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ABSTRACT 

OF THE THESIS OF 

 

 

Lara Husein Sujud      for               Master of Science 

                   Major: Irrigation 

 

 

Title: Evaluating the Impact of Humanitarian Interventions on Agriculture Productivity 

in Syria Using Remote Sensing and Machine Learning 

 

Recently, there has been an increased interest in developing new methods to 

measure the impact of complex humanitarian interventions in hard-to-reach areas to 

help guide policy decisions. Quantifying agricultural interventions post-conflict remains 

a challenge. The advancement in Earth observations and remote sensing techniques can 

provide a timely and precise evaluation of agricultural activities and production in such 

settings. Little research has been done on the potential use of remote sensing for impact 

evaluation of agricultural interventions in humanitarian settings. Here, we evaluate a 

complex humanitarian intervention that aims at strengthening agricultural activity in 

conflict affected Syria. The overall objective of this study is to develop a framework for 

evaluating the effectiveness of agricultural interventions in a conflict setting using 

remote sensing and machine learning techniques. We use a combination of vegetation 

indices which were normalized by rainfall for three identified periods: pre-conflict, 

conflict, and post-intervention, and an unsupervised machine learning classifier. 

Examination of the multi-temporal time series of anomalies and irrigated agriculture 

revealed distinct patterns in active agricultural areas during the three defined periods of 

study. The results showed an overall improvement in vegetation and irrigated areas in 

intervention villages post-intervention. Remote-sensing analysis showed that 

rehabilitation of irrigation systems significantly increased irrigated areas in some 

villages like pre-conflict levels. 
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CHAPTER I 

INTRODUCTION 

 

With the rapid increase in humanitarian needs and hence the increase in 

humanitarian interventions (UNICEF, 2021), there is an urgency to ensure and verify 

the effectiveness of such interventions in enhancing livelihoods of rural households 

(Dhaliwal & Tulloch, 2012; Kubitza et al., 2020). Recently, there has been an increased 

interest in developing new methods to measure the impact of humanitarian interventions 

to guide policy decisions (Dhaliwal & Tulloch, 2012), particularly in hard-to-reach 

areas where conventional impact evaluation designs are difficult to implement (Puri, et 

al, 2017). Evaluating the success of agricultural interventions in humanitarian settings 

and conflict settings is a momentous task (Frerks & Hilhorst, 2002; Colombo & 

Checchi, 2018). Post-conflict agricultural interventions may lead to improvements, but 

quantifying these improvements remains a challenge. Generally, performing evidence-

based impact evaluations requires access to sufficient data and information which may 

be inaccessible in a conflict-affected region. For instance, securing data resources 

(ground-truth data) can be very difficult in such a setting due to security reasons and 

accessibility restrictions (Aung et al., 2021). 

Humanitarian interventions in conflict affected regions aim to promote not only 

peacebuilding, but also agricultural resilience and production (Giordano, 2011; Muscat, 

2005; Rohwerder, 2017). Agriculture is known to be one of the most affected sectors in 

conflict (Jaafar, 2018). In response to crises, there have been many efforts to strengthen 

agricultural resilience post-crisis and support agricultural production in many countries 
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(Adu et al., 2018; Panel, 2020). For example, the Food and Agriculture Organization of 

the United Nations (FAO) has helped farmers apply new climate-smart agricultural 

practices, in Yemen, to improve productivity and water management (FAO, 2016).      

Earth observations and remote sensing techniques have been known to provide a 

timely and precise evaluation of agricultural activities and production in such conflict 

settings (Jaafar, 2018). There is a growing body of literature that recognizes the 

fundamental role of remote sensing applications in complementing peace and security 

activities in conflict affected parts of the World (Avtar et al., 2021; Mukashov et al., 

2022; Quinn et al., 2018). Several studies have applied remote sensing and GIS 

techniques in conflict-affected settings to test the impact of warfare and conflict on 

agricultural activity (Blankespoor, et al., 2020; Jaafar & Woertz, 2016; Jaafar et al., 

2015; Olsen et al., 2021), food security (Brück & d'Errico, 2019; Olsen et al., 2021), 

land-use and land cover changes (Eklund et al., 2017; Hamoodi, 2021; Witmer, 2007) 

and the environment (Aung, 2021; Welp, 2020). 

Moreover, remote sensing along with machine learning methods have been 

widely utilized for agricultural mapping and monitoring. With the advancement in 

remote sensing technologies and the increase in the number of satellites operating and 

roaming the earth, several techniques have been explored and evaluated in the literature 

for assessing agricultural activity. The most common application of remote sensing 

methods in agriculture includes precision farming (El Nahry & El Baroudy, 2011; 

Kumar, et al, 2022; Mani et al., 2021), yield estimation (Bolton & Friedl, 2013; Ferencz 

et al., 2004; Gumma et al., 2021; Jaafar & Ahmad, 2015), biomass estimation (Li & 

Liu, 2020; Roy & Ravan, 1996), irrigation mapping (Ozdogan & Gutman, 2008; 

