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Abstract
of the Thesis of

Arwa Ahmad Awad for Master of Science
Major: Physics

Title: Characterizing The Hydrodynamics Of High Density Crowds

Collective behavior is a global phenomenon observed in a diverse of actively
moving groups. It is the result of individual components interacting together or re-
sponding to external perturbations that propagate along the system’s length scales.
Humans have long been fascinated by the spectacular self organizing patterns gen-
erated by such collective behavior[1]. These patterns are displayed in a variety of
examples that include flocks of birds , schools of fish [2], and human crowds. The
latter display dynamically rich behavior in highly crowded events such as marathons
[3], concerts [4] , and religious events [5]. In some cases, stop and go waves as well
as crowd turbulence may form leading to serious disasters. Therefore, one of the
scientific community’s main goals is to characterize and predict such collective re-
sponses as a preventative measure for crowd hazards [3].

Two different approaches are used to characterize the collective behavior of dense
human crowds. The first approach, which simulates crowd behavior by identifying
local interactions among pedestrians, has been widely used by scientists. One of the
most popular models proposed is the ”Social Force Model” [6] introduced by Helbing
and his collaborators. It has been successful in predicting the formation of irregular
flows in crowd panic situations [7]. The second approach, known as the ”Hydrody-
namic Approach”, bypasses the local interactions among agents and characterizes
the entire motion as a flow [8]. Such approach has not been used abundantly in
describing human collective behavior despite its success in explaining the emergent
patterns of microscopic systems such as bacterial assemblies [9].

The derivation of a hydrodynamic model for a certain physical system is normally
done through utilizing symmetry arguments and first principles [10]. The model is
then validated through experimental observations. Such classical process has been
successful in characterizing a wide range of systems in physics and engineering, but
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not in complex systems’ realm. To overcome these challenges, scientists have made
use of the major advancements in video tracking technologies and sensors used in ex-
periments to quantitatively characterize human crowd systems. The combination of
such innovations with statistical learning techniques such as Non Linear Regression
[5] and Neural Networks [11] has facilitated the inference of the system’s governing
partial differential equations (PDEs) solely from time series data collected at differ-
ent spatial points. Recently, influential work such as PDE-Find [10] has proposed
sparse regression techniques to infer the PDEs from spatio-temporal data. This
approach determines the most prominent components in an equation via Penalized
Linear Regression Methods and balances between accuracy and complexity. This
technique has been used in [9] and has proven its ability to predict the emergent
patterns formed in systems of interest.

In this thesis, we derive a hydrodynamic model for the collective behavior of runners
in a marathon using the sparse regression approach proposed in [10]. The motion is
made up of millions of runners heading toward the start line guided by staff mem-
bers who are performing a regular cycle of walks and stops[3]. The motion is thus
perfectly polarized with orientational fluctuations repressed. Furthermore, the run-
ners’ response to the staff’s excitation causes the propagation of density and velocity
waves spanning the entire system where the attenuation is small and the propaga-
tion is a longitudinal wave. Modeling the slow dynamics [8] of the crowd’s flow is
beneficial in providing recommendations for crowd management to avoid hazardous
and momentous events in marathons.
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Chapter 1

Introduction

1.1 Overview

According to United Nations records, the human population reached 8 billion in
November 2022 [12]. This increase has been accompanied by an increase in highly
dense, crowd-gathering events where millions of people gather in relatively small
spaces, such as concerts [4], marathons [3], and religious events [13]. These crowd
events are characterized by self-organizing patterns similar to those observed in bird
flocks [14] and fish schools [15].

Although the beautiful patterns formed during such events, serious disasters such
as stampedes and tramplings can occur, resulting in a large number of deaths and
injuries among pedestrians. More than 30 crowd panics have happened since 1945,
causing serious injuries to around 3400 people and death to 1000 people in different
locations around the world [16]. The 2006 Hajj Crush, which occurred on the Ja-
marat Bridge in Mecca, resulted in the death of 363 pilgrims. Therefore, one of the
main goals of the scientific community is to characterize and predict such collective
responses as a preventative measure against crowd hazards.

1.2 Different Approaches for Modelling Crowd Events

When studying the collective behavior of pedestrians in crowded events, various
modeling techniques are used. These techniques are divided into two types. The
first approach, known as the microscopic approach, studies the crowd’s collective
behavior by inferring element-wise interaction rules among neighboring pedestrians.
An example of a microscopic model is the social force model developed by Helbing
and his collaborators [6]. In this model, the motion of pedestrians is described by
subjecting them to forces that depend on their personal environment and interac-
tions with each other.

On the other hand, the second approach used is known as the macroscopic ap-
proach, which infers the macroscopic properties of the collective behavior as a whole,
bypassing the local interactions among neighboring pedestrians. An example of a
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Figure 1.1: Concerts Figure 1.2: Religious Events

Figure 1.3: Marathons

macroscopic model is the hydrodynamic model, which models high-density crowds
as fluid flow [3]. In this approach, the motion of the crowd is characterized by con-
tinuum fields such as the velocity field and density field, and the dynamics of these
fields are inferred using conservation laws and symmetry arguments. For example,
the dynamics of the density field can be obtained using the continuity equation.
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Chapter 2

Hydrodynamics of Active
Matter

2.1 Introduction

Active matter systems are composed of components that use energy to move. These
systems have many interesting non-equilibrium features, such as patterns that form
due to the strong collective behavior of the components as they interact with each
other or the environment [17]. Examples of active matter systems include bird flocks,
fish schools, and human crowds. However, it is currently not possible to create a
theoretical description that accurately captures the general characteristics of these
systems while considering the many degrees of freedom present [8].

Both hydrodynamic and agent-based models have been used in the literature to
study active matter systems. Agent-based models provide a minimal approach that
focuses more on order and fluctuation than on forces and mechanics. Vicsek and his
collaborators used this approach in [18] to study the phase transition of bird flocks
from disordered to ordered states based on the noise strength and density. In this
study, each active component is modeled as a point particle with a constant speed
(v0) and an orientation vector (p̂). The direction of (p̂) changes based on noisy local
rules that force every point particle to align with its neighbors at every time instant
[8].

Contrary to agent-based models, hydrodynamic models are continuum models that
describe the macroscopic properties of large-scale behavior by inferring the dynam-
ics of a few fields only [19]. There are two approaches to obtain a hydrodynamic
model for an active matter system.

• infer the hydrodynamic equation of the continuum fields using symmetry and
conservation laws (as done in [20] to derive the ”General Theory of Flocking”
and in [21] to study the long-wavelength behavior of active membranes)

• us non-equilibrium statistical physics tools to coarse-grain the microscopic
model of the active system to obtain the system’s large-scale equations (as
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done in [22]and [23].

Systems at different scales can have similar macroscopic properties even though their
microscopic properties are very different. This means that active matter systems
can be divided into groups called universality classes based on their conservation
laws and symmetry properties, which have similar macroscopic properties and hy-
drodynamic equations [8].

2.2 Ordering Phenomena in Active Matter[8]

Active matter systems can order themselves either in a polar phase or a nematic
phase. Polar ordering [24], [25], which is described by a polarization vector (p),
occurs when a system is made up of elongated, self-propelled units that have a
head-tail asymmetry and are aligned in the same direction. In contrast, nematic
ordering [26], [27], which is described by an alignment tensor (Q), occurs in systems
where elongated, self-propelled units have random head-tail orientations and are
parallel, or in systems where the self-propelled units are head-tail symmetric.

2.3 Toner and Tu Model

The Toner and Tu Model is a model used to understand the polar ordering behavior
of bird flocks. It is a continuum model based on the Vicsek model [18], and was
originally developed by Toner and Tu [28] using symmetry arguments. Recently,
it was rederived by Ihle [8] through the process of coarse-graining the microscopic
Vicsek model. In this section, we will briefly explore the hydrodynamic equations
for density ρ and polarization p in the Toner and Tu Model.

