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A B S T R A C T

We consider learning and forgetting in the context of two-server queueing systems and evaluate the tradeoff
between utilizing specialized and flexible servers. Specifically, we investigate the performance of two queueing
systems. The first system utilizes a specialized workforce where every server handles one job type. The spe-
cialized workforce splits the system into two queues where the dedicated servers capitalize on the learning
process and consequently reduce the service time. The second system utilizes a flexible workforce where a server
can handle any job type. The flexible workforce system allows for the servers to be arranged in parallel where
alternating job types results in forgetting and accordingly an increase in service time. A numerical study in-
vestigates the impact of the workforce policies on the system performance measures.

1. Introduction

In many industrial settings, managers recognize the presence of
learning/forgetting and acknowledge it to be an inherent characteristic
of their workforce. Common sense, along with the extensive literature
related to workforce learning, indicates that repeating the same job
reduces service time and transferring from one job to another can result
in longer service times due to forgetting, e.g. Jaber, Kher, and Davis
(2003). The incremental fluctuation in performance as a result of
learning and forgetting results in state dependent service rates. De-
pending on the initial learning state of the servers, the incremental
change in expected service time obviously increases the time for which
the system can be accurately assumed to be in steady state. Delaying the
system’s convergence to steady state causes the system to function in a
transient state for a significant proportion of its operating time. In this
work, we consider learning in the context of queueing systems where it
is well established that existing approaches to calculate or approximate
the behavior of stationary queueing nodes do not accurately capture the
transient and time-dependent behavior. Using steady state approxima-
tions to describe the behavior of transient systems can lead to in-
accurate approximations, Nasr and Taaffe (2012). Consequently, an
accurate study of the performance and behavior of queueing nodes
exhibiting learning and forgetting should account for the transient be-
havior of the system. This serves as a motivation for the numerical
approach presented in this work which solves for the transient behavior
of the queueing systems subject to different workforce policies. The

numerical approach is based on defining the states of the Markovian
representation of the different queueing systems. This allows us to
numerically integrate the Kolmogorov Forward Equations (KFEs) and
obtain the transient number-in-system probability distribution for any
point in time ⩾t 0.

The effects of learning and forgetting can be observed in many
operations in different industries. For instance, the role of learning and
forgetting in manufacturing systems and assembly lines has been widely
recognized in practice and in the literature, Shafer, Nembhard, and
Uzumeri (2001) and Biel and Glock (in press). Recent literature related
to learning and forgetting in production and manufacturing systems
include Glock and Jaber (2013) and Teyarachakul, mez, and Tarakci
(2014) among others. In the context of quality control operations,
workers inspecting the quality of products are also subject to learning
and forgetting, Giri and Glock (in press). Bollinger and Gillingham
(2014) observe significant reductions in cost due to learning in the
installation process of solar photovoltaic units in California. The work
in Kogan, El Ouardighi, and Herbon (2017) consider learning and for-
getting in production systems where a firm's competitive position de-
pends on its accumulated experience. Other real world examples where
the impact of an organization’s accumulated levels of learning include
aircraft production, Benkard (2000). The work in Benkard (2000) em-
phasizes that forgetting plays an important role when analyzing the
dynamics of commercial aircraft production and accounting for
learning alone is not sufficient. Other recent applications include Liu,
Wang, and Leung (2016) who attribute the variation in the productivity
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of workstations in cellular manufacturing systems is due to workforce
learning and forgetting.

The benefits of an agile and cross-trained workforce is also well
established in the literature. The work in Pinker and Shumsky (2000)
addresses the trade-off of cross-training workers in the presence of
variability in the content of work. Pinker and Shumsky (2000) conclude
that cross-trained workers result in a higher throughput, but at the
expense of quality. Jordan et al. (2004) consider cross-training workers
where the intended applications are maintenance operations at auto-
motive assembly plants. The authors also conclude that achieving a
flexible workforce by training workers to perform multiple tasks im-
proves the performance of the system in the presence workload varia-
tion. A significant challenge encountered when implementing a flexible
workforce is that service time can increase due to variation in the
workload. The work in Jaber et al. (2003) captures the increase in
service time by accounting for forgetting and relearning when a flexible
server is assigned to different workload types. In this work, we also
utilize forgetting to capture the behavior of a flexible server. Other
applications of flexible workforce include cellular manufacturing sys-
tems where its presence is essential to keep up with innovations and
new products, Liu et al. (2016). The work in Kaufman, Ahn, and Lewis
(2005) investigates the introduction of an agile and temporary work-
force into tandem queueing networks and the authors argue that a
flexible workforce is becoming more prevalent in manufacturing sys-
tems. The work presents an optimal allocation policy, but does not
account for learning and forgetting. Lopez and Nembhard (2017) con-
sider learning and forgetting in the context of labor intensive systems.
They accordingly present heuristic to compute near optimal solutions
for worker assignment problems. Lum et al. (2016) examine several
factors that impact learning in a computer based training program. The
factors accounted for include eye movement, individual differences in
perception of workload, and attention. We also refer to Faccio,
Gamberi, Pilati, and Bortolini (2015) and Bortolini, Faccio, Ferrari,
Gamberi, and Pilati (2017) for existing literature related to the inter-
action between workstations and handled products in the context of
assembly and packaging systems.

This work assumes that learning and forgetting is an inherent be-
havioral characteristic of a workforce, which cannot be eliminated.
Consequently, the focus of this work is on how to manage and cope with
the effects of learning by investigating different workforce policies to
capitalize on learning and to counter the effects of forgetting.
Specifically, we consider the implications of utilizing a specialized
workforce versus a flexible workforce in the presence of learning and
forgetting. Surprisingly and despite its importance, our search shows
that there is no literature on queueing systems where the service time is
dependent on the learning state of the servers and accordingly com-
pares the performance of flexible and specialized policies. We believe
this research would also have implications for researchers and practi-
tioners in service systems that are labor intensive. For example, it
would be of particular interest and importance for health care opera-
tions managers where it is standard practice for nurses or doctors to be
assigned to different units such as outpatient clinics, emergency rooms,
etc., to encounter shortages in staff and manage workloads, Kaufman
et al. (2005).

The rest of the paper is organized as follows. In Section 2, the states
of the systems, determined by the accumulated levels of learning and
forgetting are presented along with the calculation of the state-depen-
dent service times. The states of the Markovian representation of the
queueing systems with flexible and specialized servers are considered in
Section 3. The corresponding KFEs are also presented in Section 3 for
both queueing systems. The numerical solution for the KFEs is con-
sidered in Section 5 for different system parameters where we define
measures to evaluate the performance of the queueing systems. A
summary discussion, future recommendations and conclusions are
presented in Section 6.

