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Abstract
of the Thesis of

Fatima Hassan Fneich for Master of Science
Major: Applied Mathematics

Title: Frequency Analysis and Applications

The goal of this thesis is to study signals that have a regularity property defined in
the frequency space, such as a decay on average of the amplitude of their Fourier
transform, by using techniques from frequency analysis. Frequency analysis is a set
of techniques that involve an analysis in the Fourier domain. We review some of
these techniques and some principles. More precisely we will decompose a signal into
countable sums of functions of which the Fourier transform is compactly supported in
a ball or an annulus by performing a Littlewood–Paley decomposition. We will apply
this technique to study the properties of functions having a specific regularity. Over
two hundred years ago, Fourier studied problems related to the series expansions
of periodic signals using elementary trigonometric polynomials. The theory was
extended to non-periodic signals by using the Fourier transform and forms the core
of harmonic analysis. Harmonic analysis is used in various fields such as signal
processing and partial differential equations (PDEs).
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Chapter 1

The Fourier Transform

In this section we recall the definition of the Fourier transform and some of its
properties in the classical setting and also in the Lebesgue setting.

1.1 The Fourier transform in the classical setting

In this subsection we follow [6]. The classical Fourier transform is defined for func-
tions that are moderately decreasing or Schwartz functions.
Recall that the set of moderately decreasing functions (denoted by M(Rd)) is the
set of continuous functions such that there exists A > 0 such that |f(x)| ≤ A

1+|x|2d .

Let f ∈ M(Rd). Then f̂ denotes the Fourier transform of f , and it is defined for all
ξ ∈ Rd by

f̂(ξ) :=
∫
Rd f(x)e

−2iπξ·x dx (1.1)

Let S(Rd) be the set of Schwartz functions, i.e the set for functions f such that
sup
x∈Rd

(1 + |x|)N |∂αf(x)| < ∞ for all α := (α1, .., αd) ∈ Nd and N ∈ N (Recall that

∂α := ∂α1 ...∂αd). Recall (see [2]) that if f ∈ S(Rd) then f̂ ∈ S(Rd). Moreover the
Fourier inversion formula holds

f(x) =
∫
Rd f̂(ξ)e

2iπξ·x dξ (1.2)

Notice that the proof to establish (1.2) for Schwartz functions also works for func-
tions (f, f̂) ∈ M(Rd)2.

Let (x0, λ) ∈ Rd × R+. Let Tx0 (resp. Dλ) denote the translation of vector
x0 (resp. the dilation operator of factor λ), i.e Tx0(g)(x) := g(x − x0) ( resp.
Dλ(g)(x) := g(λx). Let (x0, ξ0, λ) ∈ (Rd)2×R.Then elementary changes of variables
show that the equalities below hold:
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T̂x0f(ξ) = e−2iπξ·x0 f̂(ξ), D̂λf(ξ) =
1
λd f̂

(
ξ
λ

)
, and

Tξ0 f̂(ξ) = e2iπξ0·xf̂(ξ)·
(1.3)

1.2 The Fourier transform in the Lebesgue setting

In this subsection we follow [2]. The Fourier transform in the Lebesgue setting for
functions in L1(Rd), L2(Rd), and L1(Rd) ∩ L2(Rd).

Let f ∈ L1(Rd). Then the Fourier transform is again defined by (1.1). Moreover,
assuming also that f̂ ∈ L1(Rd), then f is (a.e) equal to a continuous function g,
more precisely

f(x) = g(x) :=
∫
Rd f̂(ξ)e

2iπξ·x dξ (1.4)

Let f ∈ L2(Rd). Then there exists a sequence {fn}n≥1 such that fn and f̂n ∈
L1(Rd) 1, and f̂ = lim

n→∞
f̂n in L2(Rd). Moreover the Plancherel theorem holds, i.e

∫
Rd |f(x)|2 dx =

∫
Rd |f̂(ξ)|2 dx (1.5)

Assume also that f̂ ∈ L1(Rd). Then (1.4) also holds 2.

Let f ∈ L1(Rd) ∩ L2(Rd). Then the Fourier transform of f in L1 is (a.e) equal
to its Fourier transform in L2. Consequently (1.4) and (1.5) also holds.

1Observe that this implies that f̂n ∈ L2(Rd): see [2].
2It suffices to use the same arguments in [2], more precisely in the proof of the Fourier inversion

formula for f and f̂ in L1(Rd), once we have proved that the transfer formula
∫
Rd f̂ϕ =

∫
Rd fϕ̂

holds for f , with ϕ a Schwartz function. But the transfer formula clearly holds for all functions h
in L1(Rd), so it also holds for f by a limit process
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Chapter 2

Properties of a Signal Localized
in the Fourier Domain

In this section we study the properties of a signal that is localized in the Fourier
domain, i.e a signal of which the amplitude is essentially concentrated around a
point ξ0 ∈ Rd. More precisely we say that a function f is localized in the frequency
space around a point ξ0 ∈ Rd if and only if for all N ∈ N there exists CN > 0 such
that

ξ ∈ Rd : |f̂(ξ)| ≤ CN

(1+|ξ−ξ0|)N · (2.1)

The proposition below and its proof show that if a function f has a Fourier
transform that is localized around some point ξ0 ∈ Rd, then f is smooth.

Proposition 1. Let ξ0 ∈ Rd and f ∈ M(Rd) that is localized at ξ0. Then f ∈
C∞(Rd).

Proof. We may assume WLOG that ξ0 = 0: indeed, we may use (1.3) to find g such
that ĝ(ξ) := f̂(ξ + ξ0) and then apply Proposition 1 to g at ξ0 = 0.

Observe from (2.1) that for all α ∈ Nd, the map ξ → ∂αx

(
f̂(ξ)e2iπξ·x

)
is bounded

by an L1 function that does not depend on x. Hence we can use the differentiation
rule under the integral sign of the Fourier inversion formula (1.2) to come to the
conclusion that f ∈ C∞(Rd) and, moreover,

α ∈ Nd : ∂αf(x) =

∫
Rd

f̂(ξ)(2πiξ)αe2πiξ·xdξ

Remark 1. The analogue of Proposition 1 in Lebesgue spaces is the following:

Proposition 1’. Let ξ0 ∈ Rd. Assume that f ∈ L1(Rd) and that f̂ is localized
around ξ0. Then f is a.e equal to a C∞(Rd) function.
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Proof. Again we may assume WLOG that ξ0 = 0. We see from (2.1) that f̂ ∈ L1(R).
Hence we get from (1.2) f = g a.e with g(x) :=

∫
Rd f̂

(ξ)e2iπξ·x dξ. Then we replace
‘∂αf” with“∂αg” in the proof of Proposition 1 and we follow verbatim the same
steps.

The next proposition shows that if f̂ is very well-localized (in the sense that
f̂ ∈ Cc(Rd) 1) then f cannot be equal to zero on a ball centered at x0 on a radius
R > 0, even if R is very small. This implies in particular that f cannot be localized
(in the sense that f /∈ Cc(Rd) )

Proposition 2. Let E := { h of moderate decrease : ĥ ∈ Cc(Rd)}. Let (x0, R) ∈
Rd × (0,∞]. There exists no f ∈ E, f ̸= 0 such that f = 0 on a ball B(x0, R).

Proof. Suppose that f = 0 on a ball B(x0, R) where xo ∈ Rd and R > 0. We
may assume WLOG that x0 = 0: indeed, if x0 ̸= 0, then we can apply (1.3) and
Proposition 2 to x→ f(x0 + x).
Expanding e2πix·ξ in its Maclaurin series we get 2

f(x) =

∫
Rd

f̂(ξ)e2πix·ξdξ

=

∫
Rd

f̂(ξ)
∞∑
k=0

1

k!
(2πix · ξ)kdξ

=
∞∑
k=0

1

k!

∫
Rd

(2πix · ξ)kf̂(ξ)dξ

=
∑
α∈Nd

1

α!
xα

∫
Rd

(2πiξ)αf̂(ξ)dξ,

(2.2)

using at the third line the normal convergence of the series in ξ and at the fourth
line the multinomial Newton formula. Now, recall from the proof of Proposition 1

that

∫
Rd

(2πiξ)αf̂(ξ)dξ = ∂αf(0) = 0 for all α. Hence f = 0, which is impossible.

Remark 2. The analogue of Proposition 2 in Lebesgue spaces is the following

Proposition 2’. Let E
′
:= {h ∈ L1(Rd) : ĥ ∈ Cc(Rd)}. Let (x0, R) ∈ Rd × (0,∞).

There is no f ̸= 0 ∈ E
′
such that f = 0 a.e on B(x0, R).

