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ABSTRACT 

OF THE THESIS OF  
 

Israa Adel Asaad  for  Master of Engineering Management 

      Major:  Engineering Management 

 

 

Title: Momentum Block GDA: A Block Coordinate Algorithm for Solving Bilinear 

Min-Max Games 

 

With growing applications in Machine Learning, Game Theory, and the training of 

Generative Adversarial Networks GANs, solving min-max problems and establishing 

their convergence properties have experienced significant attention. Gradient Descent 

Ascent (GDA) and Optimistic Gradient Descent Ascent (OGDA) algorithms are popular 

algorithms used to solve saddle point problems. In an effort to address the issue of 

oscillating convergence behavior of these algorithms, we propose a dynamic method for 

solving bilinear problems. Our proposed method is characterized by its novel mechanism 

that dynamically chooses the coordinates to be updated at every iteration to guarantee a 

more stable and efficient convergence. Motivated by OGDA, we propose an algorithm, 

denoted Momentum Block-based Gradient Descent Ascent (MBGDA), that utilizes the 

momentum at every iterate to determine the block of coordinates for which a gradient 

step is applied. We present several empirical results that demonstrate the superior 

performance of our proposed algorithm compared to existing first- order methods for 

solving bilinear saddle point problems. More specifically, MBGDA achieves more stable 

convergence properties and achieves a higher probability of convergence in non- convex 

non-concave settings.  
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CHAPTER I 

INTRODUCTION 

In recent years, several methods and algorithms have been developed to solve min-

max optimization problems; also commonly known as saddle point problems. This urge 

was fueled by the significant advancements in theoretical literature and computational 

power. These problems arise in several popular machine learning models; see Generative 

Adversarial Networks (GANs)  (Goodfellow, et al., 2014), reinforcement learning (B. 

Dai, 2018), image reconstruction and registration  (Modersitzki & Haber, 2007), fair 

machine learning (Joseph, Kearns, Morgenstern, & Roth, 2016), adversarial neural 

networks (Ajakan, Germain, Larochelle, Laviolette, & Marchand, 2015). 

In its general settings, the min-max problem can be formulated as   

min
𝒙∈𝑿

max
𝒚∈𝒀

𝑓(𝑥, 𝑦),  (1) 

 

 

where 𝑓(𝑥, 𝑦) is the objective function 𝑓: 𝑋 ×  𝑌 →  ℝ and 𝑿 and 𝑌 are the feasibility 

sets of 𝒙 and 𝒚. By denoting the maximization value function as 𝑔(𝑥)  =  max
𝑦∈𝑌

𝑓(𝑥, 𝑦) , 

problem (1) can be reformulated as 

min
𝒙∈𝑿

𝑔(𝑥), 

where 𝑔(𝑥) is the optimal objective value of a maximization problem. 

Despite being expressed as a traditional optimization problem, this problem is 

hard to solve due to non-differentiability of 𝑔(𝑥) and the difficulty in evaluating the 

function. From a game- theory perspective, this problem can also be viewed as a zero-

sum game where 𝒙 is the decision variable of the first player, 𝒚 is the decision variable of 
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the second player and 𝑓(𝒙, 𝒚) is the objective function of the two players. The first player 

aims to minimize the objective function by choosing 𝒙 while the second aims to maximize 

it by choosing 𝒚. The goal is to find a Nash equilibrium defined below: 

Definition 1: We say a point (𝒙∗, 𝒚∗) is a Nash Equilibrium (NE) point if it satisfies the 

following inequality 

𝑓(𝒙∗, 𝒚) ≤ 𝑓(𝒙∗, 𝒚∗) ≤ 𝑓(𝒙, 𝒚∗) ∀ 𝒙 ∈ 𝑿 and 𝒚 ∈ 𝒀. 

In applications of GANs, this translates to finding a zero-sum game between the 

Generator (G) and the Discriminator (D) (Goodfellow, et al., 2014). The Generator aims 

at generating data points similar to points in the provided dataset. The Discriminator, 

however, aims at discriminating between the generated sample and a true sample. In an 

attempt to reach equilibrium, the two deep neural networks are trained usually by 

stochastic methods applied on both players (Daskalakis, Ilyas, Syrgkanis, & Zeng, 2017).   

In general, min-max problems arising in machine learning applications have 

complex structure and can potentially be nonconvex-nonconcave problems; i.e. 𝑓(∙, 𝒚) is 

non-convex in 𝒙 and 𝑓(𝒙,∙) is non-concave in 𝒚. In these cases, finding a Nash Equilibria 

is NP-Hard.  A modest goal in such cases would be to find a first-order stationary solution. 

Several first order methods have been recently proposed to solve saddle point problems. 

Many of these algorithms fail to converge even to local min-max optimal solutions 

(Daskalakis & Panageas, 2018).  

In the non-convex concave settings, several papers have proposed gradient based 

algorithms like the stochastic sub-gradient descent method (Rafique, Liu, Lin, & Yang, 

2019) and the multi-step gradient descent ascent algorithm (Nouiehed, Sanjabi, Huang, 

Lee, & Razaviyayn, 2019). The multi-step gradient method performs multiple gradient 
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ascent steps to estimate the solution for the inner maximization problem followed by a 

single gradient descent (Nouiehed, Sanjabi, Huang, Lee, & Razaviyayn, 2019).  Under 

mild conditions, these methods are guaranteed to converge to a first-order solution of 𝑔(⋅

). 

In convex-concave settings, where 𝑓(⋅, 𝒚) is convex in 𝒙 for every 𝒚 ∈ 𝒀 and 𝑓(𝒙,⋅

) concave in 𝒚 for every 𝒙 ∈ 𝑿, finding a Nash equilibrium can be achieved using variants 

of the gradient based algorithms (Bubeck, 2015). These proposed first-order methods are 

local search iterative algorithms. A more special case is the min-max bilinear problem 

formulated below.  

min
𝒙∈𝑿

max
𝒚∈𝒀

𝒙𝑇𝑨𝒚 + 𝒃𝑇𝒙 + 𝒄𝑇𝐲 ,  (2) 

where 𝑨 ∈ 𝑅𝒏×𝒎, 𝒙 ∈ 𝑅𝒏 is the decision variable to be minimized, and 𝒚 ∈ 𝑅𝒎 is the 

decision variable to be maximized.  

Applications of bilinear programming extend to constrained bimatrix games, 

Markovian assignment, and complementarity problems (Konno, 1975; Nahapetyan, 

2007). In this thesis, we focus on finding the Nash equilibrium for this bilinear problem. 

The min-max theorem by Von Neumann states that   

min
𝒙∈𝑿

max
𝒚∈𝒀

𝒙𝑇𝑨𝒚 = max
𝒚∈𝒀

min
𝒙∈𝑿

𝒙𝑇𝑨𝒚 . 

Thus, the solution of the right-hand side and the left-hand side are equivalent. This holds 

for any convex compact sets. 

Most algorithms proposed for solving these problems are variants of GD. 

However, these variants might diverge for simple bilinear problems, cycle without the 

last iterate converging to the optimal solution, and converge to stationary points rather 
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than the optimal solution (Adolphs, Daneshmand, Lucchi, & Hofmann, 2019). To solve 

the min-max optimization problems and achieve this equilibrium, several algorithms have 

been developed. While being studied extensively, existing algorithms fail in scaling with 

the data size and are highly dependent on the vector initialization and underperform in 

non-convex non-concave settings. 

