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Abstract
of the Thesis of

Batoul Mohamad Saab for Master of Science
Major: Pure Mathematics

Title: Entire Function With Two Separated Values

It’s known that an entire function with zeros and 1-points lying on a finite number
of rays must have finite order. This thesis considers a transcendental entire function
with two separated values in disjoint sectors. Given that such function is of finite
order, and under some conditions related to the sizes of the sectors, it’s possible to
determine the form of the function.[1]
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1.8 Phragmén-Lindelöf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.9 Extension for Liouville Theorem . . . . . . . . . . . . . . . . . . . . 9

2 PRELIMINARIES RESULTS 10
2.1 Order and Sign of a Subharmonic Function . . . . . . . . . . . . . . 12
2.2 From Subharmonic to Harmonic . . . . . . . . . . . . . . . . . . . . . 14

3 ENTIRE FUNCTIONS WITH TWO SEPARATED VALUES 17
3.1 Accumulation of a-values of a Function . . . . . . . . . . . . . . . . . 17
3.2 Examples that show the sharpness of the results . . . . . . . . . . . . 25

Bibliography 27

3



introduction

Let f be a transcendental entire function, and let Sa = f−1({a}) be the set of a-
values of f . If Sa is an infinite set, it must be an infinite sequence which tends to
∞, and this is the only condition on such a set, and any set with this condition is
the set of a-points of an entire function by the Weierstrass factorization theorem.
On the other hand, if a and b are two distinct complex values, then the positions of
the sets Sa and Sb relative to each other may be reflected in the form of the function
f . For example, if both S0 and S1 lie on a finite number of rays through the origin,
the order of f must be finite, allowing the application of Hadamard’s factorization
theorem to study the possible forms of f .

In this thesis, we present a study of the relationship between a specific geometric
condition placed on the sets S0 and S1 and the form of the function f . More precisely,
if these sets lie in certain disjoint sectors in the plane, and if the function has finite
order, then f must be of the form

f(z) =

∫ z

0

p(ζ)eq(ζ) dζ + c

where p and q are polynomials.
The proof takes off from the given geometric condition on the two sets S0 and

S1 to obtain precise information about the derivative f ′. This is done following
a preliminary step to show the genus must be ≥ 1, through some auxiliary sub-
harmonic functions u and v, obtained as limits of other subharmonic functions
(uk(z) = log |f(rkz)|

logM(rk)
, vk(z) = log |f(rkz)−1|

logM(rk)
) defined via Pólya peaks {rk} of the maxi-

mum modulus M(r) of the given function.
The two functions u and v serve to define one entire function whose order is

shown to be a positive integer. This is then used to obtain information about the
derivative f ′, showing it to be of positive integer order. Differentiation of u and
v then provides information about the zeros of f , which turn out to be finite in
number. By Hadamard’s theorem, f ′ must be of the form

f ′(z) = p(z)eq(z)

and the result follows by integration.
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Chapter 1

PRELIMINARIES

Subharmonic Functions

1.1 Definition of Subharmonic Function

A real function u defined on a region Ω of C is said to be subharmonic if for each
z0 ∈ Ω, u satisfies the following:

• −∞ ≤ u(z0) < ∞

• upper semi continuity

u(z0) = lim
ϵ→ 0

sup
|z−z0|<ϵ

u(z)

• mean value inequality

u(z0) ≤
1

2π

∫ 2π

0

u(z0 + reiθ) dθ for r small enough

All harmonic function satisfy a mean-value inequality and so are subharmonic.
The connection between the two comes through the majorant property.

1.2 Harmonic Majorants of Subharmonic Function

If u is subharmonic function in a region Ω of the complex plane, and h is harmonic
on Ω, then h is a harmonic majorant of u in Ω if u ≤ h in Ω. Such an inequality
can be viewed as a growth condition on u. In fact, if u ≤ h on ∂Ω, then u ≤ h in Ω.
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1.3 Maximum Principle

Let u be a subharmonic function on a region Ω in C. If there exists z0 ∈ Ω such
that

u(z0) = max
z∈Ω

u(z)

then u is constant. This means that the maximum of u is attained on the boundry
of Ω.

1.4 Order of Subharmonic Function

Let u be a subharmonic in C, we put B(r, u) := max|z|=r u(z).
The order ρ of u is defined by

ρ := lim sup
r→ ∞

logB(r, u)

log r

A sufficient condition for u to be subharmonic in Ω is that the Laplacian of u
exists and is non-negative in Ω, i.e., ∆u ≥ 0. Indeed, if u is twice continuously
differentiable in Ω and z0 ∈ Ω, then Green’s theorem gives

1

2π

∫ 2π

0

u(z0 + reiθ) dθ − u(z0) =

∫ r

0

1

2πt

∫ ∫
|z−z0|≤t

∆u(z) dA for small r

from which the mean-value inequality follows if ∆u ≥ 0. This formula serves to
define ∆u as a distribution when u is not smooth enough.

An important example is log |f(z)| where f is holomorphic in Ω. In this case,
the Laplacian is the counting measure of the zeros of f , i.e., ∆(u)(D(0, r)) :=
ϕu(D(0, r)) = # of zeros of f in the disk of radius r.

The precise connection between a subharmonic function and its ”Laplacian” is
presented in the ”Riesz representation theorem.”

1.5 The Fundamental Riesz Theorem

Let D be a domain in C, and u be a subharmonic function in D. Then there ex-
ists a unique non-negative Borel measure µ in D such that, for each subdomain
E compactly embedded into D, µ(E) < ∞ and u can be represented as a sum of
logarithmic potential of µ and a harmonic function h in E.

u(z) =

∫∫
E

log |z − ζ| dµ(ζ) + h(z)

The measure µ is called the associated measure for the function u or the Riesz
measure.
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1.6 Jensen’s Formula for Subharmonic Functions

Let u be a bounded subharmonic function in a disk DR = {z : |z| < R} such that
u(0) ̸= −∞, and let µ be the Riesz measure of u. Then,

u(0) +

∫ R

0

n(t)

t
dt = N(R, 0;u)

where n(t) := µ({z : |z| ≤ t} and N(r, z;u) := 1
2π

∫ 2π

0
u(z + reiθ) dθ.