1Recall that Cc(Rd) is the set of continuous and compactly supported functions
2Recall that if α := (α1, ..., αd) ∈ Nd then α! := α1!...αd! and xα := xα1

1 ...xαd

d
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Proof. Again we assume that the conclusion does not hold. We may assume WLOG
the x0 = 0. Let g(x) :=

∫
Rd f̂(ξ)e

2iπx·ξ dξ. Then from (2.1) and a standard rule of
continuity we see that g is continuous. Hence g = 0 on B(x0, R) and, repeating the
same argument as in (2.2), we get g = 0. Hence f = 0 a.e, which is a contradiction.

In fact a stronger result holds:

Proposition 3. Let ξ0 ∈ Rd. Let Ē = { h of moderate decrease : ∀N ∈ N,
sup
ξ∈Rd

(1+ |ξ−ξ0|)N |ĥ(ξ)| <∞}. Then there does not exist f ̸= 0 ∈ Ē such that f = 0

on B(x0, R).

Proof. We only prove the proposition for d = 1.

Again we may assume WLOG that ξ0 = 0.

Assume that there exists f ̸= 0 such that f = 0 on B(x0, R). Let g(z) :=∫
R f̂(ξ)e

2iπξzdξ.

Claim: g is an analytic function.

Proof:

Indeed, from the fundamental theorem of calculus

e2iπξ(z+△z) − e2iπξz = △z
∫ 1

0
∂e2iπξz

′

∂z′
(z + t△z) dt

Moreover from ez
′+z′′ = ez

′
ez

′′
and the elementary estimate |ez′−1| ≲ |z′| for |z′| ≤ 1

we get

∣∣e2iπξ(z+△z) − e2iπξz
∣∣ ≲ |ξ||△z|

Hence g is analytic and

lim
△z→0

g(z+△z)−g(z)
△z

=
∫
R 2iπξf̂(ξ)e

2iπξ·x dξ·

Alternatively one can use the Morera theorem to prove that g is analytic. Let R be
a rectangle. Denoting by ∂R its boundary we have, by Fubini theorem

∫
∂R
g(z)dz =

∫
R f̂(ξ)

∫
∂R
e2iπξz dz dξ = 0,

where at the last equality we use the Cauchy theorem to the analytic function
z → e2iπξz.
Moreover from (1.4) we see that g has a zero that is not isolated. Hence g = 0 and
f = 0.
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2.1 The Heisenberg uncertainty principle

We showed in Proposition 1’ and more generally in Proposition 3 that if f̂ is localized
in the frequency space then f cannot be localized in the physical space. In the next
proposition, we prove a quantitative formulation of this phenomenon: the Heisenberg
inequality.

Proposition 4. Let f ∈ S
(
Rd

)
. Let (x0, ξ0) ∈ (Rd)2. Then

(∫
Rd |x− x0|2|f(x)|2 dx

) (∫
Rd |ξ − ξ0|2|f̂(ξ)|2 dξ

)
≥ 1

16π2

(∫
Rd |f(x)|2 dx

)2
(2.3)

The same conclusion holds if f ∈ L2
(
Rd

)
satisfies

∫
Rd |x|2|f(x)|2 dx < ∞, and∫

Rd |ξ|2|f̂(ξ)|2 dξ <∞.

Proof. First let us assume that f ∈ S(Rd).
By using the translation rules of (1.3) if necessary we may assume WLOG that
ξ0 = x0 = 0.
By using the dilation rule of (1.3) if necessary we may assume WLOG that (∗) holds
with (∗) :

∫
Rd |f(x)|2 dx = 1. Indeed an elementary change of variable shows that∫

Rd |Dλf(x)|2 dx = 1 iff λd = ∥f∥2L2 . Applying (2.3) to fλ we get

(∫
Rd |x|2|fλ(x)|2 dx

) (∫
Rd |ξ|2|f̂λ(ξ)|2 dξ

)
≳ 1 (2.4)

Hence, an elementary change of variable combined with ( 1.3) show that

(∫
Rd |x|2|fλ(x)|2 dx

) (∫
Rd |ξ|2|f̂λ(ξ)|2 dξ

)
≳ λ−2d ≳ ∥f∥2L2

We first prove (2.3) for d = 1. We follow e.g [6]. Integrating by parts and recalling
that f decays fast for |x| large we get

1 =
∫
Rd x

′|f(x)|2 dx
= −

∫
Rd x

d
dx

(|f(x)|2) dx
≲

(∫
Rd x

2|f(x)|2 dx
) 1

2
(∫

Rd |f
′
(x)|2 dx

) 1
2

≲
(∫

Rd x
2|f(x)|2 dx

) 1
2

(∫
Rd ξ

2|f̂(ξ)|2 dξ
) 1

2
,

using the Cauchy-Schwartz inequality at the third row and f̂ ′(ξ) = 2iπξf̂(ξ) at the
fourth row.
Then we prove (2.3) for d > 1. Let i ∈ {1, ..., d}. Then from Fubini theorem

1 =
∫
Rd |f(x)|2 dx1...dxd

=
∫
Rd−1

(∫
R |f(x)|

2 dxi
)
dx1...dxi−1dxi+1...dxd

≲
∫
Rd−1

(∫
R x

2
i |f(x)|2 dxi

) 1
2
(∫

R |∂xi
f(x)|2 dxi

) 1
2 dx1...dxi−1dxi+1...dxd,

≲
(∫

Rd x
2
i |f(x)|2 dx

) 1
2
(∫

Rd |∂xi
f(x)|2dx

) 1
2
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using at the last row (d − 1)− times the Cauchy-Schwarz inequality. By summing
over i the inequality above we get, using also the Cauchy-Schwartz inequality for
finite sequences

1 ≲
(∫

Rd |x|2|f(x)|2 dx
) (∫

Rd |∇f(x)|2 dx
)

≲
(∫

Rd |x|2|f(x)|2 dx
) 1

2

(∫
Rd |ξ|2|f̂(ξ)|2 dξ

) 1
2

Now assume that f ∈ L2(Rd) such that |x|f ∈ L2(Rd) and |ξ|f̂ ∈ L2(Rd). Let
Rn > 0 be such that

∫
|x|≥Rn

|x|2|f(x)|2 dx → 0 as n → ∞. We slightly modify

an argument in e.g [1]. Let χ be a smooth function such that χ(x) = 1 if |x| ≤ 1

and χ(x) = 0 if |x| ≥ 2. Let fn := χn(ρn ∗ f) with χn(x) := χ
(

x
Rn

)
and {ρn}n≥1

a sequence of mollifiers. Recall that ρn ∗ f → f in L2(Rd). Hence using also the
decomposition fn = χn(ρn ∗ f − f) + χnf and the dominated convergence theorem,
we get (1+ |x|)fn → (1+ |x|)f as n→ ∞. From ∇fn = ∇χn (ρn ∗ f)+χn(ρn ∗∇f)
we see that 3 ∇fn → ∇f in L2(Rd) as n → ∞. Hence by Plancherel theorem we

have
∫
Rd |ξ|2

∣∣∣f̂n − f(ξ)
∣∣∣2 dξ → 0 as n→ ∞.

A consequence of the inequality (2.3) is the following result that we can relate
to Proposition 2’ :

Proposition 5. Let (R, x0, ξ0) ∈ (0,∞)× (Rd)2. There exists a constant c > 0 such
that there is no function f ∈ L2(Rd) for which f̂ = 0 outside the ball B(ξ0, R) and
f = 0 outside the ball B

(
x0,

c
R

)
.

Proof. We see from (2.3) and Plancherel theorem that
∫
Rd |x − x0|2|f(x)|2 dx ≤

c2

R2

∫
Rd |f(x)|2 dx,

∫
Rd |ξ − ξ0|2|f̂(ξ)|2 dξ ≤ R2

∫
Rd |f(x)|2 dx. This contradicts (2.3)

for c > 0 small enough.

2.2 Benedick non-localization principle

We showed in the previous section a simultaneous non localization property for
f and f̂ . More precisely we proved in Proposition 2’ that if f ̸= 0 ∈ L1(R)
has a smooth Fourier transform with bounded support (i.e there exists R̄ > 0
such that {f̂ ̸= 0} ⊂ B(O, R̄) ) then for all (x0, R) ∈ Rd × (0,∞) we have
|{f ̸= 0} ∩B(x0, R)| > 0 4.

3Here ∇g := (∂x1
g, ...., ∂xd

g), with ∂xi
g the i− th distributional partial derivative (see [2] ) of

g ∈ {fn, f}.