Ozdogan, et al, 2010), and vegetation and productivity parameters (Basso et al. 2004; 
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Jaafar & Ahmad, 2015). For around two decades, the state-of-the-art application of 

machine learning for the analysis of remote sensing imagery have focused on using 

machine learning classifiers from random forests (Hao,  et al., 2015; Lebourgeois et al., 

2017), support vector machine (Devadas et al., 2012; Yekkehkhany, et al., 2014), k-

nearest neighbors (McRoberts,  et al., 2007), and neural networks (Ndikumana, et al., 

2018) for land cover classification using multispectral imagery (Rivera et al.,  2022; 

Sujud,  et al., 2021). Currently, deep learning applications for image analysis and 

remotely sensed data include object detection (Tang et al., 2020), image segmentation 

(Hashemi-Beni & Gebrehiwot, 2020), scene classification and high-precision land cover 

mapping (de Camargo et al., 2021; Wang, et al., 2015).  

One limitation of using machine learning and remote sensing applications for 

image analysis and processing is the availability of training datasets. It is often difficult 

to obtain ground-truth data from conflict-affected regions, and supervised machine 

learning models require ground truth data for best performance. The application of 

unsupervised classification algorithms can overcome this challenge. Unsupervised 

classification methods have been adopted for irrigation mapping (Ragettli, et al., 2018), 

crop mapping (Rivera et al., 2022), crop row detection, crop disease (Badnakhe & 

Deshmukh, 2011), and yield detection (Groenendyk, et al., 2014) among other 

applications (Cammalleri, et al., 2014; Kusak et al., 2021). Unsupervised clustering in 

combination with multi-temporal image analysis has proven to be successful in 

mapping irrigated areas (Adia, 2008; Ozdogan & Gutman, 2008; Ragettli et al., 2018). 

Despite the plethora of studies that use remote sensing to evaluate agricultural 

productivity, studies that assess the effectiveness and impact of agricultural 

interventions using remote sensing remain limited (Salazar et al., 2021). Little research 
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has been done on the potential use of remote sensing for impact evaluation of 

agricultural interventions in humanitarian settings. Assessing agricultural productivity 

post intervention and identifying fields with access to irrigation requires the 

combination of information from several data sources to control for climate, soil, 

vegetation type, socio-economic factors. To overcome these limitations, we present a 

framework to evaluate the impact of agricultural interventions (such as irrigation 

network rehabilitation, seeds provision, and water use association) in conflict-affected 

regions of Syria, mainly Deir Ez Zor. We investigate the advantage of using satellite 

imagery in combination with unsupervised clustering to analyze a time-series of 

satellite imagery for assessing agricultural productivity.  
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CHAPTER II 

BACKGROUND 

 

A. Outcomes of Syrian Conflict and Impact on Agriculture  

Eleven years ago, anti-government protests in Syria abruptly evolved into a civil 

war. From then on, the Syrian conflict continues to be the most complex humanitarian 

crisis in the region (OCHA, 2022), which imposed immense suffering on the Syrian 

community. Around half a million people have lost their lives, about 7 million people 

have been internally displaced, and 13.5 million remain in diaspora (UNHCR, 2022). 

The conflict resulted in prevalent destruction of urban and agricultural infrastructure 

including health facilities, homes, schools, water supply and irrigation systems. Since 

the onset of the Syrian war, the political and economic situation of the country has 

deteriorated. The conflict had led to the displacement of many Syrians, from rural areas 

and dependent on agriculture for a living. Consequently, the agriculture sector - one of 

the most strategic pillars in the Syrian economy - has been severely impacted. During 

the main conflict period, agriculture remained a resilient sector to some extent in many 

Syrian Governorates. According to a report by the Food and Agriculture Organization 

of the United Nations (FAO, 2017), agriculture production in 2016 was estimated to 

account for 26 percent of the country’s GDP (Gross Domestic Production) despite 

dropping to 11 percent in 2011 (during the beginning of the war). However, major 

losses in agricultural production were observed and achieving national food security 

remains a challenge. This has caused migration and displacement of people living in 

rural areas, especially those dependent on agriculture, to look for better income sources. 
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The aftermath of the conflict has caused major challenges to farmers. The main 

challenges are 1) abandonment of agricultural land; 2) shortages in agricultural inputs 

(seeds, fertilizers, pesticides, fuel for irrigation); 3) increased input costs due to 

currency depreciation; 4) destruction of irrigation infrastructure; and 5) severe damage 

of storage facilities and farming equipment (FAO, 2017). 

Agricultural infrastructure damage such as asset destruction      accounts for half 

of the total damage to the agriculture sector (around USD 3.2 billion). In the most 

irrigated regions, irrigation infrastructure destruction has affected 70-90 percent of 

households, with 20 percent of households completely losing access to irrigation (FAO, 

2017). In addition to the irrigation infrastructure damage, farmers are facing other 

challenges: low rainfall, heatwaves, and droughts, thereby aggravating water scarcity. 

