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ABSTRACT

OF THE THESIS

Roa Ramzi Akhdar for Master of Science

Major:Pure Mathematics

Title:A Method For Studying Zeros of Partial Sums of Some Entire Functions

We present in this paper a method of Edrei for studying the distribution of zeros

of partial sums of entire power series. We then apply it in a class of L-functions of

order less than one, with prescribed asymptotic behavior of the maximum modulus

of the function.
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1. Introduction

Let F(z)=∑∞
n=0 anz

n
be a given entire function and let Sm(z) = ∑m

k=0 akz
k
be a

partial sum or section .

In this thesis , we study the distribution of zeros of the normalized sections Sm(Rmw)
for large values of m ( w is a complex number such that ∣w∣ < 1 and {Rm}m is a

sequence of positive real numbers to be determined later ).

Historically, the first such study involved the partial sums of the exponential function

by Szego, Iverson, and later by Neumann and Rivlin who showed the existence of a

parabolic region in the complex plane C, free of all zeros of all the sections of exp(z).

In this thesis, we follow a method of Edrei to study normalized sections of

L-functions, of order less than one , satisfying the asymptotic condition :

logM(r) ∼ B1r
λ
log r

with M(r)=max∣z∣=r∣F (z)∣ and B1 a positive number.

The method involves obtaining a connection between the normalized sections and

an error function using a major result of Hayman on the so called ”admissible

functions”. The L-functions under consideration are first shown to be admissible.

This, in its turn gives precise information about the Maclaurin coefficients an, which

in turn leads to information about the sections, and ultimately about the zero

distribution of the normalized sections.

The main result in this thesis is the following theorem due to Edrei, Saff and

Varga :

(1 + ( 2

λm
)

1
2 ζ)−m{F (Rm)}−1Sm(Rm(1 + ( 2

λm
)

1
2 ζ)) m→∞

−−−−→ 1

2
e
ζ
2

erfc(ζ)
uniformly on every compact set of the ζ− plane.

Because of the technical nature of this result, we shall break up the proof into

sections, where each section will carry the main result of that part, with the

technical details left to a later appendix.
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1.2. Definitions

1.2.1. Definition 1

Let F be an entire function. For r > 0 , the maximum modulus M(r) of F, is defined

by:

M(r) = max∣z∣=r∣F (z)∣.
It can be shown that the function M(r) is analytic except at isolated points so that

we can define the two functions a(r) and b(r) by:

a(r) = r
M

′(r)
M(r) , b(r) = ra

′(r).
The order of F is a non negative real number λ given by:

λ = limsup r→∞( log(logM(r))
log r

).

Later on, it will turn out that M(r)=F(r) and this will make it possible to define

a(z) and b(z) as functions of the complex variable z by setting:

a(z) = z
F

′(z)
F (z) , b(z) = za

′(z).

1.2.2. Definition 2

An entire function F is called an L-function of genus zero if :

1. Its order is less than 1.

2. All its zeros are real and negative, so that it can be expressed as:

F(z)=F(0) ∏∞
k=1(1 + z

xk
) = Σ

∞
j=0ajz

j
,

where xk > 0 ,F (0) > 0 ,Σ
∞
k=1

1

xk
< ∞.

3. logM(r) ∼ B1r
λ
log r , with B1 a positive constant.

Note that the asymptotic relation logM(r) ∼ B1r
λ
log r can be replaced by a

different asymptotic relation such as:

B1r
λ
, B1r

λ(log r)α(α real ) , B1r
λ(log r)α1(log2 r)α2 ...(logk r)αk

where αi′s are real and logj r denotes the iterated logarithm logj r = log(logj−1 r) .

We also define the counting function of the zeros of F by : n(t) = ∑xk≤t
1 (t > 0).
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1.2.3. Definition 3

[3] An entire function f is said to be Admissible in the sense of Hayman if :

1. f(r) is real and strictly positive for (r > r0 > 0).

2. b(r) → ∞ as r → ∞.

3. There exists some function δ(r) defined for r > r0 such that 0 < δ(r) < π, and

f(reiθ) ∼ f(r) exp(iθa(r) − 1

2
θ
2
b(r)) (r → ∞)

uniformly for ∣θ∣ ≤ δ(r) , and

f(reiθ) = o(f(r))(b(r))−1/2 (r → ∞)

uniformly for δ(r) ≤ ∣θ∣ ≤ π.

We recall that the complementary error function erfc is defined by:

erfc(ζ) = 2√
π
∫∞

ζ
e
−t2
dt

where ζ is a complex number .

We note that throughout the thesis, η(z) will denote a new error function each

time. However, the reader will be informed when η is changed.
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CHAPTER 2

ASYMPTOTICS

In this chapter, we study the asymptotic behavior of n(t) , logF (z) , a(z) and b(z)

using only the information given about the asymptotic behavior of logM(r).
The functions a(z) and b(z) will be needed to approximate the Maclaurin coefficients

of Sn(z).
Through out our work , we will restrict ourselves to the sector ∆ which is defined

to be:

∆(ε1) = {z = re
iθ
; ∣θ∣ ≤ π − ε1, r > 0}

where 0 < ε1 < π and ε1 is otherwise arbitrary .

We notice that on ∆ ,

∣t + z∣ = ∣te−i
θ
2 + re

i θ
2 ∣ ≥ (t + r)cos( θ

2
) ≥ (t + r)sin( ε1

2
) = (t + r)γ1.

We shall need this inequality to bound some special integrals.

2.1. Approximating logF (z)
Let F be an L-function, then by Valiron’s formula [2]

logF (z) = z ∫∞

0

n(t)
t(t+z) ,

Since n(t)=0 for t < x1 where −x1 is the first zero of F, then

logF (z) = z ∫∞

x1

n(t)
t(t+z) .

Since aj > 0, logF (r) = logM(r) and therefore logF (r) ∼ B1r
λ
log r.

It then follows from Valiron’s tauberian theorem [5] that :

n(r) ∼ γr
λ
log r (r → ∞) ; γ =

B1sin(πλ)
π

.

Therefore , given ε such that 0 < ε <
1

2
, exists r0(ε) = r0 > 1 + x1 such that

r > r0 implies

n(r) = γr
λ
log(r)(1 + η1(r)) with ∣η1(r)∣ < ε.

We will now prove that:
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logF (z) = B1z
λ
log z + E(z) = B1z

λ
log z (1 + η(z))

with ∣η(z)∣ = ∣ E(z)
B1z

λlog(z)∣ → 0 uniformly as z → ∞.

