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Abstract
of the Dissertation of

Maya Jack Antoun for Doctor of Philosophy
Major: Mechanical Engineering

Title: Human Object Interaction Detection in Paintings using Multi-Task Learning

Human Object Interaction (HOI) detection provides valuable insights into the mean-
ing and interpretation of a painting, as the interactions between humans and object
reveal information about the scene, characters, and story depicted in the artwork.
Automatically detecting HOI in paintings is a challenging task, as the paintings
often contain complex scenes with intricate details and variations in artistic style.
Additionally, unlike in real-world images, the context and physics of the painting
may not follow physical rules, which can further complicate the detection process.

The proposed system addresses the complexities of this task, considering the
intricate details and variations in artistic style found in paintings. It incorporates
a model that captures discriminative information by extracting visual features from
detected humans, objects, and the Region of Interest. The model analyzes spatial
arrangements to understand the relationships and interactions between elements.
Moreover, the model integrates contextual knowledge and semantic relationships
using a knowledge graph based on Graph Convolution Network to capture the un-
derlying meaning and story depicted in artwork.

However, relying solely on appearance and context may not be enough to accu-
rately infer HOIs in paintings. To overcome this challenge, multitask learning is em-
ployed by introducing four supplementary classification tasks. These tasks provide
complementary information that enhances the HOI detection process, leveraging
shared representations across multiple tasks. The proposed system introduces the
SemArt-HOI benchmark dataset, augmenting the SemArt dataset with instance de-
tection annotations and interaction classes. Experimental results demonstrate that
the proposed model outperforms the state-of-the-art one-stage transformer-based
HOI detection model in both single-task and multi-task settings by 1.19% and
1.51% respectively. Furthermore, the system exhibits superior efficiency, training
four times faster and requiring fewer resources. This makes it suitable for practical
and large-scale HOI detection in paintings.
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Chapter 1

Introduction

Scene understanding in paintings is a challenging task that aims to analyze the
various features and elements within a painting to retrieve its multiple attributes.
One of the most important features is identifying the style and genre of the painting.
Different art movements have their own distinctive features, and understanding these
can help to identify the artist and the time period during which the painting was
created. Recognizing the artist behind the painting is also a critical task in scene
understanding, as it can provide important insights into their influences, techniques,
and overall artistic style.

1.1 Background and Rationale of the Thesis

An important aspect of scene understanding in paintings is the analysis of the com-
position of the painting, particularly the presence of humans and objects, and the
relationships between them. This involves identifying and understanding the roles of
different characters within the painting, the emotions and expressions on their faces,
and their interactions with other objects and humans in the scene. For example, in
a painting depicting a battlefield, it is important to identify the different soldiers,
commanders, and other figures in the painting, and their relationships to one an-
other. This could include analyzing the expressions on their faces to understand
their emotions, as well as the placement of objects within the scene to understand
the overall composition and story being told. By analyzing the presence of humans
and objects in paintings and their relationships to one another, we can gain a deeper
understanding of the painting’s meaning and the artist’s intention behind it. This
type of analysis can be particularly useful in art history and cultural studies, as well
as in fields such as computer vision and machine learning where scene understanding
is a key challenge.

Compared to scene understanding in natural images, the task of understanding
an artistic representation in paintings is undoubtedly more complex. In natural
images, object detection and recognition rely on the visual appearance and context
in the image. However, in paintings, identifying the elements present requires an
understanding of the symbolism, metaphors, and artistic conventions used by the
artist. For example, recognizing the significance of a particular color or object within
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a painting may require knowledge of the cultural or historical context in which the
artwork was created. Understanding the roles of different characters in a painting,
the emotions and expressions on their faces, and their interactions with other objects
and humans in the scene are crucial for scene understanding in paintings. It requires
an understanding of the social, cultural, and historical context in which the painting
was created. Overall, scene understanding in paintings involves multiple complex
processes that require a multidisciplinary approach combining visual perception, art
history, and cultural studies.

Psychologically, the challenge of detecting human-object interactions in paint-
ings can be attributed to the concept of ‘cognitive schema’ - mental frameworks
that help individuals organize and interpret information about the world around
them. Cognitive schema [1], [2] are developed through experience and learning, and
they allow individuals to make predictions and inferences based on their past ex-
periences. However, when presented with information that does not fit into their
existing schema, individuals may struggle to interpret and make sense of the new
information. In the context of human object interaction detection in paintings, the
violation of physical rules and the intentional manipulation of context by artists can
create situations where traditional cognitive schema may not be applicable, making
it more challenging to detect and interpret human-object interactions.

Despite these challenges, my thesis addresses the task of human-object interac-
tion detection in paintings, aiming to develop methodologies and techniques that
overcome the limitations imposed by cognitive schema and the artistic context. The
following are the main contributions of my research:

• I have developed the first human object interaction detection system specifi-
cally designed for paintings. This system effectively detects and localizes both
humans and objects present in paintings, along with capturing their inter-
actions. The system operates in two stages. In the first stage, I fine-tune
a CNN-based object detector to accurately identify all potential instances of
human-object interaction within the artwork. This initial stage serves as a cru-
cial foundation for subsequent analysis. In the second stage, I extract visual,
spatial, and semantic features from the detected instances. These features
are then integrated and fused together to predict the specific human-object
interactions in the painting. By combining both visual and spatial informa-
tion, the system achieves a comprehensive understanding of the interactions
between humans and objects in paintings, and by using semantic features the
model gains a deeper understanding of the meaning of the paintings thereby
facilitating deeper insights into the artistic representation and narrative. No
pose features were included in the proposed system because in paintings, the
human pose can be misleading and may not accurately represent the intended
interaction between the human and object.

• My system undergoes improvement through the utilization of a multi-task
learning approach, which involves incorporating tasks related to type, school,
timeframe, and author information. This approach enhances the second stage
of interaction prediction by introducing four additional output prediction tasks.
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Consequently, the model is trained to classify a total of five tasks simultane-
ously. The incorporation of these extra tasks enables the model to leverage
the shared representation of features, resulting in enhanced performance in
predicting interactions. This approach effectively harnesses the benefits of
multi-task learning, allowing the model to gain a broader understanding of the
painting data and improve its ability to predict human-object interactions.

• I introduce the SemArt-HOI dataset, the first dataset specifically curated for
human object interaction detection in paintings. This dataset builds upon
the existing SemArt dataset, which includes classification labels for various
attributes such as painting type, school, timeframe, and author. SemArt-
HOI expands upon this foundation by incorporating object detections and
interaction labels, thus enriching the dataset with valuable information for
HOI analysis. By combining the SemArt classification labels with object de-
tections and interaction annotations, SemArt-HOI becomes a comprehensive
resource for training and evaluating HOI detection models specifically tailored
for paintings.

• In the conducted experiments using the SemArt-HOI dataset, I thoroughly
evaluated the performance of my proposed approach for human object inter-
action (HOI) detection in paintings. The evaluation involved comparing the
performance of my approach with the existing state-of-the-art systems in this
field. The results of the evaluation demonstrated that my approach outper-
formed the current state-of-the-art system significantly. These results high-
light the effectiveness and superiority of my proposed approach in the context
of HOI detection in paintings. By surpassing the performance of the state-
of-the-art system on the SemArt-HOI dataset, my approach opens up new
possibilities for advancing the understanding and analysis of human-object
interactions in artistic representations.

• In addition to its superior performance, my system demonstrates faster train-
ing compared to the state-of-the-art system on the SemArt-HOI dataset. Specif-
ically, my CNN-based model exhibits faster training speed compared to the
transformer-based approach, and it also requires less GPU usage, thereby en-
hancing its efficiency. The accelerated training time holds significant advan-
tages, particularly in practical applications that demand real-time or near
real-time performance. The reduced training time not only increases the effi-
ciency of the system but also enhances its usability in scenarios where quick
results are essential. By significantly decreasing the time required for train-
ing, my system enables faster iteration and experimentation, facilitating the
development of more accurate and robust models for human object interaction
detection in paintings.
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Chapter 2

Scene Understanding in
Paintings

Scene understanding involves analyzing objects in their context, taking into account
the scene’s structure, layout, and the spatial, functional, and semantic relationships
between objects. Even with a quick glance, one can make a general classification of
a scene, such as identifying it as an outdoor park or an indoor theater. Additionally,
certain categories of objects, people, and animals can be recognized even from brief
exposures. By examining the features of a scene, it is possible to infer properties of
these objects, such as a person’s gender and potentially their emotions. Actions can
also be characterized by their distinct features. Therefore, beyond simply detecting
the presence of people in a scene, one can also extract basic information about
them, including their gender, emotions, and the actions they are performing. This
comprehensive understanding of a scene goes beyond object detection and allows for
a more nuanced interpretation of the elements within it. By analyzing the scene’s
composition and the characteristics of its objects, we gain valuable insights into the
scene’s dynamics and the relationships between its components.

2.1 Digitization of Painting

Throughout history, humans have utilized paintings as a means of expressing their
emotions and providing insights into their way of life. Paintings offer a visual rep-
resentation of the past that surpasses written words, granting us a glimpse into
different eras and fostering an understanding of how people existed during those
times. For example, artists have captured significant battles and historical events
on various mediums, be it paper or canvas. Paintings possess the ability to preserve
memories and immortalize moments, much like contemporary photographs taken
with cameras. By observing paintings, we can delve deeper into our cultural her-
itage and comprehend the progression of human civilization throughout the ages.
This rich tradition traces back to cave drawings, which are regarded as one of the
earliest forms of communication among people.

In 2017, archaeologists made a significant discovery in Indonesia, uncovering the
oldest known painting in history (Figure 2.1). It was found within the depths of
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the Leang Tedongnge cave and showcased a depiction of three wild pigs, painted
approximately 45,500 years ago on the Indonesian island of Sulawesi, deepening
our understanding of our artistic roots. The painting provides valuable insights
into the life and culture of hunter-gatherer societies during that time. It depicts a
warty pig, highlighting its significance in the daily lives of these communities. The
portrayal of warty pigs in Ice Age rock art not only serves as a representation of
the animal itself but also carries deeper symbolic and potentially spiritual meanings
within the ancient hunting culture of Sulawesi. These paintings offer clues about the
importance and reverence given to warty pigs, shedding light on the beliefs, rituals,
and societal dynamics of the people who created these artworks. By studying these
historical paintings, researchers and historians can gain a better understanding of
the past and the cultural significance of animals in the lives of ancient societies.

Figure 2.1: The painting of a wild pig in the Leang Tedongnge cave on the Indonesian
island of Sulawesi. Credit: Maxime Aubert

People began recognizing the importance of preserving and showcasing paintings
in museums, leading to the establishment of renowned institutions like the Louvre
Museum in Paris, France, which offers visitors a chance to immerse themselves in a
world of artistic excellence. With a vast collection of over 38,000 artworks, including
an impressive selection of 5,500 captivating paintings, the Louvre is a treasure trove
of artistic masterpieces. Within its walls, art enthusiasts can marvel at the timeless
creations crafted by legendary artists such as Michelangelo, Raphael, and Leonardo
da Vinci. Similarly, the Metropolitan Museum of Art in New York City, USA, stands
as another notable institution dedicated to the world of art. This prestigious museum
houses a rich and extensive compilation of over 6,000 artistic works. Among its
remarkable collection are 2,500 paintings created by prominent figures in art history,
including Claude Monet, Vincent Van Gogh, and Pablo Picasso. The Metropolitan
Museum of Art serves as a cultural beacon, providing visitors with an opportunity
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to appreciate and explore the diverse range of artistic expressions that have shaped
our heritage.

Both the Louvre Museum and the Metropolitan Museum of Art play pivotal roles
in preserving and showcasing these exceptional works of art. By creating spaces for
public access and appreciation, these museums contribute to the collective under-
standing and appreciation of art’s cultural significance. Through their efforts, they
continue to inspire and educate visitors, ensuring that these masterpieces endure as
a testament to human creativity and ingenuity.

The digitization of paintings has revolutionized the accessibility and exploration
of art, allowing art enthusiasts to engage with vast collections from the comfort of
their own homes. Online platforms like Artsy and WikiArt have emerged as promi-
nent digital galleries, offering diverse collections and interactive features. Artsy
(https://www.artsy.net/), founded in 2009, has become the world’s largest on-
line art marketplace. It hosts over 1 million artworks from more than 4,000 galleries
and top auction marketplaces. With a wide range of mediums including paintings,
sculptures, and films, Artsy provides a digital space for users to discover, appreci-
ate, and even buy or sell artwork. Its collection features works from over 100,000
artists, both established and emerging. WikiArt (http://www.wikiart.org), for-
merly known as WikiPaintings, is an online encyclopedia of visual art launched
in 2010. It offers a platform for users to contribute and edit content, fostering a
collaborative environment. Additionally, WikiArt facilitates online shopping of art
reproductions. Its collection encompasses approximately 250,000 artworks from over
100 countries, including pieces displayed in various institutions such as museums,
universities, and civic buildings.

As the digital collections of artworks grow, the development of multimedia sys-
tems for archiving and retrieval becomes essential. These collections often come
with metadata in the form of annotations or tags provided by art historians and cu-
rators. These annotations contain valuable information about the artist, style, date,
genre, school, and other details related to each painting. To facilitate searching for
specific artworks, these tags, associated with scene understanding tasks, are utilized
as search filters. In Artsy, users can search for artworks using various criteria such
as the artist’s name, nationality or ethnicity, the material used, the gallery or city
of origin, the time period, or even specific colors present in the artwork. This wide
range of search options allows users to tailor their exploration based on their pref-
erences and interests. Similarly, in WikiArt, users can search for artworks based on
the artist’s name, nationality, school, art movement, or the specific centuries during
which the painting was created. Furthermore, WikiArt offers additional search filters
including 229 different styles, 68 genres, and 244 painting media. These compre-
hensive search options in WikiArt enable users to delve deeper into specific artistic
styles, genres, or mediums, enhancing their exploration and discovery of artworks.

The digitization of paintings and the availability of online platforms like Artsy
and WikiArt have significantly expanded the reach and accessibility of art, providing
art enthusiasts with unprecedented opportunities to engage with diverse collections
and deepen their understanding and appreciation of artistic creations.
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2.2 HOI in Paintings

Human Object Interaction (HOI) is an emerging area in image understanding that
focuses on detecting and recognizing the relationships between humans and objects
in a scene. When a person views an image, they first try to localize and recog-
nize each object in the scene, asking themselves ”What is Where?” before trying
to understand the relationships between them, asking ”What is Happening?”. Un-
derstanding human-object interactions is particularly important, as it can provide
valuable insights into how humans interact with their environment.

The task of Human Object Interaction detection involves localizing a human
and an object in an image, and identifying the interaction between them, which
is defined by an action verb. Overall, the aim of HOI is to identify the triplet
< human, verb, object >, which represents the interaction between a human and an
object in a scene. This is an important step towards achieving high-level semantic
understanding of the scene, as it allows us to infer the relationships between different
elements in the image. As the field of HOI continues to evolve, we can expect to see
many new and innovative approaches to detecting and understanding human-object
interactions in images.

Conventional HOI methods can be divided into either two-stage methods or a
one-stage methods. Most two-stage methods detect instances, and match the de-
tected humans and objects one by one to form pair-wise proposals in the first stage.
Next, in the second stage, such methods infer the interactions based on the features
of cropped human-object pair-wise proposals. On the other hand, one-stage HOI de-
tectors formulate HOI detection as a parallel detection problem, where interactions
are localized with interaction points, or union boxes, replacing the separate neural
network for interaction prediction with simple heuristic based matching methods
which directly detect the HOI triplets from an image. One-stage methods have
delivered great improvements in both efficiency and effectiveness.

With the recent introduction of transformers for contextual image embedding,
one-stage methods improved the HOI detection by feeding the image deep features to
a transformer encoder-decoder for output contextual embedding followed by a multi-
layer perceptron (MLP) for HOI triplet prediction. Therefore, one-stage methods
can easily focus on the interactive human-object pairs and effectively extract corre-
sponding features in an end-to-end manner.

When humans try to recall a painting, they rely on their visual memory and
perform a search based on the elements present in the painting and the relationships
between them. This is a complex process that involves identifying and recognizing
the different objects and people in the painting, as well as understanding their
interactions and the overall composition of the artwork. For people with little to no
historical knowledge of art, this process can be particularly challenging. They may
not be familiar with the style, genre, or period of the painting, which can make it
difficult to interpret the visual cues and understand the intended meaning of the
artwork.

Despite the importance of understanding human-object interactions in paintings,
this area of research has not been thoroughly investigated, which presents a unique
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opportunity for researchers to explore the potential of HOI in the interpretation
of paintings and to develop new techniques for analyzing the relationships between
different elements in the artwork. To achieve this goal, there is a need to create
new datasets that can be used to train and test HOI algorithms in the context of
paintings. These datasets must be carefully curated to include a diverse range of
paintings from different periods and genres, and must be labeled with attributes such
as the identity of the objects and people present in the painting, their interactions,
and other relevant information.

2.3 Scene Understanding Work in Paintings

Various computer vision applications have been developed for scene understanding
in paintings. Object detection and recognition in paintings are crucial for under-
standing the overall scene. Object recognition techniques are used to identify objects
such as trees, buildings, animals, people, and other elements present in the paint-
ing. Researchers have also explored painting classification, which involves identifying
the style and genre of a painting. This can help understand the artist’s intentions
and the context of the painting. Furthermore, image retrieval in paintings involves
finding images that are similar to a given painting, and can be useful for art his-
torians and curators who want to find paintings with similar themes, styles, or
techniques. Several studies have been conducted in these areas, including works on
deep learning-based object detection in paintings, paintings classification using deep
neural networks, and content-based image retrieval in paintings.

2.3.1 Object Detection in Paintings

Object detection is used in paintings for the purpose of improving metadata to better
support search, by making it possible to search for visual motifs and setting up new
creative possibilities for artists and designers to create innovative art experiences.

In the study by Smirnov et al. [3] and Jeon et al. [4], the authors address the
problem of the lack of labeled artwork datasets by generating new labeled artwork
images through style transfer from a natural images dataset. Smirnov et al. [3]
enhances object detection in digitized fine art by training data augmentation based
on transferring styles from representative artworks to natural images. They fuse the
style classification features with the object classification features with a SVM and
show that including the style information increases the performance of the overall
object classification. Jeon et al. [4] applies neural style transfer to the natural images
in the COCO dataset for data augmentation and then trains an object detection
method on the augmented dataset.

Moreover, Kadish et al. [5] addresses the cross depiction problem in paintings
by using style transfer. Cross depiction refers to the tendency of the neural network
to prioritize the identification of an object’s texture over its shape. Style transfer
is applied to the COCO dataset to build a model for only people detection in art
images. The authors show the improvement achieved by their model in detecting
people in paintings and drawings.
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In addition, Marinescu et al. [6] improves object detection in paintings by com-
bining Deep Learning and Semantic Metadata about candidate objects extracted
from existing sources such as Wikidata, dictionaries, or Google NGram. The meta-
data refers to the time of first use of the words representing the objects and forms
what they call a time matrix. The creation date of a painting is compared with the
information in the timeholding structure to detect and replace anachronic objects
with the most probable objects that fit the time period of the painting.

2.3.2 Paintings Classification

Paintings can be classified based on various attributes, including genre, style, artist,
school, medium, and more. The genre of a painting refers to its category or type,
which can include abstract, landscape, cityscape, religious, mythological, still life,
and many others (Figure 2.2). On the other hand, painting style refers to the manner
in which the art is expressed or performed, such as high renaissance, pointillism,
realism, expressionism, minimalism, and others (Figure 2.3).

(a) Abstract painting. (b) Cityscape painting.

Figure 2.2: Different genres of paintings.

