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Abstract
of the Thesis of

Omar Fadi Farhat for Master of Engineering
Major: Mechanical Engineering

Title: Robustness Analysis of Wind Turbine Control Systems

In this thesis, a framework for robustness analysis of wind turbine control systems
is proposed. This framework is employed to examine and compare the robustness
of H1 and PI blade pitch controllers designed to maintain the turbine’s generated
power at its rated value in Region 3 of the wind turbine operation. The L2-induced
norm of the closed-loop system is used as the performance metric. In this framework,
a turbulent wind model based on the Kaimal spectrum is added to the closed-
loop wind turbine model obtained by linearizing the nonlinear model at di↵erent
operating wind speeds. This framework utilizes the theory of Integral Quadratic
Constraints (IQCs), whereby IQCs and signal IQCs are used to incorporate the wind
model into the wind turbine model. As a result, upper bounds on the L2-induced
norm of the system are obtained by solving semidefinite programs (SDPs). The
proposed framework results in a better characterization of the system’s performance.
The analysis results from the proposed framework are verified and validated via
extensive high-fidelity simulations of the nonlinear wind turbine model.
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Chapter 1

INTRODUCTION

Wind energy is a rapidly growing field all over the world. According to the Global
Wind Energy Council (GWEC), the global installed capacity of wind power in-
creased by an annual growth of 53% in 2020, which makes it the best year in history
for the global wind industry. In addition, GWEC states that wind turbines need
to be installed at a much faster rate in the upcoming decade to mitigate the worst
impacts of climate change [1].

For wind turbines to be competitive within the energy market, the cost of gen-
erating wind power should be economically competitive with that of conventional
power production. For this purpose, high performance and reliability of wind tur-
bines are required. The area of control systems has significantly contributed to the
reduction of the cost of wind-generated electricity. In order to reduce the cost of
wind power, a wind turbine is controlled to maximize energy production, as well as
to minimize mechanical loads to extend its lifetime.

The rapid growth in the wind energy industry brings several challenges to the
current turbine control system. Wind turbines are highly nonlinear systems sub-
ject to varying dynamics and uncertainties in di↵erent wind conditions. As the
size of wind turbines grows, considerations on load reduction become more critical.
This motivates the need for robust control strategies that ensure satisfactory and
robust performance of the wind turbine despite all operating conditions and model
uncertainties.

1.1 Thesis Contribution

This thesis is the first work proposing a comprehensive model-based framework for
the analysis and certification of wind turbine control systems using tools from ro-
bust control theory. This framework provides a systematic and rigorous tool for
designing, testing, and certifying that a controller is safe for implementation on a
real wind turbine. The framework allows for comparing the performance of dif-
ferent controllers with respect to di↵erent outputs, as well as comparing the same
controller’s performance across varying wind speeds. The novelty of the proposed
framework consists in incorporating the characteristics of a turbulent wind profile
in the analysis of the closed-loop wind turbine model in the following approach:
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• The wind turbine model is subject to an exogenous input, which is the wind
disturbance. Instead of assuming the wind disturbance to be any finite energy
(L2) signal, a wind model is incorporated into the wind turbine model. This
wind model is based on Kaimal’s characterization of turbulence and gener-
ates a turbulent wind profile from white noise inputs. Moreover, this wind
model contains time-varying trigonometric terms. Hence, the resulting com-
bined wind turbine model is a time-varying system with white noise signals as
exogenous inputs.

• The complex combined wind turbine model is systemically handled using the
theory of integral quadratic constraints. The time-varying trigonometric terms
are treated as uncertainties, and the resulting time-varying system can be mod-
eled in the Linear Fractional Transformation (LFT) framework as a feedback
interconnection of a linear time-invariant nominal system with uncertainties.
This configuration allows for characterizing the uncertainties as static lin-
ear time-varying (SLTV) parameters using the Integral Quadratic Constraints
(IQCs) framework. This framework allows for performing the robustness anal-
ysis of the system by solving semidefinite programs, which can be solved using
readily available numerical solvers.

• Signal IQCs are also incorporated in the proposed analysis framework. The
white noise inputs of the wind model are characterized via signal IQCs. Instead
of assuming the white noise inputs to be any finite energy (L2) signals, signal
IQCs allow for constraining these inputs to lie in a predefined set of white
noise signals (a subset of L2). This results in a more accurate description of
the exogenous inputs.

The proposed analysis framework is tested as follows:

• Linearizations of the nonlinear wind turbine model are obtained at di↵erent
operating wind speeds.

• For one operating wind speed, H1 and PI blade pitch controllers are designed
with the objective of maintaining the generated power of the wind turbine at
its rated value in Region 3 of the wind turbine operation (high wind speeds).

• The robust performance of the two controllers is examined and compared at
di↵erent wind speeds using the proposed analysis framework. The L2-induced
norm of the closed-loop system, which measures the worst-case amplification
from the exogenous inputs of the system to its outputs, is used as the per-
formance metric. Upper bounds on the L2-induced norm of the system are
obtained by solving semidefinite programs.

• The findings from the proposed analysis framework are benchmarked against
observations based on extensive simulations performed on a high-fidelity non-
linear wind turbine model.

The importance of the proposed analysis framework lies in the following:
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• Even though IQC analysis of wind turbine control systems has already been
performed in the literature, this work is the first to incorporate the characteris-
tics of a wind profile into the analysis, thereby allowing for analysis that more
accurately reflects the wind turbine’s performance and operating conditions.

• Traditionally, controller testing is done through high-fidelity extensive sim-
ulations, which are time-consuming. The proposed framework systematizes
and speeds up the process of performing robustness analysis of wind turbine
control systems. Thus, it is a complementary tool for simulations, and the
insights obtained using the framework match those from the simulations but
are attained much faster.

• Another problem with solely relying on simulations is that they may fail to
predict rare failures and extreme case occurrences. The proposed framework
allows for obtaining performance bounds that are of a worst-case type and
cover all simulations. That is, it defines a guaranteed operating envelope
that cannot be violated during operation. Since real-life implementation of
controllers on wind turbines is expensive and risky, this framework helps in
reducing costs by discarding controllers that cannot be certified to be safe.

• Even though a specific wind model based on Kaimal’s characterization of tur-
bulence is used in this framework, the developed framework is not specialized
to one wind model. In fact, the framework is modular in the sense that any
other wind model can be incorporated in the same manner. That is, if given
any other wind profile or statistical data reflecting specific wind conditions in
a given locality, they can be seamlessly incorporated into the analysis frame-
work. This provides a useful tool for control synthesis, whereby engineers can
design controllers targeted to specific wind conditions.

• Similarly, this framework can be also easily modified to account for other,
improved models of the wind turbine. Even though the framework uses linear-
time invariant models of the wind turbine in this thesis, other wind turbine
models such as periodic linear time-varying (PLTV) and linear parameter-
varying (LPV) models can be used. Thus, this thesis lays the groundwork for
and enables the development of even better analysis tools, via the incorpora-
tion of better wind turbine models and/or specific turbulent wind information.

This framework is to be built-upon in future work, and hence, the analysis performed
in this thesis is not comprehensive. Therefore, over-reaching conclusions will not
be made from the analysis framework and simulations as some additions to the
framework must be done to yield more accurate results. Namely, nonlinearities
and uncertainties of the wind turbine model should be considered in the future. In
addition, better tuning methods of the IQC filters should be considered.

1.2 Literature Review

The works that have been explored thoroughly are listed in Table 1.1.
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Table 1.1: Relevant works on modeling and control of wind turbines and analysis
using the theory of Integral Quadratic Constraints.

Topic Relevant Works
Modeling of Wind Turbines [2]–[8]
PI Control [9]–[11]
Wind Turbine Baseline Controller [3]
Periodic Control of Wind Turbines [12], [13]
Adaptive Control of Wind Turbines [14]
H1 Control [15]–[21]
H1 Control of Wind Turbines [22], [23]
LPV Control of Wind Turbines [24], [25]
Integral
Quadratic
Constraints

IQC Theory [26]–[35]
Wind Turbines IQC
Analysis and Synthesis

[36]

Applied IQC Analysis
and Synthesis Featuring
Signal IQCs

[37], [38]

Modeling of Wind Turbines: Many models of wind turbines have been devel-
oped in the literature. In this thesis, a high-fidelity nonlinear wind turbine model
provided by OpenFAST [2] and developed by the National Renewable Energy Lab-
oratory (NREL) is adopted. A detailed description of this model is presented in
Section 3.2 of the thesis. A one-state nonlinear model of the wind turbine is given
in [3]. This model captures steady-state aerodynamics and rigid-body rotor dynam-
ics, but not structural dynamics of the wind turbine. In this single degree-of-freedom
model, all the rotating parts, including the blades, hub, and drive train, are con-
sidered rigid bodies. This model is helpful for understanding the basic principles of
wind turbine operation. In this simple rotational system, the lift force generated on
the turbine blades yields a torque on the rotor shaft, which is then balanced by the
generator torque on the high-speed shaft. Other models that have been used include
the one developed in [4], wherein a simple wind turbine benchmark model is devel-
oped. In this model, the blades and the tower are assumed rigid, and aerodynamics
are described by a static model. The aerodynamics of the wind turbine are modeled
as a torque acting on the blades, and the pitch system is modeled as a second-order
piston servo system. The drive train is modeled by a two-mass model, and the
generator and converter dynamics are modeled by a first-order transfer function.

Several mathematical representations of the turbulence experienced by wind tur-
bines have been developed in the literature. One wind model is based on Kaimal’s
characterization of turbulence [5], [6]. This wind model is adopted in this thesis, and
a detailed description of this model is presented in Section 3.5. Another wind model
is proposed in [7], wherein a mathematical model describing turbulence is developed
based on the von Karmen power spectrum. A simple wind model is presented in [8]
in which the wind is simulated at one point only. This model consists of a spatial
filter connected to a rotational sampling filter. The spatial filter aims at damping
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the high-frequency components of the wind, which represents the filtering properties
of the wind turbine blades. The rotational sampling filter serves to represent the
rotational sampling of the wind as it hits the wind turbine blades.

Control of Wind Turbines: The wind turbine baseline controller is presented
in [3]. It consists of a nonlinear generator torque controller that maximizes the
generated power in Region 2 of the wind turbine operation and a PI pitch actuator
controller that maintains the rated power in Region 3 of the wind turbine operation.
Further details can be found in Section 3.1 of the thesis. In this thesis, a wind turbine
Region 3 PI controller is designed as detailed in Section 2.3. The works in [9]–[11]
proposed transforming the problem of designing a PID controller into that of a static
output feedback (SOF) controller. Three di↵erent LMI conditions, corresponding
to stability, H1 performance specification, and H2 performance specification, are
presented. Then, algorithms based on iterative Linear Matrix Inequality (ILMI)
techniques are proposed for designing the controllers. Advanced control of wind
turbines has been widely explored in the literature, including periodic control [12],
[13], adaptive control [14], H1 control [22], [23], and LPV control [24], [25].

The work in [12] aims to study whether periodic control is more e↵ective than
using constant gains. The control objective is regulating the wind turbine’s speed
in a fluctuating wind field in Region 3 of the wind turbine operation. A two-
bladed, variable-speed, horizontal-axis wind turbine model is considered, the gen-
erator torque is set to a constant, and collective blade pitch is used. Periodic and
constant-gain full-state feedback controllers are designed using optimal control the-
ory on a linearized periodic model. Two turbulent wind conditions with di↵erent
gust speed profiles are chosen to test the performance of the two controllers. The
periodic gain controller did not show significantly improved performance over the
constant gain controller. However, the periodic controller has an advantage over
the constant controller in the sense that stability is guaranteed when implemented
on a linear periodic plant. Moreover, when implemented on a nonlinear model, the
system is less likely to become unstable. The disadvantage of a periodic controller
is that it requires knowledge of the rotor position, which is not an observable state.
The work in [12] is extended in [13] by incorporating periodic state estimation.
Moreover, individual blade pitch actuation is used instead of collective pitch. In ad-
dition to regulating the rotor speed, the controller aims at mitigating cyclic loads.
Disturbance Accommodating Control, which is a model-based approach to reject
persistent disturbances to a linear system, is used in this paper to estimate fluctuat-
ing wind disturbances. Periodic, time-invariant constant-gain, and PID controllers
are designed. Then, the designed controllers are compared and tested via simu-
lations performed on a wind turbine nonlinear model subject to fluctuating wind
input. The periodic and time-invariant controllers were able to reduce the cyclic
loads without compromising the rotor speed regulation, with the periodic controller
yielding a superior performance since a time-varying wind turbine model is used to
estimate the unmeasured states.

An adaptive controller is designed in [14]. An adaptive generator torque con-
troller is designed to maximize power generation in Region 2 of the wind turbine
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operation, with the blade pitch angle set to a constant. This paper focuses on ana-
lyzing the stability of the developed control system and shows how the rotor speed
is asymptotically stable in constant wind conditions and L2 stable in the case of
varying wind speeds. In addition, a scheme is developed for the gain adaptation
law to guarantee that the adaptive gain converges to its optimal value. The devel-
oped adaptive control scheme is tested on the Controls Advanced Research Turbine
(CART) located in the NREL’s National Wind Technology Center.