Indeed, logF (z) = z ∫∞

x1

n(t)−γtλ log(t)+γtλ log(t)
t(t+z) dt

= z ∫∞

x1

n(t)−γtλ log(t)
t(t+z) dt + γ [z ∫∞

0

t
λ−1

log(t)
(t+z) dt − z ∫ x1

0

t
λ−1

log(t)
(t+z) dt] =

= z ∫ r0
x1

n(t)−γtλ log(t)
t(t+z) dt+z ∫∞

r0

γt
λ
log(t)η1(t)
t(t+z) dt+γc1z

λ+B1z
λ
log z−γz ∫ x1

0

t
λ−1

log(t)
(t+z) dt

= B1z
λ
log z + E(z)

with

∣E(z)∣ < ∣z ∫ r0
x1

n(t)
t(t+z)dt∣+ ∣γz ∫ r0

x1

t
λ−1

log(t)
(t+z) dt∣+ ∣γεz ∫∞

r0

t
λ−1

log(t)
(t+z) dt∣+γc1∣zλ∣+γc2

< n(r0) log( r0x1 )+n(r0)∣ log(
x1+z
r0+z

)∣+γc3∣zλ∣+γε∣z ∫∞

0

t
λ−1

log(t)
(t+z) dt∣+γc1∣zλ∣+γc2

(c1, c2 and c3 are positive constants illustrated in the appendix)

As z → ∞ and then as ε→ 0, ∣ E(z)
B1z

λlog(z)∣ → 0 uniformly.

2.2. Approximating a(z)

a(z) = z
F

′(z)
F (z) = z d

dz
(log(F (z)) = z d

dz
[z ∫∞

0

n(t)
t(t+z)dt] = z ∫∞

0

n(t)
(t+z)2dt

= z ∫∞

0

n(t)−γtλ log(t)+γtλ log(t)
(t+z)2 dt = z ∫ r0

0

n(t)−γtλ log(t)
(t+z)2 dt+z ∫∞

r0

n(t)−γtλ log(t)
(t+z)2 dt+z ∫∞

0

γt
λ
log(t)

(t+z)2 dt

However,

∣z ∫ r0
0

n(t)−γtλ log(t)
(t+z)2 dt∣ ≤ ∣zγ ∫ x1

0

t
λ
log(t)

(t+z)2 dt∣ + ∣ r

γ1
2 ∫ r0x1

n(t)−γtλ log(t)
(t+r)2 dt∣

≤ ∣zγ ∫ x1
0

t
λ
log(t)

(t+z)2 dt∣ + ∣ r

γ1
2 n(r0) ∫ r0x1

1

(t+r)2dt∣ + ∣ r

γ1
2γ ∫ r0x1

t
λ
log(t)

(t+r)2 dt∣

≤ γc4 + ∣ r

γ1
2 n(r0) ∫ r0x1

1

(t+r)2dt∣ + ∣ r

γ1
2γ ∫ r0x1

t
λ
log(t)

(t+r)2 dt∣
where c4 is a positive constant(illustrated in the appendix).

and

∣z ∫∞

r0

n(t)−γtλ log(t)
(t+z)2 dt∣ ≤ ∣ r

γ1
2 ∫∞

r0

n(t)−γtλ log(t)
(t+r)2 dt∣ ≤ ∣ r

γ1
2 ∫∞

r0
γεt

λ−2
log(t)dt∣

≤ c5r where c5 is a positive constant obtained from integration by parts
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and

z ∫∞

0

γt
λ
log(t)

(t+z)2 dt = B1λz
λ
log(z) + γc6z

λ

(c6 is a positive constant illustrated in the appendix).

Therefore , a(z) = B1λz
λ
log(z)(1 + η(z)); (new η)

with ∣η(z)∣ z→∞
−−−→ 0 uniformly.

2.3. Approximating b(z)

a
′(z) = (B1λ

2
z
λ−1

log(z) +B1λz
λ−1)(1 + η(z)) +B1λz

λ
log(z) η′(z)

= B1λ
2
z
λ−1

log(z)(1 + η(z) + λ

log(z) +
λη(z)
log(z)) + λzη

′(z))

However, η(z) = 1

B1λz
λ log(z)(z ∫

r0

0

n(t)−γtλ log(t)
(t+z)2 dt + z ∫∞

r0

n(t)−γtλ log(t)
(t+z)2 dt + γc6z

λ)

Then, using basic calculation, we can deduce that zη
′(z) → 0 uniformly

as z → ∞.

Therefore, b(z) = za
′(z) = B1λ

2
z
λ
log(z)(1 + η(z)) with ∣η(z)∣ converges

uniformly to zero as z → ∞. Note that η here denotes a new error funciton.
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CHAPTER 3

THE PARTIAL SUMS

In order to study the distribution of the zeros of the normalized partial sums

Sm(Rmw), we put :

Qm(w) = Sm(Rmw)
amRm

mwm
= ∑m

j=0 b−j (m)w−j

where w is a small complex number such that {w; ∣w∣ ≤ 1 − ϵ (0 < ε < 1)} and

{Rm}m is a sequence of postive real numbers that satisfy the equation a(Rm) = m.

We express Qm as a difference,Qm(w) = Um(w) −Gm(w) where

Um (w) = F (Rmw)
amRm

mwm
w ≠ 0 Gm (w) = ∑∞

j=1 bj (m)wj

This chapter will be divided into two parts.In the first part,we estimate the radius
Rm, and the coefficients aj and bj where bj(m) = am+j

am
Rm

j (j ≥ −m).
In the second part, we study the functions Um and Gm.

3.1. Calculating {Rm}m, aj and bj

3.1.1. Calculating {Rm}m
By Hadamard Three Circle Theorem, a(r) is a non decreasing function of r.Therefore, as

a(r) is non decreasing, non-negative, continuous and unbounded, there exists a uniquely

defined, positive, increasing, unbounded sequence {Rm}m which satisfies the equation

a(Rm) = m with m = 1, 2, ...

a(Rm) = B1 λ Rm
λ
log (Rm) ( 1 + η (Rm)) = m

⇒ e
log (Rmλ) log (Rm

λ) = m
B1( 1+ η(Rm))

⇒ Rm = exp ( 1
λ
W0( m

B1( 1+ η(Rm)))),

where W0 in the principal branch of the Lambert W function.

Also, we notice that b(Rm) = λ m (1 + ηm′ (Rm)) where ηm′(Rm)
m→∞
−−−−→ 0 uniformly.