2. Model – two-server model with learning/forgetting

Jobs are categorized by two different types and arrive to a two-
server system according to a Poisson process with rate λ. The propor-
tion of jobs of type j is pj for =j 1,2, and the arrival rates of jobs of type
1 and 2 are =λ λ p1 1 and =λ λ p2 2, respectively. We assume the prob-
ability that an arriving job is of type j is independent of the type of the
preceding or subsequent jobs. We define a measure of the workload
variation for an arrival stream with two job types by = −V p p(1 )w where

=p p1 and = −p p12 . The maximum workload variation is obtained for
=p 0.5, which results in the highest frequency of alternating job types.
Two models are investigated. The first model assumes a flexible

workforce where a server can work on the next arriving job regardless
of type. We refer to this model by the flexible workforce queueing
system (FWQS). The second model designates a server to a specific job
type. We refer to this model by the specialized workforce queueing
system (SWQS). In this work, we only consider two server systems and
two job types. The rationale for restricting this paper to two servers is to
exploit the importance of considering learning and forgetting in
queuing systems where servers perform heterogeneous tasks. Assuming
more servers at this stage will complicate the mathematics and will over
shadow the importance of these phenomena and defies the purpose of
this paper.

2.1. Learning and forgetting

Associating the completion time of a job with the learning state of
the server is a commonly utilized modeling approach with a wide range
of real world applications. For example, the authors in Lopez and
Nembhard (2017) and Nembhard and Bentefouet (2012) denote a
worker’s performance on a given task as a function of the cumulative
number of previous units on that particular task. The intended real
world applications are labor intensive systems with learning and for-
getting. We utilize a similar representation of the state of a server to
represent the accumulated experience level of the workforce. In the
context of labor workforce, the work in Bordoloi and Matsuo (2001)
define the term knowledge stock to account for the level of learning of a
worker with respect to a manufacturing stage. The model in Bordoloi
and Matsuo (2001) assume three knowledge levels with respect to two
manufacturing stage. Denoting a server’s state at time t by the accu-
mulated experience with respect to job types is investigated in the lit-
erature and has real world applications, which can include manu-
facturing systems, call centers, and other labor intensive service
systems.

Let ℓi j, be the learning level of server i with respect to type j for
=i j, 1,2. The learning level parameter, ℓi j, , captures the accumulated

experience of server i relative to job j. The lowest learning level of
server i relative to job j is 1 and is obtained by setting =ℓ 1ij . Notice that
setting =ℓ 1i j, , either corresponds to server i completing job j for the
first time, or server i lost all its accumulated experience in relation to
job j due to forgetting. Similarly, we assume a maximum level of ex-
perience a server can accumulate relative to a job type. The highest
achievable learning level is assumed to be >ℓ 1max . Accordingly, the
learning level parameter ℓi j, varies within the range [1,ℓ ]max where va-
lues of 1 and ℓmax denote the lowest and highest achievable learning
levels, respectively.

The learning state of a server is defined by the learning level the
server achieved with respect to all job types. The learning state for
server i is denoted by =s (ℓ ,ℓ )i i i,1 ,2 for =i 1,2. When server i completes a
job of type j, learning is accounted for by adjusting the learning state of
the server with respect to jobs of type i as follows,

= +ℓ min(ℓ 1,ℓ )i j i j max, , , for =i j, 1,2. Similarly, forgetting is accounted
for by lowering the learning state of the server with respect to all other
jobs of type ≠ = −k j,ℓ max(ℓ 1,1)i k i k, , , for all ≠k j. Obviously, the
fluctuation between learning states is dependent on the workload
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variation, Vw. Next, we define the state-dependent service time and
rates as a function of the server learning states.

2.2. State-dependent service rates with learning/forgetting

The service time is dependent on the learning state of the system as
well as the type of the arriving job. Let T (ℓ)i j, be the expected service
time of job j by server i when the learning state of job j relative to server
i is ℓ, for =i j, 1,2, and = …ℓ 1, ,ℓmax . Completing job j by server i for the
first time is denoted by T (1)i j, . Similarly, the corresponding standard
time is denoted by T (ℓ )i j max, . The expected service time of job j by server
i is a dependent on the learning state of the server and is expressed as
(Wright, 1936),

= = = …−T T i j(ℓ) (1) ℓ for , 1,2, and ℓ 1, ,ℓ ,i j i j
b

max, , i j, (1)

where bi j, is the learning slope. The learning slope bi j, , for job j on server
i, is expressed as a function of the learning rate Li j, as follows,

⩽ = ⩽b L0 log( )/log(2) 1i j i j, , . Note that slower/faster values of Li j, result
in lower/higher values of the slope bi j, , for =i j, 1,2. The service rate
performance of a job i processed by server j is dependent on the state of
the server and is denoted by =μ T(ℓ) 1/ (ℓ)i j i j, , for =i j, 1,2 and

= …ℓ 1, ,ℓmax .
As a measure of traffic intensity, let ρs be the steady state traffic

intensity of the two-server system assuming the servers operate at
standard time. The steady state parameter ρs represents the system
traffic intensity assuming the workforce always operate at the max-
imum experience level and is not subject to learning and forgetting. The
standard traffic intensity is calculated as,

∑ ∑= =
= =

ρ λ
μ

μ p T, where (ℓ ).s
s

s
i j

j i j max
1

2

1

2

,
(2)

3. Markovian representation of multi-server system with learning
and forgetting

We present a Markovian representation of the two queueing sys-
tems. In Section 3.1, the system state-space of the Flexible Workforce
queueing system is presented along with the corresponding KFEs. Si-
milarly in Section 3.2, the Markovian representation along with the
corresponding KFEs are presented for the Specialized Workforce
queueing system.

Notation for the job arrival process, for =j 1,2,

• λ: Arrival rate of jobs

• pj: Probability a job is of type j

• λj: Arrival rate of job of type =j λ λ p,( )j j

Notation for the service process, for =i j, 1,2,

• ℓi j, : Learning level of server i for job = …j,ℓ 1, ,ℓi j max,

• si: Learning state of server =i s, (ℓ ,ℓ )i i i,1 ,2

• T (ℓ)i j, : Expected service time of job j at server i and a learning state
of ℓ, for = …ℓ 1, ,ℓmax

• μ (ℓ)i j, : Service rate of job j at server i and a learning state of
= −μ Tℓ,( (ℓ) (ℓ))i j i j, ,

1

• Li j, : Learning rate for job j at server i

• bi j, : Learning slope for job j at server i

3.1. Flexible workforce

The FWQS entails two servers in parallel where each server has the
flexibility to serve all workload types. The service rates are dependent
on the type of job and system state relative to the accumulated levels of

experience. The variation in the workload results in a fluctuation in the
server learning states where completing a certain job type improves the
service level of the recently processed job type while simultaneously
regressing the learning state of the other job type. At time =t 0, we
assume that the system starts with no learning experience. This is ob-
tained by setting the service times to T (1)i j, for =i j, 1,2. Note that it is
possible to set the system at any learning state at time =t 0 by in-
itializing the corresponding KFEs.

