of our objectives and their empirical results in Chap-

ter 4, 5, 6 and 7. Lastly, we conclude in Chapter 8 and we highlight future research

directions.
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Chapter 2

Background

This chapter presents the terminology that we follow in this dissertation for explain-

able AI and the background for fairness.

2.1 Explainable AI: Terminology

Explainability methods are categorized according to their mode of application (the

“when”) and the knowledge type they are trying to interpret (the “what”).

2.1.1 The “when” of Explainability

Based on the explanation mode, i.e., whether explainability is performed on pre-

trained models or before building the architecture, ExAI methods can be categorized

into:

Post-hoc interpretability These methods operate on pre-trained models with

predefined architectures by analyzing how they process inputs before producing a

decision. When no assumptions are made on the model, the interpretability method

is model-agnostic. If the method entails a particular architecture, the method is

model-specific.
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Inherently interpretable models A less popular line of work develops mod-

els, from the ground up, that provide supporting evidence while processing input

by modifying the underlying /architectures and learning strategies. The most fa-

mous examples of inherent interpretability are linear models and decision trees. The

parameters in the former models quantify the feature importance and the decision

in the latter models is a sequence of human-understandable if-then rules. In more

complex models, generative models are used with other architectures to learn to

generate fine-grained explanations while making classification decisions.

Despite their simplicity, inherently explainable models do not leverage state-

of-the-art existing deep networks. For instance, retraining deep models such as

the BERT-like family [41] and GPT models [42] with the explainability constraint

can be computationally expensive. Retraining might not be feasible with strict

privacy limitations or when training data is no longer available. On the other hand,

explaining black box models in a post-hoc manner, rather than creating models that

are interpretable in the first place, might perpetuate bad practices. Mainly, post-

hoc explanations do not present perfect fidelity to the model being explained. They

could be an inaccurate representation of the original model in the feature space.

Therefore, the interpretability mode must be carefully chosen in high-stake areas

such as criminology and law. Given that they harness the power of deep learning

and the advancements in the training process and the use of transfer learning, post-

hoc interpretability is gaining more interest within the ExAI community.

2.1.2 The “what” of Explainability

Explaining machine learning models occurs on three different levels: prediction (local

and global), learning, and training. ExAI methods are ergo categorized, according

to their explanation type, into four parts. Local prediction Local methods are
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data-centric approaches that try to answer the question “why did the model predict

y1 on input x1?” These methods provide explanations in terms of input features that

are crucial for a particular output on a specific testing instance. Predictive models

in critical areas can employ these methods to augment their predictions with sup-

porting evidence to engender users’ trust.

Global categorization Like local methods, global methods are also data-centric

approaches. However, they try to answer the question “Why does the model predict

an output y in general? What are the features that are crucial for the classification

of this specific class/label?” They provide insights into the prominent features of the

entire class in a trained classifier. The explanation is provided as a human-relatable

concept that is common in all instances of a certain class/label. These methods

can help AI practitioners debug their models and understand the contrast between

predictions.

Learned knowledge and characterization of hidden features These meth-

ods are network-centric approaches that answer the question “What is this neuron

trying to learn? or how can the neuron’s activation be qualitatively explained?”

They provide an interpretation of the internal state in terms of human-friendly con-

cepts that apply across the entire dataset and go beyond per-sample features. In

other words, they provide some matching between individual hidden units and a set

of semantic concepts by studying how patterns are encoded in the hidden layers of a

deep network. These methods are the main hope of rendering the black-box models

less opaque by revealing their learned knowledge. They can also expose vulnerabil-

ities, unintended correlations, and bias cases.

Learning dynamics These methods are network-centric approaches that study
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the whole learning process and provide higher-level insights such as: “When is the

class-specific information formed? What is the effect of freezing or the order in which

the training instances are fed to the network?”. In addition to this, they study how

different training regimes affect the performance of deep neural networks.

2.2 Fairness Terminology

Let A be a set of protected attributes, sensitive attributes that each individual must

not be discriminated against. Sensitive attributes include but are not limited to

race, color, sex, sexual orientation, age, physical or mental disability, marital status,

pregnancy, religion, political opinion, national extraction, and social origin. In each

category, we are presented with a privileged and underprivileged group. While some

attributes are binary (e.g. pregnancy), other attributes, such as race and religion,

present a multi-label aspect.

We denote by X, the set of observable attributes and Y is the outcome. Ŷ is the

predictor that depends on A, X, and some other relevant latent attributes that are

not observed. We note that Y might encode some historical or prejudicial biases.

The goal is to study the fairness of the predictor Ŷ . For simplicity, we assume that

Ŷ has two outcomes: a favorable and an unfavorable one.

Individual fairness entails that two close individuals are treated alike by a pre-

dictor Ŷ . In other words, if they only differ by their protected attributes, and the

privileged individual receives a favorable outcome, a similar treatment should be

observed for the underprivileged one.

Group fairness considers the group, and studies the probability of assigning a

favorable/unfavorable outcome for the privileged and underprivileged groups. More

details on the different metrics are presented in Section 3.2.1.
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Chapter 3

Related Work

Contrastive learning is proposed to enhance the performance of classification tasks

by leveraging contrasts in the training data. Mainly, samples are contrasted against

each other to teach the network about attributes that are common and distinct

between classes. In other settings, contrastive learning aims at augmenting the

dataset with versions of the same sample close to each other while forcing distinct

embeddings for different samples [43]. Given its potential at enhancing performance,

contrastive learning has recently become a dominant component in different learning

paradigms such as supervised and self-supervised learning methods for computer

vision and natural language processing.

For instance, contrastive learning is shown to be effective at enhancing clustering

[44] debugging [21] and classification robustness through contrastive augmentation

[45], [46]. Contrast sets are also extensively used in the evaluation of NLP models

by exposing their vulnerabilities [21], [45], [47]–[51].

In the context of fairness, researchers augment their dataset with contrast exam-

ples where only the sensitive attribute is perturbed while maintaining the prediction

outcome [35], [52]–[54]. These techniques are proved successful at neutralizing tex-

tual classifiers [36] and language models [52] while enhancing the robustness in most

cases.
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In what follows, we discuss how contrastive learning is used in explainable and

fair AI. To this end, we report the related work to each of our three objectives.

We start by surveying explainable AI techniques in their traditional and contrastive

formats. Then, we discuss existing fairness measures and evaluation techniques

in general settings, text, and imagery. We pay special attention to the distance

measures used in such settings to introduce the faithfulness concept later. Finally,

we survey existing bias mitigation techniques in different modalities.

3.1 Objective I: Contrastive Learning for Explainability

In what follows, we discuss state-of-the-art work on traditional methods in explain-

able AI. Then, we move to survey the counterfactual aspect of explainability.

3.1.1 Explainable AI

One of the first attempts at ExAI was carried out by [55] in 2010 by relying on local

gradients. Their work addresses the question of why a black-box model predicted a

particular label for a single instance and what input features contributed the most

to a particular outcome. The estimation of the local gradient induced a quantifica-

tion of the importance of a data point in altering the predicted label where higher

gradients implied more important features. Based on the gradient concept, [56],

[57] optimized the gradient-based approach and generalized its applications to cases

where the computation of the gradients is problematic. Gradient-based methods

are also congenial to imagery applications where individual pixels can be seen as

features. In computer vision settings, saliency maps are the common term used to

identify relevant regions in an image and to provide a type of quantification of the

importance of a pixel in classification.

Gradient computation has also attracted researchers to develop efficient and

fast methods for saliency computation. One of the earliest saliency methods was
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proposed by [58]. Their method, which falls under sensitivity, computes the gradient

of the class with respect to the image pixels and assumes that salient regions are at

locations with high gradients based on the assumption that high gradient locations

are important for the classification since their perturbation has a great effect on the

output of the network. Later, many popular methods relied on the backpropagation

of the gradient from the deepest layers of a network and its projection on the image

to derive a gradient saliency map [18], [59], [60]. These techniques are widely used

to explain visual recognition and object localization outcomes where relevant pixels

are masked or highlighted (mostly with different intensities) as in [61], [62].

Instead of computing the gradient of the predictor with respect to an input fea-

ture, some approaches rely on perturbing the input and observing the impact on

the predictor. Perturbation-based approaches construct explanations by analyzing

the model’s response to local changes in the input. [18] suggest performing local

perturbations by masking portions of the input. Once some portions are occluded, a

sensitivity analysis of the classifier output is performed to reveal the image parts that

are important for the classification. Perturbation-based approaches are also appro-

priate in computer vision settings. For instance, the prediction difference analysis

method of [63] samples within the pixel neighborhood to analyze the importance of

an input feature. The relevance of a feature x is estimated by how the prediction of

a class would change when all the features, except x, are used.

Another category in ExAI methods stems from neuroscience. To understand

brain function, one of the most fundamental questions that the researcher tries

to investigate is what types of stimuli excite neurons and drive them to fire? In

the ExAI field, Activation Maximization (AM) methods address this question by

focusing on the preferred stimuli that provoke a neuron in deep networks to fire

strongly. AM techniques are heavily applied in imagery settings: given an input

image x ∈ RH×W×C and the parameters θ of a classifier, a neuron il in a layer l,
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finding the image that maximizes the activation ail(θ, x) is formulated by [64] asthe

following optimization problem x∗ = argmaxx ail(θ, x). Gradient ascent algorithms

are then used to solve the optimization at hand.

In natural language applications, some text-specific challenges hamper the ap-

plication of general ExAI methods into NLP models due to the fusion of syntax and

semantics in words, polysemy, and ambiguity. For instance, perturbation methods

cannot be directly mapped to NLP due to the reliance of the latter models on em-

bedding models that are opaque representations, as opposed to pixels or numerical

values as we show in our work in [65]. Long-term dependencies, multi-lingual sup-

port, and learned stereotypes present additional challenges to ExAI techniques in

NLP.

A great deal of ExAI techniques investigates the semantic and syntactical infor-

mation learned by language models. In fact, several methods have been proposed

to dissect the inner dynamics of transformers to better understand how they pro-

cess input and why they do it so well. Such approaches can be the first building

block in the process of making transformers trustworthy by rendering their inner

workings understandable [66], [67]. They can also engender users’ trust by explain-

ing the knowledge learned by transformers and their parameters [68], [69] and by

highlighting their limitations [70].

Due to their design, attention weights are relatively more interpretable than the

conventional deep networks’ parameters. Visualizing the inner weights and hidden

representations of transformers can render the predictions more explainable [71]–

[73]. However, solely, attention weights are not able to provide the full transparency

that responsible AI entails where further processing is needed when the task at hand

is not a simple classification but a more complex task such as translation, question

answering, and natural language inference [14], [74].
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3.1.2 Counterfactual Explainability

While the definition of parameter sensitivity differ with each method, the major-

ity of these explanation methods operate on features that are present in the input,

even if they may result in explaining features that are negatively contributing to the

decision of the ML model [75]. One can alternatively explain a model decision by

the necessary and/or sufficient condition that should be present or absent or even

changed to justify or a particular decision by the model. Counterfactual explainabil-

ity methods look for proximate input that can alter the model prediction from y1 to

y2. Formally, assuming a predictor, potentially non-linear, f : X 7→ Y , an instance

xi ∈ X such that f(xi) = yfact and a foil class yfoil, a counterfactual xi
cf ∈ X can

be computed by:

argmin
xcf

d(xi
cf ,x

i) (3.1)

subject to f(xi
cf ) = yfoil (3.2)

where d(.) is a distance metric. This optimization can be also perceived as

argmin
xcf

L(f(xi
cf ), yfoil) + λd(xi

cf ,x
i) (3.3)

in the Lagrangian notation, with l(.) denoting a loss function and λ > 0 is a reg-

ularization factor that balances the minimal edit distance (through minimizing the

distance between the factual and the counterfactual) and the success rate (by finding

a counterfactual that successfully changes the model’s decision).

Depending on the method, restrictions and assumptions might complement the

above definition. For instance, model-specific recourse methods [24] put assumptions

on f whereas model-agnostic ones assume a black-box architectures [76], [77].

Miller et al. [78] introduced contrastive explanations by relying on foundations in
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philosophy and cognitive science as two types of contrastive why-questions: alterna-

tive why–questions, addressing the “rather than” part, and congruent why–questions,

addressing the “but” part. Very recently, Dhurandhar et al. [75] argued that such

forms can be found in many human-critical domains such as medicine and criminol-

ogy. Thus, Dhurandhar et al. were the first researchers to propose a novel method

that, given an input, finds the contrastive perturbations—minimal changes that are

required to change a particular decision for any black-box deep model. This is

achieved by solving an optimization problem searching for the minimal sufficient

condition that needs to be present (in the case of pertinent positive explanation)

or absent (in the case of pertinent positive explanation) in the input to change its

classification. Their approach is validated on MNIST, a large procurement fraud

and a brain activity strength datasets.

Prior to that, Ribeiro et al. [79] searched for the sufficient conditions to justify

classification decisions for a particular category or class. Consequently, instead

of computing the perturbation needed in a specific instance for the output to be

perturbed as in [75], [79] compute the feature values that can imply the whole class

as global rules (or anchors). The approach is validated on tabular, textual and

imagery datasets in a set of classification, structured prediction and text generation

tasks.

Later, [80] generalize the contrast suggested by [75] as a contrast between the

produced output, fact, and any arbitrary other class to the contrast between the fact,

and a specific output of interest, the foil. This is achieved by training a decision

tree centred around a particular point of interest to learn the contrast between the

fact and the foil. Once the tree is computed and the fact leaf is located, search

algorithms are employed to search for the nearest foil leaf which results in a set

of rules that represent the contrastive explanation of the model’s decision. Their

approach is validated on three tabular benchmarking datasets: Iris, PIMA Indians

30



Diabetes and the Cleveland Heart Disease datasets [81].

Instead of approximating models by local trees as in [82], [83] computed con-

trastive explanations by relying on the SHAP method introduced by [20] as a uni-

fied approach to interpret machine learning models predictions in a model-agnostic

manner. Their pipeline is tested and discussed on the IRIS, wine quality and the

mobile features dataset. Dhurandhar et al. [84] also considered model-agnostic ex-

planations, for structured datasets, having both real and categorical features. The

validation on diverse datasets proved the outperformance of the counterfactuals over

traditional explanations provided by [85]. The effectivess of these counterfactual ex-

planations lead to their application on Reinforcement Learning (RL) environments

in [82] where the contrast of interest is designed to be between the consequences of

the user’s query-derived policy and the optimal policy learned by an RL agent.

In summary, researchers are recently showing a growing interest in contrastive

methods that resemble human argumentation and that are showing their effective-

ness in different domains. However, such methods are still in their vanilla versions.

For instance, different weighting techniques suggested by [22] can be applied to the

work of [80] and advanced search algorithm have the potential of enhancing their

contrastive explanations. Moreover, the majority of these methods do not test on

a set of well defined benchmarking data, and are bounded to tabular or structured

datasets. In this work, we intend of extending the work of [80] by considering edge

weight in advanced tree-building strategies while validating on a new set of tasks,

including textual data if time permits. Table 3.1 shows a summary of existing meth-

ods that are relevant to our work aggregated by their formulation of the contrastive

explanation, the data type they are evaluated on, the method used to compute the

contrastive explanation and whether they are model-agnostic or not.
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Model- Immu- Categorical Semi- Diversity Gene-
agnostic tability immutability rated

CEM [28] ✗ ✗ ✗ ✗ ✗ ✓
AR [24] ✗ ✓ Binary ✓ ✗ ✓
[23] ✗ ✗ Binary ✗ ✗ ✓
GS [86] ✓ ✓ Binary ✗ can be extended ✓
REVISE [87] ✗ Binary Binary ✗ ✗ ✓
CLUE ✗ ✗ ✓ ✗ ✗ ✓
FACE [76] ✓ Binary Binary can be extended ✗ ✗
DiCE [27] ✗ ✓ Binary ✓(post-hoc) ✓ ✓
CRUDS [88] ✓ ✓ ✗ ✓ ✓ ✓
CEnt ✓ ✓ ✓ ✓ ✓ ✓

Table 3.1: Summary of existing contrastive explanation methods based on their
underlying assumptions (gradient-based approaches are not model-agnostic) and on
whether they handle immutable, semi-immutable, and categorical features. We also
highlight methods that can generate diverse counterfactual examples (CEs) and
those whose CEs are generated or selected from the training set.

