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Abstract

of the Thesis of

Israa Jihad Fakih for Master of Science
Major:Applied Mathematics

Title: Discrete Optimal Transport

We introduce the Assignment Problem, which involves minimizing the cost of
transporting goods from a finite number of sources to a finite number of targets.
Due to the discrete nature of the assignment problem, a solution might be computed
using a brute-force numerical approach; however, these are not efficient. In this
thesis, we relax the assignment problem, and connect it to the infamous Kantorovich
Problem and its Dual. Theoretically, the problem consists of maximizing concave
functional under linear inequality constraints. We develop the needed theoretical
background from Functional and Convex analysis to solve the assignment problem
which allowed us to present more efficient numerical methods such as the Bertsekas’
auction algorithm, and the network simplex algorithm.
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Chapter 1

Introduction

Transportation costs are a significant challenge for many production companies, as
they strive to transport their goods to sales markets in the most cost-effective strate-
gies. The discrete transport problem is a mathematical approach to this challenge,
seeking to find the optimal way to transport goods from a finite number of sources
to a finite number of targets, while minimizing transportation costs and satisfying
supply and demand limits. This problem was introduced first by the French Math-
ematician Gaspard Monge in 1781 and later mathematically studied by Tolstoi in
1920. Since then, it has been extensively researched, and various algorithms have
been proposed to solve it efficiently.

One approach is the simplex algorithm [4] introduced by George B. Dantzig,
which is an iterative method that moves along the edges of the feasible region to
find the optimal solution. Another popular algorithm is the interior-point method
[11], suggested by the Soviet mathematician I. I. Dikin in 1967. In addition to these
methods, several other algorithms have been developed to solve discrete optimal
transport such as Sinkhorn-Knopp’s algorithm [7], Bertsekas’ Auction Algorithm [2]
and network simplex algorithm [1].

In this thesis, we first consider the ideal case where the number of sources and
targets are the same as well as the supply and demand quantity at each of them is
uniform, this is known as the Assignment Problem. The goal is to find a bijection �
that assigns all the quantity at a certain source x to one and only one target place y.
However, we will relax the assignment problem by splitting the mass at x to several
locations. This relaxation can be achieved by replacing the transport map with a
transport measure resulting in the infamous Kantorovich problem. In Chapter 2,
we delve into these two problems and give the exact formulation in Section 2.1. We
will show in Section 2.3 that the optimal transportation of goods is best achieved
without splitting, by proving the equality between the Assignment Problem and its
relaxation. This result has significant implications for production companies, as it
provides insight into the most cost-effective way to transport goods from sources to
targets.

Next, in Chapter 3 we offer a fresh perspective on the discrete transport problem
by framing it as a maximization problem rather than a minimization one. If a worker
wants to transfer an amount of coal from N mines to N factories such that the
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maximum cost he is willing to pay for this transportation is c(x, y), then one could
solve his problem by setting a price �(x) for loading material at source x, and a
price � (y) for unloading it at destination y such that the total profit �(x)�  (y)
is less than or equal to the cost c(x, y) to attract worker’s attention. This setting is
the dual to the Kantorovich Problem which is elaborated in Section 3.1. We show
that the Dual problem is also equivalent to the previous two problems in Section
3.3.

Through the theoretical part, we leveraged concepts from linear algebra and func-
tional analysis to prove the equivalence between the Assignment and Kantorovich
Problem. On the other hand, The dual problem is stated as a maximal of a functional
that we proved to be concave. We used then some concepts from convex analysis,
introduced the notion of c-transform and c-cyclically monotone [7], to compute its
superdifferential [10], [6], and prove properties of the maximizing function.

Besides the theoretical part of the discrete transport problem, we are interested
in finding numerical ways and algorithms to find the optimal solution. As we are
working in the discrete case, one could compute the cost of all the finite transport
maps and get the optimal one. However, such a method is inefficient and takes
a lot of time, for that we think of better methods and algorithms. In chapter 4,
we present the Bertsekas Auction Algorithm [8], a coordinate ascent method, that
modifies the price  in order to reach a maximizer for the dual problem. The
bidding strategy or the amount needed to be added at each iteration on the price
function is given in Section 4.2. However, in some cases, such as Example 4.2.5, this
strategy may get stuck in an infinite loop and fail to converge. In order to overcome
this issue, we propose a modification in Section 4.3 that introduces the concept of
✏�complementary slackness. The modified algorithm generates a transport plan
within ✏ of being optimal. The complexity analysis and the pseudo-code presented
in Section 4.5 show that its number of iterations is much better than that of the
brute-force approach.

In practice, it is often the case that the number of sources is not equal to the
number of destinations. In such cases, we cannot apply the assignment problem for-
mulation. In Chapter 5, we introduce the Network Simplex Algorithm [3]. Through
this algorithm, each transport plan is represented as a network graph. In particular,
we show in Section 5.1 that extremal transport plans have a notable property in
their corresponding graphs: they are acyclic, meaning that there contain no cycles
or loops. Through this algorithm, we start with an initial feasible solution and it-
eratively improve it by exploring the graph and finding cycles that can be used to
reduce the cost of the current solution as seen in Section 4.2.
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Chapter 2

Discrete Optimal Transport

Problem

2.1 Formulation

Let X, Y be two finite metric spaces of cardinality N , µ, and ⌫ be two discrete
probability measures on X and Y respectively defined as follows:

µ =
X

x2X

µx�x, ⌫ =
X

y2Y

⌫y�y,

where µx and ⌫y are the masses assigned to x 2 X and y 2 Y . Define c : X⇥Y ! R
with c(xi, yj) corresponds to the cost of moving xi in X to yj in Y for every 1 
i, j  N . The goal is to find a transport map T : X ! Y such that T#µ = ⌫, i.e.
⌫yj =

P
T (xi)=yj

µxi , that minimizes the transport total cost. This problem is called
the Monge Problem and can be written as follows

(MP ) = min
T

(
X

i

c(xi, T (xi)) : T#µ = ⌫

)
.

We consider the special case when the two measures µ and ⌫ represent uniform
probability measures i.e.

µ =
1

N

X

x2X

�x. ⌫ =
1

N

X

y2Y

�y.

In such case, T#µ = ⌫ if and only T is bijective, and the Monge problem reduces to
the linear assignment problem and given as follows

(AP ) = min

(
1

N

NX

i=1

c(xi, y�(i)) : � is a permutation

)
.

Notice that the set of permutations is finite, then AP could be computed by
comparing the total cost of all permutations. However, since the number of permu-
tations is N !, such a method is inefficient.
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We can then relax the idea of assigning source xi to only one target T (xi) by
splitting the mass at xi to several locations. This relaxation can be achieved by
replacing the map T or the permutation � with the set of transport plans on X ⇥Y
which is given by

�(µ, ⌫) = {� =
X

x,y

�x,y�(x,y) : �x,y � 0,
X

y2Y

�x,y = µx,
X

x2X

�x,y = ⌫y},

where �x,y describes the amount of mass transported from point x to point y. The
first constraint

P
y2Y �x,y = µx tells us that all masses from source x are transported

to Y and similarly the second constraint tells us that all masses at y are transported
from somewhere in X. The Kantorovich problem could be then formulated as follows

(KP ) = min

(
X

x2X,y2Y

c(x, y)�x,y : � 2 �(µ, ⌫)
)
.

We prove in this chapter that the Assignment Problem is equal to the Kan-
torovich Problem, that is

(AP ) = (KP ) (2.1)

For this we need to prove some results related to permutation matrices.

2.2 Theoretical Background

We denote by Perm(N) the set of permutations on {1, 2, · · · , N}.

Definition 2.2.1 (Permutation Matrix). A permutation matrix is a square matrix
that has exactly one entry with value 1 in each row and column and 0’s elsewhere.

To every permutation � 2 Perm(N), we associate the permutation matrix P�
given by

(P�)i,j =

(
1 if j = �(i)

0 otherwise
.

The set of permutation matrices is denoted by PN = {P� : � 2 Perm(N)} .

Remark 2.2.2. The set of permutation matrices is a non convex set since its is
discrete. As the assignment problem corresponds to the minimization of the total
cost over this set, then it is equivalent to a non convex optimization problem.

Definition 2.2.3. (Bistochastic matrix). A bistochastic matrix (also called doubly
stochastic matrix) is a square matrix B = (bij) with non negative real coefficients
such that the sum of each row and column is equal to 1, i.e.

