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ABSTRACT
OF THE 'THESIS OF

Fatima Hassan Fneich for Master of Science
Major: Applied Mathematics

Title: Frequency Analysis and Applications

The goal of this thesis is to study signals that have a regularity property defined in
the frequency space, such as a decay on average of the amplitude of their Fourier
transform, by using techniques from frequency analysis. Frequency analysis is a set
of techniques that involve an analysis in the Fourier domain. We review some of
these techniques and some principles. More precisely we will decompose a signal into
countable sums of functions of which the Fourier transform is compactly supported in
a ball or an annulus by performing a Littlewood—Paley decomposition. We will apply
this technique to study the properties of functions having a specific regularity. Over
two hundred years ago, Fourier studied problems related to the series expansions
of periodic signals using elementary trigonometric polynomials. The theory was
extended to non-periodic signals by using the Fourier transform and forms the core
of harmonic analysis. Harmonic analysis is used in various fields such as signal
processing and partial differential equations (PDEs).



TABLE OF CONTENTS

ACKNOWLEDGEMENTS 1
ABSTRACT 2
1 The Fourier Transform 5
1.1 The Fourier transform in the classical setting . . . . . . .. ... ... )
1.2 The Fourier transform in the Lebesgue setting . . . . . .. .. .. .. 6
2 Properties of a Signal Localized in the Fourier Domain 7
2.1 The Heisenberg uncertainty principle . . . . . . ... ... ... ... 10
2.2 Benedick non-localization principle . . . . . . . ... ... ... ... 11
2.3 Hardy uncertainty principle . . . . .. .. ... oo 13

3 Local constancy of signal localized in Fourier domain around 0 and
consequences 15

3.1 Local constancy of signal localized in Fourier domain around 0 and

CONSEQUENCES . .+« v v v e v e e e e e e e e e 15

3.2 Shannon Sampling Theorem . . . . . . .. .. .. ... ... ..... 15
3.3 Bernstein Inequality . . . . .. ... oo 17

4 Littlewood-Paley decomposition 19
4.1 Setting . . . . . . L 19
4.2 Estimates for Littlewood-Paley projector . . . . . .. . .. ... ... 21

5 Applications 23
5.1 An application: the non-endpoint of the Sobolev embedding . . . . . 23
5.2 An application: the endpoint of the Sobolev embedding . . . . . . . . 24
5.2.1 The proof of the endpoint Sobolev embedding forp >1 . . . . 25



5.2.2  Another proof of the endpoint Sobolev embedding for p > 1:
fractional integration . . . . . .. ... ... L.

523 Aproofof (54)forp=1. ... .. ... .. ... ... .
5.3 An application: the Gagliardo-Nirenberg inequality . . . . . .. . ..

Appendix A
Appendix B

Appendix C

31

32

33



CHAPTER 1

THE FOURIER TRANSFORM

In this section we recall the definition of the Fourier transform and some of its
properties in the classical setting and also in the Lebesgue setting.

1.1 The Fourier transform in the classical setting

In this subsection we follow [(]. The classical Fourier transform is defined for func-

tions that are moderately decreasing or Schwartz functions.

Recall that the set of moderately decreasing functions (denoted by M(R?)) is the
A

set of continuous functions such that there exists A > 0 such that |f(z)| < Trap-

Let f € M(R%). Then f denotes the Fourier transform of f, and it is defined for all
£ € R4 by

F&) = [ f(x)e 277 da (1.1)

Let S(RY) be the set of Schwartz functions, i.e the set for functions f such that

sup (1+|z|)™ |8°f(z)| < oo for all o := (ay,..,oq) € N* and N € N (Recall that
z€Rd

9* == 9™ ...9°¢). Recall (see [2]) that if f € S(R?) then f € S(R?). Moreover the

Fourier inversion formula holds

f(w) = Jpu F(©)e¥mew dg (12)
Notice that the proof to establish (1.2) for Schwartz functions also works for func-

tions (f, f) € M(R%)2.

Let (w9,\) € R? x RT. Let T,, (resp. D,) denote the translation of vector
xo (resp. the dilation operator of factor \), i.e Ty,(9)(z) = g(z — x¢) ( resp.
Dy(g9)(z) := g(Ax). Let (x9,&, ) € (R?)? x R.Then elementary changes of variables
show that the equalities below hold:



—_

Toof(€) = e 200 f(€), DAf(€) = 3 f (§) , and 13

Ty, f () = %m0 f(€)-

1.2 The Fourier transform in the Lebesgue setting

In this subsection we follow [2]. The Fourier transform in the Lebesgue setting for
functions in L*(R?), L*(R?), and L'(R?) N L*(R?).

Let f € L'(R?). Then the Fourier transform is again defined by (1.1). Moreover,
assuming also that f € L'(R?), then f is (a.e) equal to a continuous function g,
more precisely

fz) = g(2) = [pa f(£)e*mEw dg (1.4)

Let f € L*(R?). Then there exists a sequence {f,}n>1 such that f, and f, €
LYRY) 1 and f = lim f, in L?>(R?). Moreover the Plancherel theorem holds, i.e
n—oo

Jea lf @) do = o0 |f©F da (15)
Assume also that f € L'(R%). Then (1.4) also holds 2.

Let f € LY(R?) N L?(R%). Then the Fourier transform of f in L' is (a.e) equal
to its Fourier transform in L% Consequently (1.4) and (1.5) also holds.

'Observe that this implies that f, € L*(R%): see [2].

21t suffices to use the same arguments in [2], more precisely in the proof of the Fourier inversion
formula for f and f in L'(R?), once we have proved that the transfer formula fRd f(b = fRd fé
holds for f, with ¢ a Schwartz function. But the transfer formula clearly holds for all functions h
in L'(R%), so it also holds for f by a limit process
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CHAPTER 2

PROPERTIES OF A SIGNAL LOCALIZED
IN THE FOURIER DOMAIN

In this section we study the properties of a signal that is localized in the Fourier
domain, i.e a signal of which the amplitude is essentially concentrated around a
point & € R?. More precisely we say that a function f is localized in the frequency
space around a point & € R? if and only if for all N € N there exists Cy > 0 such
that

EeR::[f(9)] < (1+|§C+50|)N (2.1)

The proposition below and its proof show that if a function f has a Fourier
transform that is localized around some point & € R?, then f is smooth.

Proposition 1. Let & € RY and f € M(R?) that is localized at &. Then f €
C>(RY).

Proof. We may assume WLOG that §, = 0: indeed, we may use (1.3) to find g such
that g(§) := f(£ + &) and then apply Proposition 1 to g at & = 0.
Observe from (2.1) that for all @ € N¢, the map & — 9% (f({')e%”f"”) is bounded

by an L' function that does not depend on z. Hence we can use the differentiation
rule under the integral sign of the Fourier inversion formula (1.2) to come to the
conclusion that f € C*(R?) and, moreover,

aeN': 0°f(x) = 5 f(&)@mig) e’ dg

Remark 1. The analogue of Proposition 1 in Lebesque spaces is the following:

Proposition 1°. Let & € R?. Assume that f € L*(R?) and that f is localized
around & . Then f is a.e equal to a C®(R?) function.