3.2 Objective II: Faithful Fairness Evaluation (FCF)

We dedicate the next part to surveying existing metrics for fairness evaluation and

we discuss their limitations. Then, we discuss the distance measures used in the

evaluation schemes before introducing the manifold-like distance scheme.

3.2.1 Existing Fairness Definitions

Many definitions for fairness exist in the literature [16], [29]. In what follows, we

summarize some of the causality-based and statistical ones.

Definition 1 (Fairness Through Unawareness, FTU). A predictor is fair if the

protected attributes are not explicitly used in the decision-making process. Formally,

Ŷ is fair if Ŷ (X,A) = Ŷ (X).

For instance, any mapping Ŷ : X 7→ Y that excludes A from X satisfies this

definition. Despite its simplicity, fairness through unawareness does not account for

the case where the sensitive attribute is not used in the decision-making process but

its dependents are. While the literature [31] highlights the aforementioned short-

coming; we argue that an unpretentious exclusion of the features dependent on A
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can resolve the issue. Their exclusion, however, might compromise the performance

of Ŷ highlighting therefore the trade-off between fairness and accuracy.

Definition 2 (Individual Fairness, IF). A predictor is fair if for similar individuals

the prediction is the same. Formally, Ŷ is fair if for individuals i and j where

d(i, j) is small, their prediction Ŷ (X(i), A(i)) ∼ Ŷ (X(j), A(j)) for a distance metric

d(., .)[38].

According to [38], d(., .) needs careful selection and understanding of the appli-

cation domain. We add to this shortcoming the following empirical considerations.

First, in the case of multiple protected attributes, or when the set of features de-

pendent on A, DEP (A), is considered, the similarity measure between i and j is

not easily defined. Furthermore, the notation does not take into consideration the

∂Ŷ
∂A(i) and the implementation needs to exhaust the neighborhood of an individual

according to d(., .).

Definition 3 (Demographic/Statistical Parity, DP). A predictor is fair if both priv-

ileged and underprivileged groups have the same probability of being assigned to the

favorable outcome c. Formally, P (Ŷ = cfavorable|A = 1) = P (Ŷ = cfavorable|A = 0).

This definition ignores any possible correlation between Y and A. Consequently,

fairness with respect to demographic parity requires that, for all groups, the same

ratios are selected for each class c. This might compromise the model’s performance

as well.

Definition 4 (Equalized Odds). A predictor is fair if the prediction is independent

of A conditioned on Y which leads to the definition of the equality of opportunity.

Definition 5 (Equality of Opportunity). A predictor is fair if the positive prediction

is independent of A∥Y .

Trying to satisfy the last two fairness definitions can increase the gap between

privileged and underprivileged groups. For example: trying to satisfy the same
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acceptance rate for groups A and B in a hiring algorithm will lead to accepting more

A if the number of qualified candidates from group A was higher. Consequently, A

might have a higher income and can thus afford better education for their children

who will more likely get well-paid jobs increasing thus the gap between A and

B. Similar definitions include but are not limited to predictive parity, predictive

equality, and disparate impact.

In [31], the authors argue that it is not immediately clear how to tackle historical

bias in the aforementioned fairness definitions. Moreover, the dependency between

attributes should be taken into consideration, even if this necessitates strong assump-

tions. To remedy that, they study fairness from a causal perspective by introducing

counterfactual fairness.

Definition 6 (Counterfactual Fairness). A predictor Ŷ is counterfactually fair if un-

der any context X = x and A = a, P (ŶA←a(U) = y|X = x,A = a) = P (ŶA←a′(U) =

y|X = x,A = a) for all y and any value a′ attainable by A with U being the set of

relevant latent attributes which are not observed.

This definition enforces that the distribution over possible predictions remains

unchanged when protected attributes are causally different. However, its gener-

alization to datasets where the protected attributes are implied (such as images)

is impractical. In such cases, the alteration of the attributes is not as easy as a

simple modification of a tabular dataset. Additionally, the authors consider permu-

tations of protected attributes and their (causally) dependents which can have two

limitations. First, in the case where multiple attributes are correlated, or causally

dependent on A, exhausting different combinations can thus be computationally

prohibitive. Second, the case where alteration of A, coupled with other unrelated

attributes can change the model’s prediction.

To illustrate that, we consider a hiring algorithm that takes as input a list of

attributes along with gender (sensitive) and GPA. We assume that a candidate
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woman with 3.3 GPA is not selected by the algorithm y(x,G = W,GPA = 3.7) = 0.

We consider 4 counterfactuals and their predictions as follows: y(x,G = M,GPA =

3.7) = 0 , y(x,G = M,GPA = 3.8) = 1, y(x,G = W,GPA = 3.8) = 0 and y(x,G =

W,GPA = 3.93) = 1. This is clear discrimination against women: with the same

qualifications, a woman needs a GPA of 3.93 to be hired whereas 3.8 is sufficient for a

man. However, [31] consider this as counterfactually fair since altering the protected

attribute only does not change the prediction (y(x,G = M,GPA = 3.7) = 0). In

this example, gender is not a direct cause for hiring; it is instead a legacy that can

increase the chance of being hired.

3.2.2 Distance Measures and Faithfulness

Let xi and xj be two observable inputs. The distance between xi and xj is usually

computed as the p-norm distance: d(xi, xj) =
(∑d

l=0 |x
(l)
i −x

(l)
j |p

)1/p
. The literature

has formed a consensus on the use of l0, l1 or any normalized convex combination

thereof [23], [24], [89], [90].

We often face a combination of continuous, ordinal, and nominal inputs concur-

rently in domains such as healthcare or the legal domain. For this heterogeneous

type of data, it might be not meaningful in measuring the distance as described

above. For instance, consider the aforementioned hiring example. Is candidate A

(G=W, GPA=3.7) closer to B (x, G=W, GPA=3.8) or C (x, G=M, GPA=3.7)?

Some methods leave the selection of appropriate distance measures to application-

specific experts [23], [91]–[94] which can be considerably subjective. Additionally,

task-specific definitions have their own ethical issues hindering the practicality of

individual fairness [95]. To alleviate the reliance on a distance metric, Hu and Rang-

wala [96] proposed a metric-free definition of individual fairness through cooperative

contextual bandits.

Recently, there have been some approaches [97]–[99] that non-linearly model
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latent spaces using adversarial learning [9] techniques. Other approaches [100]–

[102] use Variational Auto-Encoders (VAEs) [103] to regularise the latent space

by removing low-density regions. To the best of our knowledge, these distance

measures are not utilized by fairness definitions yet. Fig. 3.1 shows the importance

of manifold-like (geodesic) distance in neighborhood selection. Two points can be

deemed neighbors based on Euclidean distance (L2-norms). However, according to

the manifold distance, that reflects true distance, those points might not belong

to the same neighborhood. Consequently, in the fairness framework, it might not

be effective to compare an observation to a neighbor computed according to the

Euclidean distance.

Figure 3.1: Importance of manifold-like distance metric in neighborhood sampling

3.3 Objective II: Fairness Evaluation in Textual Settings

In this section, we discuss how existing fairness metrics can be extended to textual

settings. Additionally, we survey existing work on evaluating textual contrasts.

3.3.1 Fairness Evaluation in Textual Classifiers

Researchers extend the definitions presented in Section 3.2.1 to textual settings. For

instance, [48] extends CF’s concept to textual applications where sensitive words are

perturbed in the text. To date, the prevailing methods within prior research relied

on input perturbations [35], [36], [52]–[54] to detect discrimination with respect to
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gender mostly.

While successful at evaluating fairness in general settings, fairness definitions

share the same limitations in text. They embody the presumption of the availability

of membership labels and that sensitive attributes are explicitly revealed in the text.

For FTU, words that contain discriminatory information are not obvious to detect

specifically with correlations. For instance, race can still be leaked by neighborhood

information even if specific words were substituted. Textual modality further ampli-

fies FTU’s failure at achieving fairness with grammatical gender (e.g. actress and

actor carry gender information). Furthermore, language models encode stereotypes

in their context rendering gender unawareness ineffective at avoiding stereotypes.

In fact, BERT [6], when trained to predict gender from biographies after removing

gender-specific pronouns, can still infer male from the biography of a surgeon for

example (See Figure 3.2). De-biasing embeddings [104] is an FTU application to

text that does not go unchallenged due to grammatical gender and equivocal word

correlations.

Finally, counterfactual fairness of [31] requires locating words with sensitive at-

tribute info which might be a single point of failure. For example, for religion,

Christmas, kippah, Mecca encode sensitive information which is not evident. Sec-

ond, substitution might not be an adequate counterfactual generation method; in-

sertion, deletion and substitution of word segments should be considered as well.

Finally, word substitution might lead to grammatical inconsistencies. It may even

be impractical (e.g. substituting religious artifacts such as Christmas tree or Diwali

lights [36]). It might also not be sufficient to detect bias (detecting ethnical bias

in there are a lot of actors trying to be funny) requires inserting a word

such as Chinese or black) which makes the search space on the perturbed inputs

extremely large [53].

In this work, we do not rely on perturbations and we operate on latent repre-
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Figure 3.2: LIME explanations of stereotypes on gender prediction. Pronouns re-
vealing gender are hidden. Orange (blue resp.) indicates female (male resp.).

sentations to overcome the aforementioned challenges in evaluation and mitigation.

Our formulation does not require explicit reference to sensitive data which addresses

the limitations of previous fairness definitions.

3.3.2 Evaluation of Contrastive Examples in NLP

The evaluation of textual contrastive sets is addressed from qualitative and quanti-

tative perspectives.

Quantitative Evaluation

The most intuitive desiderata for any contrastive explanation are their proximity

and ability to change the model’s prediction. Both conditions are axiomatically

inferred from the problem formulation in Equation 3.1. In NLP, these conditions

are referred to as minimal distance and label-flip score respectively. The proximity

between xcf and x is measured by word-level Levenshtein distance [105] reflecting

the edit distance in terms of replacement, insertions, and deletions. We draw the
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reader’s attention to the fact that embedding distance measures how similar two

vectors are in terms of syntax and semantics [106] whereas Levenshtein distance

reflects the edit distance, or the path to reach counterfactuals. The latter is aligned

with the fundamentals of contrastive textual explanations whereas the former is

used to measure content preservation. Another way to measure the edit distance is

through syntactic trees [45], [107].

An additional requirement for counterfactuals is the diversity of the generated

explanations. Inspired by the Self-BLEU metric of [108], diversity can be measured

through the Self-BLEU or Self-BERT [109] metric between the generated counter-

factual samples. A higher BLEU score implies similar counterfactuals and thus a

less diverse contrastive generation.

Other requirements that are tailored to natural language are (1) fluency through

grammatical correctness and semantic meaningfulness, and (2) content preservation.

Fluency operationalizes “probable” contrastive texts that are not the result of a

coincidence. [110] highlights a strong human preference for counterfactuals that are

proximate to the original text but that are highly probable based on the original

distribution and are not caused by rare events. Fluency thus measures the similarity

between the distributions of the counterfactuals and the original data. Fluency can

be evaluated by comparing the loss of a particular language model on xcf and x

using a pre-trained model [45], [111], [112]. Content preservation can be inferred by

latent embedding representations as the cosine similarity between the embeddings

of xcf and x.

Qualitative Evaluation

In the social aspects of AI, user studies are ubiquitous in evaluating explainable and

fair AI models [113]–[115]. GYC uses a score to estimate the human judgment of

grammatical correctness, plausibility, fluency, sentiment change, and content preser-

vation. Similarly, CAT evaluates human judgment of completeness, sufficiency, sat-
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isfaction, and understandability mainly. Instead of surveying human judgment,

MiCE’s counterfactuals are compared to human edits for overlap, minimality, and

fluency. Finally, ContrXT employs crowd-sourcing efforts to evaluate its global ex-

planations, their understandability, and usefulness.

3.4 Objective III: Bias Mitigation

Bias mitigation in machine learning classification models is usually performed as

a pre-, in- or post-processing step [116]. In-processing methods remove bias from

the training data, whereas in-processing methods are applied during training and

post-processing methods are performed on trained models in a post-hoc manner.

Removing bias before training can be done through re-labeling and correction

of discrimination cases [117], [118]. Another famous approach is data augmenta-

tion and re-weighing of training samples [119]–[122]. In image classification, this

is by generating realistic images from under-represented groups [123] to enhance

fairness. In textual settings, analog sentences, with different sensitive information,

are augmented with the data set to ensure a similar treatment [36]. Additionally,

representation learning is employed as a preprocessing step to learn a transforma-

tion of training data such that bias is reduced. This manifests itself mainly in

textual settings, where different approaches have been developed to neutralize word

embeddings [52], [104], [124], [125].

To enforce a fairness constraint while training, researchers proposed the use of

regularization and constraints [126], [127] and to give importance to the correct

or unbiased features [128]. Another line of work exploits adversarial learning to

ensure fairness guarantees. The classification model is trained to minimize a loss

function and the adversary is trained to exploit fairness issues. In a min-max game,

both models then compete against each other to improve the performance while

minimizing bias. Examples of adversarial learning for bias mitigation include, but
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are not limited to, [129]–[132].

Post-processing techniques focus on applying correction steps to classifiers that

predictors. This is mainly achieved by solving an optimization problem under con-

sideration of fairness loss terms (with respect to equalized odds) [133]. A similar

technique is applied to causal models [134] the impact of the sensitive attribute on

the prediction is corrected to ensure the counterfactual fairness of [31]. [135] rela-

beled individuals who are likely to receive biased results according to an individual

bias detector.
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Chapter 4

Objective I: Entropy-based

Contrastive Explanations

Existing counterfactual explainability methods surveyed in Section 3.1 often em-

ploy causal graphs, gradient descent, discriminative, and evolutionary algorithms

to generate contrastive examples (CEs) while satisfying feasibility constraints [24]–

[26]. Apart from being able to contrast the outputs of various models, the most

wanted desiderata of counterfactuals are plausibility, attainability, and diversity.

While contrasting the output is successfully achieved by all methods, other require-

ments partake in a trade-off and are rarely simultaneously satisfied. For instance,

some methods violate constraints [23], and others do not always produce attainable

counterfactuals [27] or produce a unique CE based on a proximity measure [28].

However, the daunting acquisition of causal graphs and the unavailability of user-

defined similarity measures limit the adoption of such techniques in practice [77].

Furthermore, gradient-based methods are sensitive to the classification boundary

and the geometry of the underlying data distribution [88]. Operating on features

that are present in the input even if their perturbation might yield explanations that

contribute negatively to the decision-making process [75]. More importantly, exist-

ing methods prevent downstream users from exploring alternatives and specifying
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the cost of alterations in an ad-hoc manner.

In this work, we address the shortcomings of existing methods and design a

Contrastive Entropy-based Explainability method, CEnt, under feasibility, im-

mutability, and semi-immutability constraints while satisfying proximity and user-

defined costs. CEnt can also deal with categorical data and generates diverse coun-

terfactuals that are attainable according to the underlying data distribution while

allowing for user-defined feature costs. Given an observation x, CEnt samples k

local neighbors of x based on manifold-like distance approximated by Variational

Auto-Encoders (VAEs). Then, CEnt approximates a black-box machine learning

model by a decision tree in the local neighborhood. A graph is built on top of the

trained tree via a carefully-designed edge weighting scheme that compactly inte-

grates the constraints. A one-to-many graph search technique serves as a diverse

counterfactual generation scheme in low-entropy decision sub-spaces.