The process of labeling paintings based on these attributes can be performed
either manually or automatically. Manual labeling requires individuals with an un-
derstanding of art history to analyze and assign labels to the paintings, which can
be time-consuming and challenging, especially when dealing with a large collection
of images. However, with advancements in computer science and machine learn-
ing, researchers have developed models and algorithms that can automatically label
paintings based on different attributes.

Automatic labeling methods leverage techniques such as computer vision, pat-
tern recognition, and machine learning to analyze the visual features of paintings and
extract relevant information. These models are trained on labeled datasets, where
human experts annotate paintings with their corresponding attributes. The mod-
els learn to recognize patterns and characteristics in the images, allowing them to
automatically classify new paintings based on their genre, style, or other attributes.

Automatic labeling of paintings has the potential to significantly streamline the
process of categorizing and organizing large art collections, making it easier for
art historians, curators, and enthusiasts to search, browse, and study artworks.
However, it is important to note that while automatic labeling can provide efficient
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(a) High Renaissance painting. (b) Expressionism painting.

Figure 2.3: Different styles of paintings. Images from the MultitaskPainting100k
dataset [7].

and consistent results, it may not always capture the nuanced interpretations and
subjective aspects that human experts can provide. Therefore, a combination of
manual and automatic labeling approaches can be a valuable approach to enhance
the understanding and organization of paintings based on their attributes.

Before the emergence of Convolutional Neural Networks (CNNs), scientists relied
on handcrafted features to represent input images in their models. Zujovic et al.
[8] curated a dataset comprising 353 paintings from multiple websites like Artlex,
Google, and CARLI Digital Collections, belonging to five distinct artistic genres:
Abstract Impressionism, Cubism, Impressionism, Pop Art, and Realism. They uti-
lized various feature extraction techniques such as Steerable Filter Decomposition for
texture descriptors and edge detection to extract grey-scale features. Additionally,
they extracted color features from the RGB images using the HSV (Hue, Saturation,
Value) color model. The extracted features were then merged and fed to different
classifiers such as AdaBoosted J48 decision tree, Näıve Bayes, K-NN, and SVM to
classify the genre of the painting.

Zujovic et al. [8] created a dataset of 353 paintings from various websites, repre-
senting 5 genres: Abstract Impressionism, Cubism, Impressionism, Pop Art, and Re-
alism. They used grayscale features like Steerable Filter Decomposition and edges,
as well as color features extracted from the HSV values of RGB images. These fea-
tures were used in classification tasks, where different classifiers such as AdaBoosted
J48 decision tree [9], Naive Bayes, K-NN, and SVM were employed to identify the
genre of each painting.

In their study, Culjak et al. [10] collected 693 images from Google and Artlex and
classified them into six genres: realism, impressionism, cubism, fauvism, pointillism,
and naive art. They used 68 features, including color and luminance histograms,
edge detection, image sharpness, symmetry, and more. These features were fed to
different classifiers such as ANN, RandomForest, SVM, k-NN, and decision table for

18



the final genre classification.
Agarwal et al. [11] developed separate models for style and genre classifica-

tion using five features: SIFT [12], GIST [13], HoG [14] with LBP [15], GLCM
[15], and color. They collected a dataset of paintings from Wikipaintings (http:
//wikipaintings.org) and selected six genres and ten styles for classification. Var-
ious classifiers, such as random forest, MLP, and libsvm with different kernels, were
used for experimentation. The results showed that libsvm with X2 kernel provided
the highest accuracy.

Lee et al. [16] developed a style classification model using 1633 paintings obtained
from The Web Gallery of Art (http://www.wga.hu/index1.html). The system was
tested on four painting styles: expressionism, impressionism, post-impressionism,
and surrealism. The authors extracted 50 handcrafted color features, including
average hue and average saturation, as well as composition features like shape and
color by segment, to represent the global and local aspects of the paintings.

With the advancements in deep learning, Convolutional Neural Networks (CNNs)
have become the standard for feature extraction in image recognition tasks. CNNs
can automatically learn and extract relevant features from paintings, thereby en-
abling more accurate and efficient classification.

Saleh and Elgammal [17] developed a metric learning approach for predicting the
style, genre, and artist of paintings. They optimized the similarity measures based
on historical knowledge to project raw visual features into a new optimized feature
space. Standard classifiers were then trained on this feature space for prediction
purposes. The system utilized both classic visual descriptors and features learned
by a CNN.

Cetinic et al. [18] conducted genre classification using a combination of six fea-
tures: CNN-derived features, SIFT, GIST, HOG, GLCM, and HSV color histograms.
They found that SVM was the most accurate classifier for genre classification. The
experiment was performed on a subset of 1000 images from the WikiArt dataset,
which included five different genres: history painting, religious painting, genre paint-
ing, landscape, and portrait.

Huang et al. [19] proposed a two-channel deep residual network for the classifi-
cation of fine-art painting images. Their model incorporated both the RGB channel
and brush stroke information channel. They pre-trained their model on ImageNet
and utilized ResNet and AlexNet for feature extraction. Additionally, they employed
the gray-level co-occurrence matrix to detect brush stroke information. The authors
conducted separate experiments for genre, style, and artist classification using a
dataset of paintings obtained from WikiArt.org. The dataset consisted of 25 styles,
10 genres, and 19 artists. They employed the SCM classifier as the final step in the
classification process.

Hosain et al. [20] developed a deep learning model for feature extraction and
classification of painting genres. They employed pretrained models, VGG-16 and
Inception-V3, along with a modified CNN, for feature extraction. The final classifi-
cation was performed using a softmax activation function. Their dataset comprised
3,215 images with 24 genres obtained from WikiArt. The experiments conducted
by the authors demonstrated the ability of CNNs to improve the accuracy of genre
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classification in paintings.
Wang et al. [21] introduced a Graph Neural Network (GNN) to model the po-

tential relationship between the local styles of paintings. This enabled them to
capture more discriminative and robust style information. Additionally, they de-
signed a perceptual layer to learn cross-layer correlation features, which contributed
to a stronger global style representation. For deep feature map extraction, VGG-19
was utilized. The authors used three style datasets from WikiArt: 2,338 images
from Painting Styles, 4,266 images from Painting Genres, and 15,357 images from
OilPainting. Their approach combined graphic style features with global style fea-
tures to achieve improved style classification, leveraging the global consistency of
the visual style.

Iliadis et al. [22] investigated the effectiveness of two different deep learning
architectures, namely Vision Transformer and MLP Mixer, for artwork style recog-
nition. These models were trained from scratch using the WikiArt paintings dataset,
which consisted of 21 style classes. The performance of the two models was compared
against popular pre-trained models like ResNet and VGG.

Menai et al. [23] employed EfficientNet, a pre-trained CNN on ImageNet, for
feature extraction in the task of style classification for paintings. Transfer learning
was applied to fine-tune different pre-trained EfficientNet models ranging from B0
to B6 on ImageNet to enhance classification accuracy. The experiments were con-
ducted on the Painting-91 dataset, which comprised 4,266 digital paintings from 91
artists. The dataset included annotations for artist and style categorization tasks.
The focus was on classifying 2,338 paintings from 50 painters into 13 art styles.
The results demonstrated that deeper networks and higher input resolutions led to
improved style recognition accuracy. Additionally, it was confirmed that deep re-
training of layers, including the last fully connected layers, significantly contributed
to enhancing the accuracy of style classification.

Zhao et al. [24] investigated the use of CNNs for art-related image classification
tasks and proposed a big transfer learning (BiT) model. They demonstrated that
models trained on real-world data could also be applied to the art domain. The
authors examined how different hyperparameters affected model performance and
found that higher resolution and appropriate training steps with mix-up improved
accuracy. They systematically compared the performance of five weight initial-
izations of the models for different tasks to evaluate the effectiveness of transfer
learning. To validate their approach, three datasets were used for artist, genre,
and style classification tasks. These included paintings with 14 styles and 91 artists
from the Painting-91 dataset, paintings with 23 artists, 10 genres, and 27 styles from
WikiArt, and paintings with 1,508 artists, 41 genres, and 125 styles from the Mul-
titaskPainting100k dataset [7]. Additionally, an image retrieval system was built to
enable users to find similar paintings based on artist, style, and genre features.

The focus of research in the field of art and paintings has been on understanding
the artistic techniques, historical context, symbolism, and aesthetics of the artworks.
There has been extensive research on various aspects of paintings, such as classifica-
tion, style analysis, and art history, but the specific area of human-object interaction
in paintings has received no attention. The study of human-object interaction in
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paintings involves examining how human figures interact with objects or other el-
ements within the artwork. This interaction provides insights into the narrative,
cultural, social, or symbolic meanings embedded within the painting. By analyz-
ing the relationships between humans and objects in paintings, researchers gain a
deeper understanding of the intended message, storytelling, or cultural significance
conveyed by the artist.
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Chapter 3

Human Object Interaction

Human-Object Interaction (HOI) detection is a fundamental task for scene under-
standing, where beyond detecting individual humans or object instances in images,
the interaction between them is also estimated. Accurate estimation of human-
object interactions can benefit many downstream visual understanding tasks includ-
ing image captioning, image retrieval, and visual question answering. HOI detection
can provide valuable insights into the meaning and interpretation of a painting, as
the interactions between humans and objects can reveal information about the scene,
characters, and story depicted in the artwork.

3.1 Human Object Interaction

Given an input image, the aim of human-object interaction is to estimate and localize
the interactions between humans and the objects around them by predicting the
triplet < human, predicate, object >. Detecting these interactions requires both
knowledge of human and object information, as well as the interactions between
them.

The chronological order of HOI detection systems is presented in Figure 3.1, high-
lighting the increasing interest in this subject over time, which is largely attributed
to advancements in deep learning methods and the availability of high-performance
computers.

To tackle the HOI problem, there are different approaches that can be taken.
One way is to detect all objects in an image and then consider every possible pairing
between the detected human and objects. Different features are extracted from the
detected parts to help predict the interaction between them. Another approach is
to analyze the features extracted from the input image to locate the human and
object, identify their class names, and determine the interaction between them. Re-
cently, the introduction of vision transformers for object detection has significantly
improved HOI detection. These transformer-based models use an encoder-decoder
architecture to generate contextual representations of the interacting pair, along
with a robust attention map for the interaction. As a result, HOI detection accu-
racy has been significantly enhanced.

22



2015 2016 2017 2018 2019 2020 2021 2022

Gupta et al. HO-RCNN
InteratNet

GPNN

iCAN
Xu et al.

Wang et al.
TIN

Zhou et al.
PMFNet

VSGNet
Bansal et al.

IP-Net PPDM
DJ-RN VCL

ConsNet DRG

IDN
UnionDet

DIRV

GG-Net

VS-GATs
HO-CL GT-Net

HOI-Trans

QPIC

HOTR
AS-Net

CDN

IDN

QAHOI

OCN
CATN

STIP

PD-Net
SCG

Figure 3.1: Chronological order of HOI detection. Note the significant increase in
work over the years due to the development of deep learning methods.

HOI can be broadly categorized as being either two stage or single stage. In two-
stages approaches, the first stage is an object detection model and is used to localize
the human and object bounding boxes along with their class labels; in the second
stage, the detected pair is input to a neural network to extract features needed to
predict the interaction between them. These features vary between visual, spatial,
pose, and semantic features that are joined together differently, depending on the
model, in order to predict the interaction label.

The second type of HOI detection methods are single staged, where features are
extracted from the input image, and HOI triplets are directly detected from the
image at the same time. Single stage methods specify the location of the interaction
using an interaction point or an anchor box, then predict the action and the inter-
acting pair bounding boxes along their class labels by matching the predictions with
the detected objects. Later, with the introduction of transformers for contextual
feature representation, single-stage methods were improved to end-to-end methods,
where an image is processed by a CNN to extract 2D features that are input to a
transformer encoder-decoder for human/object and HOI prediction and localization.
Transformers rely on attention, which enables the models to focus more on certain
parts of the input and thus reason more effectively. Using encoder-decoder attention
over these embeddings, the model makes a judgement about all objects based on
entire context of an image using pair-wise relations between them.

3.1.1 Two-stage HOI Detection Methods

The two-stage HOI detection methods (Figure 3.2) were first proposed in 2015.
They first detect all possible interacting pairs, and then the human and objects
cropped bounding boxes inputted into a CNN. From each image, features such as
appearance, spatial, pose, and semantic features can be extracted from the pair, and
then combined in different ways to predict the interaction between the candidate
human/object pair. Most of the two-stage methods use off-the-shelf object detection
models, and focus only on the architecture of the interaction prediction model.

Object Detection The first stage in a two-stage HOI detection system is object
detection, which requires localizing an object inside an image and placing a rect-
angular bounding box around it, then associating to it a class label along with a
prediction score.

A lot of improvement has been achieved in object detection in the past decade.
Various methods rely on Faster RCNN pre-trained on the MS-COCO dataset [25].
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Figure 3.2: Two-stage Human Object Interaction Detection: in Stage One, all the
humans and the objects are detected; in Stage Two, the interaction between the
candidate human object pairs is predicted or classified. Here, human is interacting
(riding, holding) with object (bicycle).

Other methods fine-tune the object detection model on one of the HOI datasets, such
as HICO-DET [26], in an effort to obtain more accurate object detection predictions.
After object detection is complete, objects with an output confidence score greater
than a set threshold value are used for action classification. Typically, the threshold
for the detected human is set between 0.5 and 0.8, and the threshold for other
objects varies between 0.2 and 0.4 depending on the model. These thresholds are
set to reduce the interaction prediction error caused by wrong object detections,
thus filtering out wrong detections. The human threshold is set higher than that of
the object to ensure that the model, while classifying the interaction, has the correct
subject performing the action. Changing the score threshold allows tuning the false
positive and true positive rates according to the specific needs of the model.

Interaction Prediction After identifying the interacting candidate human/object
pairs, features are extracted and input to the interaction prediction network. Fea-
tures include those related to appearance representations from the input image,
spatial features from the detection bounding boxes, and pose features — where the
human skeleton and facial expressions are detected. Moreover, semantic features
can also be extracted, where object and action words are represented with their se-
mantic representations using a word embedding model. The extracted features are
fed either individually or jointly through a graph to the interaction prediction model
to obtain the final action class representing the interaction between the candidate
human-object pair. Table 3.1 lists the different features used by various two-stage
HOI methods in the literature.
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Table 3.1: Different visual features extracted by two-stage methods: appearance,
spatial, pose. The appearance features can be extracted from the detected human,
object, union, or from the entire input image.

Method
Appearance Features

Human Object Union Entire image
HO-RCNN [26] ✓ ✓
InteractNet [27] ✓ ✓
GPNN [28] ✓ ✓
iCAN [29] ✓ ✓
Wang et al. [30] ✓ ✓ ✓
Bansal et al. [31] ✓ ✓
TIN [32] ✓ ✓
Xu et al. [33] ✓ ✓
Zhou et al. [34] ✓ ✓ ✓
PMFNet [35] ✓ ✓ ✓
DRG [36] ✓ ✓
VCL [37] ✓ ✓ ✓
VSGNet [38] ✓ ✓ ✓
DJ-RN [39] ✓ ✓
PD-Net [40] ✓ ✓
SCG [41] ✓ ✓
ConsNet [42] ✓ ✓
IDN [43] ✓ ✓ ✓
VS-GATs [44] ✓ ✓
HOI-CL [45] ✓ ✓ ✓

Appearance Features Appearance features account for the largest number of
features that are used in the interaction model. Appearance features can be ex-
tracted, with deep networks, from the entire image, thereby providing context about
the scene in which the interaction is happening. In addition, appearance features
of each of the interacting pair are also extracted, those of the human alone yield
information about the subject doing the action and, those of the object provide
information about the object on which the action is happening. The object features
are important in the HOI prediction because they represent the ‘affordance’ of the
object which defines the possible uses of the objects in the real word. Moreover,
features from the union of human-object bounding boxes represent the context in
which the action is happening regardless of the surrounding. Note that appearance
features from the human alone and object alone are always included (Table 3.1) in
two-stage methods.

Appearance features are typically extracted with deep networks. ResNet (Resid-
ual Network) is one of the widely used feature extraction CNN for visual feature
extraction. HOI models use different variants of ResNet to generate the visual fea-
ture maps from the input image. ResNet-50 [54] is one variant of ResNet consisting
of 50 layers, ResNet50-FPN [55] is another variant of ResNet with an attached Fea-
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Table 3.2: The CNNs used by the different models for visual feature extraction.

CNN Year Advantages Disadvantages Examples
CaffeNet 2014 Addresses over-

fitting and uses
ReLU

Lower accuracy than
other CNNs

[26]

ResNet-50 2016 Residual block
solves the van-
ishing gradient
problem

Less accurate than
ResNet-101/152

[29], [30],
[32]–[34], [37],
[39], [43], [46],
[47]

ResNet-101 2016 More accurate
than ResNet-50

More training time
and energy required

[28], [31], [37],
[48]–[50]

ResNet152 2016 More accurate
than ResNet-
50/101

More training time
and energy required

[38], [40], [51]

ResNet-50-
FPN

2017 Constructs
higher resolu-
tion layers from
a semantic rich
layer

No response to large-
scale objects

[27], [35], [36],
[40], [41], [44],
[52], [53]

Deformable
ConvNet

2017 Adapts to the
geometric varia-
tions of objects

Features influenced by
irrelevant image con-
tent

[28]

ture Pyramid Network used to construct a rich multi-scale feature pyramid from
one single resolution input image. Moreover, ResNet101 and ResNet-152 are other
variants of ResNet used in different HOI models, consisting of 101 and 152 layers
respectively. In addition to ResNet, Deformable ConvNet [56] is another CNN used
where both deformable convolution and RoI pooling modules have the same input
and output as their plain versions. Table 3.2 lists the CNNs one can use to extract
visual features from the input image along their advantages and disadvantages.

Spatial Features Spatial features are extracted from the detected human and
object bounding boxes. It is difficult to estimate the distance between the interacting
pair from a 2D image; instead, the relationship between the human and the object
bounding boxes is used to encode the spatial relationship of the interacting pair.
Spatial information can either be handcrafted or found using a feature map encoded
by a CNN. Handcrafted features can include the Intersection over Union (IoU) of
the bounding boxes, the distance between the boxes centers, or other relationships
between the detected boxes as follows.

Xu et al. [33] use the normalized distance between the human and object bound-
ing boxes and log of the ratio of the boxes widths and heights. Liang et al. [44] find
the relative scale features and relative position features. The relative scale features
include area ratio of each box to the image area and the ratio of each box top right
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coordinate to the width and height. The relative position features include the ratio
of boxes centers different to the image width and height, ratio of the difference of
the top right corner coordinates to the width and height of the other box.

Liu et al. [42] construct the spatial configuration by finding the normalized dis-
tance between each coordinate of the detected bounding box and the union box
origin. This distance is then normalized by the union box area. The spatial in-
formation used by [41] include center coordinates of the bounding boxes, widths,
heights, aspect ratios and areas, all normalised by the corresponding dimension of
the image. They also include the intersection over union, the area of the human box
normalised by that of the object box, and another directional encoding. Bansal et
al. [31] follow the work of [57] to define the geometric relationship feature in their
model. Li et al. [39] construct 3D human-object spatial configuration by predicting
the human 3D body from the 2D detection and finding the different relationships
between the 3D human body parts and the object represented by a sphere.

Spatial feature maps are extracted between the bounding boxes using a CNN.
First, a spatial attention feature map is created by adopting a two-channel binary
image representation to characterize the interaction patterns. Second, the union of
the two boxes is taken as the reference box, and a binary image is constructed with
two channels within it. In the human channel, a value of 1 is assigned to the human
bounding box and 0 elsewhere, while in the object channel, a value of 1 is assigned to
the object bounding box and 0 elsewhere. The resulting two-channel tensor is then
fed to a CNN to obtain spatial representations (as shown in Figure 3.3). Table 3.3
presents the two different methods to extract the spatial features with example
models that adopt each of these methods.