X

i

bij =
X

j

bij = 1.

The set of N ⇥N bistochastic matrices is denoted by BN .
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Example 2.2.4. The matrix

2

4
0.2 0.3 0.5
0.2 0.7 0.1
0.6 0 0.4

3

5 is a bistochastic matrix.

We denote by MN(R) the space of N ⇥N matrices equipped with the standard
metric.

Proposition 2.2.5. The set of N ⇥ N bistochastic matrices BN is convex, and
compact.

Proof. Let A and B be two bistochastic matrices and 0  �  1, then

C = �A+ (1� �)B =

2

64
�a11 . . . �a1n

...
...

�an1 . . . �ann

3

75+

2

64
(1� �)b11 . . . (1� �)b1n

...
...

(1� �)bn1 . . . (1� �)bnn

3

75

=

2

64
�a11 + (1� �)b11 . . . �a1n + (1� �)b1n

...
...

�an1 + (1� �)bn1 . . . �ann + (1� �)bnn

3

75

So
P

i cij =
P

i(�aij + (1 � �)bij) = �
P

i aij + (1 � �)
P

i bij. Since A and B are
two bistochastic matrices then

P
i aij =

P
i bij = 1 and thus

P
i cij = 1. SimilarlyP

j cij = 1, therefore C 2 BN . Then BN is a convex set.
Let (Bn) be a sequence in BN . Every component (Bn

ij) is in [0, 1], so we can
construct a subsequence (Bnk

ij ) that converges to B = (Bij). We have that Bij 2 [0, 1]
and X

i

Bij =
X

i

lim
k!+1

Bnk
ij = lim

k!+1

X

i

Bnk
ij = lim

k!+1
1 = 1.

Similarly,
P

j Bij = 1 and thus matrix B 2 BN . Therefore, set BN is a compact
set.

2.3 Proof of (2.1)

We reformulate the (KP ) problem as a minimzation problem over the space of
bistochastic matrices BN . To each � 2 �(µ, ⌫) we associate the matrix B = (bij)
with bij = N�xiyj , thus we obtain

(KP ) = min

8
<

:
1

N

X

xi2X,yj2Y

c(xi, yj)bij : B = (bij) 2 BN

9
=

; .

Definition 2.3.1 (Extreme point). An extreme point or a vertex of a convex set S
in a vector space X is a point in S which doesn’t lie in the interior of any segment in
this set, i.e. P is an extreme point in S if there doesn’t exist x, y 2 S and 0 < t < 1
such that x 6= y and P = tx + (1 � t)y. The set of all extreme points of a set S is
denoted by extreme(S).
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Example 2.3.2. a and b are the extreme points of the closed interval [a, b], and the
extreme points of the closed unit ball in R2 is the unit circle.

Definition 2.3.3. Let S be a non-empty convex subset of a vector space X. A set
F ✓ S is called a face of S if whenever �x+(1��)y 2 F for x, y 2 S and 0 < � < 1
we have x, y 2 F .

Proposition 2.3.4. Let S be a non-empty compact convex subset of a normed vector
space X and L be any continuous linear functional on X, then the set FL = {x 2
S : L(x) = maxz2S L(z)} is a face of S.

Proof. Denote by ↵ = maxz2S L(z). Let �x+ (1� �)y 2 FL with x, y 2 S and 0 <
� < 1 then L(�x+(1��)y) = ↵, which by linearity implies that �L(x)+(1��)L(y) =
↵. Suppose that L(x) < ↵ or L(y) < ↵, then �L(x)+(1��)L(y) < �↵+↵��↵ < ↵
which is a contradiction. So L(y) = L(x) = ↵. Thus x, y 2 FL and FL is a face of
S.

We list now the well-known Theorem of Hahn Banach and its geometrical impli-
cations [5].

Theorem 2.3.5. (Hahn Banach). Let X be a vector space, q a semi norm defined
on X, i.e. q : X ! R satisfying

1. q(x+ y)  q(x) + q(y)

2. q(↵x)  ↵q(x) for all ↵ > 0 and x 2 X

and K a subspace of X. Suppose there exists a linear map � : K ! R such
that �(x)  q(x) for all x 2 K, then the linear map � admits a linear extension
 : X ! R such that:

 (x) = �(x) and  (x)  q(x)for all x in K

Lemma 2.3.6 (First Geometric form of Hahn Banach). . Let X be a vector space
and C be a convex open subset of X containing 0. Suppose there exists x0 /2 C, then
there exists a linear map  : X ! R such that

 (x0) = 1 and  (v) < 1

for all v 2 C.

Theorem 2.3.7. (Hahn-Banach Separation Theorem). Let X be a vector space and
A and B be two open convex disjoint subsets of X. Then there exists a linear map
� : X ! R such that:

�(a) < �(b) for all a 2 A, b 2 B.
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Proof. Let a0 2 A, and b0 2 B and define the set C = {a�b+b0�a0 : a 2 A, b 2 B}.
Since A and B are open, convex subsets of X then C is open and convex set, and
0 2 C. Let x0 = b0 � a0, since A\B = ; then x0 /2 C and so by Lemma 2.3.6 there
exists a linear map � : X ! R such that �(x0) = 1 and �(v) < 1 for all v 2 C. By
linearity, since �(a� b+ b0 � a0) < 1 we obtain that

�(a) < �(b) + 1� �(x0) = �(b).

Definition 2.3.8. (Convex hull). The convex hull of a set A is the smallest convex
set containing A.

Theorem 2.3.9. (Krein-Milman theorem). Let S be a non-empty convex compact
set of a normed vector space X. Then

1. The set of extreme points is non empty.

2. S is the closure of the convex hull of its extreme points.

Proof. Let F be the set of all compact faces of S. As S 2 F then F 6= �. Let(F ,)
be partially ordered such that

F1  F2 () F2 ✓ F1.

Let C = {Fi, i 2 I} be a chain in F and take G =
T

i2I Fi. Let x, y 2 S, 0 < t < 1
and tx + (1 � t)y 2 G then tx + (1 � t)y 2 Fi for all i 2 I which implies that
x, y 2 Fi for all i 2 I which in its turn gives us that x, y 2 G. So G is a compact
face of S. Obviously, Fi  G. It follows that G is an upper bound of C. Hence,
using Zorn’s lemma the set (F , <) contains a maximal element M. We claim that M
contains 1 element. Suppose to the contrary that it contains two distinct elements
x and y. Then by Theorem 2.3.7 there exists a continuous linear map L such that
L(x) < L(y). By Proposition 2.3.4, the set FL = {x 2 M : L(x) = maxz2M L(z)}
is a face of M. Thus FL is a face of S with M < FL which is a contradiction. So
M = {a}. We show that a 2 extreme(S), in fact if a = tx+ (1� t)y with x, y 2 S
and 0 < t < 1 then x, y 2 M since M is a face which implies that x = y = a,
concluding the proof of 1.

We next show 2. Since S is compact, then extreme(S) ✓ S, and so by convexity

conv[extreme(S)] ✓ S.

Suppose the inclusion is proper then there exists an element b 2 S and b /2 conv[extreme(S)].
Again, applying Theorem 2.3.7 there exists a continuous linear map L such that
maxL(z) < L(b) where the maximum is taken over all z in the compact convex
set conv[extreme(S)]. As a is an extreme point then a 2 conv[extreme(S)] which
implies that L(a) < L(b). On the other hand, FL = {x 2 S : L(x) = maxz2S L(z)}
is a face of S containing an extreme point a since a 2

T
i2I Fi, then we get L(a) =

maxL(z) � L(b) which is a contradiction.
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Proposition 2.3.10. Let S be a non-empty convex set of a normed vector space X.
Then the following are equivalent

1. P is an extreme point of S.

2. If P = A+B
2 with A,B 2 S then A=B.

Proof. (1) =) (2) from the definition of the extreme points. For the converse,
assume (2) and 0 < t < 1 such that P = tx + (1 � t)y for some x, y 2 S distinct.
Let m = min(kP � xk, kP � yk). A = P � m

2

x� y

kx� yk , and B = P +
m

2

x� y

kx� yk .

Since P =
A+B

2
then from 2. A = B, implying that m = 0 and so x = y = P a

contradiction.

Theorem 2.3.11. (Birkhoff and von Neumann). The extreme points of BN are the
permutation matrices PN . In particular, BN = conv{PN}.