The Markovian representation of the two-server queueing system at
time ⩾t 0 is obtained by augmenting the learning states of the s servers
with the number of jobs in the system. Let N t( )f be the number in
system at time t for the FWQS. The learning state of the servers at time t
is denoted by S t( ). In the case where the number in the system is less
than 2, <N t( ) 2f and >t 0, then the state of the system is determined
by their available servers and the learning state. Denote the occupancy
state of the servers at time t by the vectorWt where =W i( ) 1,2t indicates
that the ith server is occupied and 0 otherwise.

=
⎧

⎨
⎩

W i
i
i
i

( )
0 if the th server is not occupied
1 if the th server is occupied with job of type 1
2 if the th server is occupied with job of type 2

t

(3)

For <N t( ) 2f and >t 0, the state probabilities are expressed as
= = =ωP t W S t s s( ) Prob( , ( ) ( , ))ω ts s( ), , 1 21 2 . Accordingly when =N t( ) 1f

and server one is busy, the system state probabilities are denoted
by =P t P t( ) ( )ω ws s s s( ), , ( ,0), ,1 2 1 1 2 for =w 1,21 and = …k ks s( ), ( ) 1, ,ℓmax1 2 .
Similarly when =N t( ) 1f and server two is busy,

=P t P t( ) ( )ω ws s s s( ), , (0, ), ,1 2 2 1 2 for =w 1,21 . When the system is empty,
=N t( ) 0f and =ω (0,0), the probability distribution of the system states

is denoted by P t( )s s0, ,1 2 .
The KFEs for <i 2, and = …k ks s( ), ( ) 1, ,ℓmax1 2 for =k 1,2 are as fol-

lows.
For =ω w( ,0)1 and =w 1,21 ,

′ = − +
+ −

+ −

+

>

>

P t μ λ P t
μ P t

μ P t

λ P t

( ) ( (ℓ ) ) ( )
(ℓ 1) ( ) I

(ℓ 1) ( ) I

( ),

w w w w

w

w
p

s s s s

s

s

s s

( ,0), , 1, 1, ( ,0), ,

2,1 2,1 2, ,F ,( ,1) (ℓ 1)

2,2 2,2 2, ,F ,( ,2) (ℓ 1)

2 0, ,
w

s

s

1 1 2 1 1 1 1 2

1 2
1 1 2,1

1 2
2 1 2,2

1
1 2 (4)

where = +j jsF ( ) min( ( ) 1,ℓ )j
k maxsk and = −i isF ( ) max( ( ) 1,1)j

ksk for ≠i j.
The indicator function =I 1(.) if the relation in (.) is satisfied and 0
otherwise. For =ω w(0, )2 and =w 1,22 ,

′ = − +
+ −

+ −

+

>

>

P t μ λ P t
μ P t

μ P t

λ P t

( ) ( (ℓ ) ) ( )
(ℓ 1) ( ) I

(ℓ 1) ( ) I

( ).

w w w w

w

w
p

s s s s

s

s

s s

(0, ), , 2, 2, (0, ), ,

1,1 1,1 2,F , ,(1, ) (ℓ 1)

1,2 1,2 2,F , ,(2, ) (ℓ 1)

2 0, ,
w

s

s

2 1 2 2 2 2 1 2

1
1 2 2 1,1

1
2 2 2 1,2

2
1 2 (5)

For =ω (0,0),

′ = −
+ −

+ −

+ −

+ −

>

>

>

>

P t λ P t
μ P t

μ P t

μ P t

p μ P t

( ) ( )
(ℓ 1) ( ) I

(ℓ 1) ( ) I

(ℓ 1) ( ) I

(ℓ 1) ( ) I .

s s s s

s

s

s

s

0, , 0, ,

1 1,1 (1,0),F , (ℓ 1)

1 1,2 (2,0),F , (ℓ 1)

2 2,1 (0,1), ,F (ℓ 1)

2 2 2,2 (0,2), ,F (ℓ 1)

s

s

s

s

1 2 1 2

1
1 2 1,1

1
2 2 1,2

1 2
1 2,1

1 2
2 2,2 (6)

For ⩾i 2, the system-state probabilities are expressed as,
= = = = ωP t N t i S t W ts s( ) Prob( ( ) , ( ) ( , ), ( ) )ωi fs s, , , 1 21 2 . The Kolmogorov

Forward Equations (KFEs) for ⩾ = …i k ks s2, ( ), ( ) 1, ,ℓmax1 2 for =k 1,2,
and =ω w w( , )1 2 for =w w, 1,21 2 ,
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′ = − + +
+ −

+ −

+ −

+ −

+
+ +

<

+ >

+ >

+ >

+ >

− ≠

=

P t μ μ λ P t
p μ P t

p μ P t

p μ P t

p μ P t

λ P
λ p P p P

( ) ( (ℓ ) (ℓ ) I ) ( )
(ℓ 1) ( ) I

(ℓ 1) ( ) I

(ℓ 1) ( ) I

(ℓ 1) ( ) I

I
( ) I .

ω ωi w w w w i c i

w i w

w i w

w i w

w i w

i i

w w w w i

s s s s

s

s

s

s

s s w

s s s s

, , , 1, 1, 2, 2, ( ) , , ,

1,1 1,1 1,F , ,(1, ) (ℓ 1)

1,2 1,2 1,F , ,(2, ) (ℓ 1)

2,1 2,1 1, ,F ,( ,1) (ℓ 1)

2,2 2,2 1, ,F ,( ,2) (ℓ 1)

1, , , ( 2)

( ,0), , (0, ), , ( 2)

s

s

s

s

1 2 1 1 2 2 1 2

1 1
1 2 2 1,1

1 1
2 2 2 1,2

2 1 2
1 1 2,1

2 1 2
2 1 2,2

1 2

1 1 1 2 2 2 1 2 (7)

As an illustrative example on the behavior of the FWQS Markov pro-
cess, we consider a system state realization at time ⩾t 0 in Fig. 1. The
system state example considered in Fig. 1 has =N t i( )f , server 1 is
occupied with a job of type 2, server 2 is occupied with a job of type 1,
and the learning state is = =S t s s( ) ( , ) ((ℓ ,ℓ ),(ℓ ,ℓ ))1 2 1,1 1,2 2,1 2,2 . An arrival
with a rate of λ would result in a transition to state

= + = =N t i S t W t{ ( ) 1, ( ) ((ℓ ,ℓ ),(ℓ ,ℓ )), ( ) (2,1)}f 1,1 1,2 2,1 2,2 . A service com-
pletion at server 1 results in a transition to state

= − = − + =N t i S t W t j{ ( ) 1, ( ) ((ℓ 1,ℓ 1),(ℓ ,ℓ )), ( ) ( ,1)}f 1,1 1,2 2,1 2,2 at a rate of
p μ (ℓ )j 1,2 1,2 for =j 1,2. Similarly, a service completion at server 2 results
in a transition to state = − =N t i S t{ ( ) 1, ( ) ((ℓ ,ℓ ),f 1,1 1,2

+ − =W t j(ℓ 1,ℓ 1)), ( ) (2, )}2,1 2,2 at a rate of p μ (ℓ )j 1,2 1,2 for =j 1,2.

