
AMERICAN UNIVERSITY OF BEIRUT

AUTOMATIC AND ADAPTIVE EXTRACTION
OF ACTION KNOWLEDGE FROM PRODUCT

REVIEWS

by

BOSAINAH MOHAMMAD AMRO

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Science in Business Analytics
to the Suliman S. Olayan School of Business

at the American University of Beirut

Beirut, Lebanon
April 2023

AMERICAN UNIVERSITY OF BEIRUT

AUTOMATIC AND ADAPTIVE EXTRACTION
OF ACTION KNOWLEDGE FROM PRODUCT

REVIEWS

by

BOSAINAH MOHAMMAD AMRO

Approved by:

Dr. Fouad Zablith, Associate Professor - Director Advisor

Suliman S. Olayan School of Business

Dr. Wael Khreich, Assistant Professor Advisor

Suliman S. Olayan School of Business

Dr. Lama Moussawi, Associate Professor Member of Committee

Suliman S. Olayan School of Business

Dr. Sirine Taleb, Lecturer Member of Committee

Suliman S. Olayan School of Business

Date of thesis defense: April 28, 2023

AMERICAN UNIVERSITY OF BEIRUT

THESIS RELEASE FORM

Student Name: Amro Bosainah Mohammad

I authorize the American University of Beirut, to: (a) reproduce hard or electronic copies of

my thesis; (b) include such copies in the archives and digital repositories of the University; and (c)

make freely available such copies to third parties for research or educational purposes

⇤ As of the date of submission of my thesis

⇤ After 1 year from the date of submission ofmy thesis .

⇤ After 2 years from the date of submission ofmy thesis .

⇤ After 3 years from the date of submission ofmy thesis .

Signature Date

Bothaina Amro
08/05/2023

Bothaina Amro
Bosainah Amro

Bothaina Amro

Acknowledgements

First, I would like to express my deepest gratitude to the blessings God have
given us to complete this journey.

Second, I am indebted to my Professors, Dr Fouad Zablith and Dr Wael Khreich
who have been supportive of my degree goals and who worked actively to provide
me with the protected academic time to pursue those goals. I would like to thank
also the members of the Committee.

Lastly, this endeavor would not have been possible without the support of all
the precious beloved ones in my life.

1

Abstract
of the Thesis of

Bosainah Mohammad Amro for Master of Science in Business Analytics

Major: Business Analytics (MSBA)

Title: Automatic and Adaptive Extraction of Action Knowledge from

Product Reviews

Abstract:

Recommending products based on user experience and feedback was proved to
be an e↵ective marketing strategy. Product reviews are a promising source of knowl-
edge in the product recommendation process. Much of the research done was mining
textual data from reviews to extract sentiments, satisfaction level, and ratings. Lit-
tle work was invested for extracting action knowledge and other semantics that can
help with the recommendation process. Annotating action knowledge from customer
reviews was done manually using the contribution of human annotators to read, an-
notate, and extract the tags and labels stated or deduced from content. How can
we automate the extraction of action knowledge entities from unstructured product
reviews, whether stated or predicted from context, in order to replace manual an-
notation tools? Moreover, How to automatically integrate product reviews in the
recommendation process through representative knowledge graphs constructed from
the predicted entities? How can human intervention help in the adaptation of ML
models and to what incremental level of updating can the framework reach from the
human-in-the-loop mechanism? This work proposes a framework to automate ac-
tion knowledge extraction from customer reviews through machine learning models
that will be incrementally improved through ‘Human-in-the-loop‘ technique. This
framework semantically annotates the actions expressed in product reviews, captures
other related entities, links these entities to form a knowledge graph that serves the
development of action-aware recommendation apps. The system is adapted and
incrementally updated throughout continually retraining the models with approved

2

correct data. To validate the solution proposed, an experimental evaluation protocol
is applied to train the models with updated sets of approved annotations. The ex-
periment revealed an improvement in the performance of the predictive models. In
addition, the datasets collected by human annotators and used for model retraining
were improved in terms of reducing the gap between classes of the models. The
contribution of our work is to introduce a full consolidated automatic framework,
joining multiple components, to construct an end-to-end prototype that generates
the input of action-aware recommendation app. This automatic framework is pro-
posed to automate the action knowledge extraction from product reviews and the
construction of knowledge graphs used in recommendation systems, in an adaptive
manner.

3

Table of Contents

ACKNOWLEDGEMENTS 1

ABSTRACT 2

ABBREVIATIONS 8

1 Introduction 9

1.1 Aims and Objectives . 11
1.2 Thesis Outline . 12

2 Literature Review 13

2.1 Introduction . 13
2.2 Manual annotation and knowledge graph construction 14
2.3 Semantic Predictions . 14

2.3.1 Multi-Class Classification Models 14
2.3.2 Multi-Label Classification Model 15

2.4 Cosine Similarity Feature Matching 15
2.5 Knowledge Graph construction . 15
2.6 The proposed solution . 16

3 Methodology 18

3.1 Introduction . 18
3.2 Automatic ontology generation framework 19

3.2.1 Generation phase . 19
3.2.2 Refinement Phase . 22
3.2.3 Mapping Phase . 23
3.2.4 Human-in-the-loop machine learning (HITL-ML) 23

3.3 Testing and Evaluating the Automatic Framework 24

4 Evaluation 26

4.1 Introduction . 26
4.2 Prototype . 26

4.2.1 Prototype’s Design . 27
4.3 Retraining Models Usability Study 38

4.3.1 Experimental Protocol for Retraining Models 38

4

5 Results and Discussion 41

5.1 Prototype’s Implementation and Results 41
5.2 KG Construction from Predicted Entities 55
5.3 Models Parameter Optimization Phase 56

5.3.1 Results of fine-tuning the models through hyper-parameter
optimization . 57

5.4 Retraining Models Stages . 57
5.4.1 Results of retraining the best models on multiple data sets . . 59

5.5 Impact of human-in-the-loop technique on the framework 61
5.6 Discussion of the Results . 61

6 Conclusion 63

6.1 Meeting Aims and Objectives . 64
6.2 Research Limitations . 65
6.3 Future Work . 65

A Appendix 67

A.1 Personal Reflection . 67
A.2 Code Links . 68

Bibliography 69

5

Illustrations

3.1 The Automatic Ontology Generation Framework 19
3.2 Sparql Query to Fetch KG Data from Triple Store 20
3.3 Example of Triplets in RDF Format 22

4.1 Users Responsible for each Phase in our Approach 26
4.2 The Automatic Framework Prototype 27
4.3 Data Engineer O✏ine Portal . 28
4.4 Retrieve new reviews admin page . 29
4.5 Checked by number of annotators filter 30
4.6 Checked annotations table with KG buttons 31
4.7 Retrain Models Page . 32
4.8 View Model Report tab . 32
4.9 Table of Models Versions from MySQL 33
4.10 Annotator’s Page Features . 35
4.11 The Annotator’s Page Displaying Each Review and its Annotations . 35
4.12 No Action and New Action Features in Annotators Page 36
4.13 MySQL Database Tables . 37
4.14 States of Splitting Data for Retraining Models 39

5.1 Before Under-sampling . 42
5.2 After Under-sampling . 42
5.3 ROC curve on Training Set . 43
5.4 ROC curve on Testing Set . 43
5.5 Action Distribution in Reviews . 44
5.6 The Imbalance Distribution of Action Entity 46
5.7 Error Analysis for Action Classification Model 47
5.8 The Imbalance Distribution of Agent Entity 48
5.9 Error Analysis for Agent Classification Model 49
5.10 The Imbalance Distribution of Environment Entity 50
5.11 Error Analysis for Environment Classification Model 51
5.12 The Imbalance Distribution of Valence Entity 52
5.13 Error analysis for valence classification model 53
5.14 The Imbalance Distribution of Object Entity 54
5.15 Error Analysis for Object Classification Model 55

6

Tables

5.1 Action Flag Entity Model Information 43
5.2 Accuracy Results for Action/No-Action Entity 43
5.3 Action Entity Model Information . 46
5.4 Accuracy Results for Action Entity 46
5.5 Agent Entity Model Information . 48
5.6 Accuracy Results for Agent Entity 49
5.7 Environment Entity Model Information 50
5.8 Accuracy Results for Environment Entity 51
5.9 Valence Entity Model Information . 52
5.10 Accuracy Results for Valence Entity 52
5.11 Object Entity Model Information . 54
5.12 Accuracy Results for Object Entity 54
5.13 Parameters Set for each Classifier . 56
5.14 Best Parameters for each Model . 57
5.15 Model’s Results on D0 Dataset . 60
5.16 Model’s Results on D1 Dataset . 60

7

Abbreviations

ML Machine Learning
DBMS Data Base Management System
KG Knowledge Graph
RDF Resource Description Framework
ROC Receiver Operating Characteristic
AUC Area Under Curve
SVM Support Vector Machine
RF Random Forest
XGB XG Boost
CV Cross Validation
NLP Natural Language Processing

8

Chapter 1

Introduction

Product reviews can tell you a lot, they reflect customer experiences, needs, feel-
ings, and ratings which are the most important factors for product development.
Review analysis is the act of going through product reviews and uncovering insights
[1]. Multiple annotation and analysis techniques exist to process the large number
of reviews and extract what is needed, but often these techniques are limited to
ratings, customer satisfaction levels, and sentiments, in addition to being unable
to integrate properly reviews in the recommendation process of products [2]. Our
focus is on recommending products to customers based on reviews left by users.
Most recommendation systems face challenges from products that change with time
if they do rely on products specs only [2].

Knowledge graphs are mainly used to model knowledge, however manual KG
can be time consuming and extensive due to several factors e.g the rapid increase
of shared domain data. Knowledge graphs are characterized by their memory, dy-
namism, polysemy, and automation [3]. They represent main concepts and their
associations necessary for reasoning purposes. They are used to enable sharing and
reuse of knowledge and facilitate communication and reasoning among systems. One
of the main benefits of KGs is to provide a standardised way of representing and
sharing knowledge, which improves the collaboration of systems [4]. Most Knowl-
edge graphs are constructed manually by ontology engineers who design entities and
their relationships as per the context of domain. One of our objectives in this re-
search is the automatic KG construction from unstructured data (review text) that
will reduce the time required to build ontology graphs [5].

Based on the above, this thesis will invest its work answering the following re-
search questions:

1. How can we automate the extraction of action knowledge semantics from un-
structured product reviews, whether stated or predicted from context, in order
to replace manual annotation tools?

9

2. How to automatically integrate product reviews in the recommendation pro-
cess through representative knowledge graphs constructed from the predicted
entities?

3. How can human intervention help in adapting ML models and to what in-
cremental level of updating can the framework of automation reach from a
human-in-the-loop mechanism?

This thesis is applied on a specific domain which is the unstructured customer
reviews extracted from e-commerce websites to discuss recommendations from an-
other perspective, recommendations that are based on action knowledge extracted
from customer reviews. Actions or what a buyer can do with a product can in-
fluence his/her purchase decisions [6]. Action knowledge are the tags that reflect
an action that was made by the user like saying I use this laptop for watching
movies. In the preceding example, the action that can be extracted from this an-
notation is ‘Watch‘. Action knowledge can be extended to embrace not only action
words, but also other related event semantics that can be included within the text
or deduced from the context. These action knowledge semantics will be predicted
using machine learning models. Since little work is given to address the actions that
products enable their buyers to do and employ such actions in the recommendation
process, our project will enhance this integration of actions in recommendations to
better match products with customer needs. The integration of product reviews in
the recommendation process proved its e↵ectiveness, usefulness, and ease of use [7].
A framework is proposed to automatically annotate the actions expressed in prod-
uct reviews using ML models, captures other related entities, links these entities to
form a knowledge graph that will serve the development of action-aware recommen-
dation apps by integrating product reviews [6]. This automatic framework will be
incrementally updated by adapting ML models through human intervention.