Proof. By Krein-Milman theorem, and Proposition 2.2.5 extreme(BN) 6= �.
We first prove that PN ✓ extreme(BN). Let P 2 PN and P = A+B

2 where
A,B 2 BN . We can notice that as Pij 2 {0, 1} then Aij, Bij 2 {0, 1} which implies
that A = B. It follows from proposition 2.3.10 that P 2 extreme(BN).

We prove the second inclusion. Let P 2 extreme(BN) and suppose that P /2 PN .
Then there exists an entry Pi1j1 such that Pi1j1 2 (0, 1). As the sum of rows and
columns of P is an integer then there is another non integer entry Pi1j2 and this in
its turn gives another non integer entry Pi2j2 . We repeat this process N2 +1 by the
Pigeonhole principle one of the entries Pimjm repeats. Let A be a matrix obtained
from P by adding ✏ to all the entries Pikjk and subtracting ✏ from all the entries
Pikjk+1

, while B be the matrix obtained from P by subtracting ✏ from all the entries
Pikjk and adding ✏ > 0 to all the entries Pikjk+1

. We choose ✏ small enough so that
A,B 2 BN and P = A+B

2 with A 6= B. So by proposition 2.3.10, P is not an extreme
point which is a contradiction. We conclude using the Krein-Milman theorem again
that BN = conv{PN}

Theorem 2.3.12. Given X and Y two finite sets with same cardinal N, c : X⇥Y !
R and µ and ⌫ two uniform probability measures over these sets then (AP ) = (KP ).

Proof. The set of permutation is strictly included in the set of bistochastic matrices
so (KP )  (AP ). As (KP ) = minP2BN

P
i,j c(xi, yj)Pij then this minimum is

attained at an extreme point of the set of bistochastic matrices. So it follows from the
Birkhoff theorem that this minimum is attained at a permutation matrix. Therefore
(AP ) = (KP ).

12



Chapter 3

Kantorovich Functional

In this chapter we will go through computing the super-differential of Kantorovich
functional that will be used to construct algorithms to solve the discrete optimal
transport.

3.1 The Dual Problem

Suppose there is a worker who needs to transfer an amount of coal from N mines to
N factories such that the maximum cost he is willing to pay for this transportation is
c(x, y). A vendor could solve his problem as follows, he sets a price �(x) for loading
one unit of coal at position x, and a price � (y) for unloading it at destination y.
In order for the vendor to attract the worker’s attention to his offer he should make
the sum �(x) �  (y) always less than or equal the cost c(x, y). But as the vendor
wants to maximize the total sum of �(x)�  (y).

Definition 3.1.1. (The Dual Problem). Let X and Y be two finite spaces, c :
X ⇥ Y ! R and µ, ⌫ be two uniform probability measures. We then define the dual
problem as follows

(DP ) = sup

(
X

x2X

�(x)µx �
X

y2Y

 (y)⌫y : � 2 C(X), 2 C(Y ), and �(x)�  (y)  c(x, y)

)

To study this problem we introduce the notions of c� and c̄ transforms which
are generalization of the known Legendre transform, [5, Section 1.4].

Definition 3.1.2. Given compact sets X and Y and c : X ⇥ Y 7! R:

• the c�transform of a function  : Y ! R is given by

 c : X ! R :  c(x) = inf
y2Y

(c(x, y) +  (y))

• The c̄ transform of a function � : X ! R is given by

�c̄ : Y ! R : �c̄(x) = sup
x2X

(�c(x, y) + �(x)),

13



Let

(DPc) = max
 2C(Y )

(
X

x2X

 c(x)µx �
X

y2Y

 (y)⌫y

)

One can notice that

 c(x) = inf
y2Y

(c(x, y) +  (y))  c(x, y) +  (y)

which gives (DPc)  (DP ). But the DP problem is over all functions � and  such
that for every x 2 X, y 2 Y

�(x)  c(x, y) +  (y)

for which implies that �(x)   c(x), for all admissible functions �, and  . So
X

x2X

�(x)µx �
X

y2Y

 (y)⌫y 
X

x2X

 c(x)µx �
X

y2Y

 (y)⌫y,

implying that (DP )  (DPc), concluding that one can reformulate the dual problem
(DP) as an unconstrained maximization problem with only one variable  .

(DP ) = max
 2C(Y )

(
X

x2X

 c(x)µx �
X

y2Y

 (y)⌫y

)

Definition 3.1.3. (Kantorovich functional) The Kantorovich functional is defined
on C(Y ) by

K( ) =
X

x2X

 c(x)µx �
X

y2Y

 (y)⌫y

Notice that the Dual problem reduces then to maximize the Kantorovich func-
tional over the space of continuous maps over Y , which requires in the case when K
is differentiable to find its gradient, however in our case K might not be differentiable
requiring then introducing the notion of superdifferential.

3.2 Gradient of the Kantorovich Functional

Definition 3.2.1. (Superdifferential) Let F : RN 7! R[ {�1}. The superdifferen-
tial of the function F at the point x 2 RN is

@+F (x) = {v 2 RN : F (y)  F (x) + v · (y � x) 8y 2 Y }

We say that v is a supergradient of f at the point x.

Proposition 3.2.2. Let F : RN ! R [ {�1} then the following holds:

1. F is concave if and only if @+F (x) 6= ;8x 2 RN
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2. For concave functions F , @+F (x) = conv{limn!1 rF (xn) : xn converges to
x, rF (xn) exists and admits a limit}

Proof. 1. if F is concave, then at each point there exists a plane tangent to the
graph of F such that the graph of F is below the plane. Letting p be the
normal vector to the tangent plain at the point (x, F (x)) given by L(z) =
F (x)+ p · (z�x). We then Have for every y, F (y)  L(y) = F (x)+ p · (y�x),
implying that p 2 @+F (x).

Conversely, assume that the superdifferential is not empty. Let x, y 2 Rn, and
z = �x+ (1� �)y, then as @+F (z) 6= � there exists p such that

F (x)  F (z) + p · .(x� z) and F (y)  F (z) + p · (y � z)

multiplying the first inequality by � and the second one by 1 � � and then
adding we get

�F (x)+(1��)F (y)  F (z)+p · [�x+(1��)y�z] = F (z) = F (�x+(1��)y)

Which implies that F is concave function.
For the proof of 2, notice that in the argument of 1 if F is differentiable at F
then @+F (x) = rF (x). In the more general case, the result follows from the
fact that concave functions are differentiable almost everywhere (with respect
to the Lebesgue measure) and the set of differentiability is dense in RN , see
[9, Theorems, 25.5, and 25.6]

Our goal next is to calculate the superdifferential of the operation K. We require
the following definitions.

Definition 3.2.3. Given c : X ⇥ Y 7! R, and  : Y 7! R, the c� subdifferential,
@c is subset of X ⇥ Y defined by

@c = {(x, y) 2 X ⇥ Y :  c(x)�  (y) = c(x, y)}

Definition 3.2.4. With the setting of the previous definition, and µ probability
measure on X, we denote by � (µ) the set of probability measures on X ⇥ Y such
that its first marginal is µ and supported on the c-subdifferential @c , i.e

� (µ) = {� 2 P (X ⇥ Y ) :
X

y2Y

�xy = µx and spt(�) ✓ @c }

Recall that in our case X and Y are finite, and we want to calculate the superdif-
ferential of K defined in this case on RY (which is simply the space of functions on
RN). We obtain the following theorem.

Theorem 3.2.5. Given finite spaces X and Y , µ, ⌫ probability measures on X and
Y and c : X ⇥ Y 7! R. Then K is concave, more particularly for every  0 2 RY we
have

@+K( 0) =

(
X

x2X

�xy � ⌫y : � 2 � 0(µ)

)
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Proof. Fix � 2 � 0(µ). We have for every  2 RY

K( ) =
X

x2X

 c(x)µx �
X

y2Y

 (y)⌫y =
X

x2X

min
y2Y

(c(x, y) +  (y))µx �
X

y2Y

 (y)⌫y

=
X

y2Y

X

x2X

min
y2Y

(c(x, y) +  (y))�xy �
X

y2Y

 (y)⌫y


X

y2Y

X

x2X

(c(x, y) +  (y))�x,y �
X

y2Y

 (y)⌫y

where the second equality is because
P

y2Y �xy = µx.
On the other hand, for  =  0, We have that  c

0(x)�xy = (c(x, y) +  0(y))�xy
since �xy = 0 if (x, y) /2 @c 0. We then obtain that

K( 0) =
X

y2Y

X

x2X

(c(x, y) +  0(y))�xy �
X

y2Y

 0(y)⌫y.