To cover their irrigation needs, farmers are relying on surface wells. This will 

consequently reduce ground water levels leading to higher pumping costs. In Deir Ez 

Zor and Ar-Raqqah governorates, the water flow from the Euphrates River (from 

Turkey) has been lower than average   leading to alarmingly lower water levels in the 

downstream reservoirs in Syria. Low water levels in the Euphrates does not only reduce 

drinking and domestic water access and use, but also causes harvest losses and water 

borne diseases (OCHA, 2022). Such vulnerabilities in the agriculture sector trigger 

widespread food insecurity which will continue to impact humanitarian assistance 

across Syria. Food insecurity is extremely high contributing to an increase in 

humanitarian needs among the population. As the economic situation deteriorates, the 

number of food insecure people increases reaching 12.4 million (FAO, 2019b). The 

FAO and World Food Programme (WFP) in Syria recommend working towards long-

term agricultural production in order      to achieve reconstruction and recovery of the 
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agriculture sector (FAO, 2019b). FAO has been conducting an emergency response 

program that attempts to restore seed multiplication in Syria. The “Supporting 

emergency needs, early recovery and long-term resilience in Syria agriculture sector” 

program is a 3-year initiative funded by the United Kingdom’s Foreign, Commonwealth 

& Development Office (FCDO).   It is an agricultural intervention aiming to support 

food security through ensuring farmers access to quality seeds, strengthening 

agricultural production, rehabilitation of pumping systems for irrigation purpose, and 

building resilience (FAO, 2019a). 

 

B. Description of the intervention   

The FAO has implemented an irrigation system rehabilitation targeting villages 

in Deir Ez Zor (the Euphrates River Valley). It was reported that, in Deir Ez Zor, two 

irrigation pumping systems were restored; 13 motors and two pumps and irrigation 

pipelines were installed. Three Water Use Associations (WUA) were established 

(WUAs are a group of farmers along a water canal that select a set of rules to manage 

water distribution among farmers) to operate and maintain the irrigation systems and to 

distribute the water among beneficiaries by scheduling irrigation intervals. The project 

is expected to provide access to water for irrigation in target villages to irrigate 3,562 ha 

of agricultural land directly benefiting about 6,662 households, and to increase 

agricultural production while decreasing the cost of irrigation per unit area. A summary 

of the type of rehabilitation for each village of intervention is provided in Table 1, 

including area scheduled for irrigation, number of beneficiaries, and number of WUA 

established. 
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Table 1. Summary of the intervention implemented in every village in Deir Ez Zor.  

Village Population 
WUA 

established 

WUA 

members 

framed 

Irrigated 

area (ha) 
Households 

Pumping 

stations 

Mazloum 7500 2 750 500 900 3 

Huwayij 10000 2 550 400 550 2 

Hatla 25000 2 1062 1100 862 2 

Marrat 25000 2 400 600 3300 3 

Al-

Qasabi 
4000 4 450 600 750 4 

Al-Jafrah 4000 2 350 400 300 3 
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CHAPTER III 

MATERIALS AND METHODS 

 

A. Overview of study objectives and methods  

  The overall objective of this study is to develop a framework for evaluating the 

effectiveness of agricultural interventions in a conflict setting using remote sensing and 

machine learning techniques. To achieve our objective, we test whether the post-

intervention agricultural productivity as gauged from space improved significantly as 

compared to the conflict period (Section 3.7) for intervention and control villages. A 

schematic workflow diagram representing the suggested framework is presented in 

Figure 1. Using a combination of spectral information, vegetation indices, and machine 

learning, we develop time-series maps of irrigated areas, agricultural productivity 

(normalized difference vegetation index – NDVI (Pettorelli, 2013), and crop-water 

stress (normalized difference moisture index – NDMI (Wilson & Sader, 2002), and the 

modified normalized difference water index (Xu, 2006). 
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Figure 1. Overview of the study design.  

B. Study Area  

Syria is known for its dry desert climate and mild rainy winters between December 

and February. Annual rainfall could be as low as < 25 mm in some regions of Syria 

(arid and semi-arid desert southeast), around 200 mm in Damascus, and ranges between 

300 – 500 mm in the coastal areas (such as Aleppo). The dominant vegetation types in 

Syria are sparse vegetation, open shrublands, and croplands, which are primarily 

distributed in the coastal and northern (Al-Hasakeh) parts of the country (Jaafar & 

Ahmad, 2015). The eastern governorates of the country (Ar-Raqqah, Deir Ez Zor, and 

Al-Hasakeh) provide around 80 percent of Syria’s annual wheat and barley production, 

most of which rely heavily on irrigation (FAO, 2021).  

The study area covers Deir Ez Zor Governorate in Syria. It consists of a total of six 

villages in Deir Ez Zor (Figure 2). Deir Ez Zor, found in eastern Syria, is located on the 

downstream of the Euphrates River – which is one of the main constituents of the 

Tigris-Euphrates basin and the longest river in Southwest Asia. Agricultural production 
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in Deir Ezzor is significant. This governorate used to contribute 20% of total Syria’s 

barley production, 9% of Syria’s wheat, and 10% of the summer crops and vegetables. 