This chapter presents the problem statement of our first dissertation objective

in Section 4.1 before describing our methodology and studying its complexity in 4.2.

We then validate CEnt on different data types and model architectures in Section 4.3

before highlighting the limitations and future directions in Section 4.4.

4.1 Problem Statement

We consider a multi-class black-box classifier f : X 7→ [0, 1]|C| with f(x) being a

c-dimensional vector specifying the probability of x belonging to each class in C.

We consider an input x, f(x) = yfact for which we would like to derive a close CE

x′, f(x′) = ycontrast. We define g : Z 7→ C to be an entropy-based approximation

of f . Given a proximity measure π and an edit distance δg, the contrastive x′ ∈ X

is obtained by minimizing δg(x, x
′), and the approximation loss calculated on local

neighbors of x, Lπ(f, g) while imposing a regularization component. An additional

constraint is for the model prediction on x′ to be the desired contrast class. The
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problem can thus be formulated as:

argmin
x′

Lπx(f, g) + λ1R(g) + λ2δg(x, x
′) (4.1)

subject to f(x′) = ycontrast (4.2)

, with λ1 and λ2 are regularization parameters on the complexity of g and the

proximity measure respectively.

We refer to the approximation loss Lπx(f, g) as locality-aware fidelity loss. We

imply that a model g that minimizes the loss of fidelity should produce results

similar to f in the local neighborhood π̃x. Assuming that a model g is a faithful

approximation of f , the constraint can be replaced by g(x′) = ycontrast.

In this chapter, we showcase how we minimize the objective above and we em-

pirically validate our approach.

4.2 Methodology

The model-agnosticism requirement of our approach thwarts any assumptions on f ,

thus, any gradient-based solution. Alternatively, we force the constraint by reducing

our search space to nodes in the Decision Tree (DT) corresponding to g(x′) = ycontrast

that minimizes the locality-aware fidelity loss Lπx(f, g). We then minimize the

edit distance through our one-to-many shortest path problem based on contrast

boundaries learned by g. Consequently, we encourage feature changes with low

entropy (i.e. high info gain) that can alter decisions. Our methodology is visualized

in Figure 4.1.

4.2.1 Minimizing Locality-aware Fidelity Loss

We locally approximate the behavior of f with a DT. DTs are favored given their

ability to provide a range of CEs rather than single points in the counterfactual
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Figure 4.1: Overview of CEnt

world. Additionally, simple g models are desired as they are highly interpretable

but might not yield good approximations. We model this trade-off by minimizing

Lπ(f, g) while maintaining the low complexity of g through the regularizer R(g).

Lastly, to satisfy the immutability requirement of some features such as gender, we

remove such features from the input.

Sampling in the local neighborhood

Existing work computes distances between samples based on L − p norms, most

akin in p = 0 (edit distance) or p = 2 (edit L2 cost) or on domain experts to elicit

the appropriate distance function [91], [136]. We employ a manifold-like distance to

approximate actual distances while reflecting attainability. Such non-Euclidean dis-

tance is also suitable for categorical and non-tabular data. We mainly utilize VAEs

which demonstrated significant performance gains in approximating manifold-like

distances. Mainly, VAEs learn a new geometry, potentially denser, of the inter-

vention space while encoding correlations, feasibility, and the plausibility of a CE
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occurring.

Hence, given the input x, we learn its latent representation z in a self-supervised

manner by defining a latent model p(x) =
∫
p(x|z)p(z)dz, an encoder m(.) with

its parameters Φ and distribution qΦ(z|x), and a decoder g(.) parameterized by Θ

with a likelihood of pΘ(x|z). Φ and Θ are represented by potentially non-linear

functions. We then define pD(x) as the empirical distribution of the data. Under

these circumstances, the evidence lower bound (ELBO) [137] can be used to compute

the intractable integral above as:

EpD(x)

[
log pΘ(x)

]
≥ EpD(x)

[
EqΦ(z|x)

[
log pΘ(x|z)

]
−KL

(
qΦ(z|x)||p(z)

)]
(4.3)

where KL is the relative entropy or the Kullback–Leibler divergence [138]. More-

over, qΦ(z|x) and pΘ(x|z) are assumed to be Gaussian. In the case of binary at-

tributes, the decoder can be assumed to be Bernoulli. Once computed, the encoding

z will be utilized to compute proximity as π(x, x′) = ||z − z′||2.

4.2.2 Minimizing Counterfactual Cost Through Graph Search

g gives a family of counterfactuals inferred from every leaf node labeled ycontrast. The

goal is to search for the most proximate counterfactual. The search path yfact ;

ycontrast can be directly translated into a CE. To this end, we construct the directed

weighted graph G = (V , E) with V constructed from g nodes where v ∈ V can be a

leaf node (class label) or an internal node (decision). The goal is to reach ycontrast

from yfact through the path reflecting the minimal edit.

Edge construction

We consider the edge eij ∈ E connecting decision node i to decision/label node

j. ei,j represents a decision fi
⊕

v, where fi is the feature in the node i,
⊕

is an

operator and v is a threshold value or a category. ei,j is proportional to the edit cost

of fi. We assume similar costs of edges eij except for the following cases:
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• Custom cost function where the user specifies an edit cost cedit of fi (e.g. the

cost of changing a job is twice that of relocating). In this case, all edges eik

inherit cedit.

• Semi-immutability where editing feature i is only possible in a particular di-

rection (e.g has degree cannot be set to false when it is true). In view of this,

we assign an infinite weight to the corresponding edge.

Graph search

The vertices v ∈ V correspond to one of the following labels: (1) fact, (2) contrast,

and (3) internal decision node. We identify, ustart the unique start node from cat-

egory (1) that corresponds to x. Then, we execute a one-to-many shortest path

problem on G from ustart to nodes in category (3). Once the search resumes, the re-

sult will be in the form of feasible rules fi
⊕

v. For practitioners who are interested

in the CE instead of the contrastive path, we derive x′ as follows. We consider f to

be a feature in x. If f is not part of the contrastive path, its value is kept intact in

x′. Otherwise, it is altered according to the fi
⊕

v with a margin ∼ N (0, σi

m
) with

m is a tunable parameter and σi is the standard deviation of fi. For categorical

values, no random perturbations are applied.

4.2.3 Complexity

Lastly, we study the complexity of CEnt that is comprised of three main compo-

nents: local sampling, DT training, and graph search. The former two components

are extensively studied for optimizations in the literature through vector quantiza-

tion [139], pre-pruning and ensembling. We focus our study on the third component

which constitutes the main building block of CEnt. The problem can be cast into

a single source with non-negative edge weights and no cycles; thus Dijkstra’s algo-

rithm is a suitable infrastructure. With a Fibonacci, instead of a binary, heap, the

complexity can be optimized to O(E+V log V ) [140]. Furthermore, the constrained
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construction of G gives rise to the following guarantees:

• |V | <<< 2max depth is controlled by (1) the size of input that affects the

max depth parameter of the DT and (2) the pruning techniques that avoid

over-fitting.

• |E| ≤ |V | − 1. Equality holds only when no semi-immutability constraints are

imposed.

Accordingly, the complexity becomes O(V log V ) with a bounded |V | that follows

from small max depth parameters.

4.3 Results

In this section, we validate CEnt on a variety of datasets. We demonstrate its

extension to imagery data and a special use case for detecting vulnerabilities of

textual classifiers.

4.3.1 Experimental Setup

We implement CEnt within CARLA framework [141] which also provides an im-

plementation of existing recourse techniques 1. Experiments are run on 2 cores of

Intel(R) Xeon(R) with 12GB RAM. We train 2 models on the numerical datasets:

a logistic regression (LR) model and a neural network (NN). NN consists of 2 layers

with 13 and 4 neurons activated via relu and trained using a weighted binary cross-

entropy loss function through gradient descent with root mean squared propagation.

Numerical Datasets

Four numerical datasets [141] are used in this work. The Adult dataset is used

to predict whether an individual has an income >= 50K USD/year and consists

of 48,842 instances and 14 attributes with age, sex and race set as immutable.

1https://github.com/carla-recourse/CARLA

48



COMPAS consists of information about more than 10,000 criminal defendants and is

used by the jurisdiction to score the re-offending likelihood. The immutable features

of COMPAS are sex and race. The Credit dataset consists of 150,000 attributes and

11 features to predict the possibility of financial distress within the next two years,

age being the only immutable feature. Finally, the HELOC dataset consists of 21

attributes that describe anonymized information about home equity line of credit

applications made by real homeowners. HELOC has 9871 instances used to predict

whether the homeowner qualifies for a line of credit or not based on 21 features with

no immutability constraints.

CEnt Settings

We train a VAE with batch normalization for 10 epochs with a learning rate of 0.001

and a dropout rate of 0.2. The weight used in the KL divergence is 2.5× 104 . The

number of hidden layers and neurons in our VAE is adaptive to the input size and is

selected according to the best validation loss. For adult data, we used one layer of

25 neurons and a bottleneck of size 8. For Credit and COMPAS, we use a layer of 16

neurons and a bottleneck of size 7 whereas, for HELOC, we utilize 2 hidden layers

with 25 and 16 neurons and a bottleneck of size 12. For image datasets, we employ 3

layers of 500, 250, and 32 neurons. Sampling k neighbors is efficiently achieved using

[142]2 with k=1000 equally distributed among the fact and contrast classes. We

split our data into 80% training used to train f and 20% testing used to test CEnt

and other contrastive methods. We set the max search parameter to 50, i.e. we try

at most 50 diverse CEs, if none flips the prediction, we claim failure to produce a

counterfactual, and we return the one tried at last.

Metrics

We employ 9 metrics to assess the following aspects in the contrastive search.

• Fidelity. We evaluate the local performance of the DT, g, in approximating f

2https://github.com/lmcinnes/pynndescent
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through the accuracy of the model with respect to the predictions of f ’. We

also compute the rate of semi-immutability constraint violations (age cannot

decrease in the CE) and immutability violations. Fidelity is reflected by higher

accuracies and lower violation rates.

• Proximity. We evaluate how close the derived CE x′ is to its original counter-

part x. l0-cost computes the number of feature changes between x and x′. l2-

norm reflects the Euclidean distance between x and x′ as
√∑

i(xi − x′i)
2. We

also compute π, the l2-distance on the VAE encodings to reflect the manifold-

like distance as
√∑

i(zi − z′i)
2. Finally, we compute redundancy, as in [141],

to evaluate how many of the proposed feature contrasts were not necessary.

This is achieved by successive flipping operations of values in x′ into x and

inspecting whether the label would flip back. Lower distances and redundancy

scores are favored.

• Flip rate. We test the ability of x′ in changing the prediction (a.k.a success

rate). Higher scores are favored.

• Latency. We measure the time needed to derive a counterfactual in seconds.

In the methods that require VAE encodings, training VAEs is excluded from

latency calculation but obtaining the encodings is included.

• Agreement. We finally measure the agreement between x′ and its neighbors

by computing the yNN score as in [141] with k = 5. A score ≈ 1 implies that

the neighborhood consists of points with the same predicted label CE x′; thus

an attainable CE.

4.3.2 CEnt on Numerical Datasets

We randomly sample 100 instances from the testing data equally distributed among

positive and negative labels, and we test CEnt on both models and all 4 datasets.
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We compare CEnt against CCH-VAE [40], CEM [28], GS [86], CLUE [143], FACE

[76], DiCE [27] and CRUDS [88].

LR NN

f g f g
Adult 84 95 84 94
COMPAS 84 97 81 96
Credit 93 98 93 99
HELOC 73 87 72 89

Table 4.1: Accuracies on the original model f and the DT g

0.00

0.25

0.50

AN
N

Semi-imm. Viol. (↓ )

0.0

0.5

1.0
Imm. Viol. (↓ )

0.0

0.5

1.0
Flip rate (↑ )

0.0

2.5

5.0

Time (↓ )

0.0

0.5

1.0
yNN (↑ )

CC
H-
VA
E
CE
M GS

CL
UE
FA
CE
Di
CE

CR
UD
S
CE
nt

0.00

0.25

0.50

LR

CC
H-
VA
E
CE
M GS

CL
UE
FA
CE
Di
CE

CR
UD
S
CE
nt

0.0

0.5

1.0

CC
H-
VA
E
CE
M GS

CL
UE
FA
CE
Di
CE

CR
UD
S
CE
nt

0.0

0.5

1.0

CC
H-
VA
E
CE
M GS

CL
UE
FA
CE
Di
CE

CR
UD
S
CE
nt

0

2

4

CC
H-
VA
E
CE
M GS

CL
UE
FA
CE
Di
CE

CR
UD
S
CE
nt

0.0

0.5

1.0

Figure 4.2: CEnt results averaged on four numerical datasets

Fidelity with respect to f is reflected in high g scores, implying an accurate ap-

proximation, as shown in Table 4.1. The percentage of violations, flip rate, latency,

and agreement are reported in Figure 4.2 in the LR and ANN models averaged

across datasets. CEnt consistently respects immutability and semi-immutability

constraints that are significantly violated with methods such as FACE and CLUE.

The results also show that CEnt can derive CEs in < 1 sec that can successfully

change the prediction with a ∼ 90% probability. Finally, the yNN scores surpass

CCH-VAE, CEM, and GS but are lower than FACE, DiCE, and CRUDS which

shows competitive attainability scores.

The distribution of the average proximity metrics per model is shown in Fig-

ures 4.3 and 4.4 across all datasets. CEnt achieves significantly low edit distances

(l0) in most cases. Similarly, l2− and VAE-distances are small except in some cases

where methods such as CEM and DiCE can derive closer CEs. It is worth men-
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Figure 4.3: Distribution of CEnt’s proximity scores across different contrastive meth-
ods on the four numerical datasets for LR

tioning that significantly low distance scores, such as in CEM, are an indication of

an underlying failure in contrasting the prediction. In our benchmarks, such results

were coupled with success rates that can go below 40% for CEM, CCH-VAE, and

GS. In such cases, the derived CEs are very close to their original counterparts so

they do not flip the decision. CEnt, on the other hand, keeps searching for a coun-

terfactual with no threshold on the distance. This led to consistently low distance

measures while maintaining high flip rates. In this sense, it is not surprising that

the significantly low redundancy scores attained by CEnt demonstrate the sufficient

aspect of the counterfactuals in altering the model’s prediction whereas methods

such as CRUDS, GS, and CEM can achieve a redundancy score of up to 20 on the

HELOC dataset. This implies that most of their derived feature was unnecessary in
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Figure 4.4: Distribution of CEnt’s proximity scores across different contrastive meth-
ods on the four numerical datasets for ANN

the CE aspect.

4.3.3 Derivation of Visual Contrasts

We consider the handwritten digit recognition, MNIST, dataset [144] consisting of

60,000 28x28 images. We consider pixel intensity to be a feature and we derive CEs

for the binary classification of confusing digit pairs, i.e. 5 vs. 6, 3 vs. 8, and 1 vs.

9. To this end, we train a CNN with a convolutional layer with 28 units and a 3x3

kernel followed by max pooling and a dense layer of 128 neurons and relu activation.

A dropout of 0.2 is applied and the activation at the output is softmax. We define

the visual contrast to be a Gaussian kernel around a pixel whose intensity changed

in x′. If the intensity is amplified in x′, the contrast is pertinently negative (PN),
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whereas it is pertinent positive (PP) if the intensity is reduced in x′. The visual

contrasts in 8 random images for each pair are visualized in Figure 4.5. Generally,

for the 5 → 6 contrast, the PNs are the pixels that close the left corner in the

lower curve of number 5 and those that make its upper part more curved. PPs are

mostly concerned with the upper part of 5. PPs and PNs are reciprocated with

the 6 → 5 contrast. More importantly, the derived contrasts are mostly sufficient;

i.e. no redundant pixels have been derived an exception in the third image where

an outlier region is highlighted in the upper left corner. Interestingly, 3 → 8 is

mostly related to the lower curves and not the upper one. This can be explained

by the inconsistency in closing the upper loop in 8 (fifth example in Figure 4.5b)

whereas the lower one is almost always closed. Similarly, CNN mostly attends to

the curve of 9 in the contrast 1→ 9. It is worth mentioning that, in some rare cases,

CEnt fails to find a CE; i.e. it derives a CE that does not flip the model’s decision.