Extensions of the gradient descent algorithms to min-max optimization problems, 

specifically the bilinear case, include: The Gradient Descent Ascent (GDA), Optimistic 

Gradient Descent Ascent (OGDA), Extra Gradient (EG), and the Proximal Point (PP) 

methods. These methods utilize the gradients at every iteration to solve the saddle point 

problem (Mokhtari, Ozdaglar, & Pattathil, 2020). The algorithms are further discussed in 

later sections. 

We have conducted several experiments on these first order algorithms to monitor 

their performance. We have deduced that they cannot scale with the dimension of the 

problem. They are highly dependent on the problem initialization and the inter-correlation 

in the data. They also fail to converge in non-concave non-convex settings. In this favor, 

we proposed an algorithm Momentum based Block Gradient Descent Ascent (MBGDA) 

method that successfully converges to the optimal solution of bilinear problems. 

Compared to existing methods, MBGDA is less sensitive to the problem initializations 

and data size. It also guarantees a higher frequency of convergence in non-convex non-

concave settings. 

A. Related Work  

Before discussing the methodology of the proposed algorithm, we discuss the 

existing first order algorithms used for solving the unconstrained min-max bilinear 
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problems. Assume that 𝒙 ∈ 𝑅𝒏,  𝒚 ∈ 𝑅𝒎, and 𝑨 ∈ 𝑅𝒏×𝒎 . An iterative algorithm solves 

the saddle point problem by generating a sequence of iterates {(𝒙𝑡 , 𝒚𝑡)}𝑡 that guarantees 

convergence to an NE point. The most popular approach for solving bilinear problems is 

the vanilla Gradient Descent Ascent (GDA) method which is a natural extension of the 

Gradient Descent (GD) method. GDA performs a gradient descent step on 𝒙 followed by 

a gradient ascent step on 𝒚. The next iterate thus depends on the current gradient only. 

Let the constant positive step size be  α ∈ (0,1). The update procedure of GDA is the 

following: 

{
𝑥𝑡+1 = 𝑥𝑡 − α∇𝑥𝑓(𝑥𝑡 , 𝑦𝑡)

𝑦𝑡+1 = 𝑦𝑡 + α∇𝑦𝑓(𝑥𝑡 , 𝑦𝑡)
. 

 (3) 

It is used in several applications and converges linearly to the optimal solution in 

strongly- convex strongly-concave problems (Yan, Xu, Lin, Liu, & Yang, 2020). While 

proven successful in several min-max settings, GDA fails to converge in many cases 

including the unconstrained bilinear framework; see example 1. Despite its successful 

employment in min- max problems, no-regret algorithm fails to show good performance 

in a wide variety of cases. The GDA method and other algorithms do not show 

convergence in the bilinear case due to cycling around the optimal solution. 

Example 1: For instance, consider the simple two-dimensional bilinear example 

min
𝑥∈𝑅𝑚

max
𝑦∈𝑅𝑛

𝑓(𝑥, 𝑦) where 𝑓(𝑥, 𝑦) = 𝑥𝑦, and apply the GDA method to optimize the 

problem. Let 𝜃𝑡 = (𝑥𝑡 , 𝑦𝑡). The update rule (3) then becomes the following. 

{
𝑥𝑡+1 = 𝑥𝑡 − α𝑦𝑡
𝑦𝑡+1 = 𝑦𝑡 + α𝑥𝑡

   

By noticing that 
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‖𝜃𝑡+1‖
2 = (𝑥𝑡+1)

2 + (𝑦𝑡+1)
2 = (1 + α2)(𝑥𝑡)

2 + (1 + α2)(𝑦𝑡)
2 = (1 + α2)‖𝜃𝑡‖

2 

>‖𝜃𝑡‖
2, 

one can easily check that GDA diverges even for the simple bi-linear problem. 

Specifically, GDA fails to converge as the distance to the optimal solution increases at 

every iteration as illustrated in Figure 1.  

 

Figure 1 Divergence of GDA algorithm for simple 2-Dimensional Bilinear Case 

Despite the divergence behavior the Gradient Descent Ascent algorithm achieves 

average convergence; i.e., that for the trajectory of (𝒙𝑡 , 𝒚𝑡), the limit of 
1

𝑡
∑ 𝒙𝜏

𝑇𝑨𝒚𝜏𝜏≤𝑡  

converges to the equilibrium as 𝑡 → ∞.  This may occur without guaranteed convergence 

on the last iterate (𝒙𝑡 , 𝒚𝑡) that might possibly diverge or cycle. We might also get closer 

to the optimal solution without necessarily reaching it (Lei, Nagarajan, Panageas, & 

Wang, 2018).  

This motivated the development of a variant of the GDA method that can achieve 

last iterate convergence. To alleviate these issues, Daskalakis proposed the Optimistic 

Gradient Descent Ascent (OGDA) method to solve saddle point problems (Daskalakis, 
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Ilyas, Syrgkanis, & Zeng, 2017). The main concept behind OGDA lies in the addition of 

a negative momentum term to update at every iteration. It improves convergence to a 

local solution by acting as a “friction that can damp oscillations” and shifting the original 

eigenvalues towards the solution (Gidel, et al., 2020) The addition of this negative 

momentum also allows achieving an acceleration locally to enhance the convergence rate 

of GDA (Zhang & Wang, 2021). The generalized OGDA method considers that the step 

size of the descent and ascent steps of 𝒙 and 𝒚 respectively are not necessarily equal to 

the coefficient of the negative momentum. OGDA and generalized OGDA methods are 

proved to converge in bilinear objective functions and in strongly-concave strongly-

convex problems (Daskalakis, Ilyas, Syrgkanis, & Zeng, 2017). The OGDA method uses 

the following updating equations.  

{
𝑥𝑡+1 = 𝑥𝑡 − 𝛼∇𝑥𝑓(𝑥𝑡 , 𝑦𝑡) − α(∇𝑥𝑓(𝑥𝑡 , 𝑦𝑡) − ∇𝑥𝑓(𝑥𝑡−1, 𝑦𝑡−1))

𝑦𝑡+1 = 𝑦𝑡 + 𝛼∇𝑦𝑓(𝑥𝑡 , 𝑦𝑡) + α(∇𝑦𝑓(𝑥𝑡 , 𝑦𝑡) − ∇𝑦𝑓(𝑥𝑡−1, 𝑦𝑡−1))
. 

 (4) 

There exists a memory in its dynamics as the next iterate depend on the gradients 

of the current and previous points. However, this momentum allows moving in the 

negative gradient direction. Hence, if the momentum is negative, the next iterate updates 

the coordinates in an opposite direction. With that, a descent step might become an ascent 

and vice versa. This allows the coordinates to move further from the optimal solution 

before updating in the right direction and moving closer to it. This is further observed in 

Figure 3. 

Another method for solving saddle point problems is the Extra Gradient EG 

method. It is a classical method introduced by (Korpelevich, 1976). As its name suggests, 

EG computes the gradient between the current iteration 𝑡 and next iterations 𝑡 + 1. More 

specifically, at every iteration, EG uses the current gradient to calculate an intermediate 
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point which is used in updating the iterates. At every iteration, EG uses the current 

gradient to calculate the intermediate point as follows. 