Following that we have

K( )�K( 0) 
X

y2Y

( �  0)

 
X

x2X

�xy � ⌫y

!
.

Hence (
X

x2X

�xy � ⌫y|� 2 � 0(µ)} ✓ @+K( 0)

)

Having obtained that @+K( ) 6= ;, we deduce from Proposition 3.2.2 that K is
convex.

We now use the second part of the proposition to show the second inclusion. Let
v = limn!1 rK( n) where ( n)n2N converges to  0, its gradient exists and admits a
limit. For each n 2 N , there exists �n 2 � n(µ) such that rK( n) =

P
x2X �

n
xy�⌫y.

By the compactness of P (X ⇥ Y ), �n has a convergent subsequence that converges
weakly to �.

Now
P

y2Y �xy =
P

y2Y limk!1 �kxy = limk!1
P

y2Y �
k
xy = limk!1 µx = µx.

Similarly, � is supported on the c-subdifferential @c 0. So we get that � 2 � 0(µ).
It follows then that
n
lim
n!1

rK( n) :  n !  0, r n exists and converges
o
✓
(
X

x2X

�xy � ⌫y : � 2 � 0(µ)

)
.

By taking the convex hall of the first set we conclude that

@+K( 0) ✓
(
X

x2X

�xy � ⌫y : � 2 � 0(µ)

)

Motivated by our previous result, we define the Laguerre cells as follows
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Definition 3.2.6. (Laguerre Cell). Let  be a function on Y and c : X ⇥ Y 7! R,
then for each point y 2 Y we define the Laguerre cell associated to y to be the
subdifferential of  at this point, that is

Lagy( ) = {x 2 X : (x, y) 2 @c } = {x 2 X :  c(x)�  (y) = c(x, y)}

As well we define the strict Laguerre cell associated to y

SLagy( ) = {x 2 X : 8z 2 Y, c(x, y) +  (y) < c(x, z) +  (z)}

To clarify, given x 2 X, x 2 Lagy( ) for some y 2 Y if and only if minz2Y c(x, z)+
 (x) is attained at z = y. A priori, the Laguerre cell might be empty or contains
more than one element. The strict Laguerre cell however is defined in a way that it
contains at most one element.

Corollary 3.2.7. Given X and Y finite. Let  2 RY and y0 2 Y . We define
(t) = K( t) where  t =  + t1y0. Then, (t) is concave and

@+(t) = [µ(SLagy0( 
t))� ⌫(y0), µ(Lagy0( 

t))� ⌫(y0)]

This implies that K is differentiable at  if and only if µ(Lagy( ) \ SLagy( )) = 0
for all y 2 Y and we get in this case that

rK( ) = (µ(Lagy( ))� ⌫(y))y2Y

Proof. We have @+(t) = {r1y0 : r 2 @+K( t)} = {
P

x2X �xy0 � ⌫y0 |� 2 � t(µ)}. So
we need to show two things

max{
X

x2X

�xy0 |� 2 � t(µ)} = µ(Lagy0( 
t))}

and
min{

X

x2X

�xy0 |� 2 � t(µ)} = µ(SLagy0( 
t))}.

Let’s consider Z = X \ Lagy0( t) then we have that
X

x2X

�xy0 =
X

x2Z

�xy0 +
X

x2Lagy0 ( t)

�xy0

But spt(�) ✓ @c( t) and Z⇥{y0}\Lagy0( t) = 0 which gives us that
P

x2Z �xy0 = 0
So this implies that
X

x2X

�xy0 =
X

x2Lagy0 ( t)

�xy0 
X

y2Y

X

x2Lagy0 ( t)

�xy =
X

x2Lag 0 ( t)

µx = µ(Lagy0( 
t))

So
max{

X

x2X

�xy0 : � 2 � t(µ)}  µ(Lagy0( 
t)).
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We still need to show equality. Consider the following map T : X ! Y such that
Tx = y0 if x 2 Lagy0( 

t), and otherwise Tx = z, with z chosen arbitrarily so
that x 2 Lagz( t). Associate to T the following transport plan �T = (id, T )#µ, i.e
�T (A ⇥ B) = µ(A \ T�1B). Notice that if (x, y) 2 spt(�T ) then �Txy = µ({x} \
{T�1(y)}) 6= 0 which gives that Tx = y. Then x 2 Lagy( t), (x, y) 2 @c t. This
gives us that spt(�T ) ✓ @c t.

Notice that
X

y2Y

�xy =
X

y2Y

�({x}⇥ {y}) =
X

y2Y

µ({x} \ T�1({y})) = µx,

which implies that �T 2 � t(µ). Now by the construction of � we have thatP
x2X �

T
xy0 = µ(X \ T�1(y0)) = µ(Lagy0 

t).
For the other equality, we will proceed in the same way. Let Z = X \SLagy0( t)

then we have that that for every � 2 � t(µ)

X

x2X

�xy0 =
X

x2Lagy0 ( t)

�xy0 � �(SLagy0( 
t)⇥ {y0}) =

X

x2SLagy0 ( t)

�xy0

=
X

x2SLagy0 ( t)

X

y2Y

�xy�x

=
X

x2SLagy0

µx = µ(SLagy0( 
t)).

So we get that min{
P

x2X �xy0 : � 2 � t(µ)} � µ(SLagy0( 
t))} By taking the

same map T as before and plan �T and proceeding with the same argument we get
equality.

Now back to the Kantorovich functional, in order for it to be differentiable, (t)
should be differentiable for all y in Y . So in other words, by concavity, @+(t) should
only contain one element. This implies that µ(Lagy( t)) = µ(Slagy( t)) for all y 2
Y so µ(Lagy( ) \ SLagy( )) = 0 for all y 2 Y . Thus we get that in this case

rK( ) = {µ(Lagy( ))� ⌫({y}) : y 2 Y }

Remark 3.2.8. For the discrete uniform case with µ = 1
N

P
x2X �x and ⌫ = 1

N

P
y2Y �y

being as follows, the gradient of the Kantorovich functional, when it exists, is given
by

rK( ) =

⇢
1

N
(card(Lagy( ))� 1)|y 2 Y

�

3.3 (KP ) = (DP )

We prove in this section that dual and Kantorovich problem are equivalent.
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Definition 3.3.1. Let X and Y be two metric space, and c : X ⇥ Y ! R. We say
that a set � ✓ X ⇥ Y is c-cyclically monotone (briefly c-CM) if for every k 2 N,
permutation � of {1, 2, · · · , k} we have

kX

i=1

c(xi, yi) 
kX

i=1

c(xi, y�(i)).

for all (x1, y1), · · · , (xk, yk) 2 �.

Theorem 3.3.2. Let � be an optimal transport plan in the case when X and Y are
finite, then spt(�) is a c-CM set.

Proof. Suppose that there exist k 2 N, a permutation �, and (x1, y1), ..., (xk, yk) 2
spt(�) such that

kX

i=1

c(xi, yi) >
kX

i=1

c(xi, �(xi))

Take now 0 < ✏ < 1
2k (
Pk

i=1 c(xi, yi)�
Pk

i=1 c(xi, �(xi)). We will construct a measure
�̃ such that

P
x,y c(x, y)�x,y >

P
x,y c(x, y)�̃x,y which contradicts the fact that � is

an optimal transport plan. Define the measure �i 2 P (X ⇥ Y ) as follows

�i(x, y) = �(xi,yi)

Let µi = (⇡1)#�i = �xi and ⌫i = (⇡2)#�i = �yi . Take also the product measure
�̃i = �xi(x)��(xi)(y). We then take

�̃ = � � min �(xi, yi)

2k

kX

i=1

(�i � �̃i)

Taking any set A ⇢ X ⇥ Y we have

�̃(A) � �(A)� min �(xi, yi)

2k

kX

i=1

(�i(A))

� �(A)(1� min �(xi, yi)

2
)

� 1

2
�(A) � 0

and �̃(X ⇥ Y ) = 1, then �̃ 2 P (X ⇥ Y ). Moreover, since � 2 �(µ, ⌫), �i 2
�(µi, ⌫i), �̃i 2 �(µi, ⌫�(i)), then using the fact that � is a permutation

(⇡1)#�̃ = µ� min �(xi, yi)

2k

kX

i=1

(µi � µi) = µ

(⇡2)#�̃ = ⌫ � min �(xi, yi)

2k

kX

i=1

(⌫i � ⌫�(i)) = ⌫ � min �(xi, yi)

2k

 
kX

i=1

⌫i �
kX

i=1

⌫�(i)

!
= ⌫.
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So we get that �̃ 2 �(µ, ⌫). Now,

X

x,y

c(x, y)�x,y �
X

x,y

c(x, y)�̃x,y =
min �(xi, yi)

2N

NX

i=1

c(x, y)[(�(xi,yi) � �(xi,�(xi)))(x, y)]

=
min �(xi, yi)

2k

kX

i=1

[c(xi, yi)� c(xi, �(xi))]

>
min �(xi, yi)

2k
2k✏

= ✏min �(xi, yi) > 0

Hence, a contradiction so spt(�) is a c-CM set.