10



3.1.2. Calulating aj and bj

Having obtained the asymptotic behavior of a(z) and b(z), we shall use these to

prove that F is an admissible function, and thereby obtain the asymptotic behavior

of aj

3.1.2.1. Proposition 1

An L-function F of genus zero is admissible in the sense of Hayman.[4]

Proof. 1. F is entire and transcendental.

2. F (r) = F (0)∏∞
k=1(1 + r

xk
) is real and positive.

3. Asr → ∞,m→ ∞ since m = B1 λ Rm
λ
log (Rm) ( 1 + η (Rm)).

Therefore, b(r) → ∞ as r → ∞.

4. Proving F (reiθ) ∼ F (r) e(iθa(r)−
1
2
θ
2
b(r))

is equivalent to proving that

logF (reiθ) ∼ logF (r) + iθa(r) − 1

2
θ
2
b(r).

However, for all θ such that ∣θ∣ ≤ π

logF (reiθ) ∼ B1r
λ
e
iλθ

log(reiθ) ∼ B1r
λ(1 + iλθ − λ

2
θ
2

2
)(log r + iθ)

∼ B1r
λ
log r + iB1r

λ
λθ log r − λ

2

2
θ
2
B1r

λ
log r

∼ logF (r) + iθa(r) − 1

2
θ
2
b(r) uniformly (r → ∞)

5. Proving F (reiθ) = o(F (r))(b(r))−1/2 (r → ∞) uniformly

is equivalent to proving that limr→∞
F (reiθ)(b(r))1/2

F (r) = 0

limr→∞
F (reiθ)(b(r))1/2

F (r) = limr→∞
F (r) e

(iθa(r)− 1
2 θ

2
b(r))

F (r) = 0 uniformly for all

θ such that ∣θ∣ ≤ π

3.1.2.2. Theorem 1 (Hayman’s fundamental Theorem) [4]

Let F(z)=∑∞
n=0 anz

n
, be admissible and define an = 0 for n < 0.

Then as r → ∞ we have uniformly for all integers n,

anr
n
=

F (r)
2πb(r)

1
2
{ exp [− (a(r)−n)2

2b(r) ] + η (r, n) } with η (r, n) → 0.

Moreover , from this representation of anr
n
, Hayman draws the following simple

consequences which we will use later :[4]

∑ j≤a(r) ajr
j
∼

1

2
F (r) as r → ∞

∑ a(r)<j ajr
j
∼

1

2
F (r) as r → ∞.

11



Applying Hayman’s theorem on our L-function F , and replacing r by Rm , we

get that :

anRm
n
=

F (Rm)
{2πb(Rm)}

1
2
{exp [− (a(Rm)−n)2

2b(Rm ) ] + η (Rm, n) }.

However, noticing that a(Rm) = m and b(Rm) = λm(1+ η′(Rm)),we get that :

bj (m) = am+jRm
m+j

amRm
m = exp( −j2

2λ m
) + η̃j (m) with η̃j(m) → 0 as m→ ∞.

We also note that , bj (m) → 1 as m→ ∞ for every fixed j.

3.2. Studying Um and Gm

3.2.1. Studying Gm(w) ∶

As bj (m) → 1 , then Gm(w) converges uniformly to w

1−w
(m→ ∞).

Also,

∣Gm (w) ∣ ≤ 1

amRm
m ∑∞

j=m ajRm
j

but

∑a(r)<j ajr
j
∼

1

2
F (r) as r → ∞ and amRm

m
∼

F (Rm)
{2πb(Rm)}

1
2

then,

∣Gm(w)∣ ≤ {2πλ m}
1
2 (∣w∣ ≤ 1 , m > m0 ).

3.2.2. Studying Um(w)

3.2.2.1. Step 1:

It can be proved that for a non-zero complex number z0 such that F (z) ≠ 0

throughout the disk ∣z − z0∣ ≤ 1

2
∣z0∣ ,

log(F (z0 + s)) − log(F (z0)) = s
F

′(z0)
F (z0)

+ s
2

2
(F

′′(z0)
F (z0)

− F
′(z0)

[F (z0)]2
) + E3(z0, s)

12



where s is a complex number such that ∣s∣ ≤ 1

4
∣z0∣ and

∣E3(z0, s)∣ ≤ 1

2(1−2η)η
−2∣ s

z0
∣3maxθ ∣a(z0(1 + 2ηe

iθ))∣ .

For our thesis, we set z0 = Rm and s = (w − 1)Rm .So,

log(F (wRm)) = log(F (Rm))+(w−1)Rm
F

′(Rm)
F (Rm) +

((w−1)Rm)2
2

(F
′′(Rm)
F (Rm) −[F

′(Rm)
F (Rm) ]

2).

However, b(Rm) is equal to Rma
′(Rm) = Rm

F
′(Rm)

F (Rm) +R
2
m
F

′′(Rm)
F (Rm) − [Rm

F
′(Rm)

F (Rm) ]
2

on one hand, and to λ m (1 + ηm′ (Rm)) on the other hand.

Therefore, F (wRm) = F (Rm) exp[(w − 1)m+ (w−1)2
2

(λm(1+η′′m)−m)+E3 (Rm, (w − 1)Rm)].

with ∣E3(Rm, (w − 1)Rm)∣ ≤ c∣ (w−1)Rm
Rm

∣3 2H(m)+1
1+log(H(m))+1) log(2(

2H(m)+1
1+log(H(m)+1))

1
λ )

where c = B1 λ 2
λ
η
−2

(1−2η) H(m) = m

B1(1+ η(Rm)) .

Taking w = 1 + ( 2

λm
)

1
2 ζ , where ζ is a complex number such that ∣ζ∣ < B < ∞

we get that ∣E3(Rm, (w − 1)Rm)∣ → 0 uniformly as m→ ∞.

3.2.2.2. Step 2:

Using Taylor expansion on log(w)
1

wm
= exp[−m log(w)] = exp[m (1 − w) +m1

2
(1 − w)2 −mωA (1 − w)3].

where ω is a complex number that satisfies ∣ω∣ < 1, and A is a positive contant.

Moreover,

amRm
m
=

F (Rm)
[2πb(Rm)]

1
2
(1 + η (Rm,m)) = F (Rm)

[2πλm(1+ηm(Rm))]
1
2
(1 + η (Rm,m)).

The results of the above two steps give that :

Um(w) = {2πλm}
1
2 (1+ηm) exp[ (w−1)

2

2
(λm (1 + η

′′
m))−mωA (1 − w)3+E3 (Rm, (w − 1)Rm)]

= {2πλm}
1
2 (1+ ηm) exp[ (w−1)

2

2
(λm (1 + η

′′
m)) +E4 (Rm, (w − 1)Rm)].