{
𝑥𝑡+1 2⁄

= 𝑥𝑡 − 𝛼∇𝑥𝑓(𝑥𝑡 , 𝑦𝑡)

𝑦𝑡+1 2⁄
= 𝑦𝑡 + 𝛼∇𝑦𝑓(𝑥𝑡 , 𝑦𝑡)

 
  

The next iterate then uses 𝑥𝑡+1 2⁄
 and 𝑦𝑡+1 2⁄

 as follows. 

{
𝑥𝑡+1 = 𝑥𝑡 − 𝛼∇𝑥𝑓 (𝑥𝑡+1 2⁄

, 𝑦𝑡+1 2⁄
)

𝑦𝑡+1 = 𝑦𝑡 + 𝛼∇𝑦𝑓 (𝑥𝑡+1 2⁄
, 𝑦𝑡+1 2⁄

)
 

 (5) 

The convergence of EG was established for the bilinear and strongly-convex 

strongly-concave saddle point problems. (Mokhtari, Ozdaglar, & Pattathil, 2020). 

The EG and OGDA methods show similar behavior in solving min-max 

optimization problems. They both require using an added term to estimate the next 

gradient. Recently, they were proven as approximates of the Proximal Point (PP) method 

(Mokhtari, Ozdaglar, & Pattathil, 2020). The proximal point method was introduced by 

(Martinet, 1970) and was further studied for solving saddle point problems by 

(Rockafellar, 1976).  The PP method is an implicit algorithm that requires computing the 

next gradient at every iteration. It also converges to the unique solution of the saddle point 

problem in the strongly convex strongly concave and bilinear settings (Mokhtari, 

Ozdaglar, & Pattathil, 2020). The PP method computes the iterates as the follows. 

{
 

 𝑥𝑡+1 = 𝑝𝑟𝑜𝑥1
𝛼,𝑓
(𝑥𝑡) = argmin

𝑥∈𝑅𝑚
{𝑓(𝑥, 𝑦𝑡+1) +

1

2𝛼
‖𝑥 − 𝑥𝑡‖

2} 

𝑦𝑡+1 = 𝑝𝑟𝑜𝑥1
𝛼,𝑓
(𝑦𝑡) = argmin

𝑦∈𝑅𝑛
{𝑓(𝑥𝑡+1, 𝑦) +

1

2𝛼
‖𝑦 − 𝑦𝑡‖

2}
 

  

Using the optimality conditions, its update method can be written as the following.  
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{
𝑥𝑡+1 = 𝑥𝑡 − 𝛼∇𝑥𝑓(𝑥𝑡+1, 𝑦𝑡+1)

𝑦𝑡+1 = 𝑦𝑡 + 𝛼∇𝑦𝑓(𝑥𝑡+1, 𝑦𝑡+1)
 

 (6) 

  The EG and OGDA can be seen as approximates of the Proximal Point method 

where the gradient at the next iterate being approximated (Mokhtari, Ozdaglar, & 

Pattathil, 2020). 

 

B. Solving a Bilinear Problem 

Our goal is to find a Nash equilibrium point (𝒙∗, 𝒚∗) as defined in Definition 1, 

for solving bilinear min-max optimization problem. We start by applying the GDA 

algorithm where we perform a gradient descent followed by a gradient ascent as shown 

in Equation (3). The algorithm does not converge; however, it converges in the strongly 

convex – strongly concave cases. As a counter example, we consider the following 

function.  

min
𝑥∈𝑅𝑚

max
𝑦∈𝑅𝑛

𝑥𝑦 

Using the Proximal Point method as per the algorithm shown in (6), the following 

update rule is performed.  

{
𝑥𝑡+1 = 𝑥𝑡 + 𝛼𝐴𝑦𝑡+1           (7)

𝑦𝑡+1 = 𝑦𝑡 + 𝛼𝐴
𝑇𝑥𝑡+1         (8)

. 
  

Replacing the expression in (7), we obtain 

𝑥𝑡+1 = 𝑥𝑡 + 𝛼𝐴(𝑦𝑡 + 𝛼𝐴
𝑇𝑥𝑡+1) = 𝑥𝑡 + 𝛼𝐴𝑦𝑡 + 𝛼

2𝐴𝐴𝑇𝑥𝑡+1  (9) 

Solving for 𝑥𝑡+1, we get 

𝑥𝑡+1 = (𝐼 − 𝛼
2𝐴𝐴𝑇)−1(𝑥𝑡 − 𝛼𝐴𝑦𝑡) 
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Starting from the PP method shown in Equation (6)  

𝑥𝑡+1 = (𝐼 − 𝛼
2𝐴𝐴𝑇)−1(𝑥𝑡 − 𝛼𝐴𝑦𝑡) = [𝐼 − 𝛼

2𝐴𝑇𝐴 + 𝑂(𝛼2)][𝑥𝑡 − 𝛼𝐴𝑦𝑡]

= 𝑥𝑡 − 𝛼𝐴𝑦𝑡 − 𝛼𝐴[𝛼𝐴
𝑇𝑥𝑡 − 𝛼

2𝐴𝑇𝐴𝑦𝑡] + 𝑂(𝛼
2)

= 𝑥𝑡 − 2𝛼𝐴𝑦𝑡 − 𝛼𝐴[𝛼𝐴
𝑇𝑥𝑡 − (1 + 𝛼

2𝐴𝑇𝐴)𝑦𝑡] + 𝑂(𝛼
2)

= 𝑥𝑡 − 2𝛼𝐴𝑦𝑡 − 𝛼𝐴[𝛼𝐴
𝑇𝑥𝑡 − (𝑦𝑡−1 + 𝛼𝐴

𝑇𝑥𝑡−1)] + 𝑂(𝛼
2)

= 𝑥𝑡 − 2𝛼𝐴𝑦𝑡 + 𝛼𝐴𝑦𝑡−1 

which is exactly the OGDA method. Similarly, EG is another linear approximation of PP 

method (Mokhtari, Ozdaglar, & Pattathil, 2020). Their convergence rate to 𝜖 optimal 

solution is summarized in Table 1 (Liang & Stokes, 2019; Gidel, Berard, Vincent, & 

Lacoste-Julien, 2018; Tseng, 1995). 

Using linear approximations of the update term, the update term of Optimistic 

Gradient Descent Ascent algorithm shown in Equation (4) can be written as 

∇𝑥𝑓(𝑥𝑡+1, 𝑦𝑡+1) ≈ ∇𝑥𝑓(𝑥𝑡 , 𝑦𝑡) + ∇𝑥𝑓(𝑥𝑡 , 𝑦𝑡) − ∇𝑥𝑓(𝑥𝑡−1, 𝑦𝑡−1) 

Table 1 Conversion Rates of OGDA and EG in Bilinear and Strongly Convex Strongly Concave cases where 𝜖 is the 

error and 𝜅 is the kappa statistic 

 Rate (EG) Rate (OGDA) 

Bilinear 𝑂(𝜅2log (1 𝜖⁄ )) 𝑂(𝜅log (1 𝜖⁄ )) 

Strongly Convex Strongly 

Concave 

𝑂(𝜅log (1 𝜖⁄ )) 𝑂(𝜅log (1 𝜖⁄ )) 

 

where 𝜅 =
λ𝑚𝑎𝑥(𝐴

𝑇𝐴)

λ𝑚𝑖𝑛(𝐴
𝑇𝐴)

  where λ𝑚𝑎𝑥 is the largest eigen value of the matrix and λ𝑚𝑎𝑥 is the 

lowest eigenvalue of the matrix (Mokhtari, Ozdaglar, & Pattathil, 2020) 

Despite the convergence results, the experiments we have conducted showed 

that the results oscillate before reaching the optimal solution. In addition, they fail to 

scale with the size of the matrix 𝐴 and are highly dependent on external factors like the 
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initial point and the kappa statistic. We propose an algorithm that dynamically updates 

the coordinates in the desired direction. We further empirically demonstrate faster 

converge the ability to scale with the size of matrix 𝐴. 