7



Proof. Again we may assume WLOG that §, = 0. We see from (2.1) that f e L'(R).
Hence we get from (1.2) f = g a.e with g(z) := [, f(€)e*™** d¢. Then we replace
‘0Yf” with“0“g” in the proof of Proposition 1 and we follow verbatim the same
steps.

]

~ The next proposition shows that if f is very well-localized (in the sense that
f € C.(R?) 1) then f cannot be equal to zero on a ball centered at zy on a radius
R > 0, even if R is very small. This implies in particular that f cannot be localized

(in the sense that f ¢ C.(R%) )

Proposition 2. Let E := { h of moderate decrease : h € Co(R))}. Let (xo, R) €
R? x (0,00]. There exists no f € E, f # 0 such that f =0 on a ball B(zy, R).

Proof. Suppose that f = 0 on a ball B(xg, R) where x, € R? and R > 0. We
may assume WLOG that zy = 0: indeed, if zq # 0, then we can apply (1.3) and
Proposition 2 to z — f(zg + ).

Expanding e?™< in its Maclaurin series we get

flz) = [ f(&e*™=tde

R4

I
=
I
SN—

Mg

| —

P
[\
3
~.
&
I
SN—
B
QL

Ay

(2.2)

using at the third line the normal convergence of the series in ¢ and at the fourth
line the multinomial Newton formula. Now, recall from the proof of Proposition 1

that / (2i€)* f(€)de = 0“f(0) = 0 for all a. Hence f = 0, which is impossible.
R4

O
Remark 2. The analogue of Proposition 2 in Lebesque spaces is the following

Proposition 2°. Let E' := {h € L*(R%) : h € C.(R))}. Let (z9, R) € R% x (0,00).
There is no f #0 € E" such that f =0 a.e on B(zg, R).

'Recall that C.(R?) is the set of continuous and compactly supported functions
Recall that if @ := (a1, ..., aq) € N then a! := aql...aq! and 2@ := 2t ...2?



Proof. Again we assume that the conclusion does not hold. We may assume WLOG
the 29 = 0. Let g(x) := [y f(£)e*™¢ d¢. Then from (2.1) and a standard rule of
continuity we see that ¢ is continuous. Hence g = 0 on B(xg, R) and, repeating the
same argument as in (2.2), we get ¢ = 0. Hence f = 0 a.e, which is a contradiction.

]

In fact a stronger result holds:

Proposition 3. Let § € R Let E = { h of moderate decrease : VN € N,
sup (1416 — &Y€) < oo}. Then there does not exist f # 0 € E such that f = 0

¢eRd

on B(xo, R).
Proof. We only prove the proposition for d = 1.
Again we may assume WLOG that & = 0.

Assume that there exists f # 0 such that f = 0 on B(z,R). Let g(z) :=
J f(E)e* e de.

Claim: ¢ is an analytic function.

Proof:

Indeed, from the fundamental theorem of calculus

Q2mt(z+0z) _ 2intz _ A f01 3628’:,52 (z +tAz) dt

2 2

/ "
e =e%e

Moreover from e " and the elementary estimate |e* —1| < |2/| for |2/| < 1

we get

‘e2i7r§(Z+Az) — 62”52| S [€]|Az|

Hence ¢ is analytic and

lim g(z—i—AAz)—g(Z) — fR 22'7'('5]?(5)62”5'95 df

Nz—0 z

Alternatively one can use the Morera theorem to prove that g is analytic. Let R be
a rectangle. Denoting by OR its boundary we have, by Fubini theorem

Jon 9(2)dz = [ f(&) [y €™ dz dE =0,

where at the last equality we use the Cauchy theorem to the analytic function
2 — e2imez

Moreover from (1.4) we see that g has a zero that is not isolated. Hence g = 0 and
f=0. ]



2.1 The Heisenberg uncertainty principle

We showed in Proposition 1" and more generally in Proposition 3 that if f is localized
in the frequency space then f cannot be localized in the physical space. In the next
proposition, we prove a quantitative formulation of this phenomenon: the Heisenberg
inequality.

Proposition 4. Let f € S (R?). Let (z0,&) € (RY)?. Then

(Jua |2 = 2P @) do) (fu | = &SP d) = ik (o 1f (@) 2 d)” (23)

The same conclusion holds if f € L*(R?) satisfies [pa|z|?|f(2)]* dz < oo, and
Jrea lERIF (O dE < 0.

Proof. First let us assume that f € S(R?).
By using the translation rules of (1.3) if necessary we may assume WLOG that

§o =z =0.
By using the dilation rule of (1.3) if necessary we may assume WLOG that (*) holds
with ( fRd |f(x)|* de = 1. Indeed an elementary change of variable shows that

Jra ]DAf )P dx = 1 iff M = || f||2.. Applying (2.3) to f\ we get

(Jiea [22L 7 (@) 2 ) ( foa lEPITOI d) 21 (2.4)

Hence, an elementary change of variable combined with ( 1.3) show that

(Jia [22L 7 (@) 2 ) ( o |EPIFAOI dE) 2 A2 2 1 £12

We first prove (2.3) for d = 1. We follow e.g [(]. Integrating by parts and recalling
that f decays fast for |z| large we get

= fle |f(x) |2 dl‘
e (@) do |
5 (fRd Q‘f |2 d.T) (fRd ’f |2 d$)§

< (oo @) dn)} (fru AP d)*
i

using the Cauchy-Schwartz inequality at the third row and
fourth row.
Then we prove (2.3) for d > 1. Let i € {1,...,d}. Then from Fubini theorem

&) = 22'7r§f(5) at the

- fRd |f(2)|? dxy...dzyg
= fRd_l (fR |f(z)]? d:z:l-) dxll...d:vi,ldg;iﬂ_“dxd

S fRd*1 (f]R $z2|f<x)|21d$z)§ (fR ’axzf(ﬂf)‘i d.TZ)% dxl...d$i_1d$i+1...dl'd,
< (Jra 221 f(@)[? d)? ([0 0n, f ()] ?d)

10



using at the last row (d — 1)— times the Cauchy-Schwarz inequality. By summing
over ¢ the inequality above we get, using also the Cauchy-Schwartz inequality for
finite sequences

U S (o P d) (s IV 1) )

<
S U laPLF @ d2)* (S EPLFEP d)*

Now assume that f € L2(R%) such that |z|f € L*(R%) and |¢|f € L2(R?). Let
Ry, > 0 be such that [, . [z*[f(2)]* dz — 0 as n — co. We slightly modify
an argument in e.g [I]. Let x be a smooth function such that x(z) = 1 if |z| <1
and X(2) = 0if || = 2. Let fu i= xulpn # f) with xa(2) = x () and {p}az:
a sequence of mollifiers. Recall that p, * f — f in L?(RY). Hence using also the
decomposition f, = xn(pn * f — f) + Xxnf and the dominated convergence theorem,

we get (1+|z|)fn = (14 |z])f as n — oo. From V f,, = VX, (pn * ) + xu(pn % V)
we see that 3 Vf, — Vf in L?(R?) as n — oo. Hence by Plancherel theorem we

have [, |¢|? Jf—\f(g)’z d¢ = 0 as n — co.

