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Abstract
of the Thesis of

Layal Gergess Tannous for Master of Science
Major: Physics

Title: Data-Driven Analysis of the Trichoplax Adhaerens

Biological systems, particularly animals, are a hotspot of highly sophisticated and
non-trivial dynamics. They consist of a myriad of motile self-driven and simultane-
ously interacting entities. Understanding animal collectivity is of central importance
for learning evolutionary foundations and inspiring artificially engineered systems.
Several models have been developed to describe the dynamics of animal behavior.
Recently, advances in data and image acquisition techniques have introduced novel
ways of analyzing complex animal groups. In particular, data-driven approaches
are increasingly being used to infer partial differential equations (PDEs) for systems
of living organisms. In this work, we examine the behavior of a peculiar marine,
multicellular animal, the Trichoplax Adhaerens. Our objective is to investigate its
behavior in two distinct states, one with food present and another without. We
use velocity field data generated from two experimentally recorded movies of the T.
Adhaerens. We use two physically distinct models that integrate conservation laws,
and principles of hydrodynamics to infer a set of PDEs modeling the evolution of
the datasets at hand. Furthermore, we compare the performance of each model to
determine which one best describes the animal’s true biology. Finally, we perform
modal analysis to identify dominant patterns of motion and derive a set of ordinary
differential equations (ODEs).
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Chapter 1

Introduction

Biological systems, particularly animals, are a hotspot of highly sophisticated
and non-trivial dynamics. They consist of a myriad of motile self-driven and si-
multaneously interacting entities. These living units are capable of self-assembling
and displaying unidirectional motion. Coordinated movement is manifested at dif-
ferent size scales and serves many purposes including mating, scaring off prey, and
navigating difficult terrains [1]. We thus see that there are several facets of animal
activity. This introduces a level of complexity that imposes challenges when it comes
to understanding and modeling the resulting emergent behavior.

The collective behavior of groups of animals has always been an active research topic
among different disciplines. Scientists, whether in biology, physics, or engineering,
have always been fascinated by the synchronized and large-scale patterns exhibited
by animal aggregations. Understanding animal collectivity is of central importance
for learning evolutionary foundations and inspiring man-made and artificially engi-
neered systems [2].

Studying collective behavior is considered to be the motivation for the still-growing
field of active matter physics [3], a theoretical framework for modeling living systems
with internal degrees of freedom. The field was first leveraged by B. Finlayson and
L. E. Scriven who claimed that biological matter can exhibit hydrodynamic insta-
bilities due to active stresses [4]. Further models were developed later on to cater
to a variety of systems like the Vicsek model, the Toner and Tu model, as well as
models for active nematics. Active matter spans systems of different size scales with
examples ranging from bacterial colonies all the way to human crowds [5].

The diverse models devised to understand various biophysical systems can be clas-
sified into three main categories: continuum, agent-based, and rule-based models.
The continuum model is a macroscopic model that describes collective behavior as
a continuous fluid-like medium. The system variables like density and velocity are
presumed to vary smoothly over space and time. Moreover, the system is modeled by
a set of partial differential equations (PDEs) relating its macroscopic properties to
its microscopic ones. This model, however, assumes that the individual components
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are identical and so it may fail to identify heterogeneities. Agent-based models
describe the system with a set of coupled ordinary differential equations (ODEs)
instead of PDEs. Although these models can effectively capture various types of in-
teractions among individual organisms, the large number of equations they produce
can be expensive and pose difficulties when attempting to analytically characterize
the system. Finally, rule-based models, like agent-based models, treat each animal
as a separate entity, but they do not involve differential equations. Instead, these
models assume that the system interacts based on predefined rules.

Combining the aforementioned models with high-resolution empirical data paves
the road to data-driven descriptions of physical systems. Data-driven techniques
are powerful tools widespread across multidisciplinary fields. They allow the iden-
tification of patterns and relationships among complex datasets providing valuable
insights into biological functions and interactions. Integrating physical models with
machine learning techniques provides novel approaches to understanding natural
processes leading to new research questions, better ways to design experiments, and
more effective ways of understanding intricate dynamics.

In this work, we apply data-driven techniques to a peculiar living system, the Tri-
choplax Adhaerens. It is a primitive multi-cellular marine animal found worldwide
in temperate and subtropical waters [6]. Despite its biological minimalism, the
placozoan is still capable of decision-making and coordinated behavior which has
attracted the attention of many scientists. We will be studying the T. Adhaerens
in two different states, one in which food is present and another in the absence
of food. In our description of the animal’s behavior, we utilize two distinct theo-
retical models that incorporate notions from hydrodynamics and non-equilibrium
statistical physics. By using physics-inspired terms, we ensure that our results are
physically reasonable. Our objective is to evaluate and compare the performance of
these models to determine which offers a more accurate description of the dynamics.
The work can be divided into two major parts. First, we infer a set of PDEs describ-
ing the animal’s behavioral evolution over time. Second, we perform mode analysis
to identify the dominant types of motion and deduce a set of ordinary differential
equations(ODEs) describing the evolution of these modes.

10



Chapter 2

The Trichoplax Adhaerens: A Sticky
Plate of Hair

The Trichoplax Adhaerens, or T. Adhaerens for short (Fig. 2.1), is a primitive
multicellular animal belonging to the phylum Placozoa. It was first discovered by
the German zoologist, Franz Eilhard Schulze, in 1883. Its name derives from the
Greek words “Thrix” (hair) and “Plax” (flat plate) and refers to its ciliated epithelial
membrane (Fig. 2.5). The T. Adhaerens can be found worldwide in temperate and
subtropical waters [6] (Fig. 2.3).

Figure 2.1: The T. Ad-
haerens
(Schierwater, B. et al.
2003)

Figure 2.2: T. Ad-
haerens’ ciliated epithe-
lial membrane (Wright,
J.)

Figure 2.3: Global distribution of T.
Adhaerens
(Eitel, M. et al. 2013)
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The significance of the T. Adhaerens stems from biological and evolutionary con-
siderations. It is deemed to play an important evolutionary role in the transition
from unicellularity to multicellularity. Physically, it is believed to be the simplest
animal to exist [7] consisting of only six different types of cells and lacking nervous,
digestive, and muscular systems. Despite its morphological minimalism, the ani-
mal is capable of coordinated locomotion, ciliary flocking, external digestion, and
decision-making. These features make the T. Adhaerens an excellent experimental
model organism for various studies including motion coordination in the absence of
hierarchical organization [8], information propagation in groups [8], mechanobiology
[9], and tissue resilience mechanism under stresses.

In order to build a realistic model that captures the true biology of interactions
in the T. Adhaerens, it serves well to have an understanding of its structure and
response to the surrounding environment:

2.1 Structure

The T. Adhaerns has a roughly disk-shaped outline, with typical dimensions ranging
from 3 to 5 mm in diameter and about 20 µm in thickness [10]. It is mostly
found gliding on surfaces where the adhesion helps it maintain a more or less flat
structure. Its outer cellar memebrane, the epithelial membrane, is composed of two
mechanically distinct tissues [9], the dorsal (top) layer, and the ventral (bottom)
layer that meet at the edge (Fig. 2.4).