Due to irregular and low rainfalls, the agriculture sector in Deir-Ezzor River relies 

heavily (more than 98% of the lands) on irrigation (by pumping water from the 

Euphrates River or shallow groundwater wells nearby). 

 

Figure 2. Study area map: intervention villages and Syrian agricultural areas. 

C. Delineation of villages and selecting control villages  

We delineated the extent of intervention villages using high resolution imagery 

available on Google Earth Pro as the extent of productive agriculture areas in pre-

conflict years. Using information from the FAO, we were able to accurately delineate 

the intervention villages in Deir Ez Zor. Three study periods were defined: pre-conflict 

period (2000-2012); conflict period (2013-2018); and post-conflict period (2019-2021). 

The post conflict period is also the post-intervention period for the target villages. 

Based on prior knowledge of the region’s agriculture sector, cropping patterns, major 
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crops cultivated there, and time series analysis of the normalized difference vegetation 

index (NDVI), two growing seasons were defined in Deir Ez Zor governorate, by 

observing NDVI peaks: spring season (wheat and cereals), and summer season (sesame, 

cotton, and vegetables). To disentangle the effect of the interventions from that of other 

agro-ecological factors, we selected control villages based on the following rationale 

adopted from Jaafar et al. (2015): 1) areas that are heavily cultivated and irrigated from 

the Euphrates River, underground wells, or storage reservoirs; 2) areas that will not 

benefit from the intervention but are located near intervention villages; and 3) areas in 

the same climatic zone with similar topographic and crop type characteristics as the 

intervention areas. Control villages were also chosen to be statistically similar to 

intervention villages in terms of agricultural productivity during the pre-conflict and 

conflict period.  

The similarity between control areas and intervention areas implies that any 

difference in agricultural production and crop yield is due to the intervention. For every 

intervention village, one or two control villages were delineated, and the analysis was 

performed by averaging the results of the control villages and comparing them with the 

averaged results of the intervention villages. Moreover, the results of every intervention 

village were compared to the results of the corresponding control village(s). Figure 3 

shows the control villages for each intervention village. 
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Figure 3. Control villages for Marrat, Hatla, Mazloum and Al-Jafrah 

D. Satellite imagery and weather data 

We use NASA’s U.S. Geological Survey Landsat series of Earth Observation 

satellites because it provides consistent, continuous, and uninterrupted spatio-temporal 

images of Earth’s land surface at 30-m resolution. Landsat satellites have been 

operating since 1972, representing the longest continuously acquired collection of freely 

available moderate-resolution remote sensing data (Williams et al., 2006). Landsat 

provides optimal spatial resolution and spectral information that can efficiently monitor 

land use (Seto et al., 2002), biomass change (Powell et al., 2010), deforestation (Souza 

Jr et al., 2013), and evapotranspiration trends (Jaafar & Ahmad, 2020). Here, we use 

Landsat 5 (period of record: 2000 – 2012,), Landsat 7 (period of record: 2000 – 2022), 

and Landsat 8 (period of record: 2013 – 2021). We use cloud-free Landsat imagery to 
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derive the normalized difference vegetation index (NDVI) using the near-infrared and 

red bands. In addition to surface reflectance data, we also use rainfall data from the 

Climate Hazards Group InfraRed Precipitation with Station dataset (CHIRPS). CHIRPS 

provides gauge-corrected global rainfall data (period of record: 1981 – present) at 0.05° 

resolution, it incorporates satellite imagery with in-situ station data to create gridded 

rainfall time series. We use the CHIRPS pentad collection available on Google Earth 

Engine (GEE) to derive annual rainfall for period of interest.  

 

E. Time series of vegetation indices and their anomalies  

Vegetation indices derived from satellite imagery such as the normalized difference 

vegetation index (NDVI) are effective in quantifying and evaluating vegetation cover 

and vegetation vigor. The most widely used index is the NDVI, it is expressed as:  

NDVI =  (NIR-R)/(NIR+R) 

Where NIR and R are the near infrared reflectance (Band 4 from Landsat 5 and 

7; and Band 5 from Landsat 8) and red reflectance (Bands 3 from Landsat 5 and 7; and 

Band 4 from Landsat 8) respectively. NDVI values range from -1 to 1, with negative 

values corresponding to water bodies, and values below 0.25 corresponding to bare soil 

surfaces or remains of harvested cereals. NDVI values between 0.25 and 0.4 represent 

surfaces with minimum vegetation present, and values greater than 0.4 represent 

vegetated land. The higher NDVI values are (i.e., closer to 1.0), the stronger and 

healthier the vigor of the vegetation. We obtain seasonal mean NDVI values for every 

intervention village and its control. We also compute the seasonal standardized NDVI 

anomalies normalized by rainfall (Section 3.5) as compared to pre-conflict mean (2000 
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– 2012) as well as against the conflict period mean NDVI (2013 – 2018). We then 

observe during which season/year the normalized anomalies significantly deviated from 

the mean for each village. 

