AMERICAN UNIVERSITY OF BEIRUT

A Quantitative Evaluation of Tiny Machine
Learning Models for Limited-Vocabulary Speech
Processing Applications

by
YASMINE ALI ABU ADLA

A thesis
submitted in partial fulfillment of the requirements
for the degree of Master of Engineering
to the Department of Electrical and Computer Engineering
of Maroun Semaan Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
April 2023

AMERICAN UNIVERSITY OF BEIRUT

A Quantitative Evaluation of Tiny Machine
Learning Models for Limited-Vocabulary Speech
Processing Applications

by
YASMINE ALI ABU ADLA

Approved by:

Dr. Mazen Saghir, Associate Professor Advisor
Electrical and Computer Engineering QM(_ -
Dr. Mariette Awad, Associate Professor Co-Advisor

Electrical and Computer Engineering

Dr. Jihad Fahs, Assistant Professor Member of Committee
Electrical and Computer Engineering /

LXK ‘:/ Lt

Dr. Wassim El Hajj, Professor Member of Committee

Computer Science 2&‘:’—‘:}

Date of thesis defense: April 26, 2023

AMERICAN UNIVERSITY OF BEIRUT

THESIS RELEASE FORM

Student Name: _Abu Adla Yasmine Ali
Last First Middle

I authorize the American University of Beirut, to: (a) reproduce hard or electronic copies of
my thesis; (b) include such copies in the archives and digital repositories of the University; and (c)
make freely available such copies to third parties for research or educational purposes

¥._ As of the date of submission of my thesis

___ After 1 year from the date of submission of my thesis .
___ After 2 years from the date of submission of my thesis .
___ After 3 years from the date of submission of my thesis .

May 8, 2023
Signature Date

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my supervisor, Dr. Mazen
Saghir and Co-Advisor Dr. Mariette Awad, for their unwavering support, guidance,
and encouragement throughout my research journey. Their expertise, insight, and
constructive feedback have been invaluable in shaping my ideas and refining my
research methodology.

[am also grateful to the members of my thesis committee, Dr. Jihad Fahs and
Dr. Wassim El Hajj, for their valuable contributions, insightful feedback, and con-
structive criticism during the development of this thesis. Their collective expertise
has played an instrumental role in shaping the direction and scope of my research.

Furthermore, I would like to extend my sincere appreciation to my colleagues,
friends, and family members who have provided me with unwavering support and
encouragement during the challenging times. Their unwavering support, words of
wisdom, and kindness have been a constant source of inspiration and motivation
throughout my academic journey.

Finally, T would like to express my gratitude to the American University of
Beirut, which has provided me with the resources, infrastructure, and intellectual
environment necessary for the successful completion of my research. I would also like
to extend my sincere thanks to the US-Middle East Partnership Initiative (MEPI)
for providing me with a full scholarship to participate in The Tomorrow’s Leaders
Graduate Program. This program, funded by the U.S. Department of State’s MEPI,
not only supported my academic pursuits but also provided me with invaluable lead-
ership development training. Without this scholarship, pursuing graduate studies in
a field that I am passionate about would have been nearly impossible. 1 am grateful
for the opportunity to have been a part of this program and for the unwavering
support of the MEPI team.

Thank you all for your invaluable support, encouragement, and guidance through-
out this journey.

ABSTRACT
OF THE 'THESIS OF

Yasmine Ali Abu Adla for Master of Engineering
Major: Electrical and Computer Engineering

Title: A Quantitative Evaluation of Tiny Machine Learning Models for Limited-
Vocabulary Speech Processing Applications

Tiny Machine Learning (TinyML) is a rapidly growing field that aims to bring ma-
chine learning to resource-constrained embedded systems such as microcontrollers.
These devices have limited processing power, memory, and energy, which makes it
challenging to deploy traditional machine learning models designed to run on power-
ful servers with large amounts of memory and processing capabilities. To address this
challenge, TinyML models are highly optimized and compressed, using techniques
such as quantization, pruning, and weight sharing to reduce their memory footprint
and increase their computational efficiency. This allows intelligent applications to
run on devices that were previously incapable of running complex algorithms.

This study investigates the impact of model compression techniques on the per-
formance of four deep learning models - Convolutional Neural Networks, Long Short-
Term Memory, Gated Recurrent Units, and Bidirectional Long Short-Term Memory-
for a limited-vocabulary speech processing task in Arabic, specifically focusing on
the Levantine dialect. We evaluate the effectiveness of these techniques in reducing
the memory footprint of the models, improving their accuracy and performance,
and minimizing inference time and energy consumption. To evaluate the real-world
performance of our optimized models, we deploy them on two distinct edge devices
that represent different resource-constrained environments. One device has limited
processing power and memory, while the other has relatively more computational
resources but still constrained by limited memory. By analyzing the performance of
our models on these two devices, we gain insights into the effectiveness of different
compression techniques for TinyML models and their suitability for deployment on
edge devices.

Our experiments demonstrate the efficacy of model compression techniques in
significantly reducing the memory footprint of deep learning models by up to 89%

while maintaining an accuracy of over 97%. Moreover, the optimized models re-
sult in a significant reduction in inference time and energy consumption by 99%,
making them highly suitable for deployment on resource-constrained edge devices.
Our optimized models achieve real-time performance for limited-vocabulary speech
recognition tasks, with an average inference time of less than 500ms on both edge
devices.

Overall, this study highlights the potential of model compression techniques for
developing efficient TinyML models that can be deployed on resource-constrained
edge devices. The significant reduction in memory footprint, inference time, and
energy consumption of our optimized models showcases their practicality and ef-
fectiveness for real-world applications. The efficient and accurate speech process-
ing techniques developed in this study have the potential to significantly improve
Arabic speech applications, such as improving the accuracy of Arabic speech recog-
nition and enabling efficient speech-to-text translation. The deployment of these
techniques on resource-constrained edge devices can facilitate the development of
Arabic speech applications in various domains, such as healthcare, education, and
business. Furthermore, the optimized models developed in this study can enhance
communication and accessibility for Arabic speakers with speech impairments or dis-
abilities. The potential of TinyML-based Arabic speech processing applications to
improve communication and accessibility for Arabic speakers is vast, and this study
provides valuable insights into the development of efficient and practical models for
this purpose.

Keywords— TinyML, neural networks, Arabic speech recognition, model compres-
sion, quantization, pruning, weight clustering, edge devices.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS 1
ABSTRACT 2
ABBREVIATIONS 8
1 Introduction 10
2 Related Work 12
2.1 Digital Assistants 12
2.1.1 Amazon Alexa 12

2.1.2 Google Assistant 14

213 AppleSiri 15

2.1.4 Microsoft Cortana L L 15

2.2 Machine Learning Models for Speech Processing Applications 16
2.2.1 Hidden Markov Models o0, 17

2.2.2 Convolutional Neural Networks 19

2.2.3 Recurrent Neural Networks 20

2.2.4 Long Short-Term Memory Units 23

2.2.5 Deep Learning Models for Natural Language Processing Applications 24

2.2.6 Machine Leaning Frameworks and Libraries 26

2.2.7 Deep Leaning Frameworks and Libraries 26

2.3 Speech Datasets 27
2.3.1 Arabic Datasets 27

2.3.2 English Datasets 29

2.3.3 Large Data Sets e 29

2.4 Embedded Systems 31
2.4.1 Single Board Computers and Microcontrollers 31

2.4.2 Digital Microphones 0oL 34

3 Overview of TinyML 36
3.1 TinyML Frameworks 36
3.1.1 TensorFlow Lite 37

3.1.2 EdgeImpulse o 37

3.1.3 Embedded Learning Library 37

3.1.4 ARM-NN . . . e 38

3.1.5 STM32 Cube Al Library 38

3.2 TinyML for Speech Recognition — Related Work 38

3.3 Techniques for Model Compression 41

3.3.1 Quantization L 42

3.32 Pruningo 42

3.3.3 Weight Clustering 44

3.3.4 Hybrid Approaches 44

4 A TinyML Model for Spoken Arabic Digit Recognition - Methodology 45
4.1 Levantine Arabic Audio Dataset 45
4.2 Data Pre-processing and Cleaning 46
4.2.1 Data Augmentation 46

4.2.2 Mel-Frequency Cepstral Coefficient Feature Extraction 48

4.2.3 Normalization e 49

4.3 Automatic Speech Recognition Models 49

5 Results and Discussion 55
5.1 TImpact of TFLite Compression on Model Characteristics 55
5.1.1 Impact on Parameter and Model Size 56

5.1.2 Impact on Model Performance 57

5.1.3 Impact on Inference Time 62

5.1.4 TImpact on Energy Consumption 66

5.2 Deployment on Edge Devices 68
5.2.1 Raspberry PiModel 3 oo 68

5.2.2 Arduino Nano 33 BLE Sense 69

6 Conclusions and Future Work 71
APPENDIX 73
Bibliography 80

2.1
2.2
2.3
2.4

2.5
2.6
2.7
2.8

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1

S U= W N~

ILLUSTRATIONS

Block Diagram of Amazon Alexa Architecture. Adopted from [9] 14
Three State Hidden Markov Model 18
Recurrent Neural Network Architecture 21
Difference in Feed-forward Neural Network Architecture and Recurrent

Neural Network o o 21
Architecture of LSTM Adapted from [32] 23
I2S MEMS Microphone Block Diagram. Adapted from [70] 34
Frequency Response of the Digital MEMS Microphone. Adapted from [71] . 35
Timing Diagram showing an 12S Transaction. Adapted from [72] 35
Constant Sparsity Pruning o Lo 43
Constant Sparsity vs. Polynomial Decay Pruning 43
Typical TinyML Workflow 45
Demographic Distributions oo Lo 47
MFCC Extraction 48
Model Accuracy on Testing Set 49
CNN Model o e 51
LSTM Model 52
GRU-LSTM Model e e 53
Bi-LSTM Model 54
Impact of Pruning on Models’ Accuracy 59
Impact of Weight Clustering on Models’ Accuracy 60
Impact of Pruning on Models’ Precision 74
Impact of Pruning on Models’ Recall 75
Impact of Pruning on Models’ F1 Score 76
Impact of Weight Clustering on Models’ Precision 7
Impact of Weight Clustering on Models’ Recall 78
Impact of Weight Clustering on Models’ F1 Score 79

TABLES

2.1 Transition Matrix of a Three State Hidden Markov Model 17
2.2 Comparison between the Technical Specifications of Different SBCs 33
5.1 Impact of Compression Optimizations on Model Size in MB 57
5.2 Impact of Compression Optimizations on Model Accuracy 61
5.3 Impact of Compression Optimizations on Model Precision 61
5.4 Impact of Compression Optimizations on Model Recall 61
5.5 Impact of Compression Optimizations on Model F1-Score 61
5.6 Impact of Compression Optimizations on inference time in CNN Model . . 63
5.7 Impact of Compression Optimizations on Inference Time in LSTM Model . 63
5.8 Impact of Compression Optimizations on Inference Time in GRU Model . . 64
5.9 Impact of Compression Optimizations on Inference Time in Bi-LSTM Model 64
5.10 Impact of Compression Optimizations on Energy Consumption in Joules . . 67
5.11 Comparison of Deployment Techniques on Raspberry Pi Model 3 69

ARM
ADC
API
ARM
Al
AVS
AWS
ASR
Bi-LSTM
BPTT
BERT
CNTK
CPU
CcvV
CRA
DCs
DM
DL
DNN
DTW
EI
ELL
EON
FB

FC
FFT
FLOPs
GPIO
GPUs
GRU
HMM
HTTP
i0S
IDE
1Cs
12C
IoT
JSON

ABBREVIATIONS

Advanced Reduced Instruction
Analog-to-Digital Converter
Application Programming Interface
Advanced Reduced Instruction Set Computer Machine
Artificial Intelligence

Amazon Voice Service

Amazon Web Services

Automatic Speech Recognition
Bi-directional Long Short-Term Memory
Backpropagation Through Time
Bidirectional Encoder Representations from Transformers
Cognitive Toolkit

Central Processing Unit

Computer Vision
Convolutional-recurrent-attention
Data Centers

Data Mining

Deep Learning

Deep Neural Networks

Dynamic Time Wrapping

Edge Impulse

Embedded Learning Library
Enterprise Objects Framework

Filter Banks

Fully Connected

Fast Fourier Transform
Floating-point Operations
General-Purpose Input/Output
Graphics Processing Units

Gated Recurrent Unit

Hidden Markov Model

Hypertext Transfer Protocol

iPhone Operating System

Integrated Development Environment
Integrated Circuits

Inter-Integrated Circuit

Internet of Things

JavaScript Object Notation

IPA Intelligent Personal Assistant

LSTM Long Short-Term Memory

MCUs Microcontrollers

MF Mel Frequency

MFFCs Mel Frequency Cepstral Coefficients
MEMS Micro-electromechanical systems
MSA Modern Standard Arabic

MSB Most Significant Bit

ML Machine Learning

NN Neural Network

NLP Natural Language Processing

NLU Natural Language Understanding
ONNX Open Neural Network Exchange
0S Operating System

PCM Pulse-Code Modulation

PDM Pulse Density Modulated

PoST Part of speech tagging

RAM Random-access memory

RISC Reduced Instruction Set Computer
RNNs Recurrent Neural Networks

SBCs Single Board Computers

SCK Bit Clock

SD Serial Data Line

SPI Serial Peripheral Interface

SNR Signal-to-Noise Ratio

SVM Support Vector Machines

SoC System on Chip

TF TensorFlow

TFLite TensorFlow Lite

TFLM Tensorflow Lite for Microcontrollers
TinyML Tiny Machine Learning

TPD Thermal Design Power

UART Universal Asynchronous Receiver /Transmitter
WS Word Select

CHAPTER 1

INTRODUCTION

Voice assistants like Apple Siri, Google Assistant, and Amazon Alexa are widely used in
smart phones and smart speakers to search for information, play media, and control home
appliances [1] The technology is also being introduced to the transportation, healthcare,
and manufacturing industries to ease consumer access to services and improve worker
efficiency and safety [2].

Voice assistants rely on sophisticated Machine Learning (ML), Deep Learning (DL),
and Natural Language Processing (NLP) models to process and understand speech. The
models are based on deep, complex, neural networks that require large data storage and
intensive computations for both training and inference. Because smart phones and smart
speakers have limited resources to store and run these models, speech queries are mainly
processed in cloud data centers. To operate reliably, these devices therefore need access
to high-bandwidth Internet.

As more speech-enabled devices come online, it will become harder to provide the neces-
sary communication, storage, and compute bandwidth to handle the increased speech traf-
fic in cloud data centers. To address this problem, researchers in industry and academia are
developing techniques to compress machine learning models so they can run on resource-
limited devices deployed closer to their data sources at the edge of the cloud. For example,
Google, which developed the popular TensorFlow machine learning framework, also devel-
oped TensorFlow Lite (TFLite) to compress large machine learning models so they can be
deployed on smart phones and edge devices. More recently, Google introduced Tensorflow
Lite for Microcontrollers (TFLM) to enable tiny machine learning (TinyML) models to
run on inexpensive and resource-constrained microcontrollers.

TFLM uses a number of techniques to compress TensorFlow Lite models. These include
weight quantization, pruning, and clustering. However, little is understood about how
best to apply these optimizations and their actual impact on the size, accuracy, energy
consumption, and inference time of compressed machine learning models.

Throughout this research, we aim to answer two research questions:

1. How can time series algorithms for limited-vocabulary speech processing applications
be deployed for inference on microcontrollers?

2. What is the impact of available compression algorithms on the performance of ma-
chine learning models in terms of performance, energy consumption, inference time,
and memory footprint?

10

In this study, we explored the impact of different compression techniques on four dif-
ferent Deep Learning model for spoken Arabic digit recognition. This application was used
as a case study in our research work to enable Arabic speakers with physical disabilities to
operate an elevator using simple speech commands. Because it is impractical and expen-
sive to provide high-bandwidth Internet access to an elevator cabin, a compressed model
could enable an offline, TinyML speech interface to run on an inexpensive microcontroller
inside the elevator.

This study is structured into six chapters. Chapter 2 discusses the relevant work on
Digital Assistants, Machine Learning Models for Speech Processing Applications, Avail-
able Speech Datasets, and Embedded Systems. Chapter 3 provides an overview of TinyML
and the different techniques used for model compression. Chapter 4 presents our method-
ology, while Chapter 5 discusses our results, including the impact of different compression
techniques on the size, accuracy, energy consumption, and inference time time of the DL
models. In Chapter 6, we present our conclusions and describe future work.

11

CHAPTER 2

RELATED WORK

In this chapter we provide an overview of a number of topics that are relevant to this
work. Section 2.1 provides an overview of digital assistants and the technologies behind
them. Section 2.2 presents different ML algorithms for speech recognition applications
and available ML and DL frameworks and libraries. Section 2.3 lists the available speech
datasets in different languages in various speech processing applications and Data Cen-
ters. Section 2.4 provides an introduction to embedded systems by comparing the technical
specifications of the most popular Single Board Computers (SBCs) and discusses digital
Micro-electromechanical systems (MEMS) microphones and the related digital communi-
cation protocol.

2.1 Digital Assistants

During the past several years, there has been a significant increase in the deployment of
voice-controlled Personal Digital Assistants. Over the past two decades, technological ad-
vancements, such as Automatic Speech Recognition (ASR), Natural Language Processing,
and Text-to-Speech Synthesis, have been integrated into commercial Digital Assistants
such as Apple’s Siri, Google Assistant, and Microsoft Cortana. In fact, these recent tech-
nologies have managed to showcase the concept of Artificial Intelligence (AI) as an end-user
product. Personal Digital Assistants, nowadays, are able to easily anticipate and provide
the users’ needs and requests. With the rise of technological advancements, Digital Assis-
tants are able to interact with the user and take on mundane tasks, such as setting alarms,
controlling household appliances, and setting up schedules and calls, to ease the user’s life.

The following subsections give an overview on some of the most common Personal
Digital Assistants: how they work and a brief technological overview.

2.1.1 Amazon Alexa

Amazon Alexa is a voice-controlled Intelligent Personal Assistant (IPA) that has been
deployed by the Amazon company for its line of Echo devices. Alexa has been designed
as a software, that operates on Amazon Echo devices and performs voice-based tasks and
functions while communicating through local Wi-Fi Internet connection with Amazon’s
AWS (Amazon Web Services) cloud servers or any other networked devices as seen in
Figure 2.1. The information architecture of the command process is as follows: the user
starts by saying a hot key word then gives a command [3]. In order to deal with the

12

request, Alexa sends a JavaScript Object Notation (JSON) request to an AWS Lambda
Function in the cloud. The Lambda function, which is serverless computing function that
contacts servers on the cloud, is found at the back-end code that deals with the intent
and provides Alexa with the appropriate user response. When the command is sent to
the cloud, the first Alexa system to receive is the audio signal is the ASR that converts
the audio to a text string. Then the text is sent to the Natural Language Understanding
(NLU) system to interpret the recognition result and generate an intent. And finally, a TT
(component is used to convert the NLU output as synthesized speech [1]. Alexa generates
a “Card” of information, which is available to the users on the Alexa app, to keep track
of the request and answer given to the user. Furthermore, Alexa utilizes data retention to
get smarter and better each day; the more a customer interacts with Alexa, the more data
it would have to process, store, and continuously train the Machine Learning algorithm
and adopt better to the consumer’s speech patterns, vocabulary, and pronunciation [4].

In addition to Alexa being able to obtain data from Amazon servers, it is also able to
control home appliances such as the lighting and in-house temperature. The user is able
to control home devices using Alexa by registering through the Alexa Skill app, where
the user will have to scan for the appliance and connect it to the internet [5]. First, the
user utters the voice command to the Amazon Echo device, which in return receives the
command and transfers it to the Amazon Voice Service (AVS). The audio is processed by
the AVS and converted into text and forwarded to Alexa Skills. Alexa Skill is a type of
General-Purpose Input/Output (GIPO) control that is able to control various appliance.
The Skill sends the JSON data to Ngrok cloud Service, which in return transfers the
data to the server located inside of the device. Once the device receives the JSON data,
it executes the control command [5]. Alexa has multiple microphones that are able to
detect speech patterns from any direction by employing noise cancellation and far-field
voice recognition. The user is able to activate Alexa by triggering its speech recognition
software, which is based on a Convolutional-recurrent-attention (CRA) model, through
certain “wake-up words” such as “Alexa” or other predefined wake-up words. The user
is able to select the desired wake-up word by either asking Alexa to change the wake
word, where the user is asked to utter the word and wait for Alexa to approve, or through
the Alexa app, where the user just selects the wake word of choice [6]. However, despite
current voice-recognition advancements, the current Alexa is still not able to distinguish
between the voices of several users [3].

Recently, Amazon has empowered Alexa with a full set of Arabic language skills to
communicate in Arabic with users with different dialects for region [7]. Alexa is now able
to stream Arabic music, recite the Quran, and integrate the Hijri calendar. The new and
improved Alexa is able to understand commands in the Modern Standard Arabic (MSA)
and the Gulf dialects [8]. Alexa is also able to output speech in both dialects but uses
the Gulf dialect for less formal speech such as setting alarms and streaming music. The
major difference when dealing with the Arabic language is that Amazon has decided to use
only two diacritics, the shaddah and maddah, in the words to enhance the performance
of the model when passing entity words from the ASR to the NLU and all the way to
the text-to-speech engine. The model was trained at the beginning using a Bidirectional
Encoder Representations from Transformers (BERT)-based language model, which is pre-
trained on the Arabic, French and English languages using unlabeled data. The aim was
to introduce sentences that had masked out words for the model to try and predict. Then
the trained model was used to perform NLU tasks and fine-tuned on an annotated and
labeled corpus comprising of French and English data. This was done to teach the model

13

Alexa Service

—" 4 Smart Home
Skill API

“Alexa, turn on
desk light”

Amazon Echo E] Directive:
TurnOnRequest

O Smart Home
@ ré Skill Developer

AWS
Lambda
Skill adapter

Skill registration
on developer portal

D E— i -—
Smart Home Device

Home / Office Network Internet

Figure 2.1: Block Diagram of Amazon Alexa Architecture. Adopted from [9]

the general principals of NLU which can be transferred to an optimized model on the
Arabic labeled data. Finally, the model is fine-tuned on a balanced dataset comprising
of the three languages to ensure that model optimization on the Arabic language did not
compromise the performance of the model on the remaining two languages.