Figure 2.4: The dorsal and ventral epithelial layers of the T. Adhaerens
(Bull, M. 2021)
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The dorsal layer exhibits ultra-fast contractions that control the tissue’s architecture
and consequently the animal’s shape. Meanwhile, the ventral layer is responsible for
maintaining tissue cohesion and avoiding ruptures [9].

The T. Adhaerens’ activity is generated by the cilia that propel it through a beating
mechanism. Individual cilia bend and push water from the surrounding which in
turn pushes back creating a force that propagates along the body (Fig. 2.5). As a
result, intercellular interactions and coupling to the environment rise simultaneously.

Figure 2.5: Beating cilia mechanism
(Raidt, J. et al. 2014)

In the absence of food, the animal moves randomly with its cilia showing no prefer-
ential alignment. On the other hand, it displays unidirectional motion in the vicinity
of algae on which forages. In both cases, the organism may be subject to reorienta-
tions under the effect of rotational torques [9].

The emergent behavior of the T. Adhaerens is a manifestation of cellular mecha-
nisms at work. As mentioned previously, it consists of 6 different types of cells, 4
of which are embedded in its membrane. The cells are connected by junctions that
hold their positions relative to one another. Below we briefly describe each kind of
cell: [11]

1. The dorsal epithelial cells are monociliated and reside in the dorsal membrane.
Their shapes vary between circular and elliptical reflecting the animal’s overall
shape.

2. The ventral epithelial cells populate the ventral membrane and are more cili-
ated compared to the dorsal cells. They constitute 72 % of the total cellular
distribution.

3. The fiber cells occupy the space between the epithelial layers and are regularly
spaced. Some researchers claim that these cells are contractile and owe the
animal its viscoelastic properties.

4. The gland cells fulfill the role of neurons.

5. The crystal cells serve a sensory role.

13



6. The lipophil cells play the digestive role.

Figure 2.6: Cross sectional view of T. Adhaerens
(Smith, C. et al. 2014)

Figure 2.7: SEM cross sectional view of T. Adhaerens
(Smith, C. et al. 2014)
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Chapter 3

Theoretical Background

3.1 Formulation of the Problem

In this work, we use movies that show a top view of the T. adhaerens (section 4.3).
Thus, the datasets used correspond mainly to the velocity vector field of the dorsal
layer whose cells have a polygonal/disc-like apolar structure (Fig. 3.1).

Figure 3.1: Top view of the T. Adhaerens
(Smith, C. et al 201)

Studying the temporal evolution of these vector fields gives us insight into the evo-
lution of the direction of motion or orientation of the animal’s collection of cells.
We would like to test the hypothesis that since the cells are apolar active particles,
they should be well described by a nematic order parameter. To verify the validity
of this hypothesis, we present below two different continuum models to describe the
hydrodynamics of the “flocking of cells”. The first model describes the particles as
nematic liquid crystals, while the other incorporates polarity by including a polar
order parameter in the description of the animal’s behavior.

The ultimate goal is to benchmark these two models and check which one better
describes our system. We do this for two different states of the animal, one in which
it moves without food and one in which food is present.

15



3.2 Model Selection

3.2.1 The Q-tensor Theory

The Q-tensor theory presents a continuum model for the study of nematic liquid
crystals (LCs). It was developed to describe the orientational ordering in LCs. The
degree of order of the molecules is captured by a second-rank tensor called the Q-
tensor. Before we write down the equations of motion for this model, we will review
some fundamental concepts related to liquid crystals.

3.2.2 What are liquid crystals?

Liquid crystals are molecules, mostly organic, with a rod or disc-like shape. They
are a phase of matter on their own. Phases of matter are characterized by symme-
tries [12]. For example, a crystal is not isotropic like a liquid or gas since it is only
invariant under translations of its lattice size [13]. In general, a solid is invariant
under fewer operations compared to a liquid and thus it has fewer symmetries. For
LCs, given their extended shape, we need to take into account not only their trans-
lational and rotational motion but also their orientations.[12]. LCs have properties
of both solids and liquids. Similar to solids, they exhibit long-range order. and like
liquids, they flow and lack positional order. There are several phases of LCs, the
most common and widely studied being the nematic phase (Fig. 3.2).

Figure 3.2: Different types of liquid crystals

3.2.3 Liquid Crystal Descriptors

The director n is a LC descriptor that represents the average orientation of the long
axes of the molecules (Fig. 3.3).

16



Figure 3.3: Director n

The quantity that describes the amount of order in the nematic LC phase is the
Q-tensor. Its general expression is given by:

Q ∝ d

d− 1
× < n⃗⊗ n⃗− I > (3.1)

where:

d is the dimension, d = 2 in our case

n⃗ is the director

I is the identity matrix

3.2.4 Cells as Liquid Crystals

There have been many efforts in the soft-matter physics community to model cellular
tissues as liquid crystals [14]. The motivation for that was that certain epithelial
cells share common features with liquid crystals. For example, alignment has been
observed in dense cellular packing as well as topological defects. [15].

Describing cells as active nematic particles proves helpful in detecting orientational
order in epithelia. Researchers care to track ordering since it serves several crucial
biological functions like wound healing and cancer progression [16].

In this work, we will model each cell as a liquid crystal having a unit vector
ni = (u, v) (Fig. 3.4).

17



Figure 3.4: Cell with unit vector ni

3.2.5 Equations of Motion

The continuum equations are given by the Beris-Edwards nematohydrodynamic
equations [17]. They are compressible Navier-Stokes- like, but with an additional
layer of complexity owing to the cells’ shape, self-propelled nature, and coupling to
the underlying flow. The complete set constitutes three equations:
I) The continuity equation:

∂ρ

∂t
+∇.(ρv⃗) = 0 (3.2)

II) The momentum equation:

DV

Dt
=
∂V

∂t︸︷︷︸
1

+w.∇V︸ ︷︷ ︸
2

= −
passive

∇P︸︷︷︸
3

+µ∇. (∇V + (∇V )T )︸ ︷︷ ︸
4

−
active

ζ∇Q︸ ︷︷ ︸
5

(3.3)

where:

V denotes the velocity vector field whose x and y components are u and v
respectively. It is important to note that u and v each depends on both x and
y, i.e. u(x, y) and v(x, y)

w denotes the flow field. Here, w = V

Term 1 denotes the partial time derivative of V

Term 2 denotes the convective term. In this theoretical framework, we will
work in the co-moving, co-rotational frame of the cells, thus we expect term 2
to be negligible compared to other terms.

Term 3 is the gradient of the pressure. We will write the pressure as a com-
bination of powers of the local density field: P (ρ) =

∑
n=0 an(ρ − ρ0)

n where
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ρ0 is the mean density. We will expand the pressure up to the fourth order in
density:

P (ρ) = a0 + a1(ρ− ρ0) + a2(ρ− ρ0)
2 + a3(ρ− ρ0)

3 + a4(ρ− ρ0)
4 (3.4)

= A0 + A1ρ+ A2ρ
2 + A3ρ

3 + A4ρ
4 (3.5)

where:

A0 = a0 − a1ρ0 + a2ρ
2
0 + a3ρ

3
0 + a4ρ

4
0

A1 = a1 − 2a2ρ0 + 3a3ρ
2
0 − 4a4ρ

3
0

A2 = a2 − 3a3ρ0 + 6a4ρ
2
0

A3 = a3 − 4a4ρ0

A4 = a4

Term 4 is added to reflect the compressible nature of the viscoelastic animal
under study. It is the rate-of-strain tensor (up to a factor of 2) with µ repre-
senting the dynamic viscosity. This term quantifies the rate of change in the
animal’s deformation due to both internal and external forces.