4Here |E| denotes the measure of a set E
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We now prove a stronger proposition on simultaneous non-localization due to Benedicks:
it says that if a function f ̸= 0 ∈ L1(Rd) has its Fourier transform f̂ finitely sup-
ported ( i.e {f̂ ̸= 0}| <∞ ) then f cannot be finitely supported (i.e |{f ̸= 0}| = ∞
). Notice that {f̂ ̸= 0}| < ∞ ( resp. |{f ̸= 0}| = ∞ ) may be unbounded and that
|{f ̸= 0} ∩B(x0, R)| > 0 does not necessarily imply that |{f ̸= 0}| = ∞.
We now state the Benedick non-localization principle:

Proposition 6. Assume that f ∈ L1(Rd) satisfies |{f̂ ̸= 0}| < ∞ and |{f ̸= 0} <
∞|. Then f = 0.

Proof. We follow the exposition of the proof in [5].

Let X := {f ̸= 0} and X̂ := {f̂ ̸= 0}. By using a scaling transformation x → ax if
necessary, we may assume that |X| < 1. Consider the periodization of the indicator
function of {f̂ ̸= 0},i.e the function ξ → h(ξ) :=

∑
k∈Zd

1{f̂ ̸=0}(ξ − k).

Claim: h <∞ a.e.
Indeed it suffices to prove that h < ∞ a.e on the rectangle [0, 1] × ...[0, 1]. Given
k := (k1, ..., kd) ∈ Zd let Rk denote the rectangle Rk := [k1, k1+1]× ...× [kd, kd+1].
From the monotone convergence theorem and an elementary change of variable we
see that

∞ >
∫
Rd 1{f̂ ̸=0} dξ =

∑
k∈Zd

∫
Rk
1{f̂ ̸=0}(ξ) dξ =

∑
k∈Zd

∫
R(0,...,0)

1{f̂ ̸=0}(ξ − k) dξ =
∫
R(0,...,0)

h(ξ) dξ

Hence the claim follows.

This implies that the property (P ) holds with
(P ) : a.e ξ there exists only a finite number of ks such that f̂(ξ − k) ̸= 0.

Let fξ(x) := e2iπξ·xf(x). Let f̃ξ :=
∑
k∈Zd

fξ(x − k) be the periodic extension of fξ.

Since fξ ∈ L1(Rd), we can apply the Poisson formula and get that the Fourier series

of f̃ξ (denoted by FS[f̃ξ]) is equal to

FS[f̃ξ] =
∑
k∈Zd

f̂(ξ − k)e2iπk·x

(Here FS[f̃ξ] denotes the Fourier series of f̃ξ). It is also clear from (P ) that FS[f̃ξ]
converges absolutely. Hence we get a.e

f̃ξ = FS[f̃ξ] =
∑
k∈Zd

f̂(ξ − k)e2iπk·x (2.5)

Moreover from the definition of f̃ξ we see that{
x ∈ Td : f̃ξ ̸= 0

}
⊂

⋃
k∈Zd

{
x ∈ Td : f(x− k) ̸= 0

}
⊂ {f ̸= 0}

12



Hence
∣∣∣{x ∈ Td : f̃ξ ̸= 0

}∣∣∣ < 1. We also see from (2.5) that f̃ξ is a.e equal to a

trigonometric polynomial. Hence f̃ξ = 0 a.e and, since f̂(ξ − k) is the kth− Fourier

coefficient of f̃ξ we get (for a.e ξ) f̂(ξ − k) = 0 for all k ∈ Zd. Hence f = 0.

2.3 Hardy uncertainty principle

We showed previously that f̂ and f cannot be simultaneously localized. A natural
question is: given f ̸= 0, how fast f and f̂ can decay simultaneously? We already
know that if f is the Gaussian function ( i.e f(x) := e−πax2

with a > 0 ) then
f̂(ξ) = 1√

a
e−πξ2/a. The next question is: can we find a function f ̸= 0 such that

f and f̂ decays faster than a gaussian? The Hardy uncertainty principle gives a
negative answer. It says that f and f̂ can’t decay simultaneously faster than a
gaussian. More precisely

Proposition 7. Let C, C ′ be two nonnegative constants and let a be a positive
constant Suppose that f := R → C is a (measurable) function such that |f(x)| ≤
Ce−πax2

and |f̂(ξ)| ≤ C ′e−πξ2/a. Then there exists C̄ ≥ 0 such that

f(x) = C̄e−πax2· (2.6)

Proof. We follow the exposition of [7]. By using (1.3) if necessary we may assume
WLOG that a = 1. By considering g = cf with c > 0 a small constant if necessary
we may also assume WLOG the C = C

′
= 1.

Observe that in view of the decay of the function f as |x| → ∞, we may extend
the definition of the Fourier transform to the complex plane by letting f̂(z) :=∫
R e

−2iπzxf(x)dx. Observe that f̂ is analytic: this follows again from Morera theorem
and Fubini theorem (see also proof of Proposition 3). By completing the square we
get ∣∣∣f̂(ξ + iη)

∣∣∣ ≲
∫
R e

2πηx|f(x)| dx
≤ eπη

2 ∫
R e

−π(η−x)2 dx

≤ eπη
2

Hence if F (z) := eπz
2
f̂(z) then F is bounded by one on the imaginary axis. Let

0 < θ < π
2
be close enough to π

2
, 0 < δ, ϵ ≪ 1 be small parameters, and R > 0

a large number such that all the statements below are correct. Let Γθ denote the
sector

Γθ := {reiα, 0 < r ≤ R, 0 ≤ α ≤ θ}
We would like to apply the maximum principle to the function F on the upper right
quadrant H∩B(O,R) ( Here B(O,R) is the closed ball with radius R and center the
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origin, and H the upper plane) with R that can be arbitrarily large. Nevertheless
observe that F is not even bounded on H. In order to circumvent the difficulty,
we proceed as follows. We multiply F by the analytic functions eiϵe

iϵz2+ϵ
, eiδz

2
so

that the resulting function Gα,ϵ(z) := eiδz
2
eiϵe

iϵz2+ϵ
F (z) is bounded by one on the

boundary of the bounded domain B(O,R) ∩ Γθ. Hence by the maximum modulus
theorem we see that Gα,ϵ is bounded by one on ΓR,θ. By letting ϵ → 0, θ → π

2
,

R → ∞, and δ → 0, we see that G is bounded by one on H.
Similar arguments work for the other quadrants.
Hence we may apply Liouville theorem to conclude that F is constant.

14



Chapter 3

Local constancy of signal
localized in Fourier domain
around 0 and consequences

3.1 Local constancy of signal localized in Fourier domain
around 0 and consequences

We now explain informally why a signal localized in the Fourier domain around 0 is
essentially constant at scales ≪ 1

R
.

Indeed let f ∈ M(Rd) such that f̂ = 0 outside B(0, R). Then from the inversion
Fourier formula (1.2) we get for |x− x0| ≪ 1

R

f(x) =
∫
Rd f̂(ξ)e

2iπ·ξ0e2iπξ·(x−x0)dξ

≈
∫
Rd f̂(ξ)e

2iπξ·x0 dξ
= f(x0)

since |ξ · (x− x0)| ≪ 1.
We now draw consequences from this informal statement.

3.2 Shannon Sampling Theorem

Since a signal f is essentially constant at scales ≪ 1
R

it is natural to ask oneself
whether one can recover a signal localized in the Fourier domain from a sampling
of its values at points separated from a distance roughly equal to 1

R
. The Shannon

sampling theorem gives a positive answer to this question. It can be formulated as
follows:

Theorem 1. Let R > 0 and f ∈ L1(R) such that f̂ , the Fourier transform of f , is
supported on the interval [−R,R].

15



Then
f(x) =

∑
n∈Z

f
(

n
2R

)
sinc

(
2R(x− n

2R
)
)

(3.1)

in the L∞− (resp. L2 sense), i.e the series in the RHS of (3.1) converges to f in
L∞(R) (resp. L2(R)).
The same conclusions hold if we replace the assumption “f ∈ L1(R)” with “f ∈
L2(R) ”.

Remark 3. In other words, the sampling theorem, which is often named after Shan-
non, says that if an absolutely integrable function is band-limited, i.e it contains no
frequencies higher than R > 0 hertz, then it is completely determined by its samples
at a uniform grid spaced at distances 1

2R
apart via the above formula.

Sampling theory is a tool used for functions to be reconstructed from sampled data,
usually from the values of either the functions themselves or some transformations
at a discrete set of points.

Remark 4. Let f ∈ L1(R) such that supp(f̂) ⊂ [−R,R]. Then the triangle inequal-
ity applied to (1.1) shows that f̂ ∈ L∞(R). Hence we see from Hölder inequality that
f̂ ∈ L2(R) ∩ L1(R). Hence by (1.4) f is almost equal to the continuous function g
defined by g(x) :=

∫
R f̂(ξ)e

2iπξ·x dξ. So we may abuse notation in (3.1) by writing “
f
(

n
2R

)
” for “ g

(
n
2R

)
”.