The framework has an automatic tool that replaces the manual annotation tool
by directly processing review text from the web, extracting all action knowledge
entities mentioned in the reviews, enabling human annotators to check and edit
machine predictions, and finally approving the correct group of entities for each
annotation, to construct automatically its knowledge graph. This knowledge graph
makes use of our existing ontology structure that was designed by ontology engineers
for this specific domain data. The entities of the existing ontology are the actions
that was done using the product, the agent that is doing the action, the environment
where the action is taking place, the features used, as well as the sentiment of the
context [6]. These entities are the predicted results of the framework’s ML models.
Moreover, one of the main goals is to assist human with machine learning to optimize
performance, and combine human and machine intelligence to maximize accuracy.
Frameworks having good data with simple algorithms is much more likely to generate
better outcome than advanced algorithms with bad data [8]. A human-in-the-loop
technique manages the adaptation of ML models in the framework to improve the
automation process.

10

This integration of human force in the adaptation of ML models is proved
throughout an experimental evaluation protocol, where checked annotation data
is collected by human annotators using the automatic tool and fed to our existing
models as new training data. Like most proofs, logic proofs usually begin with an
initial state and then the results are observed within time. In our case, we started
our experimental protocol and proof of human adaptation of machine learning mod-
els using the initial manually annotated training set of reviews. Then, we upgraded
our data sets with newly checked data from our automatic framework, that involves
human practices in checking machine results. The experiment starts to modernize
the imbalanced manual annotated dataset that resulted initially with ambiguous
accuracy scores, then it shows an increase in model’s accuracy results. This increase
builds for better performance in the future with more collected data through time.

The contribution of the work, is the development of an end-to-end prototype
that processes raw review text to generate di↵erent knowledge graph entities and
relations using multiple machine learning algorithms. Then, reaching a trusted
automatic framework that can annotate and build knowledge graphs with minimal
level of human intervention. Finally, implementing a credible feedback mechanism
that increases the e�ciency of our work and incrementally update the prototype.

1.1 Aims and Objectives

This thesis project focuses on automating the extraction of action knowledge from
product reviews, as well as automating the construction of knowledge graphs. Our
aims and objectives in this thesis are the following:

1. Assist humans in detecting and representing action knowledge from product
reviews.

2. Build an end-to-end prototype starting from product URLs having review text,
and ending with the final knowledge graph construction.

3. Implement an easy online accessible prototype used by human annotators to
check, edit, and approve machine predictions on annotations. Besides, the pro-
totype will enable the user to retrain models, and construct the final knowledge
graph for approved annotation.

4. Combine human and machine intelligence to maximize accuracy by using
human-in-the-loop technique to update the prototype incrementally.

5. Evaluate the automatic tool through hyper-parameter optimization technique
as well as an adaptive retraining of the models.

11

1.2 Thesis Outline

The remaining of the thesis is structured as follows:

Chapter 2 highlights the main problem of the thesis. We will propose the liter-
ature review in this chapter to combine some related research work to our domain
topic. The chapter analyzes the gap in previous work done and proposes a solution
to our main problem.

Chapter 3 explains the methodology of this thesis that compares two main ap-
proaches: the past manual annotation process and the current automatic annotation
framework.

Chapter 4 discusses the design of the prototype. A section will be set for testing
the prototype for evaluation purposes. The purpose of this chapter is to evaluate the
performance of the proposed automatic framework, and at which level it replaces the
manual review annotation tools. Besides, another validation will take place in this
chapter for retraining the models with collected correct data by a human annotator,
to support the incremental update of the framework in this research.

Chapter 5 explains the implementation section of our work verifying all the re-
sults generated from our models and analysis. The chapter also proposes the hyper-
parameter optimization phase to fine-tune the framework’s models. Best models will
be retrained multiple times on updated sets of data collected by human annotators
from the automatic tool, and results will be explained.

Finally, Chapter 6 concludes the thesis and summarizes discussions, future work
and some personal reflection.

12

Chapter 2

Literature Review

2.1 Introduction

Marketing practice requires a deep understanding of customer needs especially when
recommending products to customers. User generated content is a promising source
for understanding their needs [9]. It can tell a lot more about the behaviour of
customers when using a particular product. Much of the existing research on tex-
tual information processing has been focused on mining and retrieval of sentiment
and satisfaction information, giving other semantics a little attention while being
highly important. Text mining is the process of identifying facts, labels, tags, rela-
tionships, and assertions that are hidden within the mass of textual data generated
every minute. Mining this textual data requires a variety of methodologies to pro-
cess and extract information from unstructured forms of textual data. Natural
language Processing is the main methodology in the field of text mining, with its
both branches, Natural Language Understanding and Natural Language Generation.

One of the most potential aspects in the product recommendation process is
integrating customer reviews about the products within the recommendation pro-
cess. These reviews reflect customer experiences, needs, feelings, and ratings which
are the most important factors for product development. Reviews can tell a lot;
they can provide insights on high granular levels, thus employing these insights
properly within the product recommendation system. Knowledge graphs and ontol-
ogy have been known for their powerful semantic representation of knowledge [3].
Actions that products enable their buyers to perform are extremely significant in
purchase decisions, as well as in the integration of action-based recommendations us-
ing knowledge graphs [5] — [6]. Action knowledge extraction from customer reviews
is becoming an interesting area of research and it is needed to develop an automatic
action knowledge application, to ease the process of annotation and knowledge graph
construction.

13

2.2 Manual annotation and knowledge graph construction

Knowledge graphs can be designed manually, for example, existing e↵orts have an-
notated customer reviews manually using a proposed ‘Review Annotator‘ extension
on Chrome [6]. This annotator is a tool that helps classify annotations, but with
human intervention for extracting, highlighting, and classifying the action, in order
to be annotated in the review. For example, here is a review text annotated with
a ‘Study‘ action, a ‘Student‘ agent, a ‘University‘ environment, a ‘Positive‘ valence,
and a ‘Laptop‘ object. A form is filled with these action knowledge tags using the
chrome extension manual annotation tool.

I purchased this laptop for studying when i started university.

The manually annotated reviews is used to build the first knowledge graph to
act later as a reference graph for correctness, completeness, and consistency of the
automatically adapted ontology graphs. The graph is made of multiple classified
nodes representing the semantics of the annotation, the attributes of each node, as
well as the relationship between the nodes. Designing a knowledge graph should
follow a standard declarative mapping rules that guarantees the systematic and
sustainable workflow for constructing and maintaining a KG. Manual KG can be
time consuming and extensive due to the increase in domain data that should be
modeled in entities and relationships to be shared between systems. For example,
the tool formulates the rules for the above entities as follows:

(StudyAction, isPartOf, annotation-md5)

(StudyAction, agent, Student)

(StudyAction, location, University)

(annotation-md5, hasValence, Positive)

2.3 Semantic Predictions

The categorization of textual data is perhaps the most dominant multi classification
application [10]. Machine learning classifier for multi-label and multi-class classifi-
cation models will manage the di↵erent semantics to be predicted from the textual
data of reviews.

2.3.1 Multi-Class Classification Models

Prediction and correct voting are critical tasks in multi-class classification of textual
data especially when having imbalanced data [11]. Besides, multi-class imbalanced
learning is much harder than binary classification of one or 2 classes. It is a typical

14

problem, because data is hard and expensive to collect, and we often collect and
work with less data than we need to experiment even after dealing with big data in
current times. Many real-world classification problems are usually imbalanced like
fraud detection, medical diagnosis, and text classification [12]. Imbalance data a↵ect
the performance of multi-class classification models by giving very high accuracy
scores that are ambiguous results. Our domain data is the unstructured textual
data which is the product reviews. The contribution at this stage is to normalize
our data sets by collecting as much data as possible to improve our data sets and
have representative samples for every class in the model to resolve the imbalance of
data issue. [13]

2.3.2 Multi-Label Classification Model

In many important data mining applications, such as text categorization, instances
are associated with more than one class label. Many classification strategies have
been introduced to deal with multi-label data [14]. The first strategy is converting
the multi-labeled data into single labeled set of data and then solving it using single-
label classifiers such as binary relevance and label power set transformations. The
second approach is adapting and extending the single classifiers to cope with multi-
labeled data. Some common adaptations are multi-label k-nearest neighbors, multi-
label Näıve Bayes, multi label Ada boost, and others [14]. This intuitive approach
to solving multi-label problem tends to decompose it into multiple independent
binary classification problems (one per category), so that the existing single-label
algorithms can be used.

2.4 Cosine Similarity Feature Matching

Cosine similarity is one of the popular distance measures used for text classification
problems [15]. This technique measures the similarity between two vectors of words
of an inner product space. Cosine similarity was used widely for di↵erent applica-
tions, like face verification where Nguyen and Bai [16] used it, linguistic applications
like text summarization where Silber and McCoy [17] applied it and detecting emo-
tions in the Arabic language text where Takçi and Güngör [18] benefited from.

2.5 Knowledge Graph construction

Semantic knowledge in web searches is usually referred to the term knowledge graph
as Google proposed in 2012. KGs represents semantic networks that evolve with time
and integrate with multiple types of applications like recommendation systems [19].
The KG captures entities and their relationships, following rules and patterns of the
first manual KG done in the project. The semantics predicted using the multiple
models explained above will be represented as entities in the KG, as well as the
review text or annotations. Links and connections between entities will be then
created based on the rules of the manual KG as per the below example.

15

(Annotation, hasTarget, review Body)

(Action, isPartOf, annotation)

(Feature, isPartOf, annotation)

(Action, agent, agent)

(Action, location, environment)

(Annotation, hasValence, valence)

2.6 The proposed solution

This thesis focuses on the automatic extraction of action knowledge derived from
customer reviews as well as the automatic knowledge graph construction. This
work investigates the potential of using appropriate machine learning techniques
from customer text reviews. These semantics will cover the action, the agent, the
environment in which the action is taking place, the features of the products that
are used for each specific action annotated, as well as the sentiment and polarity
that promotes us to cluster data based on cons and pros [20]. The main goal behind
this work is to design an automatic end-to-end framework starting from unstruc-
tured text sources providing an openly accessible knowledge graph that explicitly
links user actions, products, and reviews to continuously embed such data into the
recommendation process [3] — [6]. Both the machine learning strategy and the data
annotation strategy are closely intertwined, and better accuracy for the models can
be obtained when combining the two approaches e�ciently [8]. The framework em-
braces the annotation of data strategy through human-in-the-loop technique, that
will take place in parallel to our developed simple machine learning models, that
works on extracting action knowledge from customer reviews.

This thesis examines the performance of information drawn from the di↵erent
levels of linguistic text features [21]. The first major label to be predicted will
be the action done using the product. Users will mention that they often use the
respective product for drawing, streaming movies, studying, gaming and so on.
The model focuses on the acquisition of the action label in the text, and exploit
the dependency of some others with the action. Independent labels will employ
independent multi-class classifiers like other common approaches [22].

We can have multiple actions in one review that probably needs multiple anno-
tations. But a multi-label classification model won’t perform well using our initial
manual annotated data set that is an imbalanced one. The multi-label classifica-
tion approach for predicting multiple actions in one annotation will be part of our
future work and developments of the framework when a vast amount of data will

16

be collected for a good fit in a multi-label classification model. A well performing
predicting classifier that fits our initial set of data is the multi-class classifiers. The
models are required to predict 5 di↵erent labels for every annotation: action, agent,
environment, valence, and object.