However, in such cases, the contrastive path was, intriguingly, a reasonable and

visually appealing contrast even if it did not suffice to change the model’s decision.

We select CEM and LIME for a qualitative comparison. Comparison with other

methods was not feasible, given their design tailored for tabular datasets. General

methods such as FACE and GS are also not compatible with CEnt as the former

reports a series of successive examples to reach a CE and the latter’s results were

not reproducible. Predominantly, explanations derived by LIME, in Figure 4.6, were

not useful on MNIST. This can be attributed to the non-contrastive aspect of LIME

and its dynamics of operating on super-pixels. The latter reason is crucial; LIME

relies on segmentation techniques and is not designed to derive visual contrasts.

Additionally, the first three CEs derived by CEM are visually appealing and the

last one does not succeed in changing the prediction. However, the visual contrast

is not obvious where CEM has the tendency to reshape the digit while flipping a

great deal of pixels. CEnt is a minimally invasive process that highlights sufficient
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visual contrasts without a major change in shape.

(a) 5 vs. 6

(b) 3 vs. 8

(c) 1 vs. 9

Figure 4.5: Visual contrast with CEnt on MNIST (red represents PPs and green
represents PNs)

We also showcase CEnt on the fashion MNIST dataset consisting of 10 different

cloth labels for 70,000 28x28 images. We choose 3 pairs of classes that are likely to be

mistaken: dress vs. shirt, sandal vs. ankle boot, and T-shirt vs. pullover. We train

the same CNN as in the MNIST case and we derive visual contrasts on 8 randomly

chosen images in each category in Figure 4.7. The dress vs. shirt contrast is mostly

concerned with the sleeves as well as the width of the object. Since dresses are taller

than shirts, fitting both in a 28x28 image makes the shirts wider. Intriguingly, CEnt

detects this contrast. For sandal vs. ankle boot, CEnt highlights the open holes as
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Figure 4.6: MNIST explanations (LIME highlights pixel relevance where red is
positive and green is negative, CEM and CEnt highlight contrasts where red is PP
and green is PN)

PNs in sandals and the compact areas as PPs in the boots. Finally, CEnt detects

the absence/presence of sleeves when contrasting the T-shirt with the pullover.

4.3.4 Textual Vulnerabilities Detection

We study an interesting use-case of CEnt in detecting non-useful CEs that serve

as adversarial attacks. Instead of employing a VAE distance, we consider a bag-of-

words (BoW) approach where sentences are deemed close based on their words with

no context, syntax, or semantic integration. Four classifiers were trained on the 20

newsgroup dataset: a random forest, logistic regression, SVM, and a neural network

with two fully-connected layers consisting of 100 and 50 neurons. The approximation
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(a) Dress vs. shirt

(b) Sandal vs. ankle boot

(c) T-shirt vs. pullover

Figure 4.7: Visual contrast with CEnt on Fashion MNIST (red represents PPs and
green represents PNs)

g achieved an accuracy of 98, 93, 96, and 99% respectively. Remarkably, the length

of the contrast is on average 1 in all models implying that an insertion or deletion of

exactly one word would change the model’s prediction. While shorter lengths are an

indication of more concise explanations, they do not necessarily reflect the same for

textual data when BoW representations. For instance, as displayed in Figure 4.8,

including the word “monthly” would change the prediction from atheism to christian

showing the sensitivity to particular words. In this case, CEnt serves as a debugging

tool that highlights vulnerabilities in the context of adversarial attacks.
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Figure 4.8: CEnt on an instance of the 20 newsgroup data

4.4 Research Directions

In this objective, we develop a wide plan of attack for algorithmic recourse by

accounting for custom costs and elegantly addressing semi-immutability and plausi-

bility. We propose CEnt, a novel entropy-based method that supports an individual

facing an undesirable outcome under a decision-making system with a set of action-

able alternatives to improve their outcome. CEnt samples from the latent space

learned by VAEs and builds a decision tree augmented with feasibility constraints.

Graph search techniques are then employed to find a compact set of feasible feature

tweaks that can alter the model’s decision.

Our empirical evaluation on real-life datasets shows improvement in proximity,

latency, and attainability without constraint violation. CEnt has immense potential

in adapting to non-tabular data where it identifies visual contrasts and serves as a

debugging tool to detect the model’s vulnerabilities.

CEnt’s results suggest several future directions. First, the exploration of different

data representations, such as embeddings or super-pixels, improves robustness and

widens the applicability of CEnt on different data types. Second, we wish to improve

the privacy guarantees of our method by exploring generative data techniques to

alleviate the need to access training data.

Furthermore, the derived contrastive examples can be used to detect discrimina-

tion cases in classifiers. In the next objective, we define contrastive fairness, and we
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augment it with faithfulness guarantees. The latter is inspired by the attainability

of the contrastive sets used in the comparison during the fairness evaluation.
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Chapter 5

Objective II: Faithful

Contrastive Fairness

In an attempt to detect discrimination in datasets and classifiers, researchers first

tried to define fairness. The result was more than twenty different definitions as

surveyed in Section 3.2.1. In what follows, we outline discrimination cases that

existing fairness metrics cannot directly detect. Those cases are (1) non-tabular

datasets settings were protected (sensitive) attributes are not explicitly reported, (2)

situations where sensitive attributes are a legacy, (3) the comparison of the individual

to an unattainable counterpart, and (4) the reliance on distance metrics that do

not reflect real-world similarity-based measures. Accordingly, we present Faithful

Contrastive Fairness (FCF) as an individual fairness metric that considers concentric

neighbors around an individual and computes the corresponding contrastive cost.

A prediction is considered fair if these costs do not entail a change in the protected

attribute or its dependents. More importantly, the neighborhood is derived based

on a manifold-like distance metric computed by auto-encoders that account for data

density and attainability.

We look at the faithfulness of contrastive explainability that defines three con-

ditions to design useful explanations, and these are proximity, connectedness, and
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stability [39], [40]. We motivate these properties in fairness settings and apply them

to contrastive fairness.

This chapter presents the second objective of our dissertation and is organized

as follows. We introduce the problem statement in Section 5.1. Then, we propose

the methodology behind FCF, our faithful contrastive fairness, and its computation

in Section 5.2. We discuss faithfulness guarantees in Section 5.3 before validating

on synthetic and real-world datasets in 5.4 and concluding with future directions in

Section 5.5.

5.1 Problem Statement

We consider the following cases not covered in existing fairness metrics.

Case 1: The adjustment of protected attributes is impractical. This can be seen in

text and images or in tabular datasets where the protected attribute is removed from

the data without its dependents. As an example, one can infer race from certain

neighborhood. It is not clear how to perturb the race feature when it is removed from

the training data, while its dependent (neighborhood) is not.

Case 2: The protected attribute is a legacy. Solely, it cannot change the model’s

decision; but when coupled with other attributes the decision might change.

Case 3: Altering protected attributes leads to unattainable cases when the occurrence

probability is not considered. In this case it is unfair to detect discrimination by

comparing an individual to a better-treated unattainable counterpart.

Case 4: Devising meaningful distance measures is difficult or it does not reflect real

data similarities.

Motivated by these scenarios, we investigate a novel definition of fairness that

can account for the aforementioned cases. We denote the D-dimensional feature

space as X ⊆ RD. For an observation, i, is represented by a feature vector xi ∈ Rd.

The protected attribute ap and its dependents a belong to a set DEP (ap). We
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assume a pre-trained classifier f : X 7→ Y such that Y = {c1, c2, . . . , ck}. f can be

a binary classifier with Y = {0, 1}. We study the fairness of f with respect to a set

of protected attributes A without making any assumptions about f .

5.2 Contrastive Fairness

We represent our notion of fairness by FCF: Faithful Contrastive Fairness and we

explain its faithfulness later in Section 5.3. Our definition starts from a particular

observation, considers concentric spheres around it with a predefined radius of ϵ, and

searches for contrastive examples within these spheres. The cost of these proximate

contrasts is then checked against the dependency on the protected attributes.

For ϵ ∈ R, we define the ϵ−contrastive neighborhood of observation i represented

by xi as:

NCT
ϵ (xi) := {xj ∈ X | d(xj, xi) ≤ ϵ and f(xj) ̸= f(xi)} (5.1)

Accordingly, the contrastive cost can be defined as the change in the input fea-

tures between the input and instances in the contrastive neighborhood. Formally,

the contrastive cost of an individual xi is
−−→xixj ∀xj ∈ NCT

ϵ (xi). Having defined the

main components, it remains to define our contrastive fairness metric as follows.

Definition 7 (Faithful Contrastive Fairness). A predictor f is fair if the cost of any

contrastive neighbor (derived faithfully) does not encode the protected attribute and

its dependents. Formally, f is fair if

−−→xixj ⊥ −→a ∀a ∈ DEP (ap) ∀xj ∈ NCT
ϵ (xi) (5.2)

In the case of tabular data, −→a = eq where eq[l] = 0∀l ̸= q and eq[q] = 1; q is the

index of a in the list of attributes. If a is not implicit in the dataset, i.e. −→a = eq

cannot be easily established, we generalize the definition above to:
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Definition 8. (Generalized Faithful Contrastive Fairness) A predictor f is fair if

∀a ∈ DEP (ap) and ∀xj ∈ NCT
ϵ (xi), a cannot be inferred from the contrastive cost

−−→xixj.

Inference can be tested by looking at causal graphs or by training a separate

classifier ĝ(−−→xixj) = a in the case of images and text.

5.2.1 Latent distance

Instead of measuring d(xj, xi) as the (normalized) l1 or l2 norms for numerical fea-

tures or a simple matching distance for categorical features; we exploit the structure

that latent-variable models learn. We base our observation on the assumption that

high-dimensional instances can be better represented by points in a much simpler

latent space. Simpler measures, such as the Euclidean distance of the cosine simi-

larity can be used in the latent space [40] as it is considered to be Euclidean [103],

[145]. Hence, we consider the latent representation zj ∈ Z ⊂ Rd2 , d2 < d and we

measure d(xj, xi) as the latent distance or L-p norm between zj and zi.

Latent representation distance is thus a manifold-like distance that reflects (1)

data distribution, (2) attainability, and (3) application-specific distance notion that

is reflected from the input data. We compute latent representation through Varia-

tional Auto-Encoders (VAEs) as detailed in Section 4.2.1. More precisely, given an

observation x, its latent representation z can be learned in a self-supervised manner.

To this end, we define an encoder m(.) with its parameters Φ and distribution

qΦ(z|x) and a decoder g(.) parametrized by Θ with a likelihood of pΘ(x|z). Φ and

Θ are represented by non-linear functions. We then define pD(x) as the empirical

distribution of the data. Under these circumstances, the evidence lower bound

(ELBO) [103] can be used to compute the intractable integral above as:

EpD(x)

[
log pΘ(x)

]
≥ EpD(x)

[
EqΦ(z|x)

[
log pΘ(x|z)

]
−KL

(
qΦ(z|x)|p(z)

)]
(5.3)
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where KL is the relative entropy or the Kullback–Leibler divergence [138]. More-

over, qΦ(z|x) and pΘ(x|z) are assumed to be Gaussian. In the case of binary at-

tributes, the decoder can be assumed to be Bernoulli. The latent representation z

can be found by optimizing the right-hand side of the equation above.

5.2.2 Computation of FCF

We assume a pre-trained, potentially non-linear, predictor f parametrized by θ such

as a neural network. Given a dataset D ≡ {(xl, yl)} for l = 1, . . . , n, the decoder

parameters Φ can be learned as described in the previous section.

Algorithm 1 describes the dynamics of FCF computation. First, the VAE is

trained and the latent representation zi is accordingly derived. Then, concentric

neighborhoods centered around zi in Z are considered. For each neighborhood, J

points are sampled and filtered according to f ’s prediction; only those that change

f ’s decision are kept. Then, the counterfactual cost is checked for dependence on

the protected attribute. The algorithm returns the average of the bias degree in

the neighborhood. The illustration is shown in Fig. 5.1 which also contrasts the

Euclidean neighborhood to NCF
ϵ .

(a) Input space X (b) Latent space Z

Figure 5.1: Illustration of Algorithm 1. The neighborhood is computed in the
latent space Z and mapped back to the original space X . For illustration purposes,
d = d2 = 2.
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Algorithm 1 Counterfactual Fairness Evaluation

Input: classifier fθ, observation data D, neighborhood radius ϵ, increments δr,
protected attribute ap and ithobservation xi

Initialize:

Φ← argmaxEpD(x)

[
EqΦ(z|x)

[
log pΘ(x|z)

]
−KL

(
qΦ(z|x)||p(z)

)]
zi ← m(xi)
r ← 0
repeat
r = r + δr
Initialize NCF

r in latent space
for j = 1 to J do
Sample z̃j based on perturbation on zi with δr
x̃j = g(z̃j)
if f(x̃j) ̸= f(xi) then
c = c+ 1
s = s+ | cos(−−→xix̃j,

−→ap)|
end if

end for
biasr = s/c

until r ≥ ϵ

return biasϵ = biasr|ϵr=0

Considerations Algorithm 1 checks for orthonormality between
−−→
xix̃j and −→ap

by computing the cosine of the angle between them. When the two vectors are

orthonormal their cos(., .) = 0, and the bias will not be affected. Otherwise, we

consider the cos(., .) as a continuous measure of non-orthonormality. We note, that,

in the case of categorical attributes cos(
−−→
xix̃j,

−→ap) will either be 0 or 1. Further-

more, the algorithm assumes explicit protected attribute encoding ap. If not, the

statement s = s+ cos(
−−→
xix̃j,

−→ap) can be replaced with an estimate of cos(.) based on

the probability of inferring ap from
−−→
xix̃j. Finally, the algorithm returns biasr, the

average of the bias found in NCF
ϵ . This average can be weighted by the inverse of

NCF
ϵ radius, i.e. the series 1/δr, 1/(2δr), . . . , 1/ϵ. This series reflects similarities in

Z where closer counterfactuals have a higher impact on FCF.

From continuous to discrete measure of fairness Algorithm 1 computes
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the (weighted) ratio of the contrastive neighbors that have a different value for the

protected attribute. Therefore, one can infer that a model is biased if biasϵ > 0.

Nevertheless, we can relax the above condition to biasϵ > t.

5.2.3 Relation to Existing Notions

Relation to counterfactual fairness of [31]

FCF is not a causal metric; it is instead an individual fairness evaluator that com-

pares two proximate individuals while searching for an underlying bias. The imple-

mentation of counterfactual fairness in [31] trains a fair classifier on mutated inputs.

The mutation is applied through a de-convolution process from a causal perspective.

Defining NCF
ϵ (xi) as:

NCF (xi) := {xj ∈ X | xj = xi,A←a′ and f(xj) ̸= f(xi)∀a′ attainable by A}

(5.4)

would make the definition of [31] and FCF similar. However, we do not restrict

the counterfactuals to perturbations in ap only, which allows FCF to cover cases 2

and 4 mentioned in Section 5.1. Moreover, we generate counterfactuals then we infer

dependency which solves the issue discussed in case 1. Finally, our computation

of the latent distance considers the occurrence probability and the attainability,

targeting case three.

We draw the reader’s attention that contrastive sets can be generated for com-

pound datasets such as images as in [75], [146], text as in [147] and graphs as in

[148]. The existence of such methods makes FCF applicable to a wide range of data

types.

Relation to fairness through unawareness [149]

Fairness through unawareness considers a model fair if its outcome does not change
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had the protected attribute been hidden from the model. FCF extends this definition

to cases where such attributes are not explicit. This is crucial, especially since

discrimination cases can occur even when the model is unaware of the sensitive

data. FCF can cover those cases and can further measure the degree of the model’s

awareness of some sensitive attributes.