The problem of the design of an H1 controller has been extensively explored.
The objective of this controller is to obtain a stable closed-loop system that has some
upper bound on its L2-induced norm. This norm measures the worst-case amplifica-
tion of a finite energy exogenous input signal at the performance output of the sys-
tem. The H1-norm condition is in general not convex, and thus, the H1 controller
design problem is not a convex optimization problem [15]. The works of [16]–[18]
present LMI-based characterizations of the H1 performance condition, which allow
for convex optimization formulations of the H1 controller design problem. Further
details on the design of H1 controllers are presented in Section 2.2. The distributed
L2-induced norm control of discrete-time, nonstationary linear parameter-varying
(NSLPV) subsystems is explored in [19], wherein the NSLPV subsystems are rep-
resented in the LFT framework and are interconnected over arbitrary graphs. An
NSLPV model is an extension of a standard LPV model wherein the nominal part
of the system is allowed to be time-varying, to account for a priori available in-
formation on the time-varying terms in the system model [20], [21]. The designed
controller is then a distributed NSLPV system with its subsystems having the same
interconnection and LFT structures as the plant. Analysis and synthesis results were
derived in terms of infinite sequences of LMIs. However, these conditions become
finite-dimensional for eventually periodic systems over finite graphs.

A wind turbine H1 blade pitch controller is presented in [22]. The presented
multivariable control design approach for an individual pitch controller aims at re-
ducing structural loads on the rotating and nonrotating parts of the wind turbine.
A controller tuning strategy that mitigates the dominant loads on the blade and na-
celle is also presented. The LTI model in [22] is extended to an LPV model in [24].
The H1 controller in [22] performed better than LPV controller in [24] at its design
condition (operating speed); however, this performance degraded at wind speeds
higher than that of the controller design condition. The LPV controller showed
better robustness at high wind speeds. In [23], an H1 controller is designed at sev-
eral operating points, with the objective of power reference tracking and structural
loads minimization. This controller is gain-scheduled based on the wind speed and
the power output, which allows the wind turbine to operate smoothly. This work
is extended in [25], wherein an LPV controller of the wind turbine is designed. An
LPV model of the wind turbine, dependent on the operating wind speed, is used.
Then, a robust control framework is proposed using the LPV design method. As
a result, the controller designed using this method covers the turbine operations in
all wind conditions. The LPV approach provides guarantees on the stability and
performance of the closed-loop system, in contrast to the gain-scheduling approach.
Improved load reduction of the proposed LPV controller was observed.
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Integral Quadratic Constraints (IQCs): In this thesis, a framework is pro-
posed for the analysis of wind turbine control systems, which utilizes the theory of
Integral Quadratic Constraints (IQCs). The IQCs framework [26] provides a method
for representing real-world complex and uncertain dynamical systems in a form that
is convenient for stability and performance analysis. Nonlinearities, time-varying co-
e�cients, parametric uncertainties, and unmodeled dynamics having complex math-
ematical descriptions can be replaced by IQC characterizations [27]. This allows for
performing the analysis of the system by solving semidefinite programs, which can
be solved using readily available numerical solvers [28]. As a result, IQC analysis
allows for obtaining guaranteed upper bounds on the L2-induced norm of uncertain
systems. Exogenous input signals of a system can be also characterized by signal
IQCs [29]. A list of available classes of IQC and signal IQC multipliers can be found
in [26], [29]–[31].

While the theory of IQCs is applied on a single, continuous-time, linear time-
invariant system in this thesis, there have been multiple works that apply the IQCs
theory to discrete-time, linear time-varying systems [32]–[35]. The robustness anal-
ysis framework using IQCs is extended to uncertain distributed systems in [32] and
systems with uncertain initial conditions in [33]. Novel results are presented in [34],
[35], wherein a novel method for computing point-wise bounds on the performance
outputs is proposed in [34], and a novel method for the computation of invariant
sets using the S-procedure and point-wise IQCs is presented in [35].

In addition to IQC analysis, IQCs can also be incorporated into control synthesis
problems. In [36], a controller synthesis algorithm for LPV systems using the theory
of IQCs is presented. This algorithm alternates between synthesis and analysis steps,
both solved as semidefinite programs. The proposed algorithm results in a non-
increasing robust performance at each iteration. In this thesis, only IQC analysis is
performed.

A comprehensive analysis framework for small fixed-wing unmanned aircraft sys-
tems (UAS) is proposed in [37]. In the proposed framework, the uncertain UAS
model is represented in the LFT framework. The theory of IQCs is then used for
complete system uncertainty characterization and quantification, and robustness
analysis of the system is performed. This work is pioneering in the sense of apply-
ing IQCs to complex engineering systems, in addition to extensively validating the
results in actual flight experimentations. Flight test data is used to quantify the
UAS uncertainties. Moreover, an IQC-based controller synthesis algorithm is pre-
sented and implemented, which helps emphasize the e↵ect of the uncertainties on the
system and provides guidance for improved control design. In [38], the framework
proposed in [37] is improved in the sense that the analysis can be done for any UAS
flight path with a bounded radius of curvature. H1 and H2 trajectory-tracking
controllers, and H1, H2, and PID path-following controllers are synthesized and
tuned using IQC analysis. Signal IQCs have also been added to model the wind
disturbance. The analysis results of the proposed framework are compared to phys-
ical flight data. Results were reliable, less conservative, and reflective of the actual
flight data.
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1.3 Thesis Overview

The outline of this thesis is as follows. In Chapter 2, the notation and mathematical
preliminaries of the thesis are presented. In addition, the H1 and PI controller syn-
thesis problems are described. The Integral Quadratic Constraints (IQCs) theory is
also introduced. In Chapter 3, an overview of modeling, basic operation, and control
of wind turbines is presented. A high-fidelity nonlinear model of a horizontal-axis,
three-bladed, variable-speed, pitch-controlled, onshore wind turbine is described. A
linearized wind turbine model is then presented. In Chapter 4, the proposed frame-
work and results of this thesis are presented. In Chapter 5, concluding remarks on
this work are presented. In addition, the future work beyond this thesis is outlined.
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Chapter 2

PRELIMINARIES

In this chapter, an overview of the notation and mathematical preliminaries is out-
lined. In addition, concepts from robust control theory used in the thesis are pre-
sented.

2.1 Notation

The set of real numbers is denoted by R. The sets of n-dimensional real vec-
tors and m ⇥ n real matrices are denoted by Rn and Rm⇥n, respectively. D =
diag(d1, . . . , dn) denotes a diagonal matrix D with the elements d1, . . . , dn on its
diagonal. D = Blkdiag(D1, . . . , Dn) denotes a block-diagonal matrix D with the
matrices D1, . . . , Dn on its diagonal blocks. 0 denotes a matrix that consists of all
zero entries. The n⇥n identity matrix is denoted by In. C � 0 and C ⌫ 0 mean that
the symmetric matrix C is positive definite and positive semidefinite, respectively.

M
T andM

⇤ denote the transpose and conjugate transpose of a matrixM , respec-
tively. M

�1 denotes the inverse of a nonsingular matrix M . The trace of a square
matrix A is denoted by tr(A). The rank of a matrix A is denoted by rank(A).
The null space of a matrix A is denoted by N (A). The largest singular value of a
(possibly nonsquare) complex matrix A is defined as �̄(A) =

p
�max(A⇤A).

L
n
2
denotes the Hilbert space of Rn-valued, square-summable sequences. For a

signal u 2 L
n
2
, the L2-norm of u is defined as kuk2

2
=

R
+1

0
u(t)Tu(t)dt. The symbol

L2 is often used for simplicity. RL1 denotes the space of proper real rational matrix
functions with no poles on the imaginary axis. RH1 ⇢ RL1 denotes the space of
proper real rational matrix functions with no poles in the closed right half complex
plane.

2.2 H1 Control

Consider an open-loop, continuous-time system G with state-space equations of the
form 2

4
ẋOL(t)
e(t)
y(t)

3

5 =

2

4
A B1 B2

C1 D11 D12

C2 D21 0

3

5

2

4
xOL(t)
ud(t)
uc(t)

3

5 , (2.1)

17



G
We

K

Wu

udeẽ
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Figure 2.1: Block diagram of a plant and a controller.

where t � 0 denotes continuous time, xOL(t) 2 RnG is the vector of state variables,
ud(t) 2 Rnd is the vector of exogenous inputs, uc(t) 2 Rnu is the vector of control
inputs, e(t) 2 Rne is the vector of performance outputs, and y(t) 2 Rny is the vector
of measured outputs. The model used for synthesis can also include frequency
weights We and Wu on the performance outputs and control inputs, respectively, as
shown in Figure 2.1a.

A dynamic controller K is given by the equations

ẋK(t)
uc(t)

�
=


AK BK

CK DK

� 
xK(t)
y(t)

�
, (2.2)

where xK(t) 2 Rnk is the vector of controller state variables. A static controller is a
special case of a dynamic controller wherein uc(t) = DKy(t).

The closed-loop system H shown in Figure 2.1b, resulting from the closed-loop
interconnection between the nominal plant G and a controller K as shown in Fig-
ure 2.1a, is given by


ẋCL(t)
e(t)

�
=


ACL BCL

CCL DCL

� 
xCL(t)
ud(t)

�
, (2.3)

with

ACL =


A+B2DKC2 B2CK

BKC2 AK

�
, BCL =


B1 +B2DKD21

BKD21

�
,

CCL =
⇥
C1 +D12DKC2 D12CK

⇤
, DCL = D11 +D12DKD21, (2.4)

where xCL(t) =
⇥
xOL(t)T xK(t)T

⇤T
2 Rn is the vector of closed-loop state variables

and n = nG + nK .
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The H1-norm of a stable linear time-invariant system, with a transfer function
H(s), is defined as follows [39, Chapter 4.3]:

kHk1 = sup
!2R

�̄
�
H(j!)

�
= sup

ud2L2\{0}

kek2

kudk2
,

where s denotes the Laplace operator. The H1-norm measures the worst-case am-
plification of a finite energy exogenous input signal at the performance output of
the system. The H1 controller synthesis problem is to design a controller KH1

of
the form given in (2.2) that renders the closed-loop system H stable and satisfying
kHk1  �, for some constant � [15].

The H1 controller is synthesized by first finding the smallest feasible �. For this
purpose, the following (nonconvex) optimization problem needs to be solved [15]:

minimize
�,P,AK ,BK ,CK ,DK

�

subject to P � 0,2

4
�PACL � A

T
CLP PBCL C

T
CL

B
T
CLP �Ind

�D
T
CL

CCL �DCL �Ine

3

5 � 0.

(2.5)

An alternative convex formulation of the above problem is given in [18]. For this
purpose, the following matrices are defined:

MP =


Pf InG

InG Pg

�
,

MA =


APf +B2Wf A+B2WhC2

L PgA+WgC2

�
, MB =


B1 +B2WhD21

PgB1 +WgD21

�
, (2.6)

MC =
⇥
C1Pf +D12Wf C1 +D12WhC2

⇤
, MD = D11 +D12WhD21,

where Pf 2 SnG , Pg 2 SnG , Wf 2 Rnu⇥nG , Wg 2 RnG⇥ny , Wh 2 Rnu⇥ny , and
L 2 RnG⇥nG . Then, the replacements P �! MP , PACL �! MA, PBCL �! MB,
C �! MC , and D �! MD are performed to the terms in (2.5). As a result, the
following convex optimization problem is obtained:

minimize
�,Pf ,Pg ,Wf ,Wg ,Wh,L

�

subject to MP � 0,2

4
�MA �M

T
A MB M

T
C

M
T
B �Ind

�M
T
D

MC �MD �Ine

3

5 � 0.

(P1)

Following [40], the obtained value of � is relaxed and the semidefinite program (P1)
is re-solved as a feasibility problem. Using the obtained matrices Pf , Pg, Wf , Wg,
Wh, and L, the H1 controller KH1

of order nk = nG is constructed as follows:

DKH1

CKH1

BKH1
AKH1

�
=


Inu 0
B2 �P

�1

g

� 
Wh Wf

Wg L� PgAPf

� 
Iny �C2PfS

�1

f

0 S
�1

f

�
,

(2.7)
where

Sf = Pf � P
�1

g � 0.
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2.3 Proportional Integral (PI) Control

In this section, the synthesis of a Proportional Integral (PI) controller with an H1

performance specification is presented.
Consider the system G given in (2.1). Further assume that D11 = 0 and D21 = 0.