Proof. We see from Remark 4 that the Fourier series of f̂ converges to f̂ in L2([−R,R])
: see e.g [6]. We can write

f̂(ξ) =
∑
n∈Z

cne
inπξ
R ,

where the equality holds in the L2([−R,R])− sense. In the expression above cn is
the n− the Fourier coefficient of f̂ , i.e

cn := 1
2R

∫ R

−R
f̂(ξ)e−

inπξ
R dξ ·

Hence, using also (1.4), we get cn = 1
2R
f
(
− n

2R

)
. So

f̂(ξ) = 1[−R,R]

∑
n∈Z

f
(

n
2R

)
e

−inπξ
R , (3.2)

where the equality holds in the L2(R)− sense. Hence we get from (1.4) and the
Cauchy-Schwartz inequality

f(x) = 1
2R

∑
n∈Z

f
(

n
2R

) ∫ R

−R
e2iπξ(x−

n
2R) dξ

=
∑
n∈Z

f
(

n
2R

)
sinc

(
2R(x− n

2R
)
)
,

(3.3)

where the equality holds in the L∞− sense. Observe that f ∈ L2(Rd) since f = ĥ
with h(ξ) = f̂(−ξ) and we can use the results of Section 1 to h ∈ L1(Rd) ∩ L2(Rd).
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The equality (3.3) also holds in the L2− sense: it follows from the Plancherel theo-
rem , (3.2), and (3.3).
In the case where f ∈ L2(R), we have f̂ ∈ L1(R) ∩ L2(R) by Hölder inequality.
From Section 1 we see that (1.4) holds. Hence, by following the same steps above,
we infer that (3.1) holds in the L∞− sense and in the L2− sense.

3.3 Bernstein Inequality

Since f is essentially constant at scales ≪ 1
R
, then (formally)

f ≈
∑

i⃗:=(i1,...,id)∈Zd

f

(
i1
R
, ...,

id
R

)
1Q⃗i

with Qi⃗ :=
[
i1
R
, i1+1

R

]
× ....

[
id
R
, id+1

R

]
, and therefore ∥f∥L∞(Rd) ≲ R

d
p∥f∥Lp(Rd).

So it should be possible to control the L∞(Rd)− norm (and more generally the
highest Lq(Rd)− norms) by lower Lp(Rd)− norms. The Bernstein inequality shows
that this is indeed the case:

Proposition 8. Let 1 ≤ p ≤ q ≤ ∞, R > 0, and s ∈ R. Let f ∈ Lp(Rd). The
following hold:

1. Assume that f̂ is compactly supported on
{
ξ ∈ Rd : |ξ| ≤ R

}
. Then

∥f∥Lq(Rd) ≲ Rd( 1
p
− 1

q )∥f∥Lp(Rd) (3.4)

2. Assume that f̂ is compactly supported on the annulus
{
ξ ∈ Rd : R

2
≤ |ξ| ≤ R

}
.

Then

∥f∥Lp(Rd) ≲ R−s∥Dsf∥Lp(Rd) (3.5)

Remark 5. Observe that (3.4) does not hold for all f ∈ Lp(Rd) ∩ L∞(Rd). Indeed,
arguing by contradiction, let fn(x) := 1 if |x| ≤ 1

2n
and fn(x) := 0 if |x| > 1

2n
. Then

∥fn∥Lp(Rd) =
1

2
nd
p

and ∥fn∥L∞(Rd) = 1. This contradicts (3.4) as n→ ∞.

Proof. Let ϕ be a smooth function such that ϕ(ξ) = 1 for |ξ| ≤ 1 and ϕ(ξ) =
0 for |ξ| ≥ 2. Let ϕ̃ := |ξ|−s (ϕ(ξ)− ϕ(4ξ)). If h ∈ {ϕ, ϕ̃} then let ȟ(x) :=∫
Rd h(ξ)e

2iπξ·x dξ.
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We first prove (3.4). By using the dilation rule of (1.3) if necessary we may as-
sume WLOG that R = 1. Indeed let D 1

R
f satisfies is compactly supported on{

ξ ∈ Rd : |ξ| ≤ 1
}
. Hence

∥f∥Lq(Rd) = R− d
q ∥D 1

R
f∥Lq(Rd) ≲ R

d
q ∥D 1

R
f∥Lp(Rd) ≲ Rd( 1

p
− 1

q )∥f∥Lp(Rd)

Hence f̂ = ϕf̂ , we get f = f ∗ ϕ̌; furthermore, an application of the Young inequality
(with p̄ such that 1

q
+ 1 = 1

p
+ 1

p̄
) shows that

∥f∥Lq(Rd) ≲ ∥f∥Lp(Rd)∥ϕ̌∥Lp̄(Rd) ≲ ∥f∥Lp(Rd)

We then prove (3.5). Again, by using the dilation rule of (1.3) if necessary we may

assume WLOG that R = 1. Now write f̂ = ϕ̃|ξ|sf̂ . Hence f = ˇ̃ϕ ∗Dsf and, taking
into account that ϕ̃ ∈ S(Rd), an application of the Young inequality yields

∥f∥Lp(Rd) ≲ ∥Dsf∥Lp(Rd)∥
ˇ̃ϕ∥L1(R) ≲ ∥Dsf∥Lp(Rd)

Remark 6. Alternatively one can use Hölder inequality to conclude. Indeed from
f = f ∗ϕ, the definition of the convolution, and Hölder inequality we get ∥f∥L∞(Rd) ≲
∥f∥Lp(Rd)∥ϕ̌∥Lp′ (Rd) ≲ ∥f∥Lp(Rd). Hence by interpolation

∥f∥Lq(Rd) ≲ ∥f∥
p
q

Lp(Rd)
∥f∥

1− p
q

L∞(Rd)
≲ ∥f∥Lp(Rd)·

Remark 7. We claim that the estimates (3.4) and (3.5) are sharp.
Indeed let h be a smooth function such that h(ξ) = 1 for |ξ| < 3

4
and h(ξ) = 0 for

|ξ| ≥ 1. Then ȟ ∈ S(Rd) (with ȟ(x) :=
∫
Rd h(ξ)e

2iπξ·x dξ) since ȟ(x) := ĥ(−x).
Let qR(x) := Rdq̌(Rx). We prove (3.4). Let q := h with ϕ defined in Subsection 4.1.
Then q̂R(ξ) = ϕ

(
ξ
R

)
is supported on |ξ| ≤ R. Moreover an elementary change of

variable shows that for r ∈ {p, q} ∥qR∥Lr(Rd) ≈ Rd(1− 1
r ) ( Observe that q̌ ̸= 0 on a

ball with center O and small positive radius by Proposition 2 ). Hence ∥qR∥Lq(Rd) ≈
Rd( 1

p
− 1

q )∥qR∥Lp(Rd). We now prove (3.5). Let q be such that q(ξ) := h(ξ) − h
(
5ξ
4

)
.

Then we have DsqR(x) = Rd+sDsq̌(Rx) and ∥DsqR∥Lp(Rd) ≈ Rs∥qR∥Lp(Rs) (again,
observe that Dsq̌ ̸= 0 on a ball with center O and small and positive radius by
Proposition 2).Hence ∥DsqR∥Lp(Rd) ≈ Rs∥qR∥Lp(Rd).
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Chapter 4

Littlewood-Paley decomposition

So far we have studied properties of signals that are band-limited, i.e localized in
the Fourier domain. It is unfortunate that most of the signals (solutions of PDES,
signals in image processing, etc.) are not usually band-limited. So we perform a
Littlewood-Paley decomposition. Roughly speaking, a Littlewood-Paley decompo-
sition is a particular way of decomposing the phase plane which takes a function
and writes it as a superposition of a countably infinite family of functions of varying
frequencies. The Littlewood-Paley decomposition is of interest in multiple areas of
mathematics and forms the basis for the so-called Littlewood-Paley theory.
More precisely we first define for N ∈ 2Z a Littlewood-Paley projector PN : this map,
when applied to a function f , yields a Littlewood-Paley piece of f , i.e a function
PNf that is localized in the Fourier domain in an annulus |ξ| ≈ N . By defining
appropriately PN we can prove that we can decompose f into its Littlewood-Paley
pieces PNf , i.e f =

∑
N∈2Z

PNf (∗).

Then we establish decay estimates on average in the physical space for PNf .
Finally we use these estimates in the decomposition (∗): we get general ( by “gen-
eral” we mean estimates that hold for all functions f and not only functions f that
are band-limited) estimates for f by summing over N ∈ 2Z.