2.1.2 Google Assistant

Google Assistant is an Artificial Intelligence based virtual assistant powered by Google,
that is available on mobile devices and smart household appliances. Google Assistant
relies on Deep Neural Networks (DNN) to provide users with services such as voice com-
mands and voice searching to complete tasks or control a certain device [10]. In order to
communicate with Google Assistant, the user starts a conversation by saying the hot word
“Hey Google!” and then proceeds to request a certain task or intent. The entire action is
then run on the cloud regardless of the type of device used. In fact, the enabled device
sends the user’s command to Google Assistant, which sends it to the fulfilment service via
Hypertext Transfer Protocol (HTTP) POST requests [11]. To illustrate, a fulfillment is
a service, or application, or logic that takes the intent of a user and figures out an ade-
quate action. The fulfilment finds a relevant response and then sends it back to Google
Assistant, which in return returns it to the user [11].

Despite many encountered problems and inaccuracies, Google Assistant can be used
offline only if the needed data is downloaded beforehand. To illustrate, if the user wants
Google to play music offline, he will have to download a certain playlist for Google to
stream; additionally, if the user wants Google’s help in navigation, he/she would have to
download the map of the area beforehand. Google Assistant is also able to perform simple
commands such as turning on/off the flashlight, turning on Airplane mode, and adjusting
the speaker volume [12].

14

Recently, Google has announced that Google Assistant on mobile devices now supports
Arabic for Egyptian and Saudi Arabian users[!2].

2.1.3 Apple Siri

Siri is a voice-controlled virtual assistant for Apple’s iPhone Operating System (iOS) users
that utilizes sequential natural language inference and contextual awareness to respond to
user requests. When the user says the hot word “Hey Siri!”, the device is activated and
the user’s request is converted and sent as a voice file (at a rate of 16,000 samples per
second) to Apple’s data center, where it is converted to text via the Nuance speech-to-text
engine. Everything sent to Apple Siri is processed on the cloud so that much of the offload
is processed on powerful computers rather than the mobile device itself and so that the
data continuously improves the service. Then, Siri utilizes Natural Language Processing
to understand the context of the intent by analyzing the subject keyword and linking it
to connected objects and verbs. This is done by a DNN that sifts through thousands of
phrases to determine what the input phrase means. Finally, once Siri understands the
given task, it determines what task needs to be done and then returns to the user the
needed action [13].

Recently, Apple’s new iOS 15 release has introduced new on-device speech processing
to process audio requests entirely on the iPhone rather than it being on the server side.
Apple has included in its products the A12 Bionic chip for offline support and request
processing, such as setting timers and alarms, making phone calls, sending messages, as
well as controlling audio playback. The A12 is a 64-bit Advanced Reduced Instruction Set
Computer (RISC) Machines (ARM)-based System on Chip (SoC) [14].

Despite many encountered problems, Apple has trained Siri to understand Arabic
commands in the Modern Standard Arabic dialect. However, many users have portrayed
their frustration when trying to communicate with the Arabic version of Siri.

2.1.4 Microsoft Cortana

Microsoft Cortana is yet another cloud-based voice-activated IPA that has been developed
by Microsoft and launched into windows 10 devices for Android users. Cortana is able
to set reminders, send emails, surf the web, and even tell jokes. After the user activates
the device by saying “Hey Cortana!” and inputs a certain task, the voice signal is pro-
cessed via signal processing algorithms that include analog to digital conversion, filtering,
and gain control. Then, ASR is performed using the Dynamic Time Wrapping (DTW)
algorithm, which performs speech recognition based on template matching. The DWT
algorithm decodes the feature vector into a sequence of words and then matches the audio
to popular English words that exist in Cortana’s program dictionary. After detecting and
understanding the speech, Cortana uses “command mode” semantic property to determine
how to answer the user and output a list of instructions that need to be executed. After
performing the task, the user is prompted with a response [15].

All in all, most of the utilized IPAs are cloud-based algorithms that require constant
Wi-Fi access and connection. In spite of the numerous advantages of having cloud-based
IPAs, this remains impractical in cases and locations where constant Internet connection
is unavailable. Furthermore, most of these voice-controlled digital assistants only except
commands/request in certain languages such as English, German, Italian, French, Por-

15

tuguese, and Spanish and in limited dialects. IPAs that do indeed support the Arabic
language is only offered in the MSA dialect or in the Egyptian and Gulf dialects; none of
these virtual assistants support the Levantine dialect let alone the Lebanese one. There-
fore, there has been a growing and immense need to develop an IPA that can be accessed
and used offline. Additionally, it is of great importance for any voice-based product to
understand and communicate with users via the Arabic language and in different dialects
as well. In response to this need, we propose an approach utilizing machine learning tech-
niques for keyword spotting specifically tailored for the Levantine dialect, aiming to design
an offline TPA that is effective and accurate for Arabic users

2.2 Machine Learning Models for Speech Processing Appli-
cations

Over the past several years, Artificial Intelligence, namely Machine Learning, has grown
immensely in the field of data analytics and computation. Al includes any method that en-
ables computers to mimic human behavior such as Machine Learning, Natural Language
Processing, Computer Vision (CV), robotics etc. As for ML, it aims to build intelli-
gent systems that are able to learn and improve from experience without being explicitly
programmed. In order to develop real-world applications, such as smart technologies,
automation, and exploratory data processing, ML algorithms are needed [16]. ML algo-
rithms can be divided into four categories: supervised learning, unsupervised learning,
semi-supervised learning, and reinforcement learning. The branch of supervised learning
involves the training of a model with labeled data, while unsupervised learning allows the
model to discover patterns and clusters within the data itself. As for reinforcement learn-
ing, it involves the training of a model based on a system of reward and punishment. In
this paper, the main focus is on supervised learning models, specifically Neural Networks.

Supervised learning algorithms necessitate the presence of labels for the input data;
these labels are used to train, evaluate, and optimize the ML model to make predictions.
The most popular supervised ML algorithms include Linear and Logistic Regression, Sup-
port Vector Machines (SVM), and Neural Networks (NN). Neural Networks is a growing
domain in the ML field that is inspired by the human biological neural networks. NNs
are typically depicted as a set of connected units organized in layers known as artifi-
cial neurons. The main advantage of utilizing supervised learning algorithms is the high
achievable accuracy and the predefined number of categories. As for the main disadvan-
tage, it includes model overfitting, where the model performs well on the training data
but models the noise as well causing it to perform poorly on the new testing data, and
the how computationally expensive it is [17].

On the other hand, unsupervised learning algorithms do not require the presence of la-
bels to train the ML models but rather discover knowledge from the data. One of the most
popular unsupervised learning algorithms, is the Hidden Markov Model (HMM), which
handles sequence data samples. HMM can be trained using sequence-based normal sam-
ples to generate normal base lines. The samples that have low likelihood are categorized
as having abnormal behavior. Unsupervised learning algorithms are faster to train and
computationally less expensive when compared to supervised algorithms. However, the
main challenge of unsupervised models is how to identify the features for modeling [17].

The following sections give an overview of the most popular ML algorithms that are
most commonly used in NLP applications, such as Hidden Markov Models, Recurrent

16

Table 2.1: Transition Matrix of a Three State Hidden Markov Model

Next State
Verb (V) Noun (N) Adj (A)
Verb P(V|V) = 0.03 P(N|V) =0.95 P(A|V) = 0.02
Previous State Noun P(VIN) = 0.48 P(N|N) = 0.02 P(A|N) = 0.5
Adj P(V|A) =0.03 P(N|A) =0.93 P(A|A) = 0.04

State

Neural Networks, and Long Short-Term Memory Units.

2.2.1 Hidden Markov Models

Hidden Markov Models are one of the most common unsupervised learning models that
consists of a finite set of states. The transition probability matrix or distribution is the
set, of probabilities that determine the transition between the states. In fact, transitioning
between states depends on a certain input. Additionally, the probability of transitioning
depends on the probability of transitioning from the previous state to the current one.
The transition between states continues until an output state is reached or an observation
is made. However, given that the states are hidden to the external observer, this type of
model is called the Hidden Markov Model [17], [18].

The HMM probability model has three main elements: a set of experiments having
well-defined results, a sample space (2), and the event, which is a subset of the sample
space. Furthermore, the HMM depend on conditional probability, which means that the
probability of a certain event X to happen, depend on the occurrence of a previous event
Y. The formula of conditional probability is shown in Equation 2.1 below

P(XNY)

PX/Y) = =5

(2.1)
where

e P(X/Y) is the conditional probability

e P(X NY) is the probability intersection between event X and Y

e P(Y) is the probability of event Y occurring

An example of a three state (Noun, Verb, Adj) HMM is shown in Figure 2.2 below.
Values of the transition probabilities are shown as well, where, for example, the transition
probability from adj to verb is 0.03 and that from noun to verb is 0.48. Table 2.1 shows
the transition matrix that shows the transition probabilities from one state to another.

2.2.1.1 Hidden Markov Models for Natural Language Processing Applications

Hidden Markov Models are used in the literature for various NLP applications in the Arabic
Language such as morphological analysis, part of speech tagging, and text classification.
The next subsections discuss these techniques respectively.

17

%0.03
(%f Verb)

0.48 1\ J—/ 003
0.95

Noun ————0.5——>f Adj
<—0.93——

No0.04

0.02

Figure 2.2: Three State Hidden Markov Model

Morphological Analysis HMM are used in morphological analysis, where the
morpheme, or the smallest unit of meaning, of a given word is found. When it comes to
Arabic words, their origin comes from three (tri-root) or four-letter (quad-root) words.
By adding weights to these basic blocks, other words are formed with various meanings;
by detecting the weight used, the root can be then determined [18].

Research done by Boudlal et al. [19] utilized HMM in morphological analysis for Arabic
words. The first step was to divide the sentence into words and then proceed to find the
root of each word. Whenever a word is identified, it was further divided into its prefix,
suffix, a root. The root is then determined based on the context; this was done by
representing all the possible roots as hidden states in the HMM and the best one was
selected based on the observation. In addition, the location of the word in the sentence
was taken into consideration. Researchers were able attain a correct root for more than
98% of the training set of an already written corpus consisting of 500,000 Arabic words.

Another study was able to determine the stem of the word by eliminating the prefixes
and suffixes in any word using HMM. In this case, the word is decomposed into the letters
it is formed of and the states of the model are the prefixes and the suffixes while the
transition is done by moving from one letter to another. The highest likelihood of the
word will be given the best path. After training on a set comprising of 15 million words,
a precision of 95% was achieved [20].

Part of Speech Tagging HMM tagging, otherwise known as sequence labeling,
is a process that maps a tag sequence to an input one. To exemplify, if there is a tagging
process having the following input: X;, X, ..., X, then the output will be a sequence
having the following elements: Y, Y, ..., Y,,. Part of speech tagging (PoST) is when
the input is a sentence, and the output is a tag for each word in that sentence. For
example, if we have a sentence consisting of four words, the output will consist of four
tags stating the part of speech for each word [15].

A study done on PoST took into consideration the structure of a sentence since it
is a crucial part in forming Arabic sentences. In this research, other than depending on
the sentence structure, HMM as well as morphological analyzers were applied. The first

18

step was to use the morphological analyzer to reduce the size of the tags lexicon, which
can be done by deriving the root of the Arabic word. The HMM was used to model the
sentence structure to consider the sequence of logical linguistics. In the HMM, the states
were the tags and the transitions were determined by the syntax of the sentence. The
proposed model was trained and tested on a book dated back to the Third Hijri century;
a recognition rate of 96% was achieved when evaluating the model [21].

Researchers Hadni et al. [22] integrated HMM and the Rule Based method to create a
PoST tagging hybrid model. Three tags were introduced in this study: Noun, Verb, and
Particles. The hybrid model was trained and evaluated on the Holy Quran and Kalimat
Corpuses where an accuracy of 98% and 97.6% was obtained respectively.

Another research study used the HMM and Rule Based method but instead of using
three tags, they introduced four: Noun, Verb, Particle, and Quranic. When training
and testing their hybrid model, the Holy Quran was used and an accuracy of 97.6% was
achieved [23].

Text Classification Text classification is an automated algorithm that is used
to sift and sort documents based on different categories. Text classification has recently
gained great interest given that it can be employed in various applications such as auto-
matic indexing, monitoring news, and routing emails. This type of process can be achieved
using HMM.

A proposed study applied HMM to extract features in text classification such as the
prefixes, suffixes, and the stem of a word. After that, the extracted weights were unified
by grouping different states that have a common meaning. In the Markov model, each
state is a letter, and the word is formed by many transitions. The parameters of the HMM
were learned according to a set of steps [24].

Automatic Speech Recognition Automatic Speech Recognition is an interdis-
ciplinary field of computational linguistics that develops methodologies that allow intelli-
gent machines perform to identify audio recordings spoken aloud and convert them into
readable text [25].

Research done by Dua et al. [26] proposed a system for ASR of isolated words in the
Punjabi language. The Hidden Markov Model Toolkit, which is based on the HMM, was
exploited and tested on a dataset comprising of 115 different words from different speakers,
each repeated three times. The proposed system achieved an accuracy of 95.63%.

Another research trained and tested the HMM on the news broadcast speech corpus
of the MSA and Egyptian colloquial Arabic. Their dialectal speech recognition system
reached an accuracy of 99.34% [27].

Although HMM are worth exploring, in this study we focus on newer Neural Networks,
such as Recurrent Neural Networks (RNNs) and Long Short-Term Memory Units, that
have been introduced as an improvement to traditional Markov Models.

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are an essential tool for image recognition and
computer vision tasks, as they are designed to extract features from images at different
levels of abstraction. They have been widely used in various applications, including object
detection, face recognition, and image segmentation. However, CNNs are not limited to
visual data, and they have also been applied successfully in speech recognition.

19

The architecture of a typical CNN for speech recognition includes convolutional layers,
pooling layers, and fully connected layers. The convolutional layers apply filters to the
input audio signal to extract relevant acoustic features, such as pitch, timbre, and spectral
information. The filters are learned during the training process and can vary in size, shape,
and number. The pooling layers then reduce the dimensionality of the feature maps while
retaining the most important information. The most common type of pooling used in
speech recognition is temporal pooling, which aggregates the features over time to reduce
the size of the feature maps. Finally, the fully connected layers generate a classification
output by taking the high-level features learned by the previous layers and mapping them
to the output classes. The fully connected layers combine the extracted features from
the previous layers to generate a final output, which in the case of speech recognition is
typically a sequence of phonemes or words [25].

During the training process, the CNN learns the optimal values of the convolutional
filters and the weights of the fully connected layers by minimizing a loss function. The loss
function measures the difference between the predicted output and the actual output. The
optimization process involves adjusting the values of the filters and weights to minimize
the loss function, using techniques such as backpropagation.

One of the main advantages of using CNNs in speech recognition is that they can
learn to recognize different speaking styles and accents. Researchers have developed CNN
architectures that are robust to speaker variability, such as models that use frequency-
domain features that are less sensitive to changes in speaking style and accent than time-
domain features. Another challenge in speech recognition is the presence of background
noise. To address this challenge, researchers have developed CNN models that are trained
on noisy speech data, allowing them to learn to extract relevant features even in the
presence of background noise. Additionally, some models use advanced techniques such as
time-frequency masking, which allows them to separate speech from noise.

CNNSs have shown promising results in the field of speech recognition, achieving state-
of-the-art performance on benchmark datasets. However, there are still challenges to be
addressed, such as improving the robustness of the models to different speaking styles and
environmental factors. Nevertheless, the use of CNNs in speech recognition is an active
area of research, and it is expected that they will continue to play a significant role in
advancing the field.

2.2.3 Recurrent Neural Networks

Recurrent Neural Networks are supervised learning algorithms that are a subset of feed-
forward NNs that have the ability to process information across time steps. RNN models
can model temporal dependencies, meaning that RNNs are best suited when the input
and/or output is a sequence of dependent points (sequential data points) [29]. Basically,
RNNs are a set of nodes that are linked together to communicate and output results for
certain problems. RNNs have a large number of hidden layers that exchange data every
time step to achieve better performance. RNNs are used in various applications that in-
troduce sequential data such as Automatic Speech Recognition, language modelling and
translation, and even recognition of human activity.

RNNs provide feedback in NN so that the ML model can utilize the outputs of previous
time steps while processing the current input time-step. RNNs aim to introduce memory
cells, similar to the functionality of long-term and short-term memory cells in humans,
to the NN model. These cells are known as recurrent layers. This memorization enables

20

Output layer “ e ° “
Unfold

O IO 0RO

Input layer a ° ° °

Figure 2.3: Recurrent Neural Network Architecture

Output O Output O,
T Who T Who
Hidden Layer H Hidden Layer H; Win
Fo I —
Input X Input X;
Feedfoward Neural Network Recurrent Neural Network

Figure 2.4: Difference in Feed-forward Neural Network Architecture and Recurrent
Neural Network

the model to learn from past mistakes and make better predictions. Figure 2.3 shows
an example of an RNN consisting of an input layer, two hidden layers (H), a recurrent
network, and an output layer. The input layer takes in the output of a sensor, such as
audio signals or speech, handwriting, or genomes, and converts it into a feature vector.
Then comes two Fully Connected (FC) hidden layers followed by a recurrent network that
provides the feedback. Finally, an output layer is added [30].

RNNs extend the functionality of Feed-forward Neural Networks by considering the
previous inputs Xy.;.; as well as the current input X; as seen in Figure 2.4. This process
is described in Equation 2.2 where H; € R™® is the hidden state and the input at time
t, X; € R™d given that n is the number of samples, d is the number of inputs, and
h is the number of hidden layers H. Additionally, Wy, € R™" represents the weight
matrix, Wpn € R is the hidden-state-to-hidden-state matrix, and b, € R™ is the
bias parameter. All these parameters are passed to the activation function ¢, such as the
logistic sigmoid function, to compute the gradients of back-propagation [31]. The final
output variable is shown in Equation 2.3.

Hy = 0p(XeWap, + Hi 1 Wi, + by) (2.2)

O; = @o(HtWho + bo) (23)

21

2.2.3.1 Backpropagation Through Time

Usually, Neural Network algorithms are trained using Backpropagation however, in RNNs
a technique known as Backpropagation Through Time (BPTT), which is an adaptation
of the regular backpropagation, is used.

The first step is to forward pass the input X; through the network’s hidden layers H;
and the output O; one step at a time. In order to minimize the error, the cost function
L(Y,0) is defined in Equation 2.4 to show the difference between the output value of the
NN and the targeted value Y;. The cost function or the loss function sums up all the loss
terms ¢; computed in every iteration.

T
Y)=> 4(0nYi) (2.4)
=1

Using the chain rule, the partial derivative of the loss function is computed with respect
to each of the three matrices Wj,, Whp, and Wy, as shown in Equations 2.5, 2.6, and 2.7
respectively.

H, (2.5)

ZT: Et 601/ 8900 _ T (%t 80t
aw,w -

8® Who i—1 a7Ot agpo

Z 6&5 aOt 6@ 8Ht a@h Z (%t 80t BHt 8®h (2 6)

BWhh 90, 00, OH, 90, OWhn, 90, 0, Who- o0y oW, '
8&5 80,5 8@ 8Ht 8V)h 8&5 80t 8Ht awh

— = 2.

awxh Z Zaot a0, oo aw. T

00y 90, OHy 00, OWyy,

Since every H; depends on the previous time step, the last part of the previous equa-
tions can be substituted as shown in Equations 2.8, 2.9, 2.10, and 2.11 [31].

L < O aat OH, OH,
W ; 90 Who- Z OHy, Wy, (28)
ot 90, d ik
awhh Z 50, a0, Weo 2 (Wen")"™ " H, (2.9)
t= k=1
C{Mt 801} 8Ht aHk
awmh ZaOt a0, Vo ZaHk W (2.10)
ot 90, g ok
awxh Zaot a0, " e ;(Whh)oK (2.11)

As seen above, the powers of W, need to be stored as we pass by each loss term
in the overall loss function. However, as the loss function becomes larger, this method
becomes numerically unstable since Eigen values smaller or greater than one vanish or
diverge, respectively. The solution of this problem would be to use the Truncated BPTT,

22

Input Node

Forget Gate

Figure 2.5: Architecture of LSTM Adapted from [32]

which truncates or cuts off the sum at a size that is computationally convenient. This
means that anything preceding the cut-off time step does not get considered. Since the
BPTT unfolds the RNN to add more layers at each iteration, then the truncation basically
limits the number of hidden layers [31].

2.2.4 Long Short-Term Memory Units

Vanishing or exploding gradients are one of the major problems of RNNs and NNs. As seen
in Equations 2.8, and 2.10, gg; introduces over a long sequence a new matrix multiplica-
tion. If small values (<1) exist in the matrix multiplication, this will cause the gradient to
decrease with every layer until it finally vanishes. Thus, the contribution of the previous
steps towards the current time step will stop. On the other hand, if large values (>1)
exist in the matrix multiplication, it will cause an exploding gradient, which will alter
the weights significantly. Therefore, Long Short-Term Memory Units were introduced to
handle the dilemma of the vanishing gradient [31].