⇒Terms 3 and 4 represent gradients of passive stresses. These are stresses that we
find in the usual Navier-Stokes equation. In order to extend the model to describe
active matter, we add term 6:

Term 6 is the gradient of the active stress tensor which is proportional to
the tensor Q. The constant of proportionality ζ measures the strength of the
activity. ζ > 0 describes an extensile or a puller system, while ζ < 0 describes
a contractile or pusher system.

Below we work out the individual terms in equation 3.3:

1 =

∂u
∂t

∂v
∂t

 (3.6)

2 = [
(
u v

)
.

 ∂
∂x

∂
∂y

].

u
v

 (3.7)

= (u
∂

∂x
+ v

∂

∂y
)×

u
v

 (3.8)

=

u∂u
∂x

+ v ∂u
∂y

u ∂v
∂x

+ v ∂v
∂y

 (3.9)
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3 =
(

∂
∂x

∂
∂y

)
×

(
A0 + A1ρ(x, y) + A2ρ

2(x, y) + A3ρ
3(x, y) + A4ρ

4(x, y)
)
(3.10)

=

A1
∂ρ
∂x

+ A2
∂ρ2

∂x
+ A3

∂ρ3

∂x
+ A4

∂ρ4

∂x

A1
∂ρ
∂y

+ A2
∂ρ2

∂y
+ A3

∂ρ3

∂y
+ A4

∂ρ4

∂y

 (3.11)

4 =

∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

+

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

 (3.12)

=

 2∂u
∂x

∂v
∂x

+ ∂u
∂y

∂u
∂y

+ ∂v
∂x

2∂v
∂y

 (3.13)

∇ 4 =
(

∂
∂x

∂
∂y

)
×

 2∂u
∂x

∂v
∂x

+ ∂u
∂y

∂u
∂y

+ ∂v
∂x

2∂v
∂y

 (3.14)

=

2∂2u
∂x2 +

∂2v
∂x∂y

+ ∂2u
∂y2

∂2u
∂x∂y

+ ∂2v
∂x2 + 2∂2v

∂y2

 (3.15)

5 =
(

∂
∂x

∂
∂y

)
×

Q11 Q12

Q21 Q22

 (3.16)

=

∂Q11

∂x
+ ∂Q12

∂y

∂Q21

∂x
+ ∂Q22

∂y

 (3.17)

After having laid out the terms, we can now write the equations for the time evolu-
tion of both u and v:

ut = −u∂u
∂x

− v
∂u

∂y
− A1

∂ρ

∂x
− A2

∂ρ2

∂x
− A3

∂ρ3

∂x
− A4

∂ρ4

∂x
+

µ(2
∂2u

∂x2
+

∂2v

∂x∂y
+
∂2u

∂y2
)− ζ(

∂Q11

∂x
+
∂Q12

∂y
)

(3.18)

We do the same for v:

vt = −u∂v
∂x

− v
∂v

∂y
− A1

∂ρ

∂y
− A2

∂ρ2

∂y
− A3

∂ρ3

∂y
−

A4
∂ρ4

∂y
+ µ(

∂2v

∂x2
+ 2

∂2v

∂y2
+

∂2u

∂x∂y
)− ζ(

∂Q21

∂x
+
∂Q22

∂y
)

(3.19)
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III) The Q-tensor equation:
The dynamics of the Q-tensor is described by: [18]

∂Q

∂t
+ u.∇Q− S = DrH (3.20)

∂Q

∂t
+ u.∇Q− (Ω.Q−QΩ) + λE = −Dr

δF
δQ

(3.21)

where:

Ω and E are the vorticity and rate of strain tensors respectively:
Ω = 1

2
(∇u− (∇u)T ) and E = 1

2
(∇u+ (∇u)T )

λ is the flow alignment parameter

Dr is the rotational diffusion constant

The first two terms on the left-hand side of equation 3.21 are the terms arising due
to advection by the flow. The third term, S, is the corotation term, as the particles
will respond to gradients in the flow. Finally, the term on the right-hand side is the
relaxation term. It describes the relaxation dynamics of the nematic tensor, Q, to
a minimum of the free energy F .
F is the Landau - de Gennes free energy. It is written as a Taylor expansion of the
tensor Q:

F =
a

2
Q2 +

b

3
Q3 +

c

4
Q4 +

K

2
(∇Q)2 + .... (3.22)

Equation 3.21 specifies the terms upon which the time evolution of each tensor
element, Q11, Q12, Q21, Q22, is dependent:

Q11t ∝ uQ11x, uQ12y, uyQ21, vxQ21, vxQ12, uyQ12, ux, Q
2, Q3,∇2Q (3.23)

Q12t ∝ uQ21x, uQ22y, vyQ12, uxQ12, uyQ22, vx

uy, uyQ11, vxQ22, vxQ11, Q
2, Q3,∇2Q

(3.24)

Q21t ∝ vQ11x, vQ12y, uxQ21, vyQ21, vxQ11,

vxQ22, uyQ22, uyQ22, uy, vx, Q
2, Q3,∇2Q

(3.25)

Q22t ∝ vQ21x, vQ22y, vxQ12, uyQ12, uyQ21, vxQ21, vy, Q
2, Q3,∇2Q (3.26)

3.2.6 The Toner-Tu Model

The Toner-Tu model is a quantitative continuum model for the flocking behavior
of groups of animals. It was first devised by Yuhai Tu and John Toner in 1995 to
describe how birds fly and self-organize [19]. Its applications were later broadened
to describe a variety of other non-equilibrium systems such as schools of fish, insect
swarms, animal herds, and molds...[20]. This model is powerful as it provides a
mathematical framework that predicts the emergence of an ordered phase of flocks
where members spontaneously move together with the same mean velocity.
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To establish the theory, we must first lay out the symmetry and conservation laws
that solely restrict the terms to those that are physically relevant. In the isotropic
case, the individuals have no preferred direction of motion, they are free to move
in any direction and thus they have continuous rotational symmetry. Moreover,
since they are constantly consuming energy to fuel their activity and change their
direction of motion, neither energy nor momentum is conserved. This implies that
the only conserved quantity is the number of particles.
Second, we choose the hydrodynamic variables describing the “flow” of the flock.
In this model, they are the coarse-grained density ρ(r⃗, t) and velocity v⃗(r⃗, t) fields.
The general equations of motion are:

∂ρ

∂t
+∇.(ρv⃗) = 0 (3.27)

∂v⃗

∂t
+ (v⃗.∇)v⃗︸ ︷︷ ︸
1

= αv⃗︸︷︷︸
2

− β|v⃗|2v⃗︸ ︷︷ ︸
3

− ∇P︸︷︷︸
4

+DL∇(∇.v⃗) +D1∇2v⃗ +D2(v⃗.∇)2v⃗︸ ︷︷ ︸
5

+ f⃗︸︷︷︸
6

(3.28)
Equation 3.27 is just the mass conservation equation. To fully understand the
implications of the Toner-Tu theory, we will go over each of the terms in equation
3.28:

Term 1 is the convective derivative of the velocity field v⃗

Term 2 is the self-propulsion term. It also reflects the alignment of the indi-
viduals with their neighbors. α < 0 promotes a disordered state, while α > 0
promotes an ordered state.