4.1 Setting

Let ϕ(ξ) be a radial bump function supported on
{
ξ ∈ Rd : |ξ| ≤ 2

}
which equals 1

on
{
ξ ∈ Rd : |ξ| ≤ 1

}
. Let ψ(ξ) be the function

ψ(ξ) := ϕ(ξ)− ϕ(2ξ).

Thus ψ is a bump function supported on the annulus
{
ξ ∈ Rd : 1

2
≤ |ξ| ≤ 2

}
. By

construction we have

∑
N∈2Z

ψ
(

ξ
N

)
= 1 (4.1)
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for all ξ ∈ Rd. Thus we can partition the unity into functions ψ
(

ξ
N

)
, with N ∈ 2Z

(the set of dyadic numbers), each of those is supported on the annulus of the form
|ξ| ∼ N . We now introduce the Littlewood-Paley decomposition operators PN , P≤N

defined by

P̂Nf(ξ) = ψ

(
ξ

N

)
f̂(ξ)

P̂≤Nf(ξ) = ϕ

(
ξ

N

)
f̂(ξ)

Hence, from the equality p̂ ∗ q = p̂q̂ we get

PNf(x) = Nd

∫
Rd

f(y)ψ̌ (N(x− y)) dy and

P̂≤Nf(ξ) = Nd

∫
Rd

f(y)ϕ̌ (N(x− y)) dy.

We see from (4.1) that we have the Littlewood-Paley decomposition

f =
∑
N∈2Z

PNf.

This decomposition takes a single function and writes it as a superposition of a
countably infinite family of functions PNf , where each one has a frequency of mag-
nitude roughly N . Lower values of N represent lower frequency components of f,
while higher values represent high frequency components.

What does PNf look like? Since PNf = P≤4NPNf , we see from that we have
the self-reproducing formula

PNf(x) = (4N)d
∫
Rd PNf(y)ϕ̌ (4N(x− y)) dy (4.2)

Hence PNf(x) ≈ Nd
∫
N |x−y|≲1

PNf(y) dy since ϕ̌ is essentially concentrated in a

neighborhood of size o(1) around the origin, which means that PNf is essentially
constant at scales ≪ 1

N
. On the other hand P≤N

4
PNf = 0. Hence

∫
Rd PNf(y)ϕ̌

(
x−y
N
4

)
dy = 0

Hence
∫
N |x−y|≲1

PNf(y) dy ≈ 0, which implies that PNf has essentially a mean equal

to zero at scales ≲ 1
N
; in other words PNf has O(1) oscillations at these scales.

To reconcile these two properties, we see that on each ball of radius O(N−1), the
function PNf is roughly constant at scales O(N−1) and it contains about O(1) os-
cillations.

What does P≤Nf look like? Since P≤Nf = P ≤4N P≤Nf , we see by using simi-
lar arguments as before that P≤N is essentially constant at scales ≪ N−1.
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What does P>Nf look like? Since P ≤N
4
P>Nf = 0, we see that P>N has O(1)

oscillations at scales O(N−1).

4.2 Estimates for Littlewood-Paley projector

In this subsection we prove some quantitative estimates for functions that are local-
ized in the Fourier domain within the annulus {ξ ∈ Rd : |ξ| ≈ N} with N ∈ 2Z.

Proposition 9. Let f ∈ S(Rd). Let N ∈ 2Z. Then the following hold:

1.
∥PNf∥Lp(Rd) ≲ N−1∥∇f∥Lp(Rd)· (4.3)

2. Let s ∈ R. Then

∥PNf∥Lp(Rd) ≲ N−s∥Dsf∥Lp(Rd)· (4.4)

Proof. First we prove (4.3).

From the formula ∂̂xj
f(ξ) = 2iπξj f̂(ξ) we get PNf = 1

N

d∑
j=1

Kj,N∗∂xj
f withKj,N(x) :=

1
2iπ

∫
Rd

ξj
N

(
N
|ξ|

)2

ψ
(

ξ
N

)
e2iπξ·x dξ. We claim that (∗) holds with (∗) : ∥Kj,N∥L1(Rd) ≲

1. Assuming that the claim holds applying the Young inequality we see that (4.3)
also holds. It remains to prove (∗). The triangle inequality and an elementary
change of variable show that |Kj,N(x)| ≲ Nd. Moreover by integration by parts

using the formula e2iπξ·x = 1
2iπ

∇(e2iπξ·x)·x
|x|2 we get |Kj,N(x)| ≲ Nd

|Nx|100d . Hence

|Kj,N(x)| ≲ Nd min
(
1, 1

|Nx|100d

)
· (4.5)

Observe that the R.H.S of (4.5) is integrable. Hence (∗) holds.

Then we prove (4.4). Let ψ̄(ξ) := |ξ|−sψ(ξ). From P̂Nf(ξ) = N−sψ̄
(

ξ
N

)
|ξ|sf̂(ξ)

we get

PNf = N−sNd
∫
Rd

ˇ̄ψ (N(x− y))Dsf(y) dy

Hence ∥PNf∥Lp(Rd) ≲ N−s∥Dsf∥Lp(Rd).

Next we state and prove the proposition below stronger for functions such that
their Fourier transform is localized on |ξ| ≈ N .
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Proposition 10. Let s ∈ R. Let f ∈ S(Rd) such that supp(f̂) ⊂
{
ξ ∈ Rd : |ξ| ≈ N

}
.

Let p ≥ 1. Then

∥∇f∥Lp(Rd) ≈ N∥f∥Lp(Rd), and ∥Dsf∥Lp(Rd) ≈ N s∥f∥Lp(Rd)

Proof. Since supp(f̂) ⊂
{
ξ ∈ Rd : |ξ| ≈ N

}
, we can write f = P̃Nf with P̃N a map

defined by ̂̃PN(f) := ψ
(

ξ
CN

)
f̂(ξ) and ψ defined in Subsection 4.1 and C ≫ 1 a large

positive constant.
We see from Proposition 9 that

∥f∥Lp(Rd) ≲ N−1∥∇f∥Lp(Rd), and ∥f∥Lp(Rd) ≲ N−s∥Dsf∥Lp(Rd)·

Let ψ̄(ξ) := |ξ|sψ
(
ξ
C

)
. We have

Dsf = N s
∫
Rd

qψ̄ (N(x− y)) f(y) dy

Hence from Young inequality we get ∥Dsf∥Lp(Rd) ≲ N s∥f∥Lp(Rd).

From the elementary estimate ∥∇f∥Lp(Rd) ≲
d∑

j=1

∥∥∂xj
f
∥∥
Lp(Rd)

, we see that it suffices

to estimate
∥∥∂xj

f
∥∥
Lp(Rd)

. From f = P̃Nf we get, after differentiation with respect
to xj

∂xj
f(x) = (CN)d+1

∫
Rd ∂xj

ψ̌(CN(x− y))f(y) dy·

Hence ∥∂xj
f∥Lp(Rd) ≲ N∥f∥Lp(Rd).
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Chapter 5

Applications

In this section we use the Littlewood-Paley decomposition to prove estimates of the
form

∥f∥Lr(Rd) ≤ A
(
∥f∥Lp(Rd) + ∥∇f∥Lp(Rd)

)
, and more generally

∥f∥Lr(Rd) ≤ A
(
∥f∥Lp(Rd) + ∥Dsf∥Lp(Rd)

)
,

(5.1)

f ∈ S(Rd), (p, r) and A > 0 positive constants that do not depend on f and to be
determined. The main interest of these estimates is their robustness: they can be
applied to a large class of functions. Hence they are useful in

• signal processing.
For example, assume that for some B > 0 the signals f satisfy the regularity
property ∥f∥Lp(Rd) + ∥Dsf∥Lp(Rd) ≤ B; then we see from (5.1) that they also
have the decay property ∥f∥Lr(Rd) ≲ B

• PDEs or functional analysis.
The existence of a solution of a PDE (or a function that satisfies some prop-
erties) is often related to the existence of a limit of a sequence of functions.
For example, let {un}n≥1 be a Cauchy sequence of Schwartz functions with
respect to the norm N(f) := ∥f∥Lp(Rd) + ∥∇f∥Lp(Rd). Then we see from (5.1)
that {un}n≥1 is also a Cauchy sequence in Lr(Rd). Since Lr(Rd) is a Banach
space, there exists u ∈ Lr(Rd) such that un → u in Lr(Rd).

5.1 An application: the non-endpoint of the Sobolev em-
bedding

In this subsection we show the non-endpoint of the Sobolev embedding.

Proposition 11. Let f ∈ S(Rd). Then the following hold:

1. Let 1 ≤ p < d and p̄ such that 1
p̄
= 1

p
− 1

d
. Let q < p̄. Then
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∥f∥Lq(Rd) ≲ ∥f∥Lp(Rd) + ∥∇f∥Lp(Rd)· (5.2)

2. More generally let s > 0, 1 ≤ p < d
s
, and p̄ such that 1

p̄
= 1

p
− s

d
. Let q < p̄.