This yields that

N(r) :=

∫ r

1

n(t)

t
dt ≤ B(r, u) +O(1) (1.1)

If u is a subharmonic function of finite order, then there exits an integer q ≥ 0
such that q ≤ ρ ≤ q + 1 and ∫ ∞

1

B(r, u)

rq+2
dr < ∞

Putting this with (1.1) implies that∫ ∞

1

N(r)

rq+2
dr < ∞ (1.2)

Furthermore, (1.2) yields that∫ ∞

1

n(t)

tq+2
dt < ∞ (1.3)

Indeed ∫ r

1

n(t)

tq+2
dt =

N(t)

tq+1

∣∣∣r
1
+ (q + 1)

∫ r

1

N(t)

tq+2
dt

+
N(r)

rq+1
−N(1) + (q + 1)

∫ r

1

N(t)

tq+2
dt

(1.4)

We need to show that limr→∞
N(r)
rq+1 exits. Since the integral (1.2) is convergent,

given ϵ > 0, ∃ R > 0 such that∫ 2r

r

N(t)

tq+2
dt < ϵ for all r > R

In fact, N is increasing then N(t) ≥ N(r). Hence we have for r > R∫ 2r

r

N(r)

tq+2
dt ≤

∫ 2r

r

N(t)

tq+2
dt < ϵ

Which leads
1

q + 1

(
1− 1

2q+1

)
N(r)

rq+1
< ϵ
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Therefore,

limr→∞
N(r)

rq+1
= 0

.
Letting r → ∞ in (1.4) implies that (1.3) holds.

We refer in the following theorem to [2, Theorem 4.2]

1.7 Subharmonic Version of The Hadamard Factorization
Theorem

Let u be a subharmonic function in C, harmonic in a neighborhood of zero, with
u(0) = 0. Suppose that u is of finite order ρ. Then u can be written as a sum of an
integral and a harmonic polynomial h of degree at most ρ.

u(z) =

∫
R2

log |Eq(
z

ζ
)| dµ(ζ) + h(z)

where
q = [ρ]

µ is the Riesz measure of u

Eq

(
z

ζ

)
=

(
1− z

ζ

)
exp

(
z

ζ
+

1

2

(
z

ζ

)2

+ · · ·+ 1

q

(
z

ζ

)q
)

More precisely u can be written in the form

u(z) = v(z) + w(z) + h(z)

where

v(z) =

∫
|ζ|<R

log |z − ζ| dµ(ζ)

w(z) =

∫
|ζ|≥R

(log |z − ζ|+
q∑

j=1

1

j
Re(

z

ζ
)) dµ(ζ)

We are going to use this versions of Phragmén-Lindelöf in the proofs of the next
chapter [3, Corollary 2.3.8]

1.8 Phragmén-Lindelöf

Let u be a subharmonic function in the right half-plane
H := {z : Re z > 0}. Assume that there exist constants A,B ∈ R such that

u(z) ≤ A+B|z|, for all z ∈ H (1.5)
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and
lim sup

ζ→z
u(ζ) ≤ 0, for all z ∈ ∂H. (1.6)

Define

L := lim sup
x→∞

u(x)

x
(1.7)

Then, we have
u(z) ≤ LRe z for all z ∈ H. (1.8)

1.9 Extension for Liouville Theorem

Let u be a subharmonic function on C such that

lim sup
z→∞

u(z)

log |z|
≤ 0 (1.9)

Then u is constant on C.

In particular, every subharmonic function on C which is bounded above must
be constant. Indeed, if u is bounded then B(r, u) ≤ M for M being a constant.
Leading that

limr→∞
B(r, u)

log r
= 0

Hence, (1.9) is satisfied and u is a constant.
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Chapter 2

PRELIMINARIES RESULTS

Theorem[section]
Chapter 2 paves the way for the proofs of our main theorems in the subse-

quent chapter. In this chapter, we will define two subharmonic functions that are
constructed using sequences of Pólya peaks. These functions possess important
properties that will be essential for our future analysis. Additionally, we will prove
a lemma for entire functions, and some lemmas related to subharmonic functions,
each play a vital in the next chapter.

Let f be an entire function of finite order ρ ≥ 1, with zeros and 1-points of
f in disjoint sectors S0 and S1 respectively. We use the standard notation of the
maximum modulus of f

M(r) = M(r, f) = max
|z|≤r

|f(z)|.

Since f is of finite order then there exists a sequence (rk) tending ∞ with the
property

logM(trk) = O(logM(rk)) as k → ∞ for t > 1 (2.1)

A sequence (rk) is called a sequence of Pólya peaks of order λ ∈ [0,∞) for
logM(r), if for every ϵ > 0, ϵ ≤ t ≤ ϵ−1 we have

logM(trk) ≤ (1 + ϵ)tλ logM(rk) for k large enough.

Fixing a sequence (rk) with the property (2.1), allows us to define the following
sequences (uk) and (vk) of subharmonic functions

uk(z) :=
log |f(rkz)|
logM(rk)

and vk(z) :=
log |f(rkz)− 1|

logM(rk)
.

(2.1) gives that these sequences are bounded from above on every compact subset
of C. As we assumed f(0) /∈ {0, 1} uk(0) and vk(0) tends to 0. It follows from [4,
Theorems 3.2.12, 3.1.12] that there exits a subsequence, will be also denoted (rk) for
simplicity, such that uk and vk converges in the Schwartz space D ′ to subharmonic
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functions u and v in C.

u(z) := lim
k→∞

log |f(rkz)|
logM(rk)

and v(z) := lim
k→∞

log |f(rkz)− 1|
logM(rk)

. (2.2)

This implies the convergence in L1
loc.

This lemma explores the properties of functions u and v, as referenced in [5, p.97],

Lemma 2.0.1. Let u and v be given as in (2.2) , then u and v satisfies the following.

(a) max{u(z), 0} = max{v(z), 0} for all z ∈ C

(b) {z : u(z) < 0} ∩ {z : v(z) < 0} = ∅

(c) u is harmonic in C \ S0 and v is harmonic in C \ S1

(d) max|z|=1 u(z) = max|z|=1 v(z) = 1.

If (rk) is a sequence of Pólya peaks of order λ > 0, then we also have:

(e) u(0) = v(0) = 0

(f) max{u(z), v(z)} ≤ |z|λ for all z ∈ C.