Term 3 is the damping. It reflects the dissipation of energy due to self-
propulsion (e.g. flapping of the wings in the case of birds). Individual com-
ponents lose kinetic energy as they internally drive their own motion; as a
result, their velocities change to gradually align along the average orientation.
Damping plays a crucial role in defining and predicting the emergence of or-
der. In the absence of damping, each component continues to move at its own
initial velocity leading to a zero average velocity and a collective disordered
phase.

→ Terms 2 and 3 ensure that | < v⃗ > | =
√

α
β
in the ordered state.

Term 4 is the pressure gradient

Term 5 is the diffusion term. There are three different diffusion constants to
capture the interplay of the various factors affecting the overall movement:
self-propulsion, random fluctuations, inherent directional bias, and coupling
with neighbors.
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Term 6 is the stochastic term. It introduces fluctuations to the individual
velocities since in reality, the individuals are prone to various sources of noise.

The pressure term is expanded in terms of the density similar to equation 3.4. We
can expand equation 3.28 to know the exact terms we expect to obtain in the PDE
like we did in section 3.2.5.

3.3 Comparing the Two Models

The Q tensor theory and the Toner-Tu model are similar in several ways. They both
are nonlinear in velocity and resemble Navier-Stoke equations for a compressible
flow. Moreover, both of their velocity equations contain a parameter whose sign
dictates whether we are in an ordered or disordered state.
The main difference is that the Tensor theory uses a tensor order parameter to
quanity order, whereas the Toner-Tu uses a polar prder parameter p. Moreover,
elastic contributions rise naturally and appear more clearly in the Q tensor equations
while not being explicitly evident in the Toner-Tu equations.
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Chapter 4

Computational Methods

4.1 Data-Driven Modeling

The constant advancement of experimental apparatus and the phenomenal progress
in data acquisition have contributed to the increasing availability of detailed empir-
ical data. As a result, data-driven modeling has become ubiquitous across multiple
disciplines, particularly ethology. The main goal of such techniques is to extract
physically relevant information from data available to complex systems.

Researchers are interested in finding the equations of motion of biological systems
because it allows them to predict their behavior and contribute to scientific advance-
ment. However, it is often the case that first principles alone may not be sufficient
or might even fail to capture the true dynamics. The limitations of the traditional
theoretical methods have catalyzed the development of new robust computational
methods that facilitate the characterization of dynamical systems. One such ex-
ample is data-driven discovery of partial differential equations (PDE). Suppose the
variable of interest is u(x, y), we write the general PDE as:

ut = F (u, u2, ux, uxx, uxy, x, λ, ...) (4.1)

F is a non-linear function of u, its space and time derivatives, and parameters in λ.
The terms on the right-hand side of equation 4.1 are physics informed in the sense
that they respect the symmetries and conservation laws constraining the model.

4.1.1 Formulation

After specifying the candidate terms, the required derivatives are computed numer-
ically, and stacked as columns in a matrix, Θ:

Θ =

 | | | | | | |
u u2 ux uy uxx uxy . . .
| | | | | | |

 (4.2)

ut is also computed numerically and we write:

ut = Θξ (4.3)
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ξ is the vector of coefficients corresponding to each term in Θ. It is unknown, and
we wish to find it by treating equation 4.3 as a linear regression problem.

4.1.2 Linear Regression

Linear regression is a widely used statistical learning method [21]. It usually involves
a dependent variable Y , and one (simple linear regression) or more (multiple linear
regression) independent variables or features, Xi. The goal is to establish a linear
relationship between both variables and to predict the values of Y given X for
different observations. For our purposes, we will focus on multiple linear regression.
We define:
1) X(n× p): The feature matrix of p features recorded over n observations

X =


x11 x12 . . . x1p
x21 x22 . . . x2p
...

...
...

...
xn1 xn2 . . . xnp

 (4.4)

where the value of Xij refers to the jth feature corresponding to the ith observation.

2) Y (n× 1): The response vector

Y =


y1
y2
...
yn

 (4.5)

where yi denotes the value of response for the ith observation.

We thus write the linear relationship:

yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + ....+ βpXip = β0 +

p∑
j=1

Xijβj (4.6)

where the βs are the regression coefficients. We can combine them into a vector and
rewrite 4.6 as a product of matrices:

Y = Xβ (4.7)

The βs are estimated using ordinary least squares (OLS). The difference between
the actual and predicted Y values are called residuals. The set of coefficients that
best describe the model are those that minimize the sum of square residuals (RSS):

RSS =
n∑
i

(Yi − β0 +

p∑
j=1

Xijβj)
2 (4.8)

Equation 4.3 is analogous to 4.7 where Θ is the feature matrix, ut is the response/
predicted vector, and ξ is the vector of coefficients that we wish to fit for.
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4.1.3 Sparse Identification of Nonlinear Dynamics (SINDy)

Linear regression has its limitations when it comes to imposing physical and symmetry-
inspired constraints which led to the development of more versatile fitting methods.
One robust and commonly used technique is the Sparse Identification of Nonlinear
Dynamics (SINDy) [22]. It is also a data-driven method for the discovery of sparse
differential equations. Essentially, it applies sparse regression for the identification
of the coefficients. A threshold value is set, below which all terms are forced to be
zero.

A variation of SINDy, the weak SINDy (WSINDy), was developed particularly to
deal with noisy data yielding robust and more accurate models. In this work, we
use WSINDy to generate constraint partial differential equations. The two main
optimizers that we used are:

1) Sequentially thresholded least squares (STLSQ): It is an optimization algorithm
that takes in two parameters: a threshold value that defines the minimum magni-
tude for the coefficients and an optional L2 (ridge) regularizer.

2) Sparse relaxed regularized regression (SR3): It is an optimization algorithm that
takes in two parameters: a threshold that determines the strength of regularization,
and a relaxation parameter, nu, which controls the balance between the data fitting
and sparsity constraints.

4.2 Data Reduction Techniques: Modal Analysis

Real-world data is often multivariate and difficult to visualize or classify. This neces-
sitates the development of meaningful reduction and data representation tools.[23]

Data reduction techniques provide an elegant means of decomposing high-dimensional
data into simpler smaller-dimensional contributions called modes. These modes are
the elements of an ordered orthonormal basis. They capture the salient features of
complex systems by identifying relevant dynamic patterns.

These tools find application in several fields, including but not limited to fluid dy-
namics, data compression, data analysis, and image filtering [24].

4.2.1 Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition (POD) is one of the most popular data decom-
position methods. In terms of data-driven applications, John L. Lumey was the
first to introduce it to the fluid dynamics community in 1967 when he was analyzing
turbulent flows [25]. The POD outperforms other techniques because of its ability
to handle significantly complex data [23] and reduce it to a minimal number of basis
functions [26]. In fact, its basis functions are designed to ensure optimal approxi-
mation of the data [27], and this is the origin behind “proper” in the nomenclature.
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4.2.2 Data Reshaping

Empirical data is sampled spatiotemporally. In order to perform POD, we must
first reshape it into a new data matrix, D, with dimensions ns × nt where:

• ns = ncnxny is the number of spatial points: nc is the number of components
or dimensionality of the real variable under study (e.g. nc = 2 for a 2D velocity
vector field), nxny is the size of the sampling spatial grid

• nt is the number of snapshots over which the data has been captured

Thus, the columns of D represent the state of the system at a specific time instant,
k (k = 1, 2, 3, ...nt).
In other words, each frame in the original data matrix should be concatenated into
a vector and fed as a column in the matrix D as demonstrated below:
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(x1, y1)[nt] (x1, y2)[nt] .... (x1, yn)[nt]

(x2, y1)[nt] (x2, y2)[nt] .... (x2, yn)[nt]

...
...