A PI controller has the form

uc(t) = KPy(t) +KI

Z t

0

y(t)dt, (2.8)

where KP and KI are the proportional and integral gains, respectively.
To find the gains KP and KI , an algorithm based on an iterative Linear Ma-

trix Inequality (LMI) technique is presented in [9]. Three di↵erent LMI conditions
are presented in [9] for designing stabilizing controllers, controllers with H1 per-
formance specification, and controllers with H2 performance specification. In this
thesis, the H1 LMI condition is used. For this purpose, an alternative system GSOF

is considered by defining the state vector x̃(t) =
⇥
x̃1(t)T x̃2(t)T

⇤T
2 RnG+ny as

x̃1(t) = xOL(t),

x̃2(t) =

Z t

0

y(t)dt,

and the output vector ỹ(t) =
⇥
ỹ1(t)T ỹ2(t)T

⇤T
2 R2ny as

ỹ1(t) = y(t),

ỹ2(t) =

Z t

0

y(t)dt.

Then, the new system GSOF has the form
2

4
˙̃x(t)
e(t)
ỹ(t)

3

5 =

2

4
Ã B̃1 B̃2

C̃1 0 D̃12

C̃2 0 0

3

5

2

4
x̃(t)
ud(t)
uc(t)

3

5 , (2.9)

where

Ã =


A 0
C2 0

�
, B̃1 =


B1

0

�
, B̃2 =


B2

0

�
,

C̃1 =
⇥
C1 0

⇤
, D̃12 = D12, C̃2 =


C2 0
0 Iny

�
.

Thus, the problem of designing a PI controller of the form given in (2.8) for the
system G given in (2.1) reduces to finding a static output feedback (SOF) controller
of the form uc(t) = KPI ỹ(t), where KPI =

⇥
KP KI

⇤
, for the new system GSOF

given in (2.9). Then, the feedback gains are computed using the iterative algorithm
proposed in [9]. The resulting closed-loop system has the form


˙̃xCL(t)
e(t)

�
=


ÃCL B̃CL

C̃CL D̃CL

� 
x̃CL(t)
ud(t)

�
, (2.10)
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Figure 2.2: Block diagram of the uncertain system (H,�).

with

ÃCL = Ã+ B̃2KPIC̃2, B̃CL = B̃1,

C̃CL = C̃1 + D̃12KPIC̃2, D̃CL = D̃11. (2.11)

2.4 Integral Quadratic Constraints

The Integral Quadratic Constraints (IQCs) framework [26] provides a method for
representing real-world complex and uncertain dynamical systems in a form that
is convenient for stability and performance analysis. Consider the block diagram
given in Figure 2.2 depicting an uncertain system. This system comprises a stable
nominal linear time-invariant system H connected to a perturbation operator �,
representing nonlinearities, time-varying coe�cients, parametric uncertainties, and
unmodeled dynamics [27]. In addition, the uncertain system has an exogenous
input signal ud 2 Ds ✓ L2. In general, mathematical descriptions of block �
and set Ds are very complicated, which makes the performance analysis problem
very di�cult. In the IQC framework, block � and set Ds are replaced by an IQC
characterization. As a result of the IQC relaxation, the relaxed model contains all
of the possible solutions of the uncertain system. With this approximation, the
performance analysis problem becomes easier and convex optimization can be used
to solve the performance analysis problem. The reader is referred to [26]–[30] for a
detailed description of the Integral Quadratic Constraints framework, as well as the
IQC characterizations of various types of uncertainties.

The operator � is a bounded causal operator on L2, and � lies in a pre-specified
set �, i.e, � 2 �. The uncertain system (H,�), depicted in Figure 2.2, has the
form 

'

e

�
= H


#

ud

�
, # = �', H =


H11 H12

H21 H22

�
.

This system is stable if (I � H11�)�1 is a bounded causal operator on L2 for all
� 2 � [26]. The system (H,�) is said to have a robust Ds-to-L2-gain performance
level of � if it is stable and k(H,�)kDs!L2 < � for all � 2 � and ud 2 Ds, i.e.,
||(H,�)ud||L2 < �||ud||Ds .
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An uncertainty � 2 � can be characterized by an IQC multiplier, and a set of
signals Ds ✓ L2 can be characterized by a signal IQC multiplier [29]. An operator
� satisfies the IQC defined by the IQC multiplier ⇧ = ⇧⇤

2 RL1 if
Z

+1

�1


'̂(j!)
#̂(j!)

�⇤
⇧(j!)


'̂(j!)
#̂(j!)

�
d! � 0,

for all ' 2 L2 and # = �', where '̂ and #̂ are the Fourier transforms of ' and
#, respectively. A set of signals Ds satisfies the signal IQC defined by the IQC
multiplier � = �⇤

2 RL1 if
Z

+1

�1

ûd(j!)
⇤�(j!)ûd(j!)d! � 0,

for all ud 2 Ds, where ûd is the Fourier transform of ud.

Robust Performance Theorem [26, Theorem 1]: The system (H,�) has a
robust Ds-to-L2-gain performance level of � if for all ✏ 2

⇥
0 1

⇤
, (H, ✏�) is well-

posed, ✏� satisfies the IQC defined by ⇧, Ds satisfies the signal IQC defined by �,
and 

H(j!)
I

�⇤
⇧̃(j!)


H(j!)

I

�
� �✏I, (2.12)

for all ! 2 R, where ✏ > 0, and ⇧̃ is defined as follows:

⇧̃ =

2

664

⇧11 0 ⇧12 0
0 I 0 0
⇧⇤

12
0 ⇧22 0

0 0 0 ��
2
I + �

3

775 .

SDP Formulation: The multiplier ⇧(s) can be factorized as ⇧(s) =  (s)⇤S (s),
where  (s) 2 RH1 is a transfer function matrix typically chosen a priori. Similarly,
the signal IQC multiplier �(s) can be factorized as �(s) = ✓(s)⇤R✓(s), where ✓(s) 2
RH1. Therefore, a convex optimization problem can be formulated to solve for
an upper bound � on the robust Ds-to-L2-gain performance level by utilizing the
Kalman–Yakubovich–Popov (KYP) Lemma [41] to express (2.12) as a linear matrix
inequality. To find �, the following semidefinite program (SDP) is solved:

minimize
S̃,P,�2

�
2

subject to P = P
T
,

A
T
P + PA PB

B
T
P 0

�
+


C
T

D
T

�
S̃
⇥
C D

⇤
� 0,

(P2)

where

S̃ =

2

66664

S11 0 S12 0 0
0 Ine 0 0 0
S

T
12

0 S22 0 0
0 0 0 R 0
0 0 0 0 ��

2
Ins

3

77775
,
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and ns is the number of exogenous inputs. The realization (A,B, C,D) is defined as

D + C(sI �A)�1 =  ̃(s)


H(s)
I

�
, (2.13)

where

 ̃(s) =

2

66664

 11(s) 0  12(s) 0
0 I 0 0

 21(s) 0  22(s) 0
0 0 0 ✓(s)
0 0 0 I

3

77775
.

Parametrization of the IQC Multiplier for Static Linear Time-varying
(SLTV) Parameters: In this thesis, the IQC characterization of static linear
time-varying parameters is of interest. Let #(t) = �'(t), where � is a block of
diagonally repeated bounded time-varying parameters �(t). Then, � 2 �, where
the set � is defined as

� = {� : #(t) = �'(t) and |�(t)|  ↵}.

This set � is characterized by a class of IQC multipliers ⇧(s) = ⇧(s)⇤ 2 RL1. A
parameterization of ⇧(s) given in [31] is ⇧(s) =  (s)⇤S (s), where

 =


↵In#

0
0 In#

�
, S =


X Y

Y
T

�X

�
,

with X ⌫ 0 and Y = �Y
T
2 Rn#⇥n# .

Parametrization of the Signal IQC Multiplier for White Noise Signals:
In this thesis, the IQC characterization of white noise signals is of interest. White
signals can be represented as signals in L2 with a flat power spectral density over a
large frequency range [29]. The set of white signals will be denoted by Dw, and a
white signal ww 2 Dw ✓ L2 satisfies

|ŵw(j!)|
2 =

(
⇡
b kwwk

2

2
, ww 2 [�b, b],

0, |ww| > b.

This is depicted in Figure 2.3. The set of white signals Dw is characterized by a class
of signal IQC multipliers �w(s) = �w(s)⇤ 2 RL1 that satisfy

R b

�b tr
�
�w(j!)

�
d! � 0

[29]. A parameterization of �w(s) given in [29] is �w(s) = Y (s) + Y (s)⇤, with

Y (s) = x0 +
NX

i=1

xi

s+ ai
,

where x0, xi 2 R are the decision variables, and the poles ai are distinct with
positive real parts. This parameterization allows for the following factorization
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Figure 2.3: Power spectral density of white noise signals.

�w(s) = ✓(s)⇤R✓(s), where

✓(s) =


(sI � AY )�1

BY

I

�
, R =


0N⇥N C

T
Y

CY 2DY

�
,

AY = �diag(a1, · · · , aN), BY = [1, · · · , 1]T , (2.14)

CY =
⇥
x1, · · · , xN

⇤
, DY = x0.

Moreover, the following characterization of the constraint
R b

�b tr
�
�w(j!)

�
d! � 0 is

obtained [29]:

bx0 +
NX

i=1

xitan
�1

✓
b

ai

◆
� 0. (2.15)
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Chapter 3

CONTROL-THEORETIC
MODELING OF WIND

TURBINES

In this chapter, an overview of the modeling of horizontal-axis, three-bladed, pitch-
controlled, variable-speed wind turbines is presented.

3.1 Overview of a Wind Turbine Model and Basic Opera-
tions

Wind Turbine Components: A horizontal-axis wind turbine is composed of a
rotor connected to the nacelle, which is mounted on the wind turbine tower. The
nacelle houses the generator, low- and high-speed shafts, and the gear box. The
rotor consists of the wind turbine blades that rotate as a result of the lift generated
by the wind. The rotor is connected to the low-speed shaft which rotates and drives
the high-speed shaft. The two shafts are connected through a gear box that steps
up the rotational speed. The high-speed shaft drives the generator which converts
the rotational kinetic energy to electric energy [3]. A schematic diagram showing
the various components of the wind turbine is presented in Figure 3.1.

Wind Turbines Actuators and Sensors: Wind Turbines have three di↵erent
types of actuators. The first type is the yaw motor which turns the nacelle to align
the rotor with the incoming wind flow. To avoid dangerous gyroscopic forces, the
yaw is limited to a rate of less than 1 deg/s. The second type is the generator, which
can command a desired torque used to accelerate or decelerate the rotor. The third
type is the blade pitch motor. Each blade of the wind turbine has a pitch actuator,
and the three pitch angles can be controlled either collectively or individually [3].

The yaw actuator operates at a much slower time-scale compared to the generator
and pitch actuators, and therefore, yaw control is of less interest to control engineers
[3], [14], [25]. In this thesis, a yaw controller will not be designed, and the yaw angle
will be always held constant such that rotor plane is in the direction of the incoming
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Figure 3.1: Wind turbine components [3].

wind. Therefore, only the generator torque and blade pitch controllers are of interest
in this thesis. Moreover, collective pitch control will be considered.

Wind turbines use two types of sensors. First, there are sensors that measure
the generator or the rotor speed, and these measurements are used for the feedback
control of wind turbines. Second, there is the anemometer, mounted on the top
of the nacelle, used to measure the wind speed. However, these measurements
are corrupted by the interaction between the blades and the incoming wind, and
therefore, they are not used for control purposes [3].

Aerodynamic E�ciency of a Wind Turbine: A wind turbine is not capable of
capturing all of the available power in the wind. An incoming wind flow must have
some remaining kinetic energy after passing through the turbine’s rotor; otherwise,
the wind would “stop” and would not leave the region of the turbine. In this sense,
the aerodynamic e�ciency of a wind turbine is defined as the proportion of the power
available in the wind that is captured by the turbine. The maximum theoretical
value of the aerodynamic e�ciency, known as Betz Limit, is approximately 59%
[42]. Specifically, the aerodynamic e�ciency of a wind turbine is defined as

CP =
Pr

Pwind
,

where Pr is the rotor power, i.e., the power captured by the turbine, and Pwind is
the power available in the wind. Pwind is given by

Pwind =
1

2
⇢Arv

3
,
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Figure 3.2: Generator power versus wind speed curve for the NREL 5�MW wind
turbine. The data used to generate this plot is from [43].

where ⇢ is the density of air, Ar = ⇡R
2

r is the rotor area, Rr is the rotor radius, and
v is the wind speed. The generator power Pg is then expressed as Pg = ⌘gPr, where
⌘g is the e�ciency of the electrical generator.

The aerodynamic e�ciency is a function of the turbine’s tip-speed ratio � and
the blade pitch angle �. The tip-speed ratio � is defined as

� =
!rRr

v
,

where !r is the rotor rotational speed. The relation between the parameters (CP ,�, �)
is described by a turbine-specific nonlinear function [42]. The maximum aerody-
namic e�ciency of a wind turbine, denoted by CPmax , corresponds to operating the
turbine at an optimal tip-speed ratio �⇤ and optimal pitch angle �⇤.