]

A consequence of the inequality (2.3) is the following result that we can relate
to Proposition 2’ :

Proposition 5. Let (R, 1o,&) € (0,00) x (R%)2. There exists a constant ¢ > 0 such
that there is no function f € LQ(Rd) for which f = 0 outside the ball B(&, R) and
f =0 outside the ball B (xo, R).

Proof. We see from (2.3) and Plancherel theorem that [p, |z — xo[*|f(z)]* dz <
& Joad lf@)? d, [ 1€ — &IPF(E)? dE < R? [pu | f(x)|? do. This contradicts (2.3)
for ¢ > 0 small enough.

]

2.2 Benedick non-localization principle

We showed in the previous section a simultaneous non localization property for
f and f. More precisely we proved in Proposition 2’ that if f # 0 € L'(R)
has a smooth Fourier transform with bounded support (i.e there exists R > 0
such that {f # 0} < B(O,R) ) then for all (zo,R) € R? x (0,00) we have
{f # 0} N B(xy, R)| > 0%

3Here Vg := (0,9, -y O2,9), With 0,,g the i — th distributional partial derivative (see [2] ) of
9 €{fn, [}

“Here |E| denotes the measure of a set E

11



We now prove a stronger proposition on simultaneous non-localization due to Benedicks:
it says that if a function f # 0 € L*(R?) has its Fourier transform f finitely sup-
ported (i.e {f # 0} < 0o ) then f cannot be finitely supported (i.e [{f # 0} = oo

). Notice that {f # 0} < oo (‘resp. |{f # 0}| = 0o ) may be unbounded and that
{f # 0} N B(zo, R)| > 0 does not necessarily imply that [{f # 0}| = occ.

We now state the Benedick non-localization principle:

Proposition 6. Assume that f € L'(R?) satisfies |{f # 0} < oo and |{f # 0} <
oo|. Then f =0.

Proof. We follow the exposition of the proof in [5].

Let X := {f # 0} and X := {f # 0}. By using a scaling transformation z — ax if
necessary, we may assume that |X| < 1. Consider the periodization of the indicator

function of {f # 0},i.e the function &€ — h(£) == 3 Lyju0 (€ — k).
kezd

Claim: h < oo a.e.

Indeed it suffices to prove that h < oo a.e on the rectangle [0,1] x ...[0,1]. Given
k:= (ki,...,kq) € Z% let Ry denote the rectangle Ry := [ky, ki + 1] x ... X [kq, ka+ 1].
From the monotone convergence theorem and an elementary change of variable we
see that

,,,,,,,,,,

Hence the claim follows.
This implies that the property (P) holds with

(P) : a.e € there exists only a finite number of ks such that f(¢& — k) # 0.

Let fe(z) := 2™ f(z). Let fe := . fe(z — k) be the periodic extension of fe.
kezd
Since f¢ € L'(R?), we can apply the Poisson formula and get that the Fourier series

of fe (denoted by FS[fg]) is equal to

FSlfel = & J(& = ket

(Here F'S []75] denotes the Fourier series of fg) It is also clear from (P) that F'S [jé]
converges absolutely. Hence we get a.e

fe=FS[f = ¥ f(&— ket (2.5)
kezd
Moreover from the definition of ]75 we see that

{xer: E#O}Cukezd{me’ﬂ‘d: flz—k) #£0} C {f £0}

12



Hence Hm € Te: fg # OH < 1. We also see from (2.5) that fg is a.e equal to a

trigonometric polynomial. Hence fg — 0 a.c and, since f(€ — k) is the k™— Fourier
coefficient of ff we get (for a.e &) f(§ — k) =0 for all k € Z%. Hence f = 0.

]

2.3 Hardy uncertainty principle

We showed previously that f and f cannot be simultaneously localized. A natural
question is: given f # 0, how fast f and f can decay simultaneously? We already
know that if f is the Gaussian function ( ie f(z) := e ™ with @ > 0 ) then
f(é) = f e~™/% The next question is: can we find a function f # 0 such that

f and f decays faster than a gaussian? The Hardy uncertainty principle gives a
negative answer. It says that f and f can’t decay simultaneously faster than a
gaussian. More precisely

Proposition 7. Let C, C' be two nonnegative constants and let a be a positive
constant Suppose that f := R — C is a (measurable) function such that |f(z)| <
Ce ™" qnd |f(€)] < C'e /2. Then there exists C > 0 such that

2

f(z) = Ce~ma". (2.6)
Proof. We follow the exposition of [7]. By using (1.3) if necessary we may assume
WLOG that a = 1. By considering g = ¢f with ¢ > 0 a small constant if necessary
we may also assume WLOG the C = C" = 1.

Observe that in view of the decay of the function f as |x| — oo, we may extend
the definition of the Fourier transform to the complex plane by letting f (z) ==
Jz e #™ f(x)dx. Observe that f is analytic: this follows again from Morera theorem
and Fubini theorem (see also proof of Proposition 3). By completing the square we
get

fe+in)| S feeIf ()] da
n2 —m(n—x)2
S e n fRe (TI ) dm
< e’

Hence if F(z) := ¢™ f(z) then F is bounded by one on the imaginary axis. Let

0 < 6 < 3 be close enough to 5, 0 < d,e < 1 be small parameters, and & > 0

a large number such that all the statements below are correct. Let I'y denote the
sector

Lp:={re*,0<r<RO0<a<6}

We would like to apply the maximum principle to the function F' on the upper right
quadrant HNB(O, R) ( Here B(O, R) is the closed ball with radius R and center the

13



origin, and H the upper plane) with R that can be arbitrarily large. Nevertheless
observe that F' is not even bounded on H. In order to circumvent the difficulty,
we proceed as follows. We multiply F' by the analytic functions giee’ =t itz g4
that the resulting function G (2) = €®*°€*““**** F(2) is bounded by one on the
boundary of the bounded domain B(O, R) N I'y. Hence by the maximum modulus
theorem we see that G, is bounded by one on I'gy. By letting e — 0, 6 — 7,
R — 00, and § — 0, we see that G is bounded by one on H.