...
...

(xm, y1)[nt] (xm, y2)[nt] .... (xm, yn)[nt]
(x1, y1)[2] (x1, y2)[2] .... (x1, yn)[2]

(x2, y1)[2] (x2, y2)[2] .... (x2, yn)[2]

...
...

...
...

(xm, y1)[2] (xm, y2)[2] .... (xm, yn)[2]

(x1, y1)[1] (x1, y2)[1] .... (x1, yn)[1]

(x2, y1)[1] (x2, y2)[1] .... (x2, yn)[1]

...
...

...
...

(xm, y1)[1] (xm, y2)[1] .... (xm, yn)[1]

(x1, y1)[1]

(x1, y2)[1]

(x1, y3)[1]

...

(x1, yn)[1]

(x2, y1)[1]

(x2, y2)[1]

(x2, y3)[1]

...

(x2, yn)[1]

...

(xm, y1)[1]

(xm, y2)[1]

(xm, y3)[1]

...

(xm, yn)[1]

(x1, y1)[2]

(x1, y2)[2]

(x1, y3)[2]

...

(x1, yn)[2]

(x2, y1)[2]

(x2, y2)[2]

(x2, y3)[2]

...

(x2, yn)[2]

...

(xm, y1)[2]

(xm, y2)[2]

(xm, y3)[2]

...

(xm, yn)[2]
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Thus,

D =



(x1, y1)[1] (x1, y1)[2] (x1, y1)[3] . . . (x1, y1)[nt]
(x1, y2)[1] (x1, y2)[2] (x1, y2)[3] . . . (x1, y2)[nt]
(x1, y3)[1] (x1, y3)[2] (x1, y3)[3] . . . (x1, y3)[nt]

...
...

...
...

...
(x1, yn)[1] (x1, yn)[2] (x1, yn)[3] . . . (x1, yn)[nt]
(x2, y1)[1] (x2, y1)[2] (x2, y1)[3] . . . (x2, y1)[nt]
(x2, y2)[1] (x2, y2)[2] (x2, y2)[3] . . . (x2, y2)[nt]
(x2, y3)[1] (x2, y3)[2] (x2, y3)[3] . . . (x2, y3)[nt]

...
...

...
...

...
(x2, yn)[1] (x2, yn)[2] (x2, yn)[3] . . . (x2, yn)[nt]

...
...

...
...

...
(xm, y1)[1] (xm, y1)[2] (xm, y1)[3] . . . (xm, y1)[nt]
(xm, y2)[1] (xm, y2)[2] (xm, y2)[3] . . . (xm, y2)[nt]
(xm, y3)[1] (xm, y3)[2] (xm, y3)[3] . . . (xm, y3)[nt]

...
...

...
...

...
(xm, yn)[1] (xm, yn)[2] (xm, yn)[3] . . . (xm, yn)[nt]



(4.9)

4.2.3 Mathematical Framework [24]

As mentioned in section 4.2, the goal is to decompose D into a sum of rank-1
contributions, the modes. Each mode possesses:

• An amplitude σ. The amplitude gives information about how important the
mode is (the higher the amplitude the more significant the mode is, and vice
versa)

• A spatial structure ϕ which provides a basis for the space domain

• A temporal structure ψ which provides a basis for the time domain

Thus:

D[i, k] =

rank(D)∑
1

σrϕr[i]ψr[k] (4.10)

If the summation is truncated at r < rank(D), the decomposition yields an approx-
imation, D̃, of the original data matrix, with rank r.

Both ϕ and ψ element are orthogonal and have unitary L2 norms so that the energy
contribution comes solely from σ:

∥ϕ∥22 =
1

ns

ns∑
i=1

ϕr[i]ϕ̄r[i] =
1

ns

⟨ϕr, ϕr⟩ =
1

ns

ϕ†
rϕr = 1 (4.11)

∥ψ∥22 =
1

nt

nt∑
k=1

ψr[k]ψ̄r[k] =
1

nt

⟨ψr, ψr⟩ =
1

nt

ψ†
rψr = 1 (4.12)
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⟨ϕi, ϕj⟩ = 0 (4.13)

⟨ψi, ψj⟩ = 0 (4.14)

Equations 4.11 and 4.12 imply that the amplitudes σr are normalized by
√
nsnt.

Consequently, the energy of each mode is grid-independent.

We can arrange the spatiotemporal basis terms into vectors: ϕ = [ϕ1, ϕ2, ..., ϕr] and
ψ = [ψ1, ψ2, ..., ψr], This way the expansion 4.10 can be written as a product of
matrices:

D =

rank(D)∑
1

σrϕrψ
T
r = ΦΣΨT (4.15)

where: D ∈ Rns×nt , Φ ∈ Rns×r, Σ ∈ Rr×r, and Ψ ∈ Rr×nt . Σ is diagonal while Ψ
and Φ have normalized columns.

4.2.4 Choosing the Optimal Basis

Below we explain how to construct the optimal basis:
From 4.15:

D = ΦΣΨT → DΨΣ−1 = ΦΣΨTΨΣ−1 (4.16)

Since the basis is orthonormal, 4.16 becomes:

Φ = DΨΣ−1 (4.17)

Substituting for Φ in 4.15 using 4.17, we get:

D = DΨΨT =

{
D, if Ψ is a complete basis

D̃, if Ψ is an incomplete basis
(4.18)

Thus, for any truncation, the optimal orthonormal temporal basis is one that mini-
mizes the mean square error between D and D̃:

min(
∥∥∥D − D̃

∥∥∥2

2
=

∥∥D −D(ψψT )
∥∥2

2
) (4.19)

subject to the constraint:
⟨ψi, ψj⟩ = δij (4.20)

The optimization process requires the temporal structures to be eigenvectors of the
temporal correlation matrix K:

K = D†D (4.21)

K contains the correlation of one snapshot with another. It is symmetric by con-
struction, thus its eigenvectors are orthonormal. We can write its eigendecomposi-
tion as:

K = ΨΛΨT =
r∑

i=1

ψiλiψ
T
i (4.22)
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From 4.15 and 4.21, we have:

K = D†D = (ΦΣΨT )T (ΦΣΨ) = ΨΣΦTΦΣΨT = ΨΣ2ΨT (4.23)

By comparing 4.22 and 4.23, we deduce that Σ =
√
Λ and ΣΦTΦΣ is diagonal

because it is equal to Λ, the matrix of eigenvalues of K. This necessitates Φ to be
orthogonal.

We reached a very important result, which is only valid for the POD. When the
temporal structures are orthonormal, so are the spatial structures.