Feature label is predicted using a cosine similarity measure. This similarity is
measured between the vector of words of a text review and the vector of words of a
lexicon of product features. The lexicon will be developed with time as new features
will be captured during the human-in-the-loop process. Multiple features can be
matched with the context of a single sentence. For example, the below sentence
matches with ‘Memory‘ feature label as its context reveal that it talks about how
much storage this product can handle. I can run all my favorite games and more
on this!

Knowledge graph construction is based on a declared mapped set of rules that
link predicted entities with their respective relationships based on the manual KG
designed.

In the following chapter, the thesis introduces the methodology approaches that
are tackled to demonstrate our solution proposed. The methodology emphasizes
the automatic framework that serves our purpose in automating action knowledge
extraction and knowledge graph construction in an adaptive way.

17

Chapter 3

Methodology

3.1 Introduction

This work proposes an automatic framework that is based on three di↵erent phases.
A Generation phase where machine learning models stand, a Refinement phase where
human intervention takes place to check for anomalies and errors in machine pre-
dictions, and finally a Mapping phase where a person makes the final decision and
votes for the best outcome of the prior two stages to complete and construct the
knowledge graph we need. This chapter emphasizes the automatic framework and
its adaptive incremental learning process that stands as a solution for the manual
review annotation and action knowledge extraction from customer reviews. The
proposed automatic framework is monitored and controlled by human at a certain
level reaching a future optimal stage, in which all machine learning models reach
high trusted performance level with cumulative learning curve. This performance
will be reached out by developing the training set of data continually under human
supervision. This frequent improvement of data set and update in models are tested
and evaluated through an experimental protocol, where models are retrained with
new data collected by human annotators. The framework takes raw review text
data from an e-commerce website as an input, generating a final knowledge graph
for every annotation of the review as an output.

18

Query new data

Annotate new
data

Append and Train
new data

Detect new anomalies

Detect new
completed triples

Reference to the
manual KG

Detect new rules for (subject, property, object)

Reference to the
manual KG for
consistency check

Final automatic
generated KG
check up

This icon reflects
HITL-ML

Figure 3.1: The Automatic Ontology Generation Framework

3.2 Automatic ontology generation framework

At this stage of the research, a deep understanding of three phases takes place:
Generation Phase, Refinement Phase, and Mapping Phase. The three phases are
sponsored by HITL ML (Human-in-the-loop machine learning) system for cumula-
tive learning for the machines hosted in the framework.

3.2.1 Generation phase

The generation phase in Figure 3.1, embraces all machine learning models which
were trained on set of reviews to predict action knowledge semantics from text. This
step carries out this repetitive and mundane task that should be done continuously
in this framework, so that we free up time and resources like human intervention.
This will be the first stage where we level down the human intervention with an
accurate trained machine learning model for annotating text reviews and preparing
structured data for knowledge graph construction step.

Data Extraction

The manual annotated set of data explained in Chapter 2 is used to recommend
products for a recommendation website for electronic products. This thesis started
its work with a specific domain, which is reviews from products belonging to the
‘Computers and Tablets‘ category in Best Buy. Initially, our work will be limited
to this specific domain in order to open the research gate to other domains in the
future. Annotations done manually were based on the existence of an action tag

19

in the sentences. If an action was found, then the sentence can be annotated and
the prediction can be expanded to retrieve other events like agent, environment,
valence, and object. Every annotation is represented by a knowledge graph stored
in KG Triple store. To extract these KGs, a sparql query is modeled containing a set
of constraints needed to get all reviews with their annotations and other sentences
that weren’t set as annotations, see example of query in Figure 3.2. Both types
of sentences, informative (refer to an action) and non-informative (doesn’t refer to
an action) are used in our models, since having some negative occurrences in the
data set improves the classification of the model. The data extracted for training
the models is cleaned as we retrieved it from a structured source of data. Cleansing
is not required at the generation phase, but will be required at later stages when
the automatic tool extracts unstructured form of data like customer reviews directly
from the web.

Figure 3.2: Sparql Query to Fetch KG Data from Triple Store

Machine Learning Models for Action Knowledge Predictions

Machine learning models that proved to be good for natural language processing
are plenty, but this project works on traditional models using TF-IDF features. TF-
IDF weights words based on relevance, this technique is used to determine that the

20

words with the highest relevance are the most important for featuring our model.
This can be used to help summarize reviews more e�ciently, or to simply determine
keywords or tags for a review text. Traditional classifiers that will be used for our
text data are mainly logistic regression, SVMs, Random Forest, and Näıve Bayes.
The main advantage of using traditional machine learning classifiers is its speed
and relative simplicity. In addition, these algorithms are human interpretable, that
are essential for failure analysis, model improvement and the discovery of insights
and statistical regularities. The model will be trained jointly across multiple tasks
and action knowledge extraction. [23]. The classifiers will act as multi-class ones
since our project requires predicting multiple classes for each semantic. A future
window will be opened to multi-label classification model for the action entity as we
encountered a little number of examples having more than one action in the same
sentence like saying

I mainly use this to draw, read, or stream movies/TV and I’m very impressed.

Data is split on 80 percent for training and 20 percent for testing and validation.
The best performing model on the testing set is chosen to be part of our prototype
system and deployed to be live in order to process new reviews in real-time.

The Reference Ontology for formulating the triplets of the automatic
knowledge graphs

The generated output of the best machine learning model is the input to a knowl-
edge graph generator that is used to get the preliminary KG in the form of triples in
RDF format (subject, predicate, object) with their corresponding confidence score.
The RDF is a directed labeled graph data format for representing information in
the web. The generated KG is reinforced with the manual ones generated above
for reference. Triplets that should be constructed for every annotation are a total
of 37 di↵erent (subject, predicate, object) RDF, see example in Figure 3.3. These
triplets are based on the preliminary knowledge graph that is used for a website
recommendation system based on action knowledge manually annotated [6]

21

Figure 3.3: Example of Triplets in RDF Format

3.2.2 Refinement Phase

The reference ontology that was constructed manually in the first part of the project
is used to evaluate and verify the generated KGs. At this stage, we will be excluding
anomalies from our generated KGs. This step ensures the elimination of irrelevant,
illogical, and unrelated nodes (objects) and relations as per the rules and patterns
of the reference KG. This is done using embedding for all actions, environments,
agents, and features that might be involved in our domain.

Finally, to complete the refinement phase referred in Figure 3.1, the generated
KGs should pass through a completion test to ensure that none of the generated
KGs are incomplete. Here we used the knowledge graph embedding model that is
based on scoring technique for each triple, so that we exclude incomplete triples
(The completion scoring technique was done by Dat Quoc Nguyen) [24].

This phase of our automatic framework that translates the processes of refine-
ment described in Figure 3.1 is part of annotators job, where annotations done by
machine learning models are double checked and corrected in a simple easy way by
users. By checking and editing machine results by human annotators, new enti-
ties are assigned for some annotations. These newly checked annotations are stored
separately as new sets of annotations to be used in retraining our ML models.

22

Refining our data and updating the models recurrently fine tunes our framework
and filters the triplets from any falsely predicted action knowledge and semantics.
Refinement stage is prior to the mapping phase that pushes final knowledge graph
rules to the triple store.

3.2.3 Mapping Phase

In the last phase structured in Figure 3.1 of the automation framework, the KG
should go through a consistency check, which aims to solve the issue of interop-
erability to ensure that all objects and relations are consistent. For example, if
(subject, property, object) with Microsoft surface pro as the subject and a rela-
tion of ‘hasFeature‘ is the property, linked to Keyboard feature as the object, then
‘hasFeature‘ relation makes Microsoft surface pro belongs to the domain class (Prod-
uct). Inconsistency occurs when a subject isn’t placed in its correct domain (Method
developed by Péron et al) [25].

This consistency is also based on the reference Knowledge Graph, and ends up
with a final generated knowledge graph that includes the new annotated reviews.
To maintain clean pushed RDF rules to the triplestore, the automatic tool manages
a checked annotation portal that gives an authorized user a privilege to vote for
the best edited annotation. Checked annotation should pass through this phase for
final processing, the edited labels generated by each annotator are displayed in this
portal for the user to decide on the best action knowledge semantics assigned for
every annotation. Mapping these action knowledge with their RDF rules is managed
by one person who is the only one authorized to push correct annotations to KG
triplestore.

3.2.4 Human-in-the-loop machine learning (HITL-ML)

Google’s search engine has always been a form of HITL machine learning by pro-
viding users with content they wish to find based on words from their query. They
created a system to display options, make predictions, listen to user feedback, vali-
date accuracy of predictions and modify their predictions [26].

In HITL systems, the same input given for the machine models are handled
manually by a human. Data annotation, Knowledge graph construction, fine-tuning
of data and KG objects are done manually and then the results of the manual KG
and the automatic generated KG will be weighed. This makes sure that weak points
and errors are detected from the initial stage of the framework which increases the
framework e�ciency and saves time. This might be repeated multiple times initially
until we reach out for similar (approximately equal) scores for the manual KG and
the machine generated one [26].

The HITL system integrates human knowledge and user experience in our ma-

23

chine learning framework as feedback loops, which increases reliability and machine
robustness. Human intervenes in this framework at each stage to ensure that the
adaptation of the automatic knowledge graphs constructed is aligned with the re-
fined knowledge graph manually done [27]. As discussed previously, the first manual
KG references to the basic rules and patterns of RDF triplets that are used to con-
struct new KGs. Removing anomalies and the completion test at this stage should
be based on these rules and patterns, training our machine on newly generated
ones. The constant human feedback loop in the framework ensures the constant re-
training and fine-tuning of the model. This feedback loop is needed till we acquire
a streamlined data annotation pipeline to make sure the model runs smoothly with
a minimum level of human intervention [28].

The continuous optimization and improvement in production of the machine
learning model using human power is necessary to adapt the model to the ever-
changing data. The loop of querying, annotating, appending, and training will
continuously work around until we reach the high accurate real-time data labeling
of customer reviews needed to construct a good knowledge graph [28]. This stage of
human intervention is reflected in a specific page of the prototype system we devel-
oped. This page manages training the models continuously with the newly checked
annotations by the users. This periodic training of models adapts the existing mod-
els to the updated training set involving human force in the loop by correcting all
falsely predicted outcomes from the ML models.

3.3 Testing and Evaluating the Automatic Framework

Evaluating the methodology described above is done through demonstrating a full
automatic prototype. It is the proof of concept for the automatic action knowledge
extraction and knowledge graph construction processes. It is a streamlit online
web app consisted on four di↵erent pages, each reflecting a part of the automatic
framework structure in Figure 3.1. Two types of users are authorized to work on
this app, the admin who is responsible of multiple tasks and the annotator who
accesses only one page of the app. Privileges for each user are explained in Chapter
4.

Testing the prototype enhances the development approach through a model
hyper-parameter optimization phase. Multiple parameters are adjusted for ma-
chine learning classifiers to get the best set of parameters that fits each model.
Another testing takes place to evaluate model performance and accuracy growth
when checked data is collected by annotators. This strategy is highly important to
validate the e�ciency of human intervention in the automatic framework this re-
search proposes. The aspect of this approach is collecting continually new training
data under human supervision and approval to retrain models and increase their
accuracy, since it is very common in the industry of machine learning to improve
models performance by annotating more training data [8]. Collecting training data

24

from human annotators should be as simple and friendly as possible to avoid the
annoyance of repetitive tasks. The framework simply requires the annotators to edit
machine learning results, thus checking on annotations predicted before entering the
training phase again. These testing sets help leverage the performance of the mod-
els with time. Training the models won’t be once, it is performed periodically after
collecting new batch of reviews, predicting semantics, confirming or editing them by
annotators.