LSTMs are an extension of RNNs where they allow them to learn more time steps
than they previously could. LSTMs are able to achieve that by storing more information
outside the architecture of the traditional NN model in structures known as gated cells.
LSTMs have three main structures (Figure 2.5): an input gate [;, an output gate O; to
read the given input, and a forget gate F} to reset the contents of the gated cells. The
computations done at each gate is shown in Equation 2.12, 2.13, and 2.14. The equations
below use the weight matrices Wy, Wy, and Wy, € R™M and Wy, Why, and Wy, € Rbxh
have their corresponding bias terms b;, by, and b, € R™ Furthermore, all the gates get
passed through the sigmoid activation function o to transform the output to values either
having the value of 0 or 1 [31].

I = U(Xthz’ + Hi 1 Wh; + bz) (212)
Ot = J(Xtho + Ht—lwho + bo) (213)
F; = O‘(Xthf—i-Ht,lth—i-bf) (2.14)

23

The candidate memory cell @ e R™D ig similar to the previous equations, but instead
uses the tanh activation function to give an output between -1 and 1. The equation of the
candidate memory cell is shown in Equation 2.15, where W, € R™" and Wi, € Ry are
the weight matrices and the bias term b. € Ryyy.

Cy = tanh(X;Wae + Hy_1Whe + be) (2.15)

Another structural element of LSTMs is the old memory content Cy.; € R™® which

controls how much old memory gets preserved in order to get the new memory content Cy
(Equation 2.16).

Ci=F.xCiy + L. xC; (2.16)
Finally, Equation 2.17 shows the computation of the hidden layers H; € R™" [31].

H; = Oy. * tanh(C,) (2.17)

2.2.5 Deep Learning Models for Natural Language Processing Applications

RNNs and LSTMs have been widely used in the literature to deal with various NLP
applications such as text generation, automatic word recognition, text classification, and
even sentiment analysis. The following parts highlight the role of LSTMs and RNNs in
NLP applications.

2.2.5.1 Automatic Speech Recognition

Automatic Speech Recognition is the process of using computers or machines to convert
speech signals into their textual transcription. Given that CNNs, RNNs, and LSTMs
are best suited for time series data, researchers started applying these models in word
recognition applications.

Hunshamar [33] designed and evaluated two different RNN based wake-up word de-
tection algorithms. The dataset used contained speech utterances from different speakers
in the English language. The data was pre-processed at the beginning and then the Mel
Frequency Cepstral Coefficients (MFCCs) were computed as features to be introduced to
the ML model. The first algorithm utilized a sliding window to search for the wake-up
words in a continuous stream of data. The other system, on the other hand, makes use
of the memory capabilities of the RNN to search for the wake-up words without the need
of any overlap. A shorter window frame is used, and in order to eliminate the need of
overlapping computations, the final state of a frame is transferred to the first input of the
proceeding frame. The sliding-window approach showed promising results as it achieved
an accuracy of 97.41%, a precision of 90.51%, and a recall of 88.19%. As for the second
approach, an accuracy of 97.45% was achieved as well as a precision and recall of 92.05%
and 86.61% respectively.

Another study done in 2019 applied NN and LSTMs to create an Arabic speech recog-
nition application. The Mel Frequency (MF) and Filter Banks (FB) coefficients were
extracted as the desired features and then encoded to a certain vector size to train the
recurrent LSTM model. The model was trained and evaluated on two datasets: spoken
digit recognition and spoken TV commands, and an accuracy of 95% was obtained [3].

In 2018, a few researchers presented a DL approach for speech recognition in the
Arabic language. 1040 samples of Arabic language, 840 for training and 200 for testing,

24

was utilized to extract the MFCC and introduce to the LSTM model. The system gave
promising results, where it gave an accuracy of 94% [35].

2.2.5.2 Language Modeling

Language modeling is one of the essential elements in the field of NLP. Text generation
or natural language generation, which is a type of language modeling, is the process of
producing meaningful texts in applications such as automatic report generation and auto-
matic documentation systems, etc. The aim of text generation is to empower computers
to understand text vocabulary. Recently, one of the promising research domains is the
deployment of RNNs on text modules to validate the learning process. In the case of text
generation, the RNN and LSTM models are trained on datasets to learn text structure
and meaning and then generate, as an output, a comprehensible new sequence of text.
Thus, RNNs were able to prove the success of the learning process in text generation at
the semantic level.

A study proposed a novel technique that utilizes LSTMs to build a generative model on
Arabic texts, where it is able to predict complex and sensible sequences of long-range struc-
ture. The model was trained on the Arab World Books [36] and the Hindawi datasets [37].
In addition to the typical LSTM architecture, two gates were added to account for some
features that are specific to Arabic features. To illustrate, the model was fed the schemes
meaning as well as the letters non-adjacent principal. The schemes meaning allows us to
understand the meaning of the word without having seen it before. As for the principle
of letters non-adjacency, it states which letters cannot be adjacent to one another. Then,
the model was applied on three datasets: Arabic, English, and Chinese. The standard
(non-gated) LSTM model performed better on the Arabic and English datasets than on
the Chinese one, where the loss function value achieved was 1.43, 1.2, and 2.13 respec-
tively. Nevertheless, the gated model was able to improve the results obtained on the
Arabic dataset since it was able to decrease the loss to reach 0.73 after 500 epochs [35].

A recent research study proposed the use of a deep and stacked LSTM model for
text generation. The model was trained on the “Alice in Wonderland” text comprising
of 1,63,780 characters using batch normalization to avoid the phenomena of overfitting.
Then the hyper-parameters were tuned to get the optimal values. The final trained model
was able to predict the next word in a sentence while maintaining its memory and history
with a testing accuracy of 71.22% [39].

2.2.5.3 Character Recognition

Word or character recognition is usually used in automatic text recognition to help un-
derstand texts. Many challenges are encountered in this field given the variability in
hand writings and ambiguity of some characters. Over the past few years, there has been
great interest in applying RNNs and LSTMs to this field to enhance results and improve
outcomes.

A study used an Arabic dataset consisting of 20,000 different handwritten words to de-
sign an automatic word recognition system [10]. The researchers applied a fully connected
RNN with hidden layers containing 50 cell memory blocks each. The input layer consisted
of seven nodes while that of the output layer contained 42. Online gradient descent as
well as BPTT were used to train the model. When comparing the proposed model with

25

the HMM, it was evident that the accuracy of the RNN (88%) outperformed the Markov
algorithm (71%).

2.2.6 Machine Leaning Frameworks and Libraries

In this section, we explore the advantages and disadvantages of Machine Learning frame-
works and libraries such as Scikit-Learn.

2.2.6.1 Scikit-Learn

Scikit-Learn is one of the most popular open-source Python tools that includes libraries
for Data Mining (DM) and ML algorithms. Scikit-Learn has packages such as NumPy,
SciPy, and Pandas that are useful when dealing with data pre-processing, feature selection
and/or reduction, regression, classification, clustering, and model selection. Furthermore,
it includes the Matplotlib package, which is necessary for plotting and generating graphs
and charts. The following are some advantages and disadvantages of Scikit-Learn [11].

Scikit-Learn is open-source and publicly available for general purpose. It contains up-
dated and comprehensive algorithms, in addition to it being a part of different ecosystems,
where it is linked to many statistic and scientific Python packages.

On the other hand, the main drawbacks of Scikit-Learn include that Scikit-Learn is
Application Programming Interface (API) oriented, which is costly in terms of develop-
ment and maintenance. Moreover, its libraries do not support Graphics Processing Units
(GPUs), which usually supports parallelism for large-scale DM applications.

2.2.7 Deep Leaning Frameworks and Libraries

This section gives a description on the most popular Deep Learning frameworks and li-
braries while exploring their advantages and disadvantages.

2.2.7.1 TensorFlow

TensorFlow (TF) is an open-source software library that uses data flow graphs for nu-
merical computations. TF is made to deal with large-scale distributed training as well as
model inferencing in research and production systems. The mathematical operations are
represented as nodes in the graphs, while the graph edges are the tensors, or data arrays,
communicated between them. The architecture of the distributed TF comprises of mas-
ter and slave services as well as kernel implementations, such mathematical operations,
array manipulation, and state management. Furthermore, TF can run on single Central
Processing Unit (CPU) systems. Below we discuss a few advantages and disadvantages of
TensorFlow [11].

When it comes to advantages, TF is the most popular fast evolving open-source DL
tool. It contains numerical libraries for data-flow programming, which are necessary for
DL development. TF can work efficiently with multi-dimensional arrays and can support
GPU/CPU computing.

On the other hand, the main disadvantage of TF is that the lower-level API is difficult
to use to create DL models directly with.

26

2.2.7.2 Keras

Keras is a Python wrapper library that is coupled to other DL tools such as TF, Theano,
and Microsoft Cognitive Toolkit (CNTK). Keras can be executed on GPUs and CPUs
effortlessly given the underlying frameworks. Keras is an API designed to provide the user
with the simplest and easiest design and experience. In addition, Keras utilizes a modular
design to build models such as NN; where the model is a sequence of fully configurable
modules that can be plugged with each other with little constraints. Additionally, Keras
provides easy extensibility such that new modules are easy to add. Models can be coded
using the Python Language, which makes it more compact and easier to debug. The pros
and cons of Keras are discussed below [11].

The main advantages of Keras include it being open-source library that is rapid evolv-
ing. Keras has various back-end tools for industrial companies. Keras allows programmers
to easily design and define DL models in a simple way. Additionally, Keras has popular
APIs for DL development.

Despite its simplicity, The modular (or sequential) design is not optimal for developing
new novel architectures.

2.2.7.3 PyTorch

PyTorch is a Python library for DL models developed on GPU-accelerated and general-
purpose computers. This library supports tensor computation with strong GPU accel-
eration. PyTorch allows the user to build complex architectural models easily. It uses a
method known as “reverse-mode auto-differentiation” to alter the way the network behaves
with little effort. The main advantages of PyTorch are given below [11].

The main benefits of PyTorch include its support for dynamic computational graphs,
automatic differentiation for NumPy and SciPy libraries, and Open Neural Network FEx-
change (ONNX) to easily transform models.

However, PyTorch does not have a visualization tool for monitoring and developing the
model graph. Moreover, since PyTorch is not an end-to-end platform for ML development,
this necessitates the translation from PyTorch to other DL frameworks.

2.3 Speech Datasets

Speech databases and datasets can be used in a variety of applications ranging from
Automatic Speech Recognition and synthesis to language and speaker identification.
This section gives an overview on the most popular Arabic speech recognition datasets
that are publicly available, while highlighting their main characteristics; this gives us an
opportunity to contrast our dataset with the ones currently available. Additionally, we
discuss available datasets in other languages as well as large datasets used in Data Centers.

2.3.1 Arabic Datasets

1. Modern Standard Arabic: this open-source free Arabic Speech corpus was
recorded in a professional studio by many speakers in different dialects (Gulf, Lev-
ant, Egypt, Iraq and North-west Africa). It contains more than 3.7 hours’ worth of
speech along with their phonetic and orthographic transcriptions. 13 females and 10

27

males mostly between the ages of 18 and 35 participated in this study. This dataset
was collected and used as part of an application to create a speech synthesizer [12].

. Arabic Speech Command Database: the collected database comprises of six
Arabic control words as well as the Arabic digits (0-9) that were recorded from
100 volunteers using a mobile phone application with little to no background noise.
The participants were each asked to read the six specified words and digits. The
database comprised of 1600 recordings of 16 balanced classes sampled at 48,000 Hz.
The dataset was used to compare between three different ML models to build an
ASR system in the Libyan dialect [13].

. Multi Dialect Arabic Speech Parallel Corpora: this dataset was designed
to include four main dialects: MSA, Gulf, Egypt, and Levantine. The database
consisted of recordings, which were about 32 speech hours and a total of 67,132
speech audio files. 52 participants (94% males and 6% females), between the ages of
16 and 30, were asked to speak sentences that were specific to the linguistic domain
of travel and tourism. The recordings were taken in a quiet room using the Blue
Yeti microphone and sampled at 48,000 Hz. This dataset can be used to translate
sentences into different dialects as well as research the different characteristics of
each dialect [11].

. King Abdulaziz City for Science & Technology Arabic Phonetics Database:
this database was released as a part of an experiment that aimed to study the airflow,

air pressure, nasality, perception, as well as facial images and images of the glottis,

etc. to help in in speech therapy, perception, synthesis, modeling, and recognition

applications. The data collected from seven native Arabic speakers (average age of

32 years) were articulatory, acoustic, and perceptual information while pronouncing

the 28 Arabic consonants. The database contains more 46,000 files recorded by CSL

(Computerized Speech Laboratory, Model: 4300B) [15].

. Single Speaker Arabic Corpus: this corpus is that of a single speaker pronounc-
ing the Arabic corpus along with the recorded electroglottographic signals. The
dataset comprised of seven hours of audio recordings. However, the researchers did
not provide more metadata or how the audio signals were acquired [11].

. Algerian Arabic Speech Database: the presented database comprises of differ-
ent Arabic phonemes utterances pronounced by 300 Algerian speakers, in a quiet
environment, from different Algerian regions. The speakers were of ages 18 and
above, from different socioeconomic backgrounds, and were almost divided equally
between female and male. The 1080 wave files were sampled at a rate of 16 KHz.
This database was published in the intention of utilizing it for various NLP appli-
cations such as ASR and acoustic phonetic analysis [10].

. Basic Arabic Vocal Emotions Dataset: this dataset contains audio recording
of seven Arabic words spelled in different levels of emotions. 61 participants took
part in this study, where 45 were males and 16 were females and at total of 1935
recordings were acquired. This database was used in applications regarding emotion
recognition in the Arabic speeches [17].

. Arabic voice pathology database: is a database utilized to assess and diagnose
various voice disorders in the Arab region. The speakers were asked to utter three

28

different types of text: vowels, isolated words, and running speech while being
recorded in a voice treated room using a Computerized Speech Lab model 4500.
The database consisted of 366 samples (51 normal and 49 pathological) sampled at
48 KHz. Around 60% of the subjects are males and 40% are females and are within
10 and 60 years of age [15].

2.3.2 English Datasets

1. Speech Commands: this is a dataset for limited vocabulary speech recognition
in the English language for 35 words. The audio recordings were collected using a
web-based application, where a total of 105,829 utterances were acquired from 2,618
speakers. Background noise was added to the signals to mimic real case scenarios.
The database aimed to build and compare between different ML models for speech
recognition systems [19].

2. AudioMNIST Dataset: the open-source dataset consists of 30,000 audio record-
ings of 60 speakers with 50 repetition of the English digits (0-9). The audio files
were recorded in quite offices using RODE NT-USB microphones. The participants,
who were 12 females and 48 males, were within the age group of 22 and 61 years of
age. This dataset was used in several ASR applications and classification tasks [50].

2.3.3 Large Data Sets

This section discusses speech processing models that are used in Data Centers (DCs). The
computational /storage needs for training/inferencing and continuously training of these
types of models is addressed; in addition, the datasets that are most used in such systems
are discussed.

Recently, the rapid development of Internet of Things (IoT) devices and the shift to
cloud-based systems from consumer-side computing has aided the growth of modern and
large-scale DCs (i.e., customer service). Given the significant technological improvements
in the hardware components and the growth of the Big Data field, DCs have started to
include personalized user experiences and minimal downtime. These systems are deployed
on cloud-based platforms given the complex plant operations needed for these systems.

The field of ML has been easily integrated in the DCs environment given the need
of complex computations and the continuous need to monitor data. When it comes to
training ML models for DCs, real-world historical datasets are needed; additionally, big
data or large amounts of data are needed in this case. To illustrate, hundreds of hours
of calls received to DCs, as well as the status of calls, call times, transit times, service
time, and finish time are usually needed to build complex ML models [51]. Thus, only
certain libraries and frameworks can be used to process this large amount of data and store
it. To exemplify, Apache Hadoop, an open-source MapReduce model, has been recently
developed as a solution for big data processing and storage needs. It offers many key
features such as fault tolerance, automatic parallelization, scalability and data locality-
based optimizations. As for the storage, traditional database systems cannot be used;
instead, NoSQL database management systems offer a solution for large data by presenting
a distributed soliton, consistency, availability, and partition-tolerance characteristics [52].
Furthermore, in order to properly train ML algorithms for these systems, continuous time-
evolving features should be extracted [53]. Examples of popular datasets that contain
hours’ worth of audio recordings are listed below.

29

2.3.3.1 English Datasets

1. Earnings21: is a transcribed speech dataset licensed by the CC-BY-SA comprised
of 39 hours of public companies’ earning calls. The dataset creates training data by
using forced alignment of existing audio against transcripts. This dataset is intended
for named entity recognition applications for industry-specific terminologies [54].

2. Librispeech: is a publicly available dataset licensed by the CC-BY. It is made
up of a 1,000 hours’ worth of audiobooks recordings of the Librivox project. The
audiobooks are read by one single speaker in a noise-free environment [54].

3. Gigaspeech: this dataset is similar to the Earnings21 dataset where it utilizes
forced alignment of audio extracted from YouTube videos to generate data. The
dataset consists of 10,000 hours of English audio speech that is not publicly available
due to copyright reasons [54].

4. AMI Meeting Corpus: is an open-source multi-modal dataset comprising of 100
meeting hour recordings. The meetings recorded are those of a design team trying
to kick start a design project; some of the meetings are naturally occurring and
others are scripted. The audio data was recorded using different devices such as
close-talking and far-field microphones, and video cameras. Additionally, the videos
were annotated and transcribed using orthographic transcription [55].

2.3.3.2 Multilingual Datasets

1. Multilingual Spoken Words Corpus: is a large open-source free dataset com-
prising of more than 340,000 words in 50 languages for one-second spoken examples.
The dataset was generated using forced alignment on crowd-sourced phrases. This
dataset is meant to be used in applications such as voice-enabled consumer devices
and automation of call center conversations [50].

2. Common Voice: is a crowd-source dataset used to train speech enabled-applications.
It contains more than 11,192 validated hours in 76 languages including Arabic, in
addition to the metadata of the speakers. The acquired audio data was collected at
a sampling rate of 48 kHz and re-sampled at 16 kHz [57].

3. Multilingual LibriSpeech: this dataset is a large multilingual dataset collected
from LibriVox audio books on eight different languages. The dataset contains more
than 50K hours of audio recordings in total [58].

After training these ML models to help automate customer care management, feedback
learning or continuous learning is needed to keep improving the algorithm. This adds more
complexity to the inference model given that it continuously needs to take in new data,
train and learn from it to improve [59].

To sum it up, when it comes to ML models that deal with customer care management
in large DCs big data is needed to train the algorithms using time-evolving features.
Additionally, complex computations and large storage is a necessity. When deployed,
these models need feedback and continuous learning to improve. However, in this study,
given that an ASR system will be deployed on an edge device, the components are different.

30

In fact, even though ML models require large data to be trained, in this study big data
is not needed and traditional database systems were used. Moreover, in this system time
stamped data is used unlike the time-evolving features needed in the other systems. On
the other hand, both systems can benefit from continuous training and feedback loops to
enhance the system’s performance.

2.4 Embedded Systems

The first part of this section provides an overview on embedded systems by comparing the
technical specifications of three different Single Board Components. The second section
discusses digital microphones and their digital audio standard.

2.4.1 Single Board Computers and Microcontrollers

Over the past years, the interest in Single Board Components has increased in the field of
engineering due to its rather important and enhanced technical specifications. SBCs are
hardware platforms, similar to microcontrollers, that function similar to general-purpose
computers and whose main components are integrated on single SoC. SBCs include high
memory capacity chips (might reach Gigas) both Random-access memory (RAM) and
Flash technology as well as high-capacity microprocessors (32 bits and 64 bits) on a single
chip. Additionally, SBCs support a large number of peripheral controllers such as graphical
processors, interfacing protocols, audio, and various sensors [60]. The main advantage of
SBCs is its low cost and low power consumption, which allows these components to be
deployed in cases where the use of a standard PC is not suitable, yet the processing power
needed is not met by a regular microcontroller [61].

The following three subsections discuss the technical specifications and the perfor-
mance of three main SBCs: the Raspberry Pi, the ESP32, and the STM32 board.

2.4.1.1 Raspberry Pi

Raspberry Pi is a compact yet powerful and budget-friendly computer board that was first
introduced in 2012 by the United Kingdom Raspberry Pi Foundation. This platform has
a size of 85.6 x 53.98 x 17 (mm) and weighs approximately 45 g. The Raspberry Pi costs
around 25-35% and is able to perform various types of computing while providing the option
to interface with other devices via General Purpose Input/Output. This SBC supports
numerous programming languages including Python, C, C++, Perl, and Ruby [62].

The Raspberry Pi uses its own Operating System (OS) called the Raspbian, which is
the derivative of Linux, as a free open-source platform. Recently, non-Linux based OS have
emerged in the market. However, the most preferred Raspberry Pi OS (formerly known as
Raspbian) are the Linux distribution (distro) such as Debian, Puppy Linux, Arch Linux,
and Fedora Remix since they are easily available, free of cost and, most importantly their
capability to operate on the Pi’s ARM processor. The main programming language of
Raspberry Pi is Python, which is already loaded with its OS.

2.4.1.2 Arduino Nano 33 BLE Sense

The Arduino Nano 33 BLE is a small, low-power development board based on the Nordic
nRF52840 Bluetooth 5.0 SoC. It measures just 45 x 18 mm and typically costs between

31

$20-$30. The Nano 33 BLE includes Bluetooth 5.0 connectivity, which enables it to
communicate wirelessly with other Bluetooth-enabled devices such as smartphones and
tablets. It also includes a range of sensors, including a microphone, an accelerometer, a
gyroscope, and a magnetometer [(3].

In addition to its connectivity and sensor capabilities, the Nano 33 BLE includes
a range of I/O pins that enable it to interface with other electronic components and
devices. These include digital and analog inputs and outputs, as well as interfaces for Inter-
Integrated Circuit (I12C), Serial Peripheral Interface (SPI), and Universal Asynchronous
Receiver/Transmitter (UART) communication protocols.

As for the operating system, the Arduino Nano 33 BLE is compatible with a wide range
of operating systems, including Windows, macOS, and Linux. The board is programmed
using the Arduino IDE, which is an open-source integrated development environment that
is available for free on all major operating systems. The IDE provides an intuitive interface
for writing, compiling, and uploading code to the board.