Pose and Body-parts Stream In addition to the appearance and spatial
features, some methods rely on the human pose as an additional feature to enrich
their model (Table 3.4). Zhou et al. [34] use Detectron [59] of Mask R-CNN [60]
trained on COCO training dataset for keypoint estimation including head, hand, hip
and leg parts. Li et al. [32] and Zhong et al. [40] use RMPE [61] and CrowdPose
[62] to estimate the detected human pose and add it to the spatial map to create
a spatial-pose map. Wan et al. [35] use a Cascaded Pyramid Network (CPN) [63]
as a pose estimator to estimate 17 keypoints of the detected human and use them

Figure 3.3: Construction of the binary maps (Interaction pattern) used to extract
deep spatial features (Pairwise stream). Image from [58]

27



Table 3.3: Different spatial extraction methods used.

Spatial Ex-
traction

Advantages Disadvantages Examples

Hand-crafted Effective in encoding the
spatial relationships

The choice of fea-
tures is critical

[31], [33], [39],
[41], [42], [44]

Binary-map The network learns to
find the correct features

Less efficient than
hand-crafted

[29], [30], [32],
[35]–[38], [40],
[43], [45]

Table 3.4: Details of different pose and body part extraction models.

Pose/Body Part
Extractor

Advantages Disadvantages Examples

Mask R-CNN Estimates instance
segmentation and
keypoints together

Lower Precision [34]

RMPE Fast detection Fails in crowded scenes [32], [40]
CrowdPose Efficient for crowded

scenes
Depends on detection
proposals

[32]

OpenPose Accurate configura-
tion

Slower detection [39]

SMPLify-X 3D human estimation Limited by a single 3D
template mesh

[39]

CPN Estimates occluded
keypoints

Fails in crowded scenes [35]

to capture subtle differences between similar interactions. Li et al. [39] first use
OpenPose [64] to detect the 2D pose of body, face and hands. Then, they get the
3D human body using SMPLify-X and VPoser [65] by extracting the joint body,
face and hands shape, face expression and pose which consists of jaw joints, finger
joints, and body joints.

Semantic Stream Semantic word embedding in HOI is the process of repre-
senting the detected objects or actions in their semantic word representations. Lan-
guage priors have been successfully used in many computer vision tasks, including
visual relationship detection [66], image captioning, and visual question answering
[67]. Word embedding features are considered semantic features because they gen-
eralize to the same object. Interactions are semantically related to each other; for
example, a “person petting a horse” and a “person petting a zebra” are semanti-
cally similar. Both zebra and horse are animals and are represented close together
in the word embedding space. Therefore, if the “person petting zebra” interaction is
not seen frequently, it can be inferred from the “person petting horse” interaction.
Therefore, semantically similar object can lead to similar interactions. Many two-
stage models use semantic features in addition to the visual and spatial features to
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Table 3.5: Details of the different two-stage models that used semantic features in
their system. Ex.: Example, H: Human, O: Object, A: Action, BP: Body Parts.

Semantic
Feature
Extractor

Advantages Disadvantages Ex.
Semantic Features

H O A H+A+O BP

Word2vec
Faster
computation

No
contextual
embedding

[31] ✓ ✓
[39] ✓ ✓
[44] ✓ ✓
[40] ✓ ✓

GloVe More discrete
vectors in the
space

No contextual
embedding

[33] ✓ ✓

FastText Encodes un-
known words

No contextual
embedding

[36] ✓

ELMo Contextual
embedding

Less accurate
than BERT

[42] ✓ ✓ ✓ ✓

BERT Contextual
embedding

Needs GPU
to run

[68] ✓

enrich their model and improve their HOI predictions. Table 3.5 presents the details
of the semantic stream in different HOI prediction models.

One of the widely used word embedding models is Word2vec [69], which is a two-
layer neural network trained to reconstruct linguistic contexts of words by leveraging
the co-occurance within local context (neighbouring words). It is pre-trained on the
Google News dataset and generates language prior features vector of dimension 600.
Bansal et al. [31] cluster the objects based on their visual and semantic functional
similarity using Word2vec and use these clusters to find all objects similar to an
object in the target dataset. Using word embeddings in their model, they show
that humans have similar interactions with objects that are functionally similar.
Word2vec is also used by Li et al. [39] to pair the extracted spatial features of the
detected object and human body parts with their PCA reduced word embedding
features. Moreover, Zhong et al. [40] use Word2vec to generate the word embeddings
of the object and verb categories and show that the word embedding of the verb
and the object together as an input to the model perform better than only using
the verb alone, that indicates the importance of the presence of the object word
embedding in the language prior to solve the verb polysemy problem which is the
coexistence of many possible meanings for a word or phrase.

Other HOI systems rely on GloVe (Global Vectors for Word Representation) text
model [70], trained on the Wikipedia dataset, to generate their semantic features
which is an unsupervised learning algorithm trained on aggregated global word-word
co-occurrence statistics from a corpus, and the resulting representations showcase
interesting linear substructures of the word vector space. For example, Xu et al. [33]
learn semantic structure aware embedding space compared to original word embed-
dings where they build a graph that can leverage semantic similarity to retrieve the
verb best describing the detected human and object pair using the GloVe model.
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GloVe captures global contextual information in a text corpus by calculating a
global word-word co-occurrence matrix. Whereas, Word2Vec only captures the local
context of words. During training, it only considers neighboring words to capture
the context while GloVe considers the entire corpus and creates a large matrix that
can capture the co-occurrence of words within the corpus.

FastText [71], developed by Facebook released in 2016, follows the same idea as
Word2vec but with a major twist. Instead of using words to build word embeddings,
fastText uses parts of words and characters, where a word becomes its context. The
building stones are therefore characters instead of words. The word embeddings
outputted by fastText look very similar to the ones provided by Word2Vec. However,
they are not calculated directly. Instead, they are a combination of lower-level
embeddings. Gao et al. [36] use fastText to generate a vector representing the object
category and show that the addition of semantic features to the spatial features
improves the HOI prediction because it enables knowledge transfer between object
classes and helps with rare interaction during training and inference.

FastText solves one of the main disadvantages of Word2Vec and GloVe em-
bedding, which is the encoding of unknown or out-of-vocabulary words that can be
represented in vector form as it has high probability that its n-grams are also present
in other words.

ELMo (Embeddings from Language Models) [72] is a deep contextualized word
representation that models both complex characteristics of word use and how these
uses vary across linguistic contexts. Word vectors are learned functions of the in-
ternal states of a deep bidirectional language model (biLM), which is pre-trained
on a corpus of 5.5 billion words. Liu et al. [42] use the word embeddings of the
interaction triplets as input to features of the nodes in their graph attention network
in order to learn implicit knowledge of HOIs. They show how their model improved
by changing word embeddings from Word2vec [69], GloVe [70], or fastText [73] to
ELMo [72] and show that ELMo performed better than the other word embedding
models because it captures contextual information and considers the triplets jointly
as a whole.

Unlike traditional word embeddings such as Word2vec and GLoVe, the ELMo
vector assigned to a token or word is actually a function of the entire sentence
containing that word. Therefore, the same word can have different word vectors
under different contexts.

BERT (Bidirectional Encoder Representations from Transformers) [74], pub-
lished by Google, is a language understanding model that considers the context
of words and uses a deep bidirectional transformer to extract contextual representa-
tions by generating a language prior vector of size 1x768. BERT is pre-trained the
whole of the English Wikipedia and Brown Corpus.

Li et al. [68] use BERT to map the Human Body Part States (PaSta) found from
the pose, to the activity semantics of each body part with respect to the detected
object. In their studies, they show that using BERT as a word embedding model
performed better than Word2Vec, GloVe, and Gaussian noise which is due to the fact
that BERT gives contextual information about the input words from the sentences
and enriching its representation.
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Figure 3.4: Example graph networks constructed from the detected humans and
objects in the image. In the visual graph, the nodes are represented by their visual
features. In the semantic graph, the nodes are represented by their word embeddings.
In the combined graph, the nodes are represented by the concatenation of the visual
and semantic features. Image from HICO-DET dataset [26].

Graph Neural Network Graph Neural Networks (GNNs) have been used
to model scene relations and knowledge structures through a graph. A graph G is
composed of nodes N that are connected together with edges E. A GNN learns
potential features for nodes by iteratively propagating messages from neighboring
nodes and updating hidden states using embedded functions. Different types of
graphs can be used for better HOI predictions: visual graphs, semantic graphs,
and combined visual and semantic graphs (Figure 3.4). In visual graphs, the nodes
are represented by appearance features, while in semantic graphs, the nodes are
represented by their word embeddings. In combined graphs, the output embeddings
from the visual and semantic graphs are concatenated together to represent the node.
By improving the performance of HOI detection models, graph networks have shown
the ability to model high-level structures and leverage the learning capabilities of
the network. Table 3.6 presented the graph-related design decisions of the models
that used graph network in their system.

Visual Graph: Visual graph neural networks relate the appearance features of
the detected humans and objects from the input image. The edges connecting
the nodes can be represented by the spatial features generated from the detection
bounding boxes such as in [28], [36], [41], [75]. Qi et al. [28] extract the edge feature
from a combined bounding box, that is, the smallest bounding box that covers the
human and the object together. Zhang et al. [41] build a spatially conditioned
graph; they construct a bipartite graph where the edge features are computed as
handcrafted feature vectors using spatial information from the centre coordinates of
the bounding boxes, widths, heights, aspect ratios and areas. They also include the
intersection over union, the area of the human box normalised by that of the object
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box, and a directional encoding using the normalized differences between centre
coordinates of the human and object boxes. They demonstrate the advantages of
spatial conditioning for the computation of the adjacency structure, messages and
the refined graph features.

Wang et al. [75] argued that the graph should take into consideration the fact
that there are two sets of heterogeneous nodes: humans nodes and objects nodes.
Thus, message passing between homogeneous nodes (intra-class messages) are mod-
elled separately from that between heterogeneous nodes (inter-class messages). The
spatial relation of a person and an object constitutes essential information for rec-
ognizing the interaction and is encoded into the edges that connect heterogeneous
nodes. Gao et al. [36] also took advantage of the heterogeneity in nodes by construct-
ing separate human-centric and object-centric graphs. They modelled human–object
pairs as nodes, and employed the spatial-semantic features as node encodings where
the spatial features are extracted using the two-channel binary image representa-
tion and the the semantic features represent the word embedding of each object’s
category, using fastText.

Another way to represent the edges in a visual graph is by using the interaction
proposal scores such as in [38]. Ulutan et al. [38] represent the edges by the inter-
action proposal scores that are generated from the spatially refined visual features.

These models have proven that the addition of the graph branch to the visual-
spatial branch improved the model’s performance. Nonetheless, using a good object
detector with accurate bounding boxes and finding the best edge representation is
essential in increasing the performance of the visual graph network.

Semantic Graph: In the semantic graph network, the nodes are represented by
their word embeddings and can encode the objects, action verbs, the interaction
sentence, or even the human body parts. The graph edges can encode the spatial
relationships, the statistical co-occurrance, or other features.

For example, Xu et al. [33] construct a knowledge graph where the nodes of
the are represented by the Word2vec embedding of each object and action word
and the edges are represented by binary values defining the connection or the dis-
connection of the nodes based on the ground-truth annotations of training dataset
and external source. Only the candidate verb features from the updated nodes are
extracted and compared to the visual features of the human minus object for joint
embedding learning. Their results indicate that modeling semantic dependencies of
verbs-objects in relationships and leveraging message passing capabilities of Graph
Convolutional Networks (GCNs) together is essential for HOI prediction.

Liu et al. [42] encode the relations among objects, actions and interactions into
an undirected graph called consistency graph including an HOI represented by four
nodes: object node, human node, action node, and one node for the interaction that
includes the triplet in a sentence. These nodes are represented by their semantic
features obtained from ELMO [72] and the the edges are defined based on the con-
sistencies among objects, actions, and interactions. If two nodes are semantically
consistent with each other, an edge would be added to enable message passing be-
tween them. They show the significance of their proposed knowledge-aware strategy
by comparing their model with and without using semantic embeddings.
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Table 3.6: Details of the different two-stage model that used a graph network in
their system. Ex.: Example, H: Human, O: Object, A: Action, I: Interaction

Graph Advantages Disadvantages Ex. Nodes Edges

Visual
Captures
contextual
cues

Confuses
model by
plausible
spatial
configuration

[28] H & O Bounding Box
[36] H & O Spatial-

Semantic Fea-
tures

[75] H & O Spatial Features
[38] H & O Interaction pro-

posal scores
[41] H & O Spatial Features

Semantic
Aids
detection
despite
diverse scenes

Does not
aggregate
visual and
spatial cues

[33] O & A Binary values for
connection

[42] H & O &
A & I

Consistency-
based edge

[68] Body
parts

Statistical co-
occurrence

Combined
Richer repre-
sentation of
instances

Visual and
semantic cues
may have
orthogonality
to them

[44]
H & O Vi-
sual

Spatial Features

H & O Se-
mantic

Spatial Features

Li et al. [68] construct a Hierarchical Activity Graph (HAG) to model the
activities for HOI prediction. Based on human part-level semantics, they built
a large-scale part state knowledge base and Activity2Vec for finer-grained action
encoding where the node represents the word embedding of the different human
body parts and the edge indicates the statistical co-occurrence.

Semantic-based graphs have proven to improve the performance of the HOI de-
tection models especially on the rare interactions of the HOI-DET dataset. This
is due to the fact that the graph neural network is responsible for transferring the
knowledge from non-rare to rare classes.

Combined Visual and Semantic Graph: Some methods combine both visual and
semantic graphs in their systems to improve the HOI prediction. By combining the
visual and the semantic cues, the model generates richer representations.

Liang et al. [44] build a dual-graph attention network that aggregates visual,
spatial, and semantic information of the detected human-object pairs. The first
built graph is a visual graph, where the nodes represent the detected human and
object’s appearance features and the edges connecting the nodes are represented
by the spatial features relating the object nodes. The second graph is a semantic
graph, where the human and object nodes are represented by their word embedding
(Word2vec) features and spatial features are used to instantiate the edges in the final
combined graph. After inputting each of the graphs in a Graph Attention Network
(GAT), the node features are updated by aggregating its neighboring node’s features
and the resulting node features from the visual and semantic graphs are concatenated
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Figure 3.5: One-Stage HOI detection: Object and interaction detection are pre-
formed synchronically . Then, the interaction class is matched with the detected
instances for output interaction triplet prediction.

together to represent the human and objects nodes in the combined graph. Their
results show that semantic cues can promote HOI detection but less effective than
visual cues.

Graph neural networks have been used by HOI methods to model the relation-
ship between humans, their body parts, the objects and the actions in order to help
predict the correct interaction for each pair. Through GNNs, contextual informa-
tion is propagated between nodes which enhances the HOI prediction compared to
interpreting each detected instance in isolation or just relying on their 2D spatial
relationship.

3.1.2 One-stage HOI Methods

In one-stage HOI, the interacting pairs and the interactions are detected at the
same time, and the interaction triplet is estimated using two parallel branches: in
the first branch, the image feature map is used to find the interaction point or
the interaction area and accordingly the interaction. In the second branch, object
detection is performed to find the human-object pair. Finally, these two branches
are used to regress the offsets and match the interaction class with the detected
instances (Figure 3.5).

Single-stage methods have shown to be more efficient than two-stage methods
that require two separate and unrelated steps and limit their performance based
on the quality of proposals in the first stage. Moreover, two-stage methods miss
contextual features from the images even when the union of the human and object
is taken into account. It is true that features from the bounding box joining the
human and the object of interest contain context, but they also contain disturbing
information that can come from the background or other objects present in that box.
Single-stage methods capture contextual information from the image by pairing the
target human and object from an early stage in feature extraction and extracting
integrated features rather than individually treating the targets.
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Figure 3.6: One-stage methods: (a) Point-based method: the cross indicates the
human point, the square indicated the object point and the circle indicated the in-
teraction point. (b) Anchor-based method: the dashed box indicates the interaction
box.

One-stage methods can be categorized as either point-based (Figure 3.6a) or
anchor-based (Figure 3.6b). Table 3.7 presents the different models that detected the
human object interaction using one-stage methods. Point-based methods perform
inference at each interaction key point, such as the midpoint of each corresponding
human-object pair. The key component in point-based methods is the interaction
point detection where the extracted appearance features, using Hourglass-104 [76]
are used to estimate the center point of each of the human and object with their cor-
responding sizes (width and height), in addition to the local offsets. This detected
interaction point provides context and regularization to the human and object de-
tection boxes and is used in the point matching branch, where the displacements
from the interaction point are first regressed to the human point and object point re-
spectively. Then, the interacting triplets are generated by matching each interaction
point with the human and object points.

Point-based methods were adopted by Liao et al. [77] and Wang et al. [78] where
they generate an interaction point from the visual features extracted from the image.
At the same time, an object detector is applied on the image and finally used with
the interaction point for final triplets generation in the interaction matching branch.

GGNet by [79] is another point-based method which predicts interactions more
robustly using two steps: first, every pixel is interpreted in the input image feature
map and identified whether it is a possible interaction point or not. In the second
step, they interpret the feature map generated from the first step with possible
interaction points to finally find a refined set of ActPoints. The features of the refined
ActPoints are finally used to infer the interaction at at the interaction points. In
addition to the interaction points identification, the interaction human-object pair
matching method is enhanced by assigning to each interaction category a unique
location regressor. This way, the effect of the interaction category on the spatial
layout of one human-object pair is reduced.
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Table 3.7: Advantages and disadvantages of the different one-stage HOI detection
methods.

One-stage Methods Advantages Disadvantages Examples
Point-based Directly detects inter-

actions between pairs
as a set of interaction
points

No apparent charac-
teristics in visual pat-
terns

[77]–[79]

Anchor-based Directly detects the
interaction region

Not straight-forward
and sensitive to occlu-
sion

[53], [80]

Although interaction points converge the HOI instance detection and recognition
together, there are mainly two drawbacks; first, the semantic features are ambiguous
when the interaction point is far apart from the human and object; second, the lack
of a multi-scale architecture which is commonly used in object detection. On the
other hand, anchor-based methods predict the interactions based on an anchor box
instead of a interaction point.

Kim et al. [53] propose an anchor-based HOI detection method called UnionDet
where the union bounding box of a human-object pair is detected and used to extract
integrated features. They use a union-level detection framework to directly capture
the region of interaction and an instance-level detector to perform object detection
and action classification. To allow for more accurate instance-level localization, they
combine the union-level detector and an instance-level detector in parallel.

Another anchor-based HOI detection method is built by Fang et al. [80], where
they propose a Dense Interaction Region Voting (DIRV) framework that concen-
trates on the interaction regions of the human-object pairs. Their interaction region
denotes the region that covers the minimal area of human and object crucial for
recognizing the interaction and does not need to cover the whole human and object.
To specify the interaction region, they set thresholds on the human bounding box,
object bounding box, anchor box, and the union region.

Through one-stage methods, HOI detection performance was improved because
contextual information was captured from the image by pairing the target human
and object from an early stage in feature extraction, in addition to the accelerated
training and testing times due to the fact that both object detection and HOI
prediction were done in parallel and not separately. However, one-stage methods
are limited by complex handcrafted grouping strategies to group object detection
results and the interaction predictions into final HOI triplets.