In systems where birds exchange energy with their environment, the number den-
sity of active matter, ρ(x, t), is the only conserved quantity. The orientational order
of the system is described by the polarization vector, p(x, t). This vector and the
number density ρ(x, t) can be expressed in terms of the position, xn(t), and unit
velocity vector, v̂n(t), of each active particle. The unit vector v̂n(t) indicates the
orientation of the velocity vector for each particle at a given time.
The expression of ρ(x, t) and p(x, t) as function of xn(t) and v̂n(t) is:

ρ(x, t) =
∑
n

δ(x− xn(t)) (2.1)

p(x, t) =
1

ρ(x, t)

∑
n

v̂n(t)δ(x− xn(t) (2.2)

In order to distinguish between non-equilibrium terms and terms that arise from
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a free energy function, F , the hydrodynamic equations for the continuum fields
p(x, t) and ρ(x, t) in [8] are written as:

∂ρ

∂t
+ v0∇ · (ρp) = 0 (2.3)

∂p

∂t
+ λ(p · ∇)p = −1

γ

δF

δp
+ f (2.4)

Equation 2.3 is the mass conservation equation, where v0p represents the velocity
field v. The second term on the left-hand side of equation 2.4 is controlled by the
parameter λ, which has the dimension of speed. Unlike conventional fluids, which
are Galilean invariant due to their momentum conservation, the parameter λ is not
universal and depends on the microscopic properties of the system, with λ ̸= v0 (v0
being the average velocity of the active system). The last term f on the right-hand
side of equation 2.4 represents the fluctuations of the system and is independent of
ρ and p. These fluctuations are assumed to be white Gaussian noise with zero mean
and correlations

⟨fγ(x, t)fβ(x
′
, t

′
)⟩ = Aδγβδ(x− x

′
)δ(t− t′) (2.5)

The expression of the free energy function F used in equation 2.4 is given by [8]:

F =

∫
x

α̂(ρ)

2
|p|2 + β̂

2
|p|4 + K̂

2
(∂apb)(∂apb) +

w

2
|p|2∇ · p− b1∇ · p(

δρ

ρ0
) +

A

2
(
δρ

ρ0
)2

(2.6)

δρ is the density fluctuation around its average value ρ0.

The parameter α̂ depends on both local density ρ and noise strength [29] while β̂ is
positive quantity to ensure stability . When α̂ parameter tends to zero, the mean
field order disorder transitions controlled by the first two terms on the right hand
side of equation 2.6 take place . On the other hand, the spatially inhomogeneous
deformation of the order parameter’s energy cost is described by the third term in
the free energy, which is controlled by the positive parameter K̂( Frank constant ).
The fifth and fourth terms in 2.6 allow density ρ and polarization magnitude |p|2
gradients to appear in equation 2.4 through integration by parts. These gradients
contribute in an aligning field for the polarization vector p.
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Through combining equation 2.6 and equation 2.4, the hydrodynamic equation for
the polarization vector p becomes:

∂p

∂t
+ λ(p · ∇)p = −1

γ
(α̂ + β̂|p|2)p+

K̂

γ
∇2p− w

γ
∇( ρ

ρ0
) +

b1
2γ
∇|p|2 − λ1p(∇ · p) + f

(2.7)

Equation 2.7 can be compared to the Navier-Stokes equations because the polar-
ization vector p is proportional to the velocity vector. The first two terms on the
right-hand side of equation 2.7 depict frictional forces, while the third and fourth
terms represent the gradient of a pressure term. This pressure term is a function
of the density and the magnitude of the polarization vector, and its gradient con-
tributes to the aligning field for the polarization vector.
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Chapter 3

Sparse Regression

3.1 Linear Regression

One of the most widely used machine learning models is regression. Regression has
several applications, including forecasting, finding the cause-and-effect relationship
between variables, and time series modeling [30]. The goal of regression is to learn
a function that predicts the value of a dependent variable based on several observed
variables, known as independent variables or features. Regression functions are
learned from available data and can be used to predict the output of new cases.

Linear regression is a statistical method used to understand the relationship between
two continuous variables: an independent variable, x, and a dependent variable, y.
It aims to find a linear relationship between these variables, such that a change in
x can be used to predict a change in y. Linear regression was first developed in the
pre-computer era, but it remains useful today because of its simplicity and inter-
pretability. The relationship between the variables is described by a linear equation,
which can be used to predict the value of y based on a given value of x. The ability
to interpret the effect of input features on the output is a key advantage of linear
regression, making it useful for understanding the relationships between different
variables in a dataset [30].

The linear model is characterized by a vector of coefficients β of length equal to
the number of predictors p, along with a y-intercept β0. Given the input vector
X =

(
X1 X2 · · · Xp

)
∈ Rp and the output variable Y ∈ R, the model is of the

form:

Y = β0 +

p∑
i=1

Xiβi (3.1)

The above equation can be simplified by adding 1 to the input vector X to become
X =

(
1 X1 X2 · · · Xp

)
, along with adding β0 to the vector β. Thus, equation
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3.1 becomes:

Y =
(
1 X1 X2 · · · Xp

)

β0
β1
β2
· · ·
βp

 = Xβ (3.2)

Evaluating 3.2 on n data points consisting of a dependent variable Yi and an inde-
pendent variable Xi yields:

Y1
Y2
Y3
...
Yn

 =


1 X11 X12 X13 · · · X1p

1 X21 X22 X23 · · · X2p

1 X31 X32 X33 · · · X3p
...

...
...

...
...

...
1 Xn1 Xn2 Xn3 · · · Xnp





β0
β1
β2
β3
...
βp


(3.3)

Y =Xβ (3.4)

The linear regression coefficients can be estimated using the Least Square Method,
which minimizes the residual sum of squares (RSS) using available data points. The
RSS is given by:

RSS(β) =
n∑
i=1

(Yi − β0 +
p∑
j=1

Xijβj)
2 = ||Y −Xβ||22 (3.5)

After estimating the coefficients of the linear regression model (β), it is important to
check whether the model is prone to overfitting. Overfitting occurs when the model
is able to perfectly predict Y for the data used in the fitting process but fails to
accurately predict Y for new data points.

To check if a linear regression model is suffering from overfitting, the following
steps can be taken:

1. Split the available data into a training set, which will be used for fitting the
model, and a testing set, which will be used to evaluate the final error at the
end of the training.

2. Calculate the training error using the following formula:

Errortrain = ||Xtrainβ − Ytrain||2 (3.6)

3. Calculate the testing error using the following formula:

Errortest = ||Xtestβ − Ytest||2 (3.7)

4. A model that is suffering from overfitting will have a low training error but a
large testing error.
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3.2 Sparse Regression

The least square method is commonly used to find the coefficients of a linear regres-
sion model, but it can produce unsatisfactory results when there are a large number
of predictors (independent variables). In these cases, it is often preferable to find an
interpretable model with high prediction accuracy and a small number of predictors
that have the greatest impact on the dependent variable [30].

Obtaining a parsimonious model that balances between accuracy and interpretabil-
ity can be achieved using sparse regression techniques, which aim to identify the
most important predictors while minimizing the number of non-zero coefficients.
Some examples of these techniques include LASSO regression [31] and ridge regres-
sion [32]. These methods are particularly useful when dealing with large numbers of
predictors, as they can help identify the most impactful variables while maintaining
good prediction accuracy.

3.2.1 LASSO Regression

The least absolute shrinkage and selection operator (LASSO) is a statistical mod-
eling method that was introduced by Tibshirani in 1996 [31]. It is known for its
ability to balance complexity and interpretability in statistical models. LASSO is a
l1-penalized regularization method that produces a sparse coefficient vector β with
non-zero entries only for the most relevant predictors. This is achieved by adding
an l1 penalty to the least squares problem, which helps to prevent overfitting.

The Lagrangian formulation of LASSO formulation can be written as:

β = argminβ||Xβ − Y ||2 + λ||β||1 (3.8)

The parameter λ controls the number of non-zero entries in the coefficient vector β
where larger values of λ cause more coefficients to be set to zero [30]. In order to
find the optimal value of λ, the procedure generally involves building a model for
each value of λ in a list, testing the performance of each model on the testing data,
and selecting the value of λ that results in the minimum testing error.

3.2.2 Regularized Ridge Regression

Ridge Regression is a regularization technique that shrinks the coefficients of the
linear regression model to prevent overfitting. It does this by adding an l2 penalty
term to the least squares objective function. This penalty term shrinks the coeffi-
cients towards zero, but does not set them to zero like LASSO Regression does.

The amount of shrinkage is controlled by a parameter λ [30], which is chosen from a
list of possible values. The optimal value of λ is generally determined by building a
model for each value of λ, testing the performance of each model on the testing data,
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and then selecting the value of λ that achieves the minimum testing error. Ridge
Regression was developed in 1970 by Arthur E. Horel and Robert W. Kennard [32].

The Lagrangian formulation of Ridge Regression is given by:

β = argminβ||XβY ||2 + λ||β||2 (3.9)

Ridge Regression is often used when dealing with highly correlated variables in a
linear regression model. In such cases, the coefficients of the model can be charac-
terized by high variance. This means that a large positive coefficient on one variable
can be cancelled out by a large negative coefficient on a correlated variable. To ad-
dress this issue, Ridge Regression shrinks the coefficients towards zero, which helps
reduce variance and prevent overfitting.