Relation to individual fairness [38]

FCF is closely connected to individual fairness, which requires that if two individ-

uals are close in the feature space, their prediction should also be close. FCF is a

de-compiled individual fairness. We take the neighborhood of a point, and we filter

instances that have a different prediction. We study those neighbors with the lens

of dependence on protected attributes. On the other hand, individual fairness is ag-

nostic with respect to the notion of similarity metric, which is a double-edged sword:

it can generalize well but it can have unfavorable outcomes when there is no unified

way of defining similarity. Our contrastive fairness, FCF, measures similarity based

on latent representations which account for data density distribution, occurrence,

and attainability.

5.2.4 Extension to Group Fairness

Group fairness requires that two groups (privileged and underprivileged) have the

same probability of being assigned a favorable outcome. FCF can be extended to

group fairness by computing the expected value of the bias between different sampled

individuals.

Definition 9. [Demographic Faithful Contrastive Fairness] A predictor is fair to an

underprivileged group gunderprivileged if

Egunderprivileged

[
biasϵ

]
= Egprivileged

[
biasϵ

]
(5.5)
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We relax the criterion by considering the predictor to be fair if

σ <

Egunderprivileged

[
biasϵ

]
Egprivileged

[
biasϵ

] <
1

σ
(5.6)

for 0 < σ ≤ 1. σ values that are closer to 1 entail stricter fairness requirements.

Additionally, for σ = 0.8, our definition of group fairness would satisfy the four-

fifths rule. This rule states that if the selection rate for a particular group (e.g

underprivileged) is less than 80% of that of the group with the highest selection rate

(e.g. privileged), there is an adverse impact on that group [150].

5.3 Faithfulness Guarantees

The most intuitive desideratum for individual fairness is to be faithful to the exam-

ined individual. This entails a “fair” comparison to individuals that are close and

attainable. Consequently, the generated ϵ−contrastive neighbors are required to

be generated in a (1) stable manner while satisfying (2) proximity and (3) connect-

edness. In this section, we present the first extension of the contrastive faithfulness

notions of explainability [39], [40], [151] to individual fairness and we present quan-

tification metrics.

Next, we assume 0 ≤ b(xi) ≤ 1 to be a continuous measure of the bias degree

for observation xi and 1− b(.) to be its corresponding fairness metric.

5.3.1 Stability

The fairness measure should be coherent locally by forcing a close b(.) for close

neighbors. Formally,

Definition 10 (Stability of fairness metric). A fairness metric (1− b(.)) is stable if
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d1(b(xi1), b(xi2))

d2(xi1 , xi2)
< M (5.7)

We suggest d1(c1, c2) ≡ |c1 − c2| and d2(., .) derived by VAEs as in Section 5.2.1

and propose the following measure of stability.

d1(b(xi1), b(xi2))

d2(xi1 , xi2)
. (5.8)

5.3.2 Proximity

Proximity ensures that the contrastive neighbor is not an exception, i.e. it is attain-

able. Hence, proximity measures whether the considered neighborhood is outlying

with regard to ground truth data.

Definition 11 (Proximity in contrastive fairness). A contrastive fairness metric

satisfies proximity if the distance between the considered neighbor xj and xi is prox-

imate to the distance between xi and argmin
xk∈X ,f(xk )̸=f(xi)

d(xi, xk) .

Proximity can be measured by

d(xi, xj)

min
xk∈X ,f(xk )̸=f(xi)

d(xi, xk)
(5.9)

which is reflected by the Local Outlier Factor (LOF) as in [152].

5.3.3 Connectedness

Connectedness ensures that the derived contrastive neighborhood is continuously

connected to a ground-truth observation of the same class using the topological

notion of the path. We borrow the below definition from [39].

Definition 12 (ϵ−connectedness). x1 ∈ X is ϵ−connected to x2 ∈ X if f(x1) =

f(x2) and ∃ an ϵ-chain (ei)i<N ∈ XN between x1 and x2 such that, e0 = x1, eN = x2
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and ∀i < Nd(ei, ei+1) < ϵ ∀n < N, f(ei) = f(e).

Connectedness is a binary indicator, i.e. it is 1 if xj is ϵ-connected to xi and

0 otherwise. Computing connectedness is complex. However, two points can be

considered connected if they belong to the same cluster computed by DBSCAN

algorithm [153] with the min points parameter set to 2 [39].

In NLP settings, we use latent space embeddings encoded by language models

such as GPT-2 [42] and we compute their cosine similarity. We leave faithfulness in

imagery settings as a future extension of FCF.

5.4 Results

In this section, we showcase the motivation behind FCF on a synthetic dataset.

Then, we study the applicability and the faithfulness of FCF on real-world datasets

and we compare it to existing individual and group fairness metrics.

The experiments are run on an Intel(R) Core(TM) i7 machine with a 4-core CPU

with Python 3.7.4 and scikit backend. Each experiment is repeated 5 times and the

average performance is reported.

5.4.1 Synthetic Experiment Setup

This experiment highlights the fundamentals behind FCF. We demonstrate how the

comparison to proximate attainable neighbors by FCF serves fairness purposes.

We demonstrate how our counterfactual fairness metric addresses cases 2 and

3 in a synthetic experiment. We generate 1200 points equally distributed between

the privileged and underprivileged groups. We consider two continuous features

x1 and x2 following quadratic (noisy) functions. We consider a simple classifier

f, f(x1 = ., x2 > 0) = 1, and 0 otherwise. We also assume a protected (continuous)

attribute x2 that is not causally related to x1. Fig. 5.2 shows the dataset and the

classification boundary. More details on data generation are provided in Appendix 8.
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Figure 5.2: Synthetic experiment with original data distribution and the generated
counterfactuals

We sample 50 observations and compute their contrastive neighborhood (or coun-

terfactuals) based on CF where only the sensitive attribute (x1) is altered. Addition-

ally, we consider the counterfactuals derived by the Euclidean-like recourse methods

(Euclidean CF) such as actionable recourse [24] and contrast them with FCF’s coun-

terfactuals.

We illustrate the neighborhood in the original space X and the latent space Z

in Fig. 5.3 where the latter space is used by FCF.

5.4.2 Synthetic Experiment Results

As shown in Fig. 5.2, the contrastive neighbors generated by CF are not attainable

based on the data distribution. Second, the decision for the counterfactuals of CF

remains unchanged (all points are still below the classification boundary), implying

that f is fair. Euclidean CF advises a change in x2 (not sensitive) that leads to

unattainable points. One cannot consider that f is fair if the evaluation depends on

unattainable counterfactuals. On the contrary, FCF that considers VAE distances

leads to attainable contrastive neighbors that belong to a different demographic

group. Those neighbors are obtained by an alteration on x1 and x2 combined. The

71



computation of FCF as explained in Algorithm 1 yields scores < 1 hinting to bias

cases as shown in Fig. 5.4.

However, CF leads to scores that are mostly 1 (Fig. 5.4) missing thus obvious

discrimination cases. On the other hand, while this bias is detected by Euclidean

CF, the detection cannot be reliable as it is inferred based on unattainable contrasts.

That being the case, FCF can help marginalized groups faithfully prove discrim-

ination cases that can be hard to unveil with other metrics.
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Figure 5.3: Latent space visualization of the neighborhood
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Figure 5.4: Fairness distribution following a log scale for the y-axis

More on attainability

We further highlight the attainability of contrastive neighborhoods by running state-
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of-the-art methods on the German credit scoring dataset1 and training a Logistic

Regression (LR) and an Artificial Neural Network (ANN) model. Experimental de-

tails are provided in Appendix 8. The task is to classify loan applicants as having

good or poor credit risks. The bias is checked against age and gender. To highlight

attainability, we only consider age in this experiment. Counterfactual explainabil-

ity methods are CEM [154], CLUE[155], DICE[89], GS [156] and Wachter [23].The

results in Table 5.1 show that, with Euclidean-like distances, contrastive neighbors

might be unattainable as the average age cost is already beyond the life span and

this does not comply with “commonsense constraints”. FCF, on the other hand,

derives a contrastive neighborhood with attainable age costs that respect the data

distribution. Comparison based on an attainable and plausible contrastive neighbor-

hood can thus be deemed faithful. Although some methods can take the constraint

into consideration by setting the attribute to immutable, we disabled this option as

FCF necessitates an alteration of protected attributes.

CEM CLUE DICE GS Wachter FCF

LR 94 1796 93 94 1798 29
ANN 2307 86 2305 2307 2291 32

Table 5.1: Counterfactual age cost for the German credit scoring dataset

5.4.3 Real World Experiment Setup

In this set of experiments, we show how FCF detects discrimination cases missed by

other metrics, and we demonstrate the faithfulness of our approach.

We test our metric on three popular real-world datasets in the fairness litera-

ture: the aforementioned German credit scoring, the adult census income dataset

2 and the Correctional Offender Management Profiling for Alternative Sanctions

(COMPAS) dataset. The adult census dataset is used to predict whether an adult’s

1https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
2https://archive.ics.uci.edu/ml/datasets/adult
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income > 50K USD where race and gender are sensitive attributes. The goal in

COMPAS is to score the defendant’s likelihood of reoffending where race is the pro-

tected attribute. We consider categorical sensitive attributes (gender and race) and

continuous attributes (age) in the credit data.

We employ 60% of each dataset to train the model, 20% to validate the model and

select the hyperparameters, and 20% to test the FCF scores. We experiment with

a Decision Tree (DT), Support Vector Machines (SVM) model, Logistic Regressor

(LR), and Artificial Neural Network (ANN). DT is trained on Gini impurity with a

maximum depth of 5 and SVM is trained with an RBF kernel. LR is a l2-penalized

model and we consider d2 = 5. ANN consists of 2 hidden layers of 13 and 4 neurons

activated via ReLU and trained using a weighted binary cross-entropy loss function

through gradient-descent with root mean squared propagation for 50 epochs with a

10−3 learning rate.

The VAE consists of 2 hidden encoder layers with 16 and 8 neurons, respectively,

and 10 neurons in the bottleneck layer. We train the VAE for 50 epochs with a batch

size of 64 and a learning rate of 10−3. We select the VAE architecture based on the

loss of validation data using a grid search.

5.4.4 Real World Experiment Results

Detected Bias We sample 100 instances from the validation data set and compute

their FCF scores. We consider a model to be biased against an individual if the

FCF bias score is > 0.1. The distribution of the scores is shown in Appendix 8.

Adult German COMPAS
race gender race gender race

DT 4 7 5 2 3
SVM 5 9 11 7 4
LR 4 5 10 5 2
ANN 6 9 7 7 5

Table 5.2: Number of individuals discriminated against according to FCF
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We can see that FCF detects discrimination against race and gender in the three

datasets and for the four models. We validate the faithfulness of our process and

we compare it to existing work in the next part.

5.4.5 Comparison to Existing Metrics

We consider the adult data set to compare the FCF with existing group fairness

metrics. Mainly, we compute the equality of opportunity (EqOpp), predictive parity

(PredP), predictive equality (PredE), and statistical parity (StatP). Furthermore,

we calculate the FCF for privileged and underprivileged groups and report the ra-

tios of their expected values as in Equation 5.6. Since the Adult dataset conveys

two protected attributes, race and gender, we consider the privileged group to be

white-male and the underprivileged group to be while-female, black-female and

black-male. We report group fairness results in Table 5.3 and we underline dis-

crimination cases where the score does not fall within the [σ, 1
σ
] range with σ = 0.9.

We select σ as such to enforce fairness guarantees stronger than the four-fifths rule.

Acc EqOpp PredP PredE AccEq StatP FCF

DT 84 1.00 1.02 0.99 0.98 0.99 0.91
SVM 85 1.02 0.98 1.10 1.01 1.00 1.12
LR 83 0.89 1.22 1.02 0.97 1.02 1.23
ANN 86 0.91 1.13 1.02 1.10 1.03 1.20

Table 5.3: Group fairness metrics along with FCF on the Adult dataset where
underlined scores indicate discrimination with σ = 0.9

As shown, FCF detects discrimination with the SVM, LR, and ANN models.

These cases were detected mainly by equality of opportunity and predictive parity

but were missed by predictive equality and statistical parity. Next, we study whether

the bias cases are faithfully derived.
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5.4.6 Faithfulness Results

Faithfulness is studied in contrastive learning settings. Thus, its evaluation is feasible

only for FCF and its CF counterpart [31].

Stability

To check the stability of FCF, we performed perturbations on Z, and noted the

change in FCF. Fig. 5.5 shows that the change in FCF is bounded above by a linear

function when the alteration ϵ ≤ 0.5, implying a stable algorithm. We note that

computing the stability of CF is trivial where d(xi, xj) in Equation 5.8 is always 1

because CF’s counterfactuals are alterations on the protected attribute only.
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Figure 5.5: Stability score of FCF on the German and adult datasets

Proximity and Connectedness

The scores are shown in Fig 5.6 and Fig 5.7. Connectedness is represented by the

percentage of not connected contrastive neighbors while changing ϵ of DBSCAN. The

proximity is inversely proportional to LOF by changing the number of neighbors k.

Both FCF and CF achieve very high connectedness scores with nearly 0 unconnected

neighbors. However, FCF outperforms CF in proximity score where contrastive

neighbors generated by FCF are less likely to be outliers.

Thus, FCF is shown to be faithful for the individual examined for fairness. The
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Figure 5.6: Proximity scores (low numbers of local outliers are desirable)

conducted experiments show how the individual is compared, in a stable way, to

contrastive neighbors that are proximate and connected.

5.4.7 Impact of VAE Architecture

Finally, we conduct a qualitative and quantitative study on the impact of the VAE

complexity and the dimension of the bottleneck layer on the FCF scores and their

faithfulness. Intuitively, we prefer a powerful VAE (deeper layers) that can learn

the underlying data distribution. However, a deep one trained on a non-complex

dataset with linear relationships might simply learn to copy its inputs to the output,

without learning any meaningful representation. Thus, the loss of the VAE on newly

seen data should be the main factor in the validation process to select complex, yet

generalizable auto-encoders that can reflect the data distribution.
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Figure 5.7: Connectedness scores (low %not connected scores are desirable)

Second, we consider the size of the bottleneck layer which implies the dimension

of the latent representation. Few nodes in the bottleneck might yield to an under-

representative learned manifold; whereas a significantly increased number of nodes

can lead to over-fitting.

To showcase this, we train the following VAEs:

• VAE: the default VAE in this work with 2 hidden encoder layers with 16 and

8 neurons and 10 neurons in the bottleneck layer.

• Deep-VAE: a deeper VAE with 10 hidden encoder layers with 64, 50, 40, 32,

16, 10, and 10 neurons in the bottleneck layer.

• Shallow-VAE: a shallower VAE with 1 hidden encoder layer with 16 neurons

and 10 neurons in the bottleneck layer.
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• VAE-B1: 2 hidden encoder layers with 16 and 8 neurons and 1 neuron in the

bottleneck layer.

• VAE-B100: 2 hidden encoder layers with 50 neurons in each and 100 neurons

in the bottleneck layer.

We consider the Adult dataset and we compute the group scores of FCF on the

latent representations computed by the aforementioned VAEs. We report the FCF

scores in Fig. 5.8 where fair scores, that is, between 0.9 and 1/0.9, would belong to

the green region.

Figure 5.8: FCF group fairness scores when different VAEs are used. The green
region represents the [σ, 1

σ
] range indicating fair treatment.

Deep-VAE shows a slight over-fitting of the data and misses the discrimination

in the SVM model that achieves a score of 1.12 (unfair treatment) with VAE and

1.02 (fair) with Deep-VAE. Shallow-VAE yields the same results as VAE. The size

of the bottleneck layer shows a significant impact on the computation of FCF. A

size of 1 is an under-representation of the relations in the data, and a size of 100

is an overfitting where the network memorizes the training data instead of learn-

ing meaningful relations. Both cases can reshape the neighborhood, based on the

VAE latent representations, around particular instances yielding inaccurate fairness

measures.
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Furthermore, we study the faithfulness of FCF with different VAE architecture.