3.1.3 End-to-End Transformer based methods

Transformers have had success with Natural Language Processing (NLP) and re-
cently applied to images with image transformers. While CNNs use pixel arrays,
self-attention mechanisms of transformers explicitly model all pairwise interactions
between elements in a sequence, making these architectures particularly suitable
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Figure 3.7: End-to-end transformer-based HOI detection: The image is fed to a
CNN backbone to extract visual feature. Then, the feature is reduced in channel-
dimension, flatten in spatial-dimension and complemented by positional encoding.
The transformer encoder generates the global memory feature and the transformer
decoder transforms the learnt positional embeddings into output embeddings. Fi-
nally, multiple Feed Forward Networks (FFN) predict the four HOI instances simul-
taneously.

for specific constraints of set prediction such as removing duplicate predictions.
Single-stage methods require a trade-off between the interaction classification and
human-object pair positioning, which is time expensive too. For this reason, end-to-
end transformer based HOI methods were proposed by [48], [49], [46], [47], and [50].
In transformer-based methods,the model detects the human-object pair in addition
to the interaction class in one shot, without any post-processing (Figure 3.7). One
key component in these methods is the self-attention mechanisms of transformers
which makes the model exploit the contextual relationships between human and
object and their interactions to predict better the set of HOI triplets.

Transformer-based models consist of three parts: In the first part, the image is
fed to a network for visual feature extraction. Many models rely on Detection Trans-
former (DETR) [81], which is an object detection system based on transformers. It
is built by combining a CNN, such as ResNet-50 or ResNet-101, with a transformer
encoder for visual feature representation.

In the second part, the extracted feature map is inputted to a transformer de-
coder to produce the output embeddings. The transformer decoder transforms a
set of learnable query vectors into embeddings that contain image-wide contextual
information for HOI detection, referring to the encoded feature map using the at-
tention mechanism. The attention mechanisms in the transformer decoder are the
key components that model the relations between feature representations of different
detections in their systems. Zou et al. [48] and Tamura et al. [49] use a single de-
coder for instance and interaction representation, whereas Kim et al. [46] and Chen
et al. [47] propose a transformer-based two-branch architecture. This architecture
constructs an instance decoder and an interaction decoder to decode the boxes and
action classes of the HOI instances in parallel. The instance decoder transforms the
instance queries into instance representations for object detection, while the interac-
tion decoder transforms the interaction queries into interaction representations for
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interaction detection. By using two separate decoders for instance and interaction
representation, the model is able to predict the HOI triplets more accurately by
learning effective features through separate focusing on detecting human and object
pairs and defining the interaction locations. Chen et al. [47] map a trainable inter-
action query set to an interaction prediction set with a transformer and design an
effective instance-aware attention module to introduce instructive features from the
instance branch into the interaction branch.

In the third part, the generated decoder representations are fed to several multi-
layer perceptron (MLP) layers to generate the final HOI quintuples, which consist of
the human box, object box, object class, and action class. Zou et al. [48] and Tamura
et al. [49] use three one-layer MLP branches to predict the human confidence, ob-
ject confidence, and interaction confidence respectively, and two three-layer MLP
branches to predict the human box and object box. Kim et al. [46] use feed-forward
networks (FFNs) for the interaction representation to obtain a Human Pointer, an
Object Pointer, and interaction type. They localize the human and object regions by
pointing to the relevant instance representations using the Human Pointer and Ob-
ject Pointer (HO Pointers), instead of directly regressing the bounding box. Then,
they apply the feed-forward networks for bounding box regression and action clas-
sification to generate the final HOI quintuples. Chen et al. [47] use an FFN head
on top of each decoder layer to decode a set of instance and interaction predictions.
The instance FFN head comprises three independent sub-branches: one to predict
the normalized bounding box for each detected instance, another to infer scores for
object categories, and the last to generate a distinctive semantic embedding. The
interaction FFN head is also split into three sub-branches: a 4-dimensional inter-
action vector with categories, and two semantic embeddings for the corresponding
human and object instances, respectively.

Zhou et al. [82] decouple the triplet prediction into human-object pair detection
and interaction classification via an instance encoder-decoder stream and an interac-
tion encoder-decoder stream, where both the encoder and decoder are disentangled.
By disentangling the encoder, they generate relations in image representations de-
signed for each sub-task. To create communication between the decoders, they use
an attentional fusion block by fusing the instance representation to the interaction
representation as if they are associated with the same query index.

Chen et al. [83] improved transformer-based methods by using query-based an-
chors to extract HOI embeddings and predict HOI instances. Instead of relying on a
CNN network and DETR, they extracted multi-scale features by combining a hier-
archical network and a deformable DETR encoder with Swin-Transformer [84]. The
transformer decoder and the interaction head used query-based anchors to decode
the HOI embeddings and predict the HOI instances. Through their experiments,
they demonstrated the effect of multi-scale feature maps and transformer-based net-
works in improving prediction accuracies by capturing non-local semantic features
and spatial information.

Dong et al. [85] promoted the HOI detector by initializing the object query with
category-aware semantic information instead of zeros, as done in previous methods.
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Table 3.8: Design Decision of Transformer-based HOI detection methods. Trans.:
Transformer, Enc:Encoder, Dec:Decoder

Trans.
Struc-
ture

Design Deci-
sion

Advantages Disadvantages Example

Positional
Encoder

Learnable em-
bedding

Updated with net-
work weights

Unable to adapt
to longer input
sequences during
testing

[47],
[48], [85]

Sinusoidal em-
bedding

Relative position-
ing

Changes with trans-
lation

[46],
[49],
[50], [83]

Encoder
6-layer Enc Contextualized

representation of
image

Cannot encode im-
ages with small ob-
jects

[46]–
[50], [85]

6-layer In-
stance Enc
and 6-layer
Interaction
Enc

Learns representa-
tions for each sub-
task

High Complexity [82]

6-layer de-
formable Enc

Multi-scale se-
mantic feature
extraction

Lack of keys
restricts representa-
tion power

[83]

Decoder
6-layer Dec Self-attention

mechanism
Cannot detect HOI
instances with small
objects

[48],
[49], [85]

6-layer In-
stance Dec
and 6-layer
Interaction
Dec

Attention on each
sub-task

Cannot detect HOI
instances with small
objects

[46],
[47],
[50], [82]

6-layer de-
formable Dec

Multi-scale de-
formable atten-
tion

Requires multi-scale
feature maps for ac-
curate detection

[83]

Table 3.8 presents the design decisions of transformer-based HOI detection meth-
ods. Transformer-based models showcased the importance of transformers, espe-
cially for feature representation. The attention maps generated by transformers
were able to capture contextual information about the interaction. They were able
to aggregate only the relevant information without the need to crop the image and
without being affected by unrelated instances present between the interacting pair,
which could contaminate the interaction representation.
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3.1.4 Related Work on HOI Detection

Researchers have solved the HOI problem using two types of methods: two-stage
and single-stage methods. The first stage in a two-stage method is the detection of
the humans and objects using an off-the-shelf detector, then in the second stage the
interaction between them is predicted using the extracted features. In single-stage
systems, the object detection and interaction prediction are done in parallel or in
an end-to-end manner. Most of the existing two-stage systems, [27], [29], [37], [43],
[86], rely on interpreting the scene based on its appearance as well as the geometric
layout of objects and people within the scene. In some of these works, contextual
information is only incorporated through features from the union region of a human
and object bounding box which may not always be shown in the features covering the
union region. Other systems, [32], [35], [87] solve the HOI problem by estimating the
pose of detected people as an addition to the spatial and visual features. Other two-
stage networks, [31], [33], [36], [42], [44], [68], [88]–[92], predict the HOI prediction by
integrating semantics into the network architecture. Xu [33] construct a knowledge
graph between object and action based on the semantic features of the ground-truth
annotations of training dataset and external source. Bansal [31] integrate visual
and spatial features with general word embedding of humans and objects. Gao [36]
propose a dual relation graph by using spatial-semantic representation to describe
each human-object pair. Liu [42] build a consistency graph that encodes the relations
among objects, actions and interactions. Liang [44] build a dual-graph attention
network that aggregates contextual visual, spatial, and semantic information.

To improve the HOI detection, recent works have developed one-stage pipelines
to detect HOIs in a single shot. Single-stage methods, [53], [77], [78], localize the
interaction with an interaction point or find the anchor box of a human-object pair.
Contextual features are extracted around the detected point or box. The interacting
triplets are predicted by matching the detected objects with the localized interac-
tion and manually searching for the threshold. Later, single-stage methods were
improved by using end-to-end transformer-based methods [46]–[49]. A transformer-
based contextual self-attention mechanism is used to detect the interacting pairs and
predict their interaction simultaneously. In these single-stage methods, contextual
features are extracted visually from the image without any semantic representations.
However, relying on visual context can be tricky in images where details are not well
visible, such as in paintings and artwork.

Chen et al. [83] improve the transformer-based methods by using query-based
anchors to extract the HOI embeddings and predict the HOI instances. Instead of
relying on a CNN network and DETR, they extract multi-scale features by combin-
ing a hierarchical network and a deformable DETR encoder, with Swin-Transformer
[84]. The transformer decoder and the interaction head use the query-based anchors
to decode the HOI embeddings and predict the HOI instances. Through their exper-
iments, they showed the effect of multi-scale features maps and transformer-based
network in improving the prediction accuracies by capturing non-local semantic fea-
tures and spatial information.

The field of human-object interaction detection has been a popular area of re-
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search in computer vision in recent years, with many state-of-the-art models and
techniques being developed and tested on natural photographic images. However,
there has been very little research conducted on the detection of HOIs in paintings,
which represents a unique challenge due to the artistic nature of these images.

Detecting HOIs in paintings poses several challenges, such as the highly stylized
and often unrealistic depiction of humans and objects, as well as the lack of con-
textual information that is present in photographic images. In addition, paintings
often contain many visual elements that are unrelated to the HOI of interest, which
can make it difficult to accurately detect and classify interactions.

Given these challenges, there is a significant need for research to explore the de-
tection of HOIs in paintings. By developing and testing new models and techniques
that are specifically designed to handle the unique characteristics of paintings, re-
searchers can gain a better understanding of how to analyze and interpret this type
of artwork. This could lead to new insights into the cultural and historical context of
paintings, as well as new applications in areas such as art conservation and museum
curation. To the best of our knowledge, no previous research has been conducted
on the detection of human-object interactions in paintings.

3.2 Difference between Natural Images and Paintings for
HOI

In natural images, the context plays a crucial role in the detection of human-object
interactions. However, in paintings, the concept of context may not always be appli-
cable since artists can intentionally violate reality to convey their message or express
their creativity. Therefore, detecting human-object interactions in paintings can be
challenging since common sense may not hold true in such scenarios. For instance,
physical rules such as gravity, scale, lighting, shading, and color may not be bound
by reality in paintings, making it difficult to apply traditional HOI approaches.

Moreover, paintings are not always realistic, and the artist’s subjective view of
the world may significantly impact the representation of objects and humans in the
painting. This can result in the creation of objects that do not exist in reality or the
deformation of humans to convey specific emotions or feelings, making the detection
of human-object interactions in paintings more complex. Therefore, it requires a
different approach that is tailored to the unique characteristics of paintings.

Furthermore, paintings can be heavily influenced by the historical, social, and
cultural contexts in which they were created, adding an additional layer of com-
plexity to the interpretation of human-object interactions. Artists may use specific
symbols or metaphors that were prevalent during a particular time period or cultural
movement, and detecting these interactions may require knowledge of the broader
historical and cultural context.

Additionally, the interpretation of human-object interactions in paintings may
also depend on the viewer’s subjective understanding and interpretation. Different
viewers may have varying levels of knowledge and experiences, leading to different in-
terpretations of the same painting. Thus, the detection of human-object interactions
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in paintings may require a more nuanced and subjective approach than traditional
HOI detection in natural images.

In the context of HOI detection in paintings, human pose features may not be
as valuable compared to other types of features. This is because paintings often
depict humans in stylized or exaggerated poses that may not correspond directly
to realistic human poses. The artistic interpretation and style of the painting may
prioritize aesthetic or symbolic representation over anatomical accuracy.

Overall, the challenges of detecting human-object interactions in paintings are
multifaceted and require a unique approach that considers the complex interplay be-
tween the artistic representation, historical and cultural context, and the subjective
interpretation of the viewer.
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Chapter 4

Proposed HOI System in
Paintings

In this chapter, I introduce the proposed architectures for HOI detection models in
paintings. Two different models are presented: a single-task learning model, where
the detection of interacting pairs and their corresponding interaction verb prediction
are performed jointly, and a multi-task learning model, where HOI detection is
improved by detecting it along with the classification of four other painting-related
tasks.

4.1 System Overview

The visual search for targets in a scene is guided by the interplay between two types
of memory: episodic memory and semantic memory. Episodic memory, housed in
the hippocampus, is responsible for encoding and recalling specific details such as
the position, colors, edges, and contextual information associated with the object
from previous experiences. On the other hand, semantic memory, located in the
neocortex, encompasses general knowledge, facts, concepts, and ideas that are in-
dependent of personal experiences. Semantic memory provides answers to more
general questions about objects, including their affordance, name, type, or typical
position. These two types of memory are not isolated but interconnected. Semantic
memory is built upon the accumulation and integration of episodic memories. The
episodic memories contribute specific details and contextual information, while the
semantic memory extracts the general information and concepts that emerge from
these episodic experiences. Together, these memories work in concert to form a
comprehensive understanding and representation of the scene [93].

The proposed networks are inspired by human psychology, which recognizes that
the human brain relies on both the actor and the object to infer an interaction.
Similarly, in the proposed networks, I leverage this understanding by considering
not only the human performing the action but also the object they are interacting
with. The proposed networks aim to bridge the gap between visual and semantic
information, connecting the representation of the visual scene with the contextual
understanding of the action and object in paintings. This approach aligns with the
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Figure 4.1: System flowchart: It consists of an episodic memory module where vi-
sual features (Figure 4.2) and spatial features (Figure 4.3) are extracted for the
object, human, and the region containing them. both visual and spatial features
are concatenated together to generate the human and object appearance features
(Figure 4.4). In the semantic memory module, semantic features are extracted for
the detected object and all the related candidate actions. The input features of the
detected object-related actions are replaced with their contextual ones. Losses are
calculated from the episodic and semantic modules and joint together for optimiza-
tion.

interplay between visual and semantic memories observed in human psychology, as
it combines both modalities to enhance the inference of human-object interactions.

4.1.1 Single-task learning on paintings

Figure 4.1 illustrates the flowchart of the proposed two-stage HOI detection system,
HOI-Paint. The primary goal of this system is to predict the triplet <human,
verb, object> for each candidate human-object pair within the input image. From a
psychological perspective, our visual system initially focuses on detecting and local-
izing objects within the scene [94]. This process involves identifying unique shapes,
colors, and textures that correspond to different objects, forming the foundation of
our mental representation of the visual scene. Hence, the first stage of the proposed
system involves detecting all the candidate instances present in the image.

After object detection, human visual perception abstracts relevant features from
the raw sensory input [95]. Similar to how humans analyze objects by detecting dis-
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Figure 4.2: Visual stream of the proposed system.

criminative features, the proposed model learns to identify and represent distinctive
visual patterns enabling it to capture essential discriminative information. There-
fore, visual features are extracted from the detected human F V

H , object F V
O , and

the Region Of Interest (ROI) FROI , which is formed by taking the union of both
candidate human and object bounding boxes. To extract these visual features, a
pretrained convolutional neural network (CNN) is employed, followed by two fully
connected layers. Figure 4.2 provides a visual representation of this process.

After recognizing individual objects, our visual system proceeds to analyze the
relationships and interactions between them, which involves determining the spatial
arrangements, relative positions, and orientations of objects in the scene [96]. In the
proposed system, the spatial features related to the candidate interacting human-
object pair are encoded using a spatial attention feature map. This approach is
inspired by the work of [97] and [58]. As depicted in Figure 4.3, a two-channel binary
image representation is employed to model the spatial relationship between a human
and an object in an image. To create this representation, the bounding boxes of the
human and object are merged into a reference frame, which is then resized to a fixed
size. Subsequently, a binary image with two channels is generated. The first channel
indicates the presence or absence of the human within its bounding box, while the
second channel indicates the presence or absence of the object within its bounding
box. These two-channel binary images are then fed into a two-layer convolutional
neural network, enabling the extraction of a spatial attention feature map. This
feature map captures information about the relative position and orientation of the
human and object in the image. By utilizing this spatial attention feature map,
the model can gain insights into the spatial relationship between the interacting
human-object pair.

In order to represent the appearance features extracted from the image, the
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information from the episodic memory is integrated. This involves concatenating
the human and object visual features, denoted as F V

H and F V
O , respectively, with

the corresponding human and object spatial features, denoted as F S
H and F S

O . By
concatenating these features, a comprehensive representation of the human and
object appearances is formed. This is achieved by combining the visual information
with the spatial information that captures the relative positions and orientations
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of the human and object. The resulting concatenated features are then passed
through a fully connected layer, which transforms them into the final human and
object appearance representations, denoted as FH and FO. Figure 4.4 provides
a visual illustration of this concatenation process, showcasing how the visual and
spatial features are combined to obtain the ultimate appearance representations for
both the human and object.

On the other hand, psychologically, the semantic memory in humans plays a
crucial role in assessing the functional and semantic relationships between objects.
This includes identifying objects as tools, understanding how objects are related in
specific activities, and recognizing cause-effect relationships between objects [98].
In our perception system, contextual information and background knowledge about
the detected objects are taken into account to aid in scene understanding.

To incorporate this contextual knowledge into the system, I utilize a knowledge
graph based on Graph Convolution Network (GCN) in the semantic memory module.
The graph consists of nodes representing all possible verbs and object categories in
the annotations, while the edges connect valid pairs of verbs and object categories
based on the training dataset annotations. This graph serves as a representation of
the semantic relationships between verbs and object categories.

To encode the verb and object nodes in the graph, I leverage Bidirectional En-
coder Representations from Transformers (BERT), which is a transformer-based
model used in Natural Language Processing (NLP). BERT provides contextual word
embeddings based on its training on a large corpus, allowing for a more nuanced
representation of words compared to context-free models like GloVe. BERT takes
in the words as input and generates output semantic features for each word. These
features are then used to initialize the graph nodes for the object and verb cate-
gories, denoted as F s

O and F s
V respectively. The graph nodes are connected together,

in an undirected graph, based on the ground truth labels from the training dataset.
The graph undergoes two convolutional layers to refine and propagate information,
resulting in updated semantic representations F

′s
O and F

′s
V . These updated seman-

tic features from the object nodes, F
′s
O , are concatenated with the visual features

of the object, F
′v
O , and then combined with the updated semantic features of the

candidate verbs, F
′s
V , to obtain potential interaction features F

′s
Int. Furthermore, at

the output of the semantic stream, the semantic features of the detected object are
concatenated with the semantic features of the candidate verbs to represent the in-
teraction FInt

s in the context of the object. This integration of semantic knowledge
through the knowledge graph and BERT embeddings allows the system to capture
the semantic similarity between the detected human-object pair and the candidate
verbs, enhancing the understanding of the interaction in the given context.

To predict the action for each detected human, the appearance features FH are
fed into a fully connected layer followed by a Sigmoid activation function, resulting
in the action prediction score sH specifically for the human component. Similarly,
the appearance features FO and FROI representing the object and ROI, respectively,
are passed through separate fully connected layers followed by Sigmoid activation
functions. This yields the action prediction scores sO and sROI for the object and
ROI components, respectively.
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To train the model, individual cross-entropy losses [99] are calculated for each
component of the episodic stream output. The cross-entropy loss LcrossH mea-
sures the discrepancy between the predicted score sH and the ground truth label
for the human component. Similarly, LcrossO quantifies the difference between
the predicted score sO and the ground truth label for the object component, and
LcrossROI captures the difference between the predicted score sROI and the ground
truth label for the ROI component. These losses indicate how well the predicted
scores align with the desired output for each individual component of the episodic
memory module in HOI prediction.