3.2. Specialized workforce

In the SWQS, every job type has a designated server. As a result, two
queues can form where the entities within a queue have the same
workload content. The system corresponds to two separate queues that
share the same system capacity, c. Since every queue handles one type
of job, forgetting is not encountered in the SWQS. Every completed job
results in learning until the steady state learning level is achieved. The
system state space is the resulting Markovian representation is de-
termined by the number of jobs at each queue as well as the learning
level at each server. Let N t( )1 and N t( )2 be the numbers in the system at
time t for each single server queueing node. The total number in the
system at time t for the SWQS becomes = +N t N t N t( ) ( ) ( )s 1 2 . Although
the system is split into two separate queues, the total number in both
queues is ⩽ −c 2. Consequently, the system-states of both queues can not

be solved for separately. Accordingly, the system-state probabilities are
expressed as, = = = =P t N t i N t j S t s s( ) Prob( ( ) , ( ) , ( ) ( , ))i j s s, , , 1 2 1 21 2 . Notice
that in the SWQS case, the server state reduces to =s ℓ1 1,1 and =s ℓ2 2,2.
This is a consequence of designating one job type to each server. For
simplicity, let = =S t s s( ) ( , ) (ℓ ,ℓ )1 2 1,1 2,2 for the SWQS case. The KFEs for

= … − + < = …i j c i j c s, 0, , 1, , 1, ,ℓmax1 , and = …s 1, ,ℓmax2 ,

′ = − + +
+ −
+ −
+
+
+ +

> >

+ − >

+ − >

+ =

+ =

− −

P t λ μ s μ s
μ s P
μ s P
μ P
μ P
λ P λ P

( ) ( ( ) I ( ) I )
( 1) I
( 1) I
(ℓ ) I
(ℓ ) I

.

i j s s i j

i j s s s

i j s s s

max i j s s

max i j s s

i j s s i j s s

, , , 1 1 ( 0) 2 2 ( 0)

1 1 1, , 1, ( 1)

2 2 , 1, , 2 ( 1)

1 1, ,ℓ , ( ℓ )

2 , 1, ,ℓ ( ℓ )

1 1, , , 2 , 1, ,

max max

max max

1 2

1 2 1

1 2 2

2 1

1 2

1 2 1 2 (8)

The KFEs for + = = …i j c s, 1, ,ℓmax1 , and = …s 1, ,ℓmax2 ,

′ = − + + +> > − −P t μ s μ s λ P λ P( ) ( ( ) I ( ) I ) .i j s s i j i j s s i j s s, , , 1 1 ( 0) 2 2 ( 0) 1 1, , , 2 , 1, ,1 2 1 2 1 2

(9)

As an illustrative example on the behavior of the SWQS Markov
process, we consider a system state realization at time ⩾t 0 in Fig. 2.
The system state example considered in Fig. 2 at = =N t i N t i( ) , ( )1 1 2 2,
and = =S t s s( ) ( , ) (ℓ ,ℓ )1 2 1,1 2,2 . An arrival of a job of type 1 with a
rate of λ1 would result in a transition to state

= + = =N t i N t i S t{ ( ) 1, ( ) , ( ) (ℓ ,ℓ )}1 1 2 2 1,1 2,2 . An arrival of a job of type 2
with a rate of λ2 would result in a transition to state

= = + =N t i N t i S t{ ( ) , ( ) 1, ( ) (ℓ ,ℓ )}1 1 2 2 1,1 2,2 . A service completion at
server 1 results in a transition to state

= − = = +N t i N t i S t{ ( ) 1, ( ) , ( ) (ℓ 1,ℓ )}1 1 2 2 1,1 2,2 at a rate of μ (ℓ )1,1 1,1 . Simi-
larly, a service completion at server 2 results in a transition to state

= = − = +N t i N t i S t{ ( ) , ( ) 1, ( ) (ℓ ,ℓ 1)}1 1 2 2 1,1 2,2 at a rate of μ (ℓ )2,2 2,2 .
Next, we perform an analytical comparison of special cases of the

FWQS and SWQS models.

3.3. FWQS and SWQS – analytical comparison

Consider a special case of the FWQS where the service time is
always assumed to operate at steady state (i.e., the expected
service time is constant and independent of learning and forgetting)

Fig. 1. Markov process transition rates – FWQS example.
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and the service time at both servers is identical,
= = =T T T i( (ℓ ) (ℓ ) (ℓ ) for 1,2)i max i max i max,1 ,2 . In such a case, the service

time in the FWQS follows a two state Hyper-Exponential distribution
with parameters, = −p μ T, (ℓ )max1 1

1 and = −μ T (ℓ )max2 2
1 , and the FWQS

is reduced to an M H/ /22 system. The work in Maddah, Nasr, and
Charanek (2017) shows that an M H/ /22 outperforms a specialized
two server queueing system except in special cases where the
variability of the H2 distribution is very high. High service time is
exhibited in the case where ≫μ μ1 2 and →p 01 . The intended ap-
plications of this work do not assume such extreme variability in the
service time. Accordingly and without loss of generality, we can
conclude that (at steady state) the FWQS performs better than the
SWQS when the expected service time is constant (assumed to be the
standard time) and independent of the learning state.

An obvious advantage of the SWQS queueing system over the FWQS
queueing system is that forgetting does not impact the service time. As
the impact of forgetting on the service rate increases, the performance
of the SWQS improves relative to the FWQS. In such a case, the relative
performance of the FWQS and SWQS is dependent on the learning and
forgetting parameters and possibly other system parameters. This serves
as a further motivation for the mathematical model presented in this
work, which allows for a numerical comparison to quantify the ad-
vantages of each queueing system. In the next section, we present a
numerical comparison to investigate and compare the performance of
the FWQS and SWQS models under different system parameters.