Then

∥f∥Lq(Rd) ≲ ∥f∥Lp(Rd) + ∥Dsf∥Lp(Rd)· (5.3)

Remark 8. Proposition 11 says that the estimate (5.2) holds for q lying in the
interval [p, p̄) that does not contain its endpoint p̄. This is why this estimate is
called the non-endpoint of the Sobolev embedding. Later we will see that (5.2) also
holds for q = p̄: this is the endpoint of (5.2).
Recall from Proposition 15 (see Appendix C) that if 1 < p < ∞ then ∥Df∥Lp(Rd) ≈
∥∇f∥Lp(Rd). Hence, if 1 < p < s

d
then (5.3) is a generalization of (5.2).

Proof. We only prove (5.2), since the proof of (5.3) is similar and therefore left to
the reader.
The conclusion clearly holds if q = p. So we may assume WLOG that q > p.
We use a Paley-Littewood decomposition. We have

f =
∑

N∈2Z
PNf =

∑
N≤1

PNf +
∑
N>1

PMf = I + J

We have

∥I∥Lq(Rd) ≲
∑
N≤1

∥PNf∥Lq(Rd) ≲
∑
N≤1

Nd( 1
p
− 1

q )∥PNf∥Lp(Rd) ≲ ∥f∥Lp(Rd)

Hence ∥I∥Lq(Rd) ≲ ∥f∥Lp(Rd) and

∥J∥Lq(Rd) ≲
∑
N>1

∥PNf∥Lq(Rd) ≲
∑
N>1

N−1+d( 1
p
− 1

q )∥∇f∥Lp(Rd) ≲ ∥∇f∥Lp(Rd)·

Hence (5.2) holds.

5.2 An application: the endpoint of the Sobolev embedding

In this subsection we prove the endpoint of the Sobolev embedding. More precisely

Proposition 12. Let f ∈ S(Rd). Then the following hold

1. Let 1 ≤ p < d and p̄ be such that 1
p̄
= 1

p
− 1

d
.

∥f∥Lp̄(Rd) ≲ ∥∇f∥Lp(Rd) (5.4)
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2. More generally let s > 0, 1 < p < d
s
, and p̄ such that 1

p̄
= 1

p
− s

d
. Then

∥f∥Lp̄(Rd) ≲ ∥Dsf∥Lp(Rd)· (5.5)

Remark 9. We see from the arguments used in Remark 8 that if 1 < p < d
s
then

(5.5) is a generalization of (5.4).

We now write three different proofs of these estimates.

5.2.1 The proof of the endpoint Sobolev embedding for p > 1

We see from Remark 9 that it suffices to prove (5.5).
We follow an exposition in [8].
By using (1.3) if necessary (and choosing appropriately the value of λ ) we may
assume WLOG that ∥Dsf∥Lp(Rd) = 1.
We first prove the weak-type estimate

∥f∥Lp̄,∞(Rd) ≲ ∥Dsf∥Lp(Rd) (5.6)

( Here ∥f∥p̄
Lp̄,∞(Rd)

:= sup
λ>0

λp̄ | |f | > λ | ). Let λ > 0 be a fixed positive number. Let

N ∈ 2Z. From

∥PNf∥L∞(Rd) ≲ N
d
p
−s∥Dsf∥Lp(Rd) ≲ N

d
p
−s· (5.7)

we see that if Nλ is such that N
d
p
−s

λ ≈ λ then by summing (5.7) over N ≪ Nλ we
get

∥P≪Nλ
f∥L∞ ≪ λ

On the other hand we see from Proposition 9 that

∥P≳Nλ
f∥Lp(Rd) ≲ N−s

λ ∥Dsf∥Lp(Rd) ≲ N−s
λ

Therefore using also Chebyshev inequality we get

λp̄ ||f | > λ| ≲ λp̄ ||P≳Nλ
f | > λ| ≲ λp̄−p∥P≳Nλ

∥p
Lp(Rd)

≲ λp̄−pN−ps
λ ≲ 1,

where at the last line we use the definition of p̄. Hence (5.6) holds.

It remains to upgrade the weak-type estimates to strong-type estimates. For his
purpose we recall the Marcinkiewicz interpolation theorem (see e.g [2])
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Theorem 2. Let (p0, p1, q0, q1) ∈ [1,∞]4. Let θ ∈ (0, 1). Let (p, q) such that

1
p
= 1−θ

p0
+ θ

p1
, and 1

q
= 1−θ

q0
+ θ

q1
·

Assume that T is a linear map on Lp0 weak-type (p0, q0) and (p1, q1) i.e

(
sup
λ>0

λq0||Tf | > λ|
) 1

q0

≲ ∥f∥Lp0 (Rd), and

(
sup
λ>0

λq1||Tf | > λ|
) 1

q1

≲ ∥f∥Lp1 (Rd) · ·

Then T is strong-type (p, q), i.e

∥Tf∥Lq(Rd) ≲ ∥f∥Lp(Rd)·

By applying the Marcinkiewicz interpolation theorem to T = D−s we see from
the previous estimates that T is weak type (p, p̄). Hence T is strong type (p, p̄) and
we can conclude that (5.5) holds.

Remark 10. Assume that we want to prove (5.4) without using Remark 9 and by
using similar arguments as those above.
Similar arguments show that (∗) : ∥△−1∇ · E⃗∥Lp̄(Rd) ≲ ∥E⃗∥Lp(Rd) holds ( Here

E⃗ := (E1, ...Ed), ∇ · E⃗ :=
d∑

j=1

∂Ej

∂xj
and △̂−1f(ξ) := |ξ|−2f̂(ξ) ); then, applying (∗) to

E⃗ := ∇f yields (5.4).

5.2.2 Another proof of the endpoint Sobolev embedding for p > 1: frac-
tional integration

In this subsection we write down another proof based upon a physical representation
of the fractional integration of a function f .
Observe that (5.5) holds if and only if ∥D−sf∥Lp̄(Rd) ≲ ∥f∥Lp(Rd). From Appendix
A (see (10)) we can write D−sf(x) =

∫
Rd f(x− y)|y|s−d dy = K1(x) +K2(x) with

K1(x) :=
∫
|x−y|<R

f(y)|x− y|s−d dy, and K2(x) :=
∫
|x−y|≥R

f(y)|x− y|s−d dy

We have

|K1(x)| ≲
∑

M∈2Z:M≲R

M s 1
|B(x,R)|

∫
|x−y|≈M

|f(y)| dy ≲ RsMf(x)

Moreover the Hölder inequality shows that

|K2(x)| ≲
(∫

|y|≤R
|y|(s−d)p

′
dy

) 1
p′ ∥f∥Lp(Rd) ≲ R− d

q ∥f∥Lp(Rd)
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Therefore

Is(f)(x) ≲ RsM(f)(x) +R− d
q ∥f∥Lp(Rd) (5.8)

(Here M(f)(x) := supR>0

∫
B(x,R)

|f(y)| dy is the well-known maximal function: see

e.g [2]). By choosing R such that RsM(f)(x) ≈ R− d
q ∥f∥Lp(Rd) in order to minimize

the R.H.S of (5.8), we get

Is(f) ≲ (M(f)(x))
p
q ∥f∥

1− 1
q

Lp(Rd)

Hence, by taking the Lp̄ norm of Is(f) and using the well-known estimate ∥M(f)∥Lr(Rd) ≲
∥f∥Lr(Rd) for 1 < r ≤ ∞ (see e.g [2]) we get

∥Is(f)∥Lp̄(Rd) ≲ ∥f∥Lp(Rd)·

5.2.3 A proof of (5.4) for p = 1

In this subsection we give a proof of (5.4 ) for p = 1 by working in the physical
space. The techniques used also yield another proof of (5.4) for p > 1.
We first state and prove a technical lemma that we will use later in the proof of (5.4
) for p = 1.