To this end, we report the proximity and connectedness scores in Fig. 5.9. As

demonstrated, faithfulness is significantly compromised with VAE-B1 and VAE-

B100. Additionally, Shallow-VAE exhibits lower faithfulness scores than Deep-VAE.

This experiment highlights the importance of a good approximation of the data

distribution on faithfulness. It additionally shows the importance of the latent

dimension in approximating the similarity metric implying a faithful comparison

during fairness evaluation.
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Figure 5.9: Impact of VAE architecture on faithfulness

5.5 Research Directions

We propose FCF, a faithful evaluation scheme to detect bias in black-box machine

learning models. FCF leverages manifold distance metric computed by VAEs; thus,

satisfies attainability constraints and can be extended to non-tabular datasets. Fur-

thermore, FCF does not rely on the specification of distance or cost functions, which

makes it easy for practitioners to adopt it in a wide variety of applications. We show

that FCF can detect discrimination missed by other metrics that rely on input per-

turbation and causal theory.

We further propose stability, proximity, and connectedness as novel quantitative

metrics to characterize fairness faithfulness. Our metrics show that FCF achieves
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higher proximity while preserving stability and connectedness. Thus, FCF is faithful

to the individuals by contrasting them to neighbors that are less likely to be outliers

and unattainable. We quantitatively study the impact of the VAE complexity and

the latent dimension on FCF scores and faithfulness.

FCF suggests several promising directions for future work. First, generative

methods can be leveraged to obviate the need for training data while detecting

bias. This can enhance privacy guarantees of our method complying with data laws

and the GDPR. Second, a human evaluation study can be conducted to assess the

relevance of the detected bias cases and further strengthen FCF.

Another promising avenue for future work includes the extension of FCF to

unstructured datasets where sensitive attributes become harder to divulge. In the

next objective, we devise an extension of FCF to textual data and we propose

faithfulness evaluation methods. The application to computer vision settings will

be studied in future work.
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Chapter 6

Objective III: Extension of

Contrastive Fairness and

Faithfulness Evaluation to

Textual Settings

After presenting our contrastive fairness evaluation for tabular data, we extend

our evaluation technique to settings where the protected attribute is not explicitly

manifested in the input. This is mainly the case in textual and imagery inputs.

Given that the latter data type has recently been thoroughly studied in the work of

[157], we focus this chapter on textual classifiers.

Despite their spectacular success in encoding semantic relationships, word em-

bedding models can be contaminated by social discrimination [158]. This discrim-

ination, in tandem with historical bias in training data, thwarts fair treatment for

marginalized groups. For instance, recent studies have shown that sentiment analy-

sis models are biased toward predicting negative emotions for people of color [159]

and toxicity detection discriminates against homosexual individuals [48].

Unfortunately, the nature of textual data and the opacity of word embeddings
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[65] impede the extension of existing fairness metrics [31], [38] to textual data.

First, input perturbation in textual applications requires careful consideration in

determining sensitive information and substituting corresponding words without

violating grammatical rules [36], [53]. More importantly, implicit stereotypes learned

by language models constitute a key challenge where embedding models can reflect

genderial stereotypes even when gender-specific pronouns are omitted in training.

Any bias detection approach that operates on word perturbations will then fall

short of detecting the underlying stereotypes. Apart from measuring bias, there is

a plethora of literature on debiasing embeddings [104], [124], [125], [160], but little

has been done to address the bias in textual classifiers. De-biasing textual classifiers

remains a challenge primarily when it currently relies on the availability and the

quality of sensitive word associations [35], [36].

In this work, we examine in detail bias detection in text classification. Instead

of perturbing the input x 7→ x′ and observing the change in outcome, we consider

the decision boundary between x and their contrastive counterparts x′, i.e., inputs

that can alter the model’s outcome. Our Contrastive Fairness Evaluation (CoFE)

framework deems a model f fair if the decision boundary between x and x′ does

not encode any sensitive information. CoFE measures bias through two metrics

inspired by geometrical analogies and mutual information. Although the predom-

inant SA studied in the literature is gender with some notable exceptions [35] to

sexual orientation, CoFE broadens the scope to under-explored protected data such

as religion.

Additionally, we consider the assessment schemes, and we target a novel eval-

uation aspect of the plausibility and attainability aspect of the textual contrastive

examples. We argue that counterfactuals should (1) meet textual attainability from

a grammatical and semantic perspective, (2) convey connectedness to their origi-

nal counterparts, and (3) satisfy local algorithmic stability. Accordingly, we extend
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proximity, connectedness, and stability, in the context of faithfulness, to textual data

and we propose tangible measures to quantify them.

In what follows, we present the problem statement of our third dissertation

objective in Section 6.1. We propose the methodology for fairness evaluation in

textual classifiers in Section 6.2. We then describe our experimental design and

empirical results in Section 6.3 and we evaluate the faithfulness of textual contrasts

in Section 6.4 before discussing and concluding in Section 6.5.

6.1 Problem Statement

Given an input space X , each x ∈ X is a sequence of words and an individual

xi ∈ X . We assume a local factual world

Fi = {x|x ∈ Nk(i) ⊂ X , f(x) = yf}

and its counterfactual world

Ci = {x′|x′ ∈ Nk(i) ⊂ X , f(x′) = ynf}

, where Nk(i) is the k-neighborhood of xi computed according to the L2-norm on

the transformer encodings, yf (ynf resp.) is a favorable (non-favorable resp.) out-

come. |Fi| + |Ci| = k and k can be adjusted to allow sufficient training instances.

Additionally, this diversity [161] is desirable as it enforces the comprehensiveness of

our study.

We study the fairness of a predictor by studying whether the decision bound-

ary between F and C encodes any sensitive attribute information. Furthermore,

we study whether a given contrastive, in textual settings, is derived faithfully by

extending the faithfulness metrics proposed in the previous chapter to the NLP

framework.
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6.2 Methodology

We operate in an IF framework and we study local neighborhoods where the decision-

making can be rendered explainable via linear approximation. The neighborhood

is sampled according to the transformer encoding of an input text. Then, a linear

classifier is trained on the encodings. We then investigate the contrast in outcome

between close inputs searching for any encoding of sensitive attributes. We do not

perform any input perturbation, nor do we put any assumptions on the neighbors.

Thus, we cover the implicit encoding of the sensitive attributes.

Accordingly, we define contrastive textual fairness as follows.

A textual classifier is fair to an individual xi if the decision boundary between its

factual to its counterfactual local neighborhoods does not encode sensitive informa-

tion. Mainly, (Fi ; Ci) ⊥⊥ A.

We approximate the decision boundary F ; C locally with a linear classifier

while respecting local fidelity. Given xi and k, the contrastive cost F ; C is

calculated as the normal vector,
−→
N , to the hyperplane separating between instances

in Fi and Ci. It is viewed as a local approximator of f and trained on labels produced

by f that enforce the local fidelity constraint. The contrastive decision boundary

is then studied along SA information to identify potential inter-dependence (⊥⊥)

through geometrical and entropy-based approaches, as described in Figure ??.

6.2.1 Sensitive Attribute Information

We consider the SA direction −→a to be constructed from pairs of related words.

For example, the gender direction is −→man − −−−→woman, the age direction is −−−→young −
−→
old. Although this simple algebraic arithmetic is shown to capture diverse semantic

relationships, we note the following. First, SA can be manifested in more than two

categories (e.g. race can be white, African-American, Asian, etc.). Second, the
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Figure 6.1: CoFE workflow

directions from different word combinations are not purely parallel. For instance,

−→man−−−−→woman might not be parallel to
−−−−−−−−−→
grandfather−−−−−−−−−−→grandmother.

Accordingly, we collect n pairs of (privileged, underprivileged) for each SA. These

pairs can be non-overlapping (for example, for gender, (male, female), (uncle, aunt)

or with some repetition for non-binary attributes (for example, (American, Chinese)

and (American, African) for ethnicity. The SA direction can thus be considered as

either (1) the direction that preserves the variance of the n samples through PCA,

or (2) a multivariate random variable with n realizations.

6.2.2 Sensitive Dependence Evaluation

Now that we computed the SA direction, we devise two strategies to infer whether

the decision boundary encodes sensitive data.

Geometrical Analogies

We compute the SA direction −→a similar to [104], by performing a PCA on the

vector differences of the pairs (privileged, underprivileged). The PC that retains

the majority of variance identifies the SA direction −→a . An alternative formulation

relies instead on a subspace formed by PCs M , but we restrict this study to M = 1,
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which demonstrates effectiveness in detecting bias. We do not restrict our work to

k = 1 in order to generalize our work to other protected attributes. The projection,

wP , of word w onto P is computed as:

wP =
k∑

i=1

(w.bi).bi (6.1)

Finally, the bias degree can be computed as the norm of the projection into the

sensitive attribute subspace P or ||wP ||2. Accordingly, we measure the dependence

as cos(−→a ,
−→
N ). We require the sensitive direction to be tangent to the decision

boundary of f around xi. Hence, bias is inferred by cosine scores < 1.

Mutual Information

Now, we reckon the decision boundary and the SA as random variables and we

study the dependency through Mutual Information (MI). Given a cross-validation

parameter C, we train C hyper-planes and we treat their coefficients as a d-

dimensional random variable U . Similarly, the SA is seen as a random variable

V with each pair (privileged, underprivileged) as one realization. Our goal is to

compute the amount of information that can be obtained from a V by observing U

as H(U) +H(V )−H(U ,V ) where H(.) refers to the Shannon entropy.

Luckily, there is a plethora of literature [162] on the estimation of the MI through

sampling, popularized by the seminal work of [163]. These estimations rely on count-

ing occurrences and co-occurrences [163], [164], kernel density estimations [165],

[166], bounds on MI [167], [168]. In this work, we rely on MI based on k−nearest

neighbors estimators[169] due to its simplicity and efficiency.

6.3 Results

Prior to our validation, we describe the datasets, the classifiers, and our implemen-

tation strategy. Then, we report the bias that existed in the dataset before any
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training and then the bias leveraged by the different classifiers. Finally, we compare

to existing fairness metrics in the literature.

6.3.1 Experimental Setup

We validate CoFE on two classification tasks: toxicity detection in comments [35]

and occupation classification in biographies (bios) [170]. Fair toxicity detection

ensures that minorities are not increasingly silenced by the moderation of comments

on social networks. Bias-free occupation detection dilutes stereotypes in inferring

identities from professions.

The classifiers in the toxicity prediction task are binary in nature and trained

on 127,820 to rate toxic behavior. The favorable outcome is assumed to be non-

toxic (that is, the toxicity rate is < 0.5). The occupation classifier is trained on

178, 619 examples to predict the occupation given the biography1. As the underlying

classification is not binary, we create a list of stereotypical pairs that are well-

known to exhibit discrimination. For instance, surgeon is favorable while nurse is

not. Similar pairs are attorney-paralegal, physician-dietitian and professor-teacher,

personal trainer-model.

We experiment with four underlying transformers adopted from [171]: BERT,

RoBERTa, XLM, GPT2 and a Convolutional Neural Network (CNN) with a hidden

size of 128 and a kernel size of 5 followed by a fully-connected layer of 10 units

trained on GLoVe embeddings [172]. CoFE is evaluated on the validation data of

both datasets on an NVIDIA K80 / T4 GPU with 16GB RAM. Experiments were

repeated 5 times and average results are reported.

1The data is available at github.com/microsoft/biosbias
2’unitary/toxic-bert’, ’unitary/unbiased-toxic-roberta’, ’unitary/multilingual-toxic-xlm-

roberta’ and ’martin-ha/toxic-comment-model’ on huggingface respectively.
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6.3.2 Computation of the Sensitive Direction

We consider SAs that might emerge in textual data, i.e. age, race, gender, religion,

and sexual orientation. The SA direction is based on gender word pairs of [104] and

on home-grown collection for other SAs. We show five random pairs in Table 6.1 for

each SA. Additionally, we consider a direction derived from randomly selected words

from the English vocabulary with no clear analogies as a baseline for our study.

Baseline (tooth, committee), (cabinet, lab), (instance, son),
(champion, recording), (family, heart)

Age (young, old), (youthful, elderly), (young, elderly),
(youthful, old), (young, senior)

Race (white, indian), (white, korean), (american, dark
skin), (european, african-american), (white, black)

Religion (christian, muslim) (Jesus, Muhammad), (church,
mosque), (orthodox, muslim), (baptism, Hajj)

Sexual orientation (straight, homo), (straight, bisexual), (man, gay),
(straight, gay), (straight, homosexual), (straight,
homophile), (straight, queer)

Gender (husband, wife), (uncle, aunt), (brother, sister),
(dad, mom), (waiter, waitress)

Table 6.1: Pairs of sensitive attributes
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Figure 6.2: CoFE bias scores in the bios dataset

6.3.3 Implementation Details

Sentence embeddings are computed as 768-dimensional dense vectors based on the

recent work of [173]. No significant impact was noticed with different embedding

models.
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BERT

CoFE % (↓) EqOpp (↓) EqOdds (↓) Acc. (↑)
Toxicity (Race) 0.333 0.154 0.183 0.881
Toxicity (Religion) 0.41 0.02 0.008 0.881
Toxicity (Sexual Orientation) 0.466 0.584 0.721 0.881
Toxicity (Gender) 0.48 0.327 0.765 0.881
Bios (Surgeon vs. nurse) 0.398 0.427 0.56 0.972
Bios (Lawyer vs. Paralegal) 0.346 0.321 0.764 0.991

CNN

CoFE % (↓) EqOpp (↓) EqOdds (↓) Acc. (↑)
Toxicity (Race) 0.41 0.167 0.169 0.714
Toxicity (Religion) 0.461 0.018 0.135 0.714
Toxicity (Sexual Orientation) 0.692 0.433 0.669 0.714
Toxicity (Gender) 0.641 0.267 0.612 0.714
Bios (Surgeon vs. nurse) 0.399 0.325 0.456 0.875
Bios (Lawyer vs. Paralegal) 0.256 0.321 0.54 0.813

Table 6.2: CoFE bias vs. equality of opportunity and equalized odds metrics

For local approximation, we sample k = 100 neighbors based on the cosine sim-

ilarity of the latent representations. Two factors contributed to the choice of k: (1)

k needs to be large enough to yield a neighborhood where favorable and unfavorable

outcomes appear. (2) k should not exceed ≈ 10% of the test data for the linear

model to faithfully approximate f . In order for CoFE to satisfy large-scale retrieval

requirements, we rely on the anisotropic vector quantization of the ScaNN algorithm

[174] to sample k−nearest neighbors. Based on ScaNN heuristics, we select the dot

product similarity metric with the following hyper-parameters for the search strat-

egy: num leaves = 200, num leaves to search = 100, training sample size = 250 and

an anisotropic quantization threshold of 0.2 for scoring. Adopting ScaNN reduced

the local sampling time from hours needed by brute-force similarity algorithms to a

few minutes on our hardware.

When we are interested in the bias cases, we display the inverse of CoFE cosine

(1− cos(.)) and call it CoFE bias (0 means no bias, 1 means severe bias). When we

are interested in the discrete number of bias cases, we display CoFE%, which denotes

the percentage of individuals whose CoFE bias is above a threshold th. It should
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be noted that CoFE% establishes the group fairness counterpart of our individual

score, CoFE. Furthermore, we omit MI scores and report cosine scores only when

both metrics contribute to the same conclusion.