3.4. Extending the queueing systems to multiple servers and job types

We generalize the FWQS to account for ns servers and nj job types.
The flexible workforce model assumes that a server can handle any job
type. Accordingly, each server achieves a learning state relative to all
job types where ℓi j, is defined for = …i n1, , s and = …j n1, , j. The learning
state vector for server i is denoted by = …s (ℓ , ,ℓ )i i i n,1 , j for = …i n1, , s. The
occupancy status of the ith server as expressed by Eq. (3) for the two
server case is generalized to,

= ⎧
⎨⎩ = …W i

i
j i j j n( )
0if the th server is not occupied
if the th server is occupied with job of type for 1, , .t

j

(10)

A system state of the Markovian representation at time ⩾t 0 is re-
presented by the number-in-system = …N t c( ) 0, ,f , the learning states of
the servers = …S t s s( ) ( , , )n1 s and the status of the ith server W i( )t for

= …i n1, , s. Consequently, the number of system states is +n(( 1) ℓ )j max
ns

for ⩽N t n( )f s, and the number of system states is −c n n( ) ( ℓ )s j max
ns . This

results in a total number of + + −n c n n(( 1) ℓ ) ( ) ( ℓ )j max
n

s j max
ns s states,

which also corresponds to the number of differential equations as re-
presented by the KFEs.

Consider a moderately sized system with three servers ( =n 3s ),
three job types ( =n 3j ), maximum learning level of 5 ( =ℓ 5max ), and a
capacity of 20 ( =c 20). The total number of system states is

+ × + − × =((3 1) 5) (20 3) (3 5) 65,3753 3 . This corresponds to a set of
63,375 homogeneous differential equations as represented by the KFEs.
Accordingly, moderately sized problems would result in a large number
of systems states and numerically integrating the KFEs becomes com-
putationally extensive and even prohibitive. Approaches to investigate
the performance of such systems can resort to approximating the mo-
ment approximations. We refer to Clark (1981), Taaffe and Ong (1987)
and Nasr (2008) for approaches to approximate Markovian queueing
systems with a large number of system states. Other approaches can
include resorting to Monte-Carlo simulation to approximate the beha-
vior of the queueing system at discrete points in time. Here we do not
further describe the computational approaches to efficiently approx-
imate the performance of the general FWQS. Extensions of this work
can include providing computational approaches and approximations
to solve for the key characteristics of the queueing system.

4. Quantifying system performance

Real world applications for which specialized and flexible servers
are implemented include car manufacturing industry (Jordan, Inman, &
Blumenfeld, 2004), manufacturing and service operations (Iravani, Van
Oyen, & Sims, 2005) production systems (Hopp, Tekin, & Van Oyen,
2004), maintenance and service operations (Brusco & Johns, 1998),

Fig. 2. Markov process transition rates – SWQS example.
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among other real work applications. Cross training workers in the
context of manufacturing systems is addressed in Jordan et al. (2004)
where the authors quantify the benefits of cross training. Although a
flexible workforce can improve the efficiency of a manufacturing pro-
cess, producing a flexible workforce comes at a cost which can be
quantified in terms of training and pooling workers. Pooling workers
can lead to a loss of quality, which is emphasized in the context of
service operations in Iravani et al. (2005) and Brusco and Johns (1998).
This further motivates quantifying the operational performance of
flexible and specialized workforces, which results in a more informed
decision making process. Accordingly, the savings incurred by utilizing
a flexible system should off-set the training and quality costs.

We compare the FWQS and SWQS and also consider the M/M/2/c
parallel server system, which assumes the servers always operate at
standard timeTs and does not account for learning/forgetting. Let N t( )m

be the number-in-system at time t for the M/M/2/c system operating at
standard time. The number-in-system for the M/M/2/c queueing node,
N t( )m , is calculated by solving the KFEs for ≥t 0,

′ = − +
′ = − + + +

= …
< − + <

P t λ P μ P

P t λ i P t λ P t μ P t i

c

( ) and

( ) ( I max( ,2)) ( ) ( ) 2 ( ) I for

1, , .
i i c i i i i c

0 0 1

( ) 1 1 ( )

(11)

Performing such a comparison allows a manager to quantify the impact
of ignoring learning and forgetting in a parallel server setting. The
congestion measures we consider are the number-in-system for the
different queueing systems. Accordingly, denote the time-average of the
expected number-in-system over the time interval T[0, ] by N tE[ ( )], for
the SWQS, FWQS and M/M/2/c systems,

∫
= =N T

N t dt
T

i f s mE[ ( )]
E[ ( )]

, for , and ,i

T
i0

where f s, and m correspond to FWQS, SWQS and the M/M/2/c systems,
respectively. Let Δ1 denote the improvement of utilizing the SWQS over
the FWQS,

=
−

×
N T N T

N T
Δ

E[ ( )] E[ ( )]
E[ ( )]

100.f s

f
1

The impact of learning and forgetting on the parallel server system is
measured by Δ2 as follows,

=
−

×
N T N T

N T
Δ

E[ ( )] E[ ( )]
E[ ( )]

100.f m

m
2

Consequently, Δ2, quantifies the unaccounted cost of ignoring learning/
forgetting by assuming that the servers operate at the optimal standard
time. High values of Δ2 indicate that ignoring learning/forgetting

Fig. 4. Number-in-system comparison for FWQS, SWQS and M M c/ /2/ – ( = =T L2, 65%1 ).

Fig. 3. Number-in-system comparison for FWQS, SWQS and M M c/ /2/ – ( = =T L2, 95%1 ).
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results in misleading performance measures. We further quantify the
congestion cost over the time interval [ T0, ] by c N T TE[ ( )]n i for

=i f s m, , , where cn denotes the cost per job per unit time.
Another performance measure we consider is the proportion of lost

jobs that can not enter the system due to the capacity constraint, which
is referred to as balking. Over the time interval T[0, ], the number of
customers balked is B T( ). The expected number of customers balked for
each system queueing system is calculated as follows,

∫
=

=
=B T

N t c dt
T

λ i f s mE[ ( )]
Prob( ( ) )

for , and .i

T
i0

The percentage of arriving customers that balk over the time in-
terval T[0, ] becomes,

= × =β B T
λ T

i f s mE[ ( )] 100 for , and .i
i

Let cb denote the cost of not allowing a job to enter the system as a
result of balking. Accordingly, the cost of balking over the time interval

[ T0, ] is denoted by =c λ T β c B T( /100) E[ ( )]b i b i for =i f s m, , . The total
system cost as quantified by the congestion and balking
measures over the time interval [ T0, ] is calculated as

= +Cost T c N T T c B T( ) E[ ( )] E[ ( )]i n i b i for =i f s m, , . From a managerial
perspective, a flexible server system is preferred if the cost of cross-
training workers and pooling does not exceed −Cost T Cost T( ) ( )s f .