 

C. Contribution 

Motivated by the GDA and OGDA algorithms, we propose a method that solves 

the bilinear problem by dynamically updating the coordinates of 𝒙 and 𝒚 in favorable 

directions. Motivated by the multistep GDA algorithm, our method dynamically chooses 

the coordinates to be updated at every iteration. The updating method is motivated by the 

OGDA method as it tends to use the momentum term as an update metric. The update 

mechanism analyzes the momentum and computes a measure that determines the 

direction of the step at the next iterate. The strength of our algorithm lies in this dynamic 

selection as to when and how each update occurs. Our proposed algorithm is a gradient-

based algorithm that dynamically updates the chosen coordinates of 𝒙 and 𝒚 at every 

iteration. We have shown its convergence to the Nash equilibrium solution in the bilinear 

case. It also achieves a higher probability of convergence in non-convex non-concave 

settings.  
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CHAPTER II 

METHODOLOGY 

We study the following saddle point problem shown in equation (1) 

min
𝑥∈𝑅𝑚

max
𝑦∈𝑅𝑛

𝑓(𝑥, 𝑦) 

where the function 𝑓 is a bilinear function and propose a first order method, referred to 

as Momentum Block Gradient Descent Ascent (MBGDA) that is able to compute the a 

Nash equilibrium solution defined by (𝒙∗, 𝒚∗) ∈  𝑅𝑚 × 𝑅𝑛 that 𝑓(𝒙∗, 𝒚) ≤ 𝑓(𝒙∗, 𝒚∗) ≤

𝑓(𝒙, 𝒚∗) for all 𝒙 ∈ 𝑅𝑚, 𝑦 ∈ 𝑅𝑛.  

In this section, we present the proposed algorithm. We first present the algorithm 

of MBGDA method then compare it with existing first-order methods like Gradient 

Descent Ascent GDA, Optimistic Gradient Descent Ascent OGDA, Extra Gradient EG 

and Proximal Point PP. 

The update term of 𝑥 following the OGDA method as per Equation (4) include 

the following momentum term 

−α(∇𝑥𝑓(𝒙𝑡 , 𝒚𝑡) − ∇𝑥𝑓(𝒙𝑡−1, 𝒚𝑡−1))                                

= −𝛼 [
[∇𝑥𝑓(𝒙𝑡 , 𝒚𝑡)][∇𝑥𝑓(𝒙𝑡 , 𝒚𝑡) − ∇𝑥𝑓(𝒙𝑡−1, 𝒚𝑡−1)]

∇𝑥𝑓(𝒙𝑡 , 𝒚𝑡)
] 

The direction of update thus depends on the gradients at the current and previous points. 

The main concept behind MBGDA is to dynamically choose what to update at a given 

iteration. Our decision matrix is motivated by OGDA method that utilizes a momentum 

term. We define the following update metrics 
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{
𝑚𝑥 = ∇𝑥𝑓(𝑥𝑡 , 𝑦𝑡) × (∇𝑥𝑓(𝑥𝑡 , 𝑦𝑡) − ∇𝑥𝑓(𝑥𝑡−1, 𝑦𝑡−1))

𝑚𝑦 = ∇𝑦𝑓(𝑥𝑡 , 𝑦𝑡) × (∇𝑦𝑓(𝑥𝑡 , 𝑦𝑡) − ∇𝑦𝑓(𝑥𝑡−1, 𝑦𝑡−1))
, 

 (10) 

that reflect the momentum at each coordinate point and the signs of each of 𝑚𝑥 and 𝑚𝑦 

are used to determine the block we update in 𝒙 and 𝒚 respectively. These momentum 

terms determine favorable directions which guarantee converging to the optimal solution 

without any oscillations. More specifically, the signs of 𝑚𝑥 and 𝑚𝑦 select which decision 

variable to update and the direction of update. In particular, the updates follow the 

following rule 

{
 

 𝒙𝑡+1 = {
𝒙𝑡 −  α ∇𝑥𝑓(𝒙𝑡 , 𝒚𝑡)     𝑖𝑓 𝒎𝑥 ≥ 0
𝒙𝑡                                     𝑖𝑓 𝒎𝑥 < 0

𝒚𝑡+1 = {
𝒚𝑡 +  α ∇𝑦𝑓(𝒙𝑡 , 𝒚𝑡)     𝑖𝑓 𝒎𝑦 ≥ 0

𝒚𝑡                                     𝑖𝑓 𝒎𝑦 < 0

  . 

 (11) 

In high dimensional problems, we perform the gradient steps updates along different 

coordinates of each vector based on their corresponding values of 𝑚𝑥 and 𝑚𝑦. 

We will apply MBGDA algorithm on the bilinear function 𝑓(𝑥, 𝑦) = 𝒙𝑇𝑨𝒚. 

Let 𝑨 ∈ 𝑅𝑛×𝑚 and assume that 𝒙 ∈ 𝑅𝑛, 𝒚 ∈ 𝑅𝑚, and the step size 𝛼 > 0. 𝒙0 and 𝒚0 are 

the initial vectors, 𝒙𝑡 and 𝒚𝑡 are the values of 𝒙 and 𝒚 at iteration 𝑡, and ⊗ is the 

component wise product. Then, the momentum for 𝑥 and 𝑦 are as follows. 

𝒎𝑥 = ∇𝑥𝑓(𝒙𝑡 , 𝒚𝑡) ⊗ (∇𝑥𝑓(𝒙𝑡 , 𝒚𝑡) − ∇𝑥𝑓(𝒙𝑡−1, 𝒚𝑡−1)) =  〈𝑨𝒚𝑡 , (𝑨𝒚𝑡−𝑨𝒚𝑡−1)〉

=  〈𝑨𝒚𝑡, 𝑨(𝒚𝑡−𝒚𝑡−1)〉 = 〈α𝑨𝒚𝑡 . 𝑨𝑨
𝑻𝒙𝑡−1〉 

𝒎𝑥 =  α𝑨𝒚𝑡 . 𝑨𝑨
𝑇𝒙𝑡−1 and similarly, 𝒎𝑦 = −α𝑨

𝑇𝒙𝑡 . 𝑨
𝑇𝑨𝒚𝑡−1 with step size 

𝛼 > 0, updating 𝒙 and 𝒚 can be determined by the signs of the following metrics 

{
𝒎𝑥 = 𝑨𝒚𝑡 . 𝑨𝑨

𝑇𝒙𝑡−1     

 𝒎𝑦 = −𝑨
𝑇𝒙𝑡 . 𝑨

𝑇𝑨𝒚𝑡−1
. 
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At every iteration 𝑡, the gradient step in (11) becomes the following 

{
 
 

 
 (𝒙𝑡+1)𝑖 = {

(𝒙𝑡)𝑖 −  α (𝑨𝒚𝑡)𝑖                   𝑖𝑓(𝑚𝑥)𝑖 ≥ 0
(𝒙𝑡)𝑖                                         𝑖𝑓 (𝑚𝑥)𝑖 < 0

(𝒚𝑡+1)𝑖 = {
(𝒚𝑡)𝑖 +  α (𝑨𝒙𝑡)𝑖                  𝑖𝑓 (𝑚𝑦)𝑖 ≥ 0

(𝒚𝑡)𝑖                                        𝑖𝑓 (𝑚𝑦)𝑖 < 0

    . 