25

Chapter 4

Evaluation

4.1 Introduction

This chapter discusses the evaluation of our approach using the automatic framework
we proposed in this project. The chapter explains the prototype of the framework
on both levels; design and implementation.

4.2 Prototype

Our automatic framework connected multiple endpoints together to structure an
end-to-end prototype for a guided flow of data. The prototype consists of a data en-
gineer o✏ine portal, an annotator front-end page, an admin front-end page, MySQL
DBMS, KG Triplestore, as well as a streamlit app that hosts ML models and multiple
functions.

Figure 4.1: Users Responsible for each Phase in our Approach

26

Distribution of roles and privileges explained in Figure 4.1 is modeled in a full
consolidated prototype. Refer to Figure 4.2 for the prototype’s flow of work. All
links for streamlit web app are in the Appendix B of this thesis.

KG Triplestore

Data Engineer
Page

(Offline Mode)

MySQL
DBMS

Annotator Page
(Online Mode)

Get the full set of
the new reviews

Check the annotations, do the
needed edits, and confirm.

Push the confirmed
annotations

Admin Page
(Online Mode)

GET Initial Training Set Store the models
on cloud

Train the models and analyze results

Send Python request to fetch
new reviews using a semantic
data extraction web serviceStore new data in

table Get the checked
annotations

Pushed the approved checked
annotations

Call the deployed
models to predict
action knowledge
from new reviews

Streamlit cloud

Product page

Figure 4.2: The Automatic Framework Prototype

4.2.1 Prototype’s Design

Data Engineer O✏ine Portal

The data engineer portal is an o✏ine page, where all the initial training, testing
and analysis took place. Refer to Figure 4.3. Firstly, the data engineer gets the
training data from KG triplestore using SparqlWrapper package in python [29]. A
query was posted to fetch out the needed data having all required labels for training.
Secondly, the best models chosen after a deep analysis and study, are trained. Errors
for each model are analyzed through an error heat map showing the areas of error
condensation. This analysis can help the data engineer manipulate data if needed
in case of high error rate at a specific area. Finally, the data engineer deploys the
approved models on the cloud, to ensure an open source framework that can be
accessed easily.

27

Figure 4.3: Data Engineer O✏ine Portal

The Admin Page

The admin has the privilege to access three pages of the app. The main page
for getting new reviews from e-commerce website. A second page to check the work
done by annotators and vote for the annotation to be pushed into triplestore with its
labels. A third page for retraining the machine learning models and reinforce them
with the checked annotations done by annotators. All three pages will be explicitly
explained throughout this section. Links for pages are available in Appendix B.

Get New Reviews Page

The admin page is a streamlit app that enables an authenticated user to fetch new
batch of reviews from product URL. The page accepts a product URL as an input,
retrieve the reviews in this respective page using an http request from the requests
package in python. The app calls then the models hosted in the streamlit cloud and
test them on the new review set to predict semantics. The steps for prediction are
tracked and displayed in a simple way to make sure the models are running in real-
time and accessible any time. Data is stored in MySQL DBMS, through the python
connection using MySQL connector and SQL alchemy packages. There are many
features in the admin main page as per Figure 4.4 that is responsible for retrieving

0
Link to ‘Get New Reviews‘ page: https://bma52-reviews-actions-getnewreviews-

lojlss.streamlit.app/

28

new data from best buy product URL.

Figure 4.4: Retrieve new reviews admin page

1. The user can view the product information retrieved by clicking on the three
horizontal tabs.

(a) View Product Raw Data shows you the main fields for the product
selected from the web page.

(b) View Reviews Raw Data shows you the reviews that were posted in
the respective product page as well as their fields of information.

(c) View Annotations Raw Data shows you the aggregation of the re-
views by sentences. Each review text is split by sentences to be able to
detect the labels for each sentence separately.

2. Three metrics display the numbers of total products, reviews, and sentences
retrieved from this product URL.

3. An initial layer classifies the sentences into informative and non-informative
depending on a machine learning classifier, that predicts whether the sentence
might have an action or not.

4. Six live models run in the back end to predict the di↵erent semantics for
each sentence. After the models finish their predictions, a consolidated set of
data having all the reviews with their sentences and predicted labels, can be
viewed through a tab that can be expanded. The page displays the predicting
semantic load in a nice way.

29

5. The user can inspect the sentences and their predicted labels by clicking on
the tab ‘View Final Data Set‘.

6. The page stores this final data set and the raw data retrieved in MySQL. A
note is displayed at the bottom, once all data is stored in MySQL.

Checked Annotations Page

Considering the case when annotators may be unreliable, but also when their
expertise vary depending on the data they observe, the admin have the privilege of
checking on what annotators edit in machine results, and then decides on pushing to
the triplestore the correct entities or labels for KG construction. The admin assesses
the need to aggregate and make inferences about the collection data from multiple
annotators. This task is done by navigating the ‘Checked Annotation‘ page. The
page loads initially with a filter to choose the number of annotators, in which each
annotation should be checked by at least 2 annotators, or at least 3 annotators, refer
to Figure 4.5.

Figure 4.5: Checked by number of annotators filter

This page loads a table including all the checked annotations by di↵erent anno-
tators. A filter by annotator’s username is applied at the top of the page to help
the admin easily add constraints on the checked annotations they want to view.
For example, if they want to view all annotations that were checked by three an-
notators, they simply select all annotators that they want in the multi select box.
When reviewing the annotation and its labels in the table loaded, the admin has the
privilege to vote for which annotation to be pushed into triplestore for constructing
the knowledge graph of this particular annotation. A ‘Construct KG‘ is assigned for
each row of the table, thus for each annotation reviewed by an annotator. Refer to
Figure 4.6.

0
Link to ‘Checked Annotations‘ page: https://bma52-reviews-actions-getnewreviews-

lojlss.streamlit.app/CheckedAnnotations

30

Figure 4.6: Checked annotations table with KG buttons

Retrain Models Page

Retraining models is also one of the privileges given to the admin. A table in
MYSQL is initially created to store the performance metrics of our ML models. The
admin through his/her port can access this table and view these metrics explicitly,
to decide on which model to be retrained and updated. The retraining models page
displays a report for each trained model, for the admin to inspect performance and
metrics before deciding whether this updated version is better than the previous one
or not. The models are automatically retrained when loading the page, but models
won’t be updated and saved unless the admin decides. Refer to Figure 4.7.

0
Link to ‘Retrain Models‘ page: https://bma52-reviews-actions-getnewreviews-

lojlss.streamlit.app/RetrainModels

31

Figure 4.7: Retrain Models Page

1. If the models performed better, the admin can save it by clicking on ‘Save this
model‘ button, refer to figure 4.8.

2. If the model didn’t perform better, the admin can ignore saving it and monitor
its performance later on with more training data.

Figure 4.8: View Model Report tab

All model versions are stored in a table in MySQL for reference, so that the
user can monitor the historical information of every model, and check how the
incremental update is taking place and our models are being adaptive with the new
trained and checked data. Refer to Figure 4.9 for model information table about
trained versions and their respective accuracy scores.

32

Figure 4.9: Table of Models Versions from MySQL

Human in the loop mechanism is the crux of our project. How retraining models
from human feedback continuously strengthen the models performance. Trusting
our models rely on the proper check a human do on machine predictions. The
checked and edited entities that a human annotator apply on the annotation replaces
the predicted machine entities. All checked annotations are stored in a new table
in MySQL to use them later in retraining our models. This continuous human
check and model learning optimizes our framework. Optimization is reached after
multiple full cycles in this prototype. The purpose of the Retraining models page is
to monitor and record these updates in model’s performance. Each cycle reproduces
a new version of the model, and the admin has the privilege to replace the previous
saved model, or waits for a better performing one to rise.

33

The Annotators Page

Learning from multiple annotators has become an important critical task in ma-
chine learning problems. Varying expertise among annotators is one of the main
ramifications for better data collection, since some action knowledge tags are pre-
dicted from context rather than stated. The prototype introduces a simple app
that enables annotators to explicitly view the review text with its annotations and
predicted labels, sentence by sentence in an organized way. The full review text is
splited into sentences, these sentences are called annotations. The page is divided
into containers, each consisting of one sentence of the review and its predicted la-
bels. The annotators role is to double check the labels for each annotation and
edit it whenever it is wrong. A drop down selection box appears if the annotator
confirmed that this label is ‘Not correct‘. The annotator should check the ‘Confirm
annotation‘ Checkbox placed at the bottom right of every annotation when finishing
his/her edits.

Use cases that can be applied in the annotator’s page:

1. Reviews are loaded after an annotator enters his/her username by selecting
one of the authorized users from the select box that will appear at the top of
the page, refer to Part 1 in Figure 4.10.

2. Review text is displayed with the product name, each annotation with its
predicted labels in a container to easily separate between annotations, refer to
Figure 4.11.

3. Annotation for every review text can be sorted by their action probability, this
promotes an easy check up process from the high accurate predictions to the
low accurate ones, refer to Part 2 in Figure 4.10.

4. The Annotator can take breaks while annotating without any confusion be-
tween the reviews checked and those that are still without check up. This use
case will be managed by loading only the annotations that weren’t checked by
this particular annotator at every new session opened.

5. In case an annotation was predicted by the machine as informative (Have
an action), and the review actually doesn’t reflect any action, the user has
the option to select ‘No Action‘ from the new action select box. This ‘no
Action‘ classified annotation is eliminated from the triplestore and only used
for re-training the action/no-action model, refer to Part 1 in Figure 4.12.

6. In case the sentence has an action, but none of the actions from the select
drop down menu fits the sentence. The user has the option to input a new
action word by clicking on ‘Add a new action‘ option in the drop-down menu,
that displays an input text field to be filled with a new action, refer to Part 2
in Figure 4.12.

0
Link to ‘Annotators Page‘ page: https://bma52-reviews-actions-getnewreviews-

lojlss.streamlit.app/AnnotatorPage

34

7. A note will appear as the annotator clicks on the ‘Confirm Annotation‘ check-
box, informing the user that this annotation is now stored in MySQL, refer to
Part 3 in Figure 4.10.

Figure 4.10: Annotator’s Page Features

Figure 4.11: The Annotator’s Page Displaying Each Review and its Annotations

35

Figure 4.12: No Action and New Action Features in Annotators Page

KG Triplestore

SPARQL is the standard query language and protocol for RDF databases [30].
It enables users to query information from triplestores or other data sources that
can be mapped to RDF. Our project uses this query language to get and store data
from and to an existing triplestore (KG Triplestore). Queries are wrapped up using
the Sparql Wrapper python package. This query is initiated when the data engineer
uses the data for training the ML models, noting that the initial data stored in
this triplestore is the manual annotated data that was collected using the ‘Reviews
Annotator‘ chrome extension. An INSERT query is wrapped up also using the same
package, and used when the annotator pushes the checked triplets to the triplestore
again.

Sparql Wrapper python package

SPARQLWrapper 2.0.0 was used in implementing the connection between our
python script and the sparql triplestore [29]. This is a wrapper around a SPARQL
service that helps in creating the query URI and converts the result into manage-
able RDF format. This SPARQL query is placed in the admin page as he/she are
responsible for pushing the approved checked annotations into sparql triplestore.

MySQL DBMS

MYSQL is an open-source relational database management system [31]. MYSQL
in our project acts as an intermediate DBMS to temporarily store our data and

36

retrieve it when needed. The database is formed of five tables; Product, Review,
Annotation, Checked Annotation, Annotator, and ML models, refer to Figure 4.13.
This storing stage will relief the load of noise inserted to the KG triplestore, as only
checked and approved data from MYSQL will enter the triplestore.