Remark: We can find Ψ in terms of D,Σ,Φ, conversely to what we did in 4.17.
In that case, we find that the spatial basis elements are eigenvectors of the spatial
correlation matrix C = DDT = ΦΣ2Φ. We also obtain an orthogonal temporal basis
as a result.

To conclude this subsection, we will go over two common algorithms used to perform
the POD:

Algorithm 1 Sirovich’s Method

1: Given D, compute K = D†D
2: Diagonalize K, to get Ψ and Σ =

√
Λ

3: Calculate Φ = DΨΣ−1

Algorithm 2 Lumley’s Method

1: Given D, compute C = DDT

2: Diagonalize K, to get Φ and Σ =
√
Λ

3: Calculate Ψ = DTΦΣ
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4.3 Data Description

In this work, we use two different movies of the T. Adhaerens, the details of which
are given in the table below:

Movie 1 Movie 2
Displays the placozoan Displays the placozoan
in a local isotropic state exhibiting directed motion,
of motion (stretching, where it explores its

compressing, and rotating environment more compared
in its place) to the first movie

Produces a 2D velocity vector field Produces a 2D velocity vector field
with x and y components being with x and y components being

U and V respectively being U and V respectively
Size of the spatial grid: 130× 174 Size of the spatial grid: 64× 52

Number of time frames: 4580 Number of time frames: 971

Table 4.1: Description of the two placozoan movies used in this work

Note 1: In everything that follows, we will refer to movie 1 as “stationary” and
movie 2 as ”moving”.

Note 2: The velocity vector fields were generated using particle image velocimetry
(PIV). Further information about that, as well as image and data preprocessing,
can be found in appendix A.

4.4 Data Visualization

Below we show sample plots of the velocity fields of each movie:
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(a) U stationary at time frame 1 (b) V stationary at time frame 1

(c) U stationary at time frame 900 (d) V stationary at time frame 900

Figure 4.1: Velocity field components (stationary) at different snapshots
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(a) U moving at time frame 1 (b) V moving at time frame 1

(c) U moving at time frame 900 (d) V moving at time frame 900

Figure 4.2: Velocity field components (moving) at different snapshots
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Chapter 5

Results

** Note: In all the results that follow, the units for distance are pixels (px) and
those for time are (/frame)

5.1 Generated Partial Differential Equations

5.1.1 PDE for moving video - Linear Regression - Toner-Tu Model

In order to generate the PDE, we had to sample data from different regions inside
the animal at different time instants. Below we briefly list the steps performed to
achieve that:

1. Initialize the boundaries or starting points for x, y, and t

2. Fix a sampling window of size nx × ny × nt = 25× 25× 25

3. Randomly select points in space and time within this window

In our work, we sampled 900 random data points, 80% of which were used for
training, and 20% for testing. We obtained a PDE for both the x and y components
of the velocity field, U and V respectively. The obtained results are listed in tables
5.1 - 5.4.
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Terms Coeff. Error
cst 0.0 1.4
ux - 212 14
uy - 145 15
uux 68 12
vuy - 157 27
uvy - 69 5
u2x 142 12
v2x 61.8 1.3
u - 3.4 0.6
u3 1.9 0.7
v2u - 1.13 0.13
ρx 28.7 0.6
ρ4x - 376 3
uxx 614 31
vxy 68 5
uyy 1692 43
u2uxx - 2426 127
v2uyy - 3413 136
uvuxy 291 12
uvuyx 153 10

Table 5.1: Terms and coefficients of the PDE obtained for U moving using a linear
regression fit, Toner-Tu

R2 73%

Table 5.2: Coefficient of performance for U moving, linear regression, Toner-Tu

By examining Table 5.1, we observe that both linear and nonlinear advective terms
exist in the form of ux(−212+68u) and uy(−145−157v). However, when normalized,
the values of u and v that are greater than 0.8 are few, constituting only 0.02%
of the entire dataset. Therefore, we can conclude that the dominant term is the
linear advective term in the negative y direction. In terms of diffusion, we notice
that coefficients corresponding to nonlinear diffusion are small compared to those of
typical diffusion. Thus, up to leading order we have constant diffusion coefficients.
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Terms Coeff. Error
cst 0 3
vx 220 36
vy - 264 37
uvx - 317 30
vvy 1837 67
vux 66 13
u2y 17 5
v2y -691 3
v - 28.3 1.6
vu2 4 2
v3 36.6 0.3
ρy - 11.4 1.4
ρ4y 89 9
uyx 17 9
vxx -298 12
vyy -2467 109
u2vxx 1858 321
v2vyy 6614 344
uvvxy -759 30
uvvyx -1255 26

Table 5.3: Terms and coefficients of the PDE obtained for V moving using a linear
regression fit (Toner-Tu)

R2 76%

Table 5.4: Coefficient of performance for V moving, linear regression, Toner-Tu

Following the same line of thought above, we notice that, for V , nonlinear convective
and diffusive contributions are significant contrary to the case of U
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(a) U train (b) U test

(c) V train (d) V test

Figure 5.1: True and predicted values for both training and testing sets,
moving, Toner-Tu

5.1.2 PDE for moving video - Linear Regression - Tensor Theory

The same steps mentioned at the beginning of section 5.1.1 were used to generate
the below PDEs:
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Terms Coeff. Error
cst 0.00 0.12
ux - 5e6 4e4
uy - 5e6 1e4
ρx 1e6 1e5
ρ4x - 8e6 6e4
uxx -3e6 9e4
uyy 1e7 7e4
vxy 4e6 1e5
Q11x 2.3 0.8
Q12y 3.4 0.09

Table 5.5: Terms and coefficients of the PDE obtained for U moving using a linear
regression fit, Tensor theory

R2 58%

Table 5.6: Coefficient of performance for U moving, linear regression, Tensor theory

Table 5.5 suggests that diffusion happens mainly along the y direction. The active
terms corresponding to gradients in Q are insignificant with respect to other terms.

Terms Coeff. Error
cst 0.00 0.07
vx -6e5 8e4
vy 5e5 1e4
ρy -3e5 2e5
ρ4y -2e5 2e4
vxx 3e6 1e5
vyy 4e6 2e5
uxy -1e7 1e5
Q21x 0.5 0.20
Q22y 0.35 0.10

Table 5.7: Terms and coefficients of the PDE obtained for V moving using a linear
regression fit, Tensor theory
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R2 60%

Table 5.8: Coefficient of performance for V moving, linear regression, Tensor theory

Again, convection is mainly in the y direction. Moreover, coefficients corresponding
to terms in Q continue to be insignificant

(a) U train (b) U test

(c) V train (d) V test

Figure 5.2: True and predicted values for both training and testing sets,
moving, tensor

→ Reflection:

1. Ideally, for both models, there should be a common fit generating one set
of coefficients for both u and v as we don’t expect the coefficients to be
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coordinate-dependent. When we did that, we obtained very low coefficients
of performance: R2 < 40% implying that there are inhomogeneities in space.
This could be caused by various chemical gradients found in the vicinity of the
animal. We can’t be entirely sure as we don’t know the exact experimental
conditions in which the movies were taken.

2. The criterion that we are using to assess the performance of the model is R2.
For the moving video, R2

Toner−Tu > R2
Tensor suggests that the Toner-Tu model

better describes the given dataset.

3. As mentioned already, the active stress terms in both U and V were negligible
compared to other terms. This, along with the fact that the Toner-Tu model
performed better, made it obvious that recovering an equation for Q, though
feasible, is not going to add any value to our understanding.