Taking w = 1 + ( 2

λm
)

1
2 ζ , ∣E4(Rm, (w − 1)Rm)∣ → 0 uniformly as m→ ∞.
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Then , finally , Um(1 + ( 2

λm
)

1
2 ζ) → {2πλm}

1
2 exp[ζ2] as m→ ∞.

Note that to prove our main theorem, we will only be concerned with w of the

form 1 + ( 2

λm
)

1
2 ζ.

However, a straightforward consequence of the Enestrom-Kakeya theorem tells

that Qm(w) has no zeros in the annulus ∣w∣ ≥ 1 .Therefore, we are allowed to choose

ζ such that ∣w∣ = ∣1+( 2

λm
)

1
2 ζ∣ < 1. Also note that we can choose ζ such that ∣ζ∣ < B

( B a positive arbitrary bound ) .
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CHAPTER 4

THE MAIN THEOREM

This theorem describes a more precise behavior of our normalized partial section

Sm(Rmw) in terms of the complementary error function erfc(ζ).

4.1. The Main Theorem

Given an L-function F , such that log(M(r)) ∼ B1r
λ
log(r) , the behavior for large

values of m of the normalized section Sm , is described as follows :

(1 + ( 2

λm
)

1
2 ζ)−m{F (Rm)}−1Sm(Rm(1 + ( 2

λm
)

1
2 ζ)) m→∞

−−−−→ 1

2
e
ζ
2

erfc(ζ)

uniformly on every compact set of the ζ− plane .

Proof. For easier representation , we define Ωm(ζ) to be :

Ωm(ζ) = (1 + ( 2

λm
)

1
2 ζ)−m{F (Rm)}−1Sm(Rm(1 + ( 2

λm
)

1
2 ζ))

In view of Vitali’s theorem it will be sufficient to establish the value of the limit for

ζ real, positive and 1 ≤ ζ = x ≤ B.

4.1.1. Step 1:

In the previous chapter,we proved that ∣Gm(z)∣ ≤ (πλm)
1
2 (∣w∣ ≤ 1,m > m0)

Since Qm(z) = Um(z) −Gm(z) , then :

(2πλm)−
1
2 ∣Qm(1+( 2

λm
)

1
2 ζ)∣ ≤ (2πλm)−

1
2 [∣Um(1+( 2

λm
)

1
2 ζ)∣+∣Gm(1+( 2

λm
)

1
2 ζ)∣]

≤ 2e
∣ζ2∣ +

√
2

2
≤ 2(exp(B2) + 1)

Noticing that

(2πλm)−
1
2Qm(1 + ( 2

λm
)

1
2 ζ) = Ωm(ζ)

we can deduce that

15



Ωm(ζ) are uniformly bounded on every compact set of the ζ− plane .

4.1.2. Step 2:

(2πλm)−
1
2 [ex

2 ∑L(m)
j=0 exp{−(x + j

(2λm)
1
2
)2} −Qm(1 + ( 2

λm
)

1
2x)] m→∞

−−−−→ 0

a) We introduce the integer

L(m) = [ m
1
2

∣ηm′∣
1
3+log(m)−1

]

where ηm′ is defined in the subsection 3.1.1

We observe that

L(m)m
−1
2 =

1

∣ηm′∣
1
3+log(m)−1

= Hm ⟶ ∞ (m→ ∞)

and

L
2(m)∣ηm′′∣ = [ m

(∣ηm′′∣
1
3+log(m)−1)2

]∣ηm′′∣ ≤ [ m

∣ηm′′∣
2
3
]∣ηm′′∣ = m∣ηm′′∣

1
3 .

b) We now estimate with some precision the formula of the coefficients b−j(m)
and their behavior as m→ ∞.

Using the approximation of bj in chapter 3, we obtain that

b−j(m) = [exp( −j2

2λ m
) + η̃−j(m) + η(Rm,m − j)][1 + η(Rm,m)]−1

with ∣η̃−j(m)∣ < ∣exp( j
2
η′′(Rm)

2λm (1+η′′(Rm))) − 1∣.

It can be proved now that for ∣j∣ < L(m)

b−j(m) = exp( −j2

2λm
) + βm(−j)

where uniformly in j ,

∣βm(−j)∣ < βm′ , βm′
m→∞
−−−−→ 0.

and for ∣j∣ > L(m),

16



0 < b−j(m) < [exp(−H
2
m

2λ
) + η̃−j(m) + η(Rm,m − j)][1 + η(Rm,m)]−1 < βm′′

with βm′′
m→∞
−−−−→ 0.

From the above two cases , and noticing that L(m) < m for large values of m ,

we can deduce that :

∣Qm(w) −∑L(m)
j=0 exp( −j2

2λm
)w−j∣ = ∣∑m

j=0 b−j(m)w−j −∑L(m)
j=0 exp( −j2

2λm
)w−j∣

= ∣∑L(m)
j=0 [b−j(m) − exp( −j2

2λm
)] w−j +∑m

j=L(m) b−j(m) w−j∣

≤ ∣∑L(m)
j=0 βm′ +∑m

j=L(m) βm′′∣ ≤ (βm′ + βm′′) ∣w∣
∣w∣−1 (∣w∣ > 1) .

c) Letting w = 1 + ( 2

λm
)

1
2x > 1 , we get that :

(2πλm)
−1
2 Qm(1 + ( 2

λm
)

1
2x) = (2πλm)

−1
2 ∑L(m)

j=0 exp( −j2

2λm
)(1 + ( 2

λm
)

1
2x)−j

+ω(βm′ + βm′′)Bπ
−1
2 (m > m0)

However, using Taylor expansion on (1 + ( 2

λm
)

1
2x)−j, we can deduce that

(2πλm)
−1
2 Qm(1 + ( 2

λm
)

1
2x)

= (2πλm)−
1
2 e
x
2 ∑L(m)

j=0 (1 + 2jωx
2

λm
) exp{−(x + j

(2λm)−
1
2
)2} + ω(βm′ + βm′′)Bπ

−1
2 .

d) Let Λm(x) be :

Λm(x) = (2πλm)−
1
2 e
x
2 ∑L(m)

j=0 exp{−(x + j

(2λm)
1
2
)2}

We can show that

{Λm(x) − (2πλm)−
1
2Qm(1 + ( 2

λm
)

1
2x)} ⟶ 0 as m→ ∞

uniformly on the interval 1 < x < B.
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4.1.3. Step 3:

Obviously , ∑L(m)
j=0 exp(− j

2

2λm
) ≤ 1 + ∫∞

0
exp(− t

2

2λm
)dt = 1 + (πλm

2
)

1
2

So, using the following elementary inequalities :

exp{−(x + j+1

(2λm)
1
2
)2} < ∫ j+1

j
exp{−(x + t

(2λm)
1
2
)2}dt < exp{−(x + j

(2λm)
1
2
)2}

we conclude that:

0 < ∑L(m)
j=0 exp{−(x + j

(2λm)
1
2
)2} − ∫L(m)+1

0
exp{−(x + t

(2λm)
1
2
)2}dt < e

−x2

However, since L(m) = Hmm
−1
2

∣Λm(x) − e
x
2

(2πλm)−
1
2 ∫∞

0
exp{−(x + t

(2λm)
1
2
)2}dt ∣

< (2πλm)−
1
2 + e

x
2

(2πλm)−
1
2 ∫∞

Hmm
−1
2
exp{−(x + t

(2λm)
1
2
)2}dt.

So, using the change of variable σ = x + t

(2λm)
1
2
, we show that :

∣Λm(x) − e
x
2

π
− 1

2 ∫∞

x
e
−σ2

dσ ∣ < (2πλm)−
1
2 + e

x
2

π
− 1

2 ∫∞
Hm

(2λ)
1
2

e
−σ2

dσ

However, Hm

m→∞
−−−−→ ∞ , then :

(2πλm)−
1
2Qm(1 + ( 2

λm
)

1
2x) ⟶ e

x
2

π
− 1

2 ∫∞

x
e
−σ
dσ =

e
x
2

2
erfc(x)

uniformly for all x ∈ [1, B].
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APPENDIX 1: ASYMPTOTICS

1.1. Some Special Integrals

1. Calculating z ∫∞

0

t
λ−1

log(t)
(t+z) dt

We start by calculating ∫∞

0
r
t
λ−1

log(t)
(t+r) dt, r > 0.

Make the change of variable t=sr where s is real positive number, to get :

∫∞

0
r
t
λ−1

log(t)
(t+r) dt = r

λ ∫∞

0

s
λ−1

log(s)
(s+1) ds + r

λ ∫∞

0

s
λ−1

log(r)
(s+1) ds

= c1r
λ + r

λ
log(r) ∫∞

0
s
λ−1

(s+1)ds = c1r
λ + π

sin(πλ)r
λ
log(r)

with c1 = ∫∞

0

s
λ−1

log(s)
(s+1) ds.

Confining z to ∆, we observe that h(z) = z ∫∞

0

t
λ−1

log(t)
(t+z) dt is analytic.

On the other hand , g(z) = c1z
λ + π

sin(πλ)z
λ
log(z) is also analytic in the same

region as that of h.

It follows that h(z)=g(z) by analytic continuation i.e.z ∫∞

0

t
λ−1

log(t)
(t+z) dt

= c1z
λ + π

sin(πλ)z
λ
log(z) = c1z

λ + B1

γ
z
λ
log(z).

2. Bounding ∫ x1

0
z
t
λ−1

log(t)
(t+z) dt, r > 0

Confining z to ∆, ∣ ∫ x1
0
z
t
λ−1

log(t)
(t+z) dt∣ ≤ r

γ1
∫ x1
0

∣tλ−1 log(t)∣
(t+r) dt

Suppose x1 > 1 , then

∫ x1
0
r
∣tλ−1 log(t)∣

(t+r) dt = − ∫ 1

0
r
t
λ−1

log(t)
(t+r) dt + ∫ x1

1
r
t
λ−1

log(t)
(t+r) dt

= r ∫ 1

0
(tλ−1 log(t)[1

r
− 1

(t+r)])dt − ∫ 1

0
t
λ−1

log(t)dt + ∫ x1
1
r
t
λ−1

log(t)
(t+r) dt
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= ∫ 1

0

t
λ
log(t)

(t+r) dt − ∫ 1

0
t
λ−1

log(t)dt + ∫ x1
1
r
t
λ−1

log(t)
(t+r) dt.

So, ∫ x1
0
r
∣tλ−1 log(t)∣

(t+r) dt ≤ 2∣ ∫ 1

0
t
λ−1

log(t)dt∣ + ∫ x1
1
r
t
λ−1

log(t)
(t+r) dt

≤ ∣ t
λ

λ
log t

»»»»»»»»»»

1

0

− ∫ 1

0
t
λ

λt
dt∣ + ∫ x1

1
r
t
λ−1

log(t)
(t+r) dt = c2.

So, ∣ ∫ x1
0
z
t
λ−1

log(t)
(t+z) dt∣ is bounded from above by a positive constant c2.

Similar argument if x1 ≤ 1.

3. Bounding z ∫ r0
x1

n(t)
t(t+z)dt

z ∫ r0
x1

n(t)
t(t+z)dt ≤ n(r0) ∫ r0x1

z

t(t+z)dt = n(r0) ∫ r0x1 [
1

t
− 1

(t+z)]dt

=n(r0)log( r0x1 ) + n(r0) log(x1+zr0+z
).

4. Bounding z ∫ r0
x1

t
λ−1

log(t)
(t+z) dt

∣z ∫ r0
x1

t
λ−1

log(t)
(t+z) dt∣ ≤ max{∣ log(x1)∣, ∣ log(r0)∣}∣z ∫ r0x1

t
λ−1

(t+z)dt∣

≤ max{∣ log(x1)∣, ∣ log(r0)∣}∣ π

sin(λπ)z
λ∣ = c3∣zλ∣.

5. Bounding ∫ x1

0
z
t
λ
log(t)

(t+z)2 dt, r > 0

Suppose x1 > 1,

∣ ∫ x1
0
z
t
λ
log(t)

(t+z)2 dt∣ ≤
1

γ1
∫ x1
0
r
t
λ∣ log(t)∣
(t+r)2 dt

∫ x1
0
r
t
λ∣ log(t)∣
(t+r)2 dt ≤ ∫ 1

0
r
t
λ
log(t)

(t+r)2 dt + ∫ x1
1
r
t
λ
log(t)

(t+r)2 dt

≤ ∫ 1

0
r
t
λ
log(t)

(t+r)2 dt − ∫ 1

0
r
t
λ
log(t)
2tr

dt + ∫ 1

0
r
t
λ
log(t)
2tr

dt + ∫ x1
1
r
t
λ
log(t)

(t+r)2 dt

≤ ∫ 1

0
−r2−t2

2t(t+r)2 t
λ
log(t)dt + ∫ 1

0
1

2
t
λ−1

log(t)dt + ∫ x1
1
r
t
λ
log(t)

(t+r)2 dt
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∫ 1

0
−r2−t2

2t(t+r)2 t
λ
log(t)dt ≤ ∫ 1

0
−2
2t
t
λ
log(t)dt

So, ∣ ∫ x1
0
z
t
λ
log(t)

(t+z)2 dt∣ is bounded from above by a positive constant c4.