5. Numerical examples

Consider a base case system with two servers and two job types
where every server has 5 learning states, =ℓ 5max . The initial time to
complete a job is = =T T(1) 2i j, 1 and the steady state time is half the
initial time, i.e., the standard time of a server is = =T T(ℓ ) 1i j max s, for

=i j, 1,2. The service type for =i j, 1,2 is assumed as follows,

⎧

⎨
⎩

=
=
= =

−T
T
T
T

(ℓ)
for ℓ 1,

ℓ for ℓ 2,3,4,
for ℓ ℓ 5,

i j b

s max

,

1

1 i j,

(12)

where = =T T T T(1) , (ℓ )i j i j max s, 1 , and =b bi j, , for =i j, 1,2. The arrival rate
of jobs is =λ 1.6 where the probability an arriving job is of type 1 or of
type 2 is =p 0.31 and = − =p p1 0.72 1 , respectively. For the base case
example with =λ 1.6 and =T 1s , the standard utilization of the M/M/
2/c system operating at standard time becomes = =ρ 0.8s

λ T
2

s , Eq. (2).

5.1. Transient analysis

The FWQS and SWQS models are investigated over the time interval
T[0, ] where the system starts empty at time =t 0. The learning state of

the servers at time =t 0 is initialized to learning states 1, =ℓ 1i j, for
=i j, 1,2. An empty system at =t 0 and initializing the learning states to

1 results in a considerable time duration before the system achieve
steady state. For this reason, the transient behavior of the system should
be closely observed to obtain accurate calculations of the system be-
havior.

Fig. 3 plots the number of jobs in the system for the FWQS, SWQS
and M/M/2/c system using the base case parameters with =L 95%,
which results in a slower learning rate. The plots in Fig. 1 illustrate that
over the time interval [0,40], a slower learning rate results in a lower
average number-in-system for the SWQS. From a managerial perspec-
tive, the FWQS performs better if the system runs for short time in-
tervals <t 12.2, but on the long runs the SWQS becomes more efficient.

The base case parameters are reconsidered for =L 65% in Fig. 4

Table 4
Performance measures of queueing systems – ( = =T ρ3, 0.8s1 ).

Average number-in-system Probability of balking

N tE[ ( )] β

L SWQS FWQS M/M/2/c Δ1 Δ2 SWQS FWQS M/M/2/c δ1 δ2

95% (Low) 10.52 13.26 3.35 20.68% 295.78% 6.41% 20.73% 0.09% 14.32% 20.64%
85% 9.85 12.68 3.35 22.30% 278.50% 4.90% 17.02% 0.09% 12.13% 16.94%
75% 9.18 11.93 3.35 23.04% 256.21% 3.75% 13.31% 0.09% 9.56% 13.23%
65%(High) 8.54 10.99 3.35 22.34% 228.20% 2.91% 9.83% 0.09% 6.92% 9.74%

Table 5
Cost of queueing systems over time interval [ T0, ] − ( = =T ρ3, 0.8s1 ).

Cost

L SWQS FWQS M/M/2/c Δcost1 Δcost2

0.95% (Low) 46.16 66.29 13.45 30.37% 392.79%
0.85% 42.54 61.61 13.45 30.95% 357.95%
0.75% 39.13 56.24 13.45 30.43% 318.09%
0.65% (High) 36.01 50.26 13.45 28.35% 273.63%

Table 1
Performance of queueing systems – ( = =T ρ2, 0.8s1 ). Performance measure: average
number-in-system.

N tE[ ( )]

L SWQS FWQS M/M/2/c Δ1 Δ2

95% (Low) 8.41 9.74 3.35 13.63% 190.83%
85% 7.90 8.66 3.35 8.73% 158.46%
75% 7.44 7.48 3.35 0.60% 123.34%
65% (High) 7.11 6.56 3.35 −8.37% 95.89%

Table 2
Performance of queueing systems – ( = =T ρ2, 0.8s1 ). Performance measure: probability of
balking.

β

L SWQS FWQS M/M/2/c δ1 δ2

95% (Low) 2.74% 6.42% 0.09% 3.68% 6.34%
85% 2.21% 4.14% 0.09% 1.93% 4.06%
75% 1.83% 2.45% 0.09% 0.62% 2.37%
65% (High) 1.60% 1.55% 0.09% −0.06% 1.46%

Table 3
Cost of queueing systems over time interval [ T0, ] – ( = =T ρ2, 0.8s1 ).

Cost

L SWQS FWQS M/M/2/c Δcost1 Δcost2

95% (Low) 35.41 43.07 13.45 17.8% 220.2%
85% 33.02 37.28 13.45 11.42% 177.13%
75% 30.91 31.49 13.45 1.84% 134.1%
65% (High) 29.47 27.24 13.45 −8.20% 102.47%
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where a faster learning rate resulted in lower number-in-system on
average for the FWQS. In Fig. 4, the difference between N t( )f and N t( )s
does not exceed 0.3 for ∈t [0,20]. For shorter time intervals, both
queueing systems have comparable performances. From a managerial
perspective, this gives flexibility to managers as the models are in-
different over the time segment [0,20]. The plots in Figs. 3 and 4 both
illustrate that in the case where the servers always operates at standard
time, =T 1s , (assuming learning and forgetting do not impact service
rates), the performance of the system, as measured by the M/M/2/c
system, is superior to both queueing system. This also illustrates that
ignoring learning and forgetting by assuming that an expert service is
performing at the most efficient service time leads to erroneously op-
timistic performance measures. Another important observation is the
very slow convergence of the FWQS and SWQS compared to the
M M c/ /2/ system. In Figs. 3 and 4, the M M c/ /2/ system converges to
within 3.65% of it steady state value of 4.23 by time =T 40. In Fig. 3, the
FWQS and SWQS converge to within 10.12% and 20.44% of their steady
state values of 15.49 and 13.91, respectively. Similarly in Fig. 4, the
FWQS and SWQS converge to within 9.31% and 26.32%, respectively, of
their steady state values of 9.42 and 13.90, respectively. This numeri-
cally illustrates the slow convergence to steady state and emphasizes
the importance of transient analysis.

5.2. Sensitivity analysis

The performance measures of the SWQS and FWQS models are
summarized in Tables 1 and 2 for the base case example for different
levels of L. For high learning levels, the FWQS results in a smaller
number-in-system than the SWQS as illustrated by Δ1 in Table 1. Not

accounting for learning/forgetting results in significant overestimation
of the number-in-system as illustrated by Δ2. We set the number-in-
system and balking cost parameters to =c 0.1n $ per job per unit time
and =c 1b $ per job. Accordingly, Table 3 quantifies the systems costs
which decreases for the SWQS and FWQS as the learning rates improve.
Table 3 illustrates that improving the learning rate has a larger effect on
the FWQS cost which improves from 43.07 to 27.24 (36.75% im-
provement). The cost of the SWQS is less sensitive to the improved
learning rate (relative to the FWQS) and decreases from 35.21 to 29.47
(16.77% improvement).