Similar arguments work for the other quadrants.

Hence we may apply Liouville theorem to conclude that F' is constant.

14



CHAPTER 3

LOCAL CONSTANCY OF SIGNAL
LOCALIZED IN FOURIER DOMAIN
AROUND (0 AND CONSEQUENCES

3.1 Local constancy of signal localized in Fourier domain
around 0 and consequences

We now explain informally why a signal localized in the Fourier domain around 0 is
essentially constant at scales < %.

Indeed let f € M(R%) such that f = 0 outside B(0, R). Then from the inversion
Fourier formula (1.2) we get for [z — 0| <

fl@) = Jpa [P mrogg
~ Jpa f(E)eF ™ dE
= f(z0)
since |€ - (z — xo)| < 1.
We now draw consequences from this informal statement.

3.2 Shannon Sampling Theorem

Since a signal f is essentially constant at scales < }% it is natural to ask oneself
whether one can recover a signal localized in the Fourier domain from a sampling
of its values at points separated from a distance roughly equal to %. The Shannon
sampling theorem gives a positive answer to this question. It can be formulated as
follows:

Theorem 1. Let R > 0 and f € L'(R) such that f, the Fourier transform of f, is
supported on the interval [—R, R].

15



Then o .
) = 5 1 () sine (20— ) A1)
ne
in the L®— (resp. L* sense), i.e the series in the RHS of (3.1) converges to f in
L>=(R) (resp. L*(R)).
The same conclusions hold if we replace the assumption “f € L'(R)” with “f €
L*(R) 7.

Remark 3. In other words, the sampling theorem, which is often named after Shan-
non, says that if an absolutely integrable function is band-limited, i.e it contains no
frequencies higher than R > 0 hertz, then it is completely determined by its samples
at a uniform grid spaced at distances % apart via the above formula.

Sampling theory is a tool used for functions to be reconstructed from sampled data,
usually from the values of either the functions themselves or some transformations
at a discrete set of points.

Remark 4. Let f € L'(R) such that supp(f) C [-R, R]. Then the triangle inequal-
ity applied to (1.1) shows that f € L=(R). Hence we see from Holder inequality that
f e L*(R)NLY(R). Hence by (1.4) f is almost equal to the continuous function g
defined by g(x) == [, f(£)e*™* dE. So we may abuse notation in (3.1) by writing “
f(%>”f07ﬂ ug(%)»'

Proof. We see from Remark 4 that the Fourier series of f converges to f in L*([-R, R))
: see e.g [0]. We can write

where the equality holds in the Lf([—R, R])— sense. In the expression above ¢, is
the n— the Fourier coefficient of f, i.e

N _inw§
e = g [ [(€)e™ R dg-
Hence, using also (1.4), we get ¢, = 5= f (—2%). So
A~ n —inw§
H&) = Tirm 2, f (GR)e ™ (3:2)
ne

where the equality holds in the L*(R)— sense. Hence we get from (1.4) and the
Cauchy-Schwartz inequality

n_

f@) =355 ;Zf (&) LRR e2in(a-3) g N
= ;Zf(%) sine (2R(z — 2+)) (3.3)

where the equality holds in the L>*— sense. Observe that f € L?(R?) since f = h
with h(€) = f(—£) and we can use the results of Section 1 to h € L*(R?) N L*(RY).

16



The equality (3.3) also holds in the L?— sense: it follows from the Plancherel theo-
rem , (3.2), and (3.3).

In the case where f € L2(R), we have f € LY(R) N L%(R) by Holder inequality.
From Section 1 we see that (1.4) holds. Hence, by following the same steps above,
we infer that (3.1) holds in the L>— sense and in the L?— sense.

3.3 Bernstein Inequality

Since f is essentially constant at scales < 4, then (formally)

i
fa Z f(é,...,é)ﬂ%

L . d
with Q7 := [%, %] X . [%, “I‘{H], and therefore HfHLoo(Rd) < Rr HfHLp(Rd).

So it should be possible to control the L*°(R%)— norm (and more generally the
highest L4(R?)— norms) by lower LP(R?)— norms. The Bernstein inequality shows
that this is indeed the case:

Proposition 8. Let 1 < p < qg< oo, R >0, and s € R. Let f € LP(R?). The
following hold:

1. Assume thatf 15 compactly supported on {5 eRY: ¢ < R}. Then

1_1

1l zaeey S BUG™D) £l oue (3.4)

2. Assume that f 15 compactly supported on the annulus {f e R?: % <€l < R}.

Then

1 fll ey S B2 D° fll Lo (rey (3.5)

Remark 5. Observe that (3.4) does not hold for all f € LP(R?) N L>(R?). Indeed,
arguing by contradiction, let f,(x) =1 if |x| < 55 and fo(2) := 0 if |x| > 55. Then

2n
| fullLoray = =z and || ful|pooey = 1. This contradicts (3.4) as n — co.

Proof. Let ¢ be a smooth function such that ¢(¢) = 1 for |{] < 1 and ¢(§) =

0 for [¢] > 2. Let ¢ = €] (¢(&) — p(4€)). If h € {6,¢} then let h(z) =
Ja D(€)e* ™ dE.

17



We first prove (3.4). By using the dilation rule of (1.3) if necessary we may as-
sume WLOG that R = 1. Indeed let D 1 f satisfies is compactly supported on

{¢eR?: [¢| <1}. Hence

_d d 11
HfHL‘I(Rd) =R« HD%JC”L‘I(R% S R HD%f”LP Rd) S Rd(” Q)Hf”LP(Rd

Hence f = ¢f, we get f = fx furthermore, an application of the Young inequality
(with p such that 1 ;T 1= ]lj ) shows that

£l zo@ey S N Fllzo@a 6]l oay S 11Nl oceey
We then prove (3.5). Again, by using the dilation rule of (1.3) if necessary we may

assume WLOG that R = 1. Now write f=0l¢|*f. Hence f = ¢ * D*f and, taking
into account that ¢ € S(R?), an application of the Young inequality yields

[fllzo@ay S ND°Fll oy 0]l Lr @y S 11D° fll o rey
0

Remark 6. Alternatively one can use Holder inequality to conclude. Indeed from
f=fxo, the deﬁm’tion of the convolution, and Hélder inequality we get || f]| Lo (ma) S

HfHLp(Rd)WHLp ®RY S S | fllzeray- Hence by interpolation

P
[y S HfHLp RY) HfHLofRd) S 1 llze ey

Remark 7. We claim that the estimates (3.4) and (3.5) are sharp.

Indeed let h be a smooth function such that h(ﬁ) =1 for [£] < Vi—i and hA(ﬁ) =0 for
€] > 1. Then h € S(RY) (with h(z) := [pq h(£)e*™T dE) since h(x) := h(—x).