The next theorem proof appears in [10] and we include it for completeness.

Theorem 3.3.3. Let c : X ⇥ Y ! R. If A 6= ; is a c-CM set in X ⇥ Y , then there
exists a function  : Y ! R such that

A ✓ {(x, y) 2 X ⇥ Y :  c(x)�  (y) = c(x, y)}

Proof. Fix (x0, y0) 2 A. Define the following function on X.
�(x) = min{c(x, yn) � c(xn, yn) + c(xn, yn�1) � c(xn�1, yn�1) + .... + c(x1, y0) �

c(x0, y0) : n 2 N, (xi, yi) 2 A for all i = 1, 2..., n}.
Define also the following function on Y
 (y) = min{�c(xn, y) + c(xn, yn�1) � c(xn�1, yn�1) + .... + c(x1, y0) � c(x0, y0) :

n 2 N, (xi, yi) 2 A for all i = 1, 2..., n; yn = y}.
The goal is to show that �(x) =  c(x). For y 2 ⇡2(A), we have that for every

n 2 N and (xi, yi) 2 A for all i = 1, ..., n with yn = y,

�(x)  c(x, y)� c(xn, y) + c(xn, yn�1)� c(xn�1, yn�1) + ....+ c(x1, y0)� c(x0, y0)

 c(x, y) + (�c(xn, y) + c(xn, yn�1)� c(xn�1, yn�1) + ....+ c(x1, y0)� c(x0, y0))

 c(x, y) +  (y)

This gives us that �(x)  c(x, y) +  (y) for every y 2 ⇡2(A). The inequality also
holds for y /2 ⇡2(A) since in this case the right hand side is equal to +1. Taking
the minimum over all y 2 Y we get that �(x)   c(x) for every x 2 X.

Now we prove that �(x) �  c(x). Notice that for every n 2 N and for all
(x1, y1), (x2, y2), ..., (xn, yn) 2 A we have:

 c(x) = min
y2Y

(c(x, y) +  (y)

 c(x, yn) +  (yn)

 c(x, yn)� c(xn, yn) + c(xn, yn�1)� c(xn�1, yn�1) + ....+ c(x1, y0)� c(x0, y0)
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Taking the minimum over all (x1, y1), (x2, y2), ..., (xn, yn) 2 A gives that  c(x) 
�(x). Hence we get  c(x) = �(x).

Then we have, �(x)�  (y) = miny2Y (c(x, y) +  (y))�  (y)  c(x, y)
For the other inequality, for n 2 N and (x, y), (x1, y1), (x2, y2), ..., (xn, yn) 2 A we

have
c(x, yn)� c(xn, yn) + c(xn, yn�1)� c(xn�1, yn�1) + ...+ c(x1, y0)� c(x0, y0)

= c(x, y)+[�c(x, y)+c(x, yn)�c(xn, yn)+c(xn, yn�1)�c(xn�1, yn�1)+...+c(x1, y0)�
c(x0, y0)]
� c(x, y) +  (y)

Now taking the minimum over all n 2 N and (x1, y1), (x2, y2), ..., (xn, yn) 2 A,
we get that �(x)�  (y) � c(x, y). Hence

A ✓ {(x, y) 2 X ⇥ Y :  c(x)�  (y) = c(x, y)}

Remark 3.3.4. If � is an optimal transport plan, then by Theorems 3.3.2 and 3.3.3
there exists a function  such that

spt(�) ⇢ @c = {(x, y) 2 X ⇥ Y :  c(x)�  (y) = c(x, y)}

Theorem 3.3.5. Let X and Y be two finite sets with cardinal N, c : X ⇥ Y ! R, �
a probability measure on X ⇥ Y solution to the (KP ) problem and µ and ⌫ be the
corresponding marginals of �. let  0 the solution corresponding to the (DP) problem
then

(KP ) = (DP )

Proof. Notice that for any price function  we have

NX

i=1

 c(xi)µi �
NX

j=1

 (yj)⌫j =
NX

i=1

 c(xi)
NX

j=1

�ij �
NX

j=1

 (yj)
NX

i=1

�ij

=
NX

i=1

NX

j=1

�ij( 
c(xi)�  (yj))


NX

i=1

NX

j=1

�ijc(xi, yj) = (KP )

This gives that (DP )  (KP ).
For the other inequality, Suppose that � is a solution for (KP ), then by Remark

3.3.4 there exists a function  0 such that

spt(�) ⇢ @c 0 = {(x, y) 2 X ⇥ Y :  c
0(x)�  0(y) = c(x, y)}
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then we have the following

NX

i=1

NX

j=1

�ijc(xi, yj) =
NX

i=1

NX

j=1

�ij( 
c(xi)�  (yj))

=
NX

i=1

 c(xi)
NX

j=1

�ij �
NX

j=1

 (yj)
NX

i=1

�ij

=
NX

i=1

 c(xi)µi �
NX

j=1

 (yj)⌫j


NX

i=1

 c
0(xi)µi �

NX

j=1

 0(yj)⌫j

Then (KP )  (DP ).

We connect our result now to the original Assignment Propblem (AP ), and prove
a relation between the maximizer  of the Kantorovich potential and the bijection
� constructed in Theorem 2.3.12.

Proposition 3.3.6. Let  : Y ! R then the following are equivalent

•  is a global maximizer of the Kantorovich functional.

• There exists a bijection � : X 7! Y such that

c(x, �(x)) +  (�(x)) = min
y2Y

c(x, y) +  (y).

Moreover, this bijection � is the solution for the linear (AP) problem.

Proof. For the first direction, Suppose that  is a solution for the Dual Problem.
Then since (KP ) = (DP )

NX

j=1

NX

i=1

cij�ij =
NX

i=1

 c(xi)µi �
NX

j=1

 (yj)⌫j

where �ij is the optimal solution for the (KP ) problem. But µi =
PN

j=1 �ij and
⌫j =

PN
i=1 �ij. We get then

NX

i=1

 c(xi)µi �
NX

j=1

 (yj)⌫j =
NX

i=1

 c(xi)
NX

j=1

�ij �
NX

j=1

 (yj)
NX

i=1

�ij

this gives the following

NX

i=1

NX

j=1

�ij(cij +  c(xi)�  (yj)) = 0
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Now as � is a solution for the Kantorovich Problem, let P be the corresponding
permutation matrix corresponding to the (AP) solution by Theorem 2.3.12, and
� the corresponding bijection. Then �ij > 0 if and only if yj = �(xi) which is
equivalent to

ci�i +  c(xi)�  (�(xi)) = 0

For the backward direction, suppose that there exists a bijection � : X 7! Y such
that c(x, �(x))+ (�(x)) = miny2Y c(x, y)+ (y) then for this  we have the following

K( ) =
X

x2X

 cµx �
X

y2Y

 (y)⌫y

=
X

x2X

(min
y2Y

c(x, y) +  (y))µx �
X

y2Y

 (y)⌫y

=
X

x2X

(c(x, �(x)) +  (�(x)))µx �
X

y2Y

 (y)⌫y

=
X

x2X

(c(x, �(x)) +  (�(x)))µx �
X

x2X

⌫�(x) (�(x))

On the other hand, let  0 be any functional on Y , we have the following

K( 0) =
X

x2X

 0c(x)µx �
X

y2Y

 0(y)⌫y

=
X

x2X

min
y2Y

(c(x, y) +  0(y))µx �
X

y2Y

 0(y)⌫y


X

x2X

c(x, �(x)) +  0(�(x)))µx �
X

x2X

 0(�(x))⌫�(x)

= K( )

thus,  is a global maximizer of the Kantorovich functional.
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Chapter 4

Bertsekas Auction Algorithm

We can see from Proposition 3.3.6 that if  is a solution for the dual problem, we can
construct our bijection �, by assigning for each y 2 Y an element x 2 Lagy( ). A
priori, Lagy( ) can contain more than one x or even could be empty if  was not our
optimal solution for the dual problem. In the next Chapter, we will introduce the
Bertsekas auction algorithm that keeps modifying  until we reach the maximizer
one which satisfies the property that lagy( ) is a singleton set.