Figure 4.13: MySQL Database Tables

MySQL python connector

MySQL Connector/Python enables Python programs to access MySQL databases,
using an API that is compliant with the python database [32]. Queries are executed
to insert and to retrieve data to and from MYSQL. This connection is placed on
both the admin and the annotator side, as a direct communication with the database
has to be. Credentials were hidden and stored in a properties file in the GitHub
repository for security reasons. A Properties() function from the JProps package in
python was called to retrieve the configurations of the server [33].

Streamlit Deployment

Deploying platforms in the cloud is a must-go-through phase in every project.
Our app was made using streamlit python package which is an open-source free
package that helps turning python scripts into shareable web app. Streamlit’s Com-
munity Cloud is an open and free platform for the community to deploy, discover,
and share Streamlit apps and code with each other. The streamlit cloud is connected
to a public GitHub repository where all models, scripts, requirements, and other re-
lated endpoints in our project are hosted. Deployment on a cloud is characterized
by its Scalability, Accessibility, Mobility, and Easy real-time access of the app on

37

the web.

4.3 Retraining Models Usability Study

Success of machine learning depends on obtaining the right quality data. The pro-
duction, selection, and annotation of data is a human endeavor [8]. This is the
reason why this study is based on the adaptation of machine learning models in-
volving human-in-the-loop. This human intervention will be going throughout the
annotators, who will be checking and editing machine results, using the automatic
tool.

Model retraining adapts the model to the updated data to make more accurate
predictions. This recurrent training is fundamental to ensure that the models are
consistently predicting the most correct output, by providing an automated pipeline
for collecting new data, predicting labels and checking those predicted output by
an outside factor. This factor is the human intervention. The current and updated
data represent the checked annotations by human annotators who edit any falsely
predicted labels by the models. Models are retrained frequently on these human
checked annotations appended to the initial training set. This incremental update
of the models responds to changes that degrade the level of human intervention.

Model retraining experiment of the automatic framework was done over a period
of one month by collecting new data and retraining the models. Human annotators
used the tool to annotate new batch of reviews. Checked annotations are stored in
MySQL to be able to retrain the models using the new updated data reviewed by
the annotator. New versions of the models are also stored in MySQL to monitor
their performance at every state.

4.3.1 Experimental Protocol for Retraining Models

This section goes through the retraining models experiment explaining how data was
collected, split, and fed to models. Moreover, it goes through the process of how the
models were evaluated to choose the best ones that will handle the predicting task,
and how they were trained and tested on multiple data sets.

This experiment discusses multiple states of data collection and model retraining
on distinct sets of data. A section in Chapter 5 emphasizes the training, validation,
and testing data used at every state, the best performing models, and the results of
the experiment explicitly.

38

Data Split

Initially models were trained on a set of data D(0) split into train, validation,
and test. The models were optimized using hyper-parameter Grid Search technique
to get the best parameters that should be used in each model [34]. Retraining the
best model is based on the new checked annotations set appended to the initial
training set. Every set of newly checked annotations are divided into train set of
size 0.8 and a test set of size 0.2. The model is trained with bigger set of data at
every state, while having multiple testing sets to score. For example, taking the
D1 set of data in Figure 4.14, Test 0 is a fixed set that will always be scored to
measure the improvement due to adding more data for training. Test 1, is from the
newly added data, and scoring it indicates whether the new data is similar or not
to the old one. Test 01 is a cumulatively growing set that gives indications about
generalization of the system. Figure 4.14 displays the splitting of data process and
how the training and testing sets are growing with time.

Figure 4.14: States of Splitting Data for Retraining Models

39

Retraining models on multiple sets

Choosing models based on a hyper-parameter optimization technique resulted
with the best models in terms of performance and accuracy score. At the initial
state, the hyper-parameter optimization experiment is done using data set D0, which
is split into training, validation, and testing. The validation set is used to validate
our model performance during training. This validation process helps us tune the
model’s hyper-parameters and configurations accordingly. Data is then collected by
human annotators and split as per the explained method in Figure 4.14. Models
are retrained using new training set at every state, while having a fixed testing set
(ex. Test 0), a new testing set (ex. Test 1) and a growing testing set (ex. Test
01). The scores on multiple test sets is explained and displayed in Chapter 5. The
purpose for having fixed testing sets at all states is to provide an unbiased final
model performance metric in terms of accuracy, precision, and f1-score.

40

Chapter 5

Results and Discussion

5.1 Prototype’s Implementation and Results

The Machine Learning Models

Informative and Non-Informative classification layer

Informative and Non-Informative classification layer preceded the semantic pre-
diction phase to reduce the number of noise that can disrupt the performance of
the models. Since the initial data set for training included only the sentences of
the review having an action while those with no action didn’t exist. In our opinion,
the ‘No Action‘ sentences will add value to the classification model, since a negative
class can be a good replacement of the falsely predicted actions in a sentence. To
tag each sentence if it contains an action or not, we applied a split by sentence algo-
rithm on each review text. For example, if we have this review text, it is classified
as follows:

Review Text:

This laptop is everything you need! The graphics are beautiful and it is very user
friendly. I can run all of my favorite games and more on this!

Split by Sentence and Classify

This laptop is everything you need! - No Action Found

The graphics are beautiful and it is very user friendly. - No Action Found

I can run all of my favorite games and more on this! - Action Exist

Our initial training set contained only the annotations or the sentences having an
action. To classify all the sentences of the reviews, we applied some preprocessing.

41

A split by sentence to the review texts was done, then these sentences were matched
with the annotated ones in the training set, thus resulting in the following:

1. If the sentence is found within the initial training set, it is informative since
it was tagged with an action.

2. If the sentence can’t be found in the training set then this was probably a non
annotated sentence, thus non-informative annotation.

This layer reproduced a column ‘Action Flag‘ for our data set to distinguish the
annotations having ‘Action Exist‘ and others having ‘No Action Found‘ flags. The
Splitting and Tagging layer for every sentence in the review text resulted with an
imbalanced data set for training the models, as the majority class will be the ‘No
Action‘ one. To fix this issue, we under-sample our data following the ‘Majority‘
sampling strategy which trims the class with highest number of occurrences to have
the same number of records like the minority class. The distribution of classes before
and after sampling can be referred to Figures 5.1 and 5.2.

Figure 5.1: Before Under-sampling Figure 5.2: After Under-sampling

Four di↵erent classification models were tested at this level, to proceed with
the best model in terms of accuracy; the Random Forest model having 99 percent
on training and 91 percent on validation sets. Figures 5.3 and 5.4 show the ROC
curves of the di↵erent classifiers trained and tested at this stage. The ROC cure is a
sensitivity plot between true positive and false positive rates, while the area below
the curve measures the accuracy. Analyzing the below ROC curve comparing four
di↵erent classifiers, it is seen that the best classifier having the highest Area under
the curve AUC, is the Random forest also reflected in Table 5.2.

Accuracy is defined as the percentage of correct predictions for the test data. It
is calculated based on the below formula.

accuracy=correct predictions/all predictions

42

Entity Number of Classes Total Set size Train Size Valid Size Test Size

Action Flag 2 3389 2711 339 339

Table 5.1: Action Flag Entity Model Information

Action/No-Action Entity

Model Training Set Validation Set

Support Vector Machine 97 91.6
Linear Regression 87 90

XG Boost 86 89
Random Forest 99 91.4

Table 5.2: Accuracy Results for Action/No-Action Entity

Figure 5.3: ROC curve on Training Set Figure 5.4: ROC curve on Testing Set

Multi-label Classification Experiment

Action prediction is the main focus in this thesis, in which it is the task of
assigning predefined classes of actions that may be found in product reviews. After
inspecting a wide range of reviews, we observed having multiple actions in the same
sentence as represented in Figure 5.5

An actual example from our training set.

The studio mode is great for drawing and writing things.

A well performing predicting classifier should be able to assign this sentence two
instances of actions, Draw and Write. This is an example of multi-label classification

43

Figure 5.5: Action Distribution in Reviews

that handles this multi-labeling of textual input. We tested multiple algorithms that
are used usually for multi-label classification problems such as binary relevance, label
power set, and the classifiers chain.

The evaluation measures for single-label are usually di↵erent than for multi-label.
In multi-label classification, a miss-classified result is no longer a hard wrong or
right. The prediction in multi-label is usually an array of binary results that reflects
the existence of multiple labels for the same text input. A prediction containing a
subset of the actual classes should be considered a better choice than a prediction
that contains none of them. For example, predicting Work and Stream actions for
the below annotation is better than predicting no labels at all or only one out of
3, even when an action is missing from the prediction array resulted. (The output
should be work, read, and stream actions)

The studio mode is great for working, reading, and streaming movies.

To calculate the metrics of a multi-label classifier we usually consider two meth-
ods, Micro-averaging and Macro-averaging (Label based measures). In micro-averaging,
you sum up the individual true positives, false positives, and false negatives of the
system for di↵erent sets of the predictions and apply the average of the equations
to get the f1-score. In macro-averaging, we just take the average of the precision
and recall of the system on di↵erent sets. Hamming-Loss is the fraction of labels
that are incorrectly predicted. For example, the fraction of the wrong labels to the
total number of labels in the prediction array. Finally, accuracy in this classification
problem is called subset accuracy or the exact match ratio. Subset accuracy is the
most strict metric, indicating the percentage of samples that have all its labels clas-
sified correctly. The disadvantage of this metric, is that it ignores those partially

44

correct matches.

The results of multi-label experiment were not promising for a machine learning
model to predict action entities in the framework, the reason why we will consider
predicting the action entity in the framework using a multi-class classification model
instead of multi-label model for better results. We cannot directly convert multi-
label classification to multi-class classification problem. A simplistic approach to
handle this situation is called binary relevance method, where you train one binary
classifier for each label. The group of annotations having multiple actions within
the same sentence will be handled through this approach. Multi-label aspect will
be a window for future work where more training data is available, thus having a
better strong learning base for the multi-label model. Based on the above, action is
predicted like other labels with a multi-class classification model, the results of the
experiments and classifiers trained on action label are displayed in Table 5.4.

Multi-Class Prediction Models

Traditional classifiers handle the prediction of a group of semantics in the project.
These classifiers work in a multi-class classification mode as the models have multiple
classes as predicted labels. These semantics are action, agent, environment, valence,
and object, in addition to the first layer of classifying the data as informative or
non-informative sentences. An aggregation level was done to downgrade the number
of classes in each model for better model performance. Classifiers upon having
more classes, will be expected to have lower accuracy that should be boosted with
more training data in the future. Results for classifiers performance are reflected
in multiple tables below for each entity. The best performing model was chosen
based on the accuracy score. The initial set of data that we worked with is the
manual annotated batch of reviews using the manual annotation tool. The total
size of annotation of the initial data set is 720 annotations or sentences referencing
to an action. The nature of our initial data is imbalanced, thus always having one
or two major classes that suppress the other ones. A distribution of the classes for
the action entity is displayed in Figure 5.5 along with it’s models performance.

The ultimate goal of any machine learning model is to learn from examples, and
generalize some degree of knowledge regarding the task that is being performed.
These machines learn from the initial manual annotated data set and continue to
learn successively from the checked annotations reviewed by human annotators. This
human involvement helps build a consolidated training set, that is learned by the
model to reach a trustful algorithm for predicting semantics.