3.2.3 Comparison Between LASSO and Ridge Regression

The difference between LASSO and Ridge Regression can be illustrated with Fig-
ure 3.1, which shows the LASSO framework on the left and the Ridge Regression
framework on the right in the case of two features. The elliptical contours depicted
in the figure represent the residual sum of squares, centered at the full least square
estimate. The l2 constraint imposed by Ridge Regression is represented by the disk
region, while the l1 constraint imposed by LASSO is represented by the diamond
region. Both models aim to find the first intersection point between the constraint
region and the elliptical contours. In the LASSO framework, if the intersection oc-
curs at one of the corners of the diamond, one of the parameters will be set to zero,
while in Ridge Regression, both parameters are non-zero as the disk has no edges.
While Ridge Regression reduces the magnitude of the coefficients, this doesn’t nec-
essarily mean that some coefficients will be set to zero. On the other hand, LASSO
performs both feature selection and parameter shrinkage simultaneously, only keep-
ing the most important terms in the model.

3.3 Inferring PDE Terms Using Sparse Regression (PDE-
Find) [10]

To infer the most relevant terms in a partial differential equation (PDE), one can
utilize sparse regression techniques on a large library of candidate terms that in-
clude linear, nonlinear, and spatial derivatives. This process is carried out using
spatiotemporal data, which can be collected through either a Lagrangian approach
using moving sensors or an Eulerian approach using fixed spatial sensors.

In order to infer the PDE, the following steps are followed:

1. Construct the candidate library Θ.

2. Inferring the most informative terms in the candidate library using sparse
regression algorithms.
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Figure 3.1: Difference Between Ridge and LASSO Regression, photo taken from [30]

3.3.1 Building The Candidate Library

The general form of a partial differential equation describing the evolution of function
v(x, t) is defined as:

vt = F (v, vx, vxx, v
2, · · · , x) (3.10)

The partial differentiation with respect to space and time is denoted by the sub-
scripts while the right-hand side F (.) is a non linear function of v and its derivative
with respect to both space and time. The function F is assumed to be a sparse
function made up of few terms only .
The time series data measured at fixed spatial points is collected in a matrix V .
The matrix V ∈ Cnm represents the data measured at m spatial points and n time
points.

V =


v11 v12 v13 · · · v1m
v21 v22 v23 · · · v2m
v31 v32 v33 · · · v3m
...

...
...

...
...

vn1 vn2 vn3 · · · vnm

 (3.11)

Each row represents the value of v for a fixed time overall spatial points m while
each column represents the value of v on a fixed spatial point over all time points.

After collecting all the data points in matrix V, matrix Θ ∈ CnmxD is created which
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contains D candidate terms that may be suitable for the function F evaluated at all
spatial and temporal points. These candidate terms can include linear, non-linear,
and partial derivative terms, and can be computed using numerical methods such
as the finite difference method and polynomial interpolation. A possible way to
describe the matrix Θ is:

Θ =
[
1 V V 2 V 3 · · · Vx V Vx · · · Vxx · · ·

]
(3.12)

Each column in Θ represents the values of a certain candidate term evaluated at all
spatial and temporal points.

Θ =



1 v(x0, t0) v2(x0, t0) · · · vx(x0, t0) · · · vxx(x0, t0) · · ·
1 v(x1, t0) v2(x1, t0) · · · vx(x1, t0) · · · vxx(x1, t0) · · ·
...

...
...

...
...

...
...

...
1 v(xm, t0) v2(xm, t0) · · · vx(xm, t0) · · · vxx(xm, t0) · · ·
...

...
...

...
...

...
...

...
1 v(xm, tn) v2(xm, tn) · · · vx(xm, tn) · · · vxx(xm, tn) · · ·


(3.13)

To obtain the time derivative of the data measured at fixed spatial points, numerical
methods such as finite difference or polynomial interpolation can be used. The time
derivative can then be evaluated at all spatial and temporal points and collected in
a column vector Vt.

Vt =



vt(x0, t0)
vt(x1, t0)

...
vt(xm, t0)

...
vt(xm, tn)


(3.14)

After computing Vt, the time derivative of the data, and the candidate library matrix
Θ, the discretized version of Equation 3.10 can be written as:

Vt = Θξ (3.15)

Where ξ is a sparse vector of size D (number of candidate terms). Each entry in
ξ corresponds to a candidate term, and only the relevant terms will have non-zero
entries in ξ. In other words, ξ represents the coefficients of the relevant terms that
are used to approximate the time derivative of the data.

3.3.2 Finding the sparse vector ξ using Sparse Regression Techniques

Least square method can be used to calculate ξ, however most of ξ’s entries will
be non zeros which leads to a partial differential equation that includes all the
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Algorithm 1 STLSQ Algorithm(Θ, Vt, λ,N)

# Apply Least Square Method
ξ = argminξ||Vt −Θξ||22
# Select ξ coefficient smaller than λ
trimedcoeffs = { j : |ξj| ≤ λ }
Apply Hard Thresholding
ξ[trimedcoeffs] = 0
# Redo the above steps with fewer coefficients
ξ[trimedcoeffs] = STLSQ(Θ, Vt, λ, N-1)
return ξ

terms in the candidate library. Therefore, LASSO regularization can be used in-
stead of a combinatorial approach for obtaining a parsimonious vector ξ. However,
the columns of the candidate library Θ are highly correlated, and LASSO performs
poorly in such cases.Other methods have been proposed for a sparse representation
of ξ such as Elastic Net Algorithm [33] that combines both LASSO and Ridge Re-
gression Techniques.

Recently, the Sequential Threshold and Least Square Algorithm was proposed by
Brunton et al in [34] and has been used in many papers to infer partial differential
equations for physical systems. For example, this algorithm was used in [35] to learn
the hydrodynamic equation for active matter from microscopic data obtained from
particle simulations and experiments.

The Sequential Threshold and Least Square Algorithm (STLSQ) is a method for
estimating a sparse vector ξ. It does this by first finding the least square estimate
of ξ (i.e ξ = argminξ||V t−Θξ||22) and then iteratively setting the coefficients of ξ
below a specified thresholding parameter λ to zero. STLSQ takes as input a candi-
date library Θ, a time derivative matrix V t, a thresholding hyper parameter λ, and
the maximum number of iterations N, and returns a sparse vector ξ as output. The
steps of the STLSQ algorithm are shown in Algorithm 1.

To obtain the sparsest partial differential equation (PDE) that balances complexity
and interpretability, the STLSQ algorithm should be applied over a range of values
for the thresholding parameter λ ([λmin, λmax]). This will result in a set of PDEs
with increasing complexities. Each of these PDEs should then be validated based
on its ability to accurately describe the phenomenology of the input data.

3.4 Inferring a system of ODE’s using Sparse Regression
[34]

The STLSQ algorithm can also be used to infer a system of sparse ordinary differ-
ential equations (ODEs) from time series data. The steps for doing so are similar
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to those for inferring PDEs, with minor modifications.

The form of the differential equation describing the evolution of a dynamical system
is:

d

dt
x(t) = f(x(t)) (3.16)

Where x(t) ∈ Rn represents the state of the system at time t, and f(x(t)) ∈ Rn is
a sparse, nonlinear function of x(t) that imposes constraints on the evolution of the
system.

In order to infer f , we can first sample x(t) at several time instants t1, t2, · · · , tm,
and then collect the values of x(t) at these instants in a matrix X. The form of X
is:

X =


x1(t1) x2(t1) x3(t1) · · · xn(t1)
x1(t2) x2(t2) x3(t2) · · · xn(t2)
x1(t3) x2(t3) x3(t3) · · · xn(t3)

...
...

...
...

...
x1(tm) x2(tm) x3(tm) · · · xn(tm)

 (3.17)

Each row in X represents the values of the vector x(t) at a specific time instant,
and each column in X represents the values of a particular component of x(t) at all
time instants from t1 to tm.

Similarly, the derivative of the state vector x(t), ẋ(t), must be sampled at t1, t2, · · · , tm.
ẋ(t) can be measured experimentally or approximated using numerical differentia-
tion techniques, and the resulting values can be collected in a matrix Ẋ.

Ẋ =


ẋ1(t1) ẋ2(t1) ẋ3(t1) · · · ẋn(t1)
ẋ1(t2) ẋ2(t2) ẋ3(t2) · · · ẋn(t2)
ẋ1(t3) ẋ2(t3) ẋ3(t3) · · · ẋn(t3)

...
...