 (12) 

To visualize the process, we solve the two-dimensional problem 𝑓(𝑥, 𝑦) = 𝑥𝑦. 

The optimal solution of this problem lies at the origin. We then calculate the momentum 

metrics. 𝑚𝑥 = 𝑦𝑡𝑥𝑡−1 and 𝑚𝑦 = −𝑥𝑡𝑦𝑡−1. Updating 𝑥 and 𝑦 depends on the signs of 

these metrics. The update rule in (12) becomes the following 

{
𝑥𝑡+1 = {

𝑥𝑡 −  α𝑦𝑡          𝑖𝑓 𝑦𝑡𝑥𝑡−1 ≥ 0
𝑥𝑡                        𝑖𝑓 𝑦𝑡𝑥𝑡−1 < 0

𝑦𝑡+1 = {
𝑦𝑡 + α𝑥𝑡      𝑖𝑓 − 𝑥𝑡𝑦𝑡−1 ≥ 0
𝑦𝑡                  𝑖𝑓 − 𝑥𝑡𝑦𝑡−1 < 0

    . 

  

We notice that at every iteration, we will be updating either one of the coordinates 

depending on the position of the point 𝜃 in the four quadrants. Assume the step size 

α=0.003, maximum number of iterations is 120. We start with an initial point 𝜃0 =

(0.01, 0.01). Figure 2 shows the position of the point 𝜃 at every iteration.  

As shown in Figure 2, starting from the first quadrant, 𝜃 was only updated in the 

direction that guaranteed getting closer to the optimal solution by updating either one of 

its coordinates satisfying ‖𝑥𝑘+1 + 𝑦𝑘+1‖ ≥ ‖𝑥𝑘 + 𝑦𝑘‖ ∀𝑘 ∈ [0, 120]. After 120 

iterations, we reached the optimal solution with an accuracy of 10-6.  
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Figure 2 The position of θ at every iteration using MBGDA. 

We can prove the convergence to the optimal solution by examining the position 

of point 𝜃 at every iterate and in every quadrant. In the first quadrant where 𝑥0 > 0 and 

𝑦0 > 0, for some t, the coordinates of 𝜃 are the following. 

{
𝑥𝑡 = 𝑥𝑡−1 –  𝛼𝑦0 = 𝑥𝑡−2–  𝛼𝑦0 –  𝛼𝑦0 = …  =  𝑥0 –  𝑡𝛼𝑦0 < 0 < 𝑥0
𝑦
𝑡
= 𝑦

0
                                                                                                                           

   

for sufficiently large 𝑡. 

 

Thus, its position is closer to the optimal solution at the origin. Similarly, either one of 

the coordinates of 𝜃 are updated at every iteration depending on the quadrant which is 

evident in Figure 2. 

We repeat the same example using other first order methods, GDA and OGDA methods, 

and monitor the position of 𝜃. With GDA, we update the coordinates of 𝜃 at every step 

using the gradient. Similarly, OGDA updates both coordinates, however using a negative 

momentum term. Both methods managed to reach an optimal solution with an accuracy 
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of order 10-2 after 120 iterations. Figure 3 shows the path followed by 𝜃 in the first 15 

iterations. GDA method has failed to converge to the optimal solution as shown in Figure 

1. Using OGDA, the distance to the optimal solution increased widely before convergence 

which shows that unnecessary updates were performed. MBGDA managed to avoid 

updating in unfavorable directions by using the sign of the momentum to determine 

whether to update each of the coordinates of θ separately. 

 

Figure 3 The position of θ for the first 15 iterations using MBGDA, OGDA and GDA methods 

In higher dimensional problems, MBGDA allows updating certain elements of the 

vectors rather than the whole vector. We determine these elements using the same 

generalized momentum term referred to as 𝒎𝑥 and 𝒎𝑦 earlier. We conduct the 

experiment to solve the bilinear problem 𝒙T𝑨𝒚 where 𝑨 is a random matrix of size 5 × 5, 

𝒙 and 𝒚 are random vectors of size 5,  𝒙𝟎 and 𝒚𝟎 are random initializations, and the step 

size is 0.001.  

For the first 50,000 iterations, we plot the values of the first elements of x and y 

respectively as shown in Figure 4. Using the OGDA method, oscillations around the 
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optimal solution occurred. Using MBGDA, this was not recorded, and the values of x and 

y consistently decreased with every iteration. The distance to the optimal solution was 

reduced.  

 

Note that MBGDA did not necessarily update both coordinates and every 

iteration. Figure 4 shows the update of the first coordinate of each of the vectors 𝒙 and 𝒚 

at every iteration. It shows that the first coordinate of 𝒚 was updated at every iteration in 

the direction that guaranteed converging. In the first iterations, the first coordinate of 𝒙 

remained constant after which they were updated in the favored direction reaching zero.  

  

Figure 4 The value of the first elements of x and y at every iteration for the first 50,000 iterations 
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CHAPTER III  

PROOF OF CONVERGENCE  

We proved the convergence of MBGDA to Nash Equilibrium in the case of simple 

bilinear problems. Let 

𝑓(𝑥, 𝑦) = 𝑎𝑥𝑦 + 𝑏𝑥 + 𝑐𝑦 

Then, 

∇𝑥𝑓(𝑥, 𝑦) = 𝑎𝑦 + 𝑏 and ∇𝑦𝑓(𝑥, 𝑦) = 𝑎𝑥 + 𝑐 

The update metrics according to Equation (7) are calculated at each of 𝑥 and 𝑦 as follows. 

𝑚𝑥 =  𝛼(𝑎𝑦𝑡 + 𝑏)(𝑎𝑥𝑡−1 + 𝑐)  

For 𝑚𝑥 > 0, we either need to have 

(𝑎𝑥𝑡−1 + 𝑐) > 0 and (𝑎𝑦𝑡 + 𝑏) > 0 so 𝑥𝑡−1 >
−𝑐

𝑎⁄  and 𝑦𝑡 >
−𝑏

𝑎⁄  

or 

(𝑎𝑥𝑡−1 + 𝑐) < 0 and (𝑎𝑦𝑡 + 𝑏) < 0 so 𝑥𝑡−1 <
−𝑐

𝑎⁄  and 𝑦𝑡 <
−𝑏

𝑎⁄  

 

Similarly, 𝑚𝑦 = −(𝑎𝑥𝑡 + 𝑐)(𝑎𝑦𝑡−1 + 𝑏) 

For 𝑚𝑦 > 0, we either need to have 

(𝑎𝑥𝑡 + 𝑐) > 0 and (𝑎𝑦𝑡−1 + 𝑏) > 0 so 𝑥𝑡 <
−𝑐

𝑎⁄  and 𝑦𝑡−1 >
−𝑏

𝑎⁄  

or 

(𝑎𝑥𝑡 + 𝑐) < 0 and (𝑎𝑦𝑡−1 + 𝑏) < 0 so 𝑥𝑡 >
−𝑐

𝑎⁄  and 𝑦𝑡−1 <
−𝑏

𝑎⁄  

The momentum terms then act as metrics to determine the terms to be updated.  