2.4.1.3 ESP32

The ESP32 is a powerful low power and low cost SoC series of microcontrollers that is
designed for IoT applications and embedded systems. This microcontroller has integrated
WiFi and Bluetooth as well as several peripheral connections. The board has a package
size of 6 mmx6 mm and costs around 30$ [64].

The ESP32 microcontroller supports the Mongoose OS, Zephyr, and other open-source
OS for IoT and embedded applications. The most commonly programming environments
for the ESP32 include Arduino Integrated Development Environment (IDE), PlatformIO
IDE, LUA, MicroPython, and JavaScript.

24.14 STM32

The STM32 is a 32-bit microcontroller introduced by STMicroelectronics based on the
ARM Cortex-M3 core, for embedded applications that require low cost and low power
consumption. The STM32 microcontrollers are mostly used in power electronic systems
such as system control, motor drives, programming controllers, medical devices, etc. [65].

The STM32 microcontroller has several OS that meet the real-time control require-
ments such as the pClinux, uC/OS-II, eCos, and FreeRTOS. As for the programming
environment, the STM32 has its own open-source IDE known as the TM32CubelDE,
which allows compilation, debugging, and feature reporting [(0].

2.4.1.5 Comparison

Table 2.2 gives a direct comparison between the technical specifications of the Raspberry
Pi, Arduino Nano, ESP32, and STM32 SBCs.

There have been many efforts to introduce real time speech recognition systems on
mobile or edge devices in resource constrained environments [67]-[09]. Still, most of these
systems are developed for recognizing English words; very few research has been done on
the possibility of developing real time ASR systems for isolated Arabic words on low power
microcontrollers. Thus, this research proposal aims to develop and deploy a ML system
for the limited-vocabulary speech processing applications in the Arabic language on SBCs
such as the Raspberry Pi, ESP32, or STM32 microcontrollers.

32

SAINA 05T/ ZHIN 051

Arowowr sep [eurojut Arowowr T\ﬂJQ:CUl.VHCU q3M 79 e wwud,ﬁwgc NM..E,H_W
VW Lgl- A9'€ 0% AT JOdIN ¢ A[IPOUI (10031 /1A & JO UOIIPPE 5} sormbeyy INVHS €31 261 EIN-XOMOD) INHV
ZHIN 0F¢ 03 dn ye soLIag
vy 009 AIoWwLW SR} [RUIS)UL sour yjoojonyg do o) uo INOY M F8¢ sogerado NdD €S-zedSH
- A9€OYATT JodN v yuerdwon-u/3/q 11°g08 HAHI G qroojenrg INVHS g3 ¢1¢ LX'T Mq-g¢ @esuory
asus§ HId €€
Vur 0g ZHIN 79 ¥e soyerado oueN oumpaIy

- AGG O AGT

Arowowr yse[gIN T

SMPOUI T{IA\ [BUINXS Ue soxmbey]

A310U7] MOT 300%ON[

VY dM 99¢

(AFIN-X0310D)) 0F2C AU

101G pIe)

ssofoIIM 0BT 208 HAMI

INVHAS (PHAadt)
ayey 'IR(] O[qNO(J
TOMOJ-MOTT g9 T

ZHOG 1O
D08 1G9
(82 IWUV) 2LV
NO&.HOO 2109 1@2@

d PPOIN ¥ 'd
Arraqdsey

VE-AT'S ASODIN ZHD 0°G Pu® ZHD ¥'¢ 0°G qroojen|g ‘TTLZINDE Wwoopeoig
A1ddng
IomoJg aSe103g TI-TAA roo01en|g INVY I10SS9001J jyusuoduwio)) preog o[Sulg

SDES YUBILdPI(] JO suoryesyoadg [eotuyoa], 9} usomiaq uostredwo)) :g'g 9[qe],

33

2.4.2 D:igital Microphones

Microphones are transducers that are able to convert sound, which is an acoustic pressure
wave, to electrical signals. Over the past several years, the integration of sensors with
components in the audio signal chain as well as the development of MEMS technology
has made microphones more available and more compact having either digital or analog
outputs. The main feature of digital microphones is integrating the analog-to-digital
conversion function into the microphones, which enables an all-digital audio capture path
starting from the microphone to the processor.

2.4.2.1 MEMS Microphones

The main component of a MEMS microphone is its transducer element. Essentially, the
transducer is a variable capacitor of high output impedance (in gigaohms). The output
of the capacitive transducer is sent to a pre-amplifier in order to decrease the output to
a certain more usable range. In digital MEMS microphones, the amplifier is integrated
with an Analog-to-Digital Converter (ADC) to convert the signal into a digital output in
two different formats: Pulse Density Modulated (PDM) or 12S. 128 is a digital standard
for transferring audio data whether it be mono or stereo [70]; a typical 12S-output digital
microphone is shown in Figure 2.6. The frequency response of the MEMS microphone is
shown in Figure 2.7.

MEMS
TRANSDUCER
ADC iy Serial Data Clock
B B erial Data Cloc!
%\ 125 '
SERIAL Serial Data Output
POWER HARDWARE | | PORT Word Clock

MANAGEMENT | | CONTROL
0—0
@] a]
o) 4
> o

Figure 2.6: 12S MEMS Microphone Block Diagram. Adapted from [70]

2.4.2.2 The 12S Digital Audio Standard

I2S is a serial bus interface that was introduced to allow the communication between
digital audio data between integrated circuits (ICs). 12S is a digital interface commonly
used in audio converters and processors; however, only recently has this interface been
integrated into audio devices such as digital microphones.

An 12S microphone outputs digital data at a decimated base-band audio sample rate.
Given that in an I2S microphone, the decimation occurs in the microphone itself, the
need for an ADC is eliminated. The I2S protocol is responsible for sending pulse-code
modulation (PCM) audio data from a controller to a specific target. It has three main
lines: the bit clock (SCK), the word select (WS), and the serial data line (SD).

34

8.0

6.0

4.0

2.0

1216 Decimalyyeq.16.51/P2 |

0.0

-2.0

dB (ref. 1kHz

-4.0
20 200 2000 20000

Frequency /Hz

Figure 2.7: Frequency Response of the Digital MEMS Microphone. Adapted
from [71]

As seen in Figure 2.8, the SCK signal runs continuously, while digital data is being
sent on the SD line (Most Significant Bit (MSB) first). Usually, data is clocked out on the
falling edge and clocked it in on the rising edge. On the other hand, a logic low on the
WS line indicates that the word being transmitted is streamed for the left audio channel,
while a logic high indicates right-channel audio.

Additionally, an I12S microphone can be easily connected to a microcontroller or edge
device for various audio processing applications. I2S microphones can be connected to a
common line and use two clock signals, as well as a word clock and a bit clock [70)].

sec_[1111} | [

WS \

sp X XwseX LsB useX

WORD n-1 WORD n WORD n+1
RIGHT CHANNEL LEFT CHANNEL RIGHT CHANNEL

NS

Figure 2.8: Timing Diagram showing an 12S Transaction. Adapted from [72]

35

CHAPTER 3

OVERVIEW OF TINYML

Tiny Machine Learning, or TinyML, is a rapidly evolving field at the intersection of ma-
chine learning and embedded systems. It enables the processing of deep learning algo-
rithms of high accuracy on microcontrollers (MCUs) by leveraging power-constrained em-
bedded platforms in applications that require low inference time and have limited commu-
nication bandwidth. TinyML enables compressed ML models to be deployed on resource-
constrained and communication-limited microcontrollers without compromising accuracy
[73], [74]. This offers several advantages over deploying ML models in the cloud, including:

1. Lower Inference Time: Deploying and running models locally eliminates the
overhead of transferring data to, and results from, the cloud. It also eliminates the
added inference time of queueing and scheduling inference tasks in the cloud. In
interactive or safety-critical applications, low-inference time is a key advantage.

2. Less Data Exchange: By running inference locally, only results with high infor-
mation content need be shared with higher-level functions in the cloud. This greatly
reduces the volume of data that needs to be exchanged and saves communication
bandwidth.

3. Lower Cost and Energy Consumption: Because they can run on inexpensive
and low-power microcontrollers, TinyML models are more cost- and energy-efficient
than their cloud counterparts. This enables them to run for months, and even years,
using small batteries or energy harvesting circuits.

4. Higher Privacy and Security: For data-sensitive applications, processing data
locally enhances its privacy. It also makes it easier to employ adequate measures to
secure the data including running the models offline.

3.1 TinyML Frameworks

Several Integrated Development Environment (IDE) are available for generating TinyML
models. These include Edge Impulse, Microsoft’s Embedded Learning Library (ELL), ST
Microelectronics’ STM32Cube.Al, and ARM’s ARM-NN SDK [75]-[77]. These convert
models developed using common ML frameworks like Keras, Open Neural Network Ex-
change (ONNX), or TensorFlow into quantized and machine optimized models expressed
in a high-level language. However, because they target specific microcontrollers, hardware

36

dependencies limit the scope of optimizations that can be applied to the models. The
following subsections describe the most popular TinyML platforms that are currently in
use.

3.1.1 TensorFlow Lite

Google’s Tensorflow Lite for Microcontrollers is another platform for generating TinyML
models. It consists of a converter that transforms Tensorflow Lite models into serialized
FlatBuffer models. The FlatBuffers serialization library uses schemas to transform hier-
archical data structures into flat binary buffers implemented as C+—+ arrays. The buffers
are smaller than the original data structures, and they can be accessed without the need
to parse or unpack data. This makes them especially well suited for use in bare metal
embedded systems. TFLM also includes an interpreter that uses code generated from the
FlatBuffers schema to access data efficiently. It also abstracts the underlying hardware,
making it easy to port a TinyML model to different microcontrollers and apply hardware-
independent optimizations to a model [78]. The work we present in this proposal is based
on the TFLM platform.

3.1.2 Edge Impulse

The Edge Impulse (EI) platform provides a comprehensive set of tools for building, testing,
and deploying machine learning models on edge devices. The platform’s web-based inter-
face allows users to easily upload and label their own data, train machine learning models,
and deploy them to edge devices. Once the models are trained, EI provides optimized
libraries for running them on a wide range of edge devices, including microcontrollers,
embedded processors, and smartphones. These libraries are designed to be memory and
processing efficient, enabling real-time inference on resource-constrained devices [79].

One of the most powerful features of Edge Impulse is its ability to generate optimized
C code directly from machine learning models trained on the platform. This process is
made possible through the use of the Enterprise Objects Framework (EON) Compiler,
which takes a trained model and generates C code that implements the model’s inference
algorithm.

To generate C code from a trained model in Edge Impulse, the user must first export
the model from the platform. This involves selecting the desired model and clicking
the ”Export” button in the Edge Impulse web interface. EI supports various machine
learning frameworks, such as TensorFlow, Keras, and PyTorch, which can be exported in
a standardized format such as ONNX or TensorFlow Lite. Once the model is exported, it
can be imported into the EON Compiler, which will generate C code that can be deployed
directly to edge devices. The generated code is optimized for memory and processing
efficiency, and is designed to run on a specific hardware platform. This enables developers
to build intelligent applications that can run directly on edge devices, without the need
for additional libraries or runtime environments.

3.1.3 Embedded Learning Library

Embedded Learning Library (ELL) is an open-source framework that was launched by
Microsoft to help deploy ML algorithms on numerous MCUs that support ARM Cortex-A
and Cortex-M architectures, such as the Arduino and Raspberry Pi. ELL is basically

37

a cross-complier that takes in a model generated in a certain format (i.e., OpenNeural
Network Exchange or TensorFlow) as an input and outputs a compressed model in the
form of an executable code for edge devices [78].

3.1.4 ARM-NN

ARM-NN is another open-source Linux framework that was developed by Arm to help
inference ML algorithms on edge devices. This framework uses the Common Microcon-
troller Software Interface Standard NN library to deploy deep architectures on MCUS;
this library has efficient neural networks kernels to help integrate ML on Cortex-M pro-
cessor cores. Given that this library is tailored to embedded devices it utilizes fixed-point
arithmetic to perform parameter quantization. The model’s parameters are reduced to 8
or 16 bits and then the compressed model is deployed on MCUs [78].

3.1.5 STM32 Cube AI Library

STMicroelectronics has introduced specific toolkits and libraries for its own devices; the
STM32Cube.Al is an example on one of these toolkits. The STM32Cube.Al allows the
deployment of pre-trained NN, provided by either TensorFlow or Keras, on STM32 ARM
CortexM microcontrollers. It generates from the NN models a C code compatible with
STM32 devices or a code in the standard ONNX format. The STM32Cube.Al is able to
deploy large NNs by storing the models’ weights and activation buffers in the RAM or
external flash memory of the MCU [30].

3.2 TinyML for Speech Recognition — Related Work

Speech recognition is a rapidly evolving field that has seen significant advancements in
recent years, largely due to the development of powerful machine learning algorithms and
the availability of large amounts of data. Omne of the most exciting areas of progress
in speech recognition is the ability to deploy these algorithms on edge devices, such as
smartphones, smart speakers, and wearables. This allows for faster and more efficient
speech recognition, with the added benefit of increased privacy and security. In this
section, we will explore the various applications of speech recognition on edge devices and
discuss the results achieved by various studies.

Tsai et al. [21] proposed a new keyword spotting technique utilizing convolutional
neural networks. The technique is based on densely connected convolutional networks and
involves replacing normal convolution with group convolution and depthwise separable
convolution to reduce model size. Additionally, squeeze-and-excitation networks are added
to enhance the weight of important features, leading to increased accuracy. Two models
were built to investigate the effect of different convolutions on DenseNet: SpDenseNet and
SpDenseNet-L. The Google speech commands dataset was used to validate the network,
which achieved better accuracy than other networks, with fewer parameters and floating-
point operations (FLOPs). For instance, SpDenseNet achieved an accuracy of 96.3% with
122.63 K trainable parameters and 142.7 M FLOPs, using only about 52% of the number
of parameters and 12% of the FLOPs compared to benchmark works. Furthermore, the
authors varied the depth and width of the network to create a compact variant, which
also outperformed other compact variants. SpDenseNet-L-narrow, for instance, achieved
an accuracy of 93.6% with 9.27 K trainable parameters and 3.47 M FLOPs, using only

38

about 47% of the number of parameters and 48% of the FLOPS compared to benchmark
works. These results suggest that the proposed technique can improve the accuracy of
keyword spotting while reducing the number of parameters and FLOPs.

A study proposed a small-footprint Keyword Spotting (KWS) system running on an
STM32F7 microcontroller with a Cortex-M7 core @216MHz and 512KB static RAM. The
baseline CNN model achieved a validation accuracy of 90% on the Speech Command
Data Set v0.01 and generated classification results every 37ms, including real-time audio
feature extraction. The study evaluated the performance of different pruning and quanti-
zation methods on the microcontroller, identifying challenges for accelerating unstructured
pruned models and suggesting that structured pruning is more suitable than unstructured
pruning. The study also demonstrated that quantization and SIMD instruction can im-
prove the system’s performance. The authors presented the time and power consumption
for four different configurations, showing that quantization from float32 to int16 reduced
elapsed time from 30.8ms to 21.4ms, and memory footprint was halved. Finally, the au-
thors found that skipping zero weights under normal loop order was counterproductive,
while skipping under weight-prioritized loop order condition was still beneficial when the
pruning percentage exceeded 80% [32].

Another study showcases an effective method of implementing Deep Neural Network
models on edge devices for keyword spotting tasks. The authors tested their approach on a
bare-metal embedded device (microcontroller) and a single board computer (Jetson Nano),
and demonstrated its effectiveness. The authors removed unnecessary audio components
and noise from the samples and used Mel-Frequency Cepstral Coefficient to extract speech
features. They proposed a Depthwise Separable Convolutional Neural Network model with
about 721 thousand trainable parameters. After training, the converted model used only
11.52 Kbyte of RAM and 169.63 Kbyte of flash memory for the bare-metal implementation.
The authors achieved a prediction accuracy of 91% for the keyword spotting task. The
bare-metal implementation of the model executed a complete prediction in 7ms, while the
JetBot took about 15ms for a single prediction, indicating the execution speed can depend
on the hardware used [3].

Holzke et al. [84], adapted a Depthwise Separable Convolutional Neural Network and a
Convolutional Neural Network for keyword spotting and used augmented training data, in-
cluding real industrial noise, to improve their robustness. They also applied post-training
quantization and tested the performance of both networks on multiple embedded systems,
including a Google Edge TPU. Through a systematic analysis of accuracies, memory foot-
print, and inference times using different combinations of data augmentations, hardware
platforms, and quantizations, they found that augmented training data improved the in-
ference accuracy in noisy environments by up to 20%. The authors demonstrated that
using an integer quantized network with a memory footprint of 0.57 MByte, achieving
inference speeds of less than 5 ms on an embedded CPU and less than 1 ms on the Edge
TPU.

A recent research paper proposed a TinyML application that classifies words (yes and
no) found in audio recordings. Pre-processing of the raw audio signals was done prior
to any step; first, the Fast Fourier Transform (FFT) of the audio signal was computed
using the Hann window, after which the Mel-frequency scaling was applied to average the
adjacent frequencies into a down sampled array. The spectrogram of the sound signal
was then computed as an input to train the ML model. The researchers then designed
and implemented a custom 12S module to perform the Digital Signal Processing stage on
the edge device; this was done by adding a windowing module to the unit in order to

39

reduce operation time and energy consumption. After changing design parameters such
as coefficient length and quantization degree, the researchers were able to minimize the
hardware size of the designed I2S unit. The proposed system was executed on a system
based on the ARM Cortex-M4 32-bit microcontroller. As for the ML model, a three layer
fully connected neural network was trained on an open-source dataset comprising of a
100,00 one second wave files [35].

Another study evaluated the accuracy, performance, and computational efficiency of
compressed ML model on two edge devices for ASR. On one hand, by applying quanti-
zation and PyTorch mobile optimizations in the case of Raspberry Pi CPU inferencing,
an improvement of inference time by 10% was seen, as well as a reduction in the memory
footprint by 50% at the cost of an increase in the Word Error Rate by 0.5% compared to
the original model. On the other hand, after running the inference in the Jetson Nano
GPU, the inference time was improved by a factor of three to five when compared to
Raspberry Pi. Furthermore, the system had a load time of one to two seconds, a memory
footprint of 300 MB, and a real time factor (a metric that measures the speed of an ASR
system) less than one. The implemented system proved to be reliable, secure, and always
available in ASR applications [30].

A study done by Hardy & Badets, developed a low-power RNN based classifier for
an always-on Wake-Up Sensor application. The system consists of a microphone, a Low
Noise Amplifier, an Automatic Gain Control that automatically adjusts the gain of the
unit, and filters. The output of the microphone is converted into a spectrogram and then
analyzed to detect if the subject has started speaking. The NN was trained on a speech
dataset comprising of 1,536 speech recordings from the Speech Commands dataset [19]
and noise segments from the MUSAN (Music, Speech, and Noise) corpus [27]. In order
to deploy the algorithm on an edge device, the RNN model used, which was composed of
16 recurrent units, was quantized using tanh for bounding the weight excursion and the
incremental quantization. The finalized model achieved 20 False Triggers/hour in noise
at 3% No Trigger Rate in pooled conditions; moreover, its memory footprint was 0.52 kB
and had an estimated power consumption of 45 nW [38].

A Sparse Embodiment Neural-Statistical Architecture was applied in a study to per-
form isolated speech recognition using Sparse Pulse Automata via Reproducing Kernel
method. The proposed method starts by developing an ML model of a dynamical system
using pulse trains, which is a technique inspired by neuromorphic engineering. Then, a
rule-based solution such as lookup tables are computed to aid in the rapid deployment of
the ML algorithm on edge computing platforms. The researchers used a unified theoret-
ical framework of the Reproducing Kernel Hilbert Space (RKHS) to obtain interpretable
and nonlinear solutions when compared to traditional NN. The proposed architecture was
trained and tested on the TI-46-digit corpus, which contained 4000 recordings (2,700 train-
ing and 1,300 testing) from an equal number of female and male participants. An accuracy
of 93.54% was achieved using the 5-Network Kernel Adaptive Autoregressive Moving Av-
erage chain model with 12 input spike channels and a size of 1880 center x 5 network x 10
words [89].

Furthermore, a paper published by Yang et al. [90] proposed a compact speech recogni-
tion model using spatio-temporal features for edge deployment. The researchers developed
a ML algorithm composed of 2 main models: a 1-Dimensional Convolutional Neural Net-
work to process the spatial information of the frequency content of the acoustic features
and an RNN model to process the temporal information of the frequency content of the
same features. The attributes utilized in the study are the Mel spectrogram features and

40

other related features extracted from the Google’s Speech Commands Datasets V1 [19].
The utilized dataset, which consisted of 65,000 one second audio recordings of 11 key-
word, was split in a in a ratio of 80:10:10 for training, validation, and testing. The model
achieved an accuracy of 96.82% and when successfully deployed on the Raspberry Pi 3
module, a total inference time of 0.59 seconds was observed, as well as energy consumption
and a power peak of 1.234 J and 2.7 W respectively.

Based on the conducted literature, the field of speech recognition on edge devices has
several gaps that need to be addressed through comprehensive research. Firstly, existing
studies only focus on specific techniques and models without offering a comprehensive
comparison of different approaches and their respective advantages and disadvantages.
Additionally, no previous research has explored the use of the Arabic language, indicating
a need for further investigation in this area. Moreover, a lack of investigation into different
compression techniques for various deep learning models and testing on several Single
Board Computers exists, warranting further research.

In light of these gaps, our study aims to provide a comprehensive comparison of various
approaches and models used in speech recognition on edge devices while focusing on the
Arabic language, which has not been extensively studied in previous research. Further-
more, we will explore different compression techniques for various deep learning models
and test them on several Single Board Computers. Through our research, we will provide
valuable insights into the impact of accuracy, size, inference time, and energy consumption
of the models, which could aid in optimizing speech recognition on edge devices.