4.1 Motivation for the Bertsekas Algorithm

Bertsekas Algorithm is a coordinate ascent method that modifies the price  2 RY

in order to reach a maximizer for the Kantorovich functional K.
As we have seen in the previous chapter, in order to get a transport map, we

need to find an optimal price function  that reduces Lagy( )) to a singleton set for
all y 2 Y . This can be reached by iteratively increasing the price  at each y. The
question is: How much we can we increase the price by keeping at least one source
x interested in y?

The answer to this question is given in the following section by defining the
bidding increment.

4.2 Bidding Increment

In this section, we calculate the optimal increment, which is known as the bidding
increment.

Definition 4.2.1. Let  2 RN and y0 2 Y such that Lagy0( ) 6= ?. For each
x 2 Lagy0( ) we define the following:

Bidy0( , x) = ( min
y2Y \{y0}

c(x, y) +  (y))� (c(x, y0) +  (y0))

and
Bidy0( ) = max{Bidy0( , x), x 2 Lagy0( )}
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Remark 4.2.2. (Economic interpretation of the bidding increment). Assume
that there is a worker who want to transfer a certain amount of coal from N mines
to N factories. Given a set prices  (y) that corresponds to unloading the coal in
position y, the best mines x where the coal is to be taken is the ones such that
x 2 Lagy( ). In other words, the worker would choose a mine x that minimizes
c(x, y) +  (y). However, the worker would like to increase his profit  (y) as much
as possible while keeping one of the mines x 2 Lagy( ). Thus Bidy( , x) tells us
how much it is possible to increase the profit  (y), and Bidy( ) is the maximum
bidding that the working can increase, i.e. it is the best choice of increasing  (y)
such that at least one mine x 2 Lagy( ).

Proposition 4.2.3. Let  2 RN and y0 2 Y such that Lagy0( ) 6= ?. Then the
maximum for the function (t) = K( + ty0) is attained at Bidy0( ).

Proof. Let  t =  + t1y0 . For t > 0 we have Lagy0( 
t) ✓ Lagy0( ). Indeed, Let

x 2 Lagy0( 
t) then

c(x, y0) +  (y0)  c(x, y0) +  (y0) + t  c(x, z) +  t(z)  c(x, z) +  (z)

for all z 6= y0. Now for each x 2 X we have the following

x 2 Lagy0( 
t) , 8z 6= y0 c(x, y0) +  (y0) + t  c(x, z) +  (z)

, t  min
z2Y \y0

(c(x, z) +  (z))� c(x, y0) +  (y0)

, t  bidy0( , x)

where the last equivalence results from the fact that x 2 Lagy0( ).
From Corollary 3.2.7, the superdifferential of (t) is given by @+(t) = µ(Lagy0( 

t)�
1
N ). So, for t  bidy0( , x) we have @+(t) � 0 and for t � bidy0( , x), we have
@+(t) < 0. Thus, 0 2 @+(bidy0( ))

Remark 4.2.4. The coordinate ascent method is to choose at every step y 2 Y
such that its laguerre cell is not empty and then to increase the  (y) by the bidding
increment bidy( ). Then to assign for every mine x the factory y which is optimal.
This is known as the complementary slackness condition. However, sometimes the
bidding increment turns to be zero and vanishes. In this case, such an algorithm
gets stuck and doesn’t converge to a maximizer. So in order to tackle such problem,
Bertsekas and Eckstein [7] introduced the relaxation of the complementary slackness,
which is also called the ✏�complementary slackness. Through this method, the bids
are at least ✏ > 0 and every mine x is assigned to the factory y which is nearly
optimal, i.e. within ✏ of attaining miny2Y (c(x, y) +  (y))

Example 4.2.5. (Case when ✏ = 0)
In this example we will see the importance of the tolerance ✏ in the Bertsekas auction
algorithm. Consider the set X = {x1, x2, x3} and Y = {y1, y2, y3} where,

x1 = (2, 0) x2 = (3, 0) x3 = (4, 0)
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y1 = (0, 2) y2 = (0,�2) y3 = (�12, 0)

and let the cost function be the euclidean distance, c(x, y) = kx� yk. Then we can
notice the following:
As the distance between x1 and y1 is the least, then y1 is the first best choice for x1.
However, the second best choice is y2 where c(x1, y2) = c(x1, y1). Similarly, the case
with x2 and x3. Then the bidding in this case is zero. This keeps the prices at y1
and y2 unchanged as well as the laguerre cell. In this case, this algorithm will get
stuck and will not converge to the solution.

4.3 ✏�Complementary Slackness

Definition 4.3.1. Let S ✓ X and � : S ! Y be an injective map. Then the couple
(S, �) is said to be partial assignment.

Definition 4.3.2. (✏�Complementary Slackness). Let (S, �) be a partial assignment
and  : Y ! R be the price function. Then (S, �) with  verify the ✏�complementary
slackness if for every x 2 S the following holds:

c(x, �(x)) +  (�(x))  min
y2Y

c(x, y) +  (y) + ✏

Lemma 4.3.3. Let � : X ! Y be a bijection and  2 RY that satisfy together the
complementary slackness condition. Then we have the following:

(KP )  1

N

X

x2X

c(x, �(x))  (KP ) + ✏

Proof. The first inequality can be seen directly from the definition of (KP ) where

(KP ) =
1

N
min

x2X,y2Y

X

x2X,y2Y

c(x, y)  1

N

X

x2X,y2Y

c(x, �(x))

For the second inequality, we have from the complementary slackness condition
that

1

N
(c(x, �(x)) +  (�(x)))  1

N
min
y2Y

(c(x, y) +  (y)) + ✏

Now, by summing over x 2 X both sides we get:

1

N

X

x2X

(c(x, �(x)) +  (�(x)))  1

N

X

x2X

min
y2Y

(c(x, y) +  (y)) + ✏

then,

1

N

X

x2X

(c(x, �(x))  1

N

X

x2X

(min
y2Y

(c(x, y)+ (y))� (�(x)))+✏  K( )+✏  (DP )+✏ = (KP )+✏
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4.4 Bertsekas Auction Algorithm

We fix ✏ > 0 and we start with an assignment S ⇢ X( usually S is taken to be the
empty set) and a price function  2 RN such that they satisfy ✏ � CS. In each
iteration, we have two phases:

1. Bidding phase:

In this phase, we take x /2 S and compute the value y1 = miny2Y (c(x, y)+ (y))
which is the best factory for this mine. Then we compute also the value of
the second best factory after y1 by: y2 = miny2Y \y1(c(x, y) +  (y)). After
that, we find the bidding increment and increase  (y1) by this value, i.e.
 new(y1) =  (y1) + c(x, y2) +  (y2)� (c(x, y1) +  (y1)) + ✏.

2. Assignment Phase:

We assign for the mine x the factory y1, i.e. �(x) = y1. If �(x0) = y1 then we
remove x0 from S and add x to it.

After these two phases, we end up with updated assignment S with bijection � and
price function � satisfying also ✏ � CS. In fact, this algorithm preserves ✏ � CS.
We then proceed iteratively until we reach a complete assignment S with a bijection
� : X ! Y and price function  with ✏�CS that solves the (KP) by Lemma 4.3.3.

Proposition 4.4.1. If the assignment S and the price function  chosen at the be-
ginning of the algorithm verifies the ✏�CS then the obtained ones after each iteration
in the above algorithm also verifies this condition.