The individual cross-entropy loss, Lcross, is defined as:

Lcross = −(y ∗ log(ŷ) + (1− y) ∗ log(1− ŷ)) (4.1)

where, y is the prediction score output of of the ground truth action from the
sigmoid function and ŷ is the prediction score output of all the candidate actions
from the sigmoid function. By optimizing these individual cross-entropy losses, the
model learns to minimize the difference between the predicted scores and the ground
truth labels for each component, thus improving the accuracy of the overall HOI
prediction.

Inspired by [100], the feature representations F s
Int and FROI are projected into a

joint embedding space using transformation matrices Wv and Wg, along with biases
bv and bg. Specifically, the visual region features FROI are transformed into the joint
embedding space as ϕv = WvFROI + bv, while the semantic interaction features F s

Int

are transformed as ϕg = WgF
s
Int + bg.

The objective is to maximize the cosine similarity between the learned visual and
semantic representations of matching pairs, while minimizing it for non-matching
pairs. This objective is achieved by training the model to minimize the graph
loss LossGraph, which captures the discrepancy between the cosine similarities of
matching and non-matching pairs:

LGraph =

{
1− cos(ϕv, ϕg) if y = 1

max(0, cos(ϕv, ϕg)− α) if y = 0
(4.2)

where, α is the margin and y is set to 1 if the candidate verb is the ground truth
and zero if not.

During training, the model learns to adjust the embedding weights Wv and Wg,
as well as the biases bv and bg, in order to maximize the similarity between matching
pairs and minimize the similarity between non-matching pairs in the joint embedding
space. By optimizing the graph loss, the model effectively learns to associate the
visual and semantic features of interacting pairs, enhancing the overall performance
of the HOI detection system.

The losses from the episodic memory module (LH
cross, LO

cross, LROI
cross) and the

semantic memory module (LGraph) are combined using a weighted sum to obtain
the final loss function. The weighted sum assigns different importance to each loss
component, allowing for fine-tuning of the model’s behavior during training. The
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final loss function for the HOI-Paint model is defined as:

Ltotal = λ1LH
cross + λ2LO

cross + λ3LROI
cross + λ4LGraph (4.3)

where λ1, λ2, λ3, and λ4 are the weight coefficients for the respective loss components.
These coefficients control the relative importance of each loss term in the overall
training process. By adjusting the weights, the model can be optimized to prioritize
certain aspects of the HOI detection task, such as improving the accuracy of human
predictions or enhancing the semantic consistency of the interactions.

During training, the model aims to minimize the total loss Ltotal by updating
the network parameters through back-propagation. By optimizing the combined
loss function, the model learns to effectively leverage both episodic and semantic
memory information, leading to improved performance in human object interaction
detection.

4.1.2 Single-task learning on natural images

The objective of this thesis is to develop a system for detecting human-object inter-
actions in paintings. Since annotated painting datasets were not readily available, I
initially focused on working with a dataset of natural images until I completed the
labeling process for the large dataset of paintings.

To establish a baseline model, I adopt the system proposed by Xu et al. [33].
Their model consists of two stages: a visual-spatial stream and a semantic stream.
In the visual-spatial stream, the first step involves detecting objects in the input
image using a pretrained object detector, specifically Faster-RCNN [101]. Once the
person and object are detected, their visual features (F v

H and F v
O) are extracted

using a pretrained ResNet50 backbone, respectively. These visual features are then
concatenated to obtain the visual representation of the region containing the human-
object pair. Additionally, pairwise visual features are generated by concatenating
the resulting representation with handcrafted spatial features (Fsp). The spatial
features include the normalized distance between the bounding boxes of the human
and object, as well as the logarithm of the ratio of their widths and heights. Subse-
quently, the final feature map is passed through two fully connected layers, and the
cross-entropy loss is calculated for minimization during training.

In the semantic stream, Xu et al. utilize a knowledge graph based on Graph
Convolution Network (GCN) to leverage semantic similarity and identify the verb
that best describes the detected human-object pair. The graph model consists of
nodes (N ) representing all possible verbs and object categories in the annotations.
The edges (E ) in the graph connect valid pairs of verb and object category based
on the training dataset annotations and an external dataset called General Visual
Relationships [66]. To represent the verb and object nodes in the graph, GloVe [70]
word embeddings are employed. Each object and verb word is passed through the
GloVe model, generating their respective semantic feature vectors (F s

O, F
s
V ), which

are used to initialize the graph nodes. The graph undergoes two convolutional layers
to obtain the final semantic representations, F

′s
O and F

′s
V .
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To guide the learning of verb embeddings and exploit the semantic regularities
associated with the visual modality and knowledge, joint embedding is applied. The
objective is to maximize the cosine similarity between the learned transformations
of the visual region and the semantic verb feature pairs, while minimizing it between
non-matching pairs.

Three interventions are proposed to modify the base model, based on evidence
from human psychology regarding action perception. Nelissen et al. [102] suggest
that action information alone is insufficient for a complete understanding of an ob-
served action, without knowledge about the identity of the object involved. Gallese
et al. [103] state that the analysis of human movement relies on the presence of ob-
jects, as cortical responses to goal-directed actions differ when the object is present
compared to when it is absent. Furthermore, Bub [104] demonstrate that observers
develop specific forms of gestural knowledge derived from conceptual representations
of objects, highlighting the importance of object priming in action representation.

In these networks, I apply the idea to HOI detection by priming context into
the encoding of actions (i.e. verbs) at different levels of a deep network. I rely on
the detected object’s visual-spatial features as well as its semantic relationship to
actions. To benefit from the influence of the object on the interaction prediction, I
change the semantic representation of the actions based on their presence with the
object.

My networks consists of two streams. In the first episodic memory or visual-
semantic stream, features corresponding to the visual appearance, spatial features
and the physical layout of people and objects are extracted as well as that of the
action. The second stream is the semantic memory in which a GCN network is built
between the objects and the actions. The objects and the actions are represented in
the affordance-based graph by their personalized contextual vector representation
extracted from a contextual word embedding model. The verb-object dependence
is implemented by representing the action features as their word embeddings when
they are associated with the detected object. The features from the episodic memory
stream and the semantic memory stream will be used together to predict the human
object interaction.

Neural Network 1 (NN1): In the first network (Figure 4.5), the external
database used in the previous network for the GCN is replaced by an affordance-rich
one called ConceptNet, which represents the functionality of objects. ConceptNet
[105] includes data from crowd sourced resources, expert-created resources, and
games such as Wiktionary which is a free multilingual dictionary and OpenCyc. To
ensure that the affordance of the object is well represented in the graph, all data
with the usedfor relationship between objects and actions are extracted, generating
all possible triplets <object,usedfor,action>. This allows the edges in the graph to
connect objects with the actions that might occur with them, based on their func-
tionality. For example, if the detected object is motorcycle, the actions that are
connected to it in the graph include sit on, ride, hold, wash, clean and the actions
that have no connection to it are eat, cook, read. Adding these affordance based
nodes enriches the graph network with nodes that help in getting better action
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Figure 4.5: Flowchart of the first proposed HOI system NN1.

predictions.
To initialize the GCN, objects and verbs are represented using BERT [74] pro-

viding contextual word embeddings based on the large corpus it is trained on, which
allows for a more nuanced representation of the words compared to GloVe. The
words are fed to BERT and the output semantic features of each word is used to
initialize the graph nodes. In addition, the detected object’s semantic features are
concatenated with that of the candidate verbs at the output of the semantic stream
to represent the interaction, FInt

s in the context of the object. The resulting in-
teractions are then compared, using the cosine similarity, to the visual features for
optimization.

Neural Network 2 (NN2): In addition to NN1, instead of concatenating the
human and object features to represent the interaction, visual features, FInt

v, are
extracted from the region containing the union box of the detected human and
object. The view of psychology on this matter is summarized in one simple sentence:
’The whole is more than the sum of its parts’ [106]. Moreover, Baldassano et al. [86]
studied the mechanism of how the brain builds HOI representation and concluded
that the encoding of HOI is not simply the sum of human and object. Therefore,
contextual information is incorporated through features from the union region of a
human and object bounding boxes.

Moreover, estimating the pose of detected individuals, in addition to the spatial
and visual features, can help improve interaction prediction by providing information
about the posture of the person performing the action. To extract the human 2D
body pose, denoted as F p

H , I utilize a pretrained pose estimation model called RMPE
[61] to obtain the joint positions of all detected individuals. The flowchart of NN2
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Figure 4.6: Flowchart of the second proposed HOI system NN2.

is depicted in Figure 4.6.

Neural Network 3 (NN3): In the final network, as depicted in Figure 4.7,
the Faster-RCNN model is fine-tuned on the HICO-DET dataset specifically for
improved object detections during testing. Furthermore, the handcrafted spatial
features are replaced with a spatial attention feature map, which is created from the
bounding boxes of both the human and object, following the approaches proposed
in [97] and [58]. To model the spatial relationship between a human and an object, a
two-channel binary image representation is utilized. The union of the two bounding
boxes is taken as a reference and rescaled to a fixed size. Subsequently, a binary
image with two channels is generated.

In the semantic stream, the interaction phrase composed of the verb followed
by the object (< verb, object >) is inputted into BERT. The resulting vector rep-
resentation of the verb (the first word) is extracted, considering the context of the
detected object. These new representations are more specific to the detected object,
tailoring the features to its characteristics. A context-based GCN is constructed
using these representations. The object nodes in the GCN are represented by the
semantic features of the object, while the verb nodes are represented by their se-
mantic word embeddings. It’s worth noting that in NN3, the semantic stream differs
from NN2 in that object-related verbs are represented by their contextual semantic
features, while non-related verbs are represented by their general semantic features.
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Figure 4.7: Flowchart of the third proposed HOI system NN3.

At the output of the GCN, the updated semantic features of the object are con-
catenated with its visual features, resulting in the final representation of the object,
denoted as F

′vs
O . Subsequently, the final semantic interaction features, denoted as

F
′s
Int, are compared to the visual features of the union box using cosine similarity to

calculate the graph loss, which is used for optimization.

4.1.3 Multi-task learning on paintings

Multi-task learning is a machine learning approach that involves training a model to
perform multiple related tasks simultaneously, rather than training separate models
for each individual task. The idea behind multi-task learning is inspired by human
learning and cognitive psychology [107]. In cognitive psychology [108], humans are
known to learn multiple tasks simultaneously and leverage the knowledge and skills
acquired from one task to help improve performance on another related task. Multi-
task learning aims to capture this transfer of knowledge and leverage the shared
information across tasks to improve overall performance.

For instance, many real-world problems involve multiple tasks that are inher-
ently interrelated or share common underlying structures. By learning multiple
tasks jointly [109], the model can better capture the dependencies and relationships
between the tasks, leading to improved performance. Moreover, multi-task learning
encourages the model to learn shared representations that are relevant to multiple
tasks. This shared knowledge helps in generalizing and transferring information
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across tasks, leading to improved performance on each individual task. In addition,
learning multiple tasks simultaneously acts as a form of regularization, preventing
overfitting on individual tasks by leveraging the shared information. This regular-
ization effect leads to better generalization and improved performance on unseen
data. Furthermore, training a single multi-task model can be more data-efficient
compared to training separate models for each task. By jointly learning from multi-
ple tasks, the model can leverage the available data more effectively, especially when
the data for indivicdual tasks is limited.

Overall, the psychology behind multi-task learning aligns with the idea that
learning multiple related tasks jointly can improve learning efficiency, knowledge
transfer, and overall performance [110], [111]. By mimicking the way humans learn
and leverage shared knowledge, multi-task learning algorithms strive to achieve sim-
ilar benefits in machine learning tasks.

In artwork classification, Multi-Task Learning (MTL) models are used to jointly
compute several artistic-related tasks in unison (e.g., author classification, type
classification, etc.) via hard parameter sharing, and obtain an aggregated loss from
the losses of each independent task. By optimizing a single aggregated loss, the
model is enforced to find common elements and capture relationships between the
different attributes. Contextual information is provided by the painting images
themselves by considering the relationships between common elements in the visual
appearance of the images when multiple artistic tasks are trained together.

MTL is a subfield of machine learning in which multiple tasks are simultaneously
learned by a shared model. MTL models [112] aim to solve multiple tasks jointly with
the hope of generating generic features that are more powerful than those obtained
through Single-Task Learning (STL) representations, where each task is trained in
a separate model, as shown in Figure 4.8. Such approaches offer advantages like
improved data efficiency, reduced overfitting through shared representations, and
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Figure 4.9: Different architectures of Multi-Task Learning models: (a) Multi-task
learning with hard parameter sharing, (b) Multi-task learning with soft parameter
sharing.

fast learning by leveraging auxiliary information. In deep learning approaches, MTL
is commonly performed via hard or soft parameter sharing [113]. In hard parameter
sharing (Figure 4.9a), parameters are shared between all the tasks, while keeping
task-specific output layers for each task. In soft parameter sharing (Figure 4.9b),
each task has its own model with its own parameters and the distance between the
parameters of the model is then regularized in order to encourage the parameters
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to be similar.
OmniArt, proposed by Strezoski et al. [114], is a popular multi-task method

used for artwork classification. This approach uses a multi-output CNN model that
employs a shared convolutional base, ResNet50, for feature extraction, and separate
output layers for each task. The model is trained by minimizing an aggregated loss,
which is obtained by combining the separate losses using a weighted combination.
The use of a shared base ensures that the model captures common features across
different tasks, which leads to better generalization and efficiency.The model is eval-
uated on the Rijks’14 dataset, which consists of 112,039 images classified according
to multiple attributes, including 6,626 artists, 1,054 types, 406 materials, and 628
periods during which they were created. Additionally, the authors introduce their
own dataset, OmiArt, containing 432,217 artworks classified based on multiple at-
tributes, including 21,364 artists, 837 types, created on 6,385 materials, and during
2,389 periods. The results show that the multi-task approach outperforms single-
task models and achieves good performance across all the different classification
tasks. Furthermore, the authors also demonstrate the importance of using a shared
base by comparing the performance of their multi-task model with and without a
shared base.

Belhi et al. [115] proposed a multi-modal architecture that combines both digital
images and textual metadata to classify the artist and the creation year in paintings.
The model takes a three-channel image input and passes it through the convolutional
base of a standard ResNet50. The textual metadata, including genre, medium, and
style, are one-hot-encoded and provided as input to a shallow feedforward network.
The visual and textual features are then concatenated and used to feed the final
classification layer. The authors collected paintings from three different datasets:
the WikiArt dataset (10,000 paintings), the METropolitan Museum of New York
(MET) dataset (20,000 paintings), and the Rijksmuseum dataset (13,594 paintings),
totaling 43,594 paintings annotated for the artist name, year of creation, genre, style,
and medium. The experimental results showed that the multi-modal classification
system outperformed the individual classification in most cases, demonstrating the
effectiveness of combining multiple sources of information for artwork classification.

Bianco et al. [7] propose a new approach to solving the tasks of artist, style, and
genre categorization in a multi-task model. Their proposed model is a deep multi-
branch neural network that takes crops of the input image at different resolutions to
gather information from low-level texture details and exploit the coarse layout of the
painting. The authors compare two different cropping strategies: a random strategy
and one based on Spatial Transformer Networks (STN). Additionally, they experi-
ment with injecting different hand-crafted features directly computed on the input
images, such as Local Binary Patterns (LBP), Generalized Search Trees (GIST),
histogram of oriented gradient (HOG), and others. The evaluation is carried out
on a new dataset built by the authors, named MultitaskPainting100k, sourced from
wikiart.org. The dataset consists of 100K paintings divided into 1508 artists, 125
styles, and 41 genres. The authors find that using the STN cropping strategy and
injecting HOG features achieves the best accuracies for style, genre, and artist clas-
sification. They also demonstrate that applying multi-task learning improves the
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accuracies on the three tasks compared to applying single-task learning for each
task separately.

The approach proposed by Garcia et al. [116] is a hard parameter sharing MTL
method that aims to obtain context-aware embeddings for art analysis. By jointly
learning multiple artistic tasks, the resulting visual representations are enforced
to capture relationships and common elements between four different artistic at-
tributes: author, school, type, or period, providing contextual information about
each painting. They use a standard common CNN, ResNet50, to extract deep fea-
tures from each input image and feed them to separate fully connected layers for
classification. They test their model on a multi-modal dataset for semantic art
understanding called SemArt, which contains 21,384 fine-art images, each with its
respective attributes, as well as a short artistic comment or description. The paint-
ings are classified according to 10 different common types, 25 schools, 18 different
timeframes, and 350 authors. Through their experiments, they showed that MTL
was able to enhance the art classification accuracies for all tasks compared to train-
ing a separate model for each task.

Zhao et al. [117] propose a novel approach to classify paintings’ type, school,
timeframe, and author using a graph convolutional network (GCN) and artistic
comments from the SemArt dataset. Instead of relying solely on painting visual
features, they incorporate natural language processing (NLP) techniques to extract
information from the comments. They construct a single artistic comment graph
based on co-occurrence relations and document word relations, and train an ArtGCN
on the entire corpus. The model uses four different GCN layers in the second layer to
address the various tasks. Their results demonstrate that this approach outperforms
previous state-of-the-art methods for the task of joint art classification.

ArtSAGENet is a multimodal architecture proposed by Efthymiou et al. [118],
which integrates Graph Neural Networks (GNNs) and CNNs to jointly learn visual
and semantic-based artistic representations. The authors represent the nodes in the
graph using GraphSAGE [119], a general inductive framework that leverages node
feature information (such as text attributes) to efficiently generate node embeddings
for previously unseen data. The model is tested on a large dataset of 75,921 paintings
from the WikiArt dataset and is used to classify them according to 750 artists, 20
styles, and 13 timeframes.

Yang et al. [120] proposed an adaptive multi-task learning method for automatic
art classification tasks. They used a Lagrange multiplier strategy to weight multiple
loss functions within the multi-task learning framework, enabling the system to
adaptively learn the weights of each task. The proposed method was tested on the
SemArt dataset [121], where the authors jointly solved four tasks: type, school,
timeframe, and author. Their experiments demonstrated that the adaptive multi-
task learning method improved the performance of art classification compared to
traditional multi-task learning methods.

Castellano et al. [122] presented ArtGraph, an artistic Knowledge Graph (KG)
based on WikiArt and DBpedia. These nodes were interconnected, and each of them
was connected to its attributes. For example, the artist’s attributes included the
field they belonged to, the movement they belonged to, and others. The artwork’s
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Table 4.1: Performance of the aforementioned models in STL and MTL.

Model Setting Dataset
Task Accuracy (%)

Artist Style Genre School Type Time Material

[114]

MTL
Rijks’14

52.2 93.7 70.1 98.0
STL 50.3 91.7 71.2 97.2
MTL

OmniArt
64.5 99.4 77.9 76.8

STL 60.7 99.0 79.3 74.0
[7] MTL Multitask

Painting100k
56.5 57.2 63.6

[116]
MTL

SemArt

60.3 69.1 79.1 61.6
STL 55.7 63.6 78.7 59.2

[117]
MTL 61.5 66.7 79.0 61.6
STL 52.6 63.5 77.1 59.2

[120] MTL 61.5 78.7 80.5 65.5

[118]
MTL

WikiArt
76.6 77.6 79.2

STL 65.5 70.1 71.4

[122]
MTL WikiArt +

DBpedia
58.58 76.13

STL 58.31 71.23

attributes included the media it was made of, its style, genre, and others. This
graph provided knowledge discovery capabilities without the need to train a learning
system. The authors used ArtGraph to build a KG-enabled painting classification
method. Their method extracted embeddings from ArtGraph and injected them as
contextual knowledge into a deep learning model. A concatenation layer received
both the contribution of visual embeddings, extracted from a Vision Transformer
(ViT), and graph embeddings extracted from ArtGraph using a Graph Attention
Network (GAT), respectively. The overall network learned to minimize the error
made in predicting the correct style and genre of a given input painting.