3.3 Techniques for Model Compression

One of the most challenging parts of deploying ML algorithms, such as Neural Networks,
are the software and hardware design requirements. When running complex ML algo-
rithms on embedded devices, it is necessary to take into consideration the small memory
size and short battery life of MCUs. In fact, the ML model, with all its parameters,
weights, and connections, must be small enough to fit on MCUs that have constrained on-
chip (SRAM) memory (192-512 KB) and flash memory (256 KB-2 MB). Moreover, when
running TinyML on microprocessors, it is important to account for the computational cost
and power cycle of the ML model given the limited battery life of the edge device.

To overcome the main challenges and limitations that of running TinyML on embed-
ded platforms, several approaches can be taken such as model reduction and lightweight
frameworks. The following subsections tackle the main methods that can be utilized to
address TinyML complications.

TensorFlow Lite uses a number of techniques to compress machine learning models.
For speech recognition applications, the optimizations are applied to sequence models
such as recurrent neural networks or long short-term memory networks. In this section
we introduce four common techniques for compressing ML models: quantization, pruning,
weight clustering, and hybrid. In later sections we evaluate the impact of these techniques
on the size, accuracy, and inference time of an LSTM model for recognizing spoken Arabic
digits.

41

3.3.1 Quantization

Quantization is a technique that significantly reduces the memory footprint of a deep
neural network without compromising the model’s accuracy [91]. It is based on reducing
the number of bits used to represent a model’s parameters. Quantization usually replaces
32-bit floating-point values produced during training with 16-bit floating-point or 8-bit
fixed-point values that are used during inference. In addition to reducing the amount of
memory needed to store a model, quantized models can usually run faster because they
use simpler integer arithmetic units to operate on data.

There are two main approaches to quantization. In quantization-aware training [92],
expected quantization errors due to inference are used during training to learn quantized
model parameter values. This technique is time consuming, but it reduces the size of
a model and enhances its accuracy at the same time [91]. In post-training quantization,
model parameter values are quantized after a model has been trained. This approach
generates quantized models more quickly but generally achieves lower model accuracy.
However, in some cases, higher quantization errors can help a model generalize better,
which increases model accuracy over new data [91]. In this study, we explore three forms
of post-training quantization:

3.3.1.1 Float1l6 Quantization

A model’s 32-bit floating-point weights and activations are converted to 16-bit, half-
precision, IEEE floating-point values [93].

3.3.1.2 Dynamic Range Quantization

A model’s weights are converted from 32-bit floating-point to 8-bit fixed-point, but activa-
tions are stored as 32-bit floating point values. During inference, activations are quantized
dynamically to 8-bit fixed-point values based on their dynamic ranges. This helps reduce
model execution inference time [94].

3.3.1.3 Integer Quantization

A model’s weights and activations are converted to the nearest 8-bit fixed-point values. To
guide quantization, representative data sets are used to drive the TensorFlow Lite converter
and provide information about the dynamic ranges of different model parameters [94].

3.3.2 Pruning

Model pruning is an effective technique for compressing over-parameterized networks and
reducing their storage and computational expense. It enables models to be deployed on
resource-constrained devices without incurring a significant loss in accuracy. Pruning re-
moves a model’s dispensable or redundant weights, filters, and other structures based
on their magnitudes [95]. In magnitude-based pruning, model weights with the small-
est magnitudes are incrementally set to zero until a certain level of sparsity is achieved.
Magnitude-based pruning is applied after training. In this proposal we explore two forms
of magnitude-based pruning:

42

—){ Training the Model HWeight InitializationH Pruning Weights H Retraining Model

Neural Network

Figure 3.1: Constant Sparsity Pruning

Constant Sparsity Pruning Polynomial Decay Pruning

A A

Initial weights Initial weights

Number of Weights
Number of Weights

Target weights

Target weights

Ny Ny
> >

Training Time Training Time

Figure 3.2: Constant Sparsity vs. Polynomial Decay Pruning

3.3.2.1 Constant Sparsity Pruning

The magnitudes of a model’s weights are set to zero to achieve a fixed sparsity level that
is chosen before the model is trained [96]. Figure 3.1 shows how constant sparsity pruning
is applied. First, a ML model must be built and trained. This results in an initial set
of model weights. The model is then pruned and retrained repeatedly until the pre-set
sparsity level is achieved. On every pruning and retraining iteration, a new subset of
weights is set to zero. This effectively reduces the number of model weights incrementally.
In this study we varied the sparsity level from 10% to 90% to demonstrate the impact of
this technique on model size and performance. We also chose a learning rate of 0.001 to
control the pruning schedule.

3.3.2.2 Polynomial Decay Pruning

The weights of the model are pruned gradually during conversion to enable the model
under study to adapt to its pruned weights [96]. The model developer must set the desired
percentage of sparsity at the start and end steps of the pruning process. The Tensorflow
Lite converter then applies the specified pruning schedule to the model.

For this study, we set the start sparsity level to 0% and varied the end sparsity level
from 10% to 90% incrementally. We also set the pruning schedule to start and end at
1000 and 2000 steps, respectively. A pruning step corresponds to processing a single
batch. As with constant sparsity pruning, we chose these sparsity levels to study the
effect of polynomial decay pruning on the size and performance of a model. Figure 3.2
provides a conceptual comparison of how constant sparsity pruning and polynomial decay
pruning differ in their approach to model weight reduction.

43

3.3.3 Weight Clustering

Weight clustering is an important method in model compression, where similar weights of
a model are clustered into a predefined number of groups/clusters and assigned the same
value [97]. In this study, we use K-Means algorithm to cluster the model’s weights while
varying the number of predefined clusters from 4 to 128 by power of 2 increments.

3.3.4 Hybrid Approaches

In an attempt to improve the performance of compressed ML models or further reduce the
model’s memory footprint, many researchers combined compression algorithms. These of
methods are known as hybrid or collaborative optimization methods [93]. We investigated
two hybrid methods in this proposal: pruning and weight clustering followed by post-
training quantization.

44

CHAPTER 4

A TINYML MODEL FOR SPOKEN
ARABIC DI1iGIT RECOGNITION -
METHODOLOGY

Developing a TinyML model begins by developing a regular ML model and optimizing
it to meet desired size and performance objectives. Figure 4.1 summarizes the steps in
a typical TinyML workflow. These includes collecting and pre-processing training data;
selecting, training, and evaluating a suitable model; and compressing and deploying the
model, after which inferences can be done on the edge.

In this chapter we detail the steps we followed to develop a TinyML model for recog-
nizing spoken Arabic digits. We first describe the dataset used and the steps we followed
to pre-process and clean the data. We then explain how we chose our ML model and
discuss the experimental methods we followed to conduct our study.

Data Data Build and Train Evaluate and Deploy Model

Collection Pre-processing ML Model Optimize Model Compress Model on Edge Device Make Inferences

Figure 4.1: Typical TinyML Workflow

4.1 Levantine Arabic Audio Dataset

We collected our own dataset using a web interface [99], where participants were asked
to record themselves saying different floor levels in their own personalized way in the
Levantine dialect of the Arabic language. Our dataset includes 15 classes representing
different floor levels, including B1 (basement level 1), B2 (basement level 2), GF (ground
floor), and floors 1 through 12. Each participant was asked to record themselves saying
each digit three separate times, with the recording set for a duration of 2 seconds. This
approach was taken to create a dataset that accurately reflects the diversity of speech
patterns and accents within the Levantine dialect, which is not well-represented in existing
datasets. Each participant was encouraged to express themselves in their own unique
way, which enabled us to gather a range of different speaking styles and variations (e.g.

45

some might said "} ;\H ol ¢” while others said ” J ;\N &”) We opted for a web-based

approach to data collection to make it easy and convenient for participants to contribute
their recordings using their own devices without requiring any specialized equipment.
By leveraging this approach, we were able to create a unique dataset that can help us
gain a better understanding of how different speaking styles and accents impact speech
recognition algorithms in the Levantine dialect.

The dataset included recordings from 159 participants who spoke the Levantine dialect
of Arabic. The participants were 61 were males and 98 were females, mostly with an
average age between 18 and 36. The participants were located across Mount Lebanon,
Beirut, Akkar, Beqaa, South, and North Governorate. The participants were recruited
from six different locations, with the largest number of participants coming from Beirut
Governorate with 70 participants. Although the majority of participants were recruited
from Beirut Governorate, it is important to note that the dataset is not biased towards
their dialect. This is due to the fact that the participants living in Beirut have diverse
accents and predominantly convey the typical Lebanese dialect.

To provide a visual representation of the demographics of the participants, Figures 4.2a,
4.2b, and 4.2c¢ show the gender, age, and location distribution of the participants in the
dataset, respectively.

By including this demographic information and providing a visual representation of
the data, we can better understand any potential biases or limitations of the dataset, and
can make informed decisions about how to analyze and interpret the results.

4.2 Data Pre-processing and Cleaning

Before using the dataset to develop and train a suitable ML model, we augmented, pre-
processed, and cleaned the data. First, we performed data augmentation techniques such
as pitch shifting and time stretching to increase the variability of the dataset. We then
extracted Mel-frequency cepstral coefficients (MFCCs) from the audio samples to represent
the spectral content of the speech signal. Finally, we normalized the MFCCs to have zero
mean and unit variance across the dataset.

4.2.1 Data Augmentation

Audio data augmentation is a crucial technique to increase the size of the training dataset
and improve the generalization performance of machine learning models. In this study,
we employed several commonly used data augmentation methods to enhance the diversity
and variability of our audio dataset.

"First, we added white noise with a standard deviation (sigma) of 0.005 to each audio
clip to simulate real-world background noise, and then calculated the signal-to-noise ratio
(SNR) of the resulting audio signal. The SNR was found to be 22.97 dB, indicating that
the signal was significantly stronger than the background noise. Next, we generated a
random pitch shift factor between -3 and 3 semitones to change the pitch of the audio
and create variations in tone, yet mimic the natural variation in human speech. We also
applied time shift by 0.3, which randomly shifts the audio forwards or backwards by up
to 0.3 seconds to create variations in timing. Additionally, we time stretched audio with
stretch factor of 0.8 and 1.1, which changes the tempo of the audio while preserving the

46

Gender Distribution

100
90
20
70
60
50
40
30
20

Female Male

(a) Gender Distribution

Age Distribution

120
100
80
60
40
20 .
.] o
18-36 36-54 0-18 54-72
(b) Age Distribution

Location Distribution

50

40

30

20

10 I

. B = = -

Beirut Mount South Beqaa North Akkar Nabatieh
Lebanon

(c) Location Distribution

Figure 4.2: Demographic Distributions

pitch. To simulate different environments, we added elevator noise to some audio clips
and chatter to others.

By applying these techniques, we increased the size and variability of our dataset from
1,941 to reach 17,469 recordings, which will improve the performance and robustness of
the ML model.

47

4.2.2 Mel-Frequency Cepstral Coefficient Feature Extraction

A common approach to pre-processing speech samples is to extract their Mel-Frequency
Cepstral Coefficients. The Mel frequency cepstrum is a method for capturing a speech
sample’s short-term power spectrum. MFCCs provide information about the spectral
characteristics of the speech sample, enabling them to be used as input features to an ML
model [100].

Figure 4.3 shows how a speech sample’s MFCCs are computed. First, the speech
sample’s frequency spectrum is calculated using the Fast Fourier Transform. Next, relevant
frequency bands are extracted by applying a Mel filter bank. This is a group of overlapping
triangular filters with unit gains centered around the frequencies along the Mel scale. The
Mel-scale is a non-linear frequency scale that mimics the non-linear perception of sound
in the human ear, which is better at detecting low-frequency sounds. Equation 4.1 shows
how sound frequencies are mapped to the Mel scale:

Mel Frequency Cepstral Coefficients (MFCC)

Speech Signal

e ‘,“,mmmim;h“,x,}w

s~ e FFT
"

Mel Filter Bank

Y

A

Cepstral Coefficients [« DCT

Logarithim

A

Figure 4.3: MFCC Extraction

frequency

700)

After applying the Mel filter bank, the logarithm of the power spectrum magnitude
for each filter is calculated to also mimic the non-linear perception of loudness in human
hearing. The power spectrum magnitude is obtained by taking the magnitude squared of
the Fourier transform of a windowed segment of the audio signal.

Next, the discrete cosine transform (DCT) is applied to the logarithms of the Mel
power spectrum magnitudes to decorrelate the energies of overlapping Mel filter banks.
Finally, the results of the DCT are used to calculate the speech sample’s MFCCs. However,
only the first 12 cepstral values out of 26 (MFCCs 1 to 12) are used as speech features
because they contain the most discriminative spectral information. Using a smaller set of
MFCCs also reduces processing times [101].

The MFCC values for a given speech sample are expressed as a matrix with 12 columns
corresponding to the calculated cepstral values and a number of rows corresponding to the
duration of a sample. Because there are variations in the time is takes to utter different
digits, the number of rows for MFCC matrices can vary. To ensure that the ML model will
process all speech samples uniformly, we used the maximum number of rows to express
all MFCC matrices, and we set to zero any unused rows associated with a speech sample.
We also verified that setting unused rows in an MFCC matrix to zero did not change or
corrupt the corresponding speech samples when transformed back to the time domain.

Mel(frequency) = 1127 x In(1 + (4.1)

48

4.2.3 Normalization

After extracting the MFCC coefficients, we normalized them using Z-score normaliza-
tion [102] so that all attributes can contribute to the learning process equally. Equation 4.2
shows how Z-score normalization is calculated:

Vi —

= 4.2
v =22 (42)

Here v} is the normalized value and p and o are the mean and standard deviation of the
ith column (cepstral value) of an MFCC matrix, respectively.

4.3 Automatic Speech Recognition Models

In this study, we evaluated four different deep learning architectures, which we developed
using the Keras Tuner with Bayesian Optimization [103]. We assessed over 20 design
iterations using the TensorFlow framework to build the optimal model architecture. The
models we assessed were: (1) Convolutional Neural Networks, (2) Gated Recurrent Units
(GRU), (3) Long Short-Term Memory, and (4) Bidirectional LSTM (Bi-LSTM). All the
results reported in this study were after training our model on 70% of the data, out of which
10% was used for validation, and testing it on the remaining 30%. We also used an Adam
optimizer, a categorical cross entropy loss function, and optimized for validation accuracy.
During training we used a batch size of 32 on 100 epochs. To decide which algorithms
are best suited for our application, we compared the accuracy of these four models on
the mentioned dataset and selected the top three models. As seen in Figure 4.4, the top
performing models were the GRU, LSTM, and Bi-LSTM.

Model Accuracy

100%

90%
80%
70%
60%
50%
40%
30%
CNN

LSTM Bi-LSTM GRU-LSTM

Figure 4.4: Model Accuracy on Testing Set

Figures 4.5, 4.6, 4.7, and 4.8 show the final structure of our models. Below is a detailed
description of the models’ architecture:

1. CNN: consists of two Conv1D layers with 8 and 16 filters, respectively, and a kernel
size of 3. The ReLU activation function is used for both layers to introduce non-
linearity in the model. A dropout rate of 0.25 is applied after each pooling layer
to prevent overfitting. The max-pooling layer with a pool size of 2 and stride of

49

2 is applied after each convolutional layer, which reduces the spatial dimensions of
the input by half. The output from the second pooling layer is flattened, and a
softmax activation function is applied to the final dense layer with the number of
neurons equal to the number of classes (15). The final dense layer with softmax ac-
tivation produces a probability distribution over the classes, indicating the model’s
confidence in each of the possible classes.

. LSTM: consists of an LSTM layer with 32 units, followed by a second LSTM layer
also with 32 units, and a third LSTM layer with 256 units. A Flatten layer is added
to convert the output tensor from the last LSTM layer to a 2D tensor. The model
then has three Dense layers with 32 units each that use the relu activation function.
Another Flatten layer is added, followed by a Dropout layer with a rate of 0.1 to
help prevent overfitting. The final Dense layer has 15 nodes, and uses the softmax
activation function to produce a probability distribution over the classes.

. GRU-LSTM: consists of a GRU layer with 288 units, followed by an LSTM layer
with 489 units. A Flatten layer is added to convert the output tensor from the
last LSTM layer to a 2D tensor. The model then has a Dense layer with 96 units
that uses the relu activation function. Another Flatten layer is added, followed by
a Dropout layer with a rate of 0.1 to help prevent overfitting. The final Dense layer
has 15 units, and uses the softmax activation function to produce a probability
distribution over the classes.

. Bi-LSTM: consists of a Bidirectional LSTM layer with 1024 output units, which al-
lows for information to be passed both forward and backward through the sequence.
This layer is followed by a Flatten layer, which converts the output tensor from the
LSTM layer to a 2D tensor. Next, there are three Dense layers with 32, 512, and
512 units, respectively, which use the default linear activation function. Another
Flatten layer is added to prepare the data for the final Dense layer with 15 units,
which uses the softmax activation function to produce a probability distribution
over the classes.

50

?x154x12

InputLayer

Convi1D

kernel (3x12x16)
bias (16)

RelLU

MaxPooling1D

Convl1D

kernel (3x16x32)
bias (32)

RelLU
MaxPooling1D

Convl1D

kernel (3x32x64)
bias (64)

RelLU

MaxPooling1D

Flatten

Dropout

Dense

kernel (1280x15)
bias (15)

Softmax

Figure 4.5: CNN Model

51

?x154x12

InputLayer

kernel (12x128)
recurrent_kernel (32x128)
bias (128)

kernel (32x128)
recurrent_kernel (32x128)
bias (128)

kernel (32x1024)
recurrent_kernel (256x1024)
bias (1024)

Flatten

Dense
kernel (39424x32)
bias (32)

Dense

kernel (32x32)
bias (32)

Dense

kernel (32x32)
bias (32)

Dropout

Dense

kernel (32x15)
bias (15)

Softmax

Figure 4.6: LSTM Model

52

?x154x12

InputLayer

kernel (12x864)
recurrent_kernel (288x864)
bias (2x864)

kernel (288x1956)
recurrent_kernel (489x1956)
bias (1956)

Flatten

Dense

kernel (75306x96)
bias (96)

Dropout

Dense

kernel (96x15)
bias (15)

Softmax

Figure 4.7: GRU-LSTM Model

53

?x154x12

InputLayer

Bidirectional

kernel (157696x32)
bias (32)

Dense

kernel (32x512)
bias (512)

Dense

kernel (512x512)
bias (512)

Flatten

Dense

kernel {(512x15)
bias (15)

Softmax

dense_3

Figure 4.8: Bi-LSTM Model

o4

CHAPTER b

RESULTS AND DISCUSSION

In this chapter, we will explore the impact of model compression on the performance,
memory footprint, inference time, and energy efficiency of four deep learning models when
deployed on three different platforms: a laptop computer, a Raspberry Pi 3, and an Ar-
duino Nano 33. Model compression has become an essential technique in recent years to
reduce the size and complexity of deep learning models and improve their deployment
efficiency on resource-limited platforms. By compressing the models, we aim to improve
their runtime performance and reduce the memory and energy requirements without signif-
icantly sacrificing the accuracy of the models. Through our experiments, we will examine
the effects of model compression on the performance of deep learning models, as well as
its suitability for different platforms. The results of our analysis will provide valuable in-
sights into the trade-offs between model accuracy, compression, and deployment efficiency
on various platforms.

5.1 Impact of TFLite Compression on Model Characteris-
tics

In this section, we thoroughly evaluated the effectiveness of TFLite compression on four
deep learning models: CNN, LSTM, GRU-LSTM, and Bi-LSTM. To assess their perfor-
mance, we measured the accuracy, memory footprint, energy consumption, and inference
time of each model.

While it is possible to evaluate the impact of TFLite compression on these models
using other platforms, we opted to conduct our evaluation on a laptop computer with spe-
cific specifications. We used a Windows 11 Dell Latitude 5410 with a quad-core, 1.6 GHz,
64-bit Intel ®) Core i5 processor, 16 GB RAM, and 1 TB solid-state drive. This decision
was based on the fact that these specifications provided us with an optimal run environ-
ment, ample memory, and fast processor speed to conduct our evaluations effectively and
efficiently.

By using this laptop computer, we were able to obtain accurate and reliable results
that would help us better understand how TFLite compression impacted the performance
of the four deep learning models.

%)

5.1.1 Impact on Parameter and Model Size

In this section, we will delve into the impact of various compression optimizations on the
memory footprint of deep learning models, focusing on the model size in megabytes (MB).
Deep learning models are often large and computationally expensive, making them chal-
lenging to deploy on resource-constrained devices. Model compression techniques have
emerged as a practical solution to address this challenge. These techniques involve re-
ducing the size of the model and improving its efficiency without sacrificing performance.
However, different compression techniques can affect the model size differently, and it is
crucial to understand how each technique impacts the memory footprint of the model. We
will explore some of the most commonly used compression techniques in deep learning,
such as pruning, quantization, and weight clustering, and investigate how each technique
affects the model size.

Table 5.1 shows the impact of several compression optimizations on the model size in
megabytes for different deep learning models.

5.1.1.1 Quantization

For all models, the Integer and Dynamic Range quantization technique results in the
smallest model size, with reductions ranging from 89% for the CNN model to 91% for
the LSTM, GRU, and Bi-LSTM models. However, while the Float16 quantization tech-
nique also results in smaller models, it achieves less compression compared to Integer and
Dynamic Range quantization techniques, with a reduction of 83% for all models.

5.1.1.2 Pruning

On the other hand, applying pruning optimizations to the TFLite models does not appear
to reduce its size any further, even when the percentage pruning is varied from 10% to
90%. This is likely due to the way pruning is implemented, where pruned weights are
simply assigned zero values without actually removing them from the FlatBuffer.

5.1.1.3 Weight Clustering

Similarly, applying weight clustering did not further reduce the size of the TFLite models
despite varying the number of clusters from 4 to 128. This is likely because weight clus-
tering kept the same number of model parameters but replaced all the unique parameters
by a smaller set of defined values.