The rotor power of the wind turbine can be expressed as Pr = ⌧r!r, where ⌧r is
the aerodynamic/rotor torque. However, the generator torque ⌧g is of interest in the
wind turbine control system. It is the torque of the high-speed shaft transmitted
through the drive train, i.e., ⌧g = ⌘g

⌧r
Ng

, where Ng is the gear box ratio. Assuming

that the drive train has a mechanical e�ciency of 100%, i.e., ⌘g = 1, an expression
of the generator torque can then be obtained as follows:

⌧g =
⌧r

Ng
=

Pr

Ng!r
=

CPPwind

Ng!r
=

CP⇢⇡R
2

rv
3

2Ng!r

=
⇡

2

⇢R
5

r

Ng

CP

�3
!
2

r .
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Wind Turbine Control Objectives: The objective of the wind turbine con-
troller varies in the di↵erent wind speed regions. As shown in the power versus
wind speed curve in Figure 3.2, a wind turbine has four operating regions: Region 1
for wind speeds below the cut-in speed, Region 2 for wind speeds between the cut-in
and rated speeds, Region 3 for wind speeds between the rated and cut-o↵ speeds,
and Region 4 for wind speeds above the cut-o↵ speed [3]. This figure pertains to the
NREL 5�MW reference wind turbine considered in thesis. Further details on this
wind turbine are presented in Section 3.2. In Region 1, the turbine does not rotate
as the power available in the wind is insu�cient. In Region 2, the power available
in the wind is less than the rated power of the wind turbine, and thus, the objective
of the controller is to extract the maximum of the available power. This can be
accomplished by using a generator torque controller that tracks a rotational speed
reference. In this region, the pitch angle is held constant at the value of maximum
aerodynamic e�ciency [42]. In Region 3, the main objective of the controller is to
maintain the generated power to its rated value and minimize the structural loads
on the turbine. This can be accomplished by using a blade pitch controller that
increases the pitch angle as the wind speed increases to lower the aerodynamic ef-
ficiency, and hence, limit the generated power. In this region, the generator torque
is held constant at its rated value [44]. A transition region between Regions 2 and
3, referred to as Region 2.5, is usually introduced to ensure a smooth transition be-
tween the two regions [3]. In Region 4, the turbine is shut down to prevent structural
damages. In this thesis, the emphasis is on Region 3 of the wind turbine operation.
Therefore, the generator torque is held constant at its rated value, and a blade pitch
controller is designed. Collective blade pitch is used.

3.2 NREL 5-MW Reference Wind Turbine

In this thesis, the specific wind turbine model that will be used for simulations
is the NREL 5 � MW reference wind turbine. It is a representative utility-scale,
multi-megawatt wind turbine proposed by the National Renewable Energy Labo-
ratory (NREL) as a standardized, well-documented wind turbine model. It is a
conventional horizontal-axis, three-bladed, variable-speed, pitch-controlled turbine
that can be configured in an onshore setting [43]. The main properties of this turbine
are summarized in Table 3.1.

Table 3.1: Properties of the NREL 5�MW Reference Turbine [43]

Cut-In Wind Speed 3 m/s Rated Wind Speed 11.4 m/s Cut-Out Wind Speed 25 m/s
Cut-In Rotor Speed 6.9 RPM Rated Rotor Speed 12.1 RPM Rated Generator Speed 1173.7 RPM
Rated Power 5 MW Generator E�ciency 94.4 % Gearbox Ratio 97
Rotor Diameter 126 m Hub Diameter 3 m Hub Height 90 m
Rotor Mass 110,000 kg Nacelle Mass 240,000 kg Tower Mass 347,460 kg
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3.3 High-Fidelity Simulation Model

In this section, a description of a high-fidelity wind turbine model is presented.
This model is based on the OpenFAST modeling package, which is developed by
NREL. OpenFAST, formerly known as FAST (Fatigue, Aerodynamics, Structures,
and Turbulence), is a simulation package used to model the wind turbine nonlinear
dynamics [2]. In this thesis, simulations involving control of wind turbines are
executed using OpenFAST and its interface on Simulink/MATLAB.

3.3.1 Overview

OpenFAST is a high-fidelity simulation tool that models the dynamics of horizontal-
axis wind turbines. In OpenFAST, the wind turbine components are modeled as
flexible structures. The drive train is modeled as a spring-mass-damper system, and
the tower and blades are treated as cantilever beams. Computations of deformations
along these flexible structures are based on modal analysis, whereby the tower and
blades are discretized into a grid of modes [2].

The dynamics of three-bladed onshore wind turbines are modeled using Open-
FAST with up to 18 degrees of freedom. Four DOFs correspond to the tower dy-
namics. These DOFs are the first and second tower bending modes in fore-aft and
side-to-side directions. Three DOFs correspond to the dynamics of each of the three
blades. These DOFs are the first and second flap-wise bending modes and the first
edge-wise bending mode. The drive train dynamics are modeled using two DOFs:
the torsion and the generator speed. In addition, one DOF corresponds to the yaw
motion of the nacelle, and two other DOFs correspond to the rotor and tail furl [2].

Therefore, the nonlinear model of the wind turbine may have up to 36 state
variables, which correspond to the 18 DOFs in OpenFAST and their first time
derivatives. However, it is common practice to model the wind turbine in OpenFAST
with a smaller number of DOFs. That is, for control synthesis purposes, a lower order
wind turbine nonlinear, and consequently linearized, model is used. There are up
to five control inputs: the pitch angle of each of the three blades, generator torque,
and yaw angle. The wind turbine model has seven exogenous inputs to describe
the wind disturbance: hub-height average wind speed, horizontal wind direction,
vertical wind speed, horizontal wind shear, vertical power law wind shear, linear
vertical wind shear, and horizontal hub-height wind gust. These seven parameters
are inputs to the TurbSim module that generates the hub-height wind profile [2].

The nonlinear model of the wind turbine can be expressed as

ẋ
WT (t) = f1

�
x
WT (t), uWT

c (t), uWT
d (t), t

�
,

y
WT (t) = f2

�
x
WT (t), uWT

c (t), uWT
d (t), t

�
,

where x
WT (t) 2 RnG is the vector of state variables of the wind turbine model,

u
WT
c (t) 2 Rnc is the vector of control inputs, uWT (t)

d 2 Rnd is the vector of wind
disturbance inputs, and y

WT (t) is the vector of outputs. The outputs are specified
by the user from a list of available outputs in OpenFAST. These outputs include
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the generator and rotor speeds, as well as loads and moments on the di↵erent wind
turbine components [2].

3.3.2 Linearization

For the purpose of controller synthesis and performance analysis, the linearization
framework in OpenFAST is used to obtain a linear time-invariant wind turbine
model at a given operating wind speed. This is done by simulating the nonlinear
model at the given steady wind speed ū

WT
d until a steady-state periodic operating

point x̄
WT (t) is achieved, with the control inputs held constant at their operating

values ūWT
c that stabilize the rotor speed at its operating value. Since the operating

point is periodic, the simulation is repeated for multiple azimuth angles. A periodic
linear time-varying (PLTV) model is obtained. It has the form


�ẋ

WT (t)
�y

WT (t)

�
=


A

WT (x̄WT (t)) B
WT
1

(x̄WT (t)) B
WT
2

(x̄WT (t))
C

WT (x̄WT (t)) D
WT
1

(x̄WT (t)) D
WT
2

(x̄WT (t))

�2

4
�x

WT (t)
�u

WT
d (t)

�u
WT
c (t)

3

5 ,

where �x
WT (t) = x

WT (t) � x̄
WT (t), �y

WT (t) = y
WT (t) � ȳ

WT (t), �u
WT
d (t) =

u
WT
d (t)� ū

WT
d , and �uWT

c (t) = u
WT
c (t)� ū

WT
c .

Multi-Blade Coordinate (MBC) Transformation:
The obtained PLTV model has to be approximated with a linear time-invariant
(LTI) model without losing the physical interpretation of the states of the system.
Hence, the multi-blade coordinate (MBC) transformation is applied on the obtained
state-space matrices to generate a weakly PLTV system. Namely, the wind turbine
model is defined in more than one coordinate system, i.e., the DOFs corresponding
to the turbine tower, drive train, and generator are defined in a fixed nonrotating
frame, while the DOFs corresponding to the turbine blades are defined in a rotating
frame. Hence, the MBC transformation is applied on the states, inputs, and outputs
of the system to transform them into a nonrotating frame [45].

For a given rotor position  , the MBC transformation is defined by a matrix
TMBC( ) that transforms the quantities that are in the rotating frame, i.e., quanti-
ties associated with turbine blades, to the nonrotating frame. The matrix TMBC( )
is given by

TMBC( ) =

2

4
1

2

1

2

1

2

cos( ) cos( + 2⇡
3
) cos( + 4⇡

3
)

sin( ) sin( + 2⇡
3
) sin( + 4⇡

3
)

3

5 .

After this transformation, rotating quantities associated with the three blades of
the wind turbine, for instance the blades flap-wise bending moments, are converted
into quantities that have an interpretation in terms of the rotor motion instead of
the individual blades. The converted quantities consist of one symmetric and two
asymmetric components. The symmetric component results from the blades bending
in the same direction, and it is the average value of the moment experienced by the
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rotor. The asymmetric components correspond to the out-of-phase bending of the
blades and result in the yaw and tilt bending of the rotor [46].

An LTI system is obtained by azimuth-averaging the weakly PLTV system (the
MBC-transformed state-space matrices). In this approach, the LTI system retains
many of the periodic properties of the wind turbine model [45]. To test the obtained
linearized time-invariant models, simulations of the open-loop LTI and nonlinear
wind turbine models are performed. The turbulence is set to zero, and the pitch
angle is set to zero before the instant 20s and 1� afterwards. The responses of the
rotor speed, flap-wise bending moment of the first blade, and tower fore-aft bending
moments of linear and nonlinear models are compared. The results corresponding
to the mean wind speed vm = 18 m/s are presented in Figure 3.3, and those cor-
responding to vm = {16, 20, 23} m/s are presented in Figures A.1, A.2, and A.3 in
Appendix A, respectively. It can be observed in Figure 3.3 that the nonlinear and
linear responses of all three outputs match after steady-state is achieved.
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(a) Rotor speed

(b) Blade 1 flap-wise bending moment

(c) Tower fore-aft bending moment

Figure 3.3: Open-loop simulation results at vm = 18 m/s.
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3.4 Pitch Actuator Dynamics

The wind turbine blades pitch actuator dynamics are not modeled within the Open-
FAST simulation package. Therefore, in this thesis, a blade pitch actuator model is
connected to the wind turbine open-loop model. The dynamics of the blade pitch
actuator are modeled as a second-order system of the form

�(s)

�r(s)
=

!
2

n

s2 + 2⇣!ns+ !2
n

,

where � is the actual blade pitch angle and �r is the pitch reference outputted from
the pitch controller, i.e., �r(t) = uc(t). The parameters ⇣ and !n are set as ⇣ = 0.6

and !n = 11.11 rad/s [47]. Defining the state vector xp(t) =
⇥
�(t) �̇(t)

⇤T
2 R2,

the blade pitch actuator model can be equivalently represented as

ẋp(t)
�(t)

�
=


Ap Bp

Cp Dp

� 
xp(t)
�r(t)

�
,

where

Ap =


0 1

�!
2

n �2⇣!n

�
, Bp =


0
!
2

n

�
, Cp =

⇥
1 0

⇤
, Dp = 0.

Thus, the wind turbine LTI model featuring the actuator dynamics is given by the
following open-loop system equations:

2

4
˙̂xOL(t)
e(t)
y(t)

3

5 =
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Â B̂1 B̂2

Ĉ1 D̂11 D̂12
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3
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5 ,

with

Â =

2

4
A B2 0
0 0 1
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2

n �2⇣!n

3

5 , B̂1 =

2

4
B1

0
0

3

5 , B̂2 =

2

4
0
0
w

2

n

3

5 ,

Ĉ1 =
⇥
C1 D12 0

⇤
, D̂11 = D11, D̂12 = 0,

Ĉ2 =
⇥
C2 0 0

⇤
, D̂21 = D21,

where x̂OL(t) =
⇥
xOL(t)T xp(t)T

⇤T
2 RnG+2 is the vector of state variables.

3.5 Wind Model

The wind model considered in this thesis is based on the work of Langreder in [5]
and is shown in Figure 3.4a. The reader is referred to [5] for further details on the
wind model and the individual filters of the model.

This wind model relies on Kaimal’s characterization of turbulence, whereby sta-
tionary turbulent winds are generated by filtering white noise signals (ww1 ,ww2 ,ww3)
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Table 3.2: Transfer function coe�cients of the Kaimal and harmonic filters. These
numbers are from [5].