One of the key advantages of MTL models is that they allow for the optimization
of a single aggregated loss that combines the losses of each individual task. By doing
so, the model is able to focus on finding common elements between the tasks and
identifying relationships between them. This is particularly useful in the context
of artwork classification, where different artistic attributes may be interrelated and
correlated, such as the relationship between the style and the artist.

Another advantage of MTL models is that they are able to incorporate contex-
tual information provided by the painting images themselves. This is achieved by
considering the relationships between common elements in the visual appearance of
the images when multiple artistic tasks are trained together. For example, if the
model is simultaneously trained to classify the artist and the style of a painting, it
may learn to identify common visual elements that are characteristic of the artist’s
style, such as brushstrokes, color palette, and composition.

MTL models have proven to be effective in artwork classification, allowing for the
joint computation of multiple artistic-related tasks and capturing relationships be-
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tween different attributes, while also taking into account the contextual information
provided by the images themselves.

Table 4.1 presented the prediction performance of the aforementioned models
under MTL and STL settings. Most of the results showed that tasks, when learned
together in a single model, tended to perform better compared to when trained
separately. However, the test results presented by [114] and [117] indicated that
combining all the tasks together in a single model was not always the best solution
to improve the model’s performance. For instance, in [114], the Timeframe clas-
sification was more accurate when the model was trained in a STL setting. This
meant that some tasks could have a negative effect when trained with others due to
conflicting needs. In this case, increasing the performance of a model on one task
would hurt performance on a task with different needs, a phenomenon referred to
as negative transfer or destructive interference. Minimizing negative transfer was a
key goal for MTL methods.

Hence, the challenge is to identify the optimal combination of tasks to improve
HOI, but testing all possible permutations is computationally expensive. Recently, a
paper from Stanford [123] proposed various approaches to reduce the search for the
best combination of tasks. One of the most effective proposed methods is the Higher-
Order Approximation (HOA) from lower-order, which suggests that a simple average
of the first-order networks’ training losses is a good estimator of the training loss
of a higher-order network. By using this strategy, one can predict the performance
of all networks with three or more tasks using the performance of all fully trained
two-task networks. Firstly, all networks with two or fewer tasks are trained to
convergence. Then the performance of higher-order networks is predicted, network
selection is performed on both the trained and predicted networks, and the higher-
order networks are trained from scratch.

To further investigate the HOA theory, I took the model of [116] and applied
HOA to solve the painting classification based on author, type, school and timeframe.
The images are fed to ResNet50 without its last fully connected layer to extract
the shared visual embeddings. Then, the generated embeddings are input to four
separate classifiers for task classification where each classifier is composed of a fully
connected layer followed by a ReLU nonlinearity. The outputs from each task-
specific layer are jointly used to compute a classification loss. ResNet50 is initialised
with its standard pre-trained weights for image classification, whereas the weights
from the rest of the layers are initialised randomly. The images are scaled down
to 256 pixels on each side and randomly cropped into 224 × 224 patches. During
training, the visual data is augmented by randomly flipping the images horizontally.
The size of the embeddings produced by ResNet50 is 1x2048. Stochastic gradient
descent with a momentum of 0.9 and a learning rate of 0.001 is used as the optimizer.
The training is conducted using mini-batches of 28 samples for a maximum of 300
epochs, with a patience of 30 epochs; this means that if the calculated validation
loss does not decrease for 30 epochs, the training stops. The loss weight for all tasks
is set to 0.25.

I first trained every pair of tasks using the mentioned setup and report the
training loss for each task when trained in each model in Table 4.2 . With four
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Table 4.2: The training loss of the four tasked trained in all possible pairs.

Training Loss of
Type School Time Author

T
ra
in
ed

in

2TL

TY+SC 0.0058 0.0087
TY+TI 0.0066 0.0086
TY+AU 0.0118 0.0799
SC+TI 0.0093 0.0098
SC+AU 0.016 0.0695
TI+AU 0.0133 0.0657

Table 4.3: The estimated training loss of each task when trained in the five different
high order settings (3TL,4TL) based on HOA.

Based on HOA, Training Loss of
Type School Time Author

T
ra
in
ed

in

3TL

TY+SC+TI 0.0062 0.009 0.0092
TY+SC+AU 0.0088 0.01235 0.0747
TY+TI+AU 0.0092 0.01095 0.0723
SC+TI+AU 0.01265 0.01155 0.0676

4TL TY+SC+TI+AU 0.00807 0.0113 0.01057 0.0717

different tasks, six models are trained C4
2 , each with two tasks (2TL): Type &

School (TY+SC), Type & Timeframe (TY+TI), Type & Author (TY+AU), School
& Timeframe (SC+TI), School & Author (SC+AU), and Timeframe & Author
(TI+AU).

After training all the possible pair of tasks, I apply HOA to estimate the loss
of each task in a higher order model; 3-Task Learning (3TL) and 4-Task Learning
(4TL). For example, The loss of Type when trained with School and Timeframe
is: (0.0058+0.0066)/2. The loss of type when training with School, Timeframe, and
Author is: (0.0058+0.0066+0.0118)/3. There are, C4

3 , four different combinations of
3TL models and one 4TL model. Table 4.3 shows the estimated losses for each task
in all five high order model settings. We can see that Type, School and Timeframe
report the lowest training loss when trained together. While Author has the lowest
training loss when trained with School and Timeframe. Therefore, to get the best
model with the lowest Type, School, and Timeframe losses, one needs to train and
test these three task jointly in a single model. Whereas for the Author task, one
trains the MTL model consisting of School, Timeframe, and Author, but during
test time, only the results for the Author are inferred. This way, The School and
the Timeframe are helping the Author by incorporating their features in the shared
module.

To confirm this theory, I trained all the four 3TL and the 4TL models and
report the training losses for each task in five different MTL settings. The results
from Table 4.4 confirm Standley et al.’s [123] higher order approximation theory,
which suggests finding the optimal task combination for achieving the lowest loss
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Table 4.4: The reported training loss of each task when trained in the five different
high order settings (3TL,4TL).

Training Loss of
Type School Time Author

T
ra
in
ed

in

3TL

TY+SC+TI 0.0125 0.028 0.0199
TY+SC+AU 0.0224 0.0458 0.2371
TY+TI+AU 0.02 0.0232 0.2242
SC+TI+AU 0.0419 0.0233 0.1881

4TL TY+SC+TI+AU 0.0334 0.0746 0.0385 0.3739

Test Accuracy of
Type School Time Author

T
ra
in
ed

in

STL

Type 0.791
School 0.651
Time 0.598
Author 0.558

2TL

TY+SC 0.775 0.649
TY+TI 0.785 0.609
TY+AU 0.779 0.537
SC+TI 0.662 0.595
SC+AU 0.652 0.535
TI+AU 0.616 0.562

3TL

TY+SC+TI 0.780 0.667 0.594
TY+SC+AU 0.782 0.670 0.536
TY+TI+AU 0.789 0.627 0.537
SC+TI+AU 0.662 0.613 0.543

4TL TY+SC+TI+AU 0.803 0.681 0.606 0.528

Table 4.5: The test accuracies of all four tasks under the different STL, 2TL, 3TL,
and 4TL settings.

and optimal model performance.
As mentioned by [123], HOA comes with a penalty in terms of prediction quality.

However, this technique requires only a quadratic number of networks to be trained
rather than an exponential number, and would theoretically be advantageous when
the number of tasks is large. In Table 4.5, the test accuracies are reported for the
four tasks trained in all the possible combinations. The highest accuracy achieved
for each task is indicated in bold. Meanwhile, the underlined number represents the
test accuracy for the four tasks in the setting determined by the HOA.

Another challenge in MTL is appropriately weighting the loss functions for each
task. A common approach to facilitate multi-task optimization is to balance the
individual loss functions across different tasks. When training a model on multiple
tasks, the task-specific loss functions need to be combined into a single function
that the model is trained to minimize. This raises the question of how to design
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a combined loss function that is suitable for all tasks. Hence, it is necessary to
consider multiple loss weighting strategies during the design of the MTL model to
achieve optimal performance across all tasks. These strategies, such as Gradient
Normalization (GradNorm), Uncertainty Weights (UW), Conflict-Averse Gradient
Descent (CAGrad), Random Loss Weight (RLW), and others (see Table 4.6), aim
to balance the different tasks and mitigate negative effects.

Table 4.6: Loss weighting strategies used in multi-task learning.

Weighting Strategy
Equal Weighting (EW)

Gradient Normalization (GradNorm) [124]
Uncertainty Weights (UW) [125]

Homoscedastic Uncertainty (HW) [126]
Dynamic Weight Average (DWA) [127]
Geometric Loss Strategy (GLS) [128]

Projecting Conflicting Gradient (PCGrad) [129]
Gradient sign Dropout (GradDrop) [130]

Impartial Multi-Task Learning (IMTL) [131]
Gradient Vaccine (GradVac) [132]

Conflict-Averse Gradient descent (CAGrad [133]
Random Loss Weighting (RLW) [134]

To enhance the detection of human-object interactions in paintings, I propose
the application of multi-task learning to improve the model’s learning capability.
Within the multi-task learning framework, four tasks are learned simultaneously:
artist classification, timeframe estimation, type recognition, and author classifica-
tion. This simultaneous learning facilitates knowledge transfer and enhances the
accuracy of HOI detection. By sharing representations between tasks, the model
can leverage common patterns and features, leading to improved generalization and
enhanced performance in HOI detection in paintings. Furthermore, the inclusion of
contextual information from the painting images, considering the relationships be-
tween shared visual elements during the training of multiple artistic tasks, enriches
the model’s understanding and further improves the accuracy of HOI detection.

Specifically, I augment the HOI detection model by incorporating four additional
tasks related to the painting, training the model on these tasks alongside the primary
HOI task. By doing so, I integrate additional attributes about the painting into
the model’s prediction process. Simultaneously learning multiple attributes about
the painting enables the model to develop a more comprehensive understanding
of the scene, significantly enhancing its ability to accurately detect human-object
interactions. This is achieved by combining the supplementary information learned
from the auxiliary tasks with the visual information, thereby extracting more robust
and meaningful features. Consequently, multi-task learning plays a crucial role in
significantly improving the performance of the HOI detection model by providing a
more comprehensive and holistic representation of the painting.
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Figure 4.10: The proposed system for Human Human Object Interaction Detec-
tion using multi-task Learning HOI-Paint-MTL. The painting is first input to an
object detection model for instance detection. In episodic memory module, appear-
ance features from the image, the candidate human, object, and ROI are extracted
using an extraction CNN (ResNet-101). In the semantic memory module, semantic
features are extracted for the detected object and all the related candidate actions.
The input features of the detected object-related actions are replaced with their
contextual ones. Losses are calculated from the episodic and semantic modules and
joint together for optimization.

The flowchart of my multi-task learning model HOI-Paint-MTL, illustrating
the steps for the simultaneous prediction of multiple attributes in an image, is de-
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picted in Figure 4.10. Following a similar approach to the single-task learning model,
the initial stage involves the detection of objects and humans within the image. Uti-
lizing a shared pretrained CNN, visual features are extracted from various regions
of interest, including the cropped human (F VH), object (F VO), ROI (FROI), and
the entire image (FIM). Additionally, spatial features (F SH and F SO) pertaining
to the human and object are obtained and concatenated with their respective visual
features, resulting in the extraction of appearance features for both the human (FH)
and the object (FO). Subsequently, the obtained representations are passed through
four separate fully connected layers, each equipped with an activation function for
task classification. This comprehensive approach enables the simultaneous predic-
tion of multiple attributes in the image, leveraging shared visual features to enhance
both accuracy and efficiency. The semantic memory stream of the proposed MTL
model is similar to that of the STL model, where it is only used in the interaction
prediction.

In the MTL setting, the HOI classification stream closely resembles the one in
the STL setting, except for the parameter sharing aspect. The distinguishing factor
is that multiple tasks to be classified share parameters from the feature extraction
backbone. This parameter sharing facilitates the utilization of shared representa-
tions across tasks, enabling the model to leverage visual features that are pertinent
to multiple tasks concurrently. Through the exploitation of shared parameters, the
MTL approach enhances performance on the HOI task resulting in a more compre-
hensive comprehension of the input image.

Similarly to the STL model HOI-Paint, in the episodic stream, the action predic-
tion scores (sH , sO, and sROI) are computed by passing FH , FO, and FROI through
separate fully connected layers, followed by a Sigmoid activation function. To quan-
tify the dissimilarity between the predicted scores and the ground truth labels for
each individual component of the HOI, individual cross-entropy losses are com-
puted: LcrossH for the human, LcrossO for the object, and LROI

cross for the ROI.
These losses capture the disparity between the predicted scores and the ground
truth labels for each specific HOI element. Moreover, in the semantic stream, the
graph loss mathcalLGraph defined by the cosine similarity between the semantic and
visual representations of the interaction is calculated.

Moreover, the classification scores from the additional tasks, sType, sSchool, sT imeframe,
and sAuthor, are calculated by feeding the images features to fully connected layers
followed by a sigmoid activation function. After calculating the scores the individual
cross entropy losses, LType

cross, LSchool
cross , LT imeframe

cross , and LAuthor
cross are found.

The resulting total MTL loss, LTotal, is defined as the weighted sum of the
individual losses for each task:

LTotal = λ1LH
cross + λ2LO

cross + λ3LROI
cross + λ4LGraph

+ λ5LType
cross + λ6LSchool

cross + λ7LT imeframe
cross + λ8LAuthor

cross

(4.4)

where, λ1, λ2,, λ3, and λ4 are added weights to each HOI task-related loss function
and λ5, λ6, λ7, and λ8 are the weights to each of the additional four tasks. The final
target is to minimize the total loss term in (4.4).

64



Chapter 5

Experiments and Results

This chapter offers an overview of the HOI detection datasets in natural images
used to evaluate the models, along with the experiments conducted to validate the
proposed system’s performance compared to the state-of-the-art model. The chapter
also presents the new HOI detection dataset, highlighting its characteristics. It also
describes the experiments conducted to assess the proposed system’s performance,
including the metrics used for evaluation.

5.1 HICO-DET and V-COCO Datasets

Different dataset have been used to perform experiments for human object inter-
action detection (Table 5.1). Humans Interacting with Common Objects (HICO)
dataset was first introduced by Chao et al. [26]. The HICO dataset comprises
47,774 images, encompassing 600 categories of human-object interactions denoted
as < verb, object >. It includes 117 action classes (including one “no interaction”
class) and 80 object labels. Subsequently, the HICO dataset was augmented to
HICO-DET [58] by incorporating ground truth detected human and object bound-
ing boxes. HICO-DET consists of 38,118 training and 9,658 testing images. In each
image, a person can engage in multiple interactions with different objects. The train-
ing set of HICO-DET contains 117,871 interaction annotations for 600 interaction
classes, while the test set includes 33,405 interaction annotations.

Table 5.1: The different benchmarks for classifying and detecting human-object
interactions (HOI) in images. Nb.: Number of

Dataset Year Nb. Im-
ages

Train/Val Test Nb.
Objects

Nb. Ac-
tions

Task

HICO 2015 47,776 38,118 9,658 80 117 HOI Clas-
sification

HICO-
DET

2018 47,776 38,118 9,658 80 117 HOI De-
tection

V-COCO 2015 10,346 5,400 4,946 80 29 HOI De-
tection
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Table 5.2: Occurrence of some of the 600 interactions of HICO-DET train set.

Interaction Train occurrence
ride skateboard 1456
straddle motorcycle 1030
hold dog 304
exit airplane 30
wash wine glass 1

Table 5.3: Occurrence of some of the 117 verbs of HICO-DET train set.

Verb Train occurrence
hold 13998
ride 8692
kick 249
peel 53
zip 1

Tables 5.2 and 5.3 present the occurrence of a selection of verbs and interactions
from the HICO-DET dataset. Interaction categories with fewer than 10 training
samples are categorized as “rare,” while the remaining categories are referred to as
“non-rare.” In total, there are 138 rare categories and 462 non-rare categories. Ob-
serving Table 5.3, it can be noted that the verb ’hold,’ which appears in more than
10% of the interactions, has the highest occurrence count in the training set. Con-
versely, verbs such as ’zip’ occur only once in the training set. This imbalance in the
HICO-DET dataset is evident. Furthermore, it is worth mentioning that multiple
humans may be present in the same image, but not all of them are assigned inter-
action labels. Additionally, some images possess interaction labels despite lacking
visible human body parts.

Verbs in COCO (V-COCO) [135] is another dataset commonly used for evalu-
ating HOI models. It is derived from the MS-COCO dataset and consists of 2,533,
2,867, and 4,946 images for training, validation, and testing, respectively. The
dataset includes 16,199 instances of humans and 80 object labels. Additionally, V-
COCO incorporates 29 verb labels, with 25 representing interactions with objects
and 4 representing body motions such as ’run’ and ’walk’. Similar to HICO-DET,
the V-COCO dataset allows for multiple interactions between a person and different
objects within each image.

5.1.1 Evaluation Metrics

Following the work of Chao et al. [58], HOI detection systems evaluate their per-
formance on both datasets using the role mean average precision (mAP). An HOI
detection is considered a True Positive (TP) if it accurately localizes the human and
object (i.e., the predicted box has an Intersection over Union (IoU) ratio greater
than 0.5 with the ground truth) and predicts the interaction label correctly. Other-
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wise, it is considered a False Positive (FP):

Detection =


TP, if IoU(pred BB,GT BB) ≥ 0.5

&pred Action = True

FP, otherwise

There are two modes of mAP evaluation for HICO-DET: the Default (DT) mode
and the Known-Object (KO) mode. In the DT mode, each HOI category is evaluated
on all testing images, while in the KO mode, an HOI is only evaluated on images
that contain its associated object category. The mAP is reported for three different
category sets: (1) all 600 HOI categories in HICO (Full), (2) 138 HOI categories
with less than 10 training instances (Rare), and (3) 462 HOI categories with 10 or
more training instances (Non-Rare).

In V-COCO, there are HOIs defined without object labels. To handle this situ-
ation, the performance is evaluated in two different scenarios based on V-COCO’s
official evaluation scheme. In Scenario 1, detectors are required to report cases where
there is no object, while in Scenario 2, the prediction of an object bounding box is
ignored in these cases.

5.2 SemArt-HOI Dataset

The task of human object interaction detection in paintings is a relatively new
research area that has not received much attention in the past in no small part due to
the lack of suitable datasets. To overcome this limitation, I propose the SemArt-HOI
dataset, which is the first dataset specifically designed for human object interaction
detection in paintings. I augment the existing SemArt dataset with object detections
and interaction labels, allowing training and evaluating HOI detection models more
effectively.

The SemArt dataset, introduced by Garcia and Vogiatzis [121], is a compre-
hensive multi-modal dataset designed for semantic art understanding (https://
researchdata.aston.ac.uk/id/eprint/380/). It consists of a diverse collection of
21,384 fine-art images, each accompanied by corresponding attributes such as Type,
School, Timeframe, and Author. Additionally, each painting is associated with a
concise artistic comment or description. The paintings in the SemArt dataset are
classified into 10 different common types, including portrait, landscape, religious,
study, genre, still life, mythological, interior, historical, and more. They are also cat-
egorized into 25 distinct schools, such as Italian, Dutch, French, Flemish, German,
Spanish, English, and others. The dataset further covers 18 different timeframes,
representing periods of 50 years each, ranging from 801 to 1900. Moreover, SemArt
includes information about 350 different authors, including renowned artists like
Vincent van Gogh, Claude Monet, Giovanni Santi, Michelangelo Cerquozzi, Nicolas
Poussin, and many more.

To annotate the SemArt-HOI dataset, I utilized the Make Sense tool [136], which
is an online platform that offers free photo labeling capabilities. Using this tool,
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Figure 5.1: The human object interaction annotation on the SemArt-HOI dataset.
The dataset includes objects such as humans, chairs, and books, which are detected
and assigned bounding boxes. Each bounding box is defined by the coordinates of its
top left corner (x1, y1) and bottom right corner (x2, y2). Additionally, an interaction
verb label, such as “sit on” or “hold,” is assigned to each pair of a human and an
object in the image.