Let qr(z) := RG(Rx). We prove (5’ 4) Let q = h with ¢ defined in Subsection 4.1.
Then qr(§) = ¢ (}%) is supported on |£| < R. Moreover an elementary change of

variable shows that for v € {p,q} ||qrl 1r®e) = R0—3) ( Observe that ¢ # 0 on a
ball with center O and small positive radius by Proposition 2 ). Hence ||qr||Loma) =

Rd(E_E)HqRHLp ®d)- We now prove (5.5). Let q be such that q(&) := h(§) — h (5:1_5)
Then we have D*qr(x) = R*™D*G(Rz) and ||D*qr||rome) = R*||qrllr@s) (again,
observe that D°¢ # 0 on a ball with center O and small and positive radius by
Proposition 2).Hence || D*qg|| trway = R*[|qr|| 1o @a)-

18



CHAPTER 4

LITTLEWOOD-PALEY DECOMPOSITION

So far we have studied properties of signals that are band-limited, i.e localized in
the Fourier domain. It is unfortunate that most of the signals (solutions of PDES,
signals in image processing, etc.) are not usually band-limited. So we perform a
Littlewood-Paley decomposition. Roughly speaking, a Littlewood-Paley decompo-
sition is a particular way of decomposing the phase plane which takes a function
and writes it as a superposition of a countably infinite family of functions of varying
frequencies. The Littlewood-Paley decomposition is of interest in multiple areas of
mathematics and forms the basis for the so-called Littlewood-Paley theory.
More precisely we first define for N € 27 a Littlewood-Paley projector Py: this map,
when applied to a function f, yields a Littlewood-Paley piece of f, i.e a function
Py f that is localized in the Fourier domain in an annulus || ~ N. By defining
appropriately Py we can prove that we can decompose f into its Littlewood-Paley
pieces Py f,i.e f = > Pnf(%).

Ne2Z
Then we establish decay estimates on average in the physical space for Py f.

Finally we use these estimates in the decomposition (x): we get general ( by “gen-
eral” we mean estimates that hold for all functions f and not only functions f that
are band-limited) estimates for f by summing over N € 2Z.

4.1 Setting

Let ¢(&) be a radial bump function supported on {5 eRe: €] < 2} which equals 1
on {€ € R?: [¢] <1}. Let ¢(€) be the function

(&) == o(&) — p(26).

Thus v is a bump function supported on the annulus {5 € R%: % < < 2} . By
construction we have

> v(x) =1 (4.1)

Neg2Z
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for all £ € R%. Thus we can partition the unity into functions v (%), with N € 2%
(the set of dyadic numbers), each of those is supported on the annulus of the form
€] ~ N. We now introduce the Littlewood-Paley decomposition operators Py, P<xy

defined by
£

o = (§) 7@

Pt =05 ) F©
Hence, from the equality p* ¢ = pg we get

Py f(z) = N* 5 f(y)¥ (N(z —y)) dy and

Pan(€) = N | J)é (N =) dy.

We see from (4.1) that we have the Littlewood-Paley decomposition

=Y Pnf.

Ne2Z

This decomposition takes a single function and writes it as a superposition of a
countably infinite family of functions Py f, where each one has a frequency of mag-
nitude roughly N. Lower values of N represent lower frequency components of f,
while higher values represent high frequency components.

What does Pyf look like? Since Pyf = P<ynPnf, we see from that we have
the self-reproducing formula

Py f(x) = (4N)* [ou Pnf(y)$ (4N (z — y)) dy (4.2)

Hence Pyf(z) ~ N¢ fN|z_y‘<1 Py f(y) dy since ¢ is essentially concentrated in a
neighborhood of size o(1) around the origin, which means that Py f is essentially
constant at scales < % On the other hand P_ %PN f =0. Hence

Jea PN T ()0 (“’T:y) dy = 0

Hence [ Nio—y|<1 Py f(y) dy = 0, which implies that Py f has essentially a mean equal

to zero at scales < %; in other words Py f has O(1) oscillations at these scales.
To reconcile these two properties, we see that on each ball of radius O(N~1), the
function Py f is roughly constant at scales O(N~!) and it contains about O(1) os-

cillations.

What does P<yf look like? Since P<yf = P <4y P<nf, we see by using simi-
lar arguments as before that P<y is essentially constant at scales < N1
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What does P.yf look like? Since P g% P.yf = 0, we see that P~y has O(1)
oscillations at scales O(N ™).

4.2 Estimates for Littlewood-Paley projector

In this subsection we prove some quantitative estimates for functions that are local-
ized in the Fourier domain within the annulus {£ € R?: [¢| &~ N} with N € 2Z.

Proposition 9. Let f € S(RY). Let N € 2Z. Then the following hold:

1Px flleoay S NTHIV fllogay (4.3)

2. Let s € R. Then

I Pn flleey S N72D° fl o ey (4.4)

Proof. First we prove (4.3).

_ . d
From the formula d,, f(§) = 2in&; f(§) we get Py f = % Z jN*0, f with K n(2) =

Qm fRd N <‘§|> (i,) e?imer ¢ 'We claim that (%) holds with (x) : || K inllomey S

1. Assuming that the claim holds applying the Young inequality we see that (4.3)
also holds. It remains to prove (x). The triangle inequality and an elementary
change of variable show that |K;y(z)| < N9 Moreover by integration by parts

i 2imé-x ),
using the formula %™ = ﬁ—v(e FE )% e get |Kjn(z)] < —|Ni\|[?00d' Hence
K@) S N min (1, pzhoon ) - (4.5)

Observe that the R.H.S of (4.5) is integrable. Hence (x) holds.

Then we prove (4.4). Let $(&) = [¢]*0(¢). From Pyf(§) = N=¢ (%) |6 f(&)
we get
Pyf=N"*N [L,0 (N(z —y)) D*f(y) dy

Hence || Py fllzo@ay S N7°D° fll Lo (way-
O

Next we state and prove the proposition below stronger for functions such that
their Fourier transform is localized on [{] ~
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Proposition 10. Let s € R. Let f € S(R?) such that supp(f) C {€¢eR?: |¢| =~ N}.
Let p > 1. Then

IV fllLrway = N fllLoray, and [|D*f|| Lrway = N°|| |l o @a)

Proof. Since supp(f) C {§ eRe: €| ~ N}, we can write f = Py f with Py a map

defined by Py(f) := v (CLN) f(f) and 1 defined in Subsection 4.1 and C' > 1 a large
positive constant.
We see from Proposition 9 that

1 lzeay S NTHIV fllzegay, and [|fllpo@ay S N 72D fllogay:
Let ¥(€) := [£]* (%) We have

Df = N* [0, (N(z — ) f(y) dy

Hence from Young inequality we get ||D°fl|pora) S N°|| f|l Lr(wa)-
d
From the elementary estimate ||V f||o@ay S > H@x]. f H Lo (R WE €€ that it suffices
j=1

to estimate ||8xj f|| Lp(Rd)’ From f = Pyf we get, after differentiation with respect
to x;