1 0.0182 6 4.7869 11 0.0307
2 1.3653 7 0.9904 12 0.3691
3 0.9846 8 7.6823 13 1.7722
4 1.3463 9 7.3518
5 3.7593 10 0.2766

through a Kaimal Filter (KF (s)). This filter is based on a fitting of the turbu-
lent wind power spectra. The obtained fixed-point turbulence outputs (vc1 ,vc2 ,vc3)
are then passed through admittance filters (HF1(s) and HF2(s)) that output rota-
tionally sampled turbulence (in the rotating frame of the rotor). In addition, the
aerodynamic loading e↵ect of the entire wind field is lumped into a single equiva-
lent wind speed. Two admittance filters are included in the model, which capture
the frequency components of turbulent winds that correspond to the 0th harmonic
(HF1(s)) and 3rd harmonic (HF2(s)) of the rotor speed. These two harmonics make
a significant contribution to the development of the aerodynamic torque, with other
harmonics having small or no contributions [5].

The equations of the wind model shown in Figure 3.4a are given by

KF (s) =
1c

2
s
2 + 2cs+ 3

4c
2s2 + 5cs+ 1

, c =
Lt

2⇡vm
,

KF =
I

100

r
vmLt

2
,

HF1(s) =
6ds+ 7

8d
2s2 + 9ds+ 1

, d =
Rr

vm
,

HF2(s) =
10ds+ 11

12d
2s2 + 13ds+ 1

,

where KF is the Kaimal filter, HF1 is the 0th harmonic filter, HF2 is the 3rd

harmonic filter, KF is a normalization gain, I is the turbulence intensity, Lt is
the turbulence length scale, vm is the mean wind speed, and Rr is the turbine rotor
radius. The values of 1, . . . ,13 are given in Table 3.2.

Let �1(t) = cos(3!rt) and �2(t) = sin(3!rt). From Figure 3.4a, the output of
the wind model is given by

vt = vt1 + vt2 = HF1vc1 +
p

2�1HF2vc2 +
p

2�2HF2vc3 , (3.1)

with

vc1 = KFKFww1 , vc2 = KFKFww2 , vc3 = KFKFww3 .

After manipulating the output equation (3.1) of the wind model, the following equa-
tion is obtained:

vt = KFKF

⇣
HF1ww1 +

p

2HF2

�
�1ww2 + �2ww3

�⌘
. (3.2)
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KF (s) KF HF1(s)
ww1 vc1

KF (s) KF HF2(s) cos(3!rt)
p
2

ww2 vc2

KF (s) KF HF2(s) sin(3!rt)
p
2

ww3 vc3

+

+

+

+

vt1

vt2

vt

(a) Block diagram representation of the wind model.

HF1(s)
ww1

cos(3!rt)
ww2

sin(3!rt)
ww3

+

+

p
2 HF2(s)

u2

+

+

y2

y1

KF KF (s)
yHF uKF vt

(b) Alternate block diagram representation of the wind model.

Figure 3.4: Wind model based on Kaimal’s characterization of turbulence.

The output equation (3.2) of the wind model is shown in Figure 3.4b, and it used
to get a minimal representation of the wind model. Namely, from Figure 3.4b, the
following equations are obtained:

y1 = HF1ww1 , y2 = HF2u2,

where u2 =
p
2�1ww2 +

p
2�2ww3 . In state-space form, the following equations are

obtained:

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A filter HF is obtained by combining the equations of the filters HF1 and HF2,
which gives 

ẋHF (t)
yHF (t)

�
=


AHF BHF (t)
CHF DHF (t)

� 
xHF (t)
ww(t)

�
,

where
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T
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T
ww3(t)

T
⇤T
,

yHF (t)=y1(t) + y2(t).

Moreover, from Figure 3.4b, vt = KFuKF , where uKF = KFyHF . In state-space
form, the following equations are obtained:


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Finally, all of the above equations are combined to obtain the following wind model,
denoted by F : 

ẋF (t)
vt(t)

�
=


AF BF (t)
CF DF (t)

� 
xF (t)
ww(t)

�
, (3.3)

with

AF =


AHF 04⇥2

BKFCHF AKF

�
, BF (t) =


BHF (t)

BKFDHF (t)

�
,

CF =
⇥
KFDKFCHF KFCKF

⇤
, DF (t) = KFDKFDHF (t), (3.4)

where xF (t) =
⇥
xHF (t)T xKF (t)T

⇤T
2 RnF is the vector of state variables of the

wind model, ww(t) 2 Rns the vector of exogenous inputs which in this model are
white noise signals, and vt(t) 2 R is the turbulent wind speed (output of the wind
model). Sample wind profiles generated using this wind model are shown in Fig-
ure 3.5 at four di↵erent mean wind speeds vm = {16, 18, 20, 23} m/s.
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(a) vm = 16 m/s

(b) vm = 18 m/s

(c) vm = 20 m/s

(d) vm = 23 m/s

Figure 3.5: Sample wind profiles generated at four di↵erent mean wind speeds using
the wind model given in Figure 3.4.
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Chapter 4

PROPOSED FRAMEWORK AND
SIMULATION RESULTS

4.1 Wind Turbine Model Linearization and Control Synthe-
sis

Open-loop Wind Turbine Model: In this thesis, 10 DOFs of the wind turbine
model provided by OpenFAST are considered. The chosen DOFs cover the di↵erent
components of the wind turbine, i.e., blades, tower, drive train, and generator, and
are the first flap-wise and edge-wise bending modes of the three blades, the first
fore-aft and side-to-side tower bending modes, the drive train rotational flexibility,
and the generator DOF. Enabling only a subset of the available DOFs is a common
practice in the literature [22]–[25] to reduce the computational complexity of the
controller synthesis problem. Multiple linearized time-invariant models of the non-
linear wind turbine model are obtained as described in Section 3.3.2. Four di↵erent
operating mean wind speeds in Region 3 of the wind turbine operation are chosen for
the linearization. These wind speeds are ū

WT
d = 16 m/s, ūWT

d = 18 m/s, ūWT
d = 20

m/s, and ū
WT
d = 23 m/s.

Each obtained wind turbine linear model comprises 20 state variables. However,
it is common practice to remove the generator azimuth state from the wind turbine
LTI model, as it is solely an integrator state that has no e↵ect on the dynamics of the
LTI model after azimuth-averaging [25]. In the model used in this thesis, the wind
disturbance is generated using the input hub-height wind speed vh = vm+ vt, where
vm = ū

WT
d is the mean wind speed and vt is the turbulent wind speed. The only

measured output of the model is rotor speed, which is used as the feedback input
to the controller. Thus, the wind turbine linear model is given by the open-loop
system of the form

2

4
ẋOL(t)
e(t)
y(t)

3

5 =

2

4
A B1 B2

C1 D11 D12

C2 D21 D22

3

5

2

4
xOL(t)
ud(t)
uc(t)

3

5 ,

where xOL(t) = �x
WT (t) 2 RnG , ud(t) = �u

WT
d (t) = vt 2 Rnd is the turbulent wind

speed, uc(t) = �u
WT
c (t) 2 Rnc , e(t) = �y

WT (t) 2 Rne , and y(t) 2 R is the rotor
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speed. Moreover, nG = 19, nd = 1, and nc = 1.

Control Synthesis: In this thesis, collective blade pitch controllers are designed
for Region 3 of the wind turbine operation. Therefore, the generator torque is held
constant at its rated value. The control objective in this region is to maintain the
generated power of the wind turbine near its rated value. This is achieved through
designing controllers that regulate the turbine’s rotor/generator speed near its rated
value. Therefore, rotor speed error �!r(t), i.e., the deviation of rotor speed from
its reference value at the operating point used in the linearization, is the penalized
performance output used for control synthesis. The wind turbine model linearized at
vm = 18m/s is used for the control synthesis. H1 and PI controllers are synthesized
as described in Sections 2.2 and 2.3, respectively. In addition to the rotor speed,
the control input signal is also penalized. For the H1 controller, frequency weights
on the performance outputs are used, namely,

e =


We 0
0 Wu

� 
�!r

uc

�
,

where the weights

We(s) =
0.25s+ 0.4648

s+ 0.4226
, Wu(s) =

500s+ 882.1

s+ 220.5
,

are inspired from [25] and are tuned to ensure satisfactory performance of the con-
troller. The performance weight We(s) for the rotor speed tracking error is chosen
to penalize the low frequency tracking error, while the performance weight Wu(s)
on the pitch controller input is chosen to penalize the high frequency control e↵ort.
The resulting H1 controller has 21 state variables. For the PI controller, the perfor-
mance outputs chosen are e(t) =

⇥
�!r(t) uc(t)

⇤T
. The H1 controller is obtained

by solving one semidefinite program, namely, the SDP given in (P1), one time for
optimality and one time for feasibility after relaxing �. The PI controller is obtained
using the iterative procedure, whereby two SDPs are solved at each iteration. The
SDPs in this thesis are modeled using YALMIP [48] and solved using MOSEK [49].
The designed controllers are then connected to the wind turbine model featuring
pitch actuator dynamics given in Section 3.4. For the H1 controller, the resulting
closed-loop system has 42 state variables and has the form given in equation (2.3).
For the PI controller, the resulting closed-loop system has 22 state variables and has
the form given in equation (2.10). A sample simulation of the designed controllers
is shown in Figure 4.1 corresponding to a mean wind speed vm = 18 m/s. Both
controllers have a satisfactory performance in terms of rated rotor speed, i.e., power
tracking and load reduction on the wind turbine blades and tower. It can be seen
that the H1 controller yields better tracking that the PI controller. However, the
loads experienced by the wind turbine are almost the same for both controllers.
Moreover, the pitch angle, i.e., the control e↵ort, is very similar for both controllers.
The performance of the controllers will be quantified in the analysis and simulations
results of this section, and thus, a more clear comparison of the controllers will be ob-
served. Sample simulations performed with turbulent wind profiles, generated using
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the wind model described in Section 3.5 for the mean wind speeds vm = {16, 20, 23}
m/s, are presented in Figures A.4, A.5, and A.6 in Appendix A, respectively.

4.2 Proposed Framework

The aim of this thesis is to perform robustness analysis of wind turbine control
systems by incorporating wind turbulence characteristics into the analysis, which
allows for analysis that more accurately reflects the wind turbine’s performance and
operating conditions. Thus, the system to be analyzed consists of a wind model con-
nected to the wind turbine LTI model. For this purpose, the wind model presented
in Section 3.5 is considered. The wind model given in (3.3) is of the form


ẋF (t)
ud(t)

�
=


AF BF

�
�(t)

�

CF DF (�(t)
�
� 

xF (t)
ww(t)

�
,

where �(t) =
⇥
�1(t) �2(t)

⇤T
with �1(t) = cos(3!rt) and �2(t) = sin(3!rt). Herein,

the wind model will be treated as a linear parameter-varying system, where �1 and
�2 are scalar time-varying parameters with �1  �1, �2  1. Figure 4.2a depicts
the representation of the wind model as an uncertain system. To represent the
wind model in the Linear Fraction Transformation (LFT) framework, the input and
feedthrough matrices BF and DF given in (3.4) containing the time-varying terms
�1 and �2 can be expressed as

BF (�) =


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BKFDHF

�
=

2

4
BHF1 0 0
0

p
2�1BHF2

p
2�2BHF2

BKFDHF1

p
2�1BKFDHF2

p
2�2BKFDHF2

3

5

=

2

4
BHF1 0 0
0 0 0

BKFDHF1 0 0

3

5

+

2

4
0 0

p
2BHF2

p
2BHF2p

2BKFDHF2

p
2BKFDHF2

3

5

�1 0
0 �2

� 
0 1 0
0 0 1

�
,

DF (�) = KFDKFDHF =
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KFDKFDHF1

p
2�1KFDKFDHF2

p
2�2KFDKFDHF2

⇤

=
⇥
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+
⇥p

2KFDKFDHF2

p
2KFDKFDHF2

⇤  �1 0
0 �2

� 
0 1 0
0 0 1

�
.

As a result, the wind model can be alternatively represented as

ẋF (t)
ud(t)

�
=


A

�
B

�

C
�

D
�

� 
xF (t)
ww(t)

�
, (4.1)
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(a) Rotor speed

(b) Blade pitch angle

(c) Blade 1 flap-wise bending moment

(d) Tower fore-aft bending moment

Figure 4.1: Sample simulation results for the H1 and PI controllers at vm = 18 m/s.
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Figure 4.2: Uncertain wind model in the LFT framework.
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where
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
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, (4.2)

A
F=AF, B

F
1
=

2

4
0 0

p
2BHF2

p
2BHF2p

2BKFDHF2

p
2BKFDHF2

3

5, B
F
2
=

2

4
BHF1 0 0
0 0 0

BKFDHF1 0 0

3

5,

C
F
1
=0, D

F
11
=0, D

F
12
=


0 1 0
0 0 1

�
, (4.3)

C
F
2
=CF, D

F
21
=
⇥p

2KDKFDHF2

p
2KDKFDHF2

⇤
, D

F
22
=
⇥
KDKFDHF1 0 0

⇤
.