The following are the experiments done on each entity or action knowledge, and
the results from the di↵erent classifiers highlighting the best in performance. Also,
an error analysis is done on the best classifier chosen for each label to inspect the
wrong occurrences of predictions that are taking place, and to examine if any error
can be fixed through data manipulation.

45

Action Entity

Figure 5.6: The Imbalance Distribution of Action Entity

Entity Number of Classes Total Set size Train Size Valid Size Test Size

Action 59 720 576 72 72

Table 5.3: Action Entity Model Information

Model Training Set Validation Set

Support Vector Machine 87 48
Linear Regression 71 48

XG Boost 92 50
Random Forest 93 50

Table 5.4: Accuracy Results for Action Entity

46

Error Analysis of Action Model

Analyzing the errors reproduced in the action model, we were able to detect the
highest wrong occurrences of some actions like having Watch action predicted as
Draw 4 times, Store 3 times, Edit 1 time, Touch 1 time, and play 1 time. 3 wrong
occurrences of Store action predicted as Carry. The error margin can be reduced by
training the models with more data. Refer to Figure 5.7

Figure 5.7: Error Analysis for Action Classification Model

The high accuracy scores in the training set is due to the imbalance data that
is being worked on. The more data is collected, the more instances for the minor
classes can be found, thus re-sampling the dataset to perform in a better way in
future retrains. The top two major classes are Play and Watch actions. Instead
of dropping major classes from the dataset, which is one of the solutions to resolve
imbalance dataset problem, we are working on collecting more instances of the minor
classes of action entity to reduce the gap between classes. This method preserves
instances of the all classes since no class should overcome others in such classification
problem.

47

Agent Entity

Figure 5.8: The Imbalance Distribution of Agent Entity

Entity Number of Classes Total Set size Train Size Valid Size Test Size

Agent 25 720 576 72 72

Table 5.5: Agent Entity Model Information

Two classifiers performed well in agent prediction: the XGBoost and the Random
Forest. The XGBoost scored better in validation. The data set of agent label is
highly imbalanced having the ‘Person‘ class as a major one, since all the annotations
that do not refer to a clear known agent, we refer them to a ‘Person‘ type of agent.

48

Model Training Set Validation Set

Support Vector Machine 89 80
Linear Regression 81 79

XG Boost 95 82
Random Forest 96 80

Table 5.6: Accuracy Results for Agent Entity

Error Analysis of Agent Model

Agent Error condensation was 17 occurrences of Employee agent falsely pre-
dicted as Person. Other errors appeared normal as 1 or 2 scattered occurrences
or miss-classified agents. Collecting more data to increase the sample size of every
category in the agent class enhances the performance of the model, and reduces the
margin error and the confusion between classes upon predicting. This error analysis
is monitored when training the models recurrently with new reviews and checked
annotations. Refer to Figure 5.9.

Figure 5.9: Error Analysis for Agent Classification Model

49

Environment Entity

Figure 5.10: The Imbalance Distribution of Environment Entity

Entity Number of Classes Total Set size Train Size Valid Size Test Size

Environment 9 720 576 72 72

Table 5.7: Environment Entity Model Information

Environment entity major class is ‘Universal‘, refering to an ambiguous and
unclear environment. Accuracy in the environment model is also very high as a
result of the imbalanced dataset we have.

50

Model Training Set Validation Set

Support Vector Machine 92 95
Linear Regression 91 95

XG Boost 97 96
Random Forest 97 96

Table 5.8: Accuracy Results for Environment Entity

Error Analysis of Environment Model

Miss-classification of environment mainly occurred between the actual class ‘Home‘
and the predicted ‘Universal‘, where 11 occurrences took place. The others are nor-
mal false predicted classes. Refer to Figure 5.11.

Figure 5.11: Error Analysis for Environment Classification Model

51

Valence Entity

Figure 5.12: The Imbalance Distribution of Valence Entity

Entity Number of Classes Total Set size Train Size Valid Size Test Size

Valence 3 720 576 72 72

Table 5.9: Valence Entity Model Information

Model Training Set Validation Set

Support Vector Machine 92 80
Linear Regression 90 82

XG Boost 92 79
Random Forest 94 77

Table 5.10: Accuracy Results for Valence Entity

52

Error Analysis of Valence Model

Our valence classification model had 36 false ‘Positive‘ predicted occurrences of
the actual ‘Negative‘ class and 10 occurrences for the actual ‘Neutral‘ class. Training
the model with more data will leverage its performance and reduce the error margin.
Refer to Figure 5.13.

Figure 5.13: Error analysis for valence classification model

53

Object Entity

Figure 5.14: The Imbalance Distribution of Object Entity

Entity Number of Classes Total Set size Train Size Valid Size Test Size

Object 70 720 576 72 72

Table 5.11: Object Entity Model Information

Model Training Set Validation Set

Support Vector Machine 75 72
Linear Regression 67 48

XG Boost 67 50
Random Forest 71 48

Table 5.12: Accuracy Results for Object Entity

54

Error Analysis of Object Model

Object has 70 classes to predict in the multi-class model, which will lead to many
error occurrences in data. Training the model with more reviews in the future will
increase performance and reduce the error margin in the object model. Figure 5.15
shows the error analysis done for inspecting object entity miss-classified occurrences.
10 actual instances of ‘Laptop‘ were falsely predicted as ‘School Work‘.

Figure 5.15: Error Analysis for Object Classification Model

5.2 KG Construction from Predicted Entities

The five predicted entities explained before are used to construct the knowledge
graph for each annotation of our datasets. The automatic construction of KG make
use of existing knowledge and enables the verification of new entities to be formed.
Model performance is highly correlated with KG rules, as having accurate predic-
tions reduces the probability of having badly designed knowledge graphs. Thus,

55

the consistency of KGs rely on model performance. Enriching features (in our case,
features are product reviews) of our models to optimize its performance, expands
the knowledge data that constructs an ontology. New entities and new relationships
will be introduced to our existing ones.

5.3 Models Parameter Optimization Phase

The models in this section are parameterized so that their behavior can be tuned
and optimized. A model parameter is a configuration variable that is internal to the
model, and whose value is estimated from the given data. A combination of param-
eters for each model is chosen and applied within a grid search cross validation in
order to choose the best combination for best performance. Three models will be
tested for all 6 classifications; action/no-action, action label, agent label, environ-
ment label, valence label, object label. The models have a set of parameters with
multiple values validated in a grid search. The Grid search has 5 cross validations
to select the best parameters estimated for each model.

Classifier Parameter 1 Parameter 2 Parameter 3

Support Vector Machine C gamma: kernel
XG Boost n-estimators max-depth learning-rate

Random Forest n-estimators max-depth -

Table 5.13: Parameters Set for each Classifier

Support Vector Machine Definitions of Parameters

The C parameter in SVM is Penalty parameter of the error term. It is the degree
of correct classification or optimization that the classifier has to meet. The gamma
parameter defines how far the influence of a single training example reaches, with
high values meaning ‘close‘ and low values meaning ‘far‘. The kernel parameters
are used as a tuning parameter to improve the classification accuracy. There are
mainly four di↵erent types of kernels (Linear, Polynomial, RBF, and Sigmoid) used
in SVM classifier.

Random Forest Definitions of Parameters

The n-estimators parameter in the Random Forest specifies the number of trees
that is constructed in the forest of the model. The max-depth parameter in the
Random Forest defines the longest path between the root node and the leaf node.

56

XG Boost Definitions of Parameters

The n-estimators parameter in the XGBoost classifier is the number of runs
XGBoost will try to learn. The max-depth parameter in the XGBoost defines the
longest path between the root node and the leaf node. The learning rate makes the
boosting process more or less conservative. It is the shrinkage that is made in every
step.

5.3.1 Results of fine-tuning the models through hyper-parameter opti-
mization

Choosing the optimal hyper-parameters for every model boost its performance and
correctly map the input feature (review text in our case) to the labels or targets
(action knowledge entities in our case), for the purpose of achieving some form of
intelligence in classification. It is listed above the group of parameters that are
used in Grid Search CV technique for every model, thus giving results for the best
parameters, displayed in Table 5.14. Hyper-parameter optimization phase changed
the selection of some models as they performed better than default models when
setting parameters. For example, The best action/no-action model before parameter
optimization was the Random Forest having a testing accuracy of 91, while after
setting best parameters, the Support vector machine performed better having a
testing accuracy 98.

Model Best Model Score

Action Flag SVM(C = 1, gamma = 1, kernel = ‘poly‘) accuracy=98

Action SVM(C = 100, gamma = 0.1, kernel = ‘rbf‘) accuracy=97

Agent SVM(C = 100, gamma = 0.1, kernel = ‘rbf‘) accuracy=96

Environment SVM(C = 10, gamma = 1, kernel = ‘rbf‘) accuracy=99

Valence SVM(C = 10, gamma = 1, kernel = ‘sigmoid‘) accuracy=94

Object SVM(C = 100, gamma = 0.01, kernel = ‘rbf‘) accuracy=72

Table 5.14: Best Parameters for each Model

5.4 Retraining Models Stages

Evaluation study takes place in this research for validating the models of the auto-
matic tool. This study is done over one month period of time. A human annotator

57

works on correcting the predicted labels of a batch of new reviews using the auto-
matic tool. These collected and checked data will be added to the initial training
set to retrain the models and monitor their accuracy. Within this one month eval-
uation study, the models are retrained two times with updated sets of data. First
round of model retraining was done after collecting 200 new annotations by human
annotators. The accuracy scores resulted after this round were not satisfying, and
didn’t reveal any increase in performance. So, we decided to continue the collection
process to reach 400 new annotations and apply another round of model retraining.
Round two of retraining unfolded an increase in accuracy scores of ML models, thus
a leverage in model performance. Tables 5.15 and 5.16 reflect this increase in model
accuracy scores. The reinforcement of data using human intervention optimizes the
performance of the models to reach the maximum accuracy needed for trusting the
framework in the future. This evaluation study proved the process of adapting ML
models with new data through time. Some real examples of truly predicted and
falsely predicted output from the machine models are mentioned. These examples
give a realistic overview of the performance of the models.

Initial State of the models

Number of annotations D0: 720

The Accuracy of the models initially are displayed in Table 5.15

Some examples of errors falsely predicted by machine

Great Choice! : predicted with a Carry action

It is everything i needed : predicted with a Carry action

Works like a charm : predicted with a Play action

State 1: Experiment done after collecting 400 new annotations

Retraining the models with 200 new annotations didn’t show an increase in
performance, so annotators kept on collecting more annotations to reach a batch of
400 new checked records. This group of new data is appended to the initial training
set to retrain the models with bigger set of data. We tested the updated version of
model on the old testing set to see how accuracy scores improved when adding more
training data.

Number of annotations D1: 720 + 400 = 1120

The Accuracy of models retrained in this state are displayed in Table 5.16

Real examples of correctly predicted annotations by machine after human check-

58

ing route.

I came from a gaming laptop that had a 2080 GPU : predicted with a Play action

Love this laptop : predicted with a No action

Great Choice! : predicted with No action

It is everything i needed : predicted with No action

Works like a charm : predicted with a Work action

5.4.1 Results of retraining the best models on multiple data sets

Experiment using data set D0

Table 5.15 records the initial accuracy results of our models for all labels we
need to predict. The 100 percent accuracy doesn’t mean that the model is a good
one with no false predictions resulting from it, instead, it means over-fitting. Over-
fitting occurs when the machine tries to cover all the data points available in the
data set when having unbalanced data. The initial set of data manually annotated
has only the sentences having ‘Action Exist‘ flag, thus having one class that results
with 100 percent accuracy of the model. Starting with over-fitted data, the model
can be improved with new data having negative classes (sentences classified having
no action) that re-samples our dataset in order to reach optimal level of accuracy.

