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AN ABSTRACT OF THE THESIS OF

Jana Jamal Attieh for Master of Science

Major: Mathematics

Title:The construction of a simplicial resolution of I2 where I is a square-free monomial ideal .

Let R = k[x1, . . . , xn] be the polynomial ring in n variables, and I = (m1, . . . ,mq)

a square-free monomial ideal in R. We consider the ideal I2 = ⟨{mimj : i, j}⟩ to be

the monomial ideal generated by at most
(
q+1
2

)
generators. We study the

construction of a simplicial complex labeled by the monomials of I2 which

supports a free resolution of I2.
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CHAPTER 1

INTRODUCTION

Let R=k[x1, x2, ..., xn] be the polynomial ring in n variables with maximal ideal M,

and let I be an ideal of R. A free resolution of I is an exact sequence of free

modules that describes relations on the generators of the ideal which has the

following form:

0 → Fr → . . . → F1 → F0 → I

with r being the pdim (I).

Suppose I is a monomial ideal i.e generated by monomials. Finding the

minimal free resolution of I known as the minimal monomial resolution, can be

quite complex despite the combinatorial structure that monomial ideals have. An

important tool in studying monomial resolutions is to find topological objects

whose chain maps can be homogenized to obtain free resolutions of these ideals.

This approach began with Diana Taylor in her thesis in 1966. It consists of

labeling the vertices of the simplex by the monomials of the ideal and the faces by

the lcm of the monomials. However, the Taylor’s resolution is far from minimal.

Many mathematicians tried to generalize Taylor’s approach by considering smaller

topological objects with the hope of obtaining minimal free resolutions.

In this thesis, we let I = (m1, . . . ,mq) be a monomial square-free ideal,

and we consider the monomial ideal I2 generated by the mimj for all i, j. The

number of generators of I2 is at most
(
q+1
2

)
, and so the number of vertices on the
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number of vertices on the Taylor simplex is growing exponentially. We are

interested in learning about a subcomplex of the Taylor simplex whose simplicial

complex supports of a free resolution of I2. We learn the construction of simplicial

complex L2
q on

(
q+1
2

)
vertices with fewer faces, and we exhibit a subcomplex of the

L2
q called L2(I) which supports a free resolution.

We begin the thesis by introducing some background and definitions in

chapter 2. Then in chapter 3, we explain what are minimal free resolutions of

ideals I in a polynomial ring in several variables and discuss some properties. In

chapter 4, we define monomial resolutions and exhibit techniques used to construct

simplicial resolutions. Finally, in our last chapter, we tackle our problem and

explore the simplicial complex L2
q and its sub-complex L2(I).

.
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CHAPTER 2

PRELIMINARIES

Let R be a commutative unitary ring. Here are some useful definitions on elements

of the ring R.

2.1. Notions on Commutative Ring and Maximal

Ideals

Definition 2.1. A zero divisor in R is an element x for which ∃ y ̸= 0 such that

xy = 0.

Example 2.2. In M2(R), consider A and B to be the following matrices

A =

0 1

0 0

 and B =

1 0

0 0


their product AB is the zero matrix while A and B are not, so A and B are two

zero divisors.

A ring with no zero divisors (and in which 1 ̸= 0 ) is called an integral

domain, just like Z, k[x1, x2, . . . , xn], where k is a field and n ∈ N, are integral

domains.

Definition 2.3. A unit in R is an element x which ”divides 1”, i.e an element x

such that xy = 1 for some y in R.
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Now, there will be a definition that we will use it later as an application.

Definition 2.4. Let R be a ring. Let M be an R-module. A sequence of elements

r1, r2, . . . , rn ∈ R is called a regular sequence on M (or M-sequence) if

1. (r1, r2, . . . , rn)M ̸= M and

2. for i = 1, . . . , n , ri is a non zero divisor on M/(r1, r2, . . . , ri−1)M .

Definition 2.5. A field is a ring R in which 1 ̸= 0 and every non-zero element is

a unit.

Example 2.6. R , C are fields .

We note that every field is an integral domain but not conversely.

Definition 2.7. An ideal m in R is maximal if m ̸= (1) and if there is no ideal A

in R such that m ⊆ A ⊆ (1).

Example 2.8. pZ is a maximal ideal of Z where p is a prime number.

Proof. let I be an ideal of Z such that pZ ⊂ I ⊂ Z then I has a form of dZ with d

is the smallest positive integer number in I. Hence pZ ⊂ dZ ⊂ Z which gives that

d | p and as a result d = 1 or d = p (because p is prime). Thus, I = Z or

I = pZ.

Proposition 2.9. m is a maximal ideal iff R/m is a field.

Proof. ⇒ We have to prove that the only ideals of R/m are {0} and R/m. Indeed,

let Ī be an ideal of R/m. Then I is an ideal of R such that m ⊆ I, but

m ⊆ I ⊆ R; by maximality of m we get m = I or I = R. Hence, Ī = {0̄} and

Ī = R/m. So, R/m is field.
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⇐) Let I be an ideal of R/m such that m ⊆ I ⊆ R; since m ⊂ I we get Ī

ideal of R/m. So, Ī = {0̄} or R/m hence, I = m or I = R.

Proposition 2.10. Every ring R ̸= 0 has at least one maximal ideal.

Proof. Let Σ be the set of all ideals ̸= (1) in R, order Σ by the inclusion. Σ is a

non-empty set because (0) ∈ Σ. We apply Zorn’s lemma. In order to do so, we

prove that there exists an upper bound for every chain of ideals in Σ. We know,

that for any i,j Ai ⊆ Aj or Aj ⊆ Ai. Let A =
⋃

Ai, A is an ideal (using inclusion)

such that 1/∈ A. Hence, A ∈ Σ and A is the upper bound of the chain. By Zorn’s

lemma Σ has a maximal element.

Definition 2.11. A local ring R is a commutative ring with identity which has a

unique maximal ideal m.

Example 2.12. • Any field F is a local ring with unique maximal ideal {0}.

• Zp is a field where p prime number as pZ is maximal ideal by example 2.8.

• R =


a 0

b a

 ∈ M2×2⧸a, b ∈ Z2

 is a local ring with m =


0 0

1 0


0 0

0 0




2.2. Noetherian Rings

Theorem 2.13. We call a ring A to be Noetherian if it satisfies one of the three

equivalent conditions:
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i. Every non-empty set of ideals in A has a maximal element.

ii. Every ascending chain of ideals in A is stationary.

iii. Every ideal in A is finitely generated.

Proof. i ⇒ ii) Suppose A satisfies the maximal condition of ideals of A. Let

A1 ⊆ A2 ⊆ . . . be a strictly increasing chain of ideals that doesn’t stop. So, the set

{Ak, k ∈ N} ≠ ∅ of A does not have a maximal element which gives contradiction.