In preparation of the next chapter, we shall need the fact that if the real part of
an entire function satisfies certain growth condition, then the function should be a
polynomial.

Lemma 2.0.2. Let g be a function defined on the complex plane C. Suppose that g
is entire, and there exits λ ∈ R such that

Re g(z) ≤ |z|λ for all z ∈ C.

Then, g is a polynomial of degree at most λ.

Proof. Let A(r) denotes the maximum of Re g for |z| = r.
By Caratheodary theorem we have for 0 < r < R

|g(n)(z)| ≤ 2n+2n!R

(R− r)n+1
(A(R) + g(0))

≤ c
2n+2n!R

(R− r)n+1
(Rλ + g(0))

For n > λ. let R → ∞, we get |g(n)(z)| = 0 ∀z ∈ z. Which gives the desired
result.
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2.1 Order and Sign of a Subharmonic Function

If u is subharmonic in a neighborhood of z0 and u(z0) = 0, then u cannot be negative
completely on any circle centered at z0 due to the mean-value inequality. In dealing
with the subject of this thesis, we shall need to consider the preliminary question of
how large can an arc of such a circle be on which u < 0. The answer comes through
the use of the harmonic majorant property mentioned above.

Lemma 2.1.1. let u be a subharmonic function in a neighborhood V of zero, with
u(0) = 0. Suppose that u(z) < 0 in S := {z : |argz| < α} where 0 < α ≤ π. Then,
α ≤ π

2
and there exits c > 0 and r0 > 0 such that∫ α

−α

u(reit) dt ≤ −crπ/2α for r ∈ (0, r0) (2.3)

Proof. u is subharmonic in V then there exists r1 > 0 such that D[0, r1] ⊆ V and
h is a harmonic majorant of u in Sα = {z : | arg z| < α, |z| < r1} , such that
h(re±iα) = 0 for 0 < r < r1.

Let r2 = r
π/2α
1 and Sπ

2
= {z : Re z > 0, |z| < r2}. Define,

v(z) = h(zπ/2α) = h(e
2α
π

log z)

where the principle branch of the logarithmic function is used.
if z ∈ Sπ

2
then z

2α
π ∈ Sα and so v is harmonic and negative in Sπ

2
because h is

harmonic and negative in Sα. Also, v(iy) = h(re±iα) = 0 i.e. v = 0 on the vertical
part of the boundary which gives that v(0) = 0.

Now, by the reflection principle, v extends to a harmonic function in D(0, r2),
and ∇v ̸= 0. Then v can be written as v(z) = Re f(z) where f is analytic fuction.

v(z) = Re(a0 + a1z +O(z2) for small z

= Re(a0z) + Re(a1z) +O(z2)

= Re(a1z) +O(z2) since v(0) = 0

Also, we know that v(reiθ) < 0 for |θ| < π
2
which implies that Re (a1z) = −|a1|Re z.

Therefore, v(z) = −c0Re(z) +O(z2) near zero for some c0 > 0. Thus,∫ π/2

−π/2

v(reit) dt ≤ −1

2
c0r for r small enough.

Which implies that h satisfies (2.3). Indeed,∫ π/2

−π/2

v(reit) dt =

∫ α

−α

π

2α
h(r

2α
π eiθ) dθ ≤ −1

2
c0r

Then ∫ α

−α

h(reiθ) dθ ≤ −α

π
c0r

π/2α

12



As u ≤ h in Sα it follows that u satisfies (2.3).

It’s left to show that α ≤ π
2
. We consider S ′

α = {z : α < arg z < 2π−α, |z| < r1},
the complement of Sα within D(0, r1). Let h1 be a harmonic majorant of u in S ′

α,
satisfying h1(re

±iα) = 0 for r ∈ (0, r1). Following the same argument as above yields
that there exists a positive constant c1 such that∫ α

2π−α

u(reit) dt ≤ c1r
π
2β for r ∈ (0, r0)

with β := π − α. This, together with the expression (2.3) , implies the following
inequality:

0 = u(0) ≤
∫ α

2π+α

u(reit) dt ≤ c1r
π
2β − cr

π
2α for r ∈ (0, r0).

Which means that c1r
π
2β ≤ cr

π
2α for r small. Consequently, we can conclude that

β ≥ α, Leading α ≤ π
2
.

Furthermore, if a subharmonic function is negative in some half plane, there is a
restriction on its order. Indeed, the following Lemma will show that the order must
be one.

Lemma 2.1.2. Let u be a subharmonic function in C with u(0) = 0, suppose that
there exits ρ,K > 0 such that

u(z) ≤ K|z|ρ ∀z ∈ C. (2.4)

If u is negative in some half plane. Then, ρ = 1.

Proof. Without loss of generality we may assume that u(z) < 0 in the right-half
plane. As u is subharmonic, mean value inequality at 0 for r small enough gives

0 = 2πu(0) ≤
∫ 3π

2

−π
2

u(reit) dt =

∫ π
2

−π
2

u(reit) dt+

∫ 3π
2

π
2

u(reit) dt.

Moreover, Lemma 2.1.1 with α = π
2
yields for r small we have∫ π

2

−π
2

u(reit) ≤ −cr,

and (2.4) yields ∫ 3π
2

π
2

u(reit) dt ≤ Krρπ.

Combining all together gives −cr + Krρπ ≥ 0 for r sufficiently small. Thus,
ρ ≤ 1.
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Furthermore,
u(z) ≤ K|z|ρ

≤ K(1 + |z|)ρ

≤ K(1 + |z|)

Therefore, (1.5) holds with A = B = K and Phragmén-Lindelöf (1.8) implies that
u(z) ≤ LRe z for z in the left half plane with L given in (1.7). Since u is non-constant
and hence by Liouville theorem (1.9) u is unbounded, we deduce that L > 0. Then
we have

0 < lim sup
x→∞

u(x)

x
≤ lim sup

x→∞

k|x|ρ

x
.

Thus ρ ≥ 1, but we deduced ρ ≤ 1. Therefore, ρ = 1.

2.2 From Subharmonic to Harmonic

In this section we will explores the harmonicity of a subharmonic function defined
on the complex plane. Specifically, when it has order at most 1, bounded on the
imaginary axis, and harmonic within certain domains defined by radial and angular
constraints.