 

F. Correcting for factors that impact agricultural productivity  

Precipitation greatly affects agricultural productivity. For instance, insufficient and 

rainfall over Syria during 2013-2014 have caused a decrease in cereal production (see 

e.g. Jaafar & Ahmad, 2015). We analyze precipitation history and long-term trends per 

governorate to disentangle the impact of rainfall on agriculture production. Using 

CHIRPS data, we estimate annual rainfall per governorate for years 2000-2020 to use 

for normalization of standardized NDVI anomalies (Figure 4). We compute a rainfall 

ratio for each year by which we control for precipitation using the below formula: 

𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝑟𝑎𝑡𝑖𝑜 =  
𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑦𝑒𝑎𝑟 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙2000−2020
 

 

Figure 4. Criteria followed to normalize the standardized NDVI anomalies by rainfall. 
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G. Unsupervised machine learning classification  

We perform k-means clustering over the intervention and control villages. 

Clustering relies on unsupervised machine learning because it works by grouping 

unlabeled objects. Here, we use k-means clustering algorithm (Likas, et al., 2003). It is 

an algorithm that groups objects based on features in k number of clusters or groups. 

The k-means algorithm determines the best k center points (cluster centroid) and assigns 

each object to the closest cluster centroid. Objects nearest to the cluster centroid are 

grouped together as one cluster. The cluster centroids are defined such that the 

cumulative square of the distances from each object to its closest centroid is minimized.  

First, we prepare the satellite imagery from Landsat 5,7, and 8 by filtering them 

to obtain cloud-free images. The Landsat 7 image collection was gap-filled using a focal 

mean function. The focal mean function applies a morphological filter to each band by 

inputting pixels in a custom kernel. We used a square kernel then applied a blend to fill 

the gaps of the original image. Then, we compute three indices – NDVI, the normalized 

difference moisture index (NDMI), and the modified normalized difference water index 

(MNDWI) to be used as input features for the clustering step. NDMI is considered a 

plant-water index and is defined using the NIR and shortwave infrared (SWIR) bands. 

NDMI is commonly used to determine vegetation moisture content, it is an indicator of 

crop water stress. The use of NDMI, in combination with other vegetation indices, have 

produced good results in irrigation mapping (Chance, et al., 2017). The MNDWI uses 

the green and SWIR bands, it is used to detect open water features as it removes urban 

features that are often correlated with water in other indices (Xu, 2006).   
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Later, we sample 10,000 pixels from each governorate and use them to train the 

k-means cluster algorithm. We apply the clustering algorithm on the NDVI, NDMI, and 

MNDWI bands and pre-define three “clusterers”. We sort the clusteres using the NDMI 

band and obtain three classes – dry pixels, irrigated pixels, and water pixels. We 

perform zonal statistics to estimate the irrigated area and percent irrigated area for 

spring and summer seasons of years 2000 – 2021 for both intervention and control 

villages. We observe the distribution of irrigated areas in each village and how it 

changes over time. 

 

H. Statistical analysis  

To study whether there was a significant change in agricultural production during 

the post intervention period (2020-201), we test the hypothesis using Wilcoxson’s non-

parametric test. The Wilcoxon signed rank test is a nonparametric test commonly used 

for paired data. The use of this test herein avoids the assumption of normality which is a 

prerequisite to running other statistical tests such as the students-t test. The post-

intervention NDVI, NDMI, and irrigated areas generated from the unsupervised 

classification were individually compared to their conflict means (2013 – 2018) to 

observe whether the intervention improved agricultural activity. This analysis was 

performed individually on both intervention and control villages.   
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CHAPTER IV 

RESULTS 

The results are evaluated using two sections – the first section presents NDVI 

and clustering results for intervention and control villages (averaged and one by one), 

and the second section presents the hypothesis testing results for the machine-learning 

derived irrigated areas, NDVI, and NDMI metrics.  

 

A. Overall effectiveness of intervention  

There is an overall increase in both NDVI and ML-derived irrigated areas in the 

spring season post-intervention period in the intervention villages (Figure 5a). There is 

also an increase in NDVI an irrigated area in summer season of 2020, followed by a 

decrease in 2021 for the intervention villages (Figure 5b). 
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Figure 5. Time series of standardized NDVI anomalies normalized by rainfall as 

compared against pre-conflict mean and conflict mean, and time series of irrigated area 

as obtained from K-means clustering for intervention and control villages for (a) spring 

season and (b) summer season.  

 

1. Time series analysis 

The time-series results of the standardized NDVI anomalies normalized by rainfall 

for intervention and control villages are shown in Figure 5. When comparing these 

anomalies against the pre-conflict mean, both intervention and control villages do not 

show an overall improvement in NDVI in either seasons – summer or spring. However, 
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when comparing results against the conflict-mean, different findings are observed. 

During the summer season, the intervention villages show an improvement in 2020 (i.e., 

the year directly after the intervention was performed), but not in 2021 – where an 

overall decrease in NDVI is observed. Contrary to the intervention villages, there is an 

overall increase in NDVI in years 2020 and 2021 within the control villages when 

compared to the conflict mean.  