Nine-tees of accuracy in some models might also mean over-fitted data, or un-
balanced set of data. The initial manual annotated set of data had a huge gap in
the classes of every model. A major class in each model has invaded the data-set
and resulted with this highly skewed models. To make the data set balanced there
are two ways to do so :

1. Under-sampling: Remove samples from over-represented classes. Usually this
is used when having huge dataset, unlike our case as we started with a small
data set to be developed with time through human participation.

2. Over-sampling: Add more samples from under-represented classes. This is
used when having small training set. Human intervention in the framework is
able to accumulate training data for various classes with time.

59

Model Training 0 Validation 0 Testing 0

Action Flag model 100 98 97
Action model 99 98.2 98.5
Agent model 96.2 93.8 95.6

Environment model 98.9 97.3 98.8
Valence model 95.5 94.4 95.3
Object model 79 67.1 71.9

Table 5.15: Model’s Results on D0 Dataset

Experiment using data set D1

In this stage, results begin to unfold. The models are now trained on new training
set having a total of 1120 annotations. Training scores are still high, but looking
at the results of ‘Testing 0‘ of data in Table 5.16, we observe an increase in model
performance when predicting labels for this testing set, compared to the initial state
results. This increase can build premises on the experiment of retraining data, that
is being done, and give evidence to our main contribution of adapting the models
through human integration within an automatic framework. This increase happened
after adding 400 new annotations to the training set.

Collecting data recurrently and in large amounts is very important to create the
balanced multi-class set of data that can result with an optimal learning curve for
our machines. Our training set should include multiple records on almost every
class to predict, thus giving the model multiple instances to learn for each class.
The more data human annotators can collect, the more instances will be given to
the models, thus enforcing better learning.

Model Training 1 Testing 0 Testing 1 Testing 01

Action Flag model 89.3 96.1 39.6 89.7
Action model 99 99.2 94.3 90.6
Agent model 99.4 99.2 98.1 98.1

Environment model 99.6 99.2 98.1 99
Valence model 97.3 96.7 90.5 94.9
Object model 96.8 95.1 96.2 90

Table 5.16: Model’s Results on D1 Dataset

60

5.5 Impact of human-in-the-loop technique on the frame-

work

The main aspect of our thesis project is to validate the proposed solution of human
integration in an automatic framework for annotating customer reviews. The project
involved human action for collecting data using the automatic tool of the framework,
then retraining the existing models with the human checked data frequently. The
evaluation experiment done gave evidence on ML model adaptation process through
human intervention in the automatic framework. Results in Tables 5.15 and 5.16
reflected this adaptation of ML models.

As per the results, it is observed that the datasets, when growing and increasing
in number of training records, starts to give more accurate and logical results than
the initial state. Collecting data through human integration improved the training
sets that were weak and small, and caused multiple errors like over-fitting in one
of our initial models. This increase started to appear in stage 1 of retraining the
models with additional 400 newly checked annotations. Focusing on ‘Testing 0‘, it
is observed that there is a shift in accuracy between stage 0 using ‘Training 0‘ and
stage 1 trained with a bigger set of data ‘Training 1‘. The improvement happens
when the gap between classes of each entity starts to minimize. When a major
class invades the dataset, the model will consider it as a positive occurrence versus
all other classes as negative occurrences. Collecting vast amounts of reviews and
annotating them will increase the number of occurrences of all classes thus retraining
the model on with a stronger base of data.

This automatic framework works on machine adaptive learning, where human
domain experts have control over the learning process. Then upon trusting our
models after multiple retraining rounds, the type of learning will be reduced to in-
teractive machine learning where a close interaction will occur between users and
the machine. This is one of our main objectives of this thesis, to reduce the human
intervention level with time when models are trusted enough to predict and give ac-
curate action knowledge tags to build correct knowledge graphs for recommendation
systems.

5.6 Discussion of the Results

Evaluating and testing the framework proposed was on multiple stages. The first
stage of evaluation was through optimizing our models using a hyper-parameter
Grid Search CV technique. This optimization fine-tuned our models with the best
parameters to get the best outcome. Three di↵erent classifiers were tested on every
entity to be predicted and multiple parameters were set to choose the best one to
use. The hyper-parameter values, when set right, can build highly accurate models,

61

this is the reason why we tried multiple combinations of parameters to finally choose
the best set.

The second stage of evaluation was retraining the best models obtained from
stage one (optimization phase). Through experimenting our automatic tool, we
collected and checked newly machine predicted annotations and then retrained the
models with new sets of data. Training and testing the models followed a specific
pattern that pertains a fixed testing set in order to provide an unbiased final model
performance metric in terms of accuracy, precision, etc. Training sets were growing
with every newly collected batch of checked annotations, while having a fixed testing
set, in addition to another growing testing set for further validation. Accuracy and
model performance were recorded on every set trained and tested to see how the
models are being improved using the human intervention technique proposed.

Upon adding 400 new annotations to the training set of the models using human
feedback mechanism, the adaptation of ML models was achieved. It is good to
mention that trying a smaller batch of annotations didn’t show significant results
in terms of better model performance. Completing this cycle of collecting data,
predicting action knowledge entities by machine, checking and approving predicted
results by annotators, and finally retraining models with newly updated sets of
data, will optimize our algorithm’s outcomes and the automatic framework will be
incrementally updated. This continuous cycle of retraining the models with bigger
datasets will rest out to a level where human integration can be reduced and limited.

62

Chapter 6

Conclusion

Behind a recommender system, appears a combination of knowledge, processes,
techniques, and models that calibrate and improve users experience with the system.
The best source of knowledge is customer reviews that hold a wealth of captured
user experiences and emotions regarding a specific product. The contribution of
this thesis is to automate the action knowledge extraction from customer reviews
and the knowledge graph construction from machine predicted entities. We were
interested in showing to what level can we integrate these automatically predicted
action knowledge and constructed KGs in the recommendation system of products.
Moreover, the thesis focuses on the adaptation of this automatic framework using
human-in-the-loop machine leaning technique, and how this intervention can be
reduced with time when frequent retrain of models occur.

Addressing our research questions, the approach proposed by this thesis for the
purpose of automating action knowledge extraction was having adaptive machine
learning models that accepts new customer reviews from the web and predict mul-
tiple entities. The models were able to split the review text by sentences, anno-
tate the ones that refer to an existing action and expand the prediction process
to extract other related semantics. The automatic framework embraced multiple
ML algorithms like multi-class classifications, similarity techniques, and knowledge
graph-based methods. Multiple phases of the framework were presented in the
methodology: Generation phase, Refinement phase, and Mapping phase.

The framework also maintained the process of integrating product reviews in
the recommendation systems automatically, through their representative knowledge
graphs. The framework will automatically construct the KG of each annotation
from the machine predicted entities and push it to KG triplestore to enter the
recommendation process of products. This automatic KG construction helps in
reducing the time consumed to design a graph for every annotation, especially when
dealing with the rapid increase in domain data.

The human-in-the-loop mechanism was an advanced feature proposed in this the-
sis. The purpose of integrating human in the automatic framework was improving

63

the initial data of the ML models. In addition to retraining these models multiple
times to reach optimal accuracy scores. These goals were achieved and validated
through an experimental protocol that involved human participation in collecting
new data using the automatic annotation tool. The stages of the retraining exper-
iment proved the adaptation of ML models upon the frequent collection of large
amounts of new data. This recurrent retraining of ML models incrementally up-
date the performance of our automatic framework in terms of better predictions of
entities, thus better knowledge graph construction from those predicted entities.

The web app prototype developed was a proof of concept to ultimately replace the
manual annotation tools that exist. A clear scenario was written to demonstrate the
steps for using the app as a user, annotator or admin. The app consisted of 4 pages,
each of multiple tasks and jobs to perform. A full consolidated cycle of tasks was
described in the detailed scenario, showing how the automatic annotation process
happens. The app was used to do the evaluation experiment that validated model’s
performance while updating the training data with newly checked annotations.

Evaluating the automatic framework of this thesis paper was done on multiple
stages, first a hyper-parameter optimization technique that resulted with the best
parameters for each model to leverage model performance. Another experiment was
based on collecting human checked annotations using the automatic tool we devel-
oped. The evaluation was done over one month period of time. Checked annotations
were appended to the initial training set to retrain the models on new dataset and
monitor performance. To avoid any bias in our experiment, the same testing set was
scored using the updated versions of the models. Results of this experimental pro-
tocol applied were promising as we started to observe better performance in models
when more training data was collected. This continuous collection of data improved
our dataset and re-sampled it properly to give accurate results. One of the tasks
performed by this automatic framework is to increase the training set with time
through human participation. We recommend collecting batches of at least 400 new
annotations before a new retraining round takes place, as our experiment recorded
a change in accuracy after adding 400 new review annotations to the training set.
A smaller batch of annotations may not give significant results.

The final stage of the framework builds automatically an openly accessible knowl-
edge graph for every checked annotation. This automatically constructed knowledge
graphs take place in the recommendation process of products in an action-aware rec-
ommendation app. With vast amount of automatically annotated data over the web,
we will be able to integrate more products in the recommendation app saving time
with better results.

6.1 Meeting Aims and Objectives

This thesis project tried to meet all aims and objectives set in the Introduction. Our
goals were achieved in this automatic framework and the results were appealing. The

64

goals accomplished are:

1. The automatic framework proposed in this thesis assisted human in detecting
and representing action knowledge from product reviews.

2. A well constructed flow of work is implemented in the prototype built con-
necting multiple endpoints of the framework.

3. The web app prototype developed, is an online accessible tool that helped
users accomplish their roles in an easy way.

4. HITL is used to optimize model performance by collecting more training data
to the models, thus incrementally updating the framework with new versions
of the ML models.

5. Evaluation stage supported our thesis and showed the impact of model opti-
mization and human intervention on the adaptation of the framework.

The contributions set at the beginning of the thesis were achieved by construct-
ing the automatic framework that is meant to replace the existing manual annota-
tion tools. Our proposed framework succeeded in automatically extracting action
knowledge entities from product reviews and constructing a well designed knowl-
edge graph connecting these entities. The framework was guided with HITL-ML
technique that proved its e↵ectiveness and impact on the adaptation of ML models
of the framework.

6.2 Research Limitations

Customers reviews are one of the free-text examples in NLP that require a set
of annotated data to teach the models how to predict the classifications of the
respective text. This study is limited with its number of review text available for
training usage, besides having them all in English language. As part of our future
plans, extending the work of these multi-class and multi-label classifiers to shift
from monolingual text classification to multilingual text classification maintaining
the coherence and well-structure of the framework and resulting with the same set
of needed labels no matter what the free-text review input is going to be [35].

6.3 Future Work

This study can benefit from several research approaches. First, the data used was
limited with its number of reviews text available for training usage, with having
them all in English language. In the future, extending the work of these multi-class

65

and multi-label classifiers to shift from monolingual text classification to multilingual
text classification.

Another direction that can be tackled in the future is generalizing the domain
of our research because of the dramatic increase in the use of knowledge graphs in
almost all domains. The purpose is to generalize our automatic framework job to
extract action knowledge from multiple types of unstructured textual data, instead
of limiting the models to product reviews from e-commerce websites. This thesis
was limited to the initial training set that we worked with, which was product
reviews from ‘Computers and Tablets‘ category. Domain generalization will start
by adapting other products from other categories in Best Buy in this automatic
framework. Then successively expand our domain environment to reach out multiple
categories from multiple e-commerce websites. This domain adaptation will be based
on the similarity between the domains, thus having their training data closer in
the embedding space of action knowledge entities. In contrast, having di↵erent
domains from di↵erent environments will be more challenging to integrate in the
same embedding space.