{
 

 𝑥𝑡+1 = {
𝑥𝑡 −  α (𝑎𝑦𝑡 + 𝑏)                 𝑖𝑓 (𝑎𝑦𝑡 + 𝑏)(𝑎𝑥𝑡−1 + 𝑐)  ≥ 0

𝑥𝑡                                              𝑖𝑓 (𝑎𝑦𝑡 + 𝑏)(𝑎𝑥𝑡−1 + 𝑐)  < 0

𝑦𝑡+1 = {
𝑦𝑡 +  α(𝑎𝑥𝑡 + 𝑐)              𝑖𝑓 − (𝑎𝑥𝑡 + 𝑏)(𝑎𝑦𝑡−1 + 𝑐) ≥ 0

𝑦𝑡                                         𝑖𝑓 − (𝑎𝑥𝑡 + 𝑏)(𝑎𝑦𝑡−1 + 𝑐) < 0

    , 

 (13) 

where 𝛼 > 0 is the step size. We notice that these metrics define 4 quadrants where the 

coordinates of 𝑥 and/or 𝑦 are updated. Without loss of generality, assume we start in Q1. 
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Figure 5 Quadrants defined by the momentum terms mx and my 

• Quadrant 1 (Q1): 𝑥 > −𝑐
𝑎⁄  and 𝑦 > −𝑏 𝑎⁄   

In this quadrant, 𝑦 is not updated while 𝑥 is updated as follows.  

{
𝑥𝑡1 = 𝑥𝑡1−1– 𝛼(𝑎𝑦𝑡−1 + 𝑏) = ⋯ = 𝑥0 – 𝑡1𝛼(𝑎𝑦0 + 𝑏) = 𝑥0– 𝑡1𝛼𝑎𝑦0 − 𝑡1𝛼𝑏     
𝑦𝑡1 = 𝑦0                                                                                                                                  

 

Since (𝑎𝑦𝑡−1 + 𝑏) > 0, for a large enough 𝑡1, we get 𝑥𝑡1 <
−𝑐

𝑎⁄ .  

For a small enough 𝛼, |𝑥𝑡1| < |𝑥0|. 

We continue in Q2 

• Quadrant 2 (Q2): 𝑥𝑡1 <
−𝑐

𝑎⁄  and 𝑦𝑡1 >
−𝑏

𝑎⁄  

In this quadrant, 𝑥 is not updated while 𝑦 is updated as follows. 

{
𝑥𝑡2 = 𝑥𝑡1                                                                                      

𝑦𝑡2 = 𝑦𝑡2−1 +  𝛼(𝑎𝑥𝑡1 + 𝑐) = ⋯ = 𝑦0 + 𝑡2𝛼(𝑎𝑥0 + 𝑐) 
 

Since (𝑎𝑥0 + 𝑐) < 0, for a large enough 𝑡2, we get 𝑦𝑡2 <
−𝑏

𝑎⁄ .  

For a small enough 𝛼, |𝑦𝑡2| < |𝑦𝑡1|. 

• Quadrant 3 (Q3): 𝑥𝑡2 <
−𝑐

𝑎⁄  and 𝑦𝑡2 <
−𝑏

𝑎⁄  

Q1 

Q2 

Q3 

Q4 



25 

{
𝑥𝑡3 = 𝑥𝑡2−1 –  𝛼(𝑎𝑦𝑡2 + 𝑏) =  … =  𝑥0– 𝑡3𝛼𝑎𝑦0 + 𝑡3𝛼𝑏 >

−𝑐
𝑎⁄                    

𝑦𝑡3 = 𝑦𝑡2                                                                                                                         
 

• Quadrant 4 (Q4): 𝑥𝑡3 >
−𝑐

𝑎⁄  and 𝑦𝑡3 <
−𝑏

𝑎⁄  

{
𝑥𝑡4 = 𝑥𝑡3                                                                                                                                    

𝑦𝑡4 = 𝑦𝑡3 + 𝑡4𝛼(𝑎𝑥0 + 𝑐)                                                                                                      
 

Assume we adopt is a diminishing step size. Thus 𝛼𝑡 < 𝛼𝑡−1 . At any iteration 𝑡𝑖, we aim 

to ensure that |𝑥𝑡2| ≤ |𝑥𝑡1|and |𝑦𝑡3| ≤ |𝑦𝑡1|. Thus, step size should satisfy the following 

conditions. Otherwise update 𝛼 = 𝛼𝑡 < 
𝛼𝑡−1 

2
. 

• Condition 1: 0 < 𝛼 < |
2𝑥𝑡𝑖+1

(𝑎𝑦𝑡𝑖+1+𝑏)
|  

• Condition 2: 0 < 𝛼 < |
2𝑦𝑡𝑖+1

(𝑎𝑥𝑡𝑖+1+𝑐)
|  

Assume 𝛼 > 0 is a fixed step size. 

Assume at iteration 𝑡𝑖, the step size does not satisfy one of the conditions. This case will 

be resolved in the upcoming iteration 𝑡𝑖+1. Following Equation (13) updated.  

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

{
 
 
 

 
 
 𝑖𝑓 α𝑥 > |

2𝑥𝑡𝑖+1

(𝑎𝑦𝑡𝑖+1+𝑏)
| ,   α𝑥 =

α𝑥

2
   𝑎𝑛𝑑 𝑥𝑡+1 = 𝑥𝑡                                                      

                                                                                  

𝑖𝑓 α𝑥 < |
2𝑥𝑡𝑖+1

(𝑎𝑦𝑡𝑖+1+𝑏)
|,                                                                                                         

𝑥𝑡+1 = {
𝑥𝑡 − α𝑥 (𝑎𝑦𝑡 + 𝑏)                 𝑖𝑓 (𝑎𝑦𝑡 + 𝑏)(𝑎𝑥𝑡−1 + 𝑐)  ≥ 0

𝑥𝑡                                              𝑖𝑓 (𝑎𝑦𝑡 + 𝑏)(𝑎𝑥𝑡−1 + 𝑐)  < 0

{
 
 
 

 
 
 𝑖𝑓 α𝑦 > |

2𝑦𝑡𝑖+1

(𝑎𝑥𝑡𝑖+1+𝑐)
| , α𝑦 =

α𝑦

2
 𝑎𝑛𝑑 𝑦𝑡+1 = 𝑦𝑡                                                           

                                                                                                          

𝑖𝑓 α𝑦 < |
2𝑦𝑡𝑖+1

(𝑎𝑥𝑡𝑖+1+𝑐)
|,                                                                                                         

𝑦𝑡+1 = {
𝑦𝑡 +  α(𝑎𝑥𝑡 + 𝑐)              𝑖𝑓 − (𝑎𝑥𝑡 + 𝑏)(𝑎𝑦𝑡−1 + 𝑐) ≥ 0

𝑦𝑡                                         𝑖𝑓 − (𝑎𝑥𝑡 + 𝑏)(𝑎𝑦𝑡−1 + 𝑐) < 0

             . (13) 
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Assume the following example. In Q1, if 𝛼𝑡𝑖 > |
2𝑥𝑡𝑖

𝑎𝑦𝑡𝑖+𝑏
|  

𝑥𝑡𝑖+1 = 𝑥𝑡𝑖–𝛼(𝑎𝑦𝑡𝑖 + 𝑏) , |𝑎𝑦𝑡𝑖 + 𝑏| ≫ |𝑥𝑡𝑖| 

So, |
2𝑥𝑡𝑖+1

𝑎𝑦𝑡𝑖+1+𝑏
| > |

2𝑥𝑡𝑖

𝑎𝑦𝑡𝑖+𝑏
| and 𝛼 < |

2𝑥𝑡𝑖+1

𝑎𝑦𝑡𝑖+1+𝑏
| 

The condition is then satisfied for the upcoming iteration.  