The balking performance measures are presented in Table 2 for the
base case example for different levels of L. The increase in percentage
balked when utilizing the FWQS instead of the SWQS is represented by

= −δ β βf s1 in Table 2. Ignoring learning/forgetting results in an increase
of δ2 of balked jobs where = −δ β βf m2 . From a managerial perspective,
δ2 quantifies the expected number of balked jobs that are unaccounted
for if learning/forgetting is not factored in.

Next, we conduct sensitivity analysis on the system parameters ρ T,s 1,
and Vw. Since a key parameter is the learning level, L, we report the
results of the sensitivity analysis relative to the different levels of L. We
also note that the range on the learning level considered is 65% to 95%.
This is motivated by several studies in the literature that investigate and
categorize the different learning rates. Dutton and Thomas (1984)
provide a distribution of 108 learning rates collected from different
sources and industries. Their results show that the majority of ob-
servations are in the neighborhood of 80%. Of all observations, 10 were
either very fast (<70%) or very slow (>90%). Dar-El (2013) tabulated
learning rates collected from different studies and experiments. The
range of the learning rates corroborated the finding of Dutton and

Table 8
Performance measures of queueing systems − ( = =T ρ2, 0.7s1 ).

Average number-in-system Probability of balking

N tE[ ( )] β

L SWQS FWQS M/M/2/c Δ1 Δ2 SWQS FWQS M/M/2/c δ1 δ2

95% (Low) 6.42 7.44 2.40 13.68% 210.65% 1.07% 2.84% 0.01% 1.77% 2.82%
85% 5.95 6.40 2.40 7.12% 167.30% 0.78% 1.60% 0.01% 0.82% 1.59%
75% 5.53 5.39 2.40 −2.71% 124.81% 0.60% 0.83% 0.01% 0.23% 0.81%
65% (High) 5.25 4.66 2.40 −12.79% 94.34% 0.50% 0.47% 0.01% −0.02% 0.46%

Table 9
Cost of queueing systems over time interval [ T0, ] − ( = =T ρ2, 0.7s1 ).

Cost

L SWQS FWQS M/M/2/c Δcost1 Δcost2

0.95% (Low) 26.38 31.59 9.59 16.49% 229.32%
0.85% 24.29 26.64 9.59 8.80% 177.74%
0.75% 22.51 22.07 9.59 −1.98% 130.14%
0.65% (High) 21.32 18.93 9.59 −12.66% 97.32%

Table 6
Performance measures of queueing systems − ( = =T ρ4, 0.8s1 ).

Average number-in-system Probability of balking

N tE[ ( )] β

L SWQS FWQS M/M/2/c Δ1 Δ2 SWQS FWQS M/M/2/c δ1 δ2

95% (Low) 12.14 14.59 3.35 16.79% 335.54% 11.98% 31.81% 0.09% 19.83% 31.73%
85% 11.48 14.29 3.35 19.65% 326.57% 9.26% 28.45% 0.09% 19.18% 28.36%
75% 10.76 13.89 3.35 22.49% 314.56% 7.03% 24.75% 0.09% 17.72% 24.66%
65% (High) 10.01 13.35 3.35 24.97% 298.43% 5.30% 20.80% 0.09% 15.50% 20.71%

Table 7
Cost of queueing systems over time interval [ T0, ] − ( = =T ρ4, 0.8s1 ).

Cost

L SWQS FWQS M/M/2/c Δcost1 Δcost2

0.95% (Low) 56.22 78.71 13.45 28.57% 485.12%
0.85% 51.85 75.36 13.45 31.2 460.17%
0.75% 47.55 71.38 13.45 33.38% 430.61%
65% (High) 43.45 66.69 13.45 34.85% 395.77%
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Thomas (1984). By further investigation, Dar-El (2013) classified the
learning rates he gathered as pure cognitive (70%), highly cognitive
( −70 75%), more cognitive than motor ( −75 80%), more motor than
cognitive ( −80 85%), highly motor ( −85 90%), and pure motor (90%).
Accordingly, a range of 65% to 95% is representative of most industrial
operations.

We reconsider the base case for larger values of the starting time T1
where the service time for the different learning/forgetting states is
calculate by Eq. (12). Increasing T1 results in a larger gap between what
an expert can achieve compared to servicing a job for the first time.
Tables 4 and 6 present the performance measures (number-in-system
and balking) for =T 31 and =T 41 , respectively. Tables 5–7 calculate the
systems costs for =T 31 and =T 41 , respectively. Increasing the gap
between T1 and Ts increases the impact of learning (compared to the
base case example with =T 21 ) since low learning levels now result in
high service times. This further compounds the impact of learning on
the performance measures. Consequently, the SWQS provides better
results (as illustrated by δΔ ,1 1 and Δcost1). The results are consistent with
the observation that as the impact of learning and forgetting increase
the performance of the SWQS system improves in comparison with the
performance of the FWQS. The impact of ignoring learning/forgetting is
very high where Δ2 ranges between 228.2% and 295.78% when =T 31

(Table 4) and ranges between 298.43% and 335.54% when =T 41

(Table 6). This further illustrates that ignoring the effects of learning
and forgetting on the operational performance of the workforce by
assuming steady state service durations can lead to inaccurate and
misleading estimates.

Next, we investigate the performance of the SWQS and FWQS
models for different traffic intensities. The traffic intensity ρs is set to

0.7 ( =λ 1.4) and 0.9 ( =λ 1.8) by varying the arrival rates in Tables 8
and 10, respectively. Tables 9–11 calculate the systems costs for

=ρ 0.7s and =ρ 0.9s , respectively. Comparing Table 8 with the base
case Tables 1 and 2, the FWQS performs better for =L 65% and =L 75%
compared to the base case where the FWQS outperforms the SWQS for

=L 65% only. The results are consistent with the calculations of Tables
10 and 11 where increasing the traffic intensity improves the perfor-
mance of the SWQS relative to the FWQS. The FWQS performs better
for low traffic intensities and high learning rates. This is illustrated by
Δ1 in the last columns of Tables 8, 1 and 10 where for =L 65% the Δ1
= − − −[ 12.79%, 8.37%, 4.49%] for ρ= [0.7,0.8,0.9], respectively.

We re-consider the base case for different values of Vw which mea-
sures the workload variation. We first present in Table 12 the calcula-
tions by increasing Vw from 0.21 to 0.25 by setting =p 0.5, ( =p 0.3 in
the base case example). As expected, increasing the workload variation
results in a larger number-in-system, higher balking rates and higher
system costs as can be seen by comparing the entries of Tables 12 and
13 ( = =V p0.25, 0.5w ) with the base case Tables 1 and 2 ( =p 0.3).
Positive values of Δ1 for all learning rates quantify the improvement of
utilizing a SWQS over a FWQS for higher workload variability. Also, the
significant increase in Δ2 and Δcost2 of Tables 12 and 13, compared to the
results of the base case, emphasize the impact of ignoring the learning
effects in the presence of high variation in the workload. The FWQS
consistently outperforms the SWQS for lower workload variability,

=p 0.1 as illustrated by Δ1 and Δcost1 in Tables 14 and 15, respectively.
From a managerial perspective, it becomes important to note that the
workforce policy should be dependent on the learning level as well as
the variation in the workload.