6.3.4 Dataset Bias

Prior to any training, we study the bias in the dataset by sampling 50 random points

and computing CoFE bias on the true labels. Figures 6.2 and 6.3 show the CoFE

bias scores in the considered datasets. Discrimination manifests itself when higher

CoFE scores are observed with regard to the baseline distribution. Consequently,

for the bios data, only gender exhibits a noticeable bias. This discrimination is

mainly shown in the doctor-nurse and attorney-paralegal contrast. In the rest of

this study, we will only consider gender as SA in the two aforementioned categories.

For toxicity data, a noticeable bias is observed against race, religion, gender, and

sexual orientation is observed. The CoFE scores on the age attributes are even lower

than the baseline suggesting fair treatment for younger and elder groups. Therefore,

age will not be a subject of this study.
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Figure 6.3: CoFE bias scores in toxicity dataset

In what follows, we report the detected bias in the two datasets and we compare

it to existing metrics.
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6.3.5 Detected Bias

For both datasets, we sample 100 random points where the outcome is not favorable

and compute their CoFE% cosine score. The threshold th is chosen according to

the results of the baseline direction where a model can exhibit CoFE scores of up

to 0.1 even when no bias is discerned. Furthermore, we compute the equality of

opportunity (EqOpp) and equalized odds (EqOdds) scores as in [36]. The former is

the difference between true positive (TP) rates in both groups (0 <EqOpp < 1) the

latter is the difference between TP and the false positive (FP) rates (0 <EqOdds

< 2). A zero value of EqOdds and EqOpp is favored, as it hints at fair treatment.

EqOpp is an appropriate fairness evaluation metric in the Bios data. It ensures

that privileged and underprivileged groups are equally matched with jobs that are

relevant to their skills. EqOdds is suitable in toxicity prediction settings to ensure

equal odds of detecting toxicity in comments with equal rates across all groups.

We report EqOdds and EqOpp along with CoFE% scores in Table 6.2 and we

show the distribution of the cosine scores in Figure 6.4. Gender and sexual orien-

tation manifest notably higher bias (score 0.7 with BERT) on the toxicity dataset.

This score significantly exceeds the original bias of the dataset (score 0.2). Oc-

casionally, BERT yields higher discrimination according to all metrics which can

be explained by the historical bias perpetuation during pre-training. Interestingly,

one can see how CoFE detects bias cases that are diluted, even missed, by EqOpp,

especially with regard to religion.

6.3.6 CoFE in the Fairness Evaluation Realm

Quantitative comparison to existing work such as [35], [36], [53], [175] is not viable

due to the unavailability of their implementations which hinders reproducibility.

We spare no effort at conducting a qualitative and analytical comparison. To show

how word-level evaluations might miss discrimination cases, we compute CoFE bias
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Figure 6.4: CoFE bias cosine scores on the toxicity dataset

scores on biographies by eliminating gender-specific words and pronouns. Figure 6.5

shows how CoFE bias cos and MI scores can show discrimination, especially in the

surgeon-nurse stereotype which motivates the use of metrics in the latent space.

0.0 0.2
cos

Photographer vs. painter
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Surgeon vs. nurse
Professor vs. teacher

Personal trainer vs. model
−6 −4

MI

Raw Neutralized

Figure 6.5: CoFE bias on bios data when raw and gender-neutralized biographies
are used for training

Finally, scaling CoFE to languages with grammatical gender such as Spanish

does not face the same challenges as in word-level methods [36]. As long as language

models are reliable, CoFE only requires a handful of (privileged, underprivileged)

pairs for evaluating textual classifiers in new languages. Additionally, CoFE is

not limited to gender or binary discrimination/classifiers. It relies on privileged-

underprivileged information which is suitable even for non-binary attributes (e.g.
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race or sexuality).

6.4 Faithfulness of Textual Contrasts

In this section, we consider contrastive textual examples and we study their faith-

fulness based on the metrics we proposed earlier. We consider textual contrastive

explanations with open-source code, POLYJUICE, MiCE, and ContrXT mainly.

Counterfactuals generated by ContrXT are global which makes faithfulness not di-

rectly applicable as it evaluates specific (local) explanations. Thus, we consider

POLYJUICE and MiCE for our validation. We train both models on the IMDB

sentiment analysis task on NVIDIA K80/T4 GPU with 16GB RAM. We consider

restaurant reviews for sentiment analysis 3 with 977 validation instances.

For a given input, POYJUICE’s API generates 3 counterfactuals whereas MiCE

generates a variable number of counterfactuals between 1 and 69 as shown in Fig-

ure 6.6.
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Figure 6.6: Distribution of the number of counterfactuals generated by MiCE for
each input

3kaggle.com/apekshakom/sentiment-analysis-of-restaurant-reviews
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6.4.1 Proximity

We start by evaluating how close the generated counterfactuals are to ground truth

data from the contrast class. For this purpose, we compute P (xcf ) and plot the

distribution of its values in Figure 6.7. One can see a predominance of low proximity

scores (< 0.2) in POLYJUICE and an inclination to achieve higher scores with

MiCE.

0.0 0.2 0.4 0.6 0.8
P(xcf)

(a) POLYJUICE

0.0 0.2 0.4 0.6 0.8
P(xcf)

(b) MiCE

Figure 6.7: Distribution of the P (xcf ) scores

We further split our validation data according to their contrast classes into two

categories: positive and negative sentiment contrasts. For both categories, we com-

pute the outlier factor for the generated counterfactuals, which is inversely pro-

portional to LRD, while changing k and we show the values in Figure 6.8a. For

small k, i.e., strong conditions on outliers, a great deal of the generated counterfac-

tuals, especially with POLYJUICE, are considered outliers. With fair values of k,

POLYJUICE drops its generated outliers to nearly zero, while some outliers can still

be observed with MiCE. Both explanation models are systematic, with the contrast

class being positive or negative sentiments.
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Figure 6.8: Scores while changing the number of neighbors k

6.4.2 Connectedness

To assess whether the generated counterfactuals are connected to their original fac-

tuals, we compute the connectedness score for both explanation models and contrast

sentiments. The results shown in Figure 6.8b demonstrate that POLYJUICE and

MiCE achieve low connectedness scores when k is small, where only half of their

generated counterfactuals can be considered connected to the original input. When

we loosen the connectedness requirement by increasing k, we notice that more coun-

terfactuals become connected especially with POLYJUICE. For both explanation

methods, positive sentiment contrast classes seem to achieve higher connectedness

scores, but the discrepancy between positive and negative sentiments is insignificant

with MiCE.

6.4.3 Stability

We compute d(x′cf ,xcf ) as counterfactual similarity and d(x,x′) as input similarity

and show how the former measure is scattered in terms of the latter in Figure 6.9 for

POLYJUICE and MiCE. Both plots show that a near-linear correlation governs both

models with some high variance. The ratio
d(x′

cf ,xcf )

d(x,x′)
represented by the slope of the

linear regression model on the given scatter plots is bounded, showing stability of

both explanation algorithms. This can suggest that the non-gradient aspect of the
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considered contrastive methods yields more robust counterfactuals. The lower vari-

ance in POLYJUICE suggests better robustness guarantees. Besides, no significant

distinction can be inferred between the two contrast categories.
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Figure 6.9: Scattering of counterfactual similarity with respect to the input similar-
ity. Linear scattering infers local stability.

Finally, we consider a more fine-grained stability study, considering three ranges

of input similarities: d(x, x′) < 0.2, 0.2 ≤ d(x, x′) < 0.4 and 0.4 ≤ d(x, x′) < 0.6.

Figure 6.10 shows how the counterfactual similarity is distributed for the three

ranges considered. Locally, i.e., with input distance < 0.2, POLYJUICE is shown

to be more stable in the positive contrast class by achieving low distances in the

generated counterfactual. MiCE seems to outperform POLYJUICE on the negative

contrast class. Zooming out, better stability is observed with POLYJUICE for both

contrast classes.

6.4.4 Adversarial Robustness

We generate adversarial perturbations based on semantic similarity [112] on the

restaurant reviews. The adversarial inputs are then fed into POLYJUICE and MiCE

for a counterfactual generation. Figure 6.11a demonstrates that the perturbation

had no impact on the proximity behavior of POLYJUICE. Markedly, MiCE’s coun-

terfactuals became less in-distribution with ground truth data showing questionable
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Figure 6.10: Distribution of the distance between counterfactuals for different input
distance ranges

robustness to adversarial attacks. The connectedness scores are not affected for both

methods, as shown in Figure 6.11b.

0 5 10 15 20
k

0

20

40

60

80

100

Lo
ca

l o
ut

lie
rs

 %

(a) Proximity scores

0 5 10 15 20 25
k

50

55

60

65

70

75

80

85

90

Co
nn

ec
te

d 
%

POLYJUICE
MiCE
POLYJUICE adv
MiCE adv

(b) Connectedness scores

Figure 6.11: Proximity and connectedness results with adversarial attacks on textual
contrastive examples

Finally, we visualize how the generated counterfactuals are affected when inputs

are perturbed. Figure 6.12 shows the distribution of cosine similarities between xcf

(the counterfactual of the original input, x) and xadv
cf (the counterfactual of its ad-

versarial counterpart, xadv) with respect to the similarity between x and xadv on a

sample of 300 points. POLYJUICE scores higher similarities between counterfactu-
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als showing better robustness to adversarial attacks. Since POLYJUICE does not

rely on gradient descent to reach recourse, its results are per the discussion of [176]

on the problematic behavior of gradient-based counterfactual search on robustness.

While we are aware of the wide range of adversarial textual attacks, we restrict

our experiment to semantic similarity and leave the rest for future inspection.
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Figure 6.12: Distribution of the cosine similarity of the generated counterfactuals
with adversarial attacks

6.4.5 Comparison to Existing Metrics

We compute the existing evaluation metrics, BLEU and Self-BERT mainly, on

the generated counterfactuals. On average, POLYJUICE counterfactuals achieve

a BLEU score of 0.38 as opposed to a 0.32 score achieved by MiCE. Self-BERT

scores were higher, where POLYJUICE and MiCE achieve 0.95 and 0.92 scores,

respectively.

The results show a slight improvement of POLYJUICE over MiCE which con-

firms our findings highlighting again the importance of latent representations. Fig-

ure 6.13 shows the distribution of the scores on the counterfactuals generated by

POLYJUICE and MiCE.

99



0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120
BLEU on POLYJUICE

0.0 0.2 0.4 0.6 0.8
0

20

40

60

80

100

120
BLUE on MiCE

0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
0

2

4

6

8

10

12

Self-BERT on POLYJUICE

0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98
0

5

10

15

20

25

30
Self-BERT on MiCE

Figure 6.13: Distribution of the BLEU and Self-BERT scores on the generated
counterfactual textual examples

6.4.6 Discussion

The fundamental difference between POLYJUICE and MiCE can be traced to word

representations. The former anticipates latent space encodings, while the latter

operates at the textual level. Hence, we will interpret their faithfulness through the

lens of the word representation.

Proximity results were not consistent. Higher P (xcf ) scores are reported with

MiCE while lower outlier factors are observed with POLYJUICE. One can thus say,

that relative to d(x,xcf ) edits on the textual level achieve higher proximity. Con-

sidering a cluster of ground truth inputs with the same class as the counterfactual,

POLYJUICE is shown to obey the input distribution in generating contrastive texts.

We also call attention to the fluency filtering layer of POLYJUICE, which yields bet-

ter reachability. These results hint at the connection between latent representations
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and the attainability of generated counterfactuals.

On the contrary, the connectedness scores do not show any substantial differ-

ence. POLYJUICE has been shown to be more locally stable and more robust to

adversarial attacks. The results make intuitive sense as the distances are computed

based on latent representations that are used by POLYJUICE in their contrastive

search. Hence, latent representation of words (instead of textual ones) can serve

the algorithmic stability of recourse methods. Additionally, latent representations

of words are shown to be more reliable with semantic adversarial attacks.

Finally, faithfulness is not shown to be distorted towards one sentiment versus

the other. The consistency in the results reported on the positive and negative

sentiment suggests a balanced training strategy.

6.5 Research Directions

This work adds to the growing body of fairness research by suggesting CoFE, a

novel contrastive evaluation technique for textual classifiers. By addressing NLP

challenges and leveraging transformers’ training, CoFE exposes bias and stereotypes

learned by textual classifiers that are diluted, even missed, by other fairness metrics.

CoFE considers a variety of sensitive attributes including religion and homosexuality

and is robust to any deep architecture.

We further define faithfulness of textual explanations and present corresponding

computation schemes. Our benchmarks on two famous methods, POLYJUICE and

MiCE, show that better algorithmic stability and attainability are achieved in the

former, highlighting the importance of latent representation in the counterfactual

search strategy. We highlight the vulnerabilities of textual recourse methods against

semantic adversarial attacks.

A limitation of CoFE is its sensitivity to some definitions where a higher bias

is observed with words with little consideration for the context. Diluting such sen-
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sitivity can be the subject of future work. Another promising line of work is the

extension of CoFE to languages with different linguistic properties such as Spanish.

We suggest three immediate steps in the textual faithfulness line of work. First,

“unconnected” counterfactuals should be filtered by posing connectedness con-

straints on the search strategy. Second, stability should be enhanced when textual

edits are employed. Finally, textual attacks on recourse methods can be further

investigated to propose robustness methods and mitigation techniques.
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Chapter 7

Objective IV: Latent Bias

Mitigation

After presenting how contrastive learning can be used to derive counterfactual ex-

amples and detect bias cases in classifiers, in this chapter, we present bias mitigation

through contrast sets. We devise two techniques that rely on contrastive sets to force

our contrastive fairness on any classifier.

Instead of relying on adversarial learning and re-weighting schemes [128]–[132],

we propose a regularizer that is aligned with our evaluation strategy. To this end,

we suggest a mitigation technique that neutralizes a classifier by augmenting its

loss function with a contrastive fairness constraint. Our constraint encourages a

classifier to treat proximate individuals similarly while considering a manifold-like

notion of distance.

Then, we extend this technique to textual settings to suggest a latent augmenta-

tion technique with no assumptions on the underlying text classifier. Existing work

relies on pre-defined word analogies for gender mostly [52], [104]. We highlight two

aspects that prevent the wider adoption of word-based augmentation approaches.

Their first maneuver is to establish whether a word is related to a potentially bi-

ased direction which is prone to error. Second, they require a significant human
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intervention step to identify privileged-underprivileged analogies in text prior to

augmentation. Accordingly, we suggest the first augmentation technique that op-

erates on the latent rather than the input space of classifiers. This eliminates the

reliance on sensitive analogies as a preparatory manual step. We study its effective-

ness in de-biasing textual classifiers and the impact of the mitigation strategy on

the model’s performance.

This chapter presents the fourth dissertation objective as follows. First, we

define our bias mitigation problem statement in Section 7.1 and we discuss our

methodology in Section 7.2. Then, we present our empirical results in Section 7.3

and we discuss promising future directions in Section 7.4.

7.1 Problem Statement

Given a predictor f̂ , an individual xi, and a contrastive example xj derived based

on a manifold-like distance, we encourage f̂ to treat xi and xj similarly.

xi can be a numerical record or a textual example represented by an embedding

vector. In the former case, we assume xj to be derived according to the methodology

discussed in Algorithm 1 in Section 5.2. In the textual settings, we derive xj by

perturbing xi with the sensitive attribute direction. We rely on the methodology

described in Section 6.2.1 to compute this direction.

7.2 Methodology

We suggest two mitigation strategies. The first one regularizes the loss of a classifier

with a contrastive fairness constraint. This technique is applicable in general set-

tings as an in-training step. Our second strategy augments the datasets with latent

contrastive examples. While it can be extended to different datatypes, we discuss

our second technique in NLP, within the same settings as our evaluation technique.
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7.2.1 Regularizationn in General Settings

We propose a faithful contrastive regularizer that forces a classifier to generate the

same prediction for an individual xi and its contrastive neighbors NCT
ϵ (xi). The

regularizer augments the loss function of a classifier f̂ , L(f̂(xi), yi), with a constraint

that the predictions of an individual and its contrast are the same, i.e.