Similar argument if x1 ≤ 1

6. Calculating z ∫∞

0

t
λ
log(t)

(t+z)2 dt

We start by calculating r ∫∞

0

t
λ
log(t)

(t+r)2 dt

Make the change of variable t=sr where s is real positive number, to get :

r ∫∞

0

t
λ
log(t)

(t+r)2 dt = ∫∞

0

r
λ
s
λ
log(s)

(1+s)2 ds + ∫∞

0

r
λ
s
λ
log(r)

(1+s)2 ds.

∫∞

0
s
λ−1

(1+s)ds = ( 1

1+s
. s
λ

λ
)
»»»»»»»»»»

∞

0

+ ∫∞

0
s
λ

λ

1

(1+s)2ds =
1

λ
∫∞

0
s
λ

(1+s)2ds.

Then , r ∫∞

0

t
λ
log(t)

(t+r)2 dt = r
λ ∫∞

0

s
λ
log(s)

(1+s)2 ds +
λπ

sin(λπ)r
λ
log(r).

Away from the negative real axis,we observe that:

h(z) = ∫∞

0
z
t
λ
log(t)

(t+z)2 dt is analytic.

On the other hand , g(z) = z
λ ∫∞

0

s
λ
log(s)

(1+s)2 ds +
λπ

sin(λπ)z
λ
log(z)

is also analytic in the same region as that of h.

It follows that h(z)=g(z) by analytic continuation i.e.

∫∞

0
z
t
λ
log(t)

(t+z)2 dt = z
λ ∫∞

0

s
λ
log(s)

(1+s)2 ds +
λπ

sin(λπ)z
λ
log(z) = c6z

λ + λB1

γ
z
λ
log(z).
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APPENDIX 2 :THE PARTIAL SUMS

1.2. Maclaurin Coefficients of the Partial Sum

1.2.1. a(r) is an increasing function

Theorem 2. (Hadamard Three-Circle Theorem)

Let f(z) be an entire function and let M(r) be the maximum of ∣f(z)∣ on the circle

∣z∣ = r. Then, logM(r) is a convex function of the logarithm log(r).

Applying the theorem on our L-function F , we get that (M(ex))is a convex

function of x. However, M(r) = F (r) since F is an entire function with positive

coefficients .

⇒ log(F (ex))is a convex function of x

⇒ (log(F (ex)))′′ > 0

⇒ a
′(ex) = ( ex F

′(ex)
F (ex) )

′
= (log(F (ex )))′′ > 0

⇒ a(r) is increasing .

1.2.2. Calulating Maclurian coefficients aj then

deducing bj =
am+j

am
Rm

j

Applying Hayman’s theorem on our L-function F, we get that :

anRm
n
=

F (Rm)
{2πb(Rm)}

1
2
[exp [− (a(Rm)−n)2

2b(Rm ) ] + η (Rm, n) ]

However, noticing a(Rm) = m, we get that :

for n=m , amR
m
=

F (Rm)
{2πb(Rm)}

1
2
(1 + η(Rm,m))

and for n=m+j , am+jR
m+j

=
F (Rm)

{2πb(Rm)}
1
2
(exp( −j2

2b(R−m)) + η(Rm,m + j))

Therefore, bj (m) = am+j

am
Rm

j
= exp( −j2

2b(Rm)) + η(Rm,m + j)[1 + η(Rm,m)]−1

but b(Rm) = λm(1 + η
′′(Rm)), then

bj (m) = exp( −j2

2λ m
) + η̃j (m) + η(Rm,m + j)[1 + η(Rm,m)]−1

with η̃j(m) → 0 as m→ ∞.
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Indeed , exp( −j2

2b(Rm) ) = exp ( −j2

2λm(1+ η′′(Rm))) = exp( −j2

2λ m
) + η̃j (m)

with η̃j (m) = exp ( −j2

2λ m (1+ η′′(Rm))) − exp( −j2

2λ m
)

So, exp( −j2

2b(Rm) ) = exp (−j
2+j2η′′(Rm)−j2η′′(Rm)
2λ m (1+ η′′(Rm)) ) − exp( −j2

2λ m
)

= exp( −j2

2λ m
)exp( j

2
η′′(Rm)

2λm (1+ η′′(Rm))) − exp( −j2

2λ m
)

= exp( −j2

2λ m
)[ exp( j

2
η′′(Rm)

2λm (1+ η′′(Rm))) − 1].

then ∣η̃j (m) ∣ < ∣exp( j
2
η′′(Rm)

2λm (1+ η′′(Rm))) − 1∣ → 0 as m→ ∞ (for fixed j)

Therefore , bj (m) → 1 as m→ ∞.

1.3. Studying Um(w)

1.3.1. Calculating F (Rmw)
Let η be a real number such that 0 < η <

1

2
, and z0 a non-zero complex number.

η and z0 have to be chosen such that F (z) ≠ 0 throughout the disk ∣z−z0∣ ≤ 2η∣z0∣
Since all the zeros of F are real and negative , we choose z0 to be real positive and

η to be 1

4
.

Let s be a complex number that satisfies ∣s∣ ≤ η∣z0∣ = 1

4
∣z0∣ ,

( therefore (z0 + s) ∈ disk ∣z − z0∣ ≤ 2η∣z0∣ = 1

2
∣z0∣).

Then, log(F (z0 + s)) − log(F (z0)) = s
F

′(z0)
F (z0)

+ s
2

2
(F

′′(z0)
F (z0)

− F
′(z0)

[F (z0)]2
) + E3(z0, s)

where ∣E3(z0, s)∣ ≤ 1

2(1−2η)η
−2∣ s

z0
∣3maxθ ∣a(z0(1 + 2ηe

iθ))∣ .