Hence, the chain is stationary.

ii ⇒ i) Suppose that every ascending chain of A is stationary. If A does

not satisfy maximal condition, then there is a non-empty set Σ of A with no

maximal element. Let A0 ∈ Σ and let A0 ⊆ A1 ⊆ . . . ⊆ Ak strictly increasing chain

of ideals in Σ . Since Σ has no maximal element, so there exists Ak+1 ∈ Σ such that

Ak ⊆ Ak+1; then A0 ⊆ A1 ⊆ . . . ⊆ Ak ⊆ Ak+1 strictly increasing chain of ideals in

Σ. Proceeding in this way, we obtain an infinite ascending chain of ideals, this

contradicts the assumption that A is stationary. Hence, A has a maximal element.

ii ⇒ iii) Let N be an ideal of A and Σ all finitely generated sub-ideals of

N . Σ is non-empty since 0 ∈ Σ. Hence, it has a maximal element, say N0. If

N0 ̸= N , then we consider the ideal N0 + Ax with x ∈ N and x /∈ N0. Thus, we

have N ⊆ N0 + Ax and N0 + xA is finitely generated; which contradicts with the

maximality of N . So, N = N0 and N is finitely generated.

iii ⇒ ii) Suppose every ideal of A is finitely generated. Let A1 ⊆ A2 ⊆ . . .

be an infinite increasing chain of ideals of A and B =
⋃
k∈N

Ak. Hence, B is an ideal

in A. Using our assumption, B is finitely generated by a finite subset {x1, . . . , xr}.
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Then, there exists natural numbers n1, . . . , nr such that xi ∈ Ani
,∀i = 1, . . . , r. Let

k0 = max{n1, . . . , nr} so x1, . . . , xr ∈ Ak0 . Hence, B ⊆ Ak0 but Ak0 ⊆ B for every

k ⩾ k0 hence B = Ak0 and the chain stops.

Example 2.14. 1. The ring Z is Noetherian since mZ ⊆ nZ ⇔ n | m. hence,

it satisfies the second statement of the above theorem.

2. Every field is Noetherian since it has no proper ideals.

Theorem 2.15. (Hilbert Basis Theorem) If R is Noetherian, then the

polynomial ring R[x] is also Noetherian.

Proof. Let I ⊆ R[x] be an ideal. We need to show that I is finitely generated .

The Elements are the polynomials in R[X] with coefficients in R :

{anxn + an−1x
n−1 + . . .+ a1 + a0; ai ∈ R, n ⪈ 0}. If I = (0) then it is a

trivial case. Now, we assume that I ̸= (0) then, choose f1 ̸= 0 be a polynomial in I

which has least degree among all non-zero elements in I. This means that if f ∈ I,

f ̸= 0, and degree(f) ⩾ degree(f1). Clearly, (f1) ⊆ I. Now, if (f1) = I then we

have done, but if (f1) ̸= I so I contains other elements than (f1) and then

I/(f1) ̸= ∅. Now,choose f2 to be a least degree polynomial in I/(f1) (all the

polynomials in I/(f1) such that f2 has least degree). Again, if (f1, f2) = I then we

are done. Otherwise, we continue f3 to be the least degree polynomial in

I/(f1, f2). Let ai = lc(fi) ( the leading coefficient of fi such that ai ∈ R) and let

J = (a1, a2, . . .) ⊆ R. Since R is Noetherian then J is finitely generated. Hence,

J = (a1, . . . , an) for some n.

Claim : I is finitely generated by f1, . . . , fn; i,e I = (f1, . . . , fn).
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Proof. Suppose that I ̸= (f1, . . . , fn), we would have chosen fn+1 to be the

polynomial of least degree among all the elements of I/(f1, . . . , fn);

an+1 ∈ J = (a1, . . . , an) then an+1 =
∑

biai; i = 1, . . . , n. Now, consider

g =
∑

bifix
mi for i = 1, . . . , n such that mi = deg(fn+1)− deg(fi), by construction

g ∈ (f1, . . . , fn) and lc(g) = an+1 = lc(fn+1) also deg(fn+1 − g) < deg(fn+1) then

fn+1 − g ∈ (f1, . . . , fn) and g ∈ (f1, . . . , fn). So, fn+1 = (fn+1 − g) + g ∈ (f1, . . . , fn)

which contradicts. Therefore, I if finitely generated and R = [x] is Noetherian.

Theorem 2.16. If R is Noetherian, then the polynmial ring R[x1, . . . , xn] is also

Noetherian.

Proof. Using the induction on n.

2.3. Tensor product

Definition 2.17. let M ,N and P be R-modules, we define a bilinear map from

M ×N to P by a map Φ : M ×N → P such that

Φ((am+a′m′)×(bn+b′n′)) = abΦ(m×n)+a′bΦ(m′×n)+ab′Φ(m×n′)+a′b′Φ(m′×n′)

where m,m′ ∈ M and n, n′ ∈ N .

Definition 2.18. Define a tensor product M ⊗R N to be the module with

generators {m⊗ n;m ∈ M,n ∈ N} with relations

(am+ a′m′)⊗ (bn+ b′n′) = ab(m⊗ n) + a′b(m′ ⊗ n) + ab′(m⊗ n′) + a′b′(m′ ⊗ n′).

Definition 2.19. (Wedge Product) The wedge product or ” exterior product”

is a multiplication operator obtained form the wedge product by factoring out the
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product m⊗m . It is also denoted by ∧ such that m ∧ n = m⊗ n− n⊗m. It has

many properties such as:

• Associative; (m ∧ n) ∧ l = m ∧ (n ∧ l).

• Anti-commutative, m ∧ n = −n ∧m.

• Distributive under addition operation.

2.4. Complexes and Exact sequences

Let R be a commutative ring.

Definition 2.20. A finite complex E is a sequence of homomorphisms of

R-modules of the form: 0
d0−→ E0 → . . .

dn−→ En+1 → 0. Where di : E
i → Ei+1 such

that di+1 ◦ di = 0 for all i . Thus, Im(di) ⊆ ker(di+1).

Definition 2.21. The Homology Hi of the complex is defined to be

Hi = ker(di+1)/Im(di). By definition, H0 = E0 and Hn = En/Im(dn).

Definition 2.22. Let E and F be two complexes. A homomorphism f : E → F is

a sequence of homomorphisms di : Ei → Fi making the following diagram

commutative for all i.

· · · −→ Ei Ei+1 −→ · · ·

· · · −→ F i F i+1 −→ · · ·

diE

f i f i+1

diF

.

2.4.1. Exact Sequences

Most important kind of a complex is the exact sequence.
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Definition 2.23. Sequence of R-modules and R-homomorphisms

· · · fi−2→ Mi−1
fi−1−−→ Mi

fi−→ Mi+1 → · · ·

.

is said to be exact at Mi if Im(fi) = Ker(fi+1). The sequence is exact if

it is exact at each Mi.

In Particular,

1. 0 −→ M ′ f−→ M . is exact ⇐⇒ f is injective.

2. M
g−→ M ′′ −→ 0 is exact ⇐⇒ g is surjective.

3. 0 −→ M ′ f−→ M
g−→ M ′′ −→ 0 is exact ⇐⇒ f is injective and g is

surjective.

also, g induces an isomorphism of coker(f) = M/f(M ′) = M/Ker(g) onto M ′′. A

sequence of last type is called short exact sequence.

2.5. Graded Rings and Modules

Definition 2.24. A graded ring is a ring R together with a family (Rn)n≥0 subgroups of the

additive group R, such that R =
∞
⊕

n=0
Rn and RnRm ⊆ Rn+m for every n and m.

Definition 2.25. ”Graded polynomial Ring”

Let R = k[x1, . . . , xn] be the ring polynomial over the field k. Define Rn by

Rn = {
∑

m∈Nd rmxm/rm ∈ k,m1 + . . .+md = n} where m = (m1, . . . ,md) ∈ Nd and

xm = x1
m1 . . . xd

md . The polynomial ring R is graded using 2.24 and let deg(xi) = 1 for all i and
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R0 = k; then R is standard grading. A monomial x1
m1 . . . xd

md has a degree m1 + . . .+md.

Denote by Ri the k-vector space spanned by all monomials of degree i.