0, f(x) = (CN)H [0 00, 0(CN(z — ) f(y) dy-
Hence HamijLP(Rd) S NHfHLP(]Rd)-
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CHAPTER 5

APPLICATIONS

In this section we use the Littlewood-Paley decomposition to prove estimates of the
form

11l zr ey < A (| flloray + [V |l 2o (ra)) » and more generally
1l ray < A ([1f | oay + D% fll po(ray) »

f € S(RY), (p,r) and A > 0 positive constants that do not depend on f and to be
determined. The main interest of these estimates is their robustness: they can be
applied to a large class of functions. Hence they are useful in

(5.1)

e signal processing.
For example, assume that for some B > 0 the signals f satisfy the regularity
property | f|oray + [[D°f||Lr(rey < B; then we see from (5.1) that they also
have the decay property || f||pr@e) S B

e PDFEs or functional analysis.
The existence of a solution of a PDE (or a function that satisfies some prop-
erties) is often related to the existence of a limit of a sequence of functions.
For example, let {u,},>1 be a Cauchy sequence of Schwartz functions with
respect to the norm N(f) := || flre) + |V f]|Lr(re). Then we see from (5.1)
that {u,}»>1 is also a Cauchy sequence in L"(R?). Since L"(R?) is a Banach
space, there exists u € L"(R?) such that u, — u in L"(R%).

5.1 An application: the non-endpoint of the Sobolev em-
bedding

In this subsection we show the non-endpoint of the Sobolev embedding.

Proposition 11. Let f € S(R?). Then the following hold:

1. Let1§p<alcmdpsuchthat%:]%J é. Let g < p. Then
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1l Larey S N1l ey + IV Fll Lorey- (5.2)

2. More generally let s >0, 1 < p < %, and p such that 115 =
Then

]lj = Let q < p.

1 flcawey SN fllrmay + 1D f || o ey (5.3)

Remark 8. Proposition 11 says that the estimate (5.2) holds for q lying in the
interval [p,p) that does not contain its endpoint p. This is why this estimate is
called the non-endpoint of the Sobolev embedding. Later we will see that (5.2) also
holds for q = p: this is the endpoint of (5.2).

Recall from Proposition 15 (see Appendiz C) that if 1 < p < oo then ||Df||Lr(ray =
IV fllpray. Hence, if 1 < p < 5 then (5.3) is a generalization of (5.2).

Proof. We only prove (5.2), since the proof of (5.3) is similar and therefore left to
the reader.

The conclusion clearly holds if ¢ = p. So we may assume WLOG that ¢ > p.

We use a Paley-Littewood decomposition. We have

f=> Pvf=>Y Pvf+ > Puf=1+J

Neoz N<1 N>1
We have

1_1
g S 3 1Py Fllen S 5 NG| Py fll i@y S 1F 1| oo
N<1 N<1

Hence || 1| paray S || f]| 2r(rey and

_ 1 1
ey S 5 IPxFllagn S 5 NGV Loy S IV FlLogeay-
N>1 N>1

Hence (5.2) holds.
[

5.2 An application: the endpoint of the Sobolev embedding

In this subsection we prove the endpoint of the Sobolev embedding. More precisely

Proposition 12. Let f € S(R?). Then the following hold

1. Let1§p<dandﬁbesuchthat%:% é.

1oy S NIV Fllze@e) (5.4)
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2. More generally let s >0, 1 <p < %, and p such that % = 1—17

1 fler ey S 1D f | o may- (5.5)

Remark 9. We see from the arguments used in Remark 8 that if 1 < p < ¢ then
(5.5) is a generalization of (5.4).

We now write three different proofs of these estimates.

5.2.1 The proof of the endpoint Sobolev embedding for p > 1

We see from Remark 9 that it suffices to prove (5.5).

We follow an exposition in [3].

By using (1.3) if necessary (and choosing appropriately the value of A ) we may
assume WLOG that || D*fl|1pga) = 1.

We first prove the weak-type estimate

| fll oo ®ay S N1D° fll Lo (ra (5.6)
( Here Hf||Lpoo(Rd :=sup M| |f| > A| ). Let A > 0 be a fixed positive number. Let
A>0
N € 2. From
PN Sl oo (rety S NWSHDSfHLp RY) S N# . (5.7)

we see that if Ny is such that N/\rs ~ A then by summing (5.7) over N < N, we
get

[Py fllze <A

On the other hand we see from Proposition 9 that

1 Pony fllo@ay S Ny CID? fll oo ey S N3
Therefore using also Chebyshev inequality we get

NALFI> A S NN Pany f1 > AL S NP P, ey S MTPNT S,
where at the last line we use the definition of p. Hence (5.6) holds.

It remains to upgrade the weak-type estimates to strong-type estimates. For his
purpose we recall the Marcinkiewicz interpolation theorem (see e.g [2])
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Theorem 2. Let (po, p1,qo,q1) € [1,00|*. Let 0 € (0,1). Let (p,q) such that

1 1-6 0 1 1-6 [
t==4+ > qnd->- =2+ = .
p Po+p1’ q q0 +q1

Assume that T is a linear map on L weak-type (po, qo) and (p1,q1) i.e

1 1

q0 q1
(supwum > A|) < oz, and (sup X ||| > A|) < lmmceey -
A>0 A>0

Then T is strong-type (p,q), i.e

1T flloway S Nl eay:

By applying the Marcinkiewicz interpolation theorem to T' = D™° we see from
the previous estimates that 7" is weak type (p,p). Hence T is strong type (p,p) and
we can conclude that (5.5) holds.

Remark 10. Assume that we want to prove (5.4) without using Remark 9 and by
using similar arguments as those above.
Similar arguments show that (%) = 1AV - Ellpswey S | Ellpoey holds ( Here

E:=(Ey,..E), V- -E:= gﬂ and A-1F(€) := |€|72f(€) ); then, applying (%) to

Jj=

E =V yields (5.4).

5.2.2 Another proof of the endpoint Sobolev embedding for p > 1: frac-
tional integration

In this subsection we write down another proof based upon a physical representation
of the fractional integration of a function f.