Remark: In addition, in the two-dimensional case where 𝑎 = 1, 𝑏 = 0 and 𝑐 = 0; thus, 

𝑓(𝑥, 𝑦) = 𝑥𝑦. The update metrics determined by the momentum are 𝑚𝑥 = 𝑦𝑡𝑥𝑡−1 and 

𝑚𝑦 = −𝑥𝑡𝑦𝑡−1. Updating 𝑥 and 𝑦 depends on the signs of these metrics. Thus, MBGDA 

splits the 2-dimensional plane in to the four quadrants defined by 𝑥 = 0 and 𝑦 = 0. Then, 

at every iteration, either one of the coordinates x or y is updated until it converges to the 

optimal solution at the origin. 
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CHAPTER IV  

EXPERIMENTS 

We conducted several experiments to study the characteristics of the new 

proposed algorithm MBGDA. The purpose of these experiments range between 

understanding the convergence dynamics in bilinear problems and understanding the 

factors that affect the convergence rate from the choice of starting points to the size of 

data and their correlation. We also studied the behavior of MBGDA in non-convex non-

concave problems. We compared the convergence dynamics to existing algorithms used 

for solving general saddle point problems: Gradient Descent Ascent GDA, Optimistic 

Gradient Descent Ascent OGDA, Extra Gradient EG and Proximal Point PP methods. 

In the first experiment, we show that MBGDA updates the iterates in the desired 

directions. Our results show that MBGDA reduces irrelevant oscillations and achieves an 

overall faster convergence rate. In the second experiment, a set of tests were done to relate 

the convergence rate of MBGDA to the scalability of 𝑨, the initialization of the problem, 

and the intercorrelation of the matrix. Our results show that MBGDA, under similar 

conditions, achieves better performance compared to existing algorithms. In the third 

experiment, we solved two non- convex non-concave problems and monitored the 

fraction of times we get convergence of MBGDA compared to GDA and OGDA 

algorithms. MBGDA achieved higher frequency of convergence to stable solutions than 

other algorithms. 

A. Experiment I Convergence Dynamics 

The purpose of the experiment is to compare the convergence of our proposed 

algorithm with Optimistic Gradient Descent Ascent OGDA, Extra-gradient EG method, 
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and the Proximal Point PP method (Mokhtari, Ozdaglar, & Pattathil, 2020). This 

experiment tends to solve the min-max bilinear problem:  

min
𝒙∈𝑅𝑑

max
𝒚∈𝑅𝑑

𝒙𝑇𝑨𝒚 , 

where 𝑨 𝜖 𝑅𝑑×𝑑 is a full rank matrix, d = 10 is the dimension of the problem, 𝒙𝟎 and 𝒚𝟎 

are random initializations, and the step size being 0.005 in the algorithms. The distance 

to the optimal solution at every iteration is recorded as shown in figure 6. The accuracy 

is fixed at 10-2.  

  

 

Figure 6 The distance to the optimal solution of MBGDA, GDA, OGDA, EG and PP at every iteration 

Figure 6 illustrates the distance to the optimal solution of this bilinear problem 

versus the number of iterations for each of the considered algorithms: OGDA, EG and 

MBGDA. OGDA 
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and EG show similar behavior while MBGDA shows a significantly better 

performance with a faster convergence to the optimal solution. Unlike other algorithms, 

MBGDA shows a continuous decrease in the distance between its output vectors and the 

optimal solution without any oscillations. This proves that the points were only updating 

in the right direction determined by the momentum, thus creating an efficient process 

which aligns with the main motivation of this algorithm. 

 

B. Experiment II Convergence Rate 

We conducted the second set of experiments to study the convergence dynamics 

of MBGDA algorithm in the bilinear problem. We aim at showing the convergence of the 

algorithm as a function of the size of matrix 𝑨, the position of the initial points, and the 

kappa statistic and compare its performance with Optimistic Gradient Descent Ascent, 

Extra Gradient, and Proximal Point methods. 

We first start by exploring the convergence behavior of MBGDA as the size of 

the matrix scales (Lei, Nagarajan, Panageas, & Wang, 2018). We conduct the 

experiment with an input square matrix 𝑨 of size 𝑛 × 𝑛 for 𝑛= 5, 10, 15, …, 100. Matrix 

𝑨 is a full rank matrix generated with random variables sampled from [−1,+1]. The 

starting vectors 𝒙𝟎  =  𝒚𝟎  =  [0.1,… , 0.1] and the accuracy is fixed at 0.01. The step size 

is sufficiently small and fixed at 0.01. The step size is sufficiently small and fixed at 0.01. 

For more accurate results, the experiment is repeated 10 times per matrix size and the 

average of number of iterations is documented. Figure 7 shows the number of iterations 

needed by MBGDA method to reach the optimal solution as a function of the number of 

rows of the matrix 𝑨. Figure 8 illustrates the number of iterations of each of MBGDA, 
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OGDA, EG and PP as a function of size of matrix 𝑨. The plot shows that MBGDA 

outperforms other algorithms with smaller convergence rate regardless of the size of 𝑨. 

However, similar to EG and OGDA, MBGDA witnessed almost three times increase in 

the number of iterations as shown in figure 8. This shows that the convergence rate of 

MBGDA is affected by the size of the matrix A but remains more efficient than the other 

algorithms. 

 

 

Figure 8 The number of iterations to converge using each of MBGDA, OGDA, EG and PP methods as function of 

matrix size. 

Figure 7 The number of iterations as function of matrix size using MBGDA algorithm. 
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We then conduct the second experiment to study the convergence rate of MBGDA 

as the initialization varies. We repeat the experiment to monitor the variation of number 

of iterations as a function of radius and distance from the initial point to the optimum. 

The initial point 𝒙𝟎 = 𝒚𝟎 = (1/𝑑) × [0.1,… , 0.1] where 𝑑 =  {1, 1.1, 1.2, … , 20}. The 

step size is fixed at 0.01. The input matrix 𝑨 of size 𝑛 × 𝑛 for 𝑛 = 100 is generated with 

random variables sampled from [−1; +1]. 

Figure 9 illustrates the number of iterations of each of MBGDA, OGDA, EG and 

PP as a function of vector initialization. MBGDA shows constantly faster convergence 

rate regardless of the distance between the initial point and the optimal solution. OGDA 

and EG showed similar performance. However, when closely inspecting the performance 

of MBGDA, we notice that the convergence rate is affected by the initial distance to the 

optimum.  

 

Figure 9 The number of iterations to converge using each of MBGDA, OGDA, EG and PP methods as a 

function of vector initializations. 