Definition 2.26. Let R be a graded ring, a graded R-module is an R-module M together

with the family (Mn)n≥0 where of subgroups M such that M=
∞
⊕

n=0
Mn for n positive and

RmMn ⊆ Mn+m for every positive numbers m and n.

Example 2.27. Graded vector space is a graded K-module over a field K.

Definition 2.28. A polynomial h ∈ R is called homogeneous if h ∈ Ri for some i. In this case,

h has degree i denoted by deg(h) = i.

Definition 2.29. An element m ∈ M is called homogeneous if m ∈ Mn for some n, where n

represents the degree of the element m.

Example 2.30. Let R = k[x, y, z], R0 = k , and R1 = {linear forms}. The polynomial

f = x3 + yz2 is homogeneous because all of its term has degree 3; however, the polynomial

g = x2 − y is not homogeneous since every element has a different degree.

Definition 2.31. A proper ideal J (J ̸= ∅ and J ̸= R) is called graded or homogeneous if J is

generated by homogeneous elements.

Remark 2.32. 0 is homogeneous for any degree.

Suppose that I is graded ideal in R (standard graded) then the quotient ring R/I

inherits the grading by Ri/Ii.

We have seen that the polynomial ring is a graded ring, and the ideals are homogeneous

ideals. This polynomial ring can be considered as a local ring. In fact, maximal ideals of

R = k[x1, . . . , xn] are of the form m = (x1 − a1, . . . xn − an) since R/m ≃ k, since m is

homogeneous this gives that a1 = a2 = ... = an = 0. Therefore, ai = 0 for all i, and

m = (x1, . . . , xn) is considered to be the homogeneous maximal ideal of R.

Definition 2.33. Irrelevant maximal ideal is the one which generated by all polynomials of

positive degree and denoted by m = (x1, . . . , xn).

Definition 2.34. Let M =
⊕

Md with d ∈ Z be a finitely generated graded R-module with d-th

graded component md. Let M(a) the module M shifted by a: (Ma)d = Ma+d.

15



Example 2.35. x2 has a degree in R[x] since x2 ∈ R2. Hence, x2 has a degree 0 in R(−2) since

if x2 has degree 2 in R, then x2 has degree (2− 2 = 0) in R(−2).

Definition 2.36. Let Φ be a homomorphism between two graded modules Φ : M → N maps

x → Φ(x). Φ is said to be homogeneous if deg(Φ(x)) = deg(x) for every x ∈ M . These maps are

also called degree-0 maps.

Example 2.37. let Φ : R → R(−2) that maps 1 → x2 and z → zx2. For x and z ∈ R,

deg(Φ(x)) = deg(zx2) = 3 in R, so it has degree 1 = 3− 2 in R(−2). Hence, deg(Φ(z)) = deg(z).

16



CHAPTER 3

GRADED FREE RESOLUTION

Let R = k[x1, x2, . . . , xn] be a the graded polynomial ring in n variables and m its homogeneous

maximal ideal in R.

3.1. Graded Free Resolution

Definition 3.1. A free resolution of a finitely graded R-module M is a sequence of homogeneous

R-modules

F : . . . Fi
δi−→ Fi−1

δi−1−−−→ Fi−2 → . . . → F1
δ1−→ F0

such that:

1. F is a complex of finitely generated R-module Fi.

2. F is exact i.e Im(δi−1) = Ker(δi)

3. M ∼= F0/Im(δ1)

For convenience, we write

F : . . . −→ Fi
δi−→ Fi−1 −→ . . . −→ F1

δ1−→ F0
δ0−→ M −→ 0.

3.1.1. Construction of Free Resolutions

In this subsection, we exhibit a manual construction of a free resolution of module M . This

construction can be done through Macaulay 2.

1. Let M be an R-module and {mi}i=1,...,n be a finite set of generator of M , then we define a

map from a free module F0 to M by sending the ith generator of F0 to mi for every i. Let
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M1 ⊂ F0 be the kernel of F0. Since R is Noetherian, by the Hilbert Basis theorem, M1 is

finitely generated and the elements of M1 are called the syzygies on mi.

2. Choosing finitely many homogeneous syzygies that generate M1, we define a map

δ1 : F1 → F0 with Im(δ1) = M1 = ker(δ0).

3. Continuing this way, we construct an exact sequence of free modules, called a free

resolution of M : . . . → Fi
δi−→ Fi−1 → . . . → F1

δ1−→ F0.

Next we put a grading on the constructed free resolution. We recall that a resolution is

graded if M is graded, F is a graded complex, and the maps are degree-preserving maps i.e. δi

have degree 0 for all i.

Construction 3.2. Given homogeneous elements mi ∈ M of degree ai that generate M as an

R-module, we will construct a graded free resolution of M by induction on homological degree.

First, set M0 = M and Choose homogeneous generators m1, . . . ,mr of M0. Let a1, . . . , ar be their

degrees respectively. Now set F0 = ⊕
1≤i≤r

R(−ai). The map defined from the graded free module F0

onto M sends the ith generator fi of R(−ai) to mi. After constructing the Fi by taking the

ker(δi), we obtain finitely generated graded R-module Fi’s and put a degree on them. So we write

Fi as ⊕
p∈Z

R(−p)βi,p to make the degree of the map equal to zero. Therefore, a graded complex of

free finitely generated modules has the form

. . . −→ ⊕
p∈Z

R(−p)βi,p
δi−→ ⊕

p∈Z
R(−p)βi−1,p −→ . . . −→ R.

It is an exact sequence of degree-0 maps between graded free modules such that the cokernel of δ1

is M . Note that the numbers βi,p are the graded Betti numbers of the complex.

The following table represents all the graded betti numbers. The entry in the ith column

and pth row is βi,i+p and the ith column contains the data at the ith step of the minimal graded

free resolution.

Example 3.3. One of the simplest family of graded free resolutions are called Koszul

complexes. They resolve an ideal generated by a regular sequence. Let
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β0 β1 β2 . . .
0 β0,0 β1,1 β2,2 . . .
1 β0,1 β1,2 β2,3 . . .
2 β0,2 β1,3 β2,4 . . .
3 β0,3 β1,4 β2,5 . . .
. . . . . . . . . . . . . . .

Table 3.1: The Graded Betti-numbers

I = (x1, x2, x3) ∈ k[x1, x2, x3]

0 −→ R(−3)



x1

x2

x3


−→ R3(−2)



0 x3 −x2

x3 0 −x1

−x2 x1 0


−→ R3(−1)

x1 x2 x3


−→ R

Example 3.4. Let us introduce another resolution for the ideal I = (x2, xy, z3) in the polynomial

ring R = [x, y, z].

0 −→ R



x2

xy

z3


−→ R3



−y −z3 0

x 0 −z3

0 x2 xy


−→ R3



z3

−y

x


−→ R

where the betti-numbers are shown in the following table :

. 0 1 2 3
total 1 3 3 1
0 1 . . .
1 . 2 1 .
2 . 1 . .
3 . . 2 1

Table 3.2: Betti Table

Theorem 3.5. (Hilbert Syzygy Theorem)

let R = k[x1, . . . , xn]. Any finitely generated graded R-module M has a finite graded free

resolution :

0 −→ Fm
δm−→ Fm−1 −→ · · · −→ F1

δ1−→ F0
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such that m ≤ n, the number of variables in R.

3.1.2. Examples from Macaulay 2

In this subsection, we exhibit a few examples by using the software Macaulay 2.