In conclusion, choosing the appropriate compression technique can significantly impact the
size of a model. Various compression methods have been proposed, and their effectiveness
varies. Integer quantization, pruning (both Constant Sparsity and Polynomial Decay), and
weight clustering have proven to be the most effective techniques for reducing the size of
models across various architectures. In some instances, these techniques can shrink models
to less than 10% of their original size. Understanding the effects of different compression
techniques on the model size is essential to optimize models for deployment on resource-
constrained devices. Such optimization can enhance the performance and efficiency of
these models without compromising their accuracy. Therefore, carefully selecting the
compression technique based on the targeted device’s resources and the desired accuracy
is critical for achieving high-performance models.

56

Table 5.1: Impact of Compression Optimizations on Model Size in MB

Model TensorFlow | TensorFlow Quantization Pruning Weight
Characteristics| Baseline Lite Float16| Dynamic Range | Integer | Constant Sparsity | Polynomial Decay || Clustering
CNN 0.37 0.11 0.062 0.038 0.038 0.038 0.038 0.038
LSTM 18.5 6.1 3.1 1.5 1.5 1.5 1.5 1.5
GRU-LSTM 106 35 17.6 8.8 8.8 8.8 8.8 8.8
Bi-LSTM 87.7 29 14.6 7.3 7.3 7.3 7.3 7.3

5.1.2 Impact on Model Performance

In machine learning, model performance is a critical factor in determining the success
of a project. However, in the context of deploying machine learning models on edge
devices, model compression techniques are commonly used to reduce the size of models,
making it easier to deploy them on devices with limited resources. In this section, we
will discuss the impact of model compression on deploying machine learning models on
edge devices. Specifically, we will examine the effects of different compression techniques
on model performance in terms of accuracy, precision, recall, and F1 score. By exploring
the trade-offs involved in selecting the appropriate compression technique for a given edge
device and application, we hope to provide insights into optimizing model performance
while minimizing the resources required for deployment on edge devices.

5.1.2.1 TFLite Compression

As seen in Tables 5.2, 5.3, 5.4, and 5.5, after converting all our TensorFlow models to
TensorFlow Lite, we observed no change in accuracy and precision across most of the
models. This is likely due to the model structure not changing fundamentally beyond
the more memory-efficient implementation of the TFLite model. However, for the CNN
and Bi-LSTM models, we noticed a significant improvement in precision, increasing from
92% to 97%. Similarly, the recall remained mostly unchanged except for the CNN and
Bi-LSTM models, where we observed an increase from 72% to 74% and from 92% to 97%,
respectively. We also observed that the F1 score remained consistent for most models,
with the exception of the Bi-LSTM model, where it improved from 92% to 97%

5.1.2.2 Quantization

For all tested models, except for integer quantization, the accuracy, precision, recall, and
F1 score were the same as the TFLite model. However, more aggressive quantization tech-
niques, such as integer quantization, resulted in a significant drop in accuracy, precision,
recall, and F1 score. Specifically, for the CNN model, the accuracy dropped from 71%
to 68%, precision from 97% to 82%, recall from 74% to 73%, and F1 score from 71% to
68%. Similarly, for the LSTM model, the accuracy dropped from 87% to 69%, precision
from 87% to 69%, recall from 87% to 71%, and F1 score from 87% to 68%. For the GRU
model, the accuracy dropped from 97% to 75%, precision from 97% to 74%, recall from
97% to 80%, and F1 score from 97% to 74%. Finally, for the Bi-LSTM model, the accuracy
dropped from 97% to 82%, precision from 97% to 85%, recall from 97% to 85%, and F1
score from 97% to 83%.

57

5.1.2.3 Pruning

Pruning optimizations seem to have a more profound impact on the TFLite models’ per-
formance. Figures 5.1a, 5.1b, and 5.1c show the impact of varying the percentage pruning
from 10% to 90% on the accuracy of the CNN, LSTM, and GRU models, respectively.
For further reference, the impact of pruning on the precision, recall, and F1 score of the
models can be seen in Figures 1, 2, and 3, respectively, located in appendix A.

Our results show that constant sparsity pruning led to a significant reduction in per-
formance for the CNN model, with an average accuracy drop of 21%, precision drop of
39%, recall drop of 21%, and F1 score drop of 20%. The LSTM model showed a more
moderate reduction in performance, with an average accuracy, precision, recall, and F1
score drop of 4.5%. Similarly, the GRU model exhibited a relatively minor decrease in
performance, with an average accuracy, precision, recall, and F1 score drop of 3%.

In contrast, polynomial decay pruning resulted in harsher decreases in performance
across all models. For the CNN model, the average accuracy drop was 44%, precision drop
was 59%, recall drop was 43%, and F1 score drop was 45%. Similarly, for the GRU model,
polynomial decay pruning caused an average accuracy, precision, and f1 score drop of 4%,
and a recall drop of 3%. However, for the LSTM model, pruning prior to 40% actually
resulted in better performance than the baseline model, which highlights the potential
benefits of careful pruning selection. After 40% pruning, the model’s performance started
to drop, leading to an average accuracy, precision, recall, and F1 score drop of 8%.

Additionally, it is important to note that the CNN model experienced a harsh dip in
performance after 30% pruning for all metrics, while the LSTM and GRU models main-
tained a performance close to the baseline until 50% pruning, after which their performance
started to drop. This highlights the importance of carefully selecting the pruning percent-
age for each model architecture and type of pruning to balance the trade-off between model
complexity and performance.

It is also noteworthy that pruning optimizations were not applied to our Bi-LSTM
model since TensorFlow Lite does not support pruning the Bi-directional layers present in
our model.

5.1.2.4 Weight Clustering

Weight clustering seemed to impact the model’s accuracy the most; Figure 5.2a, 5.2b,
5.2¢, and 5.2d show the impact of varying the number of clusters from 4 to 128 on the
accuracy of the CNN, LSTM, GRU, and Bi-LSTM models, respectively. For additional
reference, please see the impact of weight clustering on precision, recall, and F1 scores of
the models in Figures 4, 5, and 6 located in Appendix B.

The CNN model’s accuracy varied from 7% (4 clusters) to 77% (128 clusters) with an
average accuracy of 46%. Notably, the model’s accuracy remained close to the average
when the number of clusters was set higher than 64. Similarly, the LSTM model’s accuracy
varied from 7% (4 clusters) to 96% (64 clusters) with an average accuracy of 73%. The
model’s accuracy remained close to the average when the number of clusters was set
higher than 32. For the GRU model, the accuracy varied from 7% (4 clusters) to 99% (32
clusters) with an average accuracy of 82%. The model’s accuracy remained close to the
average when the number of clusters was set higher than 16. Finally, the Bi-LSTM model’s
accuracy varied from 57% (4 clusters) to 94% (32 clusters) with an average accuracy of
86%. The model’s accuracy remained close to the average when the number of clusters was

o8

Model Accuracy vs. Pruning

90%
80%

70%

60%

50%

40%

30%

20% I I

10%

o i hh b L
10 20 30 40 50 60 70 80 %0

W Constant Sparsity Pruning M Polynomial Decay Pruning

(a) CNN Model

Model Accuracy vs. Pruning

100%

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

10 20 30 40 50 60 70 80 90

m Constant Sparsity Pruning m Polynomial Decay Pruning

(b) LSTM Model

Model Accuracy vs. Pruning

97%

95%
93%
91%
89%
87%
85%
83%
81%
79%
10 20 30 40 50 60 70 80 90

M Constant Sparsity Pruning m Polynomial Decay Pruning

(c) GRU Model

Figure 5.1: Impact of Pruning on Models’ Accuracy

set higher than 16. For all four models, weight clustering improved the baseline accuracy
when the number of clusters was higher than 32. Specifically, the CNN, LSTM, GRU,
and Bi-LSTM models all exhibited improved accuracy when weight clustering was applied
with a higher number of clusters. Similar patterns were observed for the precision, recall,
and F1 score metrics, as their values remained very close to the corresponding accuracy
values.

59

Model Accuracy vs Weight Clustering
90%

80%

70%
60%
50%
40%
30%
20%
10%
w |
8 16 32 64 128

4

(a) CNN Model

Model Accuracy vs Weight Clustering

100%

90%
80%
70%
60%
50%
40%
30%
20%
10%
0% |
4 8 16 32 64 128

(b) LSTM Model

Model Accuracy vs Weight Clustering

100%

90%
80%
70%
60%
50%
40%
30%
20%
10%
o
4 8 16 32 64 128

(¢c) GRU Model

Model Accuracy vs Weight Clustering

100%

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

4 8 16 32 64 128

(d) Bi-LSTM Model

Figure 5.2: Impact of Weight Clustering on Models” Accuracy

60

Table 5.2: Impact of Compression Optimizations on Model Accuracy

Model TensorFlow | TensorFlow Quantization Pruning Weight
Characteristics| Baseline Lite Float16 | Dynamic Range | Integer || Constant Sparsity | Polynomial Decay Clustering
CNN 71 71 71 71 68 15 - 85 (avg=56) | 6 - 83 (avg=40) | 7- 77 (avg=46)
LSTM 87 87 87 87 69 || 46 - 98 (avg=83) | 26 - 97 (avg=80) | 7 - 96 (avg=T3)
GRU-LSTM 97 97 97 97 75 | 88-97 (avg=94) | 86 - 97 (avg=93) | 7 - 99 (avg=82)
Bi-LSTM 92 97 97 97 82 - - 57 - 94 (avg=80)

Table 5.3: Impact of Compression Optimizations on Model Precision

Model TensorFlow | TensorFlow Quantization Pruning Weight
Characteristics|| Baseline Lite Float16 | Dynamic Range | Integer | Constant Sparsity | Polynomial Decay Clustering
CNN 92 97 97 97 82 15 - 85 (avg=>506) | 7 - 83 (avg=40) | 7- 77 (avg=46)
LSTM 87 87 87 87 69 | 46 - 98 (avg=83) | 26 -97 (avg=80) | 7 - 96 (avg=T3)
GRU-LSTM 97 97 97 97 74 || 88 - 97 (avg=94) | 86 - 97 (avg=93) | 7 - 99 (avg=82)
Bi-LSTM 92 97 97 97 82 - - 57 - 94 (avg=86)
Table 5.4: Impact of Compression Optimizations on Model Recall
Model TensorFlow | TensorFlow Quantization Pruning Weight
Characteristics|| Baseline Lite Float16 | Dynamic Range | Integer | Constant Sparsity | Polynomial Decay Clustering
CNN 72 74 74 74 73 || 16 - 86 (avg=57) | 4 - 83 (avg=42) |0.5 - 80 (avg=49)
LSTM 87 87 87 87 71 45 - 98 (avg=83) | 25 - 97 (avg=80) ||0.5 - 96 (avg=T2)
GRU-LSTM 97 97 97 97 80 || 88-97 (avg=94) | 87 - 97 (avg=94) | 35 - 99 (avg=87)
Bi-LSTM 92 97 97 97 85 - - 63 - 94 (avg=388)

Table 5.5: Impact of Compression Optimizations on Model F1-Score

Model TensorFlow | TensorFlow Quantization Pruning Weight
Characteristics | Baseline Lite Float16 | Dynamic Range | Integer | Constant Sparsity | Polynomial Decay Clustering
CNN 70 71 71 71 68 || 15- 85 (avg=56) | 2- 83 (avg=39) | 1- 78 (avg=45)
LSTM 87 87 87 87 68 || 45 - 98 (avg=83) | 24 - 97 (avg=80) | 1- 96 (avg=T2)
GRU-LSTM 97 97 97 97 74 || 88 - 97 (avg=94) | 86 - 97 (avg=93) | 3 - 99 (avg=82)
Bi-LSTM 92 97 97 97 83 - - 58 - 94 (avg=86)

In conclusion, our findings suggest that excessive pruning can alter a model’s architec-
ture and lead to significant accuracy loss. Additionally, the study highlights the impact
of the number of weight clusters on the model’s architecture and accuracy. Specifically,
a low number of clusters can negatively affect the model’s accuracy. Furthermore, our
study underscores the importance of weight optimization techniques, such as polynomial
decay pruning and weight clustering, to achieve optimal results by eliminating redundant
weights and representing weights using a smaller subset of unique values. These optimiza-
tion techniques have shown to improve the generalizability and performance of machine
learning models.

61

5.1.3 Impact on Inference Time

This section investigates the impact of model compression on the inference time of four
deep learning sequence models: CNN, LSTM, GRU, and Bi-LSTM. To do this, we analyze
Tables 5.6, 5.7, 5.8, and 5.9, which provide details on the effect of each compression
technique on inference time, as well as the speedup or slowdown relative to the baseline
and TFLite models for each of the four models.

5.1.3.1 TFLite Compression

Our experiments show that converting our baseline CNN model to a TFLite model re-
sulted in a significant reduction in inference time from 85 msec to 0.27 msec, yielding an
impressive speedup of 315x. Similarly, for LSTM, we observed a speedup of 1.4x with a
reduction in inference time from 57.5 msec to 50 msec. The reduction in inference time
is likely due to the corresponding reduction in the number of operations that need to be
executed and, in the case of TFLite, faster access to model parameters using efficient data
structures like FlatBuffers.

However, for the GRU model, we noted a slowdown of 1.2x as the baseline model
required 99.3 msec while the TFLite model needed 117 msec. In the case of the bi-LSTM
model, the baseline inference time was 110 msec, and the TFLite model took 130 msec,
resulting in a slowdown of 1.2x.

5.1.3.2 Quantization

The CNN model showed significant improvements in inference time when float16, dynamic
range, and integer quantization were applied, resulting in inference times of 0.27, 6, and
10 msec, respectively. These correspond to speedups of 315x, 14x, and 9x faster than
the baseline model, respectively. However, when compared to the TFLite model, dynamic
range and integer quantization resulted in slowdowns of 52.5x and 31.5x%, respectively,
highlighting the importance of carefully considering the impact of quantization on model
performance and selecting the appropriate quantization approach for the specific model.

On the other hand, the LSTM model showed slower inference times when float16,
dynamic range, and integer quantization were applied, resulting in inference times of 67,
68, and 810 msec, respectively. These correspond to slowdowns of 1.2x, 1.2x, and 14X
slower than the baseline model. When compared to the TFLite model, the slowdowns
were even greater, with dynamic range and integer quantization resulting in slowdowns
of 1.7x and 1.6x slower, respectively, while the use of integer quantization resulted in a
slowdown of 20.2x slower.

The GRU model showed mixed results when float16, dynamic range, and integer quan-
tization were applied, resulting in inference times of 95, 110, and 3050 msec, respectively.
These correspond to a slight speedup of 1.05x and slowdowns of 1.1x and 30.7x slower
than the baseline model. When compared to the TFLite model, float16 resulted in a small
speedup of 1.2x, while dynamic range and integer quantization resulted in slowdowns of
1.06 x and 26x slower, respectively.

Similarly, the Bi-LSTM model exhibited varied performance when float16, dynamic
range, and integer quantization were applied, resulting in inference times of 90, 140, and
4300 msec, respectively. These correspond to a slight speedup of 1.2 and slowdowns of
1.3x and 39x slower than the baseline model. Comparing these results to the TFLite

62

(91-=8xe) (L1-) - (1) | (80 T=58x®) T - Q0T | (I'T-=54%) g1 - (9'1-) | &0G- 971~ LT I - [OPOIN O AL 1 dnpoodg
(60=8a8) T - (g1-) | (91=8x) 9T -1 | (¢1=0x) - (I'T-) | ¥1- CT- an ! I [PPOIN outfosed ¥ dnpoadg
(G9=5xe) 69 - LG (Le=8ae) 0F - L& | (9p=3ae) 99 - 1¢ 018 L9 89 0¥ G'LS (soostI) OUILT, 9OULIOFU]
SuL)sSN[) AROO(] [RTWOUATO | Ajsredg jue)suo) || 108oquf |aSuey OmeuA(] | 91eO[AN ourpsey SOTYSLIOJORIRT))
ugms\(/ MQMQZM& EOS@NSQ@:@ .$O~ ,mHOmQOH \SOM fmpcmgorﬁ TUTO%/H

[PPOIN TN.LS'T Ul oL], @ouatoju] uo suoljezruiyd() uorssorduwo)) jo joedwy :)°G o[qR],

(821-=984%) (§'TT-) - (0¢-) | (gz-=8ae) (€1-) - (¢'1€-) | (T'T=5Ae) L2 - (6')| GTe- g I I - PPOIN OWTAL 34 dupoodg
(1=84a®) 17 - 01 (y1=34%) 37 - 01 (Ge=8a®) (68 - 80T 6 il cIe c1e 1 [PpoIN aurpeseq 3 I'm dnpaadg
(8 p=5xe) 18- T'¢ (6c=sae) gg-ce | (Fg0=5x8) 6L0-T0| 0T 9 LZ0 LT0 43 (soasur) otur T, souIJU]
SuLeIsn) ARD9(] [RTWOUATO] Aysredg quejsuo)) || 10GoU] | 9FURY OTURUA(T | 9T1RO[] NI oureseyq SOTISLIOJORIRY)
NSO Surmig TOIYRZIYIRN () MO[JI0SUT, | MOTI0SUIT, [PPOIN

[PPOIN NN Ul oI} 9ouaIojul uo suoryeziuijd() uoissorduo)) jo 1edw] :9°¢ o[qr],

63

(T1=5x) 1- (1) | €& 801~ i I - [PPOIN WAL 14 dupoodg
(7 1-=9ae) (L1-) - (1'1-)| 6¢- €1- 1 ¢T- I [PPOIN durpse 4'1ra dnpsadg
(PGT=5A®) 68T - 62T | 00EV 071 06 o€t 0Tt (S09str) SuIL], SoULIRFU]
suL)sn) I980ogu] [a8ury OrRUA(T | 91RO] oI ouIRsey] SOTISLID}ORIRY)

JYSTOAN uoryeziuent) MO[JI0SU T, | MO JIOSUI]T, [PPOIN

[PPOIN IN.LST-I{ Ul oWl], 9oualoju] uo suoryeziurjd() uoisserduo)) jo joedw] :6°¢ 9[qR],

(T1=8xe) 1T -$0T (20'T=848) TT-$0'T (¢7=8xe) pT - €71 9z 90'T (A T - [PPOIN @H AL ¥4 dupoadg
(gr1-=8xe) (1°1-) - (21 1-) || (1 1-=8A%) (¢1-) - (1'1-) [(G1'T=54A®%) LT'T -80T| L 0¢" T CO'T s I [PPON outpsee] 3 1rm dnpoodg
(TT1=8x%) 21T - 011 (6T1="5A%) ¢eT - €11 (68=95A®) 76 - ¢8 050€ 01T 6 LTT €66 (soostr) SuIL], ooUDIOPU]
surgsny) ArO9(] TRIWIOUATO] Aysredg queisuoy) || 1089qu] |9Fury] orwreuA(| 9TIR0[] Cllig| ourpsey SOI)SLIORIRTY))

NBOM surunig UOTYRZIJURTI() MO[JI0SUT, | MO[JIOSUIT, [PPON

[PPOIN (L) Ul oWl], 9ouaIoju] uo suolpeziuiyd() uotssorduo)) jo joedw] QG o[qe],

64

model, float1l6 resulted in a modest speedup of 1.4x, while dynamic range and integer
quantization resulted in slowdowns of 1.08x and 33x slower, respectively.

5.1.3.3 Pruning

The CNN model exhibited notable improvements in inference time using constant sparsity
pruning, achieving inference times ranging from 0.1 to 0.79 msec and an average inference
time of 0.24 msec. On the other hand, polynomial decay pruning achieved inference times
ranging from 3.5 msec to 8.5 msec, with an average inference time of 5.9 msec. While the
inference times for constant sparsity and polynomial decay pruning are generally faster
than the baseline model, they are still slower than the speedup achieved by the TFLite
model in most cases.

Similarly, the LSTM model demonstrated significant improvements in inference time
using constant sparsity pruning, with inference times ranging from 31 to 66 msec and
an average inference time of 46 msec. Meanwhile, polynomial decay pruning achieved
inference times ranging from 37 msec to 40 msec, with an average inference time of 37
msec. When compared to the TFLite model, the performance of the LSTM model var-
ied depending on the sparsity level, with constant sparsity pruning resulting in faster or
slower inference times than the TFLite model, and polynomial decay pruning consistently
resulting in faster inference times.

The GRU model also showed significant improvements in inference time with constant
sparsity pruning, achieving inference times ranging from 85 to 92 msec and an average
inference time of 89 msec. However, with polynomial decay pruning, inference times ranged
from 113 msec to 133 msec, resulting in an average inference time of 119 msec, which was
slower than the baseline model. Despite this, the performance of the GRU model was
consistently better and faster than the TFLite model across all levels of sparsity.

Overall, these findings suggest that constant sparsity pruning can be an effective
method for improving the inference time of neural network models without sacrificing
accuracy. However, the choice of pruning method and sparsity level can have a significant
impact on the performance of the model, and it is important to carefully consider these
factors when implementing pruning techniques.

5.1.3.4 Weight Clustering

Weight clustering optimization proved effective in reducing inference time for both the
CNN and LSTM models. The CNN model exhibited notable improvements in inference
time, ranging from 3.1 to 8.1 msec and an average of 4.8 msec, while the LSTM model
demonstrated significant enhancements, with inference times ranging from 57 to 69 msec
and an average of 65 msec. Despite these improvements, neither model could outperform
the TFLite model in any of the cases, highlighting the superior performance of the TFLite
model in terms of inference speed.

On the contrary, the GRU model demonstrated slower inference times than the baseline
model, with a range of 110 to 112 msec and an average of 111 msec. However, it still
achieved faster inference times than the TFLite model.

For the Bi-LSTM model, weight clustering led to slower inference times, ranging from
129 to 185 msec, with an average of 154 msec. These results indicate that weight clus-
tering did not improve the inference time speed of the Bi-LSTM model and that it was
consistently slower than both the baseline and TFLite models in all cases.