Proof. Assume that (S, ) verifies the ✏�CS. Then for the iteration after that, S 0 =
S
S
{x0} with �(x0) = y0. Let  new(y0) be the new price at y0. So we only need to

show that (S 0, ) verifies the ✏�CS at the source x0 since from the assumption we
know that it verifies it for all the other sources in S.

c(x0, y0) +  new(y0) = c(x0, y0) +  (y0) + Bidy0( ) + ✏

= c(x0, y0) +  (y0) + min
y2Y \y0

(c(x0, y) +  (y))� c(x0, y0)�  (y0) + ✏

 min
y2Y \y0

(c(x0, y) +  (y)) + ✏

But since the inequality is also trivial for y0 then

c(x, y0) +  (y0)  min
y2Y

(c(x, y) +  (y)) + ✏

4.5 Algorithm Complexity

Consider below the Matlab pseudo code for the Bertsekas Auction Algorithm.
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Algorithm 1 Bertsekas Auction Algorithm
1: function Auction(X, Y, ✏, c, = 0)
2: S = ;
3: if x /2 S then

4: y1 = argminy2Y (c(x, y) +  (y)) . This is the first best option for x
5: y2 = argminy2Y \y1(c(x, y) +  (y)) . This is the second best option for x
6: Bid = c(x, y2) +  (y2)� (c(x, y1) +  (y1)) + ✏ . Bidding increment
7:  (y1) =  (y1) + Bid . increasing price of y1
8: if 9x0 2 S such that �(x0) = y1 then

9: S = S\{x0} . x0 is removed from S
10: S = S

S
{x} . x is added to S

11: �(x) = y1 . x is assigned to y1
12: end if

13: end if

14: return �, 
15: end function

Remark 4.5.1. We can notice the size of the set S can only increase at each iter-
ation and one of the prices  (yi) increases by at least ✏.

Remark 4.5.2. Lower bound of the number of iterations If we consider the same
example 4.2.5 with tolerance ✏ then each time x1, x2 or x3 chooses y1 or y2 their price
will increase by the bidding 0 or ✏. So after n iterations the prices of y1 and y2 will
be at most 2n✏. Then in order for y3 to be chosen by one of the sources, their price
should exceed c(xi, y3) +  (y3) = kxi � y3k for at least one of xi with i 2 {1, 2, 3}.
Thus, 2n✏ > C where C = mini2{1,2,3} kxi � y3k. Hence, n > C

2✏ .

Proposition 4.5.3. The number of steps in the auction algorithm is at most T =
N(C✏ +1) and the number of operation S = N2(C✏ +1) where C = max(x,y)2X⇥Y c(x, y)

Proof. Suppose to the contrary that the algorithm has not stopped after T steps.
Then there exists y0 such that y0 /2 �(S) and its price has not increased from the
beginning of the algorithm ( (y0) = 0). Now suppose that there is y1 such that
the price  (y1) has been increased n times such that n > C

✏ + 1 then we get the
following:

 (y0) + c(x, y0) = c(x, y0)  C  n✏� ✏   (y1)� ✏   (y1) + c(x, y1)� ✏

However, this contradicts the ✏� CS that is satisfied at y1. Thus the price of each
of the N objects should increase at most by C

✏ + 1 steps. Therefore, the number of
steps is at most N(C✏ + 1). As in every step we are finding the minimum over N
objects, then the number of operations is at most S = N2(C✏ + 1)

Remark 4.5.4. According to Proposition 4.5.3 this method will terminate at a final
number of steps and the obtained bijection � satisfies the ✏�CS based on Proposition
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4.4.1. This implies that this bijection is within ✏ of the optimal solution according
to Lemma 4.3.3. So choosing ✏ small enough makes this method converges to the
optimal solution
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Chapter 5

Network Simplex Algorithm

In the previous chapters we considered the assignment case where the cardinal of
the source and target are both equal to N. But in the real life, we are interested in
the case where card(X) = n and card(Y ) = m with n 6= m and the unit masses µi

at each source xi and ⌫i at target yi are taken not to be uniformly equal. Similarly
as in the case of n = m, we define the matrix P 2 Mn⇥m(R) associated to the
transport plan such as Pij = �ij which is the mass transported from xi to yj with
the following constraints:

Pm
j=1 Pij = µi and

Pn
i=1 Pij = ⌫j. Let U(X, Y ) denotes the

set of feasible matrices for the transport plan.

5.1 Graph Construction of U(X, Y )

For each transport plan P , the graph representation corresponding to it is G(V
S

V 0, E(P ))
where the set of vertices V

S
V 0 be the set of sources X with the set of targets Y and

the set of edges E(P ) be the route connecting xi to yj, i.e E(P ) = {(xi, yj), Pij > 0}.
Each edge has a cost associated with it, which corresponds of transporting one unit
of resources along the route

Recall that the solution of the Kantorovich problem is attained at an extremal
point of U(X, Y ). However, extremal matrices share a special graph structure that
will be presented in the following proposition.

Definition 5.1.1. A cycle in graph G is a path that starts from a given vertex and
end in the same vertex. If a graph G has no cycles then it is said to be acyclic and
each connected component of it is said to be a tree.

Proposition 5.1.2. Let P be an extremal point of the feasible set U(X, Y ). Then
the graph G(P ) = (V

S
V 0, E) is acyclic

Proof. Suppose to the contrary that graph G(P ) has a cycle

C = {(x1, y1), (y1, x2), (x2, y2), ..., (xk, yk), (yk, x1)}

Let A be a matrix obtained from P by adding ✏ to each entry (xi, yj) 2 C such
that xi ! yj and subtracting ✏ from each entry (xi, yj) 2 C such that yj ! xi,
while B be a matrix obtained from P by subtracting ✏ from each entry (xi, yj) 2 C
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such that xi ! yj and adding ✏ to each entry (xi, yj) 2 C such that yj ! xi where
✏ < min(xi,yj)2E(P ) Pij. It is then clear that A,B 2 U(X, Y ) and P = A+B

2 . However
from Proposition 2.3.10, this contradicts that P is an extremal matrix in U(X, Y ).

Remark 5.1.3. As the graph of any extremal point P has no cycles, then card
(E(P)) is at most n+m� 1

Remark 5.1.4. As G(P ) has no cycles, then it is either a tree or a forest (union
of disjoint trees).

5.2 Network Simplex Algorithm

The idea behind the network simplex algorithm is to start with a vertex or an
extremal point from the feasible set U(X, Y ) and proceed iteratively by replacing
this vertex with a better neighborhood vertex that improves the objective until we
reach our optimal transport plan P . So first of all we are concerned about getting
the initial vertex. There are several initialization schemes, in this section we will
introduce a simple one which is the north-west corner rule.

5.2.1 North-West Corner Rule

In order to find the initial vertex P , we start by finding P11 to be the highest possible
value. Suppose that µ1 is the quantity that is ready to be transferred from the source
x1 and ⌫1 to be the quantity needed to be displaced at target y1, then we choose
P11 = min(µ1, ⌫1). If min(µ1, ⌫1) = µ1, then there is no more quantity to be taken
from x1 and the quantity still needed at y1 is r = ⌫1 � µ1. So we go to source x2

with mass µ2 and let P21 = min(µ2, r). So we can notice that at each step the entry
Pij is chosen to either saturate the row constraint i or the column constraint j or
even both constraints. We proceed in this way until we reach our last entry Pnm.

Proposition 5.2.1. The generated matrix P by the North-West corner rule is an
extremal point for the feasible set U(X, Y ).

Proof. Suppose that G(P ) has a cycle {(i1, j1), (j1, i2), ..., (jq, i1)}, then we can notice
that either the quantity at yj1 is received from two sources xi1 and xi2 or the quantity
at xi1 is splitted into two targets yj1 and yjq . But this contradicts the way that P
was constructed. Thus G(P ) has no cycles.
Now, suppose that P is not extremal matrix , then P = A+B

2 where A and B
are two matrices in the feasible set U(X, Y ) and A 6= B 6= P . Then there exists
Pi1j1 > 0 such that Ai1j1 6= Bi1j1 6= Pi1j1 . As the three matrices verify the supply
demand conditions i.e.

Pn
i=1 Pij1 =

Pn
i=1 Aij1 =

Pn
i=1 Bij1 = ⌫j1 , then there exists

0 < Pi2,j1 6= Ai2,j1 6= Bi2,j1 . We repeat this process nm+ 1 times by the Pigeon hole
principle until we repeat one of the entries Pimjk > 0. This contradicts the fact that
P has no cycles. Then P is an extremal matrix.

Proposition 5.2.2. Let X and Y be two finite sets of cardinal n and m respectively.
Then the following two statements are equivalent:
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1. P is the optimal solution for (KP) and (�, ) are the optimal ones for the dual
problem.