Lemma 1. Let f1, ..., fd ∈ Ld−1(Rd−1). Given x ∈ Rd and 1 ≤ i ≤ d, let x̄i :=
(x1, ..., xi−1, xi+1, ..., xd). Let f(x) := f1(x̄1)...fd(x̄d). Then f ∈ L1(Rd) and

∥f∥L1(Rd) ≲
d∏

i=1

∥fi∥Ld−1(Rd−1)·

Proof. The case d = 2 follows from Fubini-Tonelli theorem.
Let d = 3. The Cauchy-Schwartz inequality yields

∫
R |f(x)| dx3 ≲ |f3(x1, x2)|

(∫
R |f1(x2, x3)|

2 dx3
) 1

2
(∫

R |f2(x1, x3)|
2 dx3

) 1
2

Integrating the above estimate with respect to x2 and x1 and applying the Cauchy-
Schwarz inequality again we see that

∫
R3 |f(x)| dx ≲

(∫
R3 |f3(x1, x2)|2 dx2dx1

) 1
2
(∫

R2 |f1(x2, x3)|2 dx3dx2
) 1

2
(∫

R2 |f2(x1, x3)|2 dx3dx1
) 1

2

The general case d is proved by induction. Assuming that Lemma 1 holds for p let
us prove it for p+ 1. The Hölder inequality yields

∫
Rd |f(x)| dx ≲ ∥fd+1∥Ld(Rd)

(∫
Rd |f1..., fd|d

′
dx1...dxd

) 1
d′ ,
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with d′ such that 1
d
+ 1

d′
= 1. Applying the induction assumption to the functions

|f1|d
′
,..., |fd|d

′
, we obtain

∫
Rd |f1|d

′
...|fd|d

′
dx1...dxd ≲

d∏
j=1

∥fj∥d
′

Ld(Rd)

Hence

∫
Rd |f(x)|dx1...dxd ≲ ∥fd+1∥Ld(Rd)

d∏
j=1

∥fj∥Ld(Rd−1)

We now integrate the above estimate with respect to xd+1. Applying again the
Hölder inequality we get

∫
Rd+1 |f(x)|dx1...dxd+1 ≲

d+1∏
j=1

∥fj∥Ld(Rd)

Let us prove (5.4) for p = 1. The fundamental theorem of calculus shows that

|u(x1, ..., xd)| =
∣∣∣∫ x1

−∞
∂u
∂x1

(t, x2, ..., xd) dt
∣∣∣

In fact we have for 1 ≤ i ≤ d

|u(x1, ..., xd)| ≲
∫∞
−∞

∣∣∣ ∂u
∂xi

(x1, ..., xi−1, t, xi+1, ..., xd)
∣∣∣ dt

Let x̄i := (x1, ..., xi−1, xi+1, ..., xd). Let fi(x̄i) :=
∫∞
−∞

∣∣∣ ∂u
∂xi

(x1, ..., xi−1, t, xi+1, ..., xd)
∣∣∣ dt.

The above estimates show that

|u(x)|d ≲
d∏

i=1

fi(x̄i)

Hence, recalling that p̄ = d
d−1

, we get from Lemma 1

∫
Rd |u(x)|p̄ dx ≲

d∏
j=1

∥fi∥
1

d−1

L1(Rd−1)
≲

d∏
j=1

∥∥∥ ∂u
∂xj

∥∥∥ 1
d−1

L1(Rd)

Hence

∥u∥Lp̄(Rd) ≲
d∏

j=1

∥∥∥ ∂u
∂xj

∥∥∥ 1
d

L1(Rd)
≲ ∥∇u∥Lp(Rd)·

We now turn to the case 1 < p < d. We show that a modification of the argument
for p = 1 yields (5.4). Let m ≥ 1 to be chosen shortly. An application of (5.4) for
p = 1 to the function |u|m−1u combined with Hölder inequality shows that
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∥u∥m
L

md
d−1 (Rd)

≲
d∏

j=1

∥∥∥|u|m−1u ∂u
∂xj

∥∥∥
L1(Rd)

≲ ∥u∥m−1

Lp′(m−1)(Rd)

d∏
j=1

∥∥∥ ∂u
∂xj

∥∥∥
Lp(Rd)

(Here 1
p′
:= 1− 1

p
). Choosing m such that p

′
(m− 1) = pd

d−1
we get

∥u∥Lp∗ (Rd) ≲
d∏

j=1

∥∥∥ ∂u
∂xj

∥∥∥ 1
d

Lp(Rd)
≲ ∥∇u∥Lp(Rd)·

5.3 An application: the Gagliardo-Nirenberg inequality

In this subsection we give another application of the Littlewood-Paley decomposi-
tion: the Gagliardo-Nirenberg inequality.

Proposition 13. Let f ∈ S(Rd). Let ∞ > p ≥ 1, s > 0 and θ ∈ (0, 1). Let
1
q
= 1

p
− θs

d
. Then

∥f∥Lq(Rd) ≲ ∥f∥θ
Lp(Rd)

∥Dsf∥1−θ
Lp(Rd) (5.9)

Remark 11. The Gagliardo-Nirenberg inequality is usually better than the non-
endpoint of the Sobolev embedding in situations where one controls (additionally)
the Lp− norm of the functions f . Indeed if the functions have an Lp− norm that
is fixed (i.e there exists B > 0 such that ∥f∥Lp(Rd) = B) 1 then (5.9) implies that

∥f∥Lq(Rd) ≲ Bθ∥Dsf∥1−θ
Lp(Rd)

: this estimate is sharper than (5.3) if ∥Dsf∥Lp(Rd) ≫ 1.

Proof. We write f = A+B with A :=
∑

N≤M

PNf and B :=
∑

N>M

PNf . We have

∥A∥Lq(Rd) ≲
∑

N≤M

∥PNf∥Lq(Rd)

≲
∑

N≤M

Nd( 1
p
− 1

q )∥f∥Lp(Rd)

≲M sθ∥f∥Lp(Rd)·
We have

∥B∥Lq(Rd) ≲
∑

N>M

∥PNf∥Lq(Rd)

≲
∑

N>M

Md( 1
p
− 1

q )−s∥Dsf∥Lp(Rd)

≲Md( 1
p
− 1

q )−s∥Dsf∥Lp(Rd)

≲M s(θ−1)∥Dsf∥Lp(Rd)

1This situation happens quite often with p = 2 for solutions u of PDEs such as the Schrödinger
equations: indeed their mass ∥u(t)∥L2(Rd) is conserved for all time.
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Hence, by choosing M such that ∥f∥Lp(Rd) ≈M−s∥Dsf∥Lp(Rd) we get (5.9).
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Appendix A

In this subsection we compute the Fourier inverse transform of a particular function.

Proposition 14. Let f ∈ S(Rd). Let 0 < α < d. Then

F−1
(
|ξ|−αf̂

)
=

∫
Rd f(x− y)|y|α−d dy (10)

with F−1(h)(x) :=
∫
Rd h(ξ)e

2iπξ·x dξ.

Proof. An elementary change of variable shows that there exists cα > 0 such that

cα|ξ|−α =
∫∞
0

e−π|ξ|2λλ
α
2
−1 dλ (11)

Hence, using also Fubini theorem, we get

F−1
(
|ξ|−αf̂(ξ)

)
(x) =

∫
Rd |ξ|−αf̂(ξ)e2iπξ·xd ξ

=
∫∞
0
λ

α
2
−1

∫
Rd e

−πλ|ξ|2λf̂(ξ)e2iπξ·x d ξdλ

=
∫∞
0
λ

α
2
−1− d

2

∫
Rd f(y)e

−π
|x−y|2

λ dy

=
∫
Rd f(y)

∫∞
0
λ

α
2
−1− d

2 e−π
|x−y|2

λ dλ dy
= cd−αIα(f)(x)

Hence (10) holds.
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Appendix B

In this subsection we prove that the quantities ∥Df∥Lp(Rd) and ∥∇f∥Lp(Rd) are com-
parable if 1 < p <∞.

Proposition 15. Let f ∈ S(Rd). Let 1 < p <∞. Then

∥Df∥Lp(Rd) ≈ ∥∇f∥Lp(Rd)·

Proof. Let 1 ≤ j ≤ d and Rj be the jth Riesz transform defined in the Fourier

domain by R̂jf(ξ) :=
ξj
|ξ| f̂(ξ). Recall that Rj is bounded on Lp(Rd) (see Appendix

C) i.e

∥Rjh∥Lp(Rd) ≲ ∥h∥Lp(Rd)· (12)

Hence

∥∇f∥Lp(Rd) ≲
d∑

j=1

∥∂xj
f∥Lp(Rd) ≲

d∑
j=1

∥RjDf∥Lp(Rd) ≲ ∥Df∥Lp(Rd)·

We then show that ∥Df∥Lp(Rd) ≲ ∥∇f∥Lp(Rd). Observe that this estimate is equiva-

lent to show (∗) : ∥f∥Lp(Rd) ≲ ∥∇D−1f∥Lp(Rd). Observe that f = −i
d∑

j=1

Rj∂xj
(D−1f).

Hence, using again (12), we get (∗).
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Appendix C

In this subsection we recall the definition of the Riesz transforms Rj. Next we prove
their boundedness.