I annotated every image in the dataset with the corresponding Human-Object-
Interaction (HOI) triplet, represented as < human, predicate, object >. The anno-
tation process includes drawing bounding boxes around each human and object in-
volved in an interaction within the image. For each instance of interaction, I defined
a bounding box using its upper-left corner coordinates (x1, y1) and bottom-right
corner coordinates (x2, y2). Additionally, I assigned a class label to each bounding
box to indicate the object category, such as human, chair, book, and so on.

In the second step of the annotation process in each image one draws an arrow
to visually connect the corresponding entities, representing the interaction between
them. Additionally, an interaction verb class, such as “sit on” or “hold,” is assigned
to each pair, providing a specific label for the observed interaction. Figure 5.1 il-
lustrates an example of this annotation process. By completing this second step, I
finalized the annotation process for the SemArt-HOI dataset, ensuring that all nec-
essary information for training and evaluating HOI detection models was included.
The SemArt dataset consists of 14,187 images out of the original 21,384 images that
contained pairs of interacting entities. The remaining images either lacked human
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Table 5.4: SemArt and SemArt-HOI datasets.

SemArt SemArt-HOI
Number of Images 21,384 14,187
Type 10 10
School 25 25
Timeframe 18 18
Author 350 343
Object - 99
Verb - 66
Interaction - 248

presence or depicted humans that were not engaged in any interactions with objects.
Consequently, the SemArt-HOI dataset consists of these 14,187 labeled images.

The SemArt-HOI dataset encompasses various categories, including 10 different
types, 25 schools, 18 timeframes, and 343 authors, as displayed in Table 5.4. Each
image within the dataset features a minimum of two instances of 99 objects, in-
cluding humans, chairs, dogs, horses, tables, and beds. Furthermore, each image
contains at least one interaction verb from a selection of 66 verbs, such as hold,
sit on, write on, and paint. In total, the SemArt-HOI dataset encompasses 248
unique interactions.

The SemArt-HOI dataset contains a significant amount of object and interaction
annotations, with a total of 73,683 object bounding box annotations and 40,101
interaction labels. To provide a better understanding of the distribution of objects
and interactions in the dataset, several charts have been created.

Figure 5.2: Number of total instances per object class in SemArt-HOI dataset.

Figure 5.2 presents a bar chart that shows the total number of instances for
each of the 99 object categories in the dataset. This chart illustrates that the most
frequent objects in the dataset are person, book, and ground. In addition to objects,
the SemArt-HOI dataset contains annotations for verbs and interactions.
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Figure 5.3: Number of total instances per action class in SemArt-HOI dataset.

Figure 5.3 presents a bar chart that shows the total number of instances for each
of the 66 verbs in the dataset. The chart illustrates that the most frequent verbs
are hold, sit-on, and ride.

Figure 5.4: Number of total instances per interaction class in SemArt-HOI dataset.

Finally, Figure 5.4 presents a bar chart that shows the total number of instances
for each of the 248 interactions in the dataset. This chart illustrates that the most
frequent interactions are person-hold-rod, person-hold-book, and person-hold-baby.
These charts provide valuable insights into the distribution of objects and interac-
tions in the SemArt-HOI dataset, which can aid in the development and evaluation
of HOI detection models.
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5.3 Experiments

5.3.1 Experiments on HICO-DET Dataset

The models NN1, NN2, and NN3 developed on natural images are trained on the
HICO-DET dataset, as there were no painting datasets available yet. During train-
ing, a threshold of 0.8 is set for the human detection score and 0.4 for the object
detection score to filter out detections. To extract pose features using Regional
Multi-person Pose Estimation (RMPE), 17 keypoints are obtained from the human
bounding box. These keypoints are then connected with lines of varying gray values
(ranging from 0.15 to 0.95) to represent different body parts, constructing the pose
map. The size of the final feature vector in both the visual and semantic streams is
set to 1x512.

For each detected human, the visual, spatial, and pose features are concatenated
together and passed through a fully connected layer, followed by a sigmoid activa-
tion function. This process is used to obtain an action prediction score based on the
human information. Similarly, another action prediction score is obtained by con-
catenating the object and union appearance features, followed by a fully connected
layer and a sigmoid activation function. These scores are then used to calculate
individual cross-entropy losses: LcrossH for the human and LcrossO for the object.

The experiments are conducted on the HICO-DET dataset, which is a large
dataset for Human Object Interaction (HOI) prediction. The dataset consists of
38,118 training images and 9,658 testing images, covering 80 objects and 117 action
verbs. HICO-DET provides annotations for 600 human-object interactions, catego-
rized as Rare or Non-Rare based on their occurrence frequency in the training set.
There are 138 Rare and 462 Non-Rare interactions in the dataset.

To extract affordance-based relationships and action verbs, ConceptNet is used as
a database. ConceptNet combines data from various sources such as crowd-sourced
platforms, expert-created resources, and games with a purpose like Wiktionary and
OpenCyc.

The evaluation metric used for performance assessment is the role mean Average
Precision (role mAP), following the approach of [58]. A prediction for a human-
object interaction is considered correct if the human and object bounding boxes
have an Intersection over Union (IoU) greater than 0.5 with the ground-truth boxes,
and if the predicted verb class label is accurate.

For human and object detection, a pretrained Faster R-CNN model [101] is
utilized. During training, a threshold of 0.8 is set for the human detection score,
and 0.4 for the object detection score. These thresholds are determined through
experimentation. ResNet-101 [54] is used as the feature extraction backbone. Fine-
tuning of the Faster R-CNN model is performed only during testing.

The object nodes in the graph network are represented by their semantic features.
BERT [74] is employed as a pretrained model to extract vector representations of
words, which have a size of 1x768. To obtain the semantic features of candidate
verbs, the sentence composed of the verb and the object is inputted to BERT, and
the features of the first word are extracted as the verb features in the context of the
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object. Two convolutional layers are applied to the input graph to obtain the final
semantic vector representations of the object words and their connected verbs, with
a size of 1x512. LeakyReLU activation function with a negative slope of 0.2 is used
after each layer of the graph.

The hyperparameters for the total loss are set as follows: λ1 and λ2 are both
1, and λ3 is set to 2. The margin for the cosine loss is set to 0.1. The model is
trained using Stochastic Gradient Descent (SGD) for 10 epochs, with a learning
rate of 0.001, weight decay of 0.0005, and momentum of 0.9. The experiments are
conducted on a 1xV100 NVIDIA 32GB GPU. More than 18 networks are designed,
and the performance of the best three models is reported.

The three different models are trained and tested on the HICO-DET dataset
under Default and Known Object settings. The mean average precision (mAP)
is used as the evaluation metric, following the method of [58]. The mAP results
for the proposed models are presented in Table 5.5. From the results, it can be
observed that the proposed model significantly improves HOI prediction mAP by
more than 12% on the HICO-DET Full test set. However, end-to-end transformer-
based model QAHOI [83] still outperform two-stage models on natural images due
to the implicit attention mechanism represented in vision transformers for visual
contextual representation. In QAHOI, Chen et al. [83] utilize query-based anchors
and a multi-scale architecture to extract features from different spatial scales and
predict all elements of an HOI instance. The multi-scale architecture in QAHOI
allows for capturing the spatial variability of objects in different scales, leading
to improved localization and more accurate HOI detection. The use of query-based
anchors provides a flexible and adaptable approach, enabling the model to effectively
handle the variability in human-object interactions.

In addition to evaluating the proposed models on the HICO-DET dataset, the
best performing model, NN3, is further tested on the Watercolor subset from the
BAM dataset. It is compared to the state-of-the-art HOI prediction model, QA-
HOI. The evaluation on the Watercolor subset consists of testing the model on 235
images using three different object detectors: YOLOv3 [137], Faster R-CNN [101],
and DETR [81], which is a transformer-based object detector. All of these object

Table 5.5: Performance of the proposed systems compared to the SOTA model on
the HICO-DET test sets (%mAP).

Model Detector
Feature
Backbone

HICO-DET
Default Known Object

Full Rare NoneRareFull Rare NoneRare
Base[33]

COCO ResNet50

14.7 13.26 15.13 - - -
NN1 18.99 14.54 20.32 19.72 16.91 20.56
NN2 20.21 15.69 21.56 21.65 19.84 22.19
NN3 22.73 21.37 23.14 25.86 24.57 26.24
NN3 HICO-

DET
ResNet101 27.26 21.92 28.85 29.27 24.77 30.61

QAHOI Swin-Large 35.78 29.8 37.56 37.59 31.66 39.36
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Table 5.6: Performance of NN3 and QAHOI on the Watercolor dataset.

Model Object Detector Wrong Object
Detected

Correct Object &
Wrong Interaction

Correct HOI

NN3

YOLOv3 174/235 31/235 30/235
Faster-RCNN 127/235 49/235 59/235
DETR 169/235 35/235 31/235
Ground Truth - 103/235 132/235

QAHOI - 134/235 53/235 48/235

detectors are pretrained on the MS-COCO dataset [25]. The performance of the
model is also evaluated using ground truth detections from the Watercolor dataset.

Based on the analysis of the results in Table 5.6, it is clear that the proposed
model outperforms the current state-of-the-art system on the Watercolor dataset
when tested with Faster R-CNN as the object detector. However, both models still
face significant challenges in accurately detecting human-object interactions in the
context of paintings.

One of the main challenges is the correct detection of objects in the paintings.
More than 50% of the images in the Watercolor dataset did not have a correct object
detected, which negatively impacted the performance of both models. Improving
the object detection step is crucial for enhancing the overall performance of HOI
prediction models on such artistic datasets. Additionally, the proposed model strug-
gled to predict 44% of the actions correctly. This can be attributed to the nature of
paintings, where the depicted actions may not always align with real-world scenarios
or may require a deeper understanding of the artistic context.

5.3.2 Experiments on Semart-HOI Dataset

To evaluate the effectiveness of the proposed systems on the SemArt-HOI dataset,
I follow the approach described in [58] and measure their performance using the
role mean average precision (role mAP) metric. This metric considers a predicted
human-object interaction to be accurate if both the human and object bounding
boxes have an intersection over union (IoU) greater than 0.5 with the corresponding
ground-truth boxes, and the predicted verb class label for the interaction pair is
correct. For detecting humans and objects in the SemArt-HOI dataset, you fine-
tune the Faster R-CNN [101] model for 150 epochs. The threshold values of 0.8 for
human detection score and 0.4 for object detection score are determined through
experimentation. The ResNet-101 [54] architecture is used as a backbone for feature
extraction.

In the single-task learning model HOI-Paint, the hyperparameters λ1, λ2, λ3,
and λ4 are set to 1, representing equal importance for all loss components. The
models are trained using Stochastic Gradient Descent (SGD) for 10 epochs. The
learning rate is set to 0.001, the weight decay is set to 0.0005, and the momentum
is set to 0.9. The training process is conducted on a single Nvidia V100 GPU with
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Table 5.7: Performance comparison of my models in Single-Task Learning (STL)
and Multi-Task Learning (MTL) settings, HOI-Paint and HOI-Paint-MTL, with
the SOTA HOI detection model on the SemArt-HOI test sets (%mAP).

Model mAP Training-Time Training-GPU
HOI-Paint 18.32 1 day 18 hours

1xNvidia V100
HOI-Paint-MTL 18.64 2 days 1 hour
QAHOI [83] 17.13 8 days 3xNvidia V100

32 GB memory capacity.
In the multi-task learning model, the hyperparameters are set as λ1 = λ2 =

λ4 = λ5 = λ6 = λ7 = λ8 = 1 and λ3 = 0. Table 5.7 provides a comparison of the
performance of HOI-Paint and HOI-Paint-MTL with the state-of-the-art QAHOI
model. To ensure a fair comparison, I trained the QAHOI model on the SemArt-
HOI dataset for 150 epochs, using 3 parallel 32 GB Nvidia V100 GPUs. The results
demonstrate that my proposed MTL system achieves better performance than the
STL system, as well as the QAHOI model.

It is interesting to note that the QAHOI model leverages contextual information
from the entire image, rather than solely relying on the appearance features of inter-
acting pairs. However, my results suggest that this approach does not improve the
accuracy of HOI detection in paintings. Instead, my model’s performance indicates
that focusing on the appearance features of each individual interacting pair, rather
than the context of the entire scene, leads to more accurate predictions.

Moreover, my proposed two-stage models also require significantly less time and
computational resources than the state-of-the-art one-stage model, QAHOI. Specif-
ically, my models only requires one GPU for training and can be trained in a shorter
amount of time, whereas QAHOI requires three GPUs and a longer training time.
The reduced training time and computational requirements of my models allow for
faster deployment.

As depicted in Table 5.7, the incorporation of broader semantic context in the
proposed systems overcomes the limitations of relying solely on visual cues. This
integration allows for a more comprehensive analysis of the painting, resulting in
improved effectiveness and accuracy of HOI detection. By considering the semantic
context, the systems are able to gain a deeper understanding of the meaning and
interpretation of the artwork. This enhancement contributes to a more nuanced
understanding of the relationships between humans and objects in the painting,
ultimately enriching the overall analysis of the artwork.

HOI-Paint-MTL’s success in outperforming the QAHOI model provides further
evidence to support the conclusion that incorporating shared visual features in MTL
leads to improved performance in HOI detection tasks. The MTL approach allows
for shared representations across tasks, enabling the model to leverage visual features
that are relevant to multiple tasks simultaneously. This leads to a more compre-
hensive understanding of the input image, which improves the accuracy of the HOI
task, as well as the additional attributes being predicted.

Therefore, I demonstrate that incorporating multi-task learning into my model
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training process, with respect to predicting image attributes such as type, school,
timeframe, and author, led to a notable improvement in the model’s performance
for detecting interactions in paintings. By leveraging information from these other
tasks, my MTL model was able to enhance the interaction detection capabilities by
0.32% and outperform QAHOI by 1.51%.

Table 5.8: The training loss of HOI when trained in all possible 2TL settings.

Setting Task Combination Training Loss of HOI

T
ra
in
ed

in

STL HOI 0.046741

2TL

HOI+TYPE 0.0322
HOI+SCHOOL 0.0543
HOI+TIMEFRAME 0.0481
HOI+AUTHOR 0.0143

Table 5.9: The estimated training loss of HOI when trained in different high order
settings (3TL,4TL,5TL) based on HOA.

Setting Task Combination HOI Loss using
HOA

T
ra
in
ed

in

3TL

HOI+TYPE+SCHOOL 0.4325
HOI+TYPE+TIMEFRAME 0.04015
HOI+TYPE+AUTHOR 0.02325
HOI+SCHOOL+TIMEFRAME 0.0512
HOI+SCHOOL+AUTHOR 0.0343
HOI+TIMEFRAME+AUTHOR 0.0312

4TL

HOI+TYPE+SCHOOL+TIMEFRAME 0.04487
HOI+TYPE+SCHOOL+AUTHOR 0.0336
HOI+TYPE+TIMEFRAME+AUTHOR 0.03153
HOI+SCHOOL+TIMEFRAME+AUTHOR 0.0389

5TL HOI+TYPE+SCHOOL+TIMEFRAME+AUTHOR 0.037225

Based on my main objective of improving the performance of HOI detection,
I apply Higher Order Approximation to my HOI-Paint-MTL model to determine
the best tasks to train with HOI for optimal HOI detection. I conducted a 2-
Task Learning (2TL) experiment to train HOI with the other four tasks for 10
epochs, using equal weights. Specifically, I trained HOI detection with Type, School,
Timeframe, and Author separately, and evaluated the training loss, as shown in
Table 5.8.

After obtaining these losses, I estimated the HOI loss when trained in higher
order settings (3TL, 4TL, and 5TL) using HOA as shown in Table 5.9. From the
results in Tables 5.8 and 5.9, we can see that the best combination for HOI is to be
trained with Author in a 2TL setting which leads to the lowest HOI training loss.
In Table 5.10, I compared the performance of my model in STL, MTL, and 2TL
with Author.
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Table 5.10: Performance comparison of HOI-Paint, HOI-Paint-MTL, and HOI-
Paint-2TL with author on the SemArt-HOI test sets (%mAP).

Model mAP
HOI-Paint 18.32
HOI-Paint-MTL 18.64
HOI-Paint-2TL (Author) 17.52

However, the results show that the model did not give the highest mean average
precision as estimated by HOA. A lower training loss indicates that the model is
better able to fit the training data. However, a lower training loss does not neces-
sarily mean that the model will have a higher mAP. This is because the model may
be overfitting the training data, which means that it is learning the noise in the
data rather than the underlying patterns. A higher mAP indicates that the model
is better able to generalize to new data. This is because the mAP is a measure of
how well the model is able to predict the labels of the test data. Therefore, the
relationship between the training loss and testing mAP can be complex. In some
cases, a lower training loss can lead to a higher mAP. However, in other cases, a
lower training loss can lead to a lower mAP. This is because the model did overfit
the training data.

To gain further insight into the impact of the various tasks learned simultane-
ously, I conducted additional experiments by training HOI-Paint-MTL with different
loss weighting methods. By varying the loss weights for the different tasks, I was
able to assess how much each task contributes to the overall performance of the
model. This information helps us to better understand the importance of each task
and how they relate to one another.

Uncertainty Weighting (UW) is used to balance the contributions of each task to
the overall performance of the model. By assigning higher weights to uncertain tasks,
the model can focus more on improving its performance on those tasks, while still
considering the other tasks. Thus, I use the inverse of the variance of the task-specific
loss as the weight for each task; this means that tasks with high variance, indicating
high uncertainty, will have higher weights, while tasks with low variance, indicating
low uncertainty, will have lower weights. In particular, the weights optimize the
model weights W and the noise parameters σ1,σ2 to minimize the following objective:

L(W,σ1, σ2) =
1

2σ2
1

L1(W ) +
1

2σ2
2

L2(W ) + logσ1σ2 , (5.1)

where, the loss functions L1, L2 belong to the first and second task respectively. By
minimizing the loss L with respect to the noise parameters σ1,σ2, one can essentially
balance the task-specific losses during training.

Random Loss Weighing (RLW) is a technique used that assigns random weights
to each task during training. The idea behind this technique is to introduce noise
into the training process, which helps the model learn more robust and generalizable
representations. The main advantage of random loss weighing is that it avoids the
need to manually set the task weights, which is challenging, especially when the
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tasks have different scales or levels of difficulty. By randomly assigning the weights,
the model is forced to learn to adapt to the different tasks without being biased
towards any particular task. Thus to apply RLW in my system, I use a Gaussian
distribution to sample the weights, which results in smooth updates to the task
weights over time.

Dynamic Weight Average (DWA) computes a weighted average of the model
parameters, where the weights are determined dynamically based on the recent his-
tory of the model’s performance. The main advantage of DWA is that it allows the
model to adapt to changes in the input distribution, which can occur frequently in
online learning scenarios. By adjusting the weights based on recent performance,
DWA gives more weight to the most recent and accurate model parameters, while
discounting older and potentially less relevant parameters. DWA is typically used
in conjunction with stochastic gradient descent (SGD) or other optimization algo-
rithms, where the model parameters are updated in small batches based on the
gradient of the loss function. Instead of using a fixed learning rate, DWA adjusts
the weights of the model parameters based on a running average of the loss function
over a recent window of training examples. DWA is implemented my model by us-
ing an Exponential Moving Average (EMA) to compute the dynamic weights. The
EMA gives more weight to more recent loss values, and less weight to older values,
so that the weights are updated gradually and smoothly over time. In DWA, the
task-specific weight ωi for task i at step t is set as:

ωi(t) =
Nexp(ri(t− 1)/T )∑
n exp(rn(t− 1)/T )

, rn(t− 1) =
Ln(t− 1)

Ln(t− 2)
, (5.2)

where, N is the number of tasks. The scalars rn (·) estimate the relative descending
rate of the task-specific loss values Ln. The temperature T controls the softness of
the task weighting. When the loss of a task decreases at a slower rate compared to
other tasks, the task-specific weight in the loss is increased. Thus, the target is to
minimize the total loss L defined as:

L =
∑

ωiLi , (5.3)

In Scenario1 and Scenario2, I manually set the loss weights for the different tasks.
For Scenario1, the Type, School, Time and Author losses are given a weight equal
to 0.15, while the HOI loss weight is set to 0.4. In Scenario2, the Type, School,
Time and Author losses are given a weight equal to 0.1, while the HOI loss weight
is set to 0.6.