Another important observations is that even for specialized servers,

Table 12
Performance measures of queueing systems − ( = = =T ρ V2, 0.8, 0.25s w1 ( =p 0.5)).

Average number-in-system Probability of balking

N tE[ ( )] β

L SWQS FWQS M/M/2/c Δ1 Δ2 SWQS FWQS M/M/2/c δ1 δ2

95% (Low) 6.71 10.71 3.35 37.39% 219.74% 0.86% 9.19% 0.09% 8.33% 9.10%
85% 6.17 9.67 3.35 36.16% 188.64% 0.58% 6.15% 0.09% 5.57% 6.07%
75% 5.71 8.42 3.35 32.20% 151.44% 0.41% 3.69% 0.09% 3.29% 3.61%
65% (High) 5.40 7.28 3.35 25.76% 117.28% 0.32% 2.22% 0.09% 1.89% 2.13%

Table 13
Cost of queueing systems over time interval [ T0, ] − ( = = =T ρ V2, 0.8, 0.25s w1 ).

Cost

L SWQS FWQS M/M/2/c Δcost1 Δcost2

0.95% (Low) 27.37 48.72 13.45 43.82% 262.16%
0.85% 25.06 42.61 13.45 41.19% 216.73%
0.75% 23.1 36.05 13.45 35.92% 168%
0.65% (High) 21.82 30.53 13.45 28.53% 126.94%

Table 10
Performance measures of queueing systems − ( = =T ρ2, 0.9s1 ).

Average number-in-system Probability of balking

N tE[ ( )] β

L SWQS FWQS M/M/2/c Δ1 Δ2 SWQS FWQS M/M/2/c δ1 δ2

95% (Low) 10.37 11.75 4.68 11.74% 151.23% 6.77% 13.58% 0.46% 6.81% 13.12%
85% 9.88 10.79 4.68 8.49% 130.76% 5.83% 9.80% 0.46% 3.97% 9.34%
75% 9.41 9.65 4.68 2.55% 106.39% 5.09% 6.55% 0.46% 1.46% 6.09%
65% (High) 9.07 8.68 4.68 −4.46% 85.59% 4.63% 4.56% 0.46% −0.07% 4.10%

Table 11
Cost of queueing systems over time interval [ T0, ] − ( = =T ρ2, 0.9s1 ).

Cost

L SWQS FWQS M/M/2/c Δcost1 Δcost2

0.95% (Low) 45.81 55.69 19.00 17.74% 193.05%
0.85% 43.23 49.44 19.00 12.55% 160.16%
0.75% 40.88 42.8 19.00 4.48% 125.21%
0.65% (High) 39.23 37.63 19.00 −4.24% 98.04%
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convergence time is slow and accordingly the time to achieve the
standard service time has to be accounted for. The slow convergence
time is further amplified in the FWQS where an increase in Vw increases
the probability of alternating the workload and results in slower con-
vergence time. The numerical examples also illustrate that the
learning/forgetting rate is not the only system characteristic which
needs to be considered when comparing the flexible and specialized
queueing systems. The traffic intensity and workload variation also
effect the performance of the flexible and specialized workforce
queueing systems.

The computational framework presented in this work allows a de-
cision maker to closely investigate the transient behavior of the system
at all points in time, which can lead to a more informed decision
making process. Figs. 3 and 4 numerically illustrate the applicability of
the mathematical model when investigating the transient behavior of
the queueing systems by clearly identifying the time range for which a
queueing system is favorable. We also present a numerical comparison
of the queueing systems over different learning levels that range from
65% to 95%. We note that the range of the learning rate considered,
65–95%, covers the commonly observed learning ranges, Dutton and
Thomas (1984), Dar-El (2013). The numerical study observes that ig-
noring the effects of learning and forgetting by assuming steady state
service durations leads to erroneous results and under estimates the
costs as quantified by the performance measures. We also illustrate the
robustness of the computational framework in terms of conducting
sensitivity analysis on the base case example. We observe that in-
creasing the traffic intensity improves the performance of the SWQS
relative to the FWQS. Similarly, lower workload variability results in an
improved performance of the FWQS relative to the SWQS.

6. Conclusion

This work investigates queueing systems with state-dependent ser-
vice times and compares the benefits of utilizing flexible and specia-
lized servers. The state of the system at any point in time ⩾t 0, is de-
termined by the learning state of the servers and the number-in-system.
Accordingly, for ⩾t 0, every server has a learning state relative to every
job type which results in state-dependent service rates. The learning
levels fluctuate according to the variation in the content of the work-
load where learning or forgetting is captured when a job completes
service by increasing or decreasing the learning states. We present a
numerical approach to capture the performance measures of the FWQS

and SWQS. The approached is based on obtaining the state-space of the
Markovian representation along with the corresponding KFEs.

An outcome of solving the KFEs is that for any ⩾t 0, the perfor-
mance of the queueing systems can be closely observed and compared.
From a managerial perspective, this results in a more informed and
dynamic decision making process. The performance measures include
the number-in-system as well as the number of balked customers.
Numerical examples are presented for different system parameters
which include learning rates, traffic intensity, initial service durations,
and workload variation. The examples illustrate that the decision
making process is not solely based on the learning rate but should also
account for the different system parameters. Another significant man-
agerial observation is that although a certain specialized or flexible
workforce policy performs better at steady state, a different policy
might perform better for short time periods. Accordingly, the best
workforce policy is dependent on the operational time of the system
especially if convergence to steady state is slow.

To the best of our knowledge, this is the first attempt to capture the
behavior of queueing nodes with state-dependent service times where
agile and specialized servers are compared. Like any other piece of
scholarship, this work has limitations. One of which is the complexity of
the mathematical model, which restricts the numerical examples to two
servers with two types of jobs. Otherwise, as explained in an earlier
section, the number of system states will be numerous and very difficult
to handle. Having a manageable problem size makes it easier for us to
interpret the results and for the reader to assimilate the idea and its
importance. One may ask why the model was not used to solve an in-
dustrial problem. A typical manufacturing facility consists of many and
different processes (servers) and jobs. Although the model has been
generalized for different numbers of servers and jobs, adopting it in an
industrial setting is an endeavor of its own and is outside the scope of
this paper. Future work can build on the Markovian representation and
consider queueing systems with >s 2 servers with >n 2 types of job.
Increasing the number of servers and job types increases the system-
state space, which can significantly increase the computational com-
plexity. In such a case, future work can consider Monte Carlo simulation
as an alternative to solving the KFEs.
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