Lemma 2.2.1. let u be a subharmonic function on C, with order at most 1. Suppose
that u is bounded on the imaginary axis. If there exists R, ϵ > 0 such that u is
harmonic within the two domains T± := {z : z > R, |argz ± π

2
| < ϵ}, then u is

harmonic on C and of the form u = aRe z + b, where a, b ∈ R.

Proof. As u is subharmonic on C, using Hadamard factorization theorem (1.7) we
can write u as u(z) = v(z) + w(z) + h(z) with q = 0 or 1, since the order of u is at
most 1.

Assume to the contrary that u is not harmonic, then we can choose R > 0 such
that µ({z/|z| < R}) > 0 and find that v(z) → ∞ as |z| → ∞. Let’s consider

u(iy) + u(−iy) = v(iy) + v(−iy) + w(iy) + w(iy) + h(iy) + h(−iy)

h is a real part of a polynomial with a degree at most 1, i.e. h(z) = Re(Az+B)
with A and B ∈ C. Therefore, we have h(iy)+h(−iy) = Re(Aiy+B)+Re(−Aiy+
B) = 2Re(B).

Furthermore, v(iy) + v(−iy) → ∞, thus one can deduce that Q(y) := w(iy) +
w(−iy) → −∞ as u is bounded on the imaginary axis.

We are going to consider both cases when q = 0 and q = 1.

case q=0 :
Define Q′(z) = w(z) + w(z). Note that Q′(iy) = Q(y), indicating that Q′ is un-
bounded on the imaginary axis.

On the other hand, B(r,Q′) = o(r) as r → ∞ since this holds for w, the ap-
plication of Phragmén-Lindelöf (1.8) implies that Q′ ≤ 0 and is therefore constant,
which leads to a contradiction.
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case q=1 :

Q(y) =

∫
|ζ|≥R

log |1− iy

ζ
|+Re (

iy

ζ
) dµ(ζ) +

∫
|ζ|≥R

log |1− −iy

ζ
|+Re (

−iy

ζ
) dµ(ζ)

=

∫
|ζ|≥R

log |1− iy

ζ
|+ log |1− iy

ζ
| dµ(ζ)

=

∫
|ζ|≥R

log
∣∣1− i

2yRe (z)

|ζ|2
− y

|ζ|2
∣∣ dµ(ζ)

=
1

2

∫
|ζ|≥R

log

(
(1− y2

|ζ|2
) + 4

y2(Re ζ2

|ζ|4

)
dµ(ζ)

For | arg ζ ± π
2
| ≥ ε, put ζ = r(cos(θ) + isin(θ)), we have cos(θ) ≥ α with

α := cos
(
π
2
− ε
)
> 0. Thus, |Re ζ| ≥ α|ζ| and we get

log

((
1− y2

|ζ|2

)2

+
4y2(Re ζ)2

|ζ|4

)

≥ log

((
1− y2

|ζ|2

)2

+ 4α2 y2

|ζ|2

)

= log

(
1 + (4α2 − 2)

y2

|ζ|2
+

y4

|ζ|4

)
(2.5)

As u is harmonic in T± the minimum principle gives that (2.5) holds for every ζ
in the support of µ which satisfies |ζ| ≥ R. Hence,

Q(y) ≥ 1

2

∫
|ζ|≥R

log

(
1 + (4α2 − 2)

y2

|ζ|2
+

y4

|ζ|4

)
dµ(ζ)

=

∫ ∞

R

log

(
1 + (4α2 − 2)

y2

t2
+

y4

t4

)
dn(t)

(2.6)

let nR(r) = {z : R ≤ |z| ≤ r}, as nR(r) = n(r) − µ({z : |z| < R}) and using
integration by parts we can write (2.6) as

Q(y) ≥ 2

∫ ∞

0

nR(t)

t
f(

y

t
) dt

where

f(x) =
x2(2α2 − 1 + x2)

1 + (4α2 − 2)x2 + x4

Now, since limy→∞Q(y) = −∞ we get that ∃y0 > 0 such that Q(y) ≤ 0 for y ≥
y0. Take 0 < δ < 1, we can dedude that∫ ∞

y0

1

y2+δ
Q(y) dy ≤

∫ ∞

y0

1

y2+δ

∫ ∞

0

nR(t)

t
f(

y

t
) dt dy

In fact, f(x) ≤ 1
4α

√
1−α2x

2 for x ≥ 0 and f(x) ≤ 4x2

2+x4 for x ≥ 2
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This is to say that the above integrals are finite, so we can use Fubini-Tonelli
theorem to interchange the order of the integral and taking s = y

t
we can write∫ ∞

0

nR(t)

∫ ∞

y0

1

ty2+δ
f(

y

t
) dy dt =

∫ ∞

0

nR(t)

∫ ∞

y0
t

1

s2+δ
f(s) ds dt ≤ 0.

Moreover, we have∫ y0
t

0

f(s)

s2+δ
ds ≤ 1

4α
√
1− α2

∫ y0
t

0

ds

sδ

=
1

4α
√
1− α2

.
1

1− δ

(y0
t

)1−δ

.

(2.7)

(2.7) with (1.3) implies∫ ∞

0

nR(t)

t2+δ

∫ y0
t

0

f(s)

s2+δ
ds dt ≤ c

∫ ∞

0

nR(t)

t3
< ∞

with c = (y0)1−δ

4α
√
1−α2(1−δ)

a constant which is still bounded when δ → 0. Putting all

together we get, ∫ ∞

0

nR(t)

t2+δ
dt

∫ ∞

0

f(s)

s2+δ
ds ≤ c (2.8)

On the other hand, we have∫ ∞

0

f(s)

s2+δ
=

1

2

∫ ∞

0

x−γ x+ β

1 + 2βx+ x2
dx

where β := 2α2 − 1 and γ := 1+δ
2

< 1.

Solving this integral in a classical way using residue theorem gives∫ ∞

0

f(s)

s2+δ
=

1

2

π

sin(πγ)
cos (γ(π − 2ϵ))

thus

lim
δ→0

∫ ∞

0

f(s)

s2+δ
=

∫ ∞

0

f(s)

s2+δ
=

1

2

π

sin(π
2
)
cos(

π

2
− ϵ) =

π

2
α > 0

and we know that ∫ ∞

0

nR(t)

t2
dt = ∞ by (1.3).