One of the framework’s characteristics discussed in this project is the incremental
update that is due to the human intervention mechanism that aims to upgrade our
ML models by retraining with new sets of checked data. This human intervention
will be reduced with time as models score better prediction results.

Some future work will be applied to our framework to make sure it serves our
purpose in automating the extraction of action knowledge and the construction of
knowledge graphs perfectly well. We will continuously retrain our ML models with
newly checked data for better performance. The design of the prototype’s interface
will be improved for a more user-friendly app. Improving some functionalities of
the app like looping over all product pages automatically, to capture all reviews
at once. Another example is to give access to add entities or labels not found in
the select boxes, these new entities will automatically expand our knowledge graph
design. Finally, we aim to minimize human intervention level with time upon models
reaching a trusted level of performance.

66

Appendix A

Appendix

A.1 Personal Reflection

This research brought together di↵erent aspects of machine learning classification
models and knowledge extraction. The thesis made use of the fundamental machine
learning aspects we have learnt during our studies. This knowledge was reinforced
with experience in multiple projects previously done during our year bringing good
practices not just from a structural perspective, but also a maintainability and
e�ciency standpoints.

The project also made good use of the concepts learnt during the courses ad-
dressing how a good storyboard should be built to make a perfect yet simple flow
of ideas for our audience. This knowledge was very important in ensuring data
was being represented appropriately and therefore analysis could be as e�cient as
possible.

67

A.2 Code Links

The GitHub repository having all scripts and the data engineer o✏ine page is found
in the link below:

GitHub Public Repository

The Automatic Annotation Web App

The admin page to get new reviews:

The Admin page

The Annotator Page were a group of authorized people can annotate review
texts.

The Annotator Page

The Checked Annotation page where admin can view all checked annotations
and decide on the best one to be pushed to triple store.

The Checked Annotation Page

Retraining the models will be in a seperate page where the admin can view pre-
vious models performance and decide which model should be retrained and updated.

The Retraining Models Page

68

Bibliography

[1] I. Roldós, “How to e↵ectively analyze customer and product reviews,” Mon-
keyLearn Blog, Mar. 2022. [Online]. Available: https://monkeylearn.com/
blog/reviews-analysis/.

[2] S.-S. Weng and M.-J. Liu, “Feature-based recommendations for one-to-one
marketing,” Expert Systems with Applications, vol. 26, no. 4, pp. 493–508,
2004, issn: 0957-4174. doi: https://doi.org/10.1016/j.eswa.2003.
10.008. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S095741740300188X.

[3] E. Elnagar, A. Zeoli, R. Rahif, S. Attia, and V. Lemort, “A qualitative assess-
ment of integrated active cooling systems: A review with a focus on system
flexibility and climate resilience,” Renewable and Sustainable Energy Reviews,
vol. 175, p. 113 179, 2023, issn: 1364-0321. doi: https://doi.org/10.1016/
j.rser.2023.113179. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1364032123000357.

[4] T. Rim, S. Dervaux, P. Buche, L. Ibanescu, and J. Dibie, “Ontology evolution
for an experimental data integration system,” International Journal of Meta-
data, Semantics and Ontologies, vol. 11, p. 231, Jan. 2016. doi: 10.1504/
IJMSO.2016.10004259.

[5] Z. Ma, H. Cheng, and L. Yan, “Automatic construction of owl ontologies from
petri nets,” International Journal on Semantic Web and Information Systems
(IJSWIS), 2019. [Online]. Available: https://ideas.repec.org/a/igg/
jswis0/v15y2019i1p21-51.html.

[6] F. Zablith, “Actionrec: Toward action-aware recommender systems on the
web,” in Proceedings of the 20th International Semantic Web Conference (ISWC)
Demos. CEUR Vol. 2980., 2021. [Online]. Available: https://fouad.zablith.
org/docs/ISWC2021_Demo_FZablith.pdf.

[7] Z. K. A. Baizal, A. Iskandar, and E. Nasution, “Ontology-based recommenda-
tion involving consumer product reviews,” in 2016 4th International Confer-
ence on Information and Communication Technology (ICoICT), 2016, pp. 1–
6. doi: 10.1109/ICoICT.2016.7571890.

[8] R. Monarch and C. D. Manning, Human-in-the-loop machine learning active
learning and annotation for human-centered AI. Simon and Schuster, Jun.
2021, isbn: 9781638351030.

69

[9] A. Timoshenko and J. R. Hauser, “Identifying customer needs from user-
generated content,” in Proceedings of Marketing Science 38(1):1-20., Jan.
2019. [Online]. Available: https://doi.org/10.1287/mksc.2018.1123.

[10] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining multi-label data,” in Pro-
ceedings of Dept. of Informatics, Aristotle University of Thessaloniki, 54124
Greece, Jan. 2010. [Online]. Available: http://lpis.csd.auth.gr/publications/
tsoumakas09-dmkdh.pdf.

[11] M. Sahare and H. Gupta, “A review of multi-class classification for imbalanced
data,” International Journal of Advanced Computer Research, vol. 2, no. 3,
p. 160, 2012.

[12] J. Tanha, Y. Abdi, N. Samadi, N. Razzaghi, and M. Asadpour, “Boosting
methods for multi-class imbalanced data classification: An experimental re-
view,” en, J. Big Data, vol. 7, no. 1, Dec. 2020.

[13] M. Lango and J. Stefanowski, “What makes multi-class imbalanced problems
di�cult? an experimental study,” Expert Systems with Applications, vol. 199,
p. 116 962, 2022, issn: 0957-4174. doi: https://doi.org/10.1016/j.
eswa.2022.116962. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0957417422003888.

[14] R. B. Pereira, A. Plastino, B. Zadrozny, and L. H. Merschmann, “Categorizing
feature selection methods for multi-label classification,” Artificial Intelligence
Review, vol. 49, no. 1, pp. 57–78, 2018.

[15] F. S. Al-Anzi and D. AbuZeina, “Toward an enhanced arabic text classification
using cosine similarity and latent semantic indexing,” Journal of King Saud
University - Computer and Information Sciences, vol. 29, no. 2, pp. 189–195,
2017, Arabic Natural Language Processing: Models, Systems and Applications,
issn: 1319-1578. doi: https://doi.org/10.1016/j.jksuci.2016.04.001.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1319157816300210.

[16] H. V. Nguyen and L. Bai, “Cosine similarity metric learning for face verifica-
tion,” in Asian Conference on Computer Vision, 2010.

[17] H. G. Silber and K. F. McCoy, “E�ciently computed lexical chains as an in-
termediate representation for automatic text summarization,” Computational
Linguistics, vol. 28, no. 4, pp. 487–496, 2002. doi: 10.1162/089120102762671954.
[Online]. Available: https://aclanthology.org/J02-4004.

[18] A. F. El Gohary, T. I. Sultan, M. A. Hana, and M. El Dosoky, “A computa-
tional approach for analyzing and detecting emotions in arabic text,” Inter-
national Journal of Engineering Research and Applications (IJERA), vol. 3,
no. 3, pp. 100–107, 2013.

[19] J. Chicaiza and P. Valdiviezo-Diaz, “A comprehensive survey of knowledge
graph-based recommender systems: Technologies, development, and contribu-
tions,” Information, vol. 12, no. 6, p. 232, 2021.

70

[20] L. F. B. PhD, “People’s words and actions can actually shape your brain - a
neuroscientist explains,” ideas.ted.com, Nov. 2020. [Online]. Available: https:
//ideas.ted.com/peoples-words-and-actions-can-actually-shape-

your-brain-a-neuroscientist-explains-how/.

[21] G. Boleda, S. S. im Walde, and T. Badia, “Modelling polysemy in adjective
classes by multi-label classification,” in Conference on Empirical Methods in
Natural Language Processing, 2007.

[22] N. Ghamrawi and A. McCallum, “Collective multi-label classification,” Uni-
versity of Massachusetts - Amherst: ScholarWorks@UMass Amherst, 2005.
[Online]. Available: https://scholarworks.umass.edu/cs_faculty_pubs/
190.

[23] J. Shin, S. Wu, F. Wang, C. De Sa, C. Zhang, and C. Ré, “Incremental knowl-
edge base construction using DeepDive,” en, Proceedings VLDB Endowment,
vol. 8, no. 11, pp. 1310–1321, Jul. 2015.

[24] D. Q. Nguyen, “An overview of embedding models of entities and relationships
for knowledge base completion,” ArXiv, vol. abs/1703.08098, 2017.

[25] Y. Péron, F. Raimbault, G. Menier, and P.-F. Marteau, “On the detection of
inconsistencies in rdf data sets and their correction at ontological level,” Jun.
2011.

[26] J. Johnson, “What is human in the loop (hitl) machine learning?” BMC Blogs,
Aug. 2020. [Online]. Available: https://www.bmc.com/blogs/hitl-human-
in-the-loop/.

[27] C. Deng, X. Ji, C. Rainey, J. Zhang, and W. Lu, “Integrating machine learning
with human knowledge,” en, iScience, vol. 23, no. 11, p. 101 656, Nov. 2020.

[28] S. Kimura, “Why we will always need humans to train ai - sometimes in real-
time,” KDnuggets, 2021. [Online]. Available: https://www.kdnuggets.com/
2021/12/why-we-need-humans-training-ai.html.

[29] “Sparqlwrapper,” PyPI, [Online]. Available: https://pypi.org/project/
SPARQLWrapper/.

[30] “Sparql query language for rdf,” SPARQL query language for RDF, [Online].
Available: https://www.w3.org/TR/rdf-sparql-query/.

[31] “Mysql data base management system,” MySQL, [Online]. Available: https:
//www.mysql.com/.

[32] “Mysql-connector-python,” PyPI, [Online]. Available: https://pypi.org/
project/mysql-connector-python/.

[33] “Jprops,” PyPI, [Online]. Available: https://pypi.org/project/jprops/.

[34] J. Jordan, “Hyperparameter tuning for machine learning models.,” Jeremy
Jordan, Dec. 2018. [Online]. Available: https://www.jeremyjordan.me/
hyperparameter-tuning/.

71

[35] A. Byström, “Extending a text classifier to multiple languages,” M.S. thesis,
KTH, School of Electrical Engineering and Computer Science (EECS), 2021,
p. 35.

72

	ACKNOWLEDGEMENTS
	ABSTRACT
	ABBREVIATIONS
	Introduction
	Aims and Objectives
	Thesis Outline

	Literature Review
	Introduction
	Manual annotation and knowledge graph construction
	Semantic Predictions
	Multi-Class Classification Models
	Multi-Label Classification Model

	Cosine Similarity Feature Matching
	Knowledge Graph construction
	The proposed solution

	Methodology
	Introduction
	Automatic ontology generation framework
	Generation phase
	Refinement Phase
	Mapping Phase
	Human-in-the-loop machine learning (HITL-ML)

	Testing and Evaluating the Automatic Framework

	Evaluation
	Introduction
	Prototype
	Prototype's Design

	Retraining Models Usability Study
	Experimental Protocol for Retraining Models

	Results and Discussion
	Prototype's Implementation and Results
	KG Construction from Predicted Entities
	Models Parameter Optimization Phase
	Results of fine-tuning the models through hyper-parameter optimization

	Retraining Models Stages
	Results of retraining the best models on multiple data sets

	Impact of human-in-the-loop technique on the framework
	Discussion of the Results

	Conclusion
	Meeting Aims and Objectives
	Research Limitations
	Future Work

	Appendix
	Personal Reflection
	Code Links

	Bibliography