During the spring season, both intervention and control villages show an overall 

increase post-intervention period (2020 and 2021), and the intervention villages show a 

greater increase in NDVI as compared to the control villages. The irrigated area of 

intervention villages increases in both years post-intervention more than the increase 

observed in the control villages (Figure 5a).  

During the summer season, for both intervention and control villages, we find a 

slight increase in irrigated areas during year 2020 but not the same for year 2021 

(Figure 5b). 

 

2. Hypothesis testing results  

Hypothesis testing shows that for intervention villages, there is significant 

improvement of the analyzed agriculture metrics during the summer season (Table 2). 

This contrasts with the control villages, where a significant increase in irrigated area (p 

value < 0.01) and NDVI (p value < 0.05) was observed during the summer season 

(Table 2a). We find that the irrigated area and NDVI of intervention villages 

significantly improved as compared to the conflict-period irrigated area (p-value < 

0.0001) and NDVI (p-value < 0.01) during the spring season (Table 2b). However, there 



 

 
29 

was no significant improvement of the irrigated area, NDVI, and NDMI for control 

villages. The hypothesis testing results confirm the results observed in Figure 5.  

 

Table 2. Hypothesis testing results using Wilcoxon Signed-Rank test. 

(a) Summer season 

Wilcoxon Signed-Rank 
 

Irrigated area  NDVI  NDMI  

Intervention -87.0 -37.0 -11.0 
 

Not sig. Not sig. Not sig. 

Control  -369.0 -233.0 78.0 

  ** * Not sig. 

 

(b) Spring season 

Wilcoxon Signed-Rank 
 

Irrigated area  NDVI  NDMI  

Intervention -227.0 -1.660 -97.00 
 

**** ** Not sig. 

Control  -44.0 -93.0 308.0 

  Not sig. Not sig. Not sig. 

 

 

B. Individual results for intervention villages  

1. Intervention village 1: Hatla  

Figure 6 shows the results of the time-series of standardized NDVI anomalies 

normalized by rainfall and irrigated area for Hatla and its control village during summer 
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and spring season. Results are similar for both intervention and control villages in the 

spring and summer of 2020. As compared to the reference seasonal means of spring and 

summer (2000-2012), the NDVI improved only during the summer of 2020.  

The second-row charts of Figure 6 present the standardized NDVI anomalies 

normalized by rainfall as compared to the conflict mean reference period (2013 – 2018), 

where Hatla shows an improvement in NDVI during summer and spring of 2020 and 

2021. Similarly, the control village shows an improvement in both seasons except for 

spring 2021, where a decrease in NDVI is observed there, which is not witnessed in the 

intervention area.  

During the summer season, irrigated area increased in 2020 in both Hatla and its 

control. However, a greater increase was observed in the control village. In summer 

2021 the irrigated area decreased again. In the spring season, an increase in irrigated 

areas was observed during 2020 and 2021 in the intervention village but not in the 

control village. 
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Figure 6. Results for Hatla village. Time-series of standardized NDVI anomalies (2000-

2021) normalized by rainfall (the reference period against which the anomalies were 

calculated is the pre-conflict period: 2000 – 2012), and the time-series of standardized 

NDVNDVI anomalies (2013-2021) normalized by rainfall (The reference period against 

which the anomalies were calculated is the conflict period: 2013 – 2018 showing the 

NDVI deviation in post-intervention years as compared to conflict period), and the 

irrigated area as obtained from K-means clustering. 

 

2. Intervention village 2: Marrat  

The NDVI anomalies results for Marrat village show that there was an increase in 

NDVI during spring and summer 2020, followed by a decrease in NDVI during summer 

2021. The control village of Marrat experienced a similar increase in NDVI values post-

conflict (Figure 7). The clustering results show a similar trend in irrigated area (Figure 
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7). In the summer season of year 2020, the intervention village showed a greater 

increase in irrigated area as compared to the control village, followed by a drop in 

irrigated area in both during 2021. An increase in irrigated areas during spring season 

was observed during post-conflict years in both as well. 

 

Figure 7. Results for Marrat village. Time-series of standardized NDVI anomalies 

(2000-2021) normalized by rainfall (the reference period against which the anomalies 

were calculated is the pre-conflict period: 2000 – 2012), and the time- series of 

standardized NDVI anomalies (2013-2021) normalized by rainfall (The reference period 

against which the anomalies were calculated is the conflict period: 2013 – 2018 

showing the NDVI deviation in post-intervention years as compared to conflict period), 

and the irrigated area as obtained from K-means clustering. 
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3. Intervention village 3: Al-Jafrah  

NDVI results during post-intervention years were lower than NDVI in pre-conflict 

period during summer and spring season for both Al Jafrah and its control villages. 