Hence

lim
δ→0

∫ ∞

0

nR(t)

t2+δ
dt

∫ ∞

0

f(s)

s2+δ
ds = ∞

But, (2.8) gives that the above integral is bounded by a constant which leads to
a contradiction.

Therefore, u is harmonic and of the form u = aRe z + b where a, b ∈ R.
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Chapter 3

ENTIRE FUNCTIONS WITH
TWO SEPARATED VALUES

If an entire function f has all its zeros and 1-points on a finite number of rays, it
must be of finite order.

However, if f is entire and has all its zeros and 1-points in certain sectors we need
to make the further assumption that it is of finite order to determine this function.

In this chapter we shall present the main result of this thesis, namely the classi-
fication of entire functions of finite order whose zeros and 1-points are restricted to
certain sectors.

3.1 Accumulation of a-values of a Function

In order to gain insight into the distribution of a-points for a specific form of a
function f , we introduce a Lemma as referenced in [6]. This lemma explores where
a-points of f accumulate, which we shall need is the upcoming theorems.

Lemma 3.1.1. Let f be a function of the form

f(z) =

∫ z

0

p(ζ)eq(ζ) dζ + C

where p and q are polynomial and C ∈ C
Denote by d the degree of d and by Q the coefficient of the leading term of q.

Define

ϕK =
(2k − 1)π − argQ

d
(3.1)

for k ∈ {1, 2, ..., d}. Let
ak := limr→∞f(reiϕk). (3.2)

In fact this limit exits, and we have ∀ϵ > 0, as |z| → ∞

f(z) → ak for ϕk −
π

2d
+ ε ≤ arg(z) ≤ ϕk +

π

2d
− ε

17



while
|f(z)| → ∞ for ϕk +

π

2d
+ ε ≤ arg(z) ≤ ϕk+1 −

π

2d
− ε

where ϕd + 1 = ϕ1 + 2π
Let ϕk − π

d
≤ arg z ≤ ϕk +

π
d
. Then

f(z) = ak +
p(z)

q′(z)
eq(z)

(
1 +O

(
1

|z|

))
as |z| → ∞.

A direct consequence of this Lemma is that for any a ∈ C \ {ak} with 0 < ϵ < π
d

each of the sectors {z : | arg z− ϕk ± π
2d
| < ϵ} contains infinitely many a-points, but

only finitely many ak-points.
Therefore, for any a ∈ C\{ak} the a-points of f can only accumulate at the rays

argz = ϕk ± π
2d
. In fact, a-points accumulate on both rays argz = ϕk ± π

2d
.

Theorem 3.1.2. Let f be an entire transcendental function with finite order. Let
S0 and S1 be two closed sectors of opening angle at most π with S0 ∩ S1 = {0}.
Suppose that all but finitely many zeros of f are in S0, and all but finitely many
1-points of f are in S1. Then, f has the form

f(z) =

∫ z

0

p(ζ)eq(ζ) dζ + C (3.3)

where p and q are polynomials and C ∈ C.

Proof. S0 and S1 are closed sectors of opening angle at most π with S0 ∩ S1 = {0},
then either θ0 or θ1 is < π. Without loss of generality suppose that θ0 < π and
f(0) /∈ {0, 1}.

Claim that the genus of f is at least 1. Suppose to the contrary that the genus
of f is 0. Then, using Hadmard factorization theorem on f and f − 1 we can write

f(z) = f(0) lim
n→∞

n∏
k=1

(
1− z

ak

)
= 1 + (f(0)− 1) lim

n→∞

n∏
k=1

(
1− z

bk

)
where (ak) is the sequence of zeros of f , and (bk) is the sequence of 1-points of f .
Put

Pn(z) =
n∏

k=1

(
1− z

ak

)
and Qn(z) =

n∏
k=1

(
1− z

bk

)
Since the convergence is uniform we can write

f ′(z) = f(0) lim
n→∞

P ′(z) = (f(0)− 1) lim
n→

∞Q′(z)

Now, using Hurwitz’s theorem we can deduce that the zeros of f ′ are limit points
of the set of zeros of P ′

n and Q′
n. Furthermore, Gauss-Lucas theorem gives that all

18



zeros of P ′
n lie within the convex hull of zeros of Pn and all zeros of Q′

n lie within
the convex hull of zeros of Qn. By applying Hurwitz’s theorem again we get that
the zeros of f are limit points of the set of zeros of Pn and the 1-points of f are the
limit points of the set of zeros of f − 1.

Therefore, f ′ has all its zeros within the convex hull of ak-points and within the
convex hull of bk-points at the same time. However, this is impossible since ak-points
and bk- points are separated.

Finally, we deduce that f ′ has only finitely many zeros. Together with the
assumption that the genus of f is zero we can deduce that f is a polynomial, which
contradicts the hypothesis that f is transcendental. Hence, the genus of f is at least
one.

Let ρ be the order of f . As f has genus at least one we have that ρ ≥ 1.
Since f is of finite order then there exists a sequence (rk) tending ∞ with the

property (2.1)
It’s clear that a sequence of Pólya peaks satisfies (2.1). According to result of

Darsin and Shea [7], sequence of Pólya peaks of order λ exists for all finite λ ∈ [ρ∗, ρ
∗]

where

ρ∗ := sup

{
p ∈ R : lim sup

r,t→∞

logM(tr)

tp logM(r)
= ∞

}
and

ρ∗ := inf

{
p ∈ R : lim inf

r,t→∞

logM(tr)

tp logM(r)
= 0

}
.

Also we always have
0 ≤ ρ∗ ≤ ρ ≤ ρ∗ ≤ ∞. (3.4)

So, when ρ is finite there exits a Pólya peaks of finite order λ. Fix such a sequence
(rk) of order λ, and let u and v be as defined in (2.2). Then, u and v are two
subharmonic functions satisfying all the properties of Lemma 2.0.1.

Let P = {z | u(z) > 0 or v(z) > 0}. In view of (a), P is the set where u > 0 and
v > 0. We claim that P is open.

To prove the claim, let z0 ∈ P . By property (e), we know that z0 ̸= 0. Further-
more, we know that S0 ∩ S1 = {0}, so we can deduce from (c) that, either u or v
is harmonic at z0, implying its continuity at z0. Without loss of generality, assume
that u is harmonic and continuous at z0.