Example 3.6. The below is an example of a minimal resolution of the regular sequence

{x2, y3, z3}

i1 : R=QQ[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : ideal(x^2,y^3, z^3)

2 3 3

o2 = ideal (x , y , z )

o2 : Ideal of R

i3 : res o2

1 3 3 1

o3 = R <-- R <-- R <-- R <-- 0

0 1 2 3 4

o3 : ChainComplex
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i4 : betti res o2

0 1 2 3

o4 = total: 1 3 3 1

0: 1 . . .

1: . 1 . .

2: . 2 . .

3: . . 2 .

4: . . 1 .

5: . . . 1

o4 : BettiTally

i5 : o3.dd_1

o5 = | x2 y3 z3 |

1 3

o5 : Matrix R <--- R

i6 : o3.dd_2

o6 = {2} | -y3 -z3 0 |

{3} | x2 0 -z3 |

{3} | 0 x2 y3 |
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3 3

o6 : Matrix R <--- R

i7 : o3.dd_3

o7 = {5} | z3 |

{5} | -y3 |

{6} | x2 |

3 1

o7 : Matrix R <--- R

Example 3.7. Again in the polynomial ring in three variables, we resolve the ideal

I = (x2y, y2z, z3, z2x2)

i8 : ideal (x^2*y, y^2*z, z^3, z^2*x^2)

2 2 3 2 2

o8 = ideal (x y, y z, z , x z )

o8 : Ideal of R

i9 : res o8

1 4 4 1

o9 = R <-- R <-- R <-- R <-- 0

0 1 2 3 4
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o9 : ChainComplex

i10 : betti res o8

0 1 2 3

o10 = total: 1 4 4 1

0: 1 . . .

1: . . . .

2: . 3 . .

3: . 1 4 .

4: . . . 1

o10 : BettiTally

i11 : o9.dd_1

o11 = | x2y y2z z3 x2z2 |

1 4

o11 : Matrix R <--- R

i12 : o9.dd_2

o12 = {3} | -yz -z2 0 0 |

{3} | x2 0 0 -z2 |

{3} | 0 0 -x2 y2 |

{4} | 0 y z 0 |
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4 4

o12 : Matrix R <--- R

i13 : o9.dd_3

o13 = {5} | -z2 |

{5} | yz |

{5} | -y2 |

{5} | -x2 |

4 1

o13 : Matrix R <--- R

3.2. Minimal Graded Free Resolution

Let R = k[x1, · · · , xn] be a polynomial ring with M a R-module. In this section, we will define

graded minimal free resolutions.

Definition 3.8. A complex of graded R-modules

· · · −→ Fi
δi−→ Fi−1 −→ · · ·

is called minimal if for each i, δi(Fi) ⊂ mFi−1.

Example 3.9. Let R = [x] and I = (x2, x3). A resolution of R/I is :

0 −→ R


−x

1


−→ R2

−x 1


−→ R −→ R/I −→ 0
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is not minimal element since 1 ∈ δ2 =

−x

1

 then δ2(R) ⊊ m(R⊭).

Construction 3.10. The construction of graded minimal free resolutions is done by doing the

same steps as the construction of the free resolution by taking minimal sets of generators for M0

and then a minimal set of generators for every ker δi for all i.

Next, we will illustrate the construction via an example

Example 3.11. Given the polynomial ring R = k[x, y, z, w] and the ideal I = (xy, yz, zw). The

main goal is to construct the minimal graded free resolution of R/I.

Step 1: let F0 = R be a graded k-module and δ0 : R −→ R/I.

Step 2: The element xy,yz and zw are homogeneous generators of ker(δ0), each of

degree 2. Let F1 = R3(−2), denote by f1 the 1-generator of each R(−2) such that i = 1, 2, 3.

Now, let δ1 : F1 −→ F0 such that Im(δ1) = ker(δ0) = I, so

R3(−2)

xy yz zw


−→ R−→R/I

step 3: We have to find the homogeneous generators of ker(δ1) in order to construct δ2

.

(
xy yz zw

)

c1

c2

c3

 = 0

such that c1, c2, c3 ∈ R. By calculation, We can see that R1 =

(
−z x 0

)
, R2 =

(
0 −w y

)
,

and R3 =

(
−wz 0 xy

)
are three generators, but xR2 +R3 = wR1 so, minimal generators of

the solution

(
c1 c2 c3

)
is {R1, R2}. Therefore, −zf1 + xf2 and −wf2 + yf3 are homogeneous

generators of ker(δ1). Furthermore, the grading is done as follows:

deg(−wf1 + xf2) = deg(−z) + deg(f1) = 1 + 2 = 3 same for −wf2 + yf3. Now, let F2 = R2(−3)
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and g1,g2 be the 1-generators of R(−3); deg(g1) = deg(g2) = 3. Define

δ2 : R2(−3) −→ R3(−2)

that maps g1 −→ −zf1 + xf2 and g2 −→ −wf2 + yf3 such that Im(δ2) = ker(δ1); then the

differential matrix 
−z 0

x −w

0 y


Step 4: We know, Im(δ3) = ker(δ2) has no non-trivial solution. Hence, F3 = 0 and

δ3 : 0 −→ R2(−3).

So, a minimal graded free resolution :

0 −→ R2(−3)



−z 0

x −w

0 y


−→ R3(−2)

xy yz zw


−→ R −→ R/I −→ 0

Lemma 3.12. (Nakayama). Suppose that M is a finitely generated graded R-module and

m1, · · · ,mn ∈ M generate M/mM . Then m1, · · · ,mn generate M .

Proof. Let M = M/ΣRmi
. If the m′

is generate M/mM then M/mM = 0 and M = mM . Now, if

M ̸= 0, since M is finitely generated there would be a non-zero element of at least degree in M ;

this element could not be in mM . Thus, M = 0 and M is finitely generated by the m′
is.

Corollary 3.13. A graded free resolution F : . . . −→ Fi
δi−→ Fi−1 −→ . . . is minimal as a

complex if and only if for each i the map δi takes a basis of Fi to a minimal set of generators of

the image of δi.

Proof. ⇒ Consider the right exact sequence Fi+1 −→ Fi −→ Im(δi) −→ 0. The above resolution

is minimal ⇐⇒ δi+1(Fi+1) ⊂ mFi for each i ⇐⇒ δi+1 : Fi+1 −→ Fi/mFi is the zero map

⇐⇒ δi+1 : Fi+1/mFi+1 −→ Fi/mFi is a zero map −→ δi : Fi/mFi =⇒ Im(δi)/mIm(δi) is an
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isomorphism. Now, suppose {f1, . . . , fn} is a basis (minimal set of generators) of Fi, then

{f1, . . . , fn} set of generators of Fi/mFi and minimal by Nakayama’s lemma. Hence, δi(fi) = mi

is a minimal set of generators of Im(δi)/mIm(δi) and by Nakayama’s lemma mi is a minimal set

of generators of Im(δi).

⇐ Suppose δi takes basis of Fi to minimal set of generators of Im(δi); by Nakayama’s

lemma , {f1, . . . , fn} minimal set of generators of Fi/mFi and {mi} basis of Im(δi)/mIm(δi) of

same dimension as Fi/mFi. Then, there is an isomorphism between Fi/mFi and

Im(δi)/mIm(δi). Again, by Nakayama’s lemma this occurs if and only if a basis of Fi maps to a

minimal set of generators of Im(δi).

The most interesting thing is the uniqueness of the minimality as we will see below.

Theorem 3.14. Let M be a finitely generated graded R-module. If F and G are minimal graded

free resolution of M , then there is a graded isomorphism of complexes F −→ G inducing map on

M .

Proof.