...
...

...
ẋ1(tm) ẋ2(tm) ẋ3(tm) · · · ẋn(tm)

 (3.18)

Next, similar to the procedure for inferring PDEs, a candidate library matrix Θ
is constructed using both X. This matrix contains all the linear and nonlinear
terms that f(x(t)) may be a function of. There is flexibility in choosing the candi-
date terms, as only a few of them will be active in each row after applying sparse
regression.
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Here is an example of a candidate library matrix Θ that includes both polynomial
and trigonometric functions:

θ(X) =
[
1 X XP2 XP3 · · · cos(X) sin(X) · · ·

]
In the equation 3.19, XP2 and XP3 denote higher-order polynomials. For example,
XP2 , which represents quadratic linearities, can be expressed as:

XP2 =


x21(t1) x1(t)x2(t1) x1(t)x2(t1) x22(t1) · · · x23(t1) · · · x2n(t1)
x21(t2) x1(t2)x2(t2) x1(t2)x2(t2) x22(t2) · · · x23(t2) · · · x2n(t2)

...
...

...
...

...
...

...
...

x21(tn) x1(tn)x2(tn) x1(tn)x2(tn) x22(tn) · · · x23(tn) · · · x2n(tn)


(3.19)

Once we have collected bothX and Ẋ and constructed the candidate library matrix
Θ(X), we can write Equation 3.16 as:

Ẋ = ΘΞ (3.20)

where Ξ is a matrix made up of sparse columns ξi that determine the active nonlin-
ear terms in the right-hand side of each row of Equation 3.16 (ẋk = fk(x)). These
columns can be estimated using the STLSQ algorithm.

Once Ξ has been determined, each row of Equation 3.16 can be expressed as:

ẋk = Θ(xT )ξk (3.21)

where Θ(xT ) is a symbolic function of x and not a data matrix.

To determine the optimal thresholding hyperparameter λ for inferring ODEs, the
time series data can be split into training data (80 percent of the available data)
and testing data (20 percent of the total available data). STLSQ can then be used
to estimate Ξ using the training data for a range of values of λ in the interval
[λmin, λmax]. The optimal value of λ will be the one that leads to the highest
accuracy on the testing data.
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Chapter 4

Model Reduction and Data
Denoising Techniques

4.1 Modal Reduction Techniques

Dimensionality reduction is a technique used to transform high-dimensional data
from physical experiments or numerical simulations into a lower-dimensional repre-
sentation that captures the essential patterns of a complex system. This is done to
address the challenge of the curse of dimensionality, which refers to the difficulty of
analyzing systems with a high number of dimensions. The intrinsic dimensionality of
a system [36] is the minimum number of dimensions needed to describe its observed
patterns [37], and dimensionality reduction techniques such as factor analysis [38],
classical scaling [39] , and proper orthogonal decomposition (POD) [40]are used to
identify and extract this intrinsic dimensionality.

Proper Orthogonal Decomposition, also known as POD, is a common technique
used in various fields such as image processing [41], flow control [42], and data reduc-
tion for dimensionality reduction [43]. POD is a method for representing an infinite
dimensional system with a limited number of basis functions, known as “Basis Vec-
tors” or “Orthogonal Functions” [40]. It is highly effective and widely used due to
its optimality [44]. POD can also be used in conjunction with Galerkin Projection
to derive low-order differential equations from high dimensional equations [45].

The first section will discuss a general matrix factorization technique that is com-
monly used for reducing high dimensional data in various fields. In the second
section, the Proper Orthogonal Decomposition (POD) method will be presented,
which is used to calculate the basis vectors of high dimensional data. The third
section will cover the use of the Galerkin projection method, which can be used in
combination with POD to derive low order differential equations from high dimen-
sional equations.
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4.1.1 Matrix Representation of High Dimensional Data

Consider a real variable F (x, t) that depends on both space x and time t. To sample
F , we take n snapshots at uniform time points (t0, · · · , ti, · · · , tn) where ti = i∆t.
Each snapshot consists of F at m uniform spatial points (x0, · · · , xj, · · · , xm) where
xj = j∆x. All snapshots are then collected in a matrix X ∈ R(nfm)×n after reshap-
ing each snapshot into a column vector Xi ∈ Rnfm×1, where nf is the number of
components of F . If nf = 1, the matrix X has the following shape:

X =


X1(x1) X2(x1) X3(x1) · · · Xi(x1) · · · Xn(x1)
X1(x2) X2(x2) X3(x2) · · · Xi(x2) · · · Xn(x2)

...
...

...
...

...
...

...
X1(xm) X2(xm) X3(xm) · · · Xi(xm) · · · Xn(xm)

 (4.1)

Data decomposition techniques aim to represent a matrix as a sum of “modes”, which
are rank one contributions characterized by a spatial component ϕr ∈ R(nfm)×1, a
temporal component ψr ∈ Rn×1, and an energy contribution scalar σr. The matrix
X can then be written as:

X =

M=min(nfm,n)∑
i=1

σrϕrψ
T
r (4.2)

For the amplitudes σr to accurately represent the energy contribution of each mode,
the spatial basis ψr and temporal basis ϕr should have unit norm [46]. Additionally,
each spatial component ϕi should be orthogonal to all other spatial basis, and the
same applies for the temporal basis ψi. Therefore, the temporal and spatial basis
must satisfy the following conditions:

||ϕr||22 =
1

nfm

nfm∑
k=1

ϕr[k]ϕr[k] =
1

nfm
⟨ϕr, ϕr⟩ =

1

nfm
ϕTr ϕr = 1 (4.3)

⟨ϕi, ϕj⟩ = 0 (4.4)

||ψr||22 =
1

n

n∑
k=1

ψr[k]ψr[k] =
1

n
⟨ψr, ψr⟩ =

1

n
ψTr ψr = 1 (4.5)

⟨ψk, ψl⟩ = 0 (4.6)

The orthonormal spatial basis can be arranged in a matrix ϕ =
[
ϕ1 ϕ2 · · · ϕM

]
,

the orthonormal temporal basis can be arranged as well in matrixψ =
[
ψ1 ψ2 · · · ψM

]
,

and the amplitudes σr can be arranged in a diagonal matrix Σ = diag
(
σ1 σ2 · · · σM

)
.

As a result, X can be written as:

X = ϕΣψT (4.7)
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The energy content of matrix X can be defined using the classical Frobenius norm
[46] where:

||X||2F = Tr(K) = Tr(D†D) = Tr(ψΣϕ†ϕΣψ†) =
M∑
i=1

λi (4.8)

The factorization shown in Equation 4.7 can be obtained either by computing ϕ or
ψ, as both ϕ and ψ have normalized columns and Σ is a diagonal matrix [46]. For
instance, after computing ψ, ϕ and Σ can be obtained through a series of matrix
inversion and column normalization. The procedure for computing ϕ and Σ given
ψ is outlined in Algorithm 2.

Algorithm 2 Computing Algorithm Σ and ϕ given ψ

# Compute C
C = ϕΣ =X(ψT )−1

# Compute the diagonal elements σi of Σ

σi = ||Ci||2 Where Ci is i
th column of C

# Compute ϕ
ϕ = CΣ−1

There are several methods for computing the spatial and temporal basis ψ, such as
DFT (Discrete Fourier Transform) and Proper Orthogonal Decompositions (POD).
In the following section, the POD technique for calculating the temporal basis ψ is
described.

4.1.2 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD), introduced by Loeve in [47], is a method
for finding a low-dimensional representation of a high-dimensional system by iden-
tifying its most energetic modes. These modes are made up of orthonormal spatial
and temporal basis functions that are determined purely from the data matrix X,
unlike methods such as the Discrete Fourier Transform (DFT) that assume a prior
form for the basis functions, such as Fourier modes or spherical harmonics.

An approximation of the matrix X can be created by considering the first M ′

modes, which capture the highest amount of energy in the data contained in Xapp.