2. �(xi)�  (yj) = c(xi, yj) for all (xi, yj) such that Pij > 0

Proof. For the first direction, Suppose that P is the optimal solution for (KP ) and
(�, ) are the optimal one for the dual problem. then by strong duality we have

mX

j=1

nX

i=1

cijPij =
nX

i=1

�µi �
mX

j=1

 ⌫j

But µi =
Pm

j=1 Pij and ⌫j =
Pn

i=1 Pij. We get then

nX

i=1

�(xi)µi �
mX

j=1

 (yj)⌫j =
nX

i=1

�(xi)
mX

j=1

Pij �
mX

j=1

 (yj)
nX

i=1

Pij

this gives the following:
nX

i=1

mX

j=1

Pij(cij + �(xi)�  (yj)) = 0

Then if Pij > 0
�(xi)�  (yj) = c(xi, yj)

For the other direction, suppose that the equality is attained for all (xi, yj) such
that Pij > 0 then

(KP ) 
nX

i=1

mX

j=1

c(xi, yj)Pij =
nX

i=1

mX

j=1

(�(xi)�  (yj))Pij =
nX

i=1

�(xi)µi �
mX

j=1

 (yj)⌫j

 (DP ) = (KP )

This gives us that P ,  , and � are the optimal solutions for (KP ) and (DP ).

Example 5.2.3. Consider a source set X = {x1, x2, x3} and a target set Y =
{y1, y2, y3, y4} with the following supply and demand quantities:

µ = (0.1, 0.6, 0.3) and ⌫ = (0.5, 0.3, 0.1, 0.1)

For the first entry P11 = min(0.1, 0.5) = 0.1 then all the quantity at x1 are dis-
tributed. Now for x2 , the needed quantity left for y1 is 0.4, so P21 = min(0.6, 0.4) =
0.4. And so we complete in this pattern until we reach our transport plan P .2

4
0.1 0 0 0
0 0 0 0
0 0 0 0

3

5 �!

2

4
0.1 0 0 0
0.4 0 0 0
0 0 0 0

3

5 �!

2

4
0.1 0 0 0
0.4 0.2 0 0
0 0 0 0

3

5 �!

2

4
0.1 0 0 0
0.4 0.2 0 0
0 0.1 0 0

3

5 �!
2

4
0.1 0 0 0
0.4 0.2 0 0
0 0.1 0.1 0

3

5 �!

2

4
0.1 0 0 0
0.4 0.2 0 0
0 0.1 0.1 0.1

3

5
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5.2.2 Dual Pair Complementary to P

After starting with a vertex P calculated using the North-West corner, we check if
this transport plan P is the optimal one, if not we replace it by a better vertex.
In order to check that we generate the dual variables (�, ) relative to transport
plan P in the following way: for each edge (xi, yj) 2 E(P ) we have the equation
�(xi) �  (yj) = c(xi, yj). Then we get a system of s = card(E(P )) equations with
n+m variables: 8

>>>>>>>><

>>>>>>>>:

�i1 �  j1 = ci1,j1
�i2 �  j2 = ci2,j2

. = .

. = .

. = .

�is �  js = cis,js

(5.1)

Note that in such construction, we have no guarantee that �(xi)�  (yj)  c(xi, yj)
for all xi 2 X and yj 2 Y . However if this was true then the obtained P is the
optimal solution according to proposition 5.2.2 for (KP).

Notice that in the above system, we have s  n +m � 1 equations with n +m
variables. So such system is always undetermined. In order to fix this problem we
go through each tree ⌧ in G(P).
Consider a tree ⌧ 2 G(P ) with {xi1 , xi2 , xi3 , ..., xik} source nodes and {yj1 , yj2 , yj3 , ..., yjl}
target nodes resulting in exactly k + l � 1 edges. This reduces the above system to
k+ l�1 equations with k+ l unknowns. We fix one of the dual price at any node to
be zero and then find the others. Doing this to each tree gives as the dual variables
corresponding to the transport plan P .

5.2.3 Network simplex Update

After obtaining the dual variables corresponding to the transport plan P , we check
if �i �  j  cij for all (xi, yj) 2 G(P ). If this was the case, then P is the optimal
solution if not then there exists (xi, yj) such that �i �  j > cij and the network
simplex algorithm kicks in. We consider a new graph G0 which is the same graph G
adding to it the "entering" edge (i, j). Then we will have two cases:

1. In the first case, G0 is still forest even after adding this edge. We then again
compute the new dual variables as in 5.1. In this case transport plan is re-
mained unchanged.

2. In the second case, G0 has a cycle say {(xi1 , yj1), (yj1 , xi2), (xi2 , yj2), ..., (xik , yjk), (yjk , xi1)}
where (xi1 , yj1) = (xi, yj) is the entering edge. In that case we need to remove
an edge from G’ to make sure it is forest again and modifying P with keeping
it feasible. To do that we are going to rearrange the distribution of the quan-
tities transported in this cycle by increasing the amount transported from xi

to yj and changing the others. For simplicity, we call the edges of the form
(xis , yjs) as "positive edges" and the ones of the form (yjs , xis+1) as "negative
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edges".
We start by computing ✓ = min1sk Pis+1,js which represents the maximum
quantity that can be transported from xi to yj. Then we increase the flow
in each positive edge and decrease that in each negative edge to obtain an
updated transport plan P n as follows:

P n
is,js = Pis,js + ✓ and P n

is+1,js = Pis+1,js � ✓

for all 1  s  k

Example 5.2.4. Consider below the network graph of the transport plan obtained
in example 5.2.3.

x1

x2

x3

y1

y2

y3

y4

0.1
0.4
0.2
0.1
0.1
0.1

x1

x2

x3

y1

y2

y3

y4

0.1
0.4
0.2
0.1
0.1
0.1

x1

x2

x3

y1

y2

y3

y4

0.1
0.4
0.2
0.1
0.1
0.1

Figure 5.1: Graph of the initial transport plan P before and after adding the entering
edge (x1, y2)

Suppose that �1 �  2 > c1,2. Then we add the entering edge (x1, y2) to the graph of
P . The new graph contains now a cycle {(x1, y2), (y2, x2), (x2, y1), (y1, x1)} as shown
in the figure 5.2. Then we classify the edges between positive ones {(x1, y2), (x2, y1)}
and negative ones {(y2, x2), (y1, x1)} and obtain our ✓ = min(P2,2, P1,1) = 0.1. After
adding this number to the positive edges and subtracting it from the negative edges
we end up by removing the edge (x1, y1). This gives our new transport plan P 0

P 0 =

2

4
0 0.1 0 0
0.5 0.1 0 0
0 0.1 0.1 0.1

3

5

Below is the updated network graph G(P’)=G’:
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x1

x2

x3

y1

y2

y3

y4

0.1 0.5

0.1
0.1
0.1
0.1

Figure 5.2: Graph of the transport plan P’

Proposition 5.2.5. After each iteration, the updated transport plan P’ has a reduced
cost than transport plan P and the method then converges.

Proof. We have that the two transport plans are equal except for the edges in the
cycle {(xi1 , yj1), (yj1 , xi2), (xi2 , yj2), ..., (xik , yjk), (yk, xi1)}. So we get that:

nX

i=1

mX

j=1

P 0
ijci,j �

nX

i=1

mX

j=1

Pijci,j =
kX

s=1

cis,js(P
0
isjs � Pisjs) +

kX

s=1

Cis+1,js(P
0
is+1js � Pis+1js)

=
kX

s=1

cis,js✓ +
kX

s=1

cis+1,js(�✓)

=
kX

s=1

cis,js✓ +
kX

s=1

cis+1,js(�✓)

= ✓

 
kX

s=1

(cisjs � cis+1js)

!

However, using the dual variables computed at the previous iteration we have:

kX

s=1

(cisjs � cis+1js) = ci1j1 +
kX

s=2

cisjs �
kX

s=1

cis+1js

= cij +
kX

s=2

(�is �  js)�
kX

s=1

(�is+1 �  js)

= cij � (�ik+1
�  j1)

= cij � (�i �  j)

where as cij is the entering edge then �i �  j > cij. This implies that
nX

i=1

mX

j=1

P 0
ijci,j �

nX

i=1

mX

j=1

Pijci,j < 0
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As the obtained transport plan after each iteration has a reduced cost, then the
feasible trees generated by the simplex algorithm are distinct. But as the number
of all feasible trees finite, then this algorithm will eventually converge.
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