Observe that (5.5) holds if and only if HD_sfHLp(Rd S I fllzr(ray.- From Appendix
A (see (10)) we can write D™*f(x) = [ou f(z — y)|y|** dy = K (x) + K»(z) with

Ki(z) = [, _,cn fWlz —yl"~" dy, and Ka(x) i= [, p f)lz —y|*" dy

K@|S Y Mgt [y F@) dy S RMf(2)

Me2Z:M<R

Moreover the Holder inequality shows that

(@) S (fy<n WC% dy) 7 1l eoqesy S B9 oo
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Therefore

_d
L(f)(x) S BEM(f)(x) + B[ f [ 1o (roy (5.8)
(Here M(f)(z) := supps fB(m R) |f(y)| dy is the well-known maximal function: see

e.g [2]). By choosing R such that R°*M (f)(x) ~ R |fI| Lp(re) in order to minimize
the R.H.S of (5.8), we get

1) S (M @)E 1

Hence, by taking the LP norm of I,(f) and using the well-known estimate || M (f)||rga) S
Il rgay for 1 <7 < oo (see e.g [2]) we get

I L () oray S NIl oo may:

5.2.3 A proof of (5.4) forp=1

In this subsection we give a proof of (5.4 ) for p = 1 by working in the physical
space. The techniques used also yield another proof of (5.4) for p > 1.

We first state and prove a technical lemma that we will use later in the proof of (5.4
) for p=1.

Lemma 1. Let fi, ..., fs € LY (RSY). Givenx € R and 1 < i < d, let T; =
(T4, .oy Ti1, Tig1, oy Tq). Let f(x) = f1(Z1)...fa(Za). Then f € LY(RY) and

d
Al S T fillomr oy

Proof. The case d = 2 follows from Fubini-Tonelli theorem.
Let d = 3. The Cauchy-Schwartz inequality yields

D=

Jo 1f @)] das S | fa(ar, z2)| (Jg | f1(22, 23))? dﬂ?:a)% (fg |21, 23)]? das)

Integrating the above estimate with respect to x5 and z; and applying the Cauchy-
Schwarz inequality again we see that

D=

fRa |f(2)] dz < (fRs |f3(56'1,$€2)’2 d952d$1)% (fR2 |f1(372,l'3)‘2 d$3d$2)% (fR2 ’f2($1,$3)|2 dl’:adﬂﬁl)

The general case d is proved by induction. Assuming that Lemma 1 holds for p let
us prove it for p + 1. The Holder inequality yields

1
7

Joa lF(@) do S | faallpagay (Jaa | frons fal ¥ day . daa) 7
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with d’ such that 1 = 1. Applying the induction assumption to the functions
|l sy | fal, we obtam

d
fRd|f1‘d ‘fdld dzy...drg 1:[ HfdeLd(Rd)

Hence

d
Jea lf(@)|dy...drg S || faillLaey TT 115l agra-1y

j=1
We now integrate the above estimate with respect to z4y1. Applying again the
Holder inequality we get

d+1
fRd+1 |f(z)|d2y...dvayr S ] HfjHLd(]Rd)

Jj=1

O

Let us prove (5.4) for p = 1. The fundamental theorem of calculus shows that

lu(zy,..ozq)| = |7 2 s (T2, ., 1) dt‘

In fact we have for 1 <1¢ <d

o)
a—;(l’l, ...,xi_l,t,Ii+1, ...,l’d)‘ dt

lu(zy, .y mg)| S ffooo

Let T; = (.lel, ey L1 Ljaly -eey LEd). Let fl(‘fl) = fjooo
The above estimates show that

ou
a—xi(xl, ...,xi,l,t,xiﬂ, ...,Qld) dt.

o)l S T 1)

Hence, recalling that p = we get from Lemma 1

_d_
d—1’

d
Jra lu(a \pdw<nw|f1nwl 1

J=1

a$] L1 (Rd)

Hence

S ||Vu||LP(Rd)'

lull ey S H ’

Oz L1(Rd)

We now turn to the case 1 < p < d. We show that a modification of the argument
for p = 1 yields (5.4). Let m > 1 to be chosen shortly. An application of (5.4) for
p =1 to the function |u[™ 'u combined with Holder inequality shows that
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d
m m— 1
Il gy S TL [l

LY (R%)

S el H\

92, || Lo (et
(Here 1% =1- é ). Choosing m such that p'(m — 1) = 2L we get
T
HUHLP*(Rd Jl;[1 am] Lo (RY) S HVUHLP(Rd)'

5.3 An application: the Gagliardo-Nirenberg inequality

In this subsection we give another application of the Littlewood-Paley decomposi-
tion: the Gagliardo-Nirenberg inequality.

Proposition 13. Let f € S(RY). Let co > p > 1, s > 0 and 6 € (0,1). Let

L_1_0s Tpep
q P a’

£l zagay S NS0 ga | D% FIl o (e (5.9)

Remark 11. The Gagliardo-Nirenberg inequality is usually better than the non-
endpoint of the Sobolev embedding in situations where one controls (additionally)
the LP— norm of the functions f. Indeed if the functions have an LP— norm that
is fived (i.e there exists B > 0 such that ||f| tpre) = B) ' then (5.9) implies that
1Nl caray S B\ D5 f11 500, ()’ this estimate is sharper than (5.3) if | D* f|| Lo (may > 1.

Proof. We write f = A+ B with A:= >  Pyfand B:= >  Pyf. We have

N<M N>M

[Alzo@ey S 2 1PN fllLoqee
N<M

< 5 NG|l oo
<

N<M
M| fl 2o (may-

We have

IBllLagay < Z 1PN Sl para

< 2 it *N.D% £ || o
N>M

< MG D || 1o ey

< MO-D| D5 f|[ oz

I This situation happens quite often with p = 2 for solutions u of PDEs such as the Schrédinger
equations: indeed their mass [|u(t)[|,2(r4) is conserved for all time.
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Hence, by choosing M such that || f|| p»@a) = M™% D f|| 1pway we get (5.9).
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APPENDIX A

In this subsection we compute the Fourier inverse transform of a particular function.

Proposition 14. Let f € S(R?). Let 0 < a < d. Then

1) = fua S = )yl dy (10)
with F~1(h)(x) == [pa h(£)e* ™" dE.

Proof. An elementary change of variable shows that there exists ¢, > 0 such that

Cal€[ ™ = fi° PN (11)

Hence, using also Fubini theorem, we get

T (1g77©) @) = fulglf©)emed g
= fo Af_lf e*ﬂ/\\él%\f(f) 206w (] ¢\
= f )\7_1_* fRd ale= y\ dy

= [ ) [ )\2_1_, =5 N dy
= cd—afa(f)(x)

Hence (10) holds.
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APPENDIX B

In this subsection we prove that the quantities ||D f|| 1»gay and ||V f|| s (ra) are com-
parable if 1 < p < o0.

Proposition 15. Let f € S(R?). Let 1 < p < co. Then

HDfHLP(]Rd) ~ HVfHLP(]Rd)'

Proof. Let 1 < j < d and R; be the j" Riesz transform defined in the Fourier
_ &

domain by E;f(f) = ?Jf(g) Recall that R; is bounded on LP(R?) (see Appendix
C)ie

1Rl ey S 1l 2e rey: (12)
Hence

d d
IVAle@ey S Z 102, f || 2o Ry S Z_J 1B; Dfllzoray S 1D f |l oy

We then show that || Df||sma) S ||V fllprae)y. Observe that this estlmate is equiva-
lent to show (%) : || fl|oway S IIVD ™! fllporay. Observe that f = —i Z R;0,,(D7'f).

j=1
Hence, using again (12), we get ().
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APPENDIX C

In this subsection we recall the definition of the Riesz transforms R;. Next we prove
their boundedness.