As shown in Figure 4.2b, the wind model can be represented in the LFT framework
as a feedback interconnection of the linear time-invariant nominal wind model F
and the uncertainty block � defined in (4.2). This model is described by
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4
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5 , #(t) = �(t)'(t). (4.4)

In the proposed framework, the wind model is combined with the wind turbine
linearized time-invariant model. The resulting model H is depicted in Figures 4.3a
and 4.3b and is described by the following equations:

2

4
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Figure 4.3: Block diagram representation of the wind turbine model.
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where xH(t) =
⇥
xCL(t)T xF (t)T

⇤T
2 Rn+nF is the vector of state variables,�

ACL, BCL, CCL, DCL

�
are the state-space matrices of the closed-loop systemH given

in equations (2.4) and (2.11), and
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21
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�
are the

state-space matrices of the wind model given in (4.3).
The uncertainties �i with i = {1, 2} are modeled as static linear time-varying

parameters whose characterization is given in Section 2.4. Defining the sets �i and
� as

�i = {�i : #i(t) =
�
�i('i(t)

�
(t) = �i(t)'i(t) and |�i(t)|  1},

� = {� : � =


�1 0
0 �2

�
, �1 2 �1 and �2 2 �2},

then, � is characterized by the IQC multiplier ⇧ =  
⇤
S , with

 =

2

664

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

3

775 , S =

2

664

X1 0 0 0
0 �X1 0 0
0 0 X2 0
0 0 0 �X2

3

775 , X1, X2 � 0(2 R).

This is equivalent to passing '(t) and #(t) through a filter  and imposing the
time-domain constraint

R
+1

0
r(t)TSr(t)dt � 0. The filter  is described by the

equation
r(t) = D 1'(t) +D 2#(t),

43



with

D 1 =

2

664

1 0
0 0
0 1
0 0

3

775 , D 2 =

2

664

0 0
1 0
0 0
0 1

3

775 ,

where #(t) =
⇥
#1(t) #2(t)

⇤T
and '(t) =

⇥
'1(t) '2(t)

⇤T
.

The white noise inputs of the wind turbine model ww1 , ww2 , and ww3 are el-
ements of the set of white signals Dw, which has the signal IQC characteriza-
tion described in Section 2.4. Therefore, three signal IQCs, with factorizations
�wi(s) = ✓i(s)⇤Ri✓i(s) given in equation (2.14), are needed to characterize the three
input white noise signals. This is equivalent to passing ww1 , ww2 , and ww3 through
filters ✓1(s), ✓2(s), and ✓3(s), respectively, and imposing the time-domain constraintR
+1

0
mi(t)TRimi(t)dt � 0. For i = {1, 2, 3}, filter ✓i is described by the equations


ẋ✓i(t)
mi(t)

�
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
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INi

01⇥Ni

�
, D✓i =


0Ni⇥1

1

�
,

where x✓i(t) 2 RNi and mi(t) 2 RNi+1 are the vectors of state variables and outputs
of the filter ✓i, respectively. AYi and BYi are given in equation (2.14). Filters ✓1(s),
✓2(s), and ✓3(s) are then combined, and the resulting filter ✓(s) has the form


ẋ✓(t)
m(t)

�
=


A✓ B✓

C✓ D✓

� 
x✓(t)
ww(t)

�
,

with

A✓ = Blkdiag
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�
, B✓ = Blkdiag
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�
,

C✓ = Blkdiag
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�
, D✓ = Blkdiag
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�
,

where x✓(t) =
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x✓1(t)

T
x✓2(t)

T
x✓3(t)

T
⇤T

2 RN is the vector of state variables,

N = N1 +N2 +N3, and m(t) =
⇥
m1(t)T m2(t)T m3(t)T

⇤T
2 RN+ns is the vector

of outputs of the resulting filter ✓.
To obtain the state-space matrices (A,B, C,D) given in (2.13) and used to solve

the SDP in (P2), an augmented system is formed that combines the wind turbine
model H and the IQC filters  and ✓ as shown in Figure 4.4. The equations of this
augmented system are given by
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where x(t) =
⇥
xH(t)T x✓(t)T

⇤T
2 Rn+nF+N is the vector of state variables. Using

the above notation, the SDP given in (P2), solved for finding upper bounds on the
Dw-to-L2-induced norm of the system, can be equivalently written as
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(P3)

where B =
⇥
B1 B2

⇤
, and the subscripts si for i = {1, 2, 3} correspond to the three

signal IQCs.

4.3 Analysis

Robustness analysis of wind turbine control systems is performed. The analysis
framework is utilized to test the designed controllers in terms of rated power track-
ing and load reduction on the wind turbine components. Moreover, the analysis
framework is employed to compare the designed controllers and test their robust-
ness across varying wind speeds. Three outputs are considered when assessing the
controllers: (the errors in) rotor speed, blade flap-wise bending moment, and tower
fore-aft bending moment.

In this thesis, two types of analyses are performed. First, traditional KYP anal-
ysis is performed, wherein the wind turbine closed-loop LTI model is considered. In
this case, the performance metric used is the L2-induced norm of the mapping from
the turbulent wind speed input ud to the output e. Then, analysis of the augmented
system in the proposed framework is done. In this case, the performance metric
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Figure 4.4: Uncertain wind turbine model and IQC filters. The red blocks are
eliminated as they are replaced by the IQC characterizations given by the filters  
and ✓ and the constraints on their outputs.

used is the Dw-to-L2-induced norm of the mapping from the white noise inputs ww

to the performance output e. These two mappings can be observed in Figure 4.3a.
Hereafter, the two types of analyses will be referred to as traditional analysis and
IQC analysis, for simplicity and ease of reference.

Three di↵erent values of the induced norm corresponding to three di↵erent out-
puts are considered. These outputs are the rotor speed, the blade flap-wise bending
moment, and the tower fore-aft bending moment. The frequency weights used in
the control synthesis above are not considered here. However, the blade flap-wise
bending moment and the tower fore-aft bending moment outputs are scaled by 10�3

and 10�5, respectively, to ensure the convergence of the SDP solvers. The upper
bounds on the induced norms of the system are computed at all four mean wind
speeds vm = {16, 18, 20, 23} m/s. This allows for investigating the robustness of
the designed controllers across varying wind speeds. The obtained values of the
L2-induced norms for the case of traditional analysis can be validated by using the
MATLAB command hinfnorm. The analysis of both considered systems is repeated
for all three outputs and both controllers by solving the SDP in (P3). All problems
were modeled using YALMIP [48] and solved using MOSEK [49].

The choice of the poles ai of the signal IQC filters given in (2.14) is observed to
have a major e↵ect on the results of the proposed analysis framework as they a↵ect
the values of the upper bounds on the Dw-to-L2-induced norms obtained using (P3).
However, this was not the case for the number of poles ai for each filter ✓i. In fact,
a negligible change in the results is observed when using more than three poles.
Thus, a total of three poles were chosen for each filter in the performed analysis.
For the purpose of this thesis, to choose the signal IQC filters, i.e., tune the poles
ai, that result in less conservative upper bounds, the following parameterization of
the vector of poles a was chosen:

a =
�
x, x+ 0.1, x+ 0.2

�
, x > 0.
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This choice of parameterization is based on the observation that widely-spread poles
resulted in more conservative upper bounds. Then, an optimal value of x is found,
i.e., corresponding to poles that yield the smallest upper bounds for the given param-
eterization of a. Upon performing extensive tuning of/sweeping over x, the obtained
optimal value of x was observed to be almost constant for a given output in both
controllers and across di↵erent wind speeds. Hence, a constant value of x is consid-
ered for each output for the results presented in this thesis. The chosen pole vectors
are a =

⇥
0.04 0.14 0.24

⇤T
, a =

⇥
0.08 0.18 0.28

⇤T
, and a =

⇥
1.2 1.3 1.4

⇤T
cor-

responding to the outputs: rotor speed, blade flap-wise bending moment, and tower
fore-aft bending moment, respectively. The same set of poles was used for all three
signal IQC filters. Moreover, b is set to ⇡ as depicted in Figure 2.3. This choice is
based on the fact that the band-limited white noise signals for continuous systems
generated using Simulink have a flat power spectral density over the normalized
frequency range of [�1

2
,
1

2
]. For the simulations in this thesis, a sampling time of 1

s was chosen, or equivalently, a sampling frequency of 2⇡ rad/s. Hence, the power
spectrum is flat over the range [�⇡, ⇡], and therefore, b = ⇡.

4.4 Simulations

Extensive simulations are performed to validate the results of the proposed analysis
framework. Wind profiles were generated using the wind model given in Section 3.5
for the following values of mean wind speeds: vm = {16, 18, 20, 23} m/s. For the
wind profiles corresponding to each mean wind speed, 3000 simulations were per-
formed on the high-fidelity nonlinear wind turbine model provided by OpenFAST.
The simulations were repeated for both H1 and PI control systems using the same
wind profiles. Each simulation performed corresponds to 650 seconds of the wind
turbine operation. For each simulation, the following approximate, experimental,
value of the induced norm of interest is computed:

�
2

sim =
kek

2

L2

kuk
2

L2

=

R T

0
e(t)T e(t)dt

R T

0
u(t)Tu(t)dt

,

where e is the output signal and u is the input signal, which can be the white
noise signals ww or the turbulent wind speed ud. �

2

sim is computed for the three
di↵erent outputs and two di↵erent inputs. It is noted that the first 50 seconds of
the simulations are not considered when computing the experimental � values. That
is, the transient region of the nonlinear response in OpenFAST is eliminated, and
the � values are computed only in the steady-state region. While wind inputs are
generally not finite energy signals, finite approximations are used here since a finite
horizon operation of the wind turbine is considered in this thesis.

While obtaining the upper bounds using the SDP in (P3) takes only a few sec-
onds, computing the experimental � values requires a lot of time. That is, for each
of the two wind turbine control systems at the four di↵erent mean wind speed con-
ditions, 3000 simulations were performed to validate the obtained upper bounds.
For instance, each simulation is executed in approximately four minutes, and thus,
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the 3000 simulations take up to 200 hours to be completed. On the other hand, the
upper bounds, computed in a fraction of this time, cover all the values computed
from simulations.

Experimental values of the induced norms are computed for each output, both
controllers, and both white noise and turbulent wind speed inputs corresponding
to IQC analysis and traditional analysis, respectively. Hereafter, all � values are
denoted by �i,j,k, where i = {rot, f lap, fa} corresponding to the rotor speed, the
blade flap-wise bending moment, and the tower fore-aft bending moment outputs,
respectively, j = {sys, wind} corresponding to traditional analysis and IQC analy-
sis, respectively, and k = {th, sim} corresponding to the theoretical upper bounds
obtained using the SDP in (P3) and the experimental values from the simulations.

4.5 Results

The analysis and simulations results of this thesis are presented to highlight the im-
portance of the proposed analysis framework. That is, the results are investigated
to test the whether the proposed analysis framework is able to compare the perfor-
mance of the two designed controllers, achieve valid upper bounds on experimental
� values obtained from simulations, and predict the performance of the designed
controllers across varying wind speeds.

Controller Comparison: The experimental values of the induced norms obtained
from the simulations for the two types of analyses, and both controllers are presented
in histograms. In addition, the computed upper bounds are shown in the legend of
each figure. In this section, the following histograms are included:

• Figure 4.5 corresponds to the rotor speed output for a mean wind speed of 18
m/s,

• Figure 4.6 corresponds to the blade flap-wise bending moment output for a
mean wind speed of 18 m/s,

• Figure 4.7 corresponds to the tower fore-aft bending moment output for a
mean wind speed of 18 m/s,

• Figure 4.8 corresponds to the rotor speed output for a mean wind speed of 16
m/s,

• Figure 4.9 corresponds to the blade flap-wise bending moment output for a
mean wind speed of 23 m/s,

The rest of the results are included in Figures A.7-A.13 and can be found in Ap-
pendix A.
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Figure 4.5: Results of the simulations performed at a mean wind speed of 18 m/s.
The figure shows the square of the experimental � values of the wind turbine control
systems where the rotor speed is chosen as the performance output. The left figure
corresponds to traditional analysis. The right figure corresponds to IQC analysis.

Figure 4.6: Results of the simulations performed at a mean wind speed of 18 m/s.
The figure shows the square of the experimental � values of the wind turbine con-
trol systems where the blade flap-wise bending moment is chosen as the performance
output. The left figure corresponds to traditional analysis. The right figure corre-
sponds to IQC analysis.
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Figure 4.7: Results of the simulations performed at a mean wind speed of 18 m/s.
The figure shows the square of the experimental � values of the wind turbine control
systems where the tower fore-aft bending moment is chosen as the performance out-
put. The left figure corresponds to traditional analysis. The right figure corresponds
to IQC analysis.