Xapp =
M

′∑
i=1

σiϕiψ
T
i = ϕM ′ΣM ′ψT

M ′

Here ϕM
′ ∈ Rnfm×M ′

, ψM
′ ∈ R(n)×M ′

, and σM
′ ∈ RM

′×M ′
.
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The orthonormal basis functions are calculated by minimizing the sum of squares
between X and its approximated form, Xapp, under the assumption that the first
M ′ energetic modes provide the optimal description. The sum of squares between
X and Xapp is given by:

SSE = ||X −
M

′∑
i=1

σiϕiψ
T
i ||22 (4.9)

The orthonormal temporal basis functions are the vectors that solve the following
constrained minimization problem:

min(ψ1,ψ2,··· ,ψM
′ )||X −

M
′∑

i=1

σiϕiψ
T
i ||22 (4.10)

Subject to

⟨ψi, ψj⟩ = δij (4.11)

The orthonormal temporal basis functions ψi are the eigenvectors of the temporal
correlation matrix k =X†X [48]. The eigendecomposition of K can be written as:

K = ψΛψT =
M∑
i=1

ψiλiψ
T
i (4.12)

By combining equation 4.7 and equation 4.12, the following relations can be deduced:

K = ψΣϕ†ϕΣψ† → Λ = Σϕ†ϕΣ

The spatial basis ϕ are orthonormal (ϕTϕ=1) thus:

Λ = Σ2 → σi =
√
λr

The optimality of the POD is guaranteed by the Eckart-Young-Mirsky theorem [49],
which states that the singular value of mode σM ′+1 represents the sum of squared
errors (L2 norm) resulting from an approximation using the first M ′ modes. This
can be written mathematically as:

SSE = ||X −
M

′∑
i=1

σiϕiψ
T
i ||22 = σ2

M ′+1
(4.13)

Both the temporal basis ψ and spatial basis ϕ computed by POD can also be ob-
tained through the Singular Value Decomposition (SVD) of matrix X.
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4.1.3 Galerkian Projection

Complex systems are often described by partial differential equations with infinite
degrees of freedom. To study these systems numerically, it is necessary to approxi-
mate them using a dynamical system with a finite number of dimensions [50]. This
can be done using techniques such as proper orthogonal decomposition (POD) and
Galerkin projection. POD is used to identify the most energetic “modes” of the
complex system, and then Galerkin projection is used to derive low order differen-
tial equations for each of these energetic modes [45].The following outlines the main
steps for these projections.

The dynamics of a complex system can be described by the following partial differ-
ential equation:

ẋ(t) = f(x(t)) (4.14)

where f(x(t)) is a nonlinear function of x(t) and its derivative with respect to space.

To approximate the solution to this equation, we define a residual function R(x, ẋ)
as follows:

R(x, ẋ) = ẋ(t)− f(x(t)) (4.15)

Using the first n energetic modes, which consist of a spatial component ϕi, a tem-
poral component ψi, and an amplitude σi, we can approximate x(t) as follows:

xn(t) =
n∑
i=1

χiψi(t) = χnψn
T (4.16)

where χi = σiϕi, χn =
[
σ1ϕ1 σ2ϕ2 · · · σnϕn

]
= ϕnΣn, ϕn =

[
ϕ1 ϕ2 · · · ϕn

]
,

Σ = diag
[
σ1 σ2 · · · σn

]
, and ψn =

[
ψ1 ψ2 · · · ψn

]
.

By replacing x(t) with xn(t) in equation 4.14, we obtain:

n∑
i=1

χiψ̇i(t) = f(
n∑
i=1

χiψi(t)) (4.17)

χnψ̇
T = f(χnψ

T ) (4.18)

According to the principle of Galerkin projection, the projection of R(x, ẋ) onto the
space spanned by the spatial vectors ϕ is equal to zero. This can be written as:

⟨R(x, ẋ), ϕi⟩ = 0 ∀ j = 1, · · · , n (4.19)
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Substituting xn(t) for x(t) in equation 4.19 gives us:

⟨χnψ̇T , ϕi⟩ = ⟨f(χnψT ), ϕi⟩ ∀ j = 1, · · · , n (4.20)

ϕT
nϕnΣnψ̇n

T
= ϕT

nf(ϕnΣnψ
T
n ) (4.21)

Therefore, the reduced order model of the partial differential equation can be ob-
tained from equation 4.21 as follows:

ψ̇n
T
= Σ−1

n ϕT
nf(ϕnΣnψ

T
n ) (4.22)

4.2 Signal Denoising Techniques

Signals that represent the evolution of a physical quantity over time often contain
noise due to limitations in the experimental setup. To ensure accurate analysis of
these signals, it is important to remove this noise before proceeding. There are vari-
ous techniques that can be used for this purpose, such as wavelet transform [51] and
digital filtering [52]. This section will focus specifically on digital filtering techniques.

Digital filters use a coefficient vector, represented by w, to take a distorted signal,
y, as input and output a clean signal, x. This process is illustrated in schematic
4.1. The coefficient vector, w, can be expressed in both the time and frequency
domains. In the time domain, it is referred to as the “Impulse Response”, and in
the frequency domain, it is referred to as the “Frequency Response”.

Figure 4.1: Filter Representation

Filters can be classified into four categories based on the range of frequencies they
allow, called the “ pass band”, and the range of frequencies they block, called the
“stop band”. These four types of filters are low-pass filters, high-pass filters, band-
pass filters, and band-stop filters, as shown in Figure 4.2. Among these types,
low-pass filters are frequently used because they remove unwanted noise by filtering
out everything except for the main signal.

The transition between the “pass band” and “stop band” of a digital filter is de-
termined by a specific cutoff frequency fc. In reality, however, it is not possible to
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Figure 4.2: Different Filter Types

achieve an instantaneous transition between these two regions. To account for this,
the ”transition width” is introduced to describe how quickly the filter should tran-
sition between the pass band and stop band. This transition width can be observed
in the red line of figure 4.3, which shows a realistic filter response with ripples and
a finite transition width. In contrast, the green line in the same figure represents an
ideal filter response with an abrupt transition and a zero transition width.

Figure 4.3: Filter Response To Frequencies

Moreover, filters can be classified based on the algorithmic implementation of their
impulse response as either finite duration impulse response (FIR) or infinite dura-
tion impulse response (IIR). While IIR filters utilize both feed-forward and feedback
terms in their implementation, FIR filters use only feed-forward terms. In this sec-
tion, we will focus on FIR filters as they are more practical and easier to compute
than IIR filters [52].The relationship between the noisy signal y and the clean signal
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y
′
in FIR filters is given by:

x(m) =

p−1∑
k=0

wky(m− k) = wTy (4.23)

Where w =
[
w0 w1 w2 · · · wP−1

]
and yT =

[
y(m) y(m− 1) · · · y(m− p− 1)

]
This means that the output signal y

′
is obtained by convolving the coefficient vector

w with the input signal y [52]. The FIR block diagram is shown in Figure 4.4, where
the triangles represent the coefficients of the filter wi and the squares represent the
delay of the input signal y by one time step.

Figure 4.4: FIR Filter Block diagram [52]

In an FIR filter, the coefficient vector w is determined by minimizing the error
e = x− x̂, which is the difference between the output signal y and the target signal
x̂. The impulse response and frequency response of an FIR low pass filter are shown
in Figure 4.5.
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Figure 4.5: Frequency and Impulse Response for a low pass FIR filter [53]
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Chapter 5

Results

In this study, we use hydrodynamic, sparse regression, and model reduction tech-
niques to model the collective behavior of runners in the Chicago Marathon. Our
approach is summarized in Figure 5.1, with the first section of this chapter dis-
cussing the general characteristics of the marathon and the second section outlining
the steps for deriving a partial differential equation for this system. The final section
of this chapter explains the method for obtaining a low-order system of differential
equations for this system.

Figure 5.1: Summary of the Work done
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Figure 5.2: Runners in Chicago Marathon

(a) Time=33 sec (b) Time=167 sec

Figure 5.3: Velocity Fields at Two Instants

5.1 Marathon System Description

In the Chicago Marathon (Figure 5.2), thousands of runners are guided to the start-
ing line by staff members who perform a series of stop-and-go waves that excite
the runners. As a result, hybrid density and velocity waves propagate through the
crowd with little attenuation ( Video 1). The motion of the runners is treated as
a continuum and characterized by velocity fields v(x, t), polarization fields p(x, t),
and density fields ρ(x, t). Figures 5.3a and 5.3b show the velocity fields at times
t = 33 seconds and t = 167 seconds, respectively.

32

https://www.youtube.com/watch?v=hEl5NPJF3ic


In the kymograph shown in Figure 5.4, the longitudinal velocity component vy
is averaged over the transverse direction x at every time instant t. This kymograph
clearly shows the presence of several longitudinal waves propagating upstream. A
kymograph of a single one of these waves is shown in Figure 5.5.