F : . . . F1 −→ F0
d0−→ M −→ 0yidM

G : . . . G1 −→ G0
δ0−→ M −→ 0

We start by constructing the identity map on M , We have idM ◦ d0 : F0 −→ M then δ0 is

surjective by the exactness and since F0 is free hence it is projective. So, there exists a map

f0 : F0 −→ G0 such that the diagram commutes and then idM ◦ d0 = δ0 ◦ f0. We have to show

that f0 is isomorphism. To do so, we tensor both F and G by K = R/m and show that f0 ◦ id is

isomorphism.

F : . . . F1 ⊗K −→ F0 ⊗K
d0⊗id−→ M ⊗K −→ 0yidM ⊗ id

G : · · ·G1 ⊗K −→ G0 ⊗K
δ0⊗id−→ M ⊗K −→ 0

since F and G are minimal, F0 ⊗K = F0/mF0 and G0 ⊗K = G0/mG0 which are k-vector spaces.

Then, d0 ⊗ id and δ0 ⊗ id are isomorphisms, using the corollary 3.13 and f0 ⊗ id is isomorphism.
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In order to show that f0 is an isomorphism, let f0 = (aij) then f0 ⊗ Id = aij ⊗ 1 = ¯(aij) is

invertible. Thus, det(aij) is unit in k and det(aij) is not in M which implies that det(aij) unit in

R and the matrix is invertible. So, f0 is isomorphism. We follow by the same procedure to

construct f1 as f0 induces an isomorphism between ker(d0) and ker(δ0).

Definition 3.15. If M is finitely generated Graded R-module. We define the projective

dimension of M to be the minimal length of a projective resolution of M which is equal to the

length of the minimal graded free resolution and denote by pdR(M).

Example 3.16. let R = k[x, y, z] and let I = (yz, xy). The projective dimension pdR(I) is equal

to 1 in the minimal free resolution of I:

0 −→ R


−x

z


−→ R2

yz xy


−→ I −→ 0.

while the projective dimension is 2 in the minimal free resolution of R/I

0 −→ R


−x

z


−→ R2

yz xy


−→ R −→ R/I −→ 0

Remark 3.17. pdR(R/I) = pdR(I) + 1.
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CHAPTER 4

MONOMIAL RESOLUTIONS

In this part, we are interested in discussing free resolutions of monomial ideals which by

definiton, the ideals that are generated by monomials. The structure of these such resolution is

more complicated than of the previous resolution. However, the excitement work here is the

involvement of the combinatorial techniques ( as we will see later) to make it obvious.

4.1. i-grading

With all of the above, we can say that R is Nn-graded ( or simply multi-graded) by

mdeg(xi)=the i′th standard vector in Nn where mdeg represents the multi-degree. Given

a = (a1 . . . , an) ∈ Nn, there exists a unique monomial of Nn of degree a namely xa = xa1
1 . . . xan

n

and a its exponent vector. Hence, in this case, R = ⊕
m
Rm such that m is a monomial and Rm is a

k-vector space spanned by m, with RmR′
m = Rmm′ for all monomials m and m′. Also, an

R-module T is called multi-graded if it can be written as ⊕
m
Tm as a k-vector space and

RmTm′ ⊆ Tmm′ for all monomials m and m′.

Notation 4.1. R(xa) stands for the free R-module with one generator in multi-degree xa, it can

be denoted also by Ra.

4.2. Multi-graded Free Resolutions

Referring to what we have defined before, we noticed that any monomial ideal is homogeneous

with respect to the multi-grading. Hence, the constructed graded resolution in 3.2 works .
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Denote by FM the multi-graded free resolution of R/M over R which has a form like

· · · −→ ⊕
m
Rci,p δi−→ ⊕

m
Rci−1,p −→ · · · −→ R (4.1)

where δi represents the differential matrices and m the monomials in R.

Example 4.2. Let R = k[x, y] be the polynomial ring and let I be an ideal of R generated by x2

and xy, so I = (x2, xy). The minimal free resolution of R/I which is multi-graded is :

−→ R(x2y)


y

−x


−→ R(x2)⊕R(xy)

x2 xy


−→ R

4.2.1. The Taylor Resolution

One significant resolution is the ”Taylor resolution” as it resolves all R/M whenever M is a

monomial ideal. This resolution was discovered by Diana Taylor in her thesis in [8], and resolves

the monomial ideals M by using the exterior algebra. However, this type of resolution is highly

non-minimal although it has a simple structure. We first define the notion of exterior algebra:

Definition 4.3. Let h1, . . . , hq be elements in R. Define E to be the exterior algebra over K on

the canonical basis e1, . . . , eq. Thus,

E = k(e1, . . . , eq)/({e2i /1 ≤ i ≤ q}, {eiej + ejei/1 ≤ i ≤ j ≤ q}) which is the quotient of free

algebra.

Definition 4.4. (Taylor Resolution) Denote TM ( the taylor resolution) the R-module R
⊗

E

graded homologically by hdeg(ej1 ∧ ej2 . . . ∧ eji) = i and equipped with the differential:

d(ej1 ∧ . . . ∧ eji) =
∑
1≤p≤i

(−1)p−1 lcm{mj1
,...,mji

}
lcm{mj1

,...,m̂jp ,...mji
}ej1 ∧ . . . ∧ êjp ∧ . . . ∧ eji where êjp and m̂jp

mean that ejp and mjp are omitted respectively.

The standard grading of TM is represented by

deg(ej1 , . . . , eji) = deg(lcm(mj1 , . . . ,mji)) where multi-grading is given by

mdeg(ej1 ∧ . . . ∧ ejp) = lcm(mj1 , . . . ,mji).
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Example 4.5. Let R= k[x, y] and the ideal M = (x3, xy, y2), the Taylor resolution of

R/(x3, xy, y2) is:

TM : 0 −→ R(x3y2)



y

x2

1


−→ R(x3y)⊕R(xy2)⊕R(x3y2)

−y 0 y2

x2 −y 0

0 x −x3


−→ R(x3)⊕R(xy)⊕R(y2)



x3

xy

y2


−→ R

4.3. Homogenization

In this section, we will use notations from ”Peeva’s Book”. M represents a monomial ideal in R

generated by m1, . . . ,mr. We denote by LM the set of the least common multiples of subsets of

{m1, . . . ,mr}. By convention, 1 ∈ LM where 1 = lcm(∅).

Definition 4.6. A frame ( or an r-frame) U is a complex of finite K-vector spaces with

differential δ and a fixed basis that satisfies the following conditions:

1. Ui = 0 for i ≤ −1 and i >>

2. U0 = K.

3. U1 = Kr.

4. δ(wj) = 1 for each basis vector wj in U1 = Kr.

Definition 4.7. An M -complex G is a multi-graded complex of finitely generated free

multi-graded R-modules with differential d and a fixed multi-homogeneous basis with

multi-degrees in LM that satisfies the following conditions:
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1. Gi = 0 for i ≤ −1 and i big enough.

2. G0 = R.

3. G1 = R(m1)⊕ · · · ⊕R(mr).

4. d(wj) = mj for each basis element wj of G1.

Based on the above, the homogenization concept connects complexes of vector spaces

and complexes of R-modules.

Definition 4.8. Let U be an r-frame. A M -complex G of free R-modules with differential d is

called a homogenization of U if it is a sequence of free R-modules constructed by induction as

follows.

• Let G0 = R and G1 = R(m1)⊕ . . .⊕R(mr)

• Let v̄1, . . . , v̄p be a given basis for Ui.

• Let ū1, . . . , ūq be a given basis for Ui−1.