65

5.1.4 Impact on Energy Consumption

In this particular section, the focus of the study is to examine and analyze the effect of
various compression techniques on the energy consumption of deep learning models. To
achieve this objective, the method employed involved computing the total power consump-
tion of my laptop computer, referred to as the Thermal Design Power (TPD), multiplied by
the duration it takes each model to execute a single inference. The results obtained from
this process are presented in Table 5.10 and discussed in detail to provide a comprehensive
understanding of the impact of compression techniques on energy consumption.

Thermal Design Power (TDP) is the amount of power that a computer’s cooling system
is required to dissipate to maintain the temperature within the operating limits of the
computer. TDP is measured in watts and is a specification of the maximum amount
of power that a computer component can draw under normal usage conditions. In the
context of computing, TDP is a useful metric for estimating the power consumption of a
given component. This is because it represents the maximum amount of power that the
component can consume under normal conditions, and provides a baseline for calculating
the power consumption of the entire system. By multiplying the TDP of my laptop
computer, which is 15 watts, with the time it takes the machine learning model to perform
a single inference, one can estimate the energy consumption of the model. The inference
time was measured on the same laptop computer using the same input data for each model.
This is a useful metric for evaluating the efficiency of different machine learning models and
compression techniques, and can inform decisions regarding the design of energy-efficient
machine learning systems.

For the LSTM, GRU, and Bi-LSTM models, the energy consumption of 8-bit integer
quantization can sometimes exceed that of the baseline due to the trade-off between com-
putation time and memory access. While quantizing a model to 8-bit integers reduces the
precision of weights and activations, it also reduces the memory usage and computation
time required for inference. However, when the quantization is suboptimal, the compu-
tation time may increase as the CPU may perform extra calculations to convert between
the 8-bit integer format and the original model format. Additionally, 8-bit integer quanti-
zation can result in more memory access, which can lead to increased power consumption
if the memory access is not optimized or if the cache is not used efficiently.

Similarly, pruning (LSTM and GRU) and weight clustering (GRU and Bi-LSTM)
can also lead to increased energy consumption if not implemented properly. Pruning
involves removing the weights with the smallest magnitude, which can reduce the number
of operations required for inference and the memory footprint of the model. However, if
pruning is not optimized, it can lead to increased computation time and memory access.
This is because the sparsity induced by pruning can result in irregular memory access
patterns, which can cause cache misses and result in additional memory accesses. On the
other hand, weight clustering involves grouping weights into clusters and representing each
cluster with a single value. This can reduce the number of parameters and the memory
footprint of the model. However, if the clustering is not optimized, it can result in increased
computation time and memory access. This is because the quantization boundaries used
for clustering may not align with the actual distribution of weights, leading to quantization
errors and loss of accuracy.

In the table that compares the energy consumption of different models based on com-
pression, the energy consumption is correlated (linear) with the inference time of each
model. This is because the time required to perform a single inference directly affects the

66

(€z=8xe) L2-6T - - 479 ¢ el 461 491 INLST
(L1=8x%) LT (§7=5a%) g - LT (€7=5a8) pT - €T 8y LT P 81 g1 R
(60=5a%) T-80 | (¢0=548)90-¢0 (L°0=5a%) 60 - 70 el I ! 90 98°0 NIST
(L0'0=54%) 10 - 70°0 | (80°0=5A®) Z1°0 - G0'0| (£00°0=5A®) TT0°0 - GT00°0|| ST'0 60°0 700°0 700°0 ¢l NNDO
SULIYSN]) ARO9(] [RIWIOUA]O] Aysredg que)suo)) I0G0U] | 93uRY OTWRUA(T | 9RO Cllg| aureses QureN
NSLAN surunig uotyezZIyuen) MO[I0SUS], | MO JI0SUR], || [9POIN

somor ut uonyduwnsuon) A3rouy uo suoryezimiyd) uoissordwon) jo 1oedwW] :01°G 9[qe
[MO[Ul Uol 9] C HeziundQ uot oF! I:0 [9&L

67

amount of energy consumed by the model, and this relationship is reflected in the table..

By comparing the energy consumption and inference times of different models, one
can identify which models are more energy-efficient than others. This information can
be used to guide decisions regarding the design of machine learning systems, such as
selecting which models to deploy in resource-constrained environments or identifying areas
for further optimization. Additionally, by measuring the energy consumption of models
at different compression levels, one can assess the trade-offs between model size, accuracy,
and energy consumption, and make informed decisions regarding the best balance of these
factors for a given application.

5.2 Deployment on Edge Devices

In this section, we will focus on two TFLite models: the smallest (CNN) and the most
accurate (GRU-LSTM), based on all the evaluated compression techniques. It should be
noted that we only considered TFLite models for deployment on the Raspberry Pi Model 3
since Edge Impulse currently only supports conversion of TFLite models to C code without
further compression optimizations. Our goal is to deploy these models on the Raspberry
Pi Model 3 board and the Arduino Nano 33 BLE Sense and analyze their size, accuracy,
inference time, and power consumption. We will evaluate the performance of these models
on both devices and compare the results to understand the trade-offs between model size,
accuracy, and energy efficiency.

The Raspberry Pi Model 3 board and the Arduino Nano 33 BLE Sense are two popular
microcontroller boards widely used in IoT applications. The Raspberry Pi Model 3 board
is a powerful device with a quad-core ARM Cortex-A53 processor and 1 GB of RAM,
while the Arduino Nano 33 BLE Sense is a low-power device with an Arm Cortex-M4F
processor and 256 KB of RAM.

By deploying the selected models on both devices, we can analyze the impact of the
hardware constraints on the model performance. We will measure the inference time and
power consumption of the models and compare them with the results obtained from the
evaluation of the models on a desktop computer. We will also evaluate the accuracy of
the models on the microcontroller boards and compare them with the accuracy obtained
from the evaluation on a desktop computer.

5.2.1 Raspberry Pi Model 3

In this section, we deployed the CNN model on the Raspberry Pi Model 3 using two differ-
ent techniques. The first technique involved deploying the TensorFlow Lite model, while
the second technique involved deploying the C code using Edge Impulse. We repeated the
same deployment process for the GRU-LSTM model. We will compare the performance,
size, accuracy, and inference time of both techniques for both models to determine which
method is more suitable for deployment on the Raspberry Pi.

As shown in Table 5.11, for each deployed model, we computed its accuracy on the
test set, as well as its inference time for a single audio sample. The energy consumption
was computed by first measuring the power of the model using the PowerTOP function in
the Raspberry Pi, which measures the power consumption of different processes running
on the Raspberry Pi, and then multiplying it by the inference time. PowerTOP is a Linux
tool designed to measure the power consumption of various components on a system, such

68

as CPU, GPU, and memory. It uses the kernel’s Performance Monitoring Counters to
gather information about the system’s power usage and presents it in an easy-to-read for-
mat. PowerTOP can be used to identify which applications or processes are consuming
the most power on a system, allowing users to take appropriate action to optimize power
consumption. In addition, it can also suggest changes to the system’s configuration that
can help reduce power consumption, such as disabling unnecessary hardware components
or reducing the system’s CPU frequency. To use PowerTOP to measure the power con-
sumption of an ML model on a Raspberry Pi, you would need to first run the model on
the Pi and then run PowerTOP to monitor the system’s power usage during the model’s
execution. This can help you identify which components of the Pi are consuming the most
power during the model’s execution, and can help you optimize the model and/or the Pi’s
configuration to reduce power consumption.

Table 5.11: Comparison of Deployment Techniques on Raspberry Pi Model 3

Model Technique Accuracy Size Inference Time || Energy

CNN TensorFlow Lite 70% 113 KB 0.7 ms 0.00371 J

CNN EON Compiler 64% 54 KB 67 ms 0.0141J
GRU-LSTM || TensorFlow Lite 95% 35,240 KB 1000 ms 157J
GRU-LSTM || EON Compiler 94.15% 660 KB 430 ms 6.45 J

For the CNN model, The TensorFlow Lite technique achieved a higher accuracy of
70%, while the EON Compiler technique achieved a lower accuracy of 64%. However,
the EON compiled model has a smaller size at 54 KB, compared to the TensorFlow Lite
model at 113 KB. In terms of inference time, the TensorFlow Lite model outperformed the
EON compiled model, taking only 0.7 ms for inference compared to 67 ms for the EON
model. Additionally, the TensorFlow Lite model was more energy-efficient, consuming
only 0.00371 J compared to 0.0141 J for the EON compiled model.

For the GRU-LSTM model, the TensorFlow Lite deployment technique achieves a
higher accuracy of 95%, while the EON Compiler technique achieves a slightly lower
accuracy of 94.15%. However, the TensorFlow Lite model is much larger in size at 35,240
KB compared to the EON Compiler model, which is only 660 KB. The inference time for
the TensorFlow Lite model is also much longer at 1000 ms compared to the EON Compiler
model, which takes only 430 ms to make inference times. In terms of energy consumption,
the EON Compiler model is more efficient, consuming only 6.45 J compared to 15 J for
the TensorFlow Lite model.

Overall, the table suggests that the TensorFlow Lite deployment technique is generally
more efficient in terms of accuracy, inference time, and energy consumption for the CNN
model. However, for the GRU-LSTM model, the EON Compiler technique is more efficient
in terms of size, inference time, and energy consumption, but still achieves a slightly lower
accuracy compared to TensorFlow Lite.

5.2.2 Arduino Nano 33 BLE Sense

In this section, we focused on deploying the CNN model on the Arduino Nano 33 BLE
Sense board. Due to the limited memory and computational resources of this board, we
only deployed the CNN model. For this deployment, we used Edge Impulse, as it allows
us to convert the model to C code, which further compresses the model and makes it more
efficient for deployment on resource-constrained devices like the Arduino Nano.

69

The deployed model had a RAM usage of 9.9 KB and a Flash usage of 44.1 KB. The
model achieved an accuracy of 64% on the test set, which is the same accuracy achieved
on the Raspberry Pi. The inference time for one audio sample was 28 ms, which is faster
than the inference time achieved on the Raspberry Pi.

In terms of energy consumption, the power consumption of a machine learning model
is a critical aspect to consider when deploying on low-power devices. In this study, we
measured the power consumption of a CNN model on an Arduino Nano 33 BLE during
inference, and found it to consume an average current of 90 mA, with a voltage of 3.3V. To
measure the current consumption of an Arduino Nano 33 BLE board, we used a multimeter
in current measurement mode. First, we set the multimeter to measure current in the
milliampere range and connected the red probe to the positive power supply pin of the
Arduino board and the black probe to the ground pin. Then, we powered on the board
and let it run its program or perform the intended task while the multimeter measured the
current consumption. We repeated this process for different scenarios, such as when the
board was idle, when it was running a machine learning model. By comparing the current
consumption measurements for each scenario, we could evaluate the power efficiency of
the board and identify any areas for optimization or improvement.

Based on the given inference time of 28ms and assuming a continuous operation mode,
we calculated the power consumption to be 297 mW. The energy consumption of the
model can then be calculated as the product of the power and inference time, which is
8.316 mJ.

The low energy consumption of the model on the Arduino Nano 33 BLE demonstrates
its suitability for deployment on low-power devices with limited resources. The compact
size of the model and fast inference time further enhance its potential for real-time applica-
tions, such as in IoT devices and wearable technologies. The results of this study suggest
that the CNN model is a viable solution for low-power machine learning applications,
and future research can explore further optimizations to improve its energy efficiency and
performance.

70

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this study, we investigated the effectiveness of model compression techniques for devel-
oping efficient TinyML models that can be deployed on resource-constrained edge devices.
Specifically, we focused on the impact of these techniques on the performance of four
deep learning models for a limited-vocabulary speech processing task in Arabic, with a
particular emphasis on the Levantine dialect. Our experiments demonstrate that model
compression techniques can significantly reduce the memory footprint of deep learning
models while maintaining high accuracy and resulting in a substantial reduction in in-
ference time and energy consumption. Furthermore, we deployed our optimized models
on two distinct edge devices, which represent different resource-constrained environments,
and evaluated their real-world performance. Our optimized models achieved real-time
performance for limited-vocabulary speech recognition tasks, with an average inference
time of less than 500ms on both edge devices.

The results of this study highlight the potential of model compression techniques for
developing efficient TinyML models that can be deployed on resource-constrained edge
devices for speech recognition tasks in Arabic, specifically the Levantine dialect. These
results can guide the development of TinyML applications in various fields, including
healthcare, smart cities, and industrial automation, by enabling the deployment of ma-
chine learning models on edge devices with limited resources. The study’s findings are
particularly relevant for regions where Arabic is the primary language, and the Levantine
dialect is the most commonly used. These regions can benefit from the deployment of
efficient speech recognition models that can run on resource-constrained devices, enabling
the development of innovative applications that can improve people’s lives.

The findings of this study suggest several avenues for future research in the field
of TinyML. Firstly, although we focused on limited-vocabulary speech processing tasks,
future studies could investigate the effectiveness of model compression techniques for larger
vocabulary speech recognition tasks. Furthermore, the performance of our models was
evaluated for a specific speech recognition task in the Levantine dialect. Future studies
could investigate the performance of these models for other Arabic dialects and languages,
which would help to broaden the applicability of these models across different regions and
languages.

Secondly, the study focused on four deep learning models commonly used for speech
recognition tasks. Future studies could investigate the effectiveness of model compression
techniques for other types of machine learning models, such as decision trees, support
vector machines, and random forests. This would enable researchers to identify the most

71

effective compression techniques for different types of machine learning models and develop
efficient TinyML models for various applications.

Thirdly, although our study evaluated the performance of optimized models on two
distinct edge devices, future studies could evaluate their performance on a more extensive
range of devices, including smartphones, wearables, and IoT devices. This would enable
the development of efficient speech recognition applications that can run on a broad range
of edge devices with varying degrees of resource constraints.

In addition to model compression techniques, another potential area for future devel-
opment in the context of TinyML for limited-vocabulary speech processing in Arabic and
Levantine dialect is hardware acceleration. With the increasing demand for intelligent
edge devices, there is a growing need for specialized hardware that can efficiently run ma-
chine learning models. Hardware acceleration can significantly improve the performance
of TinyML applications by providing specialized computational units that can perform
specific tasks more efficiently than general-purpose processors. One promising approach
for hardware acceleration of TinyML models is field-programmable gate arrays, which are
programmable logic devices that can be customized to perform specific tasks. FPGAs offer
several advantages over traditional processors, such as higher parallelism and lower power
consumption. Furthermore, FPGAs can be programmed to implement custom neural
network architectures, which can significantly improve the efficiency of TinyML models.
Another potential area for hardware acceleration is the use of dedicated hardware accel-
erators for specific deep learning operations, such as convolutional or recurrent layers. By
offloading these computations to specialized hardware, edge devices can achieve significant
performance improvements while minimizing energy consumption.

Finally, the study evaluated the performance of optimized models for speech recogni-
tion tasks in Arabic. Future studies could investigate the performance of these models for
other applications, such as image and video processing, natural language processing, and
predictive maintenance. This would enable the development of a broad range of efficient
TinyML applications that can run on resource-constrained edge devices, paving the way
for the development of innovative and practical applications that can improve people’s
lives.

In conclusion, the findings of this study highlight the potential of model compression
techniques for developing efficient TinyML models for limited-vocabulary speech recog-
nition tasks in Arabic, specifically the Levantine dialect. The study’s findings provide a
foundation for future research in the field of TinyML, enabling the development of innova-
tive applications that can run on resource-constrained edge devices and improve people’s
lives.

72

APPENDIX

This appendix provides a comprehensive analysis of the impact of pruning and weight
clustering on the performance of several machine learning models, including CNN, LSTM,
and GRU-LSTM. The goal of this research was to investigate how pruning and weight clus-
tering affect model performance and determine the optimal level of pruning and number
of clusters for each model.

The appendix contains a total of 21 figures that visually illustrate the results of the
analysis. The first nine figures illustrate the impact of pruning on the precision, recall, and
f1 score of each model, while the remaining 12 figures demonstrate how weight clustering
impacts the accuracy, completeness, and overall performance of each model. The figures
are labeled and organized by model type, making it easy to compare the results across
different models.

These figures provide a supplementary resource for readers who wish to delve deeper
into the analysis and understand the significance of the findings. By examining the changes
in recall, precision, and fl score as pruning levels increase and the number of clusters
change, readers can gain valuable insights into the performance of each model and deter-
mine the optimal pruning level and number of clusters for their specific needs.

73

Model Precision vs. Pruning

90%
80%

70%

60%

50%

40%

30%

20% I I

10%

o [F
10 20 30 40 50 60 70 20 90

B Constant Sparsity Pruning m Polynomial Decay Pruning

(a) CNN Model

Model Precision vs. Pruning
120%

100%

80%
60%
40%
20% I I
0%
10 20 30 40 50 60 70 80 90

M Constant Sparsity Pruning M Polynomial Decay Pruning

(b) LSTM Model

Model Precision vs. Pruning

98%
96%

94%
92%
90%
88%
86%
84%
82%
80%
10 20 30 40 50 60 70 80 90

B Constant Sparsity Pruning M Polynomial Decay Pruning

(c) GRU Model

Figure 1: Impact of Pruning on Models’ Precision

74

Model Recall vs. Pruning

100%
90%
80%

70%

60%

50%

40%

30%

20% I I

10%

P b L
10 20 30 40 50 60 70 80

90

W Constant Sparsity Pruning m Polynomial Decay Pruning

(a) CNN Model

Model Recall vs. Pruning
120%

100%

80%
60%
40%
20% I
0%
10 20 30 40 50 60 70 80

90

B Constant Sparsity Pruning m Polynomial Decay Pruning

(b) LSTM Model
Model Recall vs. Pruning

98%
96%

94%
92%
90%
88%
86%
84%
82%
80%
10 20 30 40 50 60 70 80

90

B Constant Sparsity Pruning M Polynomial Decay Pruning

(c) GRU Model

Figure 2: Impact of Pruning on Models” Recall

75

Model F1-Score vs. Pruning

90%
80%

70%

60%

50%

40%

30%

1NN

10%

” s hh bk L
10 20 30 40 50 60 70 80 90

B Constant Sparsity Pruning ® Polynomial Decay Pruning

(a) CNN Model

Model F1-Score vs. Pruning
120%

100%

80%
60%
40%
20% I I
0%
10 20 30 40 50 60 70 80 90

B Constant Sparsity Pruning M Polynomial Decay Pruning

(b) LSTM Model

Model F1-Score vs. Pruning

98%
96%

94%
92%
90%
88%
86%
84%
82%
80%
10 20 30 40 50 60 70 80 90

W Constant Sparsity Pruning M Polynomial Decay Pruning

(c) GRU Model

Figure 3: Impact of Pruning on Models” F1 Score

76

Model Precision vs Weight Clustering
90%
80%

70%
60%
50%
40%
30%
20%
10%
o R .
8 16 32 64 128

4
(a) CNN Model

Model Precision vs Weight Clustering

100%

90%
80%
70%
60%
50%
40%
30%
20%
10%
0% .
4 8 16 32 64 128

(b) LSTM Model

Model Precision vs Weight Clustering

100%

90%
80%
70%
60%
50%
40%
30%
20%
10%
0% -
4 8 16 32 64 128

(c) GRU Model

Figure 4: Impact of Weight Clustering on Models” Precision

7

Model Recall vs Weight Clustering
90%
80%

70%
60%
50%
40%
30%
20%
10% .
0% —
8 16 2 64 128

(a) CNN Model

Model Recall vs Weight Clustering

100%

90%
80%
70%
60%
50%
40%
30%
20%
10%
0% .
4 8 16 32 64 128

(b) LSTM Model

Model Recall vs Weight Clustering

100%

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

4 8 16 32 64 128

(c) GRU Model

Figure 5: Impact of Weight Clustering on Models” Recall

78

Model F1 Score vs Weight Clustering
90%
80%

70%
60%
50%
40%
30%
20%
10%
0% —_ -
8 16 32 64 128

(a) CNN Model

Model F1 Score vs Weight Clustering

100%

90%
80%
70%
60%
50%
40%
30%
20%
10%
0% e
4 8 16 32 64 128

(b) LSTM Model

Model F1 Score vs Weight Clustering

100%

90%
80%
70%
60%
50%
40%
30%
20%
10%
0% —_—
4 8 16 32 64 128

(c) GRU Model

Figure 6: Impact of Weight Clustering on Models” F1 Score

79

BIBLIOGRAPHY

T. Ammari, J. Kaye, J. Y. Tsai, and F. Bentley, “Music, Search, and IoT:
How People (Really) Use Voice Assistants,” ACM Transactions on Computer-
Human Interaction, vol. 26, no. 3, 2019, 1SsN: 1073-0516. po1: 10 . 1145/
3311956. [Online]. Available: https://doi.org/10.1145/3311956.

J. Ghofrani and D. Reichelt, “Using Voice Assistants as HMI for Robots
in Smart Production Systems,” in CEUR Workshop Proceedings, vol. 2339,
2019.

I. Lopatovska, K. Rink, I. Knight, et al., “Talk to me: Exploring user inter-
actions with the amazon alexa,” Journal of Librarianship and Information
Science, vol. 51, no. 4, pp. 984-997, 2019. po1: 10.1177/0961000618759414.,
[Online]. Available: https://doi.org/10.1177/0961000618759414.

“Alexa privacy and data handling overview,” 2018.

S. Guaman, A. Calvopina, P. Orta, F. Tapia Leon, and S. G. Yoo, “Device
control system for a smart home using voice commands: A practical case,”
Sep. 2018, pp. 86-89. DOT: 10.1145/3285957 . 3285977,

L. Hardesty, Amazon alexa’s new wake word research at interspeech, https:
//www.amazon.science/blog/amazon-alexas-new-wake-word-research-
at-interspeech, Oct. 2020.