Figure 5.4: Longitudinal Velocity Kymograh

Figure 5.5: Kymograph for a single wave

The propagating density and velocity hybrid waves in the Chicago Marathon are
linear waves, as their shape is the same as the imposed boundary excitations [3].
These linear waves can be characterized by their speed, u, and diffusion constant,
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D, which we aim to determine by inferring a hydrodynamic equation for the velocity
field.

5.2 Partial Differential Equation for Runners’ Linear Waves

The hydrodynamic fields needed to describe the large-scale collective behavior of
runners in the Chicago Marathon include the density field ρ(x, t), velocity field
v(x, t), and polarization vector p(x, t), which represents the average direction of the
runners at time t and position x = (x, y). The polarization vector can be expressed
as:

p =
(
cosψ(x, t) sinψ(x, t)

)
(5.1)

Where ψ(x, t) is the angle between the orientation vector p and the transverse di-
rection x. The relationship between the velocity vector v(x, t) and the orientational
vector p(x, t) is:

v(x, t) = v(x, t)p(x, t) (5.2)

Where v(x, t) is the speed of the runners at time t and position x.

The density field ρ(x, t) changes over time according to the continuity equation:

∂

∂t
ρ = −∇ · (ρv) (5.3)

Linear momentum is not conserved in the motion of runners, unlike in conventional
fluids, due to the friction force between the runners and the ground. This friction
force causes the exchange of momentum between the runners and the ground, re-
sulting in the non-conservation of linear momentum.

Therefore, the partial differential equation that described the evolution of momen-
tum per unit mass ( i.e ρv) is given by:

∂

∂t
(ρv) + v · ∇(ρv) = ∇ · σ −∇(P ) + f(v, ρ,p) (5.4)

The term on the left side represents the time derivative of the momentum per unit
mass and the convective derivative, which describes how the momentum changes
as the runners move. The term on the right side includes the divergence of the
stress tensor, which represents the forces exerted on the runners by their neighbors,
the force due to pressure (−∇(P )), and the frictional force ( f(v, ρ,p))between the
runners and the ground. This equation takes into account the forces acting on the
runners and how they affect the momentum of the system
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The stress tensor σ is given by :

σ =

σxx σxy σxz
σyz σyy σyz
σyz σzy σzz

 (5.5)

In the stress tensor matrix, σij represents the ratio of the ith force components on
the jth surface to the surface area in the vanishing area limit. It is defined as:

σij = limdA→0
F
ej
i

dA
(5.6)

The frictional force f , the stress tensor σ, and the pressure term P are unknown
quantities in the modeling of the collective behavior of runners in a marathon. To
obtain the hydrodynamic equation for the velocity field, we adopt a method similar
to that used by Toner and Tu in their work [20]. This method involves constructing
possible terms that describe the evolution of the velocity field v(x, t) using elements
from a set S:

S = ∇,v, ρ, ψ,p (5.7)

It is important to note that the terms obtained from this set must be vectors.

The partial derivative of v(x, t) can be written as:

∂tv =c1v + c2ρv + c3p+ c4ρp+ c5∇(ρ) + c6∇|v|2 + c7∇(∇.v)
+ c8(∇.v)v + c9(v.∇)ρv + c10∇2v + c11∇(∇.(ρv))
+ c12(∇.(ρv))(ρv) + c13((ρv).∇)ρv + c14∇2ρv + c15∇(∇.p)
+ c16(∇.p)v + c17(p.∇)p+ c18∇2p+ c19∇(∇.(ρp)) + c20(∇.(ρp))ρp
+ c21(ρp.∇)ρp+ c22∇2ρp+ · · · ·

(5.8)

Since the runners are heading toward the longitudinal direction, ψ can be written
as:

ψ(x, t) =
π

2
+O(∇) (5.9)

After plugging in equations 5.9, 5.1, and 5.2 into equation 5.8 and considering the
linear terms only, the longitudinal component ( y-component) of equation 5.8 be-
comes:

∂

∂t
v = a1v + a2ρ+ a3

∂ρ

∂y
+ a4

∂v

∂y
+ a5

∂2v

∂x2
+ a6

∂2v

∂y2
+ a7

∂2ρ

∂x2
+ a8

∂2ρ

∂y2
(5.10)
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The terms on the right-hand side of the equation represent various forces act-
ing on the runners. The first two terms, a1v + a2ρ = −γ(v − αρ), represent the
damping force between the ground and runners. The third and fourth terms,
a3

∂ρ
∂y

+ a4
∂v
∂y

= β ∂ρ
∂y

+ u∂v
∂y
, represent the gradient of anisotropic pressure that de-

pends on both density and speed. The fifth and sixth terms, a5
∂2v
∂x2

+ a6
∂2v
∂y2

, are
shear and bulk viscous forces present in conventional fluids. Finally, the seventh
and eighth terms represent dissipative forces due to density gradients.

After finding equation 5.10, we can use sparse regression to determine the hydro-
dynamic coefficients (a1, a2, · · · , a8) in this equation. The process for doing this
involves the following steps:

• The hydrodynamic fields v(x, t) and ρ(x, t) are evaluated at nm space-time
points ( n space points and m time points)

• The partial derivative of v with respect to time is evaluated (using finite dif-
ference method) at all space-time points, and then collected in Matrix Vt

Vt =



∂
∂t
v(x0, t0)

∂
∂t
v(x1, t0)

∂
∂t
v(x2, t0)

...
∂
∂t
v(xn, t0)

...
∂
∂t
v(xn, tm)


(5.11)

• All the linear terms present are evaluated at all the spatiotemporal points and
collected in Θ

Θ =


1 v(x0, t0) · · · ∂2

∂y2
v(x0, t0)

∂2

∂x2
ρ(x0, t0)

∂2

∂y2
ρ(x0, t0)

1 v(x1, t0) · · · ∂2

∂y2
v(x1, t0)

∂2

∂x2
ρ(x1, t0)

∂2

∂y2
ρ(x1, t0)

...
...

...
...

...
...

1 v(xn, tm) · · · ∂2

∂y2
v(xn, tm)

∂2

∂x2
ρ(xn, tm)

∂2

∂y2
ρ(xn, tm)

 (5.12)

• Evaluating equation 5.10 at all the spatiotemporal points results in a system
of linear equations of the form

Vt = Θξ (5.13)

In this case, ξ is a sparse vector that contains all the hydrodynamic coefficients ci
and is obtained using the STLSQ algorithm described in Chapter 3. The parameter
λ in the STLSQ algorithm is varied over a range of values from [λmin,λmax]. This
results in a set of PDEs with an increasing number of terms being inferred (as shown
in Table 5.1). The best PDE is chosen as the one that best fits the phenomenology
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of the data.

Table 5.1: PDEs Obtained with their coefficients

Term PDE 1 PDE 2 ← PDE 3 PDE 4 PDE 5

∂v
∂y

-1.05 -1.053 -1.069 -1.0688 -1.069
∂2v
∂y2

- 0.812 1.22 1.291 1.283

v - - 0.0193 0.0229 0.0233
ρ - - -0.0024 -0.003 -0.0031
∂2v
∂x2

- - 0.004 0.00415 0.00419
∂ρ
∂y

- - - - -0.0044
∂2ρ
∂y2

- - 0.124 0.132 0.13127
∂2ρ
∂x2

- - - -0.005 -0.0005

After using a spectral PDE solver,Dedalus [54], to simulate the obtained PDEs,
we found that PDE 2 in Table 5.1 was the best match for the phenomenological
behavior of the original data.

∂v

∂t
= −u∂v

∂y
+D

∂2v

∂y2
(5.14)

where u(m/s) is the hybrid wave speed and D(m/s2) is its corresponding diffusion
constant.

Figure 5.6 shows the kymograph for the simulated wave using equation 5.14 .The
kymograph in Figure 5.6 shows the simulated wave using equation 5.14. To deter-
mine the uncertainty of the coefficients in this equation, we use the bootstrapping
method. This involves repeatedly sampling the data with replacement and applying
a least square regression to the terms of equation 5.14 on each sample. This gener-
ates a set of estimates for the coefficients, which can be used to construct probability
density functions for both u and D. The standard deviations of these functions are
then used to quantify the uncertainty of these two quantities. The bootstrapping
method is a robust way to estimate the uncertainty of a statistic because it takes
into account the entire distribution of the data, rather than just assuming a normal
distribution as in traditional statistical methods.