• Let u1, . . . , uq be the basis of Gi−1 = Rq chosen on the previous step by induction.

Now, introduce v1, . . . , vp the will be a basis of Gi = Rp. If δ(v̄j) = Σ
1≤s≤j

αs,j ūs such that

αs,j ∈ K then set:

• mdeg(vj) = Lcm(mdeg(vs)/αs,j ̸= 0) ( (∅) = 1 by convention)

• Gi = ⊕
1≤j≤p

R(mdeg(vj)) (mdeg stands for multi-degree).

• d(vj) = Σ
1≤s≤q

αs,j
mdeg(vj)
mdeg(vs)

us.

Clearly, coker(d1) = R/M and the differentials are homogeneous by construction.

Our next target is to show that G is an M -complex of free R-modules and call it the

complex G obtained from U by M-homogenization. We

Example 4.9. Let R = k[x, y] be the polynomial ring and let I be the ideal generated by x2, xy

and x3, so I = (x2, xy, x3).
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Consider its 3-frame

0 −→ k



1

1

1


−→ k3



−1 0 1

1 −1 0

0 1 −1


−→ k3

1 1 1


−→ k

The I-homogenization of the frame is :

G : 0 −→ R(x2y3)



y2

x

1


−→ R(x2y)⊕R(xy3)⊕R(x2y3)



−y 0 y3

x −y2 0

0 x −x2


−→

R(x2)⊕R(xy)⊕R(y3)

x2 xy y3


−→ R

Proposition 4.10. If G is the M-homogenization of a frame U, then G is an M-complex.

Proof. Let v1, . . . , vp and u1, . . . .uq and w1, . . . , wt be the given bases of Ui, Ui−1 and Ui−2

respectively. Let v1, . . . , vp and u1, . . . , uq and w1, . . . , wt be the corresponding bases of Gi, Gi−1

and Gi−2 respectively. Let 1 ≤ j ≤ p be a fixed parameter, we know that U is complex then:

0 = δ2(vj) = δ(
∑
1≤s≤q

αs,jus) =
∑
1≤s≤q

αs,j(
∑
1≤l≤t

βl,swl) =
∑
1≤l≤t

(
∑
1≤s≤q

αs,jβl,s)wl

with αs,j , βl,s ∈ k. Hence,
∑

1≤s≤q

αs,jβl,s = 0∀1 ≤ l ≤ t.

Moreover,

d2(vj) = d(
∑

1≤s≤q

αs,j
mdeg(vj)

mdeg(us)
us) =

∑
1≤s≤q

αs,j
mdeg(vj)

mdeg(us)
(
∑

1≤l≤t

βl,s
mdeg(us)

mdeg(wl)
wl) (4.2)

=
∑

1≤l≤t

(
∑

1≤s≤q

αs,jβl,s
mdeg(vj)mdeg(us)

mdeg(us)mdeg(wl)
)wl =

∑
1≤l≤t

(
∑

1≤s≤q

αs,jβl,s)
mdeg(vj)

mdeg(wl)
wl = 0. (4.3)

Therefore, G is M -complex.

Definition 4.11. Suppose G is a complex. Then, we can dehomogenize by setting

U = G⊗R/(x1 − 1, . . . , xn − 1). U is a finite complex of k-vector spaces with fixed basis and its
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differential matrices are obtained by setting x1 = 1.. . ., xn = 1 in the differential matrices of G.

Remark 4.12. U is called the frame or the dehomogenization of G.

4.4. Simplicial Resolution

An important tool in studying monomial resolutions is to find toplogical objects whose chain

maps can be homogenized to obtain free resolutions. It starts by labeling the vertices of the

simplical complex by the monomials of M and the faces of higher dimension by the lcm of the

monomials of M then homogenize it into a simplcial resolution. We first begin by explaining

smplicial complexes.

4.4.1. Simplicial Complex

Definition 4.13. A simplicial complex ∆ over a vertex set V = {v1. . . . , vp} is a set of subsets

of V such that if F ∈ ∆ and G ⊂ F then G ∈ ∆. An element σ of ∆ is called a face, and

maximal faces under inclusion are called facets.

Definition 4.14. We say that ∆ is a simplex if it has only one facet. That is, every subset of ∆

is a face ({v1, . . . , vp} is a facet).

Remark 4.15. • A simplicial complex is called void if it has no faces.

• A simplicial complex is called irrelevant if the only face is ∅.

Definition 4.16. The dimension of a face σ is | σ | −1. The dimension of ∆ is the maximum of

the dimensions of its faces. Also, −∞ if ∆ is void and −1 which is the dimension of ∅ (by

convention) for irrelevant complex. A simplicial complex is called pure if all of its facets have

same dimension.

Example 4.17. The simplicial complex on the set of vertices {v1, v2, v3} is

∆ = {∅, {v1}, {v2}, {v3}, {v1, v2}, {v1, v3}, {v2, v3}, {v1, v2, v3}}

34



.

Example 4.18. However the below example is not a simplicial complex

2

3

01 (4.4)

∆ = {{0, 1, 2, 3}, {1, 2, 3}, {2, 3, 0}, {1, 2, 0}, {1, 2}, {1, 0}, {2, 3}, {1, 3}, {0, 3},

{0}, {1}, {2}, {3}, ϕ}

misses {2, 0}.

Example 4.19. Let {a, b, c} be the set of nodes of ∆ and the sets of faces be

{{a, b, c}, {a, b}, {a, c}, ∅},is a non-simplicial complex as ∆ doesn’t contain the face {c, b} which is

a subset of the face {a, b, c}.

4.4.2. Simplicial Resolution

As we know, finding free resolutions of an ideal has been of interest to many mathematicians in

the field. Diane Taylor introduced a method to resolve R/M by using combinatorial techniques

that depend on labeling the faces of a simplex △ with monomials then homogenizing it into a

free resolution called the simplicial resolution. In order to find the complex of vector spaces

coming from the simplicial complex, we introduce an orientation in the faces of ∆.

Definition 4.20. let τ ′ be a facet of τ , an orientation function is [τ, τ ′] := (−1)i if τ \τ ′ is the

(i+ 1)’st element in the sequence of the vertices of τ written in increasing order.

Example 4.21. Let m1,m2 and m3 represent the vertices of a simplicial complex ∆. Let

τ = {m1,m2,m3} and take τ ′ to be the facet of the edge {m1,m2}. So, [τ, τ ′] = (−1)2 = 1 as τ

\τ ′ is equal to m3, the third vertex (i = 2).

Definition 4.22. The augmented oriented simplicial chain complex of △ over k is
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C̃(∆; k) = ⊕
τ∈∆

keτ , where eτ denotes the basis element corresponding to the face τ , and the

differential δ acts as δ(eτ ) =
∑

[τ, τ ′]e′τ
τ ′ is a facet of τ

Remark 4.23. We say that ∆ supports a free resolution of I when a simplicial chain complex of

∆ homogenized ( using the monomial labels on the faces) to obtain a simplicial resolution of I

which is generated by the monomials.

Definition 4.24. C̃(∆; k)[−1] is a frame after shifting C̃(∆; k) in homological degree. Denote by

F∆ the M−homogenization of C̃(∆; k)[−1]. In this case, we say that F∆ is supported on ∆, or

∆ supports F∆.

For each vertex mi , we set that mi has multi-gedree mdeg(mi)=mi. We define that a

face τ has multi-degree mdeg(τ) = lcm(mi/mi ∈ τ). Note that mdeg(∅) = 1 ( by convention).