Definition 1. Let 1 < j < d. The j%"— Riesz transform R; is the operator acting
on functions S(R?) defined by
= Jra I (O de (13)

Remark 12. Observe that R;f is well-defined since ?Jf(f) € LY(RY).

Next we prove that R;f can be written as the limit of convolution of f with
truncated kernels.

Proposition 16. Let 1 < j < d. Let f € S(R?). Then there exists C € R such that
R;f(x) = Clim R: f(z) with

e—0

R f(x) = éfRd ki(x —y)f(y) dy, and kj(z) = |z\d+1 Lizze

Remark 13. Let h(y) := W ify# x and h(y) == 1 ify = x. Then h € L*(R?)
and RSf(r) = flw—y\Ze h(y) dy. Hence ll_rg R, .f(x) exists.

Proof. Let d > a > 0. Let § > 0. Let C be a positive constant of which the
value may change and such that all the statements blow are true. Observe from the
identity (11) and the Fubini-Tonelli theorem that

f]Rd |x|(}—a e—7r5|;v\2€2i7r§ac de = C'f szfzvf td*—o‘fl —m(t+6)|z|? dt dx
f d -1 f 6217r§x —7r(t+5 )|z|? dr dt
C [t + 6) S viv Cdt

Let 1 < a < d. By integrating by parts

i 2 oo ,d=a _ e
fRd a:vj <w%6—7r6|x|2> e2imET o — —2CZ'7Tfj f() th—l(t+6)—ge tfé dt
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Hence I, 5(x) + Jos(z) = Ko 5(z) with
Ia,é(f) = (a — d) f]Rd Wtﬁe_ﬂ—élmpeziﬂgw d.ﬁlf,
Ja5(§) = =27 fRd le‘rl%e—ﬂtﬂxpe%ﬂ{m dx, and
nle?

Ka5<€) :_207”53 f(] t7_1<t—|—5) 26 +5  (t-

Elementary considerations show that (lslﬂ(l) Jas(€) = 0. Using again (11) we get
_>

= O

. _ (N [0 _%_1 —
lim 1o,5(€) = Cig; Jy~ ¢ R

Hence from the dominated convergence theorem and the equality m2(§> =
h1(§)ha(8) we get

ij(l') = C_(Clll_inl (lsli;%(d - Oé) fRd [a,5<x - y)f(y) dy

o (14)
= Clim [y 5(x = 1) () dy-

Indeed, from ngz\x—y\2R1 (T y‘a dy = 0, we get fw J>e Wf( y) dy —
Jomyise mgrr f(y) dy = Ay + Ay with

A= fisoys. (= — pii ) () - £(2)) dy, and
Ay = f|r_y|21 (|m_x;‘;}r/é—a - |xx_jy_‘gi1) f(y) dy-

The mean value theorem shows that

1
(Al S (@=1) fispp g5 I|£ ‘;dylll

‘AQ‘ S (a - 1) f|x_y|21 |f( )| dy

We also have hm - yj‘df{ = f(y) dy = 0. This explains the last equality in (14).

dy, and

]

Next we turn to the boundedness of the Riesz transforms. To this end we first
recall the Calderon-Zygmund kernel (see e.g [3]):

Definition 2. K is called a Calderon-Zygmund kernel if K € L} (R*—{0}) and if
there exists B > 0 such that K satisfies the following conclusions

e Decay property:

| K ()| < Bla|™ (15)
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e Regularity property: for all y € R?
f\m|22|y\ |K(z +y) — K(z)| dv < B- (16)

e Cancellation property: for all Ry < Ry we have

legngQ K(y)dy=0-. (17)

Remark 14. Observe that if there exists C > 0 such that

x 7'é 0: |VK(1’)| < |m|€+17 (18)
then (16) holds for some B := B(C).

Indeed the fundamental theorem of calculus yields

1
Jappa K (@ +y) = K@)l dv < [, 20, Jo [VE (@ +ty)lly| dt da
1
S bl fol f‘””|22lyl \fc+t;|d+1 dx dt
S o Sz rye 4 dt
< [yl fzm %2 dr
<1

T
2

We then prove that a kernel related to the j"— Riesz transform in a Calderon-
Zygmund kernel.

Proposition 17. Let 1 < j < d. Let K; defined by K;(x) := ¢

ﬁ. Then K; is a
Calderon-Zygmund kernel.

Proof. The proof is short. It is clear that the decay property (15) and the cancella-
tion property (17) hold. The regularity property (16) follows from (18).

O

Next we prove the boundedness of the limit of operators associated to truncated
Calderon-Zygmund kernels in LP(R?), 1 < p < oo.

Proposition 18. Suppose that K is Calderon-Zygmund kernel. Let 1 < p < oo.
Given € > 0 let

T(f)(@) = [ 5 f2 = 9)K(y) dy-
Then there exists A, > 0 such that

1 Teflrray < Apllfll oy (19)
Moreover lir% T.(f) exists in the sense of the LP norm, and if Tf := lir% T.(f) then
€E— €E—
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1T fllzr@ay < Apllfllzoay- (20)

Proof. We prove that lir% T.(f) exists in LP. We have
€E—

T.(f)(x) = Ty()(@) = [, K@@ —y)dy — [, K@) f(z —y) dy
= 59”(77 - E) min(e,n) <|y| <max(e,n) K(y) (f($ - y) - f(:l?)) dy :

this comes from the cancellation property (17). Hence the fundamental theorem of
calculus and the Mikowski inequality show that

() = Tzt || o<t K @IV F =) ol o

’S min(e,n)<|y|<max(e,n) |K(y)H|Vf(.T - y)HLP(Rd) |y‘ dy

dy

< |y | —d+1
~ Jmin(e,n)<|y|<max(e,n)

< (max(én)
S Jminenmy @

Sin—¢

Hence, if 2, — 0 as n — oo then (7}, ),>1 is a Cauchy sequence so it converges. So
T(f):= lir%TE(f) exists.
e—

The proof of (19) relies upon Calderon-Zygmund theory and can be found in e.g

[3, 9.

By letting € — 0 in (19) we get (20).
O

Proposition 19. Let 1 < j < d and 1 < p < oco. Then R; defined by (13) is
bounded on LP(R?), i.e there exists A, > 0 such that for all f € S(R?)

1R fll ey < Apll f | o@ay-

Proof. Tt follows from Proposition 16, Proposition 17, and Proposition 18.
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