As a result, the final values for u and D are:

u = 1.230± 0.019(m/s) (5.15)

D = 0.80± 0.14(m2/s) (5.16)
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Figure 5.6: Kymograph for the velocity wave simulated from PDE 5.14

The wave speed u and diffusion constant D were also estimated in [3] by calcu-
lating the correlation Cv(t, q) of the speed v in the vertical direction as a function
of time t and wave vector q. The correlation was assumed to have the following form:

Cv(t, q) = exp(−Dq2t) cos(uqt) (5.17)

After fitting this equation to the data of the runners’ speed v, the values obtained
for u and D were

u
′
= 1.2± 0.3(m/s) (5.18)

D
′
= 1± 0.5(m2/s) (5.19)

The experimental intervals for the u,u
′
, D, and D

′
(calculated within two standard

deviations) are:

Intervalu = [1.192, 1.268] (5.20)

Intervalu = [0.6, 1.8] (5.21)

IntervalD = [0.52, 1.08] (5.22)

IntervalD′ = [0, 2] (5.23)

It is clear that the intervals for u and u
′
overlap, as do the intervals for D and D

′
.
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5.3 Model Reduction Approach

After inferring the partial differential equation of the marathon runners’ motion, our
next goal is to obtain a system of low order differential equations for such motion.
The procedure for this approach is the following:

• Calculate the main modes of the runners’ motion using Proper orthogonal
decomposition (POD).

• Infer a system of ordinary differential equations that describes the evolution
of the mode’s temporal components as function of time.

5.3.1 Proper Orthogonal Decomposition for the Motion of Runners

Before performing POD, the velocity vector measurement on every position (x, y)
at each time instant is arranged in a vector q of dimension d = 2nxny of the form :

q =



vx(x1, y1)
vx(x2, y1)

...
vx(xnx , yny)

...
vy(x1, y1)
vy(x2, y1)

...
vy(xnx , yny)


(5.24)

(5.25)

(5.26)

Then, the snapshots at all time instants t1, · · · , tn are collected into matrix D.

D =



vx(x1, y1, t1) vx(x1, y1, t2) · · · vx(x1, y1, tn)
vx(x2, y1, t1) vx(x2, y1, t2) · · · vx(x2, y1, tn)

...
...

...
...

vx(xnx , yny , t1) vx(xnx , yny , t2) · · · vx(xnx , yny , tn)
...

...
...

...
vy(x1, y1, t1) vy(x1, y1, t2) · · · vy(x1, y1, tn)
vy(x2, y1, t1) vy(x2, y1, t2) · · · vy(x2, y1, tn)

...
...

...
...

vy(xnx , yny , t1) vy(xnx , yny , t2) · · · vy(xnx , yny , tn)


(5.27)
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Once we have collected the runners’ velocity data in matrix D, we can apply Proper
orthogonal decomposition (POD) to this matrix to compute the main modes of the
runners’ motion. These modes are composed of three components: singular value
σi that determines the importance of each mode in describing the overall motion
of runners, spatial component Xi that depends on the spatial coordinates only and
temporal component ψi that depends on time only.

In Figure 5.8, we plot the decrease in the relative amplitude of mode i ( σi
σ1
) as a

function of the mode number. This plot shows how the relative importance of each
mode decreases as the mode number increases.

Based on the plot in Figure 5.8, we can see that σi
σ0

drops from 1 to 0.2 after just 10
modes. This suggests that the runners velocity vector v(xi, yi, tk) can be accurately
approximated using only the first r modes. Therefore, the velocity field at position
(xi,yi) and instant tk can be expressed as:

v(xi, yi, tk) = v̄(xi, yi) +
r∑
j=1

σjXj(xi, yi)ψj(tk) (5.28)

Where v̄(xi, yi) is the averaged velocity vector over time.

The spatial components of the first six modes are depicted in Figure 5.9. To prepare
the temporal modes obtained from POD for analysis, we first apply a low pass FIR
filter to denoise them. Figure 5.7 shows the temporal component of Mode 2 before
and after denoising, and Figure 5.10 shows the temporal components of the first six
modes after denoising.

Figure 5.7: ψ2 before and after Densoing
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Figure 5.8: Relative amplitude versus Mode number

5.3.2 Inferring a system of ODEs for the temporal structures ψi

After calculating the POD modes for the runner’s motion, our goal is to infer a
system of ordinary differential equations that describes how the temporal modes ψi
evolve over time. This system of equations will have the form:

ψ̇i(t) =
r∑
j=1

cijψj +
r∑

i,j=1

dijkψjψk (5.29)

The system of ODEs in equation 5.29 describes the dynamics of the first r tem-
poral modes in terms of linear and nonlinear functions of these modes.

To obtain the coefficients cij and dijk in equation 5.29, we use the STLSQ algo-
rithm. Similar to what we did in the previous section, we first collect the first r
temporal modes and their derivatives with respect to time in matrices X and X

′
,

respectively. Each column in Xi (X
′
i ) represents the evolution of ψi (ψ

′
i) at all

time instants (t0, · · · , tn). Then, we evaluate all the candidate terms in equation
5.32 at all time instants and collect them in matrix Θ (Equation 5.30).

Θ =


ψ1(t1) · · · ψr(t1) ψ2

1(t1) · · · ψrψ1(t1) · · · ψ2
r(t1)

ψ1(t2) · · · ψr(t2) ψ2
1(t2) · · · ψrψ1(t2) · · · ψ2

r(t2)
...

...
...

...
...

...
...

...
ψ1(tn) · · · ψr(tn) ψ2

1(tn) · · · ψrψ1(tn) · · · ψ2
r(tn)

 (5.30)
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

Figure 5.9: Spatial Modes X
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(a) Temporal Mode 1 (b) Temporal Mode 2

(c) Temporal Mode 3 (d) Temporal Mode 4

(e) Temporal Mode 5 (f) Temporal Mode 6

Figure 5.10: Temporal Modes ψ
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The hyperparameters λ and r need to be carefully chosen to ensure that the system
of ODEs accurately describes the dynamics of the runners’ motion. λ controls the
complexity of the ODEs, while r determines the number of temporal modes included
in the system.

To find the optimal values for λ and r, we first divide the time series data into
a training set (80 percent of the data) and a testing set (20 percent of the data).
We then use Algorithm 3 to determine the values that give the best results.

Algorithm 3 Hyper parameter tuning for r and λ

For r in
[
1, · · · , rmax

]
:

For λ in
[
λmin,··· ,λmax

]
:

• Compute Ξ using STLSQ algorithm using the training data

• Simulate the obtained ODE in testing data interval

• Calculate the normalized Frobenius that reflects the difference between the
testing data and the simulated testing data. The Frobenius error is given
by:

Normalized Frobenius Error =

∑r
j=1 (

∑Nt

i=1 (ψtestj(ti)− ψsimulatedj(ti))
2σ2

j∑r
j=1 (

∑Nt

i=1 (ψtestj(ti))2)σ2
j

(5.31)

• The pair (rmin, λmin) that have the minimum Frobenius error are the best
values for r and λ

After following the steps in Algorithm 3, we can plot the Frobenius testing er-
ror as a function of the number of modes r and the thresholding parameter λ. This
plot, shown in Figure 5.11, allows us to determine the optimal values for these hy-
perparameters. In this case, the minimum Frobenius testing error is achieved when
λ = 0.038 and r = 6.

44



Figure 5.11: Testing error as function of r and λ

Thus , the obtained system of ODE for the temporal Modes for the optimal values
of r and λ is:

ψ̇1 = −0.06ψ2 + 0.057ψ4 − 0.904ψ3ψ5 − 0.159ψ5ψ5

ψ̇2 = 0.07ψ1 + 0.143ψ3

ψ̇3 = −0.14ψ2 − 0.054ψ4 + 0.059ψ6 − 0.298ψ2ψ3

ȧ4 = −0.046a1 + 0.063ψ3 + 0.042ψ5 − 0.043ψ6 + 0.355ψ2ψ3 − 0.809ψ3ψ5 − 0.196ψ6ψ6

ψ̇5 = −0.047ψ4 − 0.099ψ6

ψ̇6 = −0.046ψ3 + 0.053ψ4 + 0.073ψ5

(5.32)

Figure 5.12 shows a heat map of the terms included in each ODE in equation 5.32.
Additionally, Figure 5.13 compares the simulated data to the real testing data.

5.3.3 Stability Analysis of the Obtained ODE

After deriving a system of ODEs, we aim to find the fixed points of these equations
and test their stability. To do this, we set the right-hand side of equation 5.32 to
zero.