Since u is continuous at z0, there exists a small neighborhood V of z0 such that
u(z) > 0 for all z ∈ V . Therefore, V ⊂ P , as u is positive on V . This establishes
that P is open.

Let N = {z | u(z) < 0 or v(z) < 0}. We claim that N is open. To prove the
claim, let z0 ∈ N . Without loss of generality, assume that u(z0) < 0. Since u is sub-
harmonic, it is upper semi-continuous at z0, which means u(z0) = limϵ→ 0 sup|z−z0|<ϵ u(z)

Therefore, for a small neighborhood V of z0, we have u(z) ≤ u(z0) < 0. Conse-
quently, u(z) < 0 for all z ∈ V , implying that V ⊂ N . Hence, N is open.

Thus, the complement E = C \ (P ∪ N) = {z | u(z) = v(z) = 0} is closed. We
claim that E has an empty interior.
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To prove the claim, suppose to the contrary, that there exists z0 in the interior
of E, i.e., there exists a neighborhood V of z0 such that V ⊂ E. Without loss of
generality, assume that z0 /∈ S1.

By property (c), v is harmonic in C\S1, particularly at z0. Hence, we can find a
neighborhood U in C \S1 of z0 such that U ⊂ V . Since v = 0 on U and is harmonic
in C \ S1, it follows from the identity theorem that v = 0 in C \ S1. By property
(a), we have u(z) ≤ 0 for all z ∈ C \ S1.

Applying the maximum principle, if there exists z1 in C\S1 such that u(z1) < 0,
then |z1| ≤ |z0| since u(z0) = 0. Thus, we have u(z) = 0 for all z ∈ C\(S1∪B[0, |z0|]).
By property (c), u is harmonic in C \ S0. Therefore, by the identity theorem, u = 0
in C \ S0. Moreover, by applying the maximum principle on B(0, 2|z0|), we know
that u ≤ 0, so we find that u is the constant 0 since the maximum is attained
at the origin. Consequently, u = 0 throughout the entire plane, and we reach a
contradiction. Therefore, E cannot have an interior.

Our objective is to show that either N ⊂ S0 ∪ S1, or N ⊃ C \ S1 which is only
possible if θ1 = π.

To proceed, let Q be the component of N such that u(z) < 0 for z ∈ Q. In
fact, Q is open since u is upper semi continuous. We aim to prove that ∂Q ⊂ S1.
Suppose that there exits z0 ∈ ∂Q \ S1, then v is harmonic in a neighborhood V of
z0 by (c). According to properties (a) and (b), v(z) = 0 for z ∈ Q, and in particular
for z ∈ V ∩Q. As v is harmonic in V and v = 0 on an open set inside V , then v = 0
for z ∈ V .

Since v(z0) = 0, it follows that u(z0) ≤ 0. However, as Q is open, z0 /∈ Q, which
implies that u(z0) = 0. By applying the mean value inequality, there exists z1 ∈ V
such that u(z1) > 0, then v(z1) > 0 by (a), which leads to a contradiction. Hence,
∂Q ⊂ S1.

If θ1 < π, according to Lemma (2.1.1), Q cannot contain C \ S1, implying that
Q ⊂ S1. However, in the case where θ1 = π, it is possible for Q to include C \ S1.

Similarly, let R be the component of N where v(z) < 0 for z ∈ R, then ∂R ⊂ S0.
As we assumed θ0 < π, and using lemma (2.1.1) we conclude that R ⊂ S0.

Therefore, N = Q ∪ R ⊂ S0 ∪ S1, or N ⊃ C \ S1. In the later case u(z) < 0 for
z ∈ C \ S1.

Now, we are going two consider both cases, and to prove that in each case f
satisfies the form (3.3).

case 1 : N ⊂ S0 ∪ S1

In this case, we can deduce that u ≥ 0 and v ≥ 0 in C \ S0 ∪ S1. According to
property (c), both u and v are harmonic in C \S0 ∪S1. Furthermore, the minimum
principle implies that u > 0 and v > 0 in this region. Property (a) gives that u = v
for all z ∈ C \ S0 ∪ S1. Thus, we can define a harmonic function w on C \ {0} as
follows:

w(z) :=

{
u(z) if z ∈ C \ S0,

v(z) if z ∈ C \ S1.
(3.5)
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By the removable singularity theorem, w is harmonic on C. Consequently, w is
real part of an entire function g, i.e. w = Re g. Since w(0) = 0 we can choose g
such that g(0) = 0.

As (rk) is a sequence of Pólya peaks of order λ > 0, we can deduce from (f) that

w(z) = Re g(z) ≤ |z|λ. (3.6)

Lemma 2.0.2 implies that g is a polynomial of degree at most λ.
Moreover, λ is a positive integer and we have

g(z) = c|z|λ (3.7)

for c ∈ C. Also, we can deduce from (d) that |c| = 1.
In fact, for any λ ∈ [ρ∗, ρ

∗] ∩ (0,∞), there is a sequence (rk) of Pólya peaks of
order λ but, we deduced above that λ is a positive integer which means that we
have only finitely many possibilities of λ. Thus ρ∗ = ρ∗ and referring to (3.4) we get

ρ∗ = ρ = ρ∗ ∈ N (3.8)

Therefore, ρ∗ is finite and the only possibility of λ is λ = ρ. Furthermore, (3.8)
implies that for any δ > 0 there exist r0, t0 > 0 such that

tρ−δ logM(r) ≤ logM(tr) ≤ tρ+δ logM(r) for r ≥ r0 and t ≥ t0 (3.9)

.
This implies that equation (2.1) holds for any sequence rk → ∞. Consequently,

we can drop the assumption that (rk) must be a sequence of Pólya peaks and instead
consider a sequence that tends to infinity. Moreover, we still retain the properties
from (a) to (d). However, instead of (f), we can deduce (f’) from (3.9) as follows:

max{u(z), v(z)} ≤

{
|z|ρ+δ for |z| ≥ t0,

|z|ρ−δ for |z| ≤ 1/t0.

This deduction still provides property (e).
Once again, we observe that the function w defined in (3.5) is harmonic and of

the form w = Re g with g entire function. Instead of (3.6), which was derived from
(f), we now deduce from (f’) the following inequality:

w(z) = Re g(z) ≤

{
|z|ρ+δ for |z| ≥ t0,

|z|ρ−δ for |z| ≤ 1/t0.