L(f̂(xi), yi) + λMSE(f̂(xi), f̂(xj))

with yi is the ground truth label for xi, λ is a regularization hyper-parameter, MSE

is the mean-squared error and xj ∈ NCT
ϵ (xi).

Classifiers that do not optimize a loss function, such as decision trees, can benefit

from our FCF formulation through contrastive augmentation. In other words, the

training dataset can be augmented with tuples (xj, yi) where xj ∈ NCT
ϵ (xi) and yi

is the label of xi. Both techniques can be used as a post-hoc debiasing technique of

pretrained models and as an inherent way to enforce contrastive fairness constraints.

7.2.2 Latent Augmentation in Textual Settings

In [36], a model f is certifiable robust in the context of fairness if, for any sentence

x and its alternatives x′, f(x) = f(x′). x and x′ carry the same meaning in the

classification context but differ in SA. This condition is enforced through augmen-

tation on the word and sentence levels [52], [53]. We suggest latent augmentation

of the input encoding. This technique alleviates the need for an SA topology and

for complete substitution databases.

Accordingly, for a dataset {(xi, yi)}, we augment with {(xi ± −→a , yi)}. With −→a

computed as in 6.2.1. Our augmentation encourages the model to have a similar

treatment for individuals that carry the same meaning except for the SA. It enhances

robustness against semantic biased attacks to achieve fairness while preserving rich
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semantics. Additionally, our augmentation does not require pre-training as the

models can be only fine-tuned on the augmented data or part of hereby.

We draw the reader’s attention to the distinction between our work and the de-

biasing of [104], [124], [125], [160], [177]. The latter approaches eliminate implicit

stereotypes from embedding models. CoFE, however, requires a textual classifier

to reach the same decision for two similar inputs from different protected groups

whether the SA is implicit (stereotypical) or explicit (historical classification bias).

7.3 Results

In what follows, we cover the experimental setup of both mitigation techniques.

Then, we report the results of our debiasing strategies in general and textual set-

tings. Furthermore, we study the impact of our mitigation technique on the fairness-

accuracy trade-off and we compare it to existing work.

7.3.1 Experimental Setup

For the general settings, we follow the same setup described in Section 5.4. Mainly,

we test our metric on the adult census dataset, used to predict whether an adult’s

income > 50K USD where race and gender are sensitive attributes. We use 60% of

each dataset to train the model, 20% to validate the model and select the hyper-

parameters, and 20% to test the FCF scores. We experiment with a Decision Tree

(DT), Support Vector Machines (SVM) model, Logistic Regressor (LR), and an

Artificial Neural Network (ANN). DT is trained on Gini impurity with a maximum

depth of 5 and SVM is trained with an RBF kernel. LR is an l2-penalized model

and we consider d2 = 5. ANN consists of 2 hidden layers of 13 and 4 neurons

activated via ReLU and trained using a weighted binary cross-entropy loss function

through gradient-descent with root mean squared propagation for 50 epochs with a

10−3 learning rate.
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For the textual classifiers, we employ the two aforementioned datasets: toxicity

detection in comments [35] and occupation classification in biographies (bios) [170].

We follow the same setup of Section 7.3 where we train the classifier of the toxicity

prediction task on 127,820 to rate the toxic behavior. and the classifier of the

occupation on 178, 619 examples to predict the occupation given the biography. We

used the list of stereotypical pairs introduced in Section 7.3 and we experiment with

BERT a Convolutional Neural Network (CNN) with a hidden size of 128 and a

kernel size of 5 followed by a fully-connected layer of 10 units trained on GLoVe

embeddings [172]. CoFE is evaluated on the validation data of both datasets on

NVIDIA K80/T4 GPU with 16GB RAM. Experiments were repeated 5 times and

average results are reported.

7.3.2 General Settings

We modify the loss function of the ANN model and we augment the training of

DT, SVM, and LR with contrastive examples. We report the FCF group fairness

scores along with existing metrics on the Adult dataset pre- and post-debiasing in

Table 7.1. Additionally, we report the individual FCF scores on the 3 datasets in

Figure 7.1.

Debiased Acc EqOpp PredP PredE AccEq StatP FCF

DT No 84 1.00 1.02 0.99 0.98 0.99 0.91
DT Yes 85 1.00 1.00 0.99 0.99 0.99 0.99
SVM No 85 1.02 0.98 1.10 1.01 1.00 1.12
SVM Yes 84 1.03 0.99 1.00 1.01 1.00 1.02
LR No 83 0.89 1.22 1.02 0.97 1.02 1.23
LR Yes 85 0.92 1.03 1.00 0.99 1.01 0.99
ANN No 86 0.91 1.13 1.02 1.10 1.03 1.20
ANN Yes 86 0.99 1.01 1.02 0.98 1.01 0.99

Table 7.1: Group fairness metrics along with FCF on the Adult dataset where
underlined scores indicate discrimination with σ = 0.9

Our debiasing strategy is shown to result in high FCF scores (> 0.95) implying
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fair treatment for individuals. Additionally, as shown in Table 7.1, the proposed

mitigation strategy is shown to improve the fairness of different models based on our

contrastive notion as well as other group fairness definitions. The bias cases reported

earlier (with SVM, LR, and ANN) were significantly reduced without compromising

the model’s performance. On the contrary, the model’s accuracy is improved in

the case of DT and LR which can be attributed to the data augmentation that we

followed. It is worth mentioning that no significant impact on the faithfulness scores

was observed.
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Figure 7.1: FCF pre- and post- bias mitigation

7.3.3 Textual Debiasing

For improved robustness, we apply a scalar transformation on −→a of magnitude α

with −1 ≤ α ≤ 1, a random number with uniform distribution. Mainly, for a tuple

(xi, yi), we augment the dataset with {(xi + α−→a , yi)} with a probability m. α < 0

accounts for perturbations towards the underprivileged group.

Figures 7.2 and 7.3 report the distribution of the CoFE bias cosine scores and

MI scores for the bios and toxicity dataset pre- and post-mitigation. The results

demonstrate a significant improvement in fairness with latent mitigation where co-

sine bias scores are reduced by more that 50% for XLM and dropped to near zero
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Figure 7.2: CoFE bias cosine scores for pre- and post-debiasing where higher cosine
scores infer discrimination)

values with in other architectures. MI results show a similar improvement with up

to 3x decrease especially with sexual orientation.

Table 7.2 further indicates a consistent improvement of up to 50% in EqOpp

and EqOdds with different SAs in BERT and CNN. The example in Figure 7.4

demonstrates that latent augmentation removes correlations between her and nurse

and corrects the correlation between clinical and the true occupation. While

her-nurse correlation can be reduced with word augmentation, clinical might

exhibit high correlation with male and surgeon that can’t be remedied by word
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Figure 7.3: CoFE MI scores for pre- and post-debiasing (Higher MI indicates dis-
crimination)

augmentation given that no male-female analogy exists for clinical.

7.3.4 Fairness-Accuracy Trade-off

It is of utmost criticality for any fairness enforcement approach to preserve the

model’s performance quality. Table 7.2 shows that with BERT, the reduction in

accuracy does not exceed 3%. The case of sexual orientation even shows an im-

provement in the accuracy. CNN’s results are similar with a slightly higher drop in

accuracy to up to 4%.
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Figure 7.4: Example from bios data with LIME explanations highlighted in red
(intense means higher correlations)

To better understand the accuracy-fairness tension with CoFE, we change the

augmentation ratio m from 0 (no augmentation) to 1 (full augmentation) on the

training data of both datasets and we improve the change in accuracy and CoFE

cos scores. Figure 7.5 shows the average accuracy and CoFE bias scores of BERT

and CNN on gender discrimination. One can see that augmentation improves fair-

ness without compromising accuracy. More importantly, with high augmentation

ratios, the performance can improve suggesting that our augmentation is treated

as a semantic one and addresses over-fitting. Interestingly, fairness improvement

is capped at m = 0.4 which can be used as a relaxation of the full augmentation

requirement for efficiency and scalability.

Figure 7.5: Accuracy and CoFE with augmentation ratio

7.3.5 Comparison to Existing Work

Unlike [35], [36], [52], [53], [175], CoFE does not depend on substitution databases

and does not require the identification of sensitive words as a preliminary step.

Additionally, the augmentation in [36] improves EqOdds and EqOpp by up 20% on

111



the bios and toxicity datasets. CoFE latent augmentation was able to drop these

bias metrics by up to 50% in the gender case in the toxicity dataset. Similarly,

[35] reduced EqOpp toxicity data with regard to homosexuals by 20% while CoFE

reduces the same metrics by up to 30%. Additionally, word substitution methods

[36], [178] were reported to require 53 hours for toxicity and 37 hours for bios data on

large AWS compute nodes. CoFE augmentation exhibits a reduced carbon footprint

when running on two Intel(R) Xeon(R) CPU cores of 2.30GHz and 12 GB RAM

while considering 4 sensitive attributes instead of sexual orientation only.

Finally, scaling CoFE to languages with grammatical gender such as Spanish

does not face the same challenges as in word-level methods [36]. As long as language

models are reliable, CoFE only requires a handful of (privileged, underprivileged)

pairs for evaluating and mitigating textual classifiers in new languages. Addition-

ally, CoFE is not limited to gender or binary discrimination/classifiers. It relies

on privileged-underprivileged information which is suitable even for non-binary at-

tributes (e.g. race or sexuality).

7.4 Research Directions

In this chapter, we suggested mitigation techniques for classifiers that operate on

tabular and textual data. Our strategy has been shown to be effective in neutralizing

different classifiers with respect to different sensitive attributes. Additionally, our

textual latent mitigation encourages fair treatment and improves robustness without

compromising performance.

Our bias mitigation strategy breathes new flexibility towards (1) a painless exten-

sion to new languages and sensitive attributes and (2) debiasing classifiers infected

by stereotypes rather than social bias in training data. A future direction is an

additional improvement of the quality of the derived textual contrasts by filtering

based on scores such as BLEU and Self-BERT scores.
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Chapter 8

Conclusion and Future

Directions

This dissertation aims at providing a comprehensive framework for explainable and

fair AI that is inspired by contrastive learning, goes beyond tabular data through

deep feature inspection, and satisfies faithfulness guarantees. Accordingly, we ad-

dressed the following research questions:

1. How to derive contrastive examples in the context of explainable AI while

simultaneously accounting for immutability, semi-immutability, and attain-

ability constraints in a model-agnostic fashion?

2. How does contrastive learning, with manifold-like distance measures, improve

individual fairness evaluation to faithfully detect bias in classifiers?

3. How to utilize deep feature inspection to extend the contrastive fairness mea-

sure to non-tabular data?

4. How to leverage the derived contrastive examples to mitigate bias in existing

classifiers with little reliance on existing ontologies?

To this end, first, we proposed CEnt, a novel entropy-based method that sup-
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ports users with a set of actionable input alternatives to improve their outcomes.

CEnt operates in a model-agnostic fashion while respecting immutability and semi-

immutability constraints and encouraging attainable and plausible contrasts through

a manifold-like distance metric. Our method improves the proximity and attain-

ability of contrastive explanations without compromising latency and constraint

violation. We utilized the derived contrasts to faithfully evaluate the fairness of a

classifier, with our FCF metric, by first defining faithfulness guarantees for fairness

and exploiting VAE distances to derive attainable contrasts. FCF is faithful to the

individuals by contrasting them to neighbors that are less likely to be outliers and

unattainable.

Then, we extended our contrastive fairness evaluation to textual settings by sug-

gesting two novel deep inspection techniques for protected attributes and extending

faithfulness guarantees to NLP. Our method, CoFE, is shown to expose discrimina-

tion that is diluted, even missed, by other fairness metrics on a variety of protected

attributes. Furthermore, we defined faithfulness guarantees in textual settings. Our

metrics enable us to advise on the use of latent representations in the generation of

textual contrastive examples to improve faithfulness by 33%.

Finally, we complemented our study with a novel latent mitigation technique

for textual classifiers. Our method does not rely on an extensive manually labeled

ontology of analogies between privileged and underprivileged groups. We empiri-

cally validate its effectiveness in neutralizing transformers with respect to different

sensitive attributes. Quantitatively, CoFE augmentation reduces bias in textual

classifiers by more than 50% on average compared to 20% or 30% with existing

methods.

The findings of this dissertation motivate the use of manifold-like distance metrics

in the derivation of contrasts in the explainable AI field and in fairness evaluation.

By utilizing VAEs contrastive examples are more likely to guarantee attainability
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and plausibility ensuring a faithful counterfactual explanation and individual fair-

ness evaluation. We also lay the foundation for a new era of classifier neutralization

that does not heavily rely on existing ontologies and can be easily extended to new

languages and sensitive attributes.

We acknowledge the limitation of any fairness metric, hence FCF and CoFE, in

capturing all notions of bias. Our method, solely, evaluates the decision-making pro-

cess of a classifier from an individual fairness lens. It can thus put the practitioner’s

fingers on particular discrimination to circumvent the issue with our proposed latent

mitigation.

A promising vein of research focuses on enhancing privacy guarantees of our

method within explainable and fair AI. Additionally, an investigation of the applica-

bility of our method on imagery datasets can further enhance the comprehensiveness

of our work. Within textual settings, filtering based on scores such as BLEU and

Self-BERT scores would further improve the plausibility of our derived counterfac-

tuals and hence enhance our latent augmentation technique.
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Appendix

Objective II

Synthetic Dataset Generation

We describe the data generation scheme for the synthetic experiment of Section 5.4.1.

We assumed different data distributions for the privileged and underprivileged

groups. The underprivileged group data is generated following this equation:

x2 = 0.3(x1 + 1)2 − 1

The privileged group data follows:

x2 = −0.3(x1 − 1)2 + 1 (1)

Both distributions are overlapped with random normal in the range [−1, 1].

import numpy as np

N samples = 600

np . random . seed (47)

x underpr iv = np . l i n s p a c e (−3 , 1 , N samples )

x p r i v = np . l i n s p a c e (−1 ,3 , N samples )
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y underpr iv = 0.3∗np . square ( x underpr iv+1)−1

y pr i v =−0.3∗np . square ( x pr iv −1)+1

no i s e = np . random . normal (−0.1 , 0 . 1 , y underpr iv . shape )

y underpr iv = y underpr iv + no i s e

y p r i v = y pr i v + no i s e

The make moons function of sklearn could have been useful in this experiment.

However, we opt for our data generation scheme to have control over the curvature

of the generated parabolas.
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Experimental Details of Section 5.4.2

The ANN model has two hidden layers with 50 and 25 neurons respectively acti-

vated via relu and trained with Adam optimizer and a 10−5 learning rate. The

LR model is trained through stochastic gradient descent on l2 cost. CARLA’s [141]

implementation of the counterfactual explainability is used with the following setup.

CEM:

ba t ch s i z e : 1

kappa : 0 . 1

i n i t l e a r n i n g r a t e : 0 .01

b i n a r y s e a r c h s t e p s : 9

max i t e r a t i on s : 100

i n i t i a l c o n s t : 10

beta : 0 . 9

gamma: 0 .0

CLUE:

t r a i n va e : True

width : 10

depth : 3

la t ent d im : 12

ba t ch s i z e : 64

epochs : 1

l r : 0 .001

e a r l y s t o p : 10

DICE:

pos thoc spar s i ty param : 0
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GS:

lambda : 0 .5

opt imize r : ”adam”

l r : 0 . 1

max iter : 1500

t a r g e t c l a s s : [ 0 , 1 ]

b i n a r y c a t f e a t u r e s : True

Wachter:

l o s s t y p e : ”BCE”

b i n a r y c a t f e a t u r e s : True
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Distribution of Bias Scores

While we report the number of discrimination cases reported in each dataset in Sec-

tion 5.4.4, we report the distribution of the continuous individual bias as computed

by FCF in Fig. 1.
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Figure 1: Distribution of FCF following log scale for the y-axis (higher scores indicate
unbiased decisions)
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