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Abstract
of the Thesis of

Andre Vartan Panossian for Master of Science
Major: Physics

Title: Data-Driven Recovery of Time-Evolving Causal Interaction Networks
and Stochastic Dynamics In Zebrafish Groups

This thesis explores the collective behavior and dynamics of juvenile zebrafish (Danio
rerio) shoals of varying group sizes, employing a multifaceted approach grounded in
physics, information theory, graph theory, and stochastic analysis. We look at how
groups of 4, 10, 60, 80, and 100 zebrafish interact.

We examine two key behavioral metrics: rotation and polarization order parameters,
and observe that the decay times derived from the autocorrelation functions of
these metrics’ time series increase considerably as group size grows. This signals a
heightened level of coordination that arises with increased density, with decay rates
of the rotation order parameter in the largest group exhibiting a ten-fold di↵erence
compared to the smallest group.

To learn more about how coordination and density work together, we used the Opti-
mal Causation Entropy principle (oCSE) to build dynamic, time-evolving, causally-
weighted networks that show how zebrafish shoals of sizes 4, 10, and 60 interact with
each other. By leveraging these networks, and exploring them using graph theory,
we relate the increase in coordination within denser systems to a more consistent,
and less volatile causal structure. Within the context of network science, we mea-
sure the average number of interacting neighbors, then look at the emergence of
leadership, provide a way to quantify it, and compare that across the three di↵erent
groups.

In the concluding part of this study, we use the Kramers-Moyal equation to com-
bine Kramers-Moyal coe�cients with Sparse Regression techniques, also known as
equation learning, to derive interpretable, analytical expressions of stochastic dif-
ferential equations describing the evolution of the rotation and polarization order
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parameters for the di↵erent group sizes, as well as the coupled di↵erential equation
that describes the concurrent evolution of these order parameters.

Collectively, our findings cast light on the intricate relationships between collective
behavior, emergent sustained coordination, information sharing, and stochastic dy-
namics in animal groups, providing a holistic framework for studying such systems.
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Chapter 1

Introduction

1.1