Definition 1. Let 1 ≤ j ≤ d. The jth− Riesz transform Rj is the operator acting
on functions S(Rd) defined by

Rjf(x) :=
∫
Rd

ξj
|ξ| f̂(ξ)e

2iπξ·x dξ (13)

Remark 12. Observe that Rjf is well-defined since
ξj
|ξ| f̂(ξ) ∈ L1(Rd).

Next we prove that Rjf can be written as the limit of convolution of f with
truncated kernels.

Proposition 16. Let 1 ≤ j ≤ d. Let f ∈ S(Rd). Then there exists C̃ ∈ R such that
Rjf(x) = C̃ lim

ϵ→0
Rϵ

jf(x) with

Rϵ
jf(x) := C̃

∫
Rd k

ϵ
j(x− y)f(y) dy, and kϵj(z) :=

zj
|z|d+11|z|≥ϵ·

Remark 13. Let h(y) := f(y)−f(x)
y−x

if y ̸= x and h(y) := 1 if y = x. Then h ∈ L1(Rd)

and Rϵ
jf(x) =

∫
|x−y|≥ϵ

h(y) dy. Hence lim
ϵ→0

Rj,ϵf(x) exists.

Proof. Let d > α > 0. Let δ > 0. Let C̄ be a positive constant of which the
value may change and such that all the statements blow are true. Observe from the
identity (11) and the Fubini-Tonelli theorem that

∫
Rd

1
|x|d−α e

−πδ|x|2e2iπξ·x dx = C̄
∫
Rd e

2iπξ·x ∫∞
0
t
d−α
2

−1e−π(t+δ)|x|2 dt dx

= C̄
∫∞
0
t
d−α
2

−1
∫
Rd e

2iπξ·xe−π(t+δ)|x|2 dx dt

= C̄
∫∞
0
t
d−α
2

−1(t+ δ)−
d
2 e−

π|ξ|2
t+δ dt

Let 1 < α < d. By integrating by parts

∫
Rd ∂xj

(
1

|x|d−α e
−πδ|x|2

)
e2iπξ·x dx = −2C̄iπξj

∫∞
0
t
d−α
2

−1(t+ δ)−
d
2 e−

π|ξ|2
t+δ dt
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Hence Iα,δ(x) + Jα,δ(x) = Kα,δ(x) with

Iα,δ(ξ) := (α− d)
∫
Rd

xj

|x|d+2−α e
−πδ|x|2e2iπξ·x dx,

Jα,δ(ξ) := −2πδ
∫
Rd xj

1
|x|d−α e

−πδ|x|2e2iπξ·x dx, and

Kα,δ(ξ) := −2C̄πiξj
∫∞
0
t
d−α
2

−1(t+ δ)−
d
2 e−

π|ξ|2
t+δ dt·

Elementary considerations show that lim
δ→0

Jα,δ(ξ) = 0. Using again (11) we get

lim
δ→0

Iα,δ(ξ) = C̄iξj
∫∞
0
t−

α
2
−1e−

π|ξ|2
t dt =

C̄ξj
|ξ|α ·

Hence from the dominated convergence theorem and the equality ĥ1 ∗ h2(ξ) =

ĥ1(ξ)ĥ2(ξ) we get

Rjf(x) = C̄ lim
α→1
α>1

lim
δ→0

(d− α)
∫
Rd Iα,δ(x− y)f(y) dy

= C̄ lim
ϵ→0

∫
Rd k

ϵ
j(x− y)f(y) dy·

(14)

Indeed, from
∫
R2≥|x−y|≥R1

xj−yj
|x−y|α dy = 0, we get

∫
|x−y|≥ϵ

xj−yj
|x−y|d+2−αf(y) dy −∫

|x−y|≥ϵ

xj−yj
|x−y|d+1f(y) dy = A1 + A2 with

A1 :=
∫
1≥|x−y|≥ϵ

(
xj−yj

|x−y|d+2−α − xj−yj
|x−y|d+1

)
(f(y)− f(x)) dy, and

A2 :=
∫
|x−y|≥1

(
xj−yj

|x−y|d+2−α − xj−yj
|x−y|d+1

)
f(y) dy·

The mean value theorem shows that

|A1| ≲ (α− 1)
∫
1≥|x−y|≥ϵ

| ln(|x−y|)|
|x−y|d−1 dy, and

|A2| ≲ (α− 1)
∫
|x−y|≥1

|f(y)| dy·

We also have lim
ϵ→0

xj−yj
|x−y|d+1−αf(y) dy = 0. This explains the last equality in (14).

Next we turn to the boundedness of the Riesz transforms. To this end we first
recall the Calderon-Zygmund kernel (see e.g [3]):

Definition 2. K is called a Calderon-Zygmund kernel if K ∈ L1
loc(Rd −{0}) and if

there exists B > 0 such that K satisfies the following conclusions

• Decay property:

|K(x)| ≤ B|x|−d (15)
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• Regularity property: for all y ∈ Rd

∫
|x|≥2|y| |K(x+ y)−K(x)| dx ≤ B· (16)

• Cancellation property: for all R1 ≤ R2 we have

∫
R1≤|x|≤R2

K(y) dy = 0 · · (17)

Remark 14. Observe that if there exists C > 0 such that

x ̸= 0 : |∇K(x)| ≤ C
|x|d+1 , (18)

then (16) holds for some B := B(C).
Indeed the fundamental theorem of calculus yields

∫
|x|≥2|y| |K(x+ y)−K(x)| dx ≤

∫
|x|≥2|y|

∫ 1

0
|∇K(x+ ty)||y| dt dx

≲ |y|
∫ 1

0

∫
|x|≥2|y|

1
|x+ty|d+1 dx dt

≲ |y|
∫ 1

0

∫
|x|≥2|y|

1

( |x|
2 )

d+1 dx dt

≲ |y|
∫∞
2|y|

1
r2
dr

≲ 1

We then prove that a kernel related to the jth− Riesz transform in a Calderon-
Zygmund kernel.

Proposition 17. Let 1 ≤ j ≤ d. Let Kj defined by Kj(x) :=
xj

|x| . Then Kj is a
Calderon-Zygmund kernel.

Proof. The proof is short. It is clear that the decay property (15) and the cancella-
tion property (17) hold. The regularity property (16) follows from (18).

Next we prove the boundedness of the limit of operators associated to truncated
Calderon-Zygmund kernels in Lp(Rd), 1 < p <∞.

Proposition 18. Suppose that K is Calderon-Zygmund kernel. Let 1 < p < ∞.
Given ϵ > 0 let

Tϵ(f)(x) :=
∫
|y|≥ϵ

f(x− y)K(y) dy·

Then there exists Ap > 0 such that

∥Tϵf∥Lp(Rd) ≤ Ap∥f∥Lp(Rd)· (19)

Moreover lim
ϵ→0

Tϵ(f) exists in the sense of the Lp norm, and if Tf := lim
ϵ→0

Tϵ(f) then
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∥Tf∥Lp(Rd) ≤ Ap∥f∥Lp(Rd)· (20)

Proof. We prove that lim
ϵ→0

Tϵ(f) exists in L
p. We have

Tϵ(f)(x)− Tη(f)(x) =
∫
|y|≥ϵ

K(y)f(x− y) dy −
∫
|y|≥η

K(y)f(x− y) dy

= sgn(η − ϵ)
∫
min(ϵ,η)≤|y|≤max(ϵ,η)

K(y) (f(x− y)− f(x)) dy :

this comes from the cancellation property (17). Hence the fundamental theorem of
calculus and the Mikowski inequality show that

∥Tϵ(f)− Tη(f)∥Lp(Rd) ≲
∥∥∥∫min(ϵ,η)≤|y|≤max(ϵ,η)

|K(y)||∇f(x− y)| |y| dy
∥∥∥
Lp(Rd)

≲
∫
min(ϵ,η)≤|y|≤max(ϵ,η)

|K(y)|∥∇f(x− y)∥Lp(Rd) |y| dy

≲
∫
min(ϵ,η)≤|y|≤max(ϵ,η)

|y|−d+1 dy

≲
∫ max(ξ,η)

min(ξ,η)
dr

≲ |η − ϵ|

Hence, if xn → 0 as n→ ∞ then (Txn)n≥1 is a Cauchy sequence so it converges. So
T (f) := lim

ϵ→0
Tϵ(f) exists.

The proof of (19) relies upon Calderon-Zygmund theory and can be found in e.g
[3, 9].

By letting ϵ→ 0 in (19) we get (20).

Proposition 19. Let 1 ≤ j ≤ d and 1 < p < ∞. Then Rj defined by (13) is
bounded on Lp(Rd), i.e there exists Ap > 0 such that for all f ∈ S(Rd)

∥Rjf∥Lp(Rd) ≤ Ap∥f∥Lp(Rd)·

Proof. It follows from Proposition 16, Proposition 17, and Proposition 18.
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