This inequality implies that g is a polynomial of degree at most ρ + δ, with a
zero of multiplicity at least ρ − δ at the origin. By choosing δ < 1, we find again
that g has the form (3.7) with λ = ρ,

g(z) = c|z|ρ
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As a conclusion, every sequence tending to ∞ has a subsequence (rk) such that

lim
k→∞

log |f(rkz)|
logM(rk)

= Re(czρ) for z ∈ C \ S0, (3.10)

and

lim
k→∞

log |f(rkz)− 1|
logM(rk)

= Re(czρ) for z ∈ C \ S1. (3.11)

Using the fact that h′ = ∂ Reh
∂x

− i∂ Reh
∂y

, for h holomorphic function. We can de-

duce from (3.10) and (3.11) that

lim
k→∞

rkf
′(rkz)

f(rkz) logM(rk)
= cρzρ−1 for z ∈ C \ S0.

and

lim
k→∞

rkf
′(rkz)

(f(rkz)− 1) logM(rk)
= cρzρ−1 for z ∈ C \ S1.

Therefore, if T0 is a closed sector in C \ S0, then f ′ has only finitely many zeros
in T0. Moreover, if T1 is a closed sector in C\S1 then f ′ has only finitely many zeros
in T1. Choosing T0 and T1 such that T0 ∪ T1 = C, implies that f ′ has finite number
of zeros on C. In addition, we have that f ′ is of finite order, since f is of finite order.
So, we can deduce that f ′ has the form f ′ = peq with p and q polynomials. Finally,
f has the form (3.3).

Now, let’s consider the second case where N ⊃ C \ S1.

Case 2: N ⊃ C \ S1.
This situation can only occur when θ1 = π. Without loss of generality, let’s

assume that S1 corresponds to the left half plane. This allows us to express S0 as,
S0 = {z : | arg(z)| ≤ π

2
− ϵ} for some ϵ > 0.

We know that u(z) < 0 for z ∈ C \ S1. From property (e), we have u(0) = 0,
and according to property (f), u(z) ≤ |z|λ. We see that the hypothesis of Lemma
2.1.2 is satisfied. Applying this Lemma yields that ρ = 1. Since u is harmonic in
C \ S0, we can further apply Lemma 2.2.1 which implies that u is harmonic and
of the form u(z) = aRe z + b for a, b ∈ R. From u(0) = 0, it follows that b = 0.
Property (d) gives |a| = 1, but since u is negative in the right half plane, we have
a = −1. Therefore, we obtain that

uk(z) =
log |f(rkz)|
logM(rk)

→ −Re(z). (3.12)

Again, following the same procedure as in the previous case, we can drop the
assumption that (rk) is a sequence of Pólya peaks and assume instead that (rk) is a
sequence tending to ∞.

We can deduce from (3.12) that there exists a curve γ near the imaginary axis
from both directions such that |f(z)| = 1 for z ∈ γ.
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Suppose that f has at least one zero. This implies that the function log |f |
is not harmonic. Since u is of order zero, it follows that log |f | is also of order
zero. Therefore, by the converse of Lemma 2.2.1, we can conclude that log |f | is not
bounded on the imaginary axis. Additionally, all but finitely many zeros of f are in
S0 that does not include the imaginary axis, so we excludes the possibility of log |f |
approaching negative infinity. Thus, there exists a real sequence (yk) such that

Tk := |f(iyk)| → ∞ (3.13)

Without loss of generality assume that yk → +∞. Assuming that Tk > 1, there
exists xk > 0 such that zk := xk + iyk lies on the curve γ. We have xk = o(yk) as
k → ∞ by (3.12).

Applying the same reasoning as in the previous case, using (3.12) with rk = yk
and differentiating, we find that

lim
k→∞

ykf
′(ykz)

f(ykz) logM(yk)
= −1 for z ∈ C \ S0. (3.14)

It follows from (3.14) that

1

2

logM(yk)

yk
≤
∣∣∣∣f ′(z)

f(z)

∣∣∣∣ ≤ 2
logM(yk)

yk
for |z − iyk| ≤ 2xk (3.15)

for k large enough. Thus,

log Tk = log |f(iyk)| − log |f(xk + iyk)|

= Re

(
−
∫ xk

0

f ′(x+ iyk)

f(x+ iyk)
dx

)
≤
∫ xk

0

f ′(x+ iyk)

f(x+ iyk)
dx

≤ 2xk
logM(yk)

yk
.

(3.16)

Consider γk, which represents the component of the intersection of γ with the
disk {z : |z − zk| ≤ xk} that contains zk. It follows that f ◦ γk is a curve entirely
contained within the unit circle. For sufficiently large values of k, we have f ′(z) ̸= 0
for z ∈ γk, by (3.15). Consequently, the argument of f(z) monotonically increases
as z traverses γk. Furthermore, we can establish that the length of γk is greater than
or equal to 2xk. Therefore,

length(f ◦ γk) ≥ 2xk inf
z∈γk

|f ′(z)| = 2xk inf
z∈γk

∣∣∣∣f ′(z)

f(z)

∣∣∣∣ for k large.

Putting this with (3.13), (3.15) and (3.16) gives

length(f ◦ γk) ≥ xk
logM(yk)

yk
≥ 1

2
log Tk > 2π for k large enough.
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This means, f ◦ γk wraps around the unit circle at least once. Consequently, γk
must contain a 1-point of f . However, this contradicts the hypothesis that all the
1-points of f are in the left half plane. Hence, we can conclude that f has no zeros,
which implies that f has the form f(z) = eaz+b, and in particular f is of the form
(3.3).

Theorem 3.1.3. Let S0 and S1 be closed sectors in C satisfying S0 ∩ S1 = {0}.
Denote the opening angle of Sj as θj, and suppose that

min{θ0, θ1} <
π

2
and max{θ0, θ1} < π.

Then there does not exist a transcendental entire function of finite order for which
all but finitely many zeros are contained in S0, while all but finitely many 1-points
are contained in S1.

Proof. Let f be a transcendental entire function of finite order such that all but
finitely many zeros of f are in S0, while all but finitely many 1-points of f are in
S1. By Theorem 3.1.2, we know that f has the form (3.3) with polynomials p and
q. We will first show that the degree of q is even.