Table 5.11 presents the results of various experiments conducted using different
loss weighting strategies. The Random Loss Weighting strategy demonstrated the
highest mAP, resulting in an overall performance improvement of 0.07%. RWL
helps the model learn to adapt to all tasks without being biased towards any one
specific task, which leads to a more balanced optimization process and improved
performance on all tasks. The random weighting also encourages the model to learn
the relationships between tasks, which can further improve its ability to generalize
to new data.
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Table 5.11: Performance comparison of my models using different loss weighting
methods on the SemArt-HOI test sets (%mAP).

Method mAP
HOI-Paint 18.32
HOI-Paint-MTL-EW 18.64
HOI-Paint-MTL-UW 18.71
HOI-Paint-MTL-RLW 18.78
HOI-Paint-MTL-DWA 17.63
HOI-Paint-MTL-Scenario1 18.59
HOI-Paint-MTL-Scenario2 18.35

5.3.3 Ablation Studies

To evaluate the influence of each representation obtained from the episodic memory, I
train the HOI-Paint model without the semantic memory and vary the weights of loss
associate to each pf the human, object, and ROI representations. Table 5.12 reports
the evaluation results of my STL model with episodic memory stream only, HOI-
Paint-Episodic, on the SemArt-HOI dataset with different loss weights. The weights
were adjusted according to the episodic loss function. At first, I gave equal weights
to the human, object, and region of interest (ROI) losses. However, I observed that
the model’s performance improved after removing the ROI loss. This is because
the ROI loss was found to be less informative in the context of my dataset, as the
objects and humans in paintings are often tightly cropped and centered. Removing
the ROI loss allowed the model to focus more on the appearance features of the
interacting pairs, leading to better performance.

To further analyze the influence of the human and object losses on the overall
performance, I experimented with different weights for each loss. I assigned the same
weight to the human and object losses and varied their values from 0.1 to 1.0 with a
step size of 0.1. The ROI loss was excluded from these experiments. Interestingly, I
found that the model achieved the highest mean average precision (mAP) when the
human and object losses were equally weighted. This suggests that the contributions
of the human and object losses to the total loss are roughly equivalent, and that the
model benefits from learning both equally.

Overall, as shown in Table 5.12, my experiments demonstrate that careful selec-

Table 5.12: Performance of the proposed HOI-Paint-Episodic system on the SemArt-
HOI test sets (%mAP) under different loss weighing settings.

Model Setting mAP

HOI-Paint-Episodic

λ1 = λ2 = λ3 = 1 17.54
λ1 = λ2 = 1, λ3 = 0 17.93
λ1 = 0.3, λ2 = 0.7, λ3 = 0 17.76
λ1 = 0.7, λ2 = 0.3, λ3 = 0 17.73

HOI-Paint 18.32
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tion and weighting of the loss terms significantly impacts the performance of the HOI
detection model. By removing less informative loss terms and tuning the weights
of the remaining ones, I was able to improve the performance of episodic memory
module by 0.39%. However, the absence of the semantic stream caused a decrease
in the HOI mAP by 0.39%. This shows that the integration of the semantic context
enables a more comprehensive analysis of the painting, leading to enhanced effec-
tiveness and accuracy in detecting HOIs. Thus, the inclusion of semantic context
allows the systems to attain a deeper understanding of the artwork’s meaning and
interpretation.

Table 5.13: Performance of the proposed STL system in HOI-Paint on the SemArt-
HOI test sets (%mAP) with and without spatial features.

Model mAP
HOI-Paint 18.32
HOI-Paint-Episodic 17.93
HOI-Paint-Episodic-w/o-Spatial 13.77

To evaluate the impact of the spatial stream in the model, I trained a version of
the HOI-Paint-Episodic model using only visual features. The results in Table 5.13
demonstrate that incorporating spatial features improves the model’s performance
by more than 4%. While it is true that physical or geometric relations may not
always be applicable in paintings, this dataset primarily consists of images depicting
portraits, religious icons, battle scenes, sculptures, and interior monuments where
such relations are likely to be present.

To further investigate the effect of the inclusion of the knowledge graph in the
model, Table 5.14 presents the HOI mAP on the different types of images. We can
see that the model performs worse in historical paintings and best in portraits. When
it comes to historical paintings, common sense does not always apply or be reliable
for several reasons such as historical context where historical paintings depict events,
settings, and people from different time periods and cultural contexts. The societal
norms, customs, and beliefs of those historical periods differ significantly from our
present-day common sense. Actions, gestures, or symbols portrayed in historical

Table 5.14: Performance of my HOI-Paint-Episodic and HOI-Paint models on the
some types of paintings in the test SemArt-HOI dataset (%mAP)

Type Number of test images HOI-Paint-Episodic HOI-Paint
Portrait 476 19.91 21.44
Religious 3787 17.53 18.81
Interior 259 17.82 18.67
Mythological 940 17.64 17.72
Landscape 1038 15.65 15.75
Genre 858 14.51 14.61
Historical 418 13.93 13.33
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(a) Historical painting. (b) Portrait painting.

Figure 5.5: Two types of paintings from the SemArt-HOI dataset. In figure 5.5a,
semantics do not apply, whereas in figure 5.5b semantics apply.

paintings have had different meanings or connotations that are no longer apparent
to contemporary viewers. Moreover, historical paintings frequently employ sym-
bolism and allegory to convey complex ideas or represent abstract concepts. These
symbolic elements do not align with everyday common sense interpretations. Artists
use visual metaphors, religious or mythological references, or specific iconography
that require contextual knowledge or historical understanding to interpret correctly.
In addition, artists often exercise creative license in historical paintings, emphasizing
artistic expression over strict adherence to factual accuracy. They distort propor-
tions, exaggerate certain features, or employ dramatic lighting and composition for
aesthetic or narrative purposes. These artistic choices can deviate from common
sense expectations and realism, intentionally distorting or stylizing historical events
or figures. It is essential to approach historical paintings with an awareness of their
specific historical, cultural, and artistic contexts. The interpretation of these art-
works requires a combination of historical knowledge, contextual understanding, and
an appreciation for the artistic intentions and techniques employed by the artists.

While common sense can play a role in analyzing historical paintings, it should
be complemented by a deeper exploration of the historical period and the artistic
conventions prevalent at the time of their creation. However, common sense often
applies in portrait paintings because they typically aim to depict the physical ap-
pearance and character of the subject in a realistic manner. For instance, portrait
paintings strive to capture the likeness and physical features of the individual being
portrayed. Common sense enables viewers to recognize familiar facial expressions,
body proportions, and other visual cues that are consistent with their everyday ex-
periences of observing and interacting with people. While common sense can provide
a useful framework for interpreting portrait paintings, it’s important to note that
artists also have the ability to manipulate and stylize their subjects. They may em-
phasize certain features, exaggerate expressions, or incorporate symbolic elements to
convey deeper meaning or evoke specific emotions. Therefore, while common sense
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Figure 5.6: HOI detections on SemArt-HOI dataset.

serves as a starting point, a nuanced analysis of the artist’s intention, cultural con-
text, and artistic techniques is crucial for a comprehensive understanding of portrait
paintings (Figure 5.5).

Paintings have their own unique characteristics and may depict spatial relation-
ships and semantic features that differ from those in natural images. Retraining
the model with these specialized spatial and semantic streams allows it to learn new
spatial relationships that are specific to paintings and capture semantic features that
are relevant in the context of paintings. This adaptation enhances the model’s abil-
ity to understand and predict human-object interactions in the context of artwork,
where common-sense or physical relationships may differ from those in natural im-
ages. Therefore, the addition of the spatial and semantic streams and retraining the
model specifically for paintings improves the model’s performance by accounting for
the unique spatial relationships and semantic features present in artwork, leading
to enhanced HOI predictions.

Figure 5.6 presents qualitative results of my proposed model on a few examples
of such images. For instance, in Figure 5.6a, the image contains only a black and
white sketch of a human holding a book. Despite the lack of color and contextual
information, my model can accurately detect the interaction between the human
and the book. This demonstrates the robustness of my model to handle images
with missing information.

Similarly, in Figure 5.6b, my model can detect the interaction between a human
and a horse in an image that lacks contextual information. This further highlights
the capability of my model to accurately detect HOIs even in challenging scenarios.

Moreover, in Figure 5.6c, my model was able to detect the interactions in a
scene where context and scale lack. This showcases the effectiveness of my model in
handling diverse and complex scenarios in painting analysis. Overall, the qualitative
results provide evidence for the effectiveness and robustness of my proposed model
for HOI detection in paintings.
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Chapter 6

Discussion

My proposed approach for HOI detection in paintings differs from the QAHOI model
in terms of reliance on visual contextual information. While QAHOI utilizes visual
context from the entire image, my approach focuses specifically on individual inter-
acting pairs. The results demonstrate that contextual information from the entire
image is not as useful for HOI detection in paintings. This finding is significant
because contextual information plays a critical role in other applications, such as
object detection in natural images. However, in the case of paintings, where the
composition is often highly stylized and structured, concentrating on individual in-
teracting pairs can provide more informative insights compared to considering the
overall scene context. Specifically, my research reveals that incorporating visual fea-
tures from the region encompassing the human and the object can actually decrease
the performance of the model. This finding highlights that, in paintings, visual con-
text can have a negative impact on interaction prediction due to the unique nature
of paintings and their presentation style.

Moreover, my proposed model takes into account the specific requirements of
paintings, such as the need for contextual knowledge and semantic relationships. In-
corporating semantic context through the Graph Convolution Network (GCN) is an
essential aspect of the proposed system. While visual context is not always present
or reliable in paintings, semantic context provides valuable insights and overcomes
the limitations of relying solely on visual cues. In some cases, visual context can
be misleading or ambiguous, making it challenging to accurately infer human-object
interactions. By leveraging the GCN, the model integrates semantic relationships
and contextual knowledge into the HOI detection process. The knowledge graph
formed by the GCN captures the connections between different elements, such as
verbs and object categories, and represents the underlying semantic context of the
painting. This semantic context enriches the model’s understanding of the artwork
and facilitates more accurate inference of human-object interactions.

To assess the impact of the lack of visual context on HOI prediction, the pro-
posed HOI-Paint model and QAHOI were evaluated on the Watercolor dataset. The
results were compared using Figures 6.1 and 6.2, which showcase the HOI detection
output of both models on paintings where context is absent and the principles of
physics do not apply. The comparison reveals that the proposed STL model out-
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Figure 6.1: HOI detection of HOI-Paint model on the Watercolor dataset. Left to
right: hold baby, ride cart, hold person

Figure 6.2: HOI detection of QAHOI model on the Watercolor dataset. Left to
right: sit on bench, hold cloth, hold book

performed QAHOI in predicting the correct interactions in these contextually chal-
lenging paintings. QAHOI heavily relies on visual contextual features that are not
present or discernible in these images, leading to inaccurate predictions. In contrast,
the MTL model demonstrated its capability to extract discriminative features from
each detected instance without relying on contextual information. By disregarding
the context of the painting and focusing on the individual instances, my model ef-
fectively captured and represented essential visual patterns for HOI detection. This
ability to extract discriminative features allowed the model to overcome the limita-
tions imposed by the absence of context and the violation of physics principles in
these paintings. As a result, the proposed STL model achieved more accurate and
reliable HOI predictions compared to QAHOI in this challenging scenario.

Human pose features were not included in the proposed models because in paint-
ings, the depiction of human pose is often stylized and may not accurately represent
the actual physical poses. The artistic interpretation and style employed in paint-
ings can lead to exaggerated or abstract representations of human figures, making
it challenging to extract reliable pose information as shown in Figure 6.3. There-
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fore, incorporating pose features may not contribute significantly to the accuracy
of HOI detection in the context of paintings. Instead, my focus was on capturing
visual patterns, semantic relationships, and contextual information to enhance the
detection of human-object interactions in paintings.

Figure 6.3: Image from SemArt-HOI dataset showing the complex human poses
styled in the painting.

Moreover, paintings have unique characteristics and challenges that differ from
natural images. They often lack rich visual cues and contextual information, making
the detection of human-object interactions more complex. My HOI-Paint-MTL
model is specifically designed to address these challenges by incorporating additional
classification tasks and leveraging shared representations across multiple tasks. This
allows the model to gain a deeper understanding of the painting and its elements,
enhancing the accuracy of HOI detection. This comprehensive understanding of
the input image improves the accuracy of the HOI task, as well as the additional
attributes being predicted. The experimental results provide evidence to support
the conclusion that incorporating shared visual features in MTL leads to improved
performance in HOI detection tasks. Specifically, I demonstrate that incorporating
MTL into my model training process to predict image attributes such as type, school,
timeframe, and author leads to a notable improvement in the model’s performance
for detecting interactions in paintings. By leveraging information from these other
tasks, the model was able to enhance its interaction detection capabilities, and
outperform the state-of-the-art QAHOI model. This improvement highlights the
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Table 6.1: Performance comparison of my model in Single-Task Learning (STL)
and Multi-Task Learning (MTL) settings, using different object detectors, on the
SemArt HOI test sets (%mAP).

Model Object Detector mAP HOI

HOI-Paint
FASTER-RCNN 17.93
DETR 17.22
GROUND TRUTH 48.83

HOI-Paint-MTL
FASTER-RCNN 18.64
DETR 17.56
GROUND TRUTH 56.15

benefits of using a multi-task approach for HOI detection in paintings. The results
demonstrate that shared visual features improves the accuracy and efficiency of the
model, leading to better performance in detecting interactions. These findings have
important implications for the development of HOI detection models and may have
broader applications in computer vision.

To evaluate the significance of the object detector in this process, I compared
the performance of my model with that of Faster R-CNN, DETR, and ground truth
detections. The results, as shown in Table 6.1, indicate that the model’s performance
is optimal when tested with ground truth object detections followed by Faster-RCNN
and than DETR. These findings imply that object detection in paintings differs from
that in natural images, where contextual information from the encoder can enhance
the model’s detection ability. In addition, since there are many small or intricately
shaped objects in paintings, which may lack contextual information, CNN-based
models outperform transformer-based models. This suggests that the presence or
absence of contextual information should be taken into account while selecting the
object detection approach in paintings.

In addition to better performance, the proposed two-stage model is more effi-
cient in terms of time and computational resources than the state-of-the-art one-
stage model, QAHOI. My model requires significantly less time and computational
resources than QAHOI. The proposed model only requires one GPU for training,
whereas QAHOI requires three GPUs. This indicates that the proposed model is
less computationally demanding and therefore, more cost-effective than QAHOI.
Moreover, my model is trained in a shorter amount of time, further emphasizing the
efficiency of their approach. The reduced training time and computational require-
ments of the proposed model have important practical implications. Specifically,
they allow for faster deployment of the model, which is crucial in many applica-
tions,, where decisions need to be made quickly and accurately, faster deployment
of models can have a significant impact on the overall performance of the system.
Thus, the proposed two-stage model is better than the state-of-the-art one-stage
model, QAHOI, not only in terms of precision but also in terms of time and com-
putational resources. The reduced training time and computational requirements
of the proposed model can lead to more efficient and cost-effective solutions, and
enable faster deployment in real-world applications.
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Chapter 7

Conclusion and Future Work

The main objective of this research is to develop a specialized system for detect-
ing Human-Object Interactions in paintings, which hold important cultural value.
In contrast to existing frameworks, my proposed model focuses specifically on the
appearance features of each individual interacting pair depicted in the artwork.
Additionally, the incorporation of semantic features proves highly advantageous in
enhancing the model’s performance, as they contribute to improved accuracy.

Through experimental evaluations, I demonstrated that my model outperforms
the state-of-the-art HOI detection model designed for natural images, which heavily
relies on visual context representations. This finding suggests that visual context is
misleading in the context of HOI detection in paintings. Furthermore, I found that
removing the Region of Interest features, which represent the contextual informa-
tion of the interaction between the human and object, actually leads to improved
performance in my model. This indicates that the surrounding context in paintings
does not provide significant predictive value for HOI detection. When considering
the human and object equally without incorporating the surrounding context, my
model’s predictive ability remained unaffected, which suggests that both human and
object features are equally informative for HOI prediction in paintings.

Additionally, the multi-task learning approach employed in my two-stage model,
contributes to its superiority. By introducing four supplementary classification tasks,
the model benefits from complementary information that improves the overall HOI
prediction. The shared representations learned from these tasks enhance the model’s
understanding of the painting and its elements. Moreover, the inclusion of multiple
artistic tasks in the multi-task learning framework facilitates a more comprehensive
analysis of the painting. Each task provides complementary information about the
artwork, such as the artist, timeframe, type, or author, which contributes to a
deeper understanding of the painting’s context. By considering these additional
tasks, the model gains a more holistic perspective and can capture a wider range of
features and patterns, ultimately improving the accuracy of HOI detection. Multi-
task learning facilitates knowledge transfer between related tasks, where the shared
representations learned across tasks can help to transfer knowledge and leverage the
learned information from one task to benefit the others.

Furthermore, the Random Loss Weighing (RLW) strategy proved to be the most
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effective in my model. In RLW, different tasks are assigned random weights, en-
couraging the model to learn robust and adaptable representations across tasks.
By assigning random weights, the model discovers interactions and dependencies
between tasks that might not be apparent with fixed or pre-defined weights. Regu-
larization in RLW helps prevent overfitting and improves the model’s generalization
ability across tasks. Furthermore, RLW helps prevent the dominance of a single task
and encourages the model to allocate resources more evenly among different tasks.
This approach enhances the overall performance and flexibility of the multi-task
learning framework.

In the HOI-Paint STL model, multiple losses are jointly optimized during train-
ing. However, a potential future direction is to explore loss weighting strategies to
determine the optimal weights for each loss that contributes to the HOI prediction
in HOI-Paint. By assigning appropriate weights to different losses, the model can ef-
fectively balance their impact on the overall prediction performance. This approach
would allow for a more fine-grained control over the learning process and potentially
improve the model’s accuracy and generalization ability. Further investigation into
loss weighting strategies can lead to enhancements in the training and optimization
of the HOI-Paint for HOI detection in paintings.

Given the wide variation in paintings based on aspects such as genre and style,
developing a robust HOI detection model that considers these factors can be valu-
able. By incorporating information about the genre or style of the painting, the
model can adapt and adjust the weights of each stream accordingly. This approach
allows the model to account for the specific characteristics and nuances associated
with different genres or styles, ultimately improving the accuracy and reliability of
HOI detection.

Moreover, the current SemArt-HOI dataset includes only action labels for inter-
acting pairs, which means that pairs with no interaction are not labeled at all. This
presents a limitation in the dataset, as it does not allow for the distinction between
interacting and non-interacting pairs. To address this, adding a ‘no interaction’ ac-
tion label can improve the dataset and make it more comprehensive. In addition,
the dataset can be further be improved by allowing for multiple action labels to be
assigned to the same interacting pair. By applying a multi-class interaction classifi-
cation, the model can accurately classify such interactions and provide more detailed
information about the nature of the interaction. Overall, improving the dataset in
these ways can lead to more accurate and comprehensive HOI detection models.
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