M. Nair, Amazon’s alexa can now take questions and answers in arabic,
https://gulfnews . com/business /amazons - alexa - can - now - take -
questions-and-answers-in-arabic-1.84236228, Dec. 2021.

L. Hardesty, How alexa learned arabic, https ://www .amazon .science/
latest-news/how-alexa-learned-arabic, Jan. 2022.

M. Palermo, Fundamentals of smart home device control, including on/off
state, 2016.

Learn how google improves speech models, https://support.google.com/
assistant/answer/111409427hl=en.

S. D. Arya and S. Patel, “Implementation of google assistant & amazon
alexa on raspberry pi,” CoRR, vol. abs/2006.08220, 2020. [Online]. Available:
https://arxiv.org/abs/2006.08220.

Google assistant, your own personal google, https://assistant .google.
com/.

80

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

V. Ulhas Arun Thakare Pranay Bhagwat Thakare, “Siri-the intelligent per-
sonal assistant,” International Research Journal of Innovations in Engineer-
ing and Technology (IRJIET), vol. 4, pp. 1719, Jan. 2020.

About ios 15 updates, https://support.apple.com/en-mide/HT212788.

7. Paul, “Cortana-intelligent personal digital assistant: A review,” Interna-
tional Journal of Advanced Research in Computer Science, vol. 8, pp. 55-57,
Aug. 2017. DOI: 10.26483/1ijarcs.v8i7.4225.

I. H. Sarker, “Machine learning: Algorithms, real-world applications and re-
search directions,” SN Computer Science, vol. 2, no. 3, pp. 1-21, 2021.

S. Ahmed, “Insider’s misuse detection: From hidden markov model to deep
learning,” PhD dissertation, 2019.

D. Suleiman, A. Awajan, and W. Al Etaiwi, “The use of hidden markov
model in natural arabic language processing: A survey,” Procedia Computer
Science, vol. 113, pp. 240-247, 2017. DOI: https://doi.org/10.1016/7.
procs.2017.08.363. [Online]. Available: https://www.sciencedirect .
com/science/article/pii/S1877050917317738.

A. Boudlal, M. O. A. O. Bebah, A. Lakhouaja, A. Mazroui, and A. Meziane,
“A markovian approach for arabic root extraction.,” Int. Arab J. Inf. Tech-
nol., vol. 8, no. 1, pp. 91-98, 2011.

A. Alajmi, E. Saad, and M. Awadalla, “Hidden markov model based ara-
bic morphological analyzer,” International Journal of Computer Engineering
Research, vol. 2, no. 2, pp. 28-33, 2011.

J. Dror, D. Shaharabani, R. Talmon, and S. Wintner, “Morphological analysis
of the qur’an,” Literary and Linguistic Computing, vol. 19, Nov. 2004.

M. Hadni, S. Ouatik El Alaoui, A. LACHKAR, and M. Meknassi, “Hybrid
part-of-speech tagger for non-vocalized arabic text,” International Journal
on Natural Language Computing, vol. 2, pp. 1-15, Dec. 2013. DoI: 10.5121/
1jnlc.2013.2601.

M. Hadni, S. A. Ouatik, A. Lachkar, and M. Meknassi, “Improving rule-based
method for arabic pos tagging using hmm technique,” 2013.

A. Alajmi, E. Saad, and M. Awadalla, “Dacs dewey index-based arabic doc-
ument categorization system,” International Journal of Computer Applica-
tions, vol. 975, p. 8887, 2012.

S. Shareef and Y. Irhayim, “A review: Isolated arabic words recognition using
artificial intelligent techniques,” in Journal of Physics: Conference Series,
[OP Publishing, vol. 1897, 2021, p. 012 026.

M. Dua, R. Aggarwal, V. Kadyan, and S. Dua, “Punjabi automatic speech
recognition using htk,” International Journal of Computer Science Issues
(1JCSI), vol. 9, no. 4, p. 359, 2012.

81

[27]

[33]

[34]

[35]

[36]

[37]
[38]

M. Elmahdy, R. Gruhn, W. Minker, and S. Abdennadher, “Modern standard
arabic based multilingual approach for dialectal arabic speech recognition,”

in 2009 FEighth International Symposium on Natural Language Processing,
[EEE, 2009, pp. 169-174.

S. Indolia, A. K. Goswami, S. Mishra, and P. Asopa, “Conceptual under-
standing of convolutional neural network- a deep learning approach,” Pro-
cedia Computer Science, vol. 132, pp. 679-688, 2018, 1SSN: 1877-0509. DOI:
https://doi.org/10.1016/j.procs.2018.05.069.

7. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of recurrent neu-
ral networks for sequence learning,” arXiv preprint arXiw:1506.00019, 2015.

N. M. Rezk, M. Purnaprajna, T. Nordstrom, and Z. Ul-Abdin, “Recurrent
neural networks: An embedded computing perspective,” IEEE Access, vol. 8,
pp. 57967-57 996, 2020.

R. M. Schmidt, Recurrent neural networks (rnns): A gentle introduction and
overview, 2019. arXiv: 1912.05911.

J. Donahue, L. Anne Hendricks, S. Guadarrama, et al., “Long-term recurrent
convolutional networks for visual recognition and description,” in Proceedings
of the IEEFE conference on computer vision and pattern recognition, 2015,
pp. 2625-2634.

B. Hunshamar, “Wake word detection using recurrent neural networks,” M.S.
thesis, NTNU, 2018.

N. Zerari, S. Abdelhamid, H. Bouzgou, and C. Raymond, “Bidirectional deep
architecture for arabic speech recognition,” Open Computer Science, vol. 9,
no. 1, pp. 92-102, 2019.

A. S. M. B. Wazir and J. H. Chuah, “Spoken arabic digits recognition using
deep learning,” in 2019 IEEE International Conference on Automatic Control
and Intelligent Systems (I2CACIS), IEEE, 2019, pp. 339-344.

Arab world books. [Online]. Available: https://www.arabworldbooks.com/
en.

Hindawi. [Online|. Available: https://www.hindawi.org/.
A. Souri, Z. E. Maazouzi, M. A. Achhab, and B. E. E. Mohajir, “Arabic text

generation using recurrent neural networks,” in International Conference on
Big Data, Cloud and Applications, Springer, 2018, pp. 523-533.

[. Dhall, S. Vashisth, and S. Saraswat, “Text generation using long short-term
memory networks,” in Apr. 2020, pp. 649-657. DOI: 10.1007/978-981-15~
2329-8_66.

Y. Perwej, “Recurrent Neural Network Method in Arabic Words Recognition
System,” International Journal of Computer Science and Telecommunica-

tions (IJCST),Sysbase Solution (Ltd), UK, London ,ISSN 2047-3338, 2012.
[Online|. Available: https://hal.archives-ouvertes.fr/hal-03362907.

82

[41]

G. Nguyen, S. Dlugolinsky, M. Bobak, et al., “Machine learning and deep
learning frameworks and libraries for large-scale data mining: A survey,”
vol. 52, no. 1, 2019, 1sSN: 0269-2821. DOI: 10.1007/s10462-018-09679~-2.
[Online]. Available: https://doi.org/10.1007/s10462-018-09679-z.

N. Halabi, “Modern standard arabic phonetics for speech synthesis,” Ph.D.
dissertation, University of Southampton, Jul. 2016. [Online|. Available: https:
//eprints.soton.ac.uk/409695/.

L. Benamer and O. Alkishriwo, “Database for arabic speech commands recog-
nition,” Dec. 2020.

K. Almeman, M. Lee, and A. A. Almiman, “Multi dialect arabic speech
parallel corpora,” in 2013 1st International Conference on Communications,
Signal Processing, and their Applications (ICCSPA), IEEE, 2013, pp. 1-6.

M. Alghamdi, “Kacst arabic phonetics database,” Jan. 2000.

G. Droua-Hamdani, S. A. Selouani, and M. Boudraa, “Algerian arabic speech
database (algasd): Corpus design and automatic speech recognition applica-
tion,” ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, vol. 35,
pp. 157-166, Dec. 2010.

Arabic vocal emotions dataset (baved). [Online]. Available: https://github.
com/40uf411/Basic-Arabic-Vocal-Emotions-Dataset.

T. Mesallam, M. Farahat, K. Malki, et al., “Development of the arabic voice
pathology database and its evaluation by using speech features and machine
learning algorithms,” Journal of Healthcare Engineering, vol. 2017, pp. 1-13,
Oct. 2017. DOI: 10.1155/2017/8783751.

P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” arXiv preprint arXiw:1804.03209, 2018.

S. Becker, M. Ackermann, S. Lapuschkin, K.-R. Miiller, and W. Samek, “In-
terpreting and explaining deep neural networks for classification of audio
signals,” arXiv preprint arXiv:1807.03418, 2018.

C. Hou, B. Cao, and J. Fan, “A data-driven method to predict service level
for call centers,” IET Communications, vol. 16, Jun. 2022. DOI: 10. 1049/
cmu2.12192.

B. Ay and G. Aydin, “Call center performance evaluation using big data
analytics,” May 2016, pp. 1-6. DOI: 10.1109/ISNCC.2016.7746116.

M. Ali and Y. Lee, “Crm sales prediction using continuous time-evolving clas-
sification,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 32, 2018.

D. Galvez, G. Diamos, J. Ciro, et al., The people’s speech: A large-scale diverse
english speech recognition dataset for commercial usage, 2021. DOI: 10.48550/
ARXIV.2111.09344. [Online]. Available: https://arxiv.org/abs/2111.
09344.

33

[55]

[56]

[57]

[58]

J. Carletta, S. Ashby, S. Bourban, et al., “The ami meeting corpus: A pre-
announcement,” Jul. 2005. DOT: 10.1007/11677482_3.

M. Mazumder, S. Chitlangia, C. Banbury, et al., “Multilingual spoken words
corpus,” in Tharty-fifth Conference on Neural Information Processing Systems

Datasets and Benchmarks Track (Round 2),2021. [Online|. Available: https:
//openreview.net/forum?id=c20jiJ5K2H.

Common voice. [Online|. Available: https://labs.mozilla.org/projects/
common-voice/.

V. Pratap, Q. Xu, A. Sriram, G. Synnaeve, and R. Collobert, “MLS: A large-
scale multilingual dataset for speech research,” in Interspeech 2020, ISCA,
Oct. 2020. DOL: 10 .21437 /interspeech .2020-2826. [Online]. Available:
https://doi.org/10.21437%5C)2Finterspeech.2020-2826.

R. Vijayaraghavan and P. Kannan, “Applications of data mining and machine
learning in online customer care,” Aug. 2011, p. 779. DOI: 10.1145/2020408.
2020537.

J. L. Alvarez, J. D. Mozo, and E. Duran, “Analysis of single board archi-
tectures integrating sensors technologies,” Sensors, vol. 21, no. 18, p. 6303,
2021.

S. J. Johnston, P. J. Basford, C. S. Perkins, et al., “Commodity single
board computer clusters and their applications,” Future Generation Com-
puter Systems, vol. 89, pp. 201-212, 2018, 1SSN: 0167-739X. DOI: https :
//doi.org/10.1016/j.future.2018.06.048. [Online|. Available: https:
//www.sciencedirect.com/science/article/pii/S0167739X18301833.

H. Ghael, “A review paper on raspberry pi and its applications,” Jan. 2020.
DOI: 10.35629/5252-0212225227.

Arduino nano 33 ble sense, 2023. [Online]. Available: https://docs.arduino.
cc/hardware/nano-33-ble-sense.

Esp32 series datasheet, 2022. [Online]. Available: https://www.espressif.
com/en/support/documents/technical-documents.

B. Deng, Z. Bo, Y. Jia, Z. Gao, and Z. Liu, “Research on stm32 development
board based on arm cortex-m3,” in 2020 IEEE 2nd International Confer-
ence on Civil Aviation Safety and Information Technology (ICCASIT, 2020,
pp. 266-272. pOI: 10.1109/ICCASITE50869.2020.9368860.

Stm32 software development tools. [Online|. Available: https://wuw . st .
com/en/development-tools/stm32-software-development-tools.html.

J. Park, Y. Boo, I. Choi, S. Shin, and W. Sung, “Fully neural network based
speech recognition on mobile and embedded devices,” Advances in neural
information processing systems, vol. 31, 2018.

X. Lei, A. Senior, A. Gruenstein, and J. Sorensen, “Accurate and compact
large vocabulary speech recognition on mobile devices,” Aug. 2013, pp. 662—
665. DOI: 10.21437/Interspeech.2013-189.

84

[. McGraw, R. Prabhavalkar, R. Alvarez, et al., Personalized speech recogni-
tion on mobile devices, 2016. DOI: 10.48550/ARXIV.1603.03185. [Online].
Available: https://arxiv.org/abs/1603.03185.

J. Lewis, Analog and digital mems microphone design considerations, 2013.
[Online]. Available: https://www.analog.com/en/index.html.

G. D’Emilia, A. Gaspari, E. Natale, N. Montali, A. Prato, and A. Schi-
avi, “Validated data mining technique: A case study on pressure-field dig-
ital mems microphone calibration,” Journal of Physics: Conference Series,
vol. 1065, p. 072028, Aug. 2018. DOL: 10.1088/1742-6596/1065/7/072028.

12s bus specification, 2022.

S. Soro, TinyML for Ubiquitous Edge AI, 2021. DOI: 10.48550/ARXIV.2102.
01255. [Online]. Available: https://arxiv.org/abs/2102.01255.

J. R. et al., “Widening Access to Applied Machine Learning With TinyML,”
Harvard Data Science Review, vol. 4, 2022.

Microsoft, Embedded Learning Library, 2020. [Online]. Available: https://
microsoft.github.io/ELL/..

STMicroelectronics, Artificial Intelligence Ecosystem for STM32. [Online].
Available: https://www.st.com/content/st%20com/en/ecosystems/
artificial-intelligence-ecosystem-stm32.html.

ARM, ARM NN SDK. [Online|. Available: https://www.arm.com/products/

silicon-ip-cpu/ethos/arm-nn.

S. Soro, Tinyml for ubiquitous edge ai, 2021. DOI: 10.48550/ARXIV.2102.
01255. [Online]. Available: https://arxiv.org/abs/2102.01255.

S. Hymel, C. Banbury, D. Situnayake, et al., Edge impulse: An mlops platform
for tiny machine learning, 2022. DOI: 10.48550/ARXIV.2212.03332.

A. Osman, U. Abid, L. Gemma, M. Perotto, and D. Brunelli, Tinyml plat-
forms benchmarking, 2021. DOL: 10 . 48550 / ARXIV . 2112 .01319. [Online].
Available: https://arxiv.org/abs/2112.01319.

T.-H. Tsai and X.-H. Lin, “Speech densely connected convolutional networks
for small-footprint keyword spotting,” Multimedia Tools and Applications,
2023. DOI: 10.1007/s11042-023-14617-5.

J. Wang and S. Li, Keyword spotting system and evaluation of pruning and
quantization methods on low-power edge microcontrollers, 2022. arXiv: 2208 .
02765 [cs.SD].

M. N. Miah and G. Wang, “Keyword spotting with deep neural network on
edge devices,” in 2022 IEEE 12th International Conference on FElectronics
Information and Emergency Communication (ICEIEC), 2022, pp. 98-102.
DOI: 10.1109/ICEIEC54567.2022.9835061.

85

[84] F. Holzke, H. Ahmed, F. Golatowski, and D. Timmermann, “Keyword spot-
ting for industrial control using deep learning on edge devices,” in 2021
IEEE International Conference on Pervasive Computing and Communica-
tions Workshops and other Affiliated Events (PerCom Workshops), 2021,
pp- 167-172. DOI: 10.1109/PerComWorkshops51409.2021.9430865.

[85] J. Kwon and D. Park, “Hardware/software co-design for tinyml voice-recognition
application on resource frugal edge devices,” Applied Sciences, vol. 11, no. 22,
2021. DOI: 10.3390/app112211073. [Online|. Available: http://dx.doi .
org/10.3390/app112211073.

[86] S. Gondi and V. Pratap, “Performance evaluation of offline speech recog-
nition on edge devices,” FElectronics, vol. 10, no. 21, 2021. DO1: 10.3390/
electronics10212697. [Online|. Available: http://dx.doi.org/10.3390/
electronics10212697.

[87] D. Snyder, G. Chen, and D. Povey, “Musan: A music, speech, and noise
corpus,” arXww preprint arXiv:1510.08484, 2015.

[88] E. Hardy and F. Badets, An wuitra-low power rnn classifier for always-on
voice wake-up detection robust to real-world scenarios, 2021. DOI: 10.48550/
ARXIV.2103.04792. [Online]. Available: https://arxiv.org/abs/2103.
04792.

[89] K. Li and J. Principe, “Biologically-inspired pulse signal processing for in-
telligence at the edge,” Frontiers in Artificial Intelligence, Aug. 2021. DOI:
10.3389/frai.2021.568384.

[90] S. Yang, Z. Gong, K. Ye, Y. Wei, Z. Huang, and Z. Huang, “Edgernn: A
compact speech recognition network with spatio-temporal features for edge
computing,” IFEE Access, vol. 8, pp. 81468-81478, 2020. po1: 10.1109/
ACCESS.2020.2990974.

91] P.-E. N. et al., “Quantization and Deployment of Deep Neural Networks
on Microcontrollers,” Sensors, vol. 21, no. 9, p. 2984, 2021. pOI: 10.3390/
521092984. [Online]. Available: https://arxiv.org/abs/2105.13331,

[92] J. B. et al, “Quantization and training of neural networks for efficient integer-
arithmetic-only inference,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2018, pp. 2704-2713.

93] TensorFlow Lite for Microcontrollers. [Online]. Available: https ://www .
tensorflow.org/lite/microcontrollers.

94] G. A. et al, “A survey of quantization methods for efficient neural network
inference,” arXww preprint arXiw:2105.13630, 2021.

[95] D. H. Le and B.-S. Hua, “Network Pruning That Matters: A Case Study
on Retraining Variants,” in International Conference on Learning Represen-
tations, 2021. [Online]. Available: https://openreview .net/forum?id=
Cb54AMGHQFP.

36

[102]

[103]

H. T. et al, “Sparsity in Deep Learning: Pruning and growth for efficient
inference and training in neural networks.,” J. Mach. Learn. Res., vol. 22,
no. 241, pp. 1-124, 2021.

Y. S. et al, “A Unified Framework of DNN Weight Pruning and Weight
Clustering/Quantization Using ADMM,” CoRR, 2018. [Online|. Available:
http://arxiv.org/abs/1811.01907.

M. Y. et al, “Ladabert: Lightweight adaptation of bert through hybrid model
compression,” arXiw preprint arXiw:2004.04124, 2020.

Data collection website, https://mlproject.azurewebsites.net/, 2023.

A. Sithara, A. Thomas, and D. Mathew, “Study of MFCC and THC Feature
Extraction Methods with Probabilistic Acoustic Models for Speaker Biomet-
ric Applications,” Procedia computer science, vol. 143, pp. 267-276, 2018.

U. E. Akpudo and J.-W. Hur, “A cost-efficient MFCC-based fault detection
and isolation technology for electromagnetic pumps,” FElectronics, vol. 10,
no. 4, p. 439, 2021.

S. Patro and K. K. Sahu, “Normalization: A preprocessing stage,” arXiv
preprint arXiv:1503.06462, 2015.

Keras, BayesianOptimization Tuner. [Online]. Available: https: //keras.
io/api/keras_tuner/tuners/bayesian/.

87

	ACKNOWLEDGEMENTS
	ABSTRACT
	ABBREVIATIONS
	Introduction
	Related Work
	Digital Assistants
	Amazon Alexa
	Google Assistant
	Apple Siri
	Microsoft Cortana

	Machine Learning Models for Speech Processing Applications
	Hidden Markov Models
	Hidden Markov Models for Natural Language Processing Applications

	Convolutional Neural Networks
	Recurrent Neural Networks
	Backpropagation Through Time

	Long Short-Term Memory Units
	Deep Learning Models for Natural Language Processing Applications
	Automatic Speech Recognition
	Language Modeling
	Character Recognition

	Machine Leaning Frameworks and Libraries
	Scikit-Learn

	Deep Leaning Frameworks and Libraries
	TensorFlow
	Keras
	PyTorch

	Speech Datasets
	Arabic Datasets
	English Datasets
	Large Data Sets
	English Datasets
	Multilingual Datasets

	Embedded Systems
	Single Board Computers and Microcontrollers
	Raspberry Pi
	Arduino Nano 33 BLE Sense
	ESP32
	STM32
	Comparison

	Digital Microphones
	MEMS Microphones
	The I2S Digital Audio Standard

	Overview of TinyML
	TinyML Frameworks
	TensorFlow Lite
	Edge Impulse
	Embedded Learning Library
	ARM-NN
	STM32 Cube AI Library

	TinyML for Speech Recognition – Related Work
	Techniques for Model Compression
	Quantization
	Float16 Quantization
	Dynamic Range Quantization
	Integer Quantization

	Pruning
	Constant Sparsity Pruning
	Polynomial Decay Pruning

	Weight Clustering
	Hybrid Approaches

	A TinyML Model for Spoken Arabic Digit Recognition - Methodology
	Levantine Arabic Audio Dataset
	Data Pre-processing and Cleaning
	Data Augmentation
	Mel-Frequency Cepstral Coefficient Feature Extraction
	Normalization

	Automatic Speech Recognition Models

	Results and Discussion
	Impact of TFLite Compression on Model Characteristics
	Impact on Parameter and Model Size
	Quantization
	Pruning
	Weight Clustering

	Impact on Model Performance
	TFLite Compression
	Quantization
	Pruning
	Weight Clustering

	Impact on Inference Time
	TFLite Compression
	Quantization
	Pruning
	Weight Clustering

	Impact on Energy Consumption

	Deployment on Edge Devices
	Raspberry Pi Model 3
	Arduino Nano 33 BLE Sense

	Conclusions and Future Work
	APPENDIX
	Bibliography