However, as compared to the conflict period, a slight improvement in NDVI of Al 

Jafrah can be observed during spring 2021 and 2021, and during summer 2020 (Figure 

8). No improvement in NDVI was observed in control villages of Al-Jafrah during post-

intervention period. As for the irrigated area, no change was observed during the 

summer season. A slight increase in irrigated area was observed in both intervention 

and control villages (Figure 8). 
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Figure 8. Results for Al-Jafrah village. Time-series of standardized NDVI anomalies 

(2000-2021) normalized by rainfall (the reference period against which the anomalies 

were calculated is the pre-conflict period: 2000 – 2012), and the time- series of 

standardized NDVI anomalies (2013-2021) normalized by rainfall (The reference period 

against which the anomalies were calculated is the conflict period: 2013 – 2018 

showing the NDVI deviation in post-intervention years as compared to conflict period), 

and the irrigated area as obtained from K-means clustering.  

 

4. Intervention village 4: Mazloum  

For Mazloum village, an improvement in NDVI was observed only during spring 

season (2020 and 2021) as compared to pre-conflict and conflict period. As for the 

control village, no improvement was observed except for a slight increase in NDVI 

during summer 2020. As for the irrigated areas, and similar to the NDVI results, an 
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increase was observed during spring season in the intervention village (Figure 9). A 

decrease in irrigated areas of Mazloum was detected during spring 2021, which is not 

the case for its control village. 

 

Figure 9. Results for Mazloum village. Time-series of standardized NDVI 

anomalies (2000-2021) normalized by rainfall (the reference period against which the 

anomalies were calculated is the pre-conflict period: 2000 – 2012), and the time-series 

of standardized NDVI anomalies (2013-2021) normalized by rainfall (The reference 

period against which the anomalies were calculated is the conflict period: 2013 – 2018 

showing the NDVI deviation in post-intervention years as compared to conflict period), 

and the irrigated area as obtained from K-means clustering. 
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5. Intervention village 5: Al-Qasabi  

Results from Al-Qasabi village show a greater improvement in NDVI as compared 

to the control village during post-intervention years (Figure 10). An increase in irrigated 

areas was also observed during the spring season (Figure 10). A similar trend was 

observed in both during the summer season: no change in 2020 followed by a decrease 

in 2021. 

 

Figure 10. Results for Al-Qasabi village. Time-series of standardized NDVI anomalies 

(2000-2021) normalized by rainfall (the reference period against which the anomalies 

were calculated is the pre-conflict period: 2000 – 2012), and the time-series of 

standardized NDVI anomalies (2013-2021) normalized by rainfall (The reference period 

against which the anomalies were calculated is the conflict period: 2013 – 2018 
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showing the NDVI deviation in post-intervention years as compared to conflict period), 

and the irrigated area as obtained from K-means clustering. 

 

6. Intervention village 6: Huwayij  

An increase in NDVI anomalies was observed in Huwayij village during summer 

and spring seasons post-intervention, which was also observed in the control village 

(Figure 11). Irrigated areas increased during the spring season but decreased during the 

summer season for both intervention and control (Figure 11). 

 

Figure 11. Results for Huwayij village. Time-series of standardized NDVI anomalies 

(2000-2021) normalized by rainfall (the reference period against which the anomalies 

were calculated is the pre-conflict period: 2000 – 2012), and the time-series of 
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standardized NDVI anomalies (2013-2021) normalized by rainfall (The reference period 

against which the anomalies were calculated is the conflict period: 2013 – 2018 

showing the NDVI deviation in post-intervention years as compared to conflict period), 

and the irrigated area as obtained from K-means clustering. 

 

C. Hypothesis testing results – village by village  

1. Spring season  

Irrigated area was significantly higher than conflict-mean irrigated area in three out 

of six intervention villages (Marrat, Al-Jafrah, and Al-Qasabi) (Table 3). None of the 

control villages show a significant increase in irrigated area except for the control of 

Marrat village, and a significant decrease in irrigated area was observed in the control of 

Mazloum village. Four out of six intervention villages show a significant increase in 

NDVI (Hatla, Marrat, Al-Qasabi and Huwayij); and only two control villages show 

similar results (control of Marrat and control of Huwayij). Finally, only Marrat village 

shows a significant increase in NDMI results and none of the control villages. Two 

control villages (control of Al-Jafrah and control of Mazloum) show a significant 

decrease in spring season NDMI.   

2. Summer season  

No significant increase in irrigated area was observed post-intervention for any of 

the intervention villages (Table 4). Two control villages (control of Hatla, and control 

of Huwayij) showed a significant increase in irrigated area post-intervention. One 

control village (control of Mazloum) showed a significant decrease in irrigated area. Al-

Qasabi and Hatla villages showed a significant increase in NDVI and NDMI post-

intervention as compared to the conflict period. Similarly, their control villages showed 
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the same significant results. Although Huwayij village did not show any significant 

increase in any of the agriculture metrics being analyzed, its control village showed 

significant increase in all three of them (irrigated area, NDVI and NDMI). 
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Table 3. Hypothesis testing results (village by village) showing whether agricultural 

activity significantly changed as compared to pre-conflict mean (2013-2018) for the 

spring seasons. 