Proof:

let g(s) = log(F (z0+s)
F (z0)

), g(0) = 0
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g(s) = g(0) + (s − 0)g′(0) + (s−0)2
2

g
′′(0) + (s−0)3

6
g
′′′(δ) with δ ∈ (0, s)

so log(F (z0 + s)) − log(F (z0)) = s
F

′(z0)
F (z0)

+ s
2

2
(F

′′(z0)
F (z0)

− [F
′(z0)

F (z0)
]2) + (s)3

6
g
′′′(δ),

E3(z0, s) = (s)3
6
g
′′′(s) = s

3

2πi
∫
C

g(ζ)
ζ3(ζ−s)dζ

where the contour C is chosen to be C ∶ ζ = 2ηz0e
iθ(0 ≤ θ ≤ 2π)

so E3 (z0, s) = s
3

2πi
∫ 2π

0

g(2ηz0eiθ)
(2ηz0eiθ)

3(2ηz0eiθ−s)
2ηz0e

iθ
dθ

∣E3 (z0, s) ∣ ≤
∣s∣3
2π

∫ 2π

0
∣ log (F (z0+2ηz0eiθ)

F (z0)
)∣ ∣2ηz0∣

∣2ηz0∣3. ∣∣2ηz0∣−∣s∣∣
dθ

≤
∣s∣3
2π
maxθ ∣ log(F (z0(1+2ηeiθ))

F (z0)
)∣ ∫ 2π

0

∣2ηz0∣
∣2ηz0∣3. ∣2ηz0∣−∣s∣∣

dθ

≤
1

8π
( ∣s∣
η∣z0∣

)
3

maxθ ∣ log (F (z0(1+2ηeiθ))
F (z0)

)∣ ∫ 2π

0

∣ηz0∣
∣∣2ηz0∣−∣s∣∣

dθ , ∣s∣ ≤ η∣z0∣

≤
1

8π
( ∣s∣
η∣z0∣

)3maxθ∣ log (F (z0(1+2ηeiθ))
F (z0)

)∣ ∫ 2π

0
dθ

Then ∣E3(z0, s)∣ ≤ 1

4
( ∣s∣
η∣z0∣

)
3

maxθ ∣log (
F (z0(1+2ηeiθ))

F (z0)
) ∣

But, ∣log(F (z0(1+2ηeiψ))
F (z0)

)∣ = ∣ ∫ z0(1+2ηe
l̇ψ)

z0

F
′(t)

F (t) dt∣ = ∣ ∫ z0(1+2ηe
l̇ψ)

z0

a(t)
t
dt∣

≤
2η

1−2η
maxθ ∣a(z0(1 + 2ηe

iθ))∣

Indeed,

a(z) is a non-constant harmonic function so by maximum principle

a(z) attains its maximum on boundaries of disk of center z0 , radius 2η∣z0∣

and log(z0 (1 + 2ηe
l̇ψ)) − log (z0) = log (1 + 2ηe

l̇ψ) = log (1 + 2η cosψ + i2η sinψ)

= log(
√
(1 + 2η cosψ)2 + (2η sinψ)2) + i arg(1 + 2η cosψ + i2η sinψ)

= log (
√
1 + 4η2 + 4η cosψ) + i 2η sinψ

1+2η cosψ
.

∣ log (
√
1 + 4η2 + 4η cosψ) + i 2η sinψ

1+2η cosψ
∣

=

√
log2(

√
1 + 4η2 + 4η cosψ)+ ( 2η sinψ

1+2η cosψ
)
2
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≤

√
log2(

√
1 + 4η2 + 4η cosψ)+ ( 2η sinψ

1+2η cosψ
)
2

∣ψ = π (for η =
1

4
)

=

√
log2(

√
1 + 4η2 − 4η) =

√
log2(1 − 2η) = log(1 − 2η) ≤ 2η

1−2η
.

It’s time to set z0 = Rm and s = (w− 1)Rm with w a complex number such that

w ∈ {w; ∣w − 1∣ ≤ 1 and ∣w∣ < 1}.

Replacing z0 & s by their values we get that:

log(F (wRm)) = log(F (Rm)) + (w − 1)Rm
F

′(Rm)
F (Rm) +

((w−1)Rm)2
2

(F
′′(Rm)
F (Rm) − [F

′(Rm)
F (Rm) ]

2)
+E3(Rm, (w − 1)Rm)

F (wRm) = F (Rm) exp[(w − 1)a(Rm) + (w−1)2
2

(Rm2
F

′′(Rm)
F (Rm) − [Rm

F
′ (Rm)
F (Rm) ]

2)
+E3(Rm, (w − 1)Rm)]

But b(Rm) = Rma
′(Rm) = Rm(Rm

F
′(Rm)

F (Rm) )
′
= Rm( F

′(Rm)
F (Rm)+Rm

F
′′(Rm)
F (Rm) −Rm [F

′(Rm)
F (Rm) ]

2)

= Rm
F

′(Rm)
F (Rm) +R

2
m
F

′′(Rm)
F (Rm) − [Rm

F
′(Rm)

F (Rm) ]
2

On the other hand , b(Rm) = λm(1 + η
′′
m)

Then , by comparison , R
2
m
F

′′(Rm)
F (Rm) − [Rm

F
′(Rm)

F (Rm) ]
2
= λm (1 + η

′′
m) −Rm

F
′(Rm)

F (Rm)
= λm (1 + η

′′
m) −m

So F (wRm) = F (Rm) exp[(w − 1)m+ (w−1)2
2

(λm(1+η′′m)−m)+E3 (Rm, (w − 1)Rm)]

∣E3(Rm, (w − 1)Rm)∣ ≤ c∣ (w−1)Rm
Rm

∣3 2H(m)+1
1+log(H(m))+1) log(2(

2H(m)+1
1+log(H(m)+1))

1
λ )

where c = B1 λ 2
λ
η
−2

(1−2η) H(m) = m

B1(1+ η(Rm))

1.3.2. Deducing Um(w)

Step 1 :
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amRm
m
=

F (Rm)
2πb(Rm)

1
2
(1 + η (R,m)) = F (Rm)

2π[λm(1+ηm(Rm))]
1
2
(1 + η (R,m)).

Step 2:

log(w) = log(1−1+w) = log(1−[1−w]) = − (1 − w)− 1

2
(1 − w)2+ωA (1 − w)3

(∣1 − w∣ < 1

2
)

then 1

wm
= exp[−m log(w)] = exp[m (1 − w) +m1

2
(1 − w)2 −mωA (1 − w)3].