5.1.3 PDE for moving video - Weak SINDy - Toner-Tu Model

Below we show terms of a PDE generated using the SINDy algorithm with R2 =
90%:
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Terms Coeff.
u 1.14882E+14
u2 9.38485E+12
ρ 9.29359E+11
v -3397634255
v2 3.47087E+13
v3 4.09487E+12
uxx -2.50305E+13
uvy -3.17309E+13
u3uy -0.503576648
uvvy -0.694006777
v2vy 3.43405E+13
v2vy 1.29919E+13
v3vy 3.43405E+13
v3uy -6.17709E+12
vuvy -4.9178E+12
uuyy 5.34819E+12
uvyy 5.74618E+12
uuyy -0.87279805
u2uyy -1.60949E+12
u3uyy 1.24588E+13
u3vyy -3.41558E+12
ρvyy 4.37495E+12
ρuyy 0.965463543
ρvyy 5.45466E+12

uvuyy 0.134410168
vuyy 0.388357867
vvyy -2.64803E+13
v2vyy 1.4412E+13
v3vyy 5.07026E+12
uux 3.35603E+13
uvx -7.62254E+11
u2ux 9.78473E+12

→ Reflection:
In order to find errors on the coefficients, we must perform bootstrapping. Due to
time constraints and the computational cost associated with bootstrapping, we only
present here a sample PDE generated without errors on coefficients.

5.1.4 PDE for moving video - Weak SINDy - Tensor Theory

The same steps mentioned in section 5.1.1 were used to generate the below PDEs,
except that the window size was taken to be nx × ny × nt = 40× 40× 40.
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u 1.72291E+14
ρ 4.7273E+13

Q12 -4.95237E+14
v 0.1484375

Q22 -0.426788087
uyy -0.0625
ux 1.77356E+13
uuy -7.31085E+11
uvy -3.00813E+13
ρu2 -1.56341E+13

Q11vy -0.1260018
vv2 -2.3762E+14

Q21uy 1.0102E+12
Q22uy -0.14453125
uvyy -0.141147973
ρuyy -1.8871E+13
ρvyy 0.215590205

Q12uyy 1.06989E+14
Q12vyy 2.95757E+12
vvyy -3.78603E+14

Q21vyy -1.45725E+13
Q22vyy -1.32911E+15
Q22uyy -0.346923828
Q22vyy 3.32469E+14
uux 0.16015625
ρvx 7.15646E+12
ρux -0.86328125
ρvx -1.12286E+13

Q11ux 0.133441932
Q11ux 3.46481E+13
Q12ux 9.48149E+14
Q12vx 1.602126097
vvx -0.227721913
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5.1.5 PDE for stationary video - Linear regression - Toner-Tu

Terms Coeff. Error
cst 0 7
ux 221 32
uy - 264 12
uux - 317 51
vuy 1837 25
uvy 65.5 2.2
u2x 17 25
v2x - 691.1 1.9
u - 28.3 0.7
u3 4.1 0.8
v2u 36.65 0.09
ρx -11.5 1.3
ρ4x 88.9 2.3
uxx 17 1
vxy -298 11
uyy - 2467 64
u2uxx 1859 653
v2uyy 6614 286
uvuxy -759 44
uvuyx -1254.70 23

Table 5.9: Terms and coefficients of the PDE obtained for U stationary using a
linear regression fit, Toner-Tu

R2 89%

Table 5.10: Coefficient of performance for U stationary, linear regression, Toner-Tu
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Terms Coeff. Error
cst 0 5
vx -269 15
vy 27 15
uvx 661 29
vvy -89 45
vux 110 3
u2y -98.3 0.8
v2y -16 6
v -18 0.5
vu2 3.77 0.06
v3 24.6 0.7
ρy 41.7 0.4
ρ4y - 28.0 0.5
uyx - 67 4
vxx - 617 76
vyy - 4074 104
u2vxx 3713 252
v2vyy 14216 460
uvvxy 504 29
uvvyx 202 13

Table 5.11: Terms and coefficients V stationary, linear regression, Toner Tu

R2 90%

Table 5.12: Coefficient of performance for V stationary, linear regression, Toner-Tu)
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(a) U train (b) U test

(c) V train (d) V test

Figure 5.3: True and predicted values for both training and testing sets,
stationary, Toner-Tu
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5.1.6 PDE for Stationary video - Linear regression - Tensor

Terms Coeff. Error
cst - 3 e+13 1e5
ux - 6 e+13 3e4
uy 6 e+13 4e4
ρx -2e7 1e4
ρ4x 3 e+7 5e4
uxx -1e11 7e4
uyy - 1e11 4e4
vxy 2e8 4e4
Q11x 1e6 0.006
Q12y -1e6 0.003

Table 5.13: Terms and Coefficients for U stationary using a linear regression fit,
Tesnor

R2 83%

Table 5.14: Coefficient of performance for U stationary, linear regression, tensor

Terms Coeff. Error
cst 1.2e11 1e5
vy - 1 e+12 3e5
vx 4e+07 8e4
ρy 7e6 1e4
ρ4y -5e6 2e4
uyx 3e6 2e4
vxx - 2e8 1e4
vyy 4e7 1e4
Q21x 0.07 0.005
Q22y 2.33e4 0.003

Table 5.15: Terms and Coefficients for V stationary, linear regression, tesnor

R2 77%

Table 5.16: Coefficient of performance for V stationary, linear regression, tensor
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(a) U train (b) U test

(c) V train (d) V test

Figure 5.4: True and predicted values for both training and testing sets,
stationary, tensor

We notice that even for the stationary movie, the Toner-Tu model performs
better than the tensor theory.
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5.1.7 PDE for stationary video - Weak SINDy - Toner Tu

uyy 0.199468717
uxy -8451189074
uxx -0.457284781
uuy -0.383895159
u2vy 1.135149773
uvuy -0.367383737
vuy -0.549521852

u2uyy 0.076384952
u3uyy 6742230878
rhovyy -0.330871582
uvuyy 0.217867108
vvyy -0.704203502
vvyy 0.243775538
v2vyy -58919171375
vuvyy -22.29803519
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5.1.8 PDE for stationary video - Weak SINDy - Tensor

Terms Coeff.
u -0.421203613
ρ 3.59897268

Q11 1.256224995
Q12 0.296998468
v -0.866455078

Q21 -0.303100586
Q22 -0.829494671
uy 3.101505741
vy -0.181152344
uyy -0.685302734
vyy -0.323486328
ux 0.020385742
vx -1.075317383
uxy 0.245822712
vxy 2.855683029
uxx -1.393066406
vxx 10.07670999
uuyy 6.308994995
uvyy -4.729614258
ρuy 1.290771484
ρvy -3.90462687

Q11uy 0.636214409
Q11vy 4.440917969
Q12uy -7.528971801
Q12vy 5.018223511
vuy -4.72961
vvy 1.290771

Q21uy 4.20084188
Q21vy 0.636214409
Q22uy -1.291460624
Q22vy 2.635986328
uuyy 0.467224121
uvyy -0.128295898
ρuyy 0.370605469
ρvyy 0.08246424

5.2 Modal Analysis

Below, we present the results for the POD decomposition of both movies.
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5.2.1 Modal Analysis - Stationary movie