Theorem 4.25. For each face τ of dimension i the complex F∆ has the generator eτ in

homological degree i+ 1.

1. mdeg(eτ ) = mdeg(τ).

2. The differential in F∆ is δ(eτ )=
∑

τ ′is a facet ofτ

[τ, τ ′] mdeg(τ)
mdeg(τ ′)eτ ′

=
∑

τ ′is a facet ofτ

[τ, τ ′] lcm(mi|mi∈τ)
lcm(mi|mi∈τ ′)eτ ′ .

Proof. The second is direct from the first using the fact that the differential is

multi-homogeneous.

2 ⇒ 1): It will be proved by induction on homological degree. clearly, mdeg(emi
) = mi

holds for each vertex mi of ∆.

Since δ(eτ )=
∑

τ ′is a facet ofτ

[τ, τ ′]eτ ′ , by definition 4.8 it follows that:

mdeg(eτ )= lcm{ mdeg(eτ ′)| τ ′ is a facet of τ}

= lcm{ mdeg(τ ′)| τ ′ is a facet of τ}

= lcm{lcm{mi | mi ∈ τ ′} | τ ′ is a facet of τ}

= lcm{mi | mi ∈ τ}= mdeg(τ).

Example 4.26. Let I = (x3, xy, y2), let us take the Taylor complex that is supported on the whole
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simplex. Consider the ∆ with vertices x3, xy, and y2 that are monomials generating the ideal I

itself. We label each edge by the Lcm of it vertices. Hence, we get x3y, xy2, x3y2 on the edges.

x3

xy

y2

x3y

x3y2

xy2

x3y2

Now, the chain complex of k-vector spaces is :

0 −→ k



1

1

1


−→ k3



1 0 −1

−1 1 0

0 −1 1


−→ k2

1 1 1


−→ k

Where the sign of entries comes from the orientation. Due to homogenization of the

above complex, we obtain the Taylor resolution of R/I as follow:

TM: 0 −→ R(x3y2)



y

x2

1


−→ R(x3y)⊕R(xy2)⊕R(x3y2)



−y 0 y2

x2 −y 0

0 x −x3


−→

R(x3)⊕R(xy)⊕R(y2)

x3 xy y2


−→ R.

Example 4.27. Let I = (xy, yz, zu) in R = [x, y, z, u]. The labeled simplicial complex of vertices

xy, yz and zu and edges xyz, yzu supports a free resolution of I. The chain complex of ∆ is:

0 → k2



1 0

−1 1

0 −1


→ k3

1 1 1


→ k

and homogenization is the simplicial resolution :

0 → R(xyz)
⊕

R(yzu)



z 0

−x u

0 −y


→ R(xy)

⊕
R(yz)

⊕
R(zu) → I → 0
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Another type of simplicial resolutions are called Lyubeznik Resolutions. We have seen

above that the ”Taylor Resolution” is not minimal in most cases, however the ”Lyubeznik

Resolution” is a resolution that is smaller than Taylor’s.

Definition 4.28. Let I be an ideal generated by M = {m1, · · · ,ms} and fix an ordering τ ( does

not depend on any property) to the monomial set in M such that mi τ mj for i < j. consider

∆I,τ be its simplex and µ be a monomial of I. Let min(µ) = min{mi,mi divides µ}; for any face

F ∈ ∆I,τ , min(F ) = min(mdeg(F )) but it is not always in F , instance:

Example 4.29. Let I = (a2, ab, b3) be an ideal and Let F = {a2, b3} be a face. Set the order to

be abτa2τb3. We could have min(F ) = min(a2, b3) = ab, a or b.

We say that a face F is rooted if every non-empty sub-face G ⊂ F satisfies min(G) ∈ G.

Example 4.30. By referring to 4.29, F is not rooted since ab /∈ F .

By construction, the set ΛI,τ = {F ∈ ∆I , F is rooted} is a simplicial comlpex which

forms the ”Lyubeznik Resolution”.

Example 4.31. Let I = (a2, ab, b3) be a ideal , the lyubeznik resolution of I arises from the order

ab τ a2 τ b3 is the following one :

RI : 0 −→ R(a2, ab)
⊕

R(ab, b3)



−b 0

a −b2

0 a


−→ R(a2)

⊕
R(ab)

⊕
R(b3)

a2 ab b3


−→ I (4.5)

note that lcm(a2, ab, b3) = lcm(a2, b3) = ab which is not in {a2, b3}, hence (a2, ab, b3) and (a2, b3)

removed as they are not rooted.
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CHAPTER 5

SIMPLICIAL RESOLUTION OF I2

5.0.1. Quasi-Tree

A simplicial complex can be uniquely determined by its facets, and we use the notation

∆ = {F0, · · · , Fq} in order to describe a simplicial complex whose facets are F0, · · · , Fq.

Definition 5.1. Suppose G ⊂ V where V is a vertex set, we define the induced subcomplex

of ∆ on G denoted by ∆G as follow: ∆G = {F ∈ ∆/F ⊂ G}. ∆G is the simplicial complex on G.

Remark 5.2. A subcollection of ∆G is a simplicial complex whose facets are also facets of ∆.

Definition 5.3. The dimension of a simplicial complex ∆ is dim(∆)=

max{dim(F )/F ∈ ∆}. Thus, the set of vertices of ∆ has dimension 0 while ∅ has dimension −1 (

by convention).

Definition 5.4. A leaf of ∆ is either the only facet F of ∆ or the facet F such that if G is

another facet G of ∆, which called the joint of G such that F ∩H ⊆ G for every facet H ̸= F .

Example 5.5.

2

3

01 (5.1)

The facets are F1 = {1, 2}, F2 = {2, 3}, F3 = {0, 2}. Here every facet is a leaf with any other facet

can be a joint, because the intersection is the vertex 2 which is common in all facets.

Definition 5.6. We say a simplicial complex ∆ is a simplicial forest if every non-empty

sub-collection of ∆ has a leaf. Also, it can be connected if ∀ vi, vj ∈ V , ∃ a sequence of faces

F0, . . . , Fk such that vi ∈ Fk and Fi ∩ Fi+1 ̸= ∅ ∀i = 0, . . . , k − 1. A connected simplicial forest is

called a simplicial tree.
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Remark 5.7. In case of simplicial tree, we can order the facets F1, . . . , Fq of ∆ in a way that

every Fi is a leaf of the induced sub-collection (F1, · · · , Fi). This ordering is called a leaf order.

Definition 5.8. We say a simplicial complex ∆ is a quasi-forest if it has a leaf order. A

connected quasi-forest is called a quasi-tree.

Example 5.9. The simplicial complex below is a quasi-tree , with leaf order: F0, F1, F2, F3

meaning that each Fi is a leaf of ⟨F0, . . . , Fi⟩. Thus, F0 is the joint of Fi for all i ≥ 1.

F0

F1 F2

F3

5.0.2. Simplicial Resolution of I2

As we mentioned before, Taylor resolution is usually far from minimal. However, if I is a

monomial ideal with a free resolution supported on a simplicial complex ∆, then ∆ is a

sub-complex of Taylor(I).

Definition 5.10. Let ∆ be I-complex and m ∈ I be a monomial. We denote by ∆(≤ m) or ∆m

the sub-complex of ∆ that is generated by the homogeneous elements of multi-degree dividing m.

Recall that we let lcm(I) denote the set of monomials that are least common multiples of

arbitrary subsets of the minimal monomial generating set of I.

We introduce this theorem without proof.