To proceed, let ϕk and ak be as given in (3.1) and (3.2) respectively. It is
important to observe that ak ∈ {0, 1} since otherwise the zeros and 1-points would
accumulate at the same rays. Now, suppose that d is odd, i.e., d = 2m − 1 for
some m ∈ N, and fix k ∈ {1, . . . , d}. Suppose that ak = 0. In this case, the 1-
points of f accumulate on the ray arg(z) = ϕk +

π
2d
. However, since the 1-points are

separated in sector of opening angle less than π, they cannot accumulate on the ray
arg(z) = ϕk +

π
2d

+ π.
But note that arg z = ϕk + π

2d
+ π = ϕk+m − π

2d
. Thus, the 1-points do not

accumulate at the ray arg z = ϕk+m + π
2d
. Furthermore, the zeros accumulate at the

rays arg z = ϕk+m ± π
2d
.

Also, we have that the zeros are separated in a sector of opening angle less that
π. Following the same argument we can deduce that the zeros can not accumulate
at the ray arg z = ϕk+m + π

2d
+ π = ϕk+2m − π

2d
. Then, the zeros can not accumulate

on the ray arg z = ϕk+2m + π
2d
.

It follows that the 1-points accumulate on the rays arg z = ϕk+2m± π
2d

= ϕk+1± π
2d
.

Here the index in ϕk is taken modulo d; i.e, ϕj = ϕk if j ≡ k (mod d).
Therefore, using induction we can prove that the 1-point accumulate at rays

arg z = ϕj ± π
2d

for all j ∈ {1, . . . , d}, which contradicts our hypothesis that the
one points are separated in a sector of opining angle less than π. Thus, d must be
even.

According to the hypothesis, there exists an open sector T with an opening angle
greater than π

4
, in which f has only finitely many zeros and 1-points within T . This

means that T does not contain any of the rays arg z = ϕk ± π
2d

because the zeros or
1-points accumulate on these rays. It follows that, π

d
> π

4
, leading that d < 4.

Then the only possibility left is d = 2. Suppose that d = 2. Without loss of
generality assume that θ0 < π

2
, this indicates that all but finitely many zeros are

contained within a sector of opening angle less than π
2
. Then, the zeros can not
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accumulate on rays arg z = ϕk ± π
4
for both k = 0 and k = 1. Consequently, the

1-point accumulate on rays arg z = ϕ1 ± π
4
and arg z = ϕ2 ± π

4
. This contradicts the

hypothesis that all but finitely many 1-points of f are contained within a sector of
opening angle less than π.

Therefore, the existence of such an f is not possible.

Theorem 3.1.4. Let f be a transcendental entire function of finite order. let S be
a closed sector in C of opening angle less than π

3
, and let H be a closed half plane

such that S ∩H = {0}. Suppose that all but finitely many zeros of f are within S,
and all but finitely many 1-points are within H. Then f has the form f(z) = p(z)eaz

where p is a polynomial and a ∈ C.

Proof. Theorem 3.1.2 implies that f has the form (3.3).
Let ϕk and ak be as given in (3.1) and (3.2) respectively. We note that ak ∈ {0, 1}
since otherwise the zeros and one points will accumulate on the same sectors. It
follows from the hypothesis that there exits an open sector T of opening angle greater
than π

3
that contains only finitely many zeros and 1-points of f . This implies that

T does not intersect any of the rays arg z = ϕk ± π
2d
. In fact, the number of those

rays is 2d and they are distributed equally at an angle π
d
. Thus, we can conclude

that π
d
> π

3
, leading to d < 3.

Assuming d = 2, as the 1-points are contained in a half-plane, we have ak = 0
for some k ∈ {1, 2}. Consequently, the zeros accumulate at both rays arg z =
ϕk± π

4
. This implies the existence of infinitely many zeros not contained in S, which

contradicts our hypothesis. Hence, we can deduce that d = 1, resulting that f have
the form f(z) = p(z)eaz where p is a polynomial and a ∈ C.

3.2 Examples that show the sharpness of the results

In this section we are going to consider some examples that shows that the conditions
on the opening angles of the sectors of theorems of chapter 3 are sharp.

The following example shows that the condition min{θ0, θ1} < π
2
in Theorem

(3.1.3) can not be relaxed to min{θ0, θ1} ≤ π
2
.

Example 3.2.1. Let

f(z) =
2√
π

∫ z

0

t2e−t2 dt+
1

2

f has the form (3.3) with q(t) = −t2 indicating that d := deg(q) = 2.
In fact ∫ ∞

0

t2e−t2 dt =

√
π

4

Using the result of Lemma (3.1.1), where ϕ1 = 0 ϕ2 = π, a1 = 1, and a2 = 0,
we can conclude that the zeros of f accumulate at rays where arg z = ±π

4
, and the

1-points of f accumulate at the rays where arg z = π ± π
4
.

Therefore, all but finitely many zeros of f are in S0 = {z : | arg z| ≤ π
4
}, while

all but finitely many 1-points are in S1 = {z : | arg z − π| ≤ π
4
}.
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The next example shows that the condition max{θ0, θ1} < π can not be relaxed
to max{θ0.θ1} ≤ π.

Example 3.2.2. Let
f(z) = ez

f has no zeros, and the 1-points of f lie on the imaginary axis for z = 2niπ with
n ∈ N. This indicates that the 1-points of f are within the closed right half-plane.

The below example shows that the condition on the opening angle of sector S
being < π

3
in Theorem (3.1.4) can not be relaxed to ≤ π

3
.

Example 3.2.3. Define a and b as following

a

∫ ∞

0

t3e−t3 dt =
1

3
and b

∫ ∞

0

te−t3 dt =
1

3

Let

f(z) =

∫ z

0

(at3 + bt)e−t3 dt+
1

3

In this example f has the form (3.3) with q(t) = −t3 indicating that d = 3. Here
we have ϕ1 = 0, ϕ2 =

2π
3
, ϕ3 =

4π
3
, a1 = 1, and a2 = a3 = 0.

Using the result of Lemma (3.1.1), we conclude that zeros of f accumulate at the
rays given arg z = ±π

2
,and the 1-points accumulate at the rays given by arg z = ±5π

6

and arg z = ±π
2
.

Therefore, all but finitely many zeros of f are in the sector S = {z : | arg z| ≤ π
6
},

while all but finitely many 1-points are in the closed left-half plane.
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