Figure 4.8: Results of the simulations performed at a mean wind speed of 16 m/s.
The figure shows the square of the experimental � values of the wind turbine control
systems where the rotor speed is chosen as the performance output. The left figure
corresponds to traditional analysis. The right figure corresponds to IQC analysis.
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Figure 4.9: Results of the simulations performed at a mean wind speed of 23 m/s.
The figure shows the square of the experimental � values of the wind turbine con-
trol systems where the blade flap-wise bending moment is chosen as the performance
output. The left figure corresponds to traditional analysis. The right figure corre-
sponds to IQC analysis.

When comparing the two designed controllers for each of the three outputs at
a specific wind speed, a controller is said to have a superior performance over the
other controller if it has a smaller � value. That is, from the analysis results,
the controller having a smaller �2i,j,th value is said to be better. From the results
of the simulations, the controller having smaller experimental � values is said to
be better. Since 3000 simulations are performed, the controller having � values
skewed to the left in Figures 4.5 - 4.9 is better. For the rotor speed output, it can be
observed from Figures 4.5 and 4.8 that theH1 controller has a superior performance
over the PI controller. For the blade flap-wise bending moment output, it can be
observed from Figures 4.6 and 4.9 that the H1 and PI controllers exhibit very close
performance. For the tower fore-aft bending moment output, it can be observed
from Figure 4.7 that the PI controller has a superior performance over the H1

controller. One advantage of the proposed framework can be observed in Figure 4.8.
The upper bounds on the L2-induced norms from the traditional analysis indicate
a superior performance of the PI controller over the H1 controller for the mean
wind speed of 16 m/s and the rotor speed performance output. However, the upper
bounds on the Dw-to-L2-induced norms from IQC analysis indicate the opposite.
The results of the simulations are in line with those of IQC analysis. Therefore,
a better characterization of the system’s performance is achieved when using the
proposed framework. Therefore, this framework is able to correctly predict the
superior performance of a given controller over another, thus correctly matching
the insights captured via extensive simulations. The limitations of the proposed
framework in comparing wind turbine control systems are discussed in Section 4.6.
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Validity of the Upper Bounds: Tables containing the values of the upper
bounds on the induced norms, as well as the average and maximum values of the ex-
perimental �2 values obtained from simulations are presented next. In this section,
the following tables are included:

• Table 4.1 corresponds to the rotor speed output for the case traditional anal-
ysis,

• Table 4.2 corresponds to the rotor speed output for the case of IQC analysis,

• Table 4.3 corresponds to the blade flap-wise bending moment output for the
case of traditional analysis,

• Table 4.4 corresponds to the blade flap-wise bending moment output for the
case of IQC analysis.

The rest of the results are included in Tables A.1-A.2 and can be found in Ap-
pendix A.

Table 4.1: L2-induced norms for the rotor speed output for the case of traditional

analysis. �̄2rot,sys,sim and
max

�
2
rot,sys,sim denote the squares of the average and maximum

� values obtained from the simulations, respectively.

Controller vm �
2
rot,sys,th �̄

2
rot,sys,sim

max

�
2
rot,sys,sim

PI
Controller

16 0.053 0.0318 0.0526
18 0.0632 0.0231 0.0302
20 0.0745 0.0189 0.0228
23 0.079 0.0153 0.0178

H1

Controller

16 0.0642 0.0245 0.0421
18 0.0571 0.0179 0.0231
20 0.0509 0.0148 0.0174
23 0.0541 0.0123 0.0143

Table 4.2: Dw-to-L2-induced norms for the rotor speed output for the case of IQC

analysis. �̄2rot,wind,sim and
max

�
2
rot,wind,sim denote the squares of the average and max-

imum � values obtained from the simulations, respectively.

Controller vm �
2
rot,wind,th �̄

2
rot,wind,sim

max

�
2
rot,wind,sim

PI
Controller

16 0.0582 0.0155 0.0514
18 0.0582 0.0143 0.0398
20 0.06 0.0145 0.0361
23 0.0621 0.0155 0.0345

H1

Controller

16 0.0408 0.012 0.0421
18 0.0414 0.0111 0.0317
20 0.0434 0.0113 0.0286
23 0.0465 0.0124 0.0276
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Table 4.3: L2-induced norms for the blade flap-wise bending moment output for the

case of traditional analysis. �̄2flap,sys,sim and
max

�
2
flap,sys,sim denote the squares of the

average and maximum � values obtained from the simulations, respectively.

Controller vm �
2
flap,sys,th ⇥ 10�6

�̄
2
flap,sys,sim ⇥ 10�6

max

�
2
flap,sys,sim ⇥ 10�6

PI
Controller

16 4.9772 0.2396 0.3711
18 5.6347 0.1702 0.2692
20 6.511 0.1467 0.2441
23 6.7615 0.1433 0.2465

H1

Controller

16 3.0479 0.2455 0.375
18 2.9786 0.1701 0.2704
20 3.2259 0.1455 0.2433
23 3.641 0.1448 0.2487

Table 4.4: Dw-to-L2-induced norms for the blade flap-wise bending moment output

for the case of IQC analysis. �̄2flap,wind,sim and
max

�
2
flap,wind,sim denote the squares of

the average and maximum � values obtained from the simulations, respectively.

Controller vm �
2
flap,wind,th ⇥ 10�6

�̄
2
flap,wind,sim ⇥ 10�6

max

�
2
flap,wind,sim ⇥ 10�6

PI
Controller

16 0.34 0.1163 0.3461
18 0.2741 0.104 0.2149
20 0.3649 0.1104 0.1704
23 0.6058 0.1425 0.1758

H1

Controller

16 0.3047 0.119 0.3679
18 0.2435 0.104 0.2114
20 0.2294 0.1095 0.1688
23 0.2616 0.144 0.1831

From the extensive simulations performed, it can be observed that the upper
bounds computed using the proposed framework are validated and not violated.
Specifically, for all the conducted simulations, the following observation can be made:

�
2

sim < �
2

th,

for all three outputs and both analyzed systems. This can be clearly observed in
Tables 4.1 - 4.4, which show the maximum � value obtained from simulations and
the theoretical upper bounds. Some violations of the upper bounds are discussed in
Section 4.6.

Performance of a Given Controller across Varying Wind Speeds: Another
advantage of the framework is that it allows for comparing a controller’s performance
across various wind speeds. This results from the fact that � values in the proposed
framework are normalized across wind speeds. Namely, the white noise inputs are
identical at the di↵erent mean wind speeds, while turbulent wind speed inputs vary
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vastly across wind speeds. For this reason, results from the analysis of the wind
turbine model solely (traditional analysis) fail in predicting the performance trend
of a controller across wind speeds. Plots showing a comparison of the upper bounds
on the induced norms and the experimental � values obtained from simulations
at di↵erent mean wind speeds for the H1 control system are presented in Figure
4.10 for the rotor speed output, Figure 4.11 for the blade flap-wise bending moment
output, and Figure 4.12 for the tower fore-aft bending moment output. Similar plots
for the case of the PI controller are presented in Figures A.14 - A.16 in Appendix A.

Figure 4.10: Results of the analysis and simulations performed at di↵erent mean
wind speeds. The figure shows the square of the induced norms of the wind turbine
system, for the case of the H1 controller, where the rotor speed is chosen as the
performance output. The top left figure shows the upper bounds on the square of
the L2-induced norm obtained from the traditional analysis. The top right figure
shows the upper bounds on the square of the Dw-to-L2-induced norms obtained
from IQC analysis. The bottom left figure shows the square of the average of the
experimental � values obtained from the simulations for the case of turbulent wind
input. The bottom right figure shows the square of the average of the experimental
� values obtained from the simulations for the case of white noise inputs.
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Figure 4.11: Results of the analysis and simulations performed at di↵erent mean
wind speeds. The figure shows the square of the induced norms of the wind turbine
system, for the case of the H1 controller, where the blade flap-wise bending moment
is chosen as the performance output. The top left figure shows upper bounds on the
square of the L2-induced norm obtained from traditional analysis. The top right
figure shows upper bounds on the square of the Dw-to-L2-induced norms obtained
from IQC analysis. The bottom left figure shows the square of the average of the
experimental � values obtained from the simulations for the case of turbulent wind
input. The bottom right figure shows the square of the average of the experimental
� values obtained from the simulations for the case of white noise inputs.
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Figure 4.12: Results of the analysis and simulations performed at di↵erent mean
wind speeds. The figure shows the square of the induced norms of the wind turbine
system, for the case of the H1 controller, where the tower fore-aft bending moment
is chosen as the performance output. The top left figure shows upper bounds on the
square of the L2-induced norm obtained from traditional analysis. The top right
figure shows upper bounds on the square of the Dw-to-L2-induced norms obtained
from IQC analysis. The bottom left figure shows the square of the average of the
experimental � values obtained from the simulations for the case of turbulent wind
input. The bottom right figure shows the square of the average of the experimental
� values obtained from the simulations for the case of white noise inputs.

For a given controller across varying wind speeds, it can be observed that the
trends are correctly predicted using the proposed framework. For instance, this can
be observed for the tower fore-aft bending moment in Figure 4.12. The trend of
variation of the experimental � values obtained from the simulations across wind
speeds for the case of white noise input signals, shown in the bottom right plot of
Figure 4.12, matches that of the upper bounds on the Dw-to-L2-induced norm from
IQC analysis, shown in the top right plot of Figure 4.12. Thus, this framework is
able to capture the trend of the controllers’ performance over varying wind speeds
while traditional analysis results fail, as shown in the top and bottom left plots of
Figure 4.12. For other outputs, it seems that the trends are not exact. However,
the di↵erence is very small and can be due to the numerical precision of the solvers.

Upper Bounds on the L2-norms of the Outputs The computed upper bounds
on the induced norms can be interpreted in a second way. That is, the computed
� values can be used to find upper bounds on the L2-norms of the outputs, i.e.,
kek  �thkuk, for a given performance output e and corresponding input u. For
this purpose, the L2-norms of the three di↵erent outputs obtained from the simu-
lation of the H1 control system on the di↵erent mean wind speeds, as well as the
upper bounds on the L2-norm of the outputs computed using the upper bounds
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on the induced norms from traditional analysis and IQC analysis are presented in
Figures 4.13 - 4.15. Similar plots for the case of the PI controller are presented in
Figures A.17 - A.19 in Appendix A.

Figure 4.13: Results of the simulations for the rotor speed output performed at
di↵erent mean wind speeds for the H1 control system. The top figure shows the
L2-norm of the output. The middle and bottom figures show the upper bounds on
the L2-norm of the output computed using the upper bounds on the induced norms
from traditional analysis and IQC analysis, respectively.

Figure 4.14: Results of the simulations for the blade flap-wise bending moment
output performed at di↵erent mean wind speeds for the H1 control system. The
top figure shows the L2-norm of the output. The middle and bottom figures show
the upper bounds on the L2-norm of the output computed using the upper bounds
on the induced norms from traditional analysis and IQC analysis, respectively.
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Figure 4.15: Results of the simulations for the tower fore-aft bending moment output
performed at di↵erent mean wind speeds for the H1 control system. The top figure
shows the L2-norm of the output. The middle and bottom figures show the upper
bounds on the L2-norm of the output computed using the upper bounds on the
induced norms from traditional analysis and IQC analysis, respectively.

It can be observed from Figures 4.13 - 4.15 that guaranteed upper bounds on
the L2-norms of the outputs are obtained. For the blade flap-wise and tower fore-aft
bending moments, it is observed that the order of magnitude of UB

2

wind is smaller
than that of UB

2

sys. That is, the upper bounds on the L2-norms of the outputs
computed using the Dw-to-L2-induced norms obtained from IQC analysis are less
conservative than those computed using the L2-induced norms obtained from tradi-
tional analysis. This is also observed to be true at high mean wind speeds for the
case of the rotor speed output.

4.6 Limitations

Violations of the Upper Bounds: Out of the 3000 simulations performed on the
four di↵erent wind speeds, two violations of the obtained theoretical upper bounds
were observed at vm = 16 m/s. Namely, the upper bounds on the Dw-to-L2-induced
norms obtained from IQC analysis for the rotor speed and blade flap-wise bending
moment outputs were violated twice in the 3000 simulations performed at a mean
wind speed of 16 m/s. The reason behind these violations is highlighted in what
follows. For example, the results of a sample simulation of the H1 controller at a
mean wind speed of 16 m/s are presented in Figure 4.16. At approximately 220
seconds, the wind speed drops below 10.5 m/s, i.e., it dropped to Region 2 of the
wind turbine operation (below 11.4 m/s). This results in a major change in the
system dynamics. This can be observed in the responses of the rotor speed and
blade flap-wise bending moment at the same instant, wherein large spikes occurred
in the nonlinear responses, and the responses of the linear and nonlinear systems
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no longer match. To overcome this problem, a di↵erent type of controller should
be designed. That is, wind turbines have a di↵erent mode of operation in Region
2, and therefore, in this region, a generator torque controller should be used, while
fixing the blade pitch angle to a constant, optimal, value. Another solution consists
in quantifying the linearization error, which might not be an easy task. Then, the
linearization error can be added as an uncertainty in the IQC framework. This
approach can improve the analysis at mean wind speeds other than vm = 16 m/s

too.