Theorem 5.11. (Criterion for quasi-trees supporting resolution)

Let ∆ be a quasi-tree whose vertices are labeled with the monomial generating set of a

monomial ideal I in the polynomial ring R over a field K. Then ∆ supports resolution of I if and

only if for every monomial m in lcm(I). ∆m is empty or connected.

From now on, our goal is to study the free resolution of I2 which was inspired by

Lyubeznik. Suppose that I is an ideal minimally generated by q monomials, then I2 is minimally
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generated by at most
(
q+1
2

)
monomials. Thus, our goal, is to find a smaller sub-complex of the(

q+1
2

)
- simplex which produces a free resolution of I2 and depends only on q.

Definition 5.12. For an integer q ≥ 3, the simplicial comlpex Lq
2 which is an induced

sub-complex of the
(
q+1
2

)
-simplex over the vertex set {ℓi,j , 1 ≤ i ≤ j ≤ q} is defined by the facets

as Lq
2 = ({ℓi,j , 1 ≤ j ≤ q}1≤i≤q, {ℓi,j ; 1 ≤ i ⪇ j ≤ q}) where ℓj,i = ℓi,j for j ≥ i. for q = 1,

{ℓi,j ; 1 ≤ i ≤ j ≤ q} is empty and is a face for q = 2 ( but not a facet). Thus, L1
2 is a point and

L2
2 is a complex with only 2 facets.

Example 5.13. For q = 3, the simplicial complex L2
3 is defined by the facets ⟨F0, F1, F2, F3⟩

where F1 = {ℓ1,1, ℓ1,2, ℓ1,3}, F2 = {ℓ2,2, ℓ1,2, ℓ3,2}, F3 = {ℓ3,3, ℓ1,3, ℓ2,3}, and the joint

F0 = {ℓ1,2, ℓ1,3, ℓ2,3}.

Remark 5.14. Lq
2 has

(
q+1
2

)
vertices (the same number of vertices of the

(
q+1
2

)
simplex), and

q + 1 facets when q ≥ 2. The dimension of facets is q − 1 except only one for facet which has

dimension
(
q
2

)
− 1.

Example 5.15. Referring to 5.13, L2
3 is of 4 facets and each of dimension 3.

Proposition 5.16. For q ≥ 1, Lq
2 is a quasi-tree.

Proof. For q = 1, L1
2 is a point thus it is trivial a quasi-tree. For q = 2, there are two facets F1

and F2, where F2 is a leaf of (F1, F2) and F1 joint; so L2
2 is a quasi-tree. Now, for q ≥ 3, order

the facets of Lq
2 by F0 = {ℓi,j , 1 ≤ i ⪇ j ≤ q} and Fi = {ℓi,j ; 1 ≤ j ≤ q}1≤i≤q. For i ̸= k, fix

Fk = {ℓi,k} ⊂ F0 by definition. Hence, each Fi is a leaf of (F0, . . . , Fi) with joint F0. Therefore,

Lq
2 is a quasi-tree.

Given a square-free monomial ideal I, we define a labeled induced sub-complex of Lq
2,

denoted by L2(I), which is obtained by deleting vertices from Lq
2.

Definition 5.17. For an ideal I minimally generated by the square-free monomials m1, . . . ,mq.

Define L2(I) to be a labeled induced sub-complex of Lq
2 formed by the following rules:

1. Label each vertex of ℓi,j of Lq
2 with the monomial mimj .
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2. If for any indices i, j, u, v ∈ {1, . . . , q} with i, j ̸= u, v. We have mimj | mumv, then

• If mimj = mumv and i = min{i, j, u, v}then delete the vertex ℓi,j .

• If mimj ̸= mumv, then delete the vertex ℓu,v.

3. Label each of the remaining faces with the least common multiple of the labels of its

vertices.

The remaining labeled sub-complex of Lq
2 is called L2(I) and is a complex of

Taylor(I2).

Before stating our main result, we exhibit the following two proposition in [2] that are

essential to our main theorem. We omit the proof as both propositions are technical.

Proposition 5.18. Suppose I is an ideal with minimal square-free generators m1, . . . ,mq. It

says that for any positive number r, mi
r does not divide other monomial ( by its minimality).

That is; if mi
r | mw1 . . .mwr or mw1 . . .mwq | mi

r for some i ∈ {1, . . . , q} and

1 ≤ w1 ≤ . . . ≤ wr ≤ q. Then, w1 = w2 = . . . = wr = i which means that ℓi,i belong to L2(I).

Proposition 5.19. Let I be an ideal with minimal generators m1, . . . ,mq for q ≥ 2. For any

i ∈ {1, . . . , q} there is j ̸= i ∈ {1, . . . , q} such that mumv does ot divide mimj for all

{u, v} ≠ {i, j} in {1, . . . , q}.

We now get to the main result.

Theorem 5.20. L2(I) is a free resolution of I2 where I is a square -free monomial ideal.

Proof. Let m1, . . . ,mq be the minimal square free generators of an ideal I. As we mentioned

above, Lq
2 is a quasi-tree and since L2(I) is an induced sub-complex by definition, hence it is a

quasi-forest itself. Let W represents the set of vertices of L2(I). If we prove that Lm
2(I) is

connected for any monomial m in lcm(I2), then directly by proposition 5.16 L2(I) is a free

resolution of I2.

Note that Lm
2(I) is the induced sub-complex of the complex L2(I) on the set

Wm = {ℓi,j ∈ W ;mimj | m} .

If q = 1 and m ∈ lcm(I2), so Lm
2(I) is either a point or empty, hence connected.
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If q = 2 then I2 = (m1
2,m1m2,m2

2), in this case L2(I) has only two facets joined by

the vertex ℓ1,2, hence connected. If m ∈ {m1
2,m2

2}, then Lm
2(I) is a point and then connected.

Otherwise, m1m2 | m and then ℓ1,2 will be in Lm
2(I). In all cases, ℓ1,2 will connect the vertices.

Now, for q ≥ 3, order the facets of Lq
2 by F0, . . . Fq. Thus, the maximal sets among the

sets F0 ∩Wm, . . . , Fq ∩Wm are the facets of Lm
2(I). If m = mi

2 for some i ∈ {1, . . . , q} by

proposition 4.27, Lm
2(I) is a point and hence connected. If m ̸= mi

2 for all i ∈ {1, . . . , q}, it

means that F0 ∩Wm ̸= ∅ as F0 is a joint. We need to show that Lm
2(I) is connected that is there

is an intersection between F0 ∩Wm and Fi ∩Wm for all i ∈ {1, . . . , q}. We know that any vertex

in Fi ∩Wm other than ℓi,i is in F0 ∩Wm. Thus, we need to prove that if ℓi,i belong to Wm for

some i ∈ {1, . . . , q}, there is b ̸= i belong to {1, . . . , q} such that ℓi,b ∈ Wm.

To prove this, we will follow proposition 5.19 . Suppose ℓi,i ∈ Wm thus mi
2 | m.

Consider A = {j ∈ [q];mj | m} ; by construction i ∈ A and m ̸= mi
2, thus by proposition 5.19

there is b ̸= i belong to A such that mumv does not divide mimj for all u, v ∈ A | {i, b}. since

b ∈ A then mb | m. Our goal is to show that mimb | m and ℓi,b ∈ W . set m = mi
2n

• mb | m then mb | mi
2n then mb | min → mimb | mi

2n → mimb | m

• ℓi,b ∈ W , thus we should have mumv | mimb for some u, v ∈ [q] except {i, b}. Since

mimb | m so mumv | mimb | m thus mu | m and mv | m so u, v ∈ A which contradicts with

above.
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