−0.06ψ2 + 0.057ψ4 − 0.904ψ3ψ5 − 0.159ψ5ψ5 = 0

0.07ψ1 + 0.143ψ3 = 0

−0.14ψ2 − 0.054ψ4 + 0.059ψ6 − 0.298ψ2ψ3 = 0

−0.046ψ1 + 0.063ψ3 + 0.042ψ5 − 0.043ψ6 + 0.355ψ2ψ3 − 0.809ψ3ψ5 − 0.196ψ6ψ6 = 0

−0.047ψ4 − 0.099ψ6 = 0

−0.046ψ3 + 0.053ψ4 + 0.073ψ5 = 0

(5.33)

The solution to the system of equations in 5.33 is a fixed point where all six temporal

45



Figure 5.12: Heat Map for the Inferred ODE

modes are equal to zero.

ψfixed =



ψ1 = 0

ψ2 = 0

ψ3 = 0

ψ4 = 0

ψ5 = 0

ψ6 = 0

(5.34)

To analyze the stability of the fixed point, we compute the Jacobian of equation
5.34 and find its eigenvalues and eigenvectors. This allows us to determine whether
the fixed point is stable or unstable.
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Figure 5.13: Comparison Between Prediction and Real Values for the temporal
modes ψi

The jacobian of equation 5.33 is defined as:

J=


∂ψ̇1

∂ψ1

∂ψ̇1

∂ψ2
· · · ∂ψ̇1

∂ψ6

∂ψ̇2

∂ψ1

∂ψ̇2

∂ψ2
· · · ∂ψ̇2

∂ψ6

...
...

...
...

...
...

∂ψ̇6

∂ψ1

∂ψ̇6

∂ψ2
· · · ∂ψ̇6

∂ψ6

 (5.35)

Evaluating 5.35 at the fixed point (Equation 5.34) yields

J =


0 −0.06 0 0.057 0 0

0.07 0 0.143 0 0 0
0 −0.14 0 0.054 0 0.059

−0.046 0 0.063 0 0.042 −0.043
0 0 0 −0.047 0 −0.099
0 0 −0.046 0.053 0.073 0

 (5.36)

The eigenvalue analysis of Matrix 5.36 gives us six eigenvalues
(
λ1, λ2, · · · , λ6

)
,
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which can be real or complex numbers. If the real parts of all six eigenvalues are
negative, then the fixed point in equation 5.32 is stable. Otherwise, it is an unstable
fixed point.

The six eigenvalues, along with their corresponding eigenvectors, are as follows:

λ1 = −0.00968298 + 0.15736839j

λ2 = −0.00968298− 0.15736839j

λ3 = −0.00210766 + 0.04644548j

λ4 = −0.00210766− 0.04644548j

λ5 = 0.01179065 + 0.10463857j

λ6 = 0.01179065− 0.10463857j

(5.37)

Moreover, the eigen vector ψ∗
i corresponding to each eigenvalue λi:

ψ∗
1

ψ∗
2

ψ∗
3

ψ∗
4

ψ∗
5

ψ∗
6

=


−0.027 + 0.18j 0.65 −0.03 + 0.6j 0.18− 0.1j 0.079− 0.13j 0.28− 0.08j
−0.027− 0.18j 0.65 −0.030− 0.6j 0.18 + 0.104j 0.079 + 0.13j −0.28 + 0.09j
−0.14− 0.4j 0.18 + 0.09j 0.035 + 0.26j 0.5 −0.5− 0.015j −0.27 + 0.24j
−0.14 + 0.4j 0.18− 0.09j 0.035− 0.26j 0.5 −0.5 + 0.014j −0.27− 0.24j
0.11 + 0.11j 0.54 −0.011 + 0.3j 0.4 + 0.23j −0.0021 + 0.5j 0.3− 0.16j
0.11− 0.11j 0.54 −0.011− 0.3j 0.4− 0.23j −0.002− 0.5j 0.3 + 0.16j




ψ1

ψ2

ψ3

ψ4

ψ5

ψ6


(5.38)

As a result, the temporal basis ψi can be written as a function of the eigenvec-
tors of the jacobian ψ∗

i .
ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

=


−0.19− 0.39j −0.19 + 0.39j −0.15 + 0.8j −0.15− 0.8j 0.4 + 0.04j 0.4− 0.04j
0.6− 0.16j 0.6 + 0.16j −0.030− 0.6j 0.18 + 0.104j 0.079 + 0.13j −0.28 + 0.09j
−0.14− 0.4j 0.18 + 0.09j 0.035 + 0.26j 0.5 −0.5− 0.015j −0.27 + 0.24j
−0.14 + 0.4j 0.18− 0.09j 0.035− 0.26j 0.5 −0.5 + 0.014j −0.27− 0.24j
0.11 + 0.11j 0.54 −0.011 + 0.3j 0.4 + 0.23j −0.0021 + 0.5j 0.3− 0.16j
0.11− 0.11j 0.54 −0.011− 0.3j 0.4− 0.23j −0.002− 0.5j 0.3 + 0.16j




ψ∗
1

ψ∗
2

ψ∗
3

ψ∗
4

ψ∗
5

ψ∗
6


(5.39)

The results of our eigenvalue calculation indicate an unstable fixed point, with
two eigenvalues having positive real components that are significantly larger in mag-
nitude than the four negative ones. This instability is to be expected as, in a system
where staff continuously excite runners, a scenario (Figure 5.14) where there are no
excitations and runners are simply heading towards the starting point is not a sta-
ble configuration. The velocity field in this scenario is equal to the average velocity
vector over time, represented by v(xi, yi, tk) = v̂(xi, yi).

5.4 Comparison Between the Approaches

In this study, two methods were employed to model the upstream propagation of
velocity and density waves among marathon runners. The first approach utilized
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Figure 5.14: Mean Velocity

sparse regression and hydrodynamics to derive a partial differential equation (PDE)
for these waves, while the second approach employed data reduction techniques to
formulate an ordinary differential equation (ODE) for the first six temporal modes.
To validate and compare these two methods, the authors will proceed as follows:

• The Galerkin projection can be applied to the PDE obtained through sparse
regression to derive an ODE for the temporal modes. This ODE can then be
compared with the ODE obtained through data reduction techniques.

• The density field was modeled using the Continuity equation. However, this
equation was not derived from the marathon data. To validate this approach,
the velocity obtained from solving the PDE can be used to calculate the density
at each time instance, and this calculated density can be compared with the
actual density values.
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Chapter 6

Conclusions and Future Work

In this thesis, we infer a partial differential equation for the hybrid velocity and
density wave that propagates upstream within runners in a marathon, using video
data. This approach successfully determines the wave speed, v, and its diffusion
constant, D, which are in agreement with those obtained by Bain et al in [3]. In
contrast to modern machine learning approaches such as neural networks [55] and
model-free methods [56], [57], our approach provides a physics-informed model that
takes into account symmetry and conservation laws. This allows scientists to bet-
ter understand the dynamics of the system by identifying the relevant terms in the
partial differential equation, rather than just developing a model that accurately
predicts the dynamics without giving insight into how the system evolves or what
factors control this evolution.

In addition to inferring a PDE for the runners’ collective motion, we also described
the evolution of the first r temporal modes using a system of ordinary differential
equations. We proposed a method for determining r, the number of temporal modes
involved, by dividing the data into training and testing sets and choosing the values
of (r, λ) that result in the highest accuracy on the testing set rather than using the
ratio of singular values (σr

σ0
).

Our modeling approach provides important insights into crowd management at
marathon events. The partial differential equation we obtained is independent of
the horizontal axis (x-direction), which implies that exciting or stopping the runners
from the side boundaries is irrelevant. Using the wave speed we obtained v, we can
estimate the time it will take for staff members to stop or excite the runners at a
specific position y based on the initial conditions of the staff. Additionally, we can
infer that changing the direction of the running crowd can only be achieved by giv-
ing orientational direction through the staff members directly, rather than through
signals that are easily accessible to each individual runner.

In future work, there are several directions we could take to further improve our
understanding of crowd management. One possibility is to apply our tool to sys-
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tems with increased degrees of freedom in both directions to assess its effectiveness
under more complex conditions. By studying the performance of the partial dif-
ferential equation we developed in situations where runners have more flexibility in
their movements, we can gain a better understanding of how to handle crowds in
a range of scenarios. It will also be interesting to examine the usefulness of using
staff members to direct crowds in these situations where there are more degrees of
freedom.

To ensure the robustness of our model, it would be useful to test it on data from a
variety of different marathon events and large gatherings. This would allow us to
see how well the model generalizes to different settings and understand any factors
that may influence its performance. In addition to testing our model on data from
real-world events, we could use computer simulations to study the behavior of sim-
ulated crowds in a range of scenarios. This would allow us to investigate situations
that may be difficult or impossible to study in the real world.
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