Village Irrigated area  NDVI NDMI 
 Intervention Control Intervention Control Intervention Control 

Al Jafrah ++ 0 0 0 0 -- 

Al Qasabi ++ 0 ++ 0 0 0 

Hatla 0 0 ++ 0 0 0 

Huwayij 0 0 ++ ++ 0 0 

Marrat ++ ++ ++ ++ 0 ++ 

Mazloum 0 -- 0 0 0 -- 

 

Table 4. Hypothesis testing results (village by village) showing whether agricultural 

activity significantly changed as compared to pre-conflict mean (2013-2018) for the 

summer seasons. 

Village Irrigated area  NDVI NDMI 
 Intervention Control Intervention Control Intervention Control 

Al Jafrah 0 0 0 0 0 0 

Al Qasabi 0 0 ++ ++ ++ ++   

Hatla 0 ++ ++ ++ ++ ++ 

Huwayij 0 ++ 0 ++ 0 ++    

Marrat 0 0 0 0 0 0 

Mazloum 0 -- 0 0 0 -- 

 

Notes: ++ corresponds to significant improvement, -- corresponds to a significant decrease in 

agricultural activity, and 0 corresponds to no significant change. 
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CHAPTER V 

DISCUSSION 

Evaluating agricultural interventions using remote sensing methods poses some 

challenges. The use of multiple indices and methods rather than one simple index 

reveals that results can be different and may not lead to the same conclusion. 

Examination of the multi-temporal time series of anomalies (standardized NDVI, 

normalized by rainfall) and irrigated agriculture reveals distinct patterns in active 

agricultural areas during the three defined periods of study. Standardization and 

normalization of the standardized indices by rainfall promise to be a novel and robust 

method to assess changes in agricultural activity. Observations show a decrease in 

standardized NDVI anomalies normalized by rainfall during 2008 in all villages which 

was not reflected in the irrigated areas obtained from K-means clustering. Such a result 

explains why the unsupervised machine learning algorithm better distinguishes between 

irrigated areas and abandoned land since it uses a combination of NDMI, NDWI and 

NDVI - which when combined the accuracy of data on vegetation stress and cover is 

expected to become higher.  

The methodology used in this study makes use of the SWIR band, which is 

sensitive to vegetation water content, and the NIR which is sensitive to the leaf dry 

matter. Canopy detection is done better using both the NDVI and NDMI, and vegetation 

stress is detected using the NDMI, and the NDWI helps in delineating open water 

surfaces and removing built up noise. As such, the unsupervised machine learning 

algorithm makes use of the information from three indices to produce 3 clusters of 
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irrigated, non-irrigated, and abandoned land without being biased due to using one 

index.  

When comparing the results of the irrigated areas classification to those of the 

NDVI and NDMI time series, there were some cases when they were not at par for the 

same village or zone. For example, a significant increase in irrigated areas was noted at 

Al-Jafrah for the spring season, but there was no significant increase in the NDVI or 

NDMI for the same. This phenomenon was repeated during the spring season at Hatla 

and Huwayij villages, where NDVI significantly increased but not the irrigated area or 

NDMI.  Conversely, there was an increase in both irrigated area and NDVI for Marrat 

and Al-Qasabi for the spring season, but no significant increase in NDMI for the same 

period.  In other cases, the conclusions from the three metrics were in agreement (for 

example, summer season for control of Hatla and control of Huwayij).  

Selection of the control is also not a straight-forward task.  It is not easy to 

identify villages next to the intervention village that share similar properties in terms of 

size, area, population, crop lands, irrigated areas, irrigation systems, and even 

governance. While we mainly relied on pre-conflict NDVI to identify and select 

homogenous areas, it seems that when running the irrigated areas analysis, it was 

evident that there were some differences between the villages and their respective 

controls in pre-conflict times. However, as the differences were not large, we believe 

they are due to the unavoidable natural variability characteristic of agriculture, climate, 

and farming life in general. The impact of control selection was not assessed here, and 

perhaps this would necessitate using a metric other than the mean standardized NDVI or 

NDMI, such as the maximum or the average between the mean and the maximum. 
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Further research could address utilizing higher resolution satellite imagery in 

combination with ground validation of planted crops.    
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CHAPTER VI 

CONCLUSION 

Adopting agriculture interventions and sustainable agriculture practices 

enhances agriculture productivity, especially in developing countries and war-torn 

countries. Within this context, rigorous impact evaluations offer valuable insights for 

monitoring and improving the impact of such interventions. Assessing the impact and 

success of agriculture interventions over time is challenging due to several constraints. 

We use remote sensing data to provide a standardized and objective assessment of 

vegetation cover of complex agriculture interventions in Syria, which can be applied to 

assess agriculture interventions in different hard to reach regions.   

The use of satellite data and remote sensing techniques is still limited in studies 

focusing on impact evaluations of agricultural interventions. With the availability of 

global and open access products, rigorous impact evaluations can be implemented 

remotely and at low costs allowing researchers to study long term impacts.  

It remains a challenge to arrive at conclusions with regards to whether the 

agricultural intervention was effective in improving agricultural productivity in target 

villages. The present findings confirm that there was an improvement in agricultural 

activity during the spring season, as both irrigated area and NDVI post-intervention 

were significantly greater than conflict period. However, the results were different for 

the summer season, where no significant increase was observed. 
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