We also notice that the convergence rate of several algorithms in traditional 

optimization depend on the range of eigenvalues of the Hessian matrix, we denote as the 
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kappa statistic 𝜅. It is a parameter used to measure the interrater reliability and 

agreement of the data under study (Cohen, 1960). This is achieved by measuring the 

intercorrelation between the data of the matrix (McHugh, 2012).  The convergence rates 

of the existing algorithms for solving bilinear optimization problems, as shown in Table 

1, are dependent on the kappa statistic. In this experiment, we measure how MBGDA 

performs for different kappa values.  

We conduct this experiment with a square matrix 𝑨. The elements of the starting 

vectors 𝒙 and 𝒚 are generated randomly between [−1; +1] and are constant throughout 

the experiment. The step size is sufficiently small at 0.001. To ensure a variable 𝜅, we 

generate a matrix 𝑴 with size 𝑛 = 15 and elements as normal random variables then 

subtract a diagonal matrix with equal elements 𝑚. The experiment is repeated for 𝑚 =

1, 1.25, 1.5, … , 10. As we increased the value of 𝑚, the ratio of the largest to the lowest 

value in the matrix decreased, thus decreasing the value of the kappa statistic 𝜅. The 

results show that the number of iterations was not directly affected by the value of 𝑚. 

In conclusion, these sets of experiments show that the convergence rate of 

MBGDA is affected by the matrix size and initialization. They also prove that MBGDA 

achieve a faster convergence when compared to that of Optimistic Gradient Descent 

Ascent, Proximal Point and Extra Gradient methods for solving bilinear problems under 

similar conditions. 

 

C. Experiment III Non-Convex Non-Concave Cases 

We apply the experiment constructed by (Daskalakis & Panageas, 2018) to test 

the efficiency of MBGDA in the non-convex non-concave settings and compare it to that 
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of GDA and OGDA. The problem has a local min-max and {GDA, OGDA}- critical 

points that are linearly stable with respect with GDA/OGDA dynamics respectively for a 

fixed step size 𝛼 (Daskalakis & Panageas, 2018).   

Consider the following functions 𝑓1(𝑥, 𝑦) and 𝑓2(𝑥, 𝑦) 

{
𝑓1(𝑥, 𝑦) =  −

1

8
𝑥2 −

1

2
𝑦2 +

6

10
𝑥𝑦

𝑓2(𝑥, 𝑦) =  
1

2
𝑥2 +

1

2
𝑦2 + 4𝑥𝑦       

. 

The function 𝑓1 has a property that the point (0,0) is GDA critical point while 𝑓2 has a 

property that the point (0,0) is a GDA critical point but not a local min-max. The function 

𝑓 constructed by (Daskalakis & Panageas, 2018) behaves like 𝑓1 around (0, 0) and like 

𝑓2 around (1, 1). The constructed polynomial function is   

𝑓(𝑥, 𝑦) =  𝑓1(𝑥, 𝑦)(𝑥 − 1)
2(𝑦 − 1)2 + 𝑓2(𝑥, 𝑦)𝑥

2𝑦2 

We will start by defining the stationary points as a couple (𝑥∗, 𝑦∗) with zero gradient; 

thus, there is no feasible descent direction (Gidel, Berard, Vincent, & Lacoste-Julien, 

2018) and  

‖∇𝑥𝑓(𝑥
∗, 𝑦∗)‖ = ‖∇𝑥𝑓(𝑥

∗, 𝑦∗)‖ = 0 

We use random initializations generated in the range [-1, 1]. The accuracy is set to be 

0.001. After repeating the experiment 10,000 times, we record the points that each of the 

algorithms finds.  This allows us to get the probability of convergence of MBGDA, GDA 

and OGDA to each of the critical points. 

Table 2 shows the results for each of these points. The frequency of convergence 

of MBGDA was greater than that of GDA and OGDA for each of the critical points. It 
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had better performance with larger step size. We also observe that the points (1, 0) and 

(1, 1) are unstable critical points.  

Table 2 Convergence properties of MBGDA, GDA and OGDA on the critical points of f 

Step size 0.01 0.1 0.2 

Critical 

Point 
MBGDA GDA OGDA MBGDA GDA OGDA MBGDA GDA OGDA 

(0,0) 58.97% 54.20% 54.63% 55.93% 50.24% 48.47% 50.45% 43.93% 35.62% 

(0,1) 24.32% 22.00% 23.31% 20.00% 19.33% 14.86% 17.25% 15.83% 9.51% 

(1,0) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

(1,1) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Convergence 

Rate 
85.28% 76.62% 78.25% 76.14% 69.83% 63.56% 67.90% 59.94% 45.22% 

Average nb. 

of iterations 
5472 2445 2434 472 245 274 238 125 146 

 

We then monitor the performance of MBGDA, GDA and OGDA in the 

nonconvex nonconcave problem 𝑔(𝑥, 𝑦) =  𝑎𝑥𝑦 + 𝑏𝑦2 −  𝑐𝑥2 where a, b and c are 

positive integers. The problem is also constructed with 10,000 random initializations 

randomly generated in the range [-1,1]. The accuracy is set to be 0.001. The convergence 

properties of the three algorithms as the step size increases are shown in table 3. Table 3 

shows that MBGDA and GDA achieve similar convergence probabilities with increasing 

step size value. This result was not achieved by the OGDA method.  

Table 3 Convergence properties of MBGDA, GDA and OGDA on the critical points of f 

Step size 0.01 0.1 0.2 

Convergence 

Rate 

MBGDA GDA OGDA MBGDA GDA OGDA MBGDA GDA OGDA 

24.73% 25.82% 20.46% 23.88% 24.54% 13.87% 25.05% 25.51% 12.69% 

 

After analyzing the MBGDA dynamics around critical points, we compared it to the first 

order methods GDA and OGDA. The results indicate that all three methods failed to 
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completely converge to the local min-max solutions. Yet, MBGDA was able to achieve 

a better convergence rate.  
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CHAPTER V 

CONCLUSION 

The interest to solve saddle point problems has increased with the increase of these 

problems in machine learning problems, game theory and Generative Adversarial 

Networks (GANs). Several first order algorithms have been developed to solve these 

problems. The most commonly used algorithm is the Gradient Descent Ascent (GDA) 

that even fails to converge in bilinear settings. Other algorithms include but are not limited 

to Optimistic Gradient Descent Ascent (OGDA), Extra Gradient (EG), and Proximal 

Point (PP).  

We developed an algorithm that solves the bilinear problem by dynamically 

updating the coordinates of 𝒙 and 𝒚 in the favorable direction. The Momentum Block 

Gradient Descent Ascent algorithm (MBGDA) is a GDA based algorithm that performs 

a gradient descent 𝒙 and a gradient ascent on 𝒚. It also utilizes the negative momentum 

used as an OGDA update metrics to dynamically determine the coordinates to be updated 

at every iteration. Its main characteristic is this dynamic selection that allows it to reach 

Nash equilibrium efficiently and with minimum oscillations.  

We have conducted several experiments to compare the performance of MBGDA 

with GDA, OGDA, PP and EG. MBGDA experimentally proved better performance 

compared to existing first order algorithms.  MBGDA can solve bilinear problems 

efficiently with a better rate regardless of the initialization, size of data and kappa statistic. 

MBGDA also achieves better convergence rates and similar convergence probabilities in 

non-convex non-concave settings.  
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