We will start by displaying the energy magnitudes (Fig. 5.9). We notice that
the relative energy amplitude drops quickly from 1 to ∼ 0.2 after two modes only,
signaling that the first two modes could be the most significant (Fig. 5.10)

Figure 5.5: Relative energy amplitudes
as a function of mode number, stationary
movie

Figure 5.6: Relative energy ampli-
tudes for the first 10 modes, station-
ary movie

Below, we show the spatial structures of the first 4 modes:
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 5.7: Spatial structures of the first 4 modes, stationary movie

Finally, the obtained temporal structures for the first 4 modes before and after
smoothing (see appendix A) are shown below:
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(a) Mode 1, before smoothing (b) Mode 1, after smoothing

(c) Mode 2, before smoothing (d) Mode 2, after smoothing

(e) Mode 3, before smoothing (f) Mode 3, after smoothing

(g) Mode 4, before smoothing (h) Mode 4, after smoothing

Figure 5.8: Temporal structures of the first 4 modes, stationary movie
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5.2.2 Modal Analysis - Moving movie

As we did for the stationary movie, we will first display the relative energy modes
and then the spatial and temporal structures. The results for the energy amplitudes
were as follows:

Figure 5.9: Relative energy amplitudes as
a function of mode number, moving video

Figure 5.10: Relative energy ampli-
tudes for the first 10 modes, moving
video

We notice that the σ values do not drop as quickly as they do for the stationary
case. This is not surprising as we expect the animal in this state to display richer
dynamics (additional modes corresponding to translational motion)
We will consider the first 6 modes:
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

Figure 5.11: Spatial structures of the first 6 modes, moving video
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(a) Mode 1, before smoothing (b) Mode 1, after smoothing

(c) Mode 2, before smoothing (d) Mode 2, after smoothing

(e) Mode 3, before smoothing (f) Mode 3, after smoothing

(g) Mode 4, before smoothing (h) Mode 4, after smoothing
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(a) Mode 5, before smoothing (b) Mode 5, after smoothing

(c) Mode 6, before smoothing (d) Mode 6, after smoothing

Figure 5.13: Temporal structures of the first 6 modes, moving video

5.3 Limitations

One of the main drawbacks of our study is our lack of knowledge of the experimental
conditions under which the movies of T. Adhaerens were captured. As our analysis
heavily relies on data, any noise picked up during data acquisition could have a
significant impact on our findings. Potential sources of bias or errors in our results
could stem from factors such as the presence of unwanted chemical gradients in the
animal’s submerging region, or poor lighting conditions, which could substantially
affect the accuracy of the PIV results. Moreover, with the lack of information about
calibration in both movies we can’t exactly rescale the values for the coefficients
obtained in the above PDEs.
Another significant limitation in our approach is that the differential equations we
generated do not account for stochasticity, implying that we are not entirely describ-
ing the true dynamics. However, despite the absence of stochasticity, the models
seem to be performing reasonably well.
Finally, there is the build-up of numerical errors that comes with different approxi-
mations, numerical estimation of the derivatives and density fields (see A.2).
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Chapter 6

Conclusion and Future Work

This study involved the generation of partial differential equations governing the
evolution of the Trichoplx Adhaerens’ behavior in time. We explored two different
models for two different states of the animal. Our results still need refinements
and more solid implementations of physical constraints, but they lay a working
procedural scheme for the data-driven analysis of the T. Adhaerens, which, to our
knowledge, is missing in the literature. This study opens the door for several future
works, like finding the lagrangian coherent structures and detecting topological de-
fects which signal cellular activity like proliferation or death. Another interesting
exploration is describing the out-of-plane dynamics where the problem is treated as
three-dimensional with the third dimension representing the animal’s thickness.

Generally, modeling animal behavior comes with significant challenges especially
since animals do not fall within any of the traditional fields of physics. While we
can expect the type of behavior they may manifest, it is not always deterministic
and straightforward to dictate with the well-established laws of physics[3].

Modeling systems, particularly cells, can occur at several levels, it is important to
exercise caution in choosing what one wants to model and whether the data at
hand corresponds to the thing they are modeling. On the computational aspect of
things, as we have demonstrated in this work, a range of techniques are employed to
smooth out data, remove noise, and determine the best constraint values for models.
Each of these methods requires the choice of one or more parameters, one has to be
careful in tuning these values to ensure the most accurate and realistic description
of the system. Consequently, the interplay of these different parameters imposes
additional difficulties. Nevertheless, scientists continue to construct and improve on
models that help us build a more comprehensive understanding of living systems.
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Appendix A

Numerical Details

A.1 Image preprocessing

Different steps were done to clean the datasets used to generate the equations:

1. The movie showing the animal moving had very poor lighting conditions. We
had to apply image enhancement techniques like removing shadows and sub-
tracting background

2. The datasets contained glitches due to camera motion during image acquisi-
tion. We had to delete these frames (Fig. A.1)

3. Image thresholding was used to obtain the densities from the different time
frames (see section A.2)

(a) ti (b) ti+1

Figure A.1: Glitch in image acquisition

A.2 Obtaining the density field

When we tried solving the continuity equation to find the density field, the solution
kept blowing up. As a substitute, we broke down both movies into their constituent
frames and applied kernel density estimation (KDE) to each frame. KDE is a
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non-parametric way of estimating the probability distribution which generated a
specific dataset. It places a kernel function at each data point and then adds up the
contributions from all the kernels to estimate the distribution. The free parameters
of the kernel are:

1. kernel which specifies the shape of the distribution

2. kernel bandwidth (h) which specifies the size of the kernel

In addition to estimating the density, the KDE technique aims to produce a smooth
boundary for the animal to prevent discontinuities at the interfaces between the
area within and outside of the animal. In order to apply KDE, we had to first
threshold each frame. For our purposes, we used a Gaussian kernel. The bandwidth
was calculated using Scott’s method: h = n−1/(d+4), where n is the number of data
points and d is the number of spatial dimensions. We set the number of bins to 300.
Below we show a sample of the obtained density fields:

(a) Density field, stationary (b) Density field, moving

Figure A.2: Density fields for the first time frame

A.3 Particle Image Velocimetry (PIV)

Particle image velocimetry is a widely used technique for obtaining velocity fields
from image sequences. Below, we briefly mention the steps performed for generating
the fields:

1. Image preprocessing: allows defining regions of interest and applying masks
over regions we wish to exclude from the analysis

2. Particle detection: Images are grouped in pairs and compared to identify par-
ticles based on corss-correlation algorithms

3. The displacement of particles is obtained from which the velocities are derived
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A.4 Building the Q tensor

The Q tensor was built using the velocity vector field as explained in figure A.3 :

Figure A.3: Building the Q tensor from the velocity data

A.5 Filtering the Temporal Modes

To reduce noise in the temporal modes, we utilized digital filtering techniques, par-
ticularly finite duration impulse response. The idea is to convolve the input signal
with a vector of coefficients, called the impulse response:
Let yi be the input signal, yo be the output signal, and r be the coefficient vector,
the relationship between yout and yin is given by:

yout(m) =

p−1∑
k=0

wkyin(m− k) (A.1)

where p is the length of the filter or the number of coefficients it has. The terms in
w are those that minimize the error between the output signal and the target signal.
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