Step 3:

The restrictions (1 − 2η)Rm ≤ ∣z∣ ≤ 2Rm , z ∈ ∆

together with the facts that :

1) a(Rm) = B1 λ Rm
λ
log (Rm)( 1 + η(Rm))

2) Rm
λ
= exp (W0( m

B1( 1+ η(Rm))))

3)W0( m

B1( 1+ η(Rm))) ≤ log(
2m

B1( 1+ η(Rm)) +1

1+log( m
B1( 1+ η(Rm)) +1)) since m

B1( 1+ η(Rm)) = λRm
λ
log(Rm)

and λRm
λ
log(Rm) is real and positive for large m

imply that :

∣a(z)∣ ≤ ∣a(2Rm)∣ = B1 λ 2
λ
Rm

λ
log (2Rm)( 1 + η(2Rm))

≤ B1 λ 2
λ+1

Rm
λ
log (2Rm)

≤ B1λ 2
λ+1

2m
B1( 1+ η(Rm)) +1

1+log( m
B1( 1+ η(Rm)) +1) log(2(

2m
B1( 1+ η(Rm)) +1

1+log( m
B1( 1+ η(Rm)) +1))

1
λ

) with m > m0

So ∣E3(z0, s)∣ ≤ 1

2(1−2η)η
−2∣ s

z0
∣3maxθ ∣a(z0(1 + 2ηe

iθ))∣

≤
1

2(1−2η)η
−2∣ s

z0
∣3 B1λ 2

λ+1
2m

B1( 1+ η(Rm)) +1

1+log( m
B1( 1+ η(Rm)) +1) log(2(

2m
B1( 1+ η(Rm)) +1

1+log( m
B1( 1+ η(Rm)) +1))

1
λ

)

The results of the above steps all together give that :

Um(w) =
F (Rm) exp[(w−1)m+ (w−1)2

2
(λm(1+η′′m)−m)+E3(Rm,(w−1)Rm)]

F (Rm)(1+ η(Rm,m)) wm

[ 2πλm (1+ηm(Rm)) ]
1
2
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=
1

wm
{2πλm}

1
2 (1+ηm) exp[ (w − 1)m+ (w−1)2

2
(λm (1 + η

′′
m)−m)+E3 (Rm, (w − 1)Rm)]

= {2πλm}
1
2 (1 + ηm) exp[ (w−1)

2

2
(λm(1 + η

′′
m)) + (w − 1)m −m

(w−1)2
2

+m(1 − w) + m

2
(1 − w)2 −mωA(1 − w)3 + E3(Rm, (w − 1)Rm)]

= {2πλm}
1
2 (1+ηm) exp[ (w−1)2

2
(λm (1 + η

′′
m))−mωA (1 − w)3 +E3 (Rm, (w − 1)Rm)]

= {2πλm}
1
2 (1 + ηm) exp[ (w−1)

2

2
(λm (1 + η

′′
m)) + E4 (Rm, (w − 1)Rm)].

∣E4 (Rm, (w − 1)Rm) ∣ ≤ ∣mωA (1 − w)3 ∣ + ∣E3 (Rm, (w − 1)Rm) ∣

≤ ∣mωA (1 − w)3 ∣ + ∣c (∣w − 1∣)3 ( 2H(m)+1
1+log(H(m)+1))log(2(

2H(m)+1
1+log(H(m)+1))

1
λ )∣

∼ ∣mωA (1 − w)3 ∣ + ∣m (1 − w)3 ∣.
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APPENDIX 3 :THE MAIN THEOREM

1.4. Step 2 :Approximating Ωm(ζ) by a summa-

tion

1.4.1. Approximating b−j(m)

Case 1: ∣j∣ < L(m)

∣η̃−j(m)∣ < ∣exp( [L(m)]2η′′(Rm)
2λm (1+η′′(Rm)) − 1∣ < ∣exp( m∣ηm′′∣

1
3

2λm (1+η′′(Rm)))) − 1∣

< ∣exp( ∣ηm′′∣
1
3

λ(1+η′′(Rm)))) − 1∣

So ,

b−j(m) = exp( −j2

2λm
) + βm(−j)

where uniformly in j ,

∣βm(−j)∣ < βm′ , βm′
m→∞
−−−−→ 0.

Case 2: ∣j∣ > L(m)

0 < b−j(m) = [exp( −j2

2λ m
) + η̃−j(m) + η(R,m − j)][1 + η(R,m)]−1

< [exp(−H
2
m

2λ
) + η̃−j(m) + η(R,m − j)][1 + η(R,m)]−1 < βm′′

with βm′′
m→∞
−−−−→ 0.

1.4.2. Special value of w

Letting w = 1 + ( 2

λm
)

1
2x > 1 , we get that :
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(2πλm)
−1
2 Qm(1 + ( 2

λm
)

1
2x) = (2πλm)

−1
2 ∑L(m)

j=0 (1 + ( 2

λm
)

1
2x)−jexp( −j2

2λm
)

+ω(βm′ + βm′′)Bπ
−1
2 (m > m0)

However, using Taylor expansion ,

(1 + ( 2

λm
)

1
2x)−j = exp (log[(1 + ( 2

λm
)

1
2x)−j])

= exp (−j[( 2

λm
)

1
2x − ω( 2

λm
)x2]) = (1 + 2jωx

2

λm
)exp(−j( 2

λm
)

1
2x)

≥ (1 + 2ωB
2
logm

λm
1
2

)exp(−j( 2

λm
)

1
2x) (∣ω∣ ≤ 1)

So,(2πλm)
−1
2 Qm(1 + ( 2

λm
)

1
2x)

≥ (2πλm)
−1
2 ∑L(m)

j=0 (1 + 2ωB
2
logm

λm
1
2

)exp( −j2

2λm
− 2jx

(2λm)
1
2
) + ω(βm′ + βm′′)Bπ

−1
2

= (2πλm)−
1
2 exp(x2)∑L(m)

j=0 (1 + 2ωB
2
logm

λm
1
2

)exp(−(x + j(2λm)−
1
2 )2)+

ω(βm′ + βm′′)Bπ
−1
2 .

Let Λm(x) be :

Λm(x) = (2πλm)−
1
2 exp(x2)∑L(m)

j=0 exp(−(x + j(2λm)−
1
2 )2)

∣Λm(x) − (2πλm)−
1
2Qm(1 + ( 2

λm
)

1
2x)∣

≤ ∣(2πλm)−
1
2 exp(x2)∑L(m)

j=0 (2ωB
2
logm

λm
1
2

)exp(−(x+j(2λm)−
1
2 )2)+ω(βm′+βm′′)Bπ

−1
2 ∣

≤ km
−1
log(m)∑L(m)

j=0 exp(− j
2

2λm
) + (βm′ + βm′′)Bπ

−1
2 , where k is a constant .
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