Controller Comparison: The proposed framework has failed in comparing the
performance of the two designed controllers in the case of the tower fore-aft bend-
ing moment as shown in Figure 4.7. This problem might be a result of the high
dependence of the results on the signal IQCs pole locations. As discussed earlier,
choosing the appropriate poles requires extensive tuning and sweeping, and thus,
finding another set of poles might solve this problem. This problem requires further
investigation in the future.
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Figure 4.16: Sample simulation results for H1 controller at a mean wind speed of
16 m/s. Top figure shows the used wind profile. Middle and bottoms figures show
the responses of the rotor speed and blade flap-wise bending moment, respectively,
upon simulating the linear and nonlinear wind turbine models.
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Chapter 5

CONCLUSION

This thesis proposes a framework for robustness analysis of wind turbine control
systems. In the proposed framework, the characteristics of a turbulent wind profile
are incorporated in the analysis of the closed-loop wind turbine system by adding
a wind model to the wind turbine model. The resulting combined wind turbine
model has white noise inputs and contains time-varying parameters that are treated
as uncertainties. This system is modeled in the Linear Fractional Transformation
(LFT) framework, and the theory of Integral Quadratic Constraints (IQCs) is used
to model the uncertainties as static linear time-varying (SLTV) parameters. In
addition, the white noise inputs of the model are characterized via signal IQCs.

Linearizations of the nonlinear wind turbine model are obtained at di↵erent op-
erating wind speeds, and H1 and PI blade pitch controllers are synthesized with the
objective of maintaining the turbine’s generated power at its rated value in Region
3 of the wind turbine operation. The proposed framework is employed to examine
and compare the robustness of the two wind turbine control systems. The induced
norm of the closed-loop system is used as the performance metric. The analysis
results are validated via extensive simulations of a high-fidelity nonlinear wind tur-
bine model. The proposed analysis framework allows for a better characterization
of the system’s performance. Both types of analyses performed in this thesis, tradi-
tional KYP analysis and the proposed IQC-based analysis, guide the control design
process. Even though the synthesis and IQC analysis problems are decoupled in
this thesis, the results of the IQC analysis allowed for testing the controller, and
therefore, motivated the need for tuning the weights of the outputs used in control
synthesis. Hence, satisfactory controllers were designed by iteratively repeating the
two aforementioned steps.

Potential directions for future work include the following:

1. Other wind models can be incorporated in the proposed analysis framework.
In this thesis, a wind model based on the Kaimal spectrum is used. Another
wind model that can be used is that based on the von Karmen spectrum.

2. Better wind turbine models can be used in the proposed analysis framework.
In this thesis, a linear time-invariant model is used. Other models include
periodic linear time-varying and linear parameter-varying models that capture
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Regions 2 and 3 of the wind turbine operation.

3. Better controllers can be designed to test the validity of the proposed frame-
work. In this thesis, H1 and PI controllers are synthesized at one operating
wind speed. H2 controllers may also be considered. Also, gain-scheduled con-
trollers and linear parameter-varying controllers that capture Regions 2 and
3 of the wind turbine operation can be designed. In addition, multi-objective
controllers can be designed, whereby, more than one performance output are
penalized simultaneously.

4. The IQC theory can be incorporated in the controller design problem. In
this thesis, controllers were designed for the nominal system, and then the
closed-loop uncertain system is analyzed using IQC theory. Alternatively, an
IQC-based controller synthesis algorithm can be designed and implemented.

5. The proposed framework can be tested on all regions of the wind turbine
operation. In this thesis, it was tested in Region 3 only. Controllers can be
also designed for Region 2, and their robustness can be examined using the
proposed framework.

6. Additional uncertainties and nonlinearities of the wind turbine model can be
added to the proposed framework. Specifically, the linearization error of the
wind turbine model should be quantified and incorporated in the IQC analysis.

7. Better and automatic tuning methods of signal IQC poles can be developed.

8. The MCrunch package [50] developed by NREL can be used to analyse and
compare the loads on the wind turbine components obtained from the simu-
lation results. That is, MCrunch allows for computing the damage equivalent
loads (DELs) metric, which indicates the equivalent fatigue damage. Specifi-
cally, the load reduction of the two controllers designed in this thesis can be
compared by evaluating the DELs for the blade flap-wise and tower fore-aft
bending moments.

9. Other numerical methods can be used to solve the convex optimization prob-
lems. In this thesis, o↵-the-shelf solvers, which are based on interior point
methods, were used. Instead, cutting plane methods, which exploit the struc-
ture of the SDP and lower its computational cost, can be applied alternatively.
For instance, the analytic center cutting plane method, which is applied in
[51]–[53] to the discrete-time IQC problem, can be used to solve the SDPs in
this thesis.

10. The worst-case input signals that yield the upper bounds on the induced norm
of the wind turbine control system obtained in this thesis can be constructed.
Two algorithms for constructing such input signals are presented for the case
of a stable discrete-time LTV system in [54].
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11. The scope of the work in this thesis can be extended from individual wind
turbines to wind farms. Wind farms can be modeled as dynamic networked
systems of wind turbines. Thus, existing results on H1 network optimization,
such as those given in [55], can be implemented for wind farm optimization.
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Appendix A

ADDITIONAL SIMULATIONS
RESULTS

This appendix contains complementary/additional results, in the form of plots and
tables, that were not reported in the main body of the thesis’ text.
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(a) Rotor speed

(b) Blade 1 flap-wise bending moment

(c) Tower fore-aft bending moment

Figure A.1: Open-loop simulation results at vm = 16 m/s.
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(a) Rotor speed

(b) Blade 1 flap-wise bending moment

(c) Tower fore-aft bending moment

Figure A.2: Open-loop simulation results at vm = 20 m/s.
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(a) Rotor speed

(b) Blade 1 flap-wise bending moment

(c) Tower fore-aft bending moment

Figure A.3: Open-loop simulation results at vm = 23 m/s.
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(a) Rotor speed

(b) Blade pitch angle

(c) Blade 1 flap-wise bending moment

(d) Tower fore-aft bending moment

Figure A.4: Sample simulation results for theH1 and PI controllers at vm = 16m/s.
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(a) Rotor speed

(b) Blade pitch angle

(c) Blade 1 flap-wise bending moment

(d) Tower fore-aft bending moment

Figure A.5: Sample simulation results for theH1 and PI controllers at vm = 20m/s.
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(a) Rotor speed

(b) Blade pitch angle

(c) Blade 1 flap-wise bending moment

(d) Tower fore-aft bending moment

Figure A.6: Sample simulation results for theH1 and PI controllers at vm = 23m/s.
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Table A.1: L2-induced norms for the tower fore-aft bending moment output for

the case of traditional analysis. �̄2fa,sys,sim and
max

�
2
fa,sys,sim denote the squares of the

average and maximum � values obtained from the simulations, respectively.

Controller vm �
2
fa,sys,th ⇥ 10�10

�̄
2
fa,sys,sim ⇥ 10�10

max

�
2
fa,sys,sim ⇥ 10�10

PI
Controller

16 0.5919 0.0005 0.0018
18 0.77 0.0008 0.0017
20 1.0314 0.0008 0.0017
23 1.2939 0.0009 0.0019

H1

Controller

16 0.7269 0.0005 0.0022
18 0.737 0.001 0.0022
20 0.8848 0.0011 0.0023
23 0.8997 0.0012 0.0024

Table A.2: Dw-to-L2-induced norms for the tower fore-aft bending moment output

for the case of IQC analysis. �̄2fa,wind,sim and
max

�
2
fa,wind,sim denote the squares of the

average and maximum � values obtained from the simulations, respectively.

Controller vm �
2
fa,wind,th ⇥ 10�10

�̄
2
fa,wind,sim ⇥ 10�10

max

�
2
fa,wind,sim ⇥ 10�10

PI
Controller

16 0.011 0.0005 0.0012
18 0.0232 0.0005 0.0007
20 0.0479 0.0006 0.0008
23 0.1053 0.0009 0.0012

H1

Controller

16 0.0104 0.0005 0.0014
18 0.0202 0.0006 0.0009
20 0.038 0.0008 0.001
23 0.0693 0.0012 0.0015
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Figure A.7: Results of the simulations performed at a mean wind speed of 20 m/s.
The figure shows the square of the experimental � values of the wind turbine control
systems where the rotor speed is chosen as the performance output. The left figure
corresponds to traditional analysis. The right figure corresponds to IQC analysis.

Figure A.8: Results of the simulations performed at a mean wind speed of 23 m/s.
The figure shows the square of the experimental � values of the wind turbine control
systems where the rotor speed is chosen as the performance output. The left figure
corresponds to traditional analysis. The right figure corresponds to IQC analysis.
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Figure A.9: Results of the simulations performed at a mean wind speed of 16 m/s.
The figure shows the square of the experimental � values of the wind turbine con-
trol systems where the blade flap-wise bending moment is chosen as the performance
output. The left figure corresponds to traditional analysis. The right figure corre-
sponds to IQC analysis.

Figure A.10: Results of the simulations performed at a mean wind speed of 20 m/s.
The figure shows the square of the experimental � values of the wind turbine con-
trol systems where the blade flap-wise bending moment is chosen as the performance
output. The left figure corresponds to traditional analysis. The right figure corre-
sponds to IQC analysis.
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Figure A.11: Results of the simulations performed at a mean wind speed of 16 m/s.
The figure shows the square of the experimental � values of the wind turbine control
systems where the tower fore-aft bending moment is chosen as the performance out-
put. The left figure corresponds to traditional analysis. The right figure corresponds
to IQC analysis.

Figure A.12: Results of the simulations performed at a mean wind speed of 20 m/s.
The figure shows the square of the experimental � values of the wind turbine control
systems where the tower fore-aft bending moment is chosen as the performance out-
put. The left figure corresponds to traditional analysis. The right figure corresponds
to IQC analysis.
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Figure A.13: Results of the simulations performed at a mean wind speed of 23 m/s.
The figure shows the square of the experimental � values of the wind turbine control
systems where the tower fore-aft bending moment is chosen as the performance out-
put. The left figure corresponds to traditional analysis. The right figure corresponds
to IQC analysis.
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Figure A.14: Results of the analysis and simulations performed at di↵erent mean
wind speeds. The figure shows the square of the induced norms of the wind turbine
system, for the case of the PI controller, where the rotor speed is chosen as the
performance output. The top left figure shows the upper bounds on the square of
the L2-induced norm obtained from the traditional analysis. The top right figure
shows the upper bounds on the square of the Dw-to-L2-induced norms obtained
from IQC analysis. The bottom left figure shows the square of the average of the
experimental � values obtained from the simulations for the case of turbulent wind
input. The bottom right figure shows the square of the average of the experimental
� values obtained from the simulations for the case of white noise inputs.
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Figure A.15: Results of the analysis and simulations performed at di↵erent mean
wind speeds. The figure shows the square of the induced norms of the wind turbine
system, for the case of the PI controller, where the blade flap-wise bending moment
is chosen as the performance output. The top left figure shows upper bounds on the
square of the L2-induced norm obtained from traditional analysis. The top right
figure shows upper bounds on the square of the Dw-to-L2-induced norms obtained
from IQC analysis. The bottom left figure shows the square of the average of the
experimental � values obtained from the simulations for the case of turbulent wind
input. The bottom right figure shows the square of the average of the experimental
� values obtained from the simulations for the case of white noise inputs.
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Figure A.16: Results of the analysis and simulations performed at di↵erent mean
wind speeds. The figure shows the square of the induced norms of the wind turbine
system, for the case of the PI controller, where the tower fore-aft bending moment
is chosen as the performance output. The top left figure shows upper bounds on the
square of the L2-induced norm obtained from traditional analysis. The top right
figure shows upper bounds on the square of the Dw-to-L2-induced norms obtained
from IQC analysis. The bottom left figure shows the square of the average of the
experimental � values obtained from the simulations for the case of turbulent wind
input. The bottom right figure shows the square of the average of the experimental
� values obtained from the simulations for the case of white noise inputs.
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Figure A.17: Results of the simulations for the rotor speed output performed at
di↵erent mean wind speeds for the PI control system. The top figure shows the
L2-norm of the output. The middle and bottom figures show the upper bounds on
the L2-norm of the output computed using the upper bounds on the induced norms
from traditional analysis and IQC analysis, respectively.

Figure A.18: Results of the simulations for the blade flap-wise bending moment
output performed at di↵erent mean wind speeds for the PI control system. The top
figure shows the L2-norm of the output. The middle and bottom figures show the
upper bounds on the L2-norm of the output computed using the upper bounds on
the induced norms from traditional analysis and IQC analysis, respectively.
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Figure A.19: Results of the simulations for the tower fore-aft bending moment
output performed at di↵erent mean wind speeds for the PI control system. The top
figure shows the L2-norm of the output. The middle and bottom figures show the
upper bounds on the L2-norm of the output computed using the upper bounds on
the induced norms from traditional analysis and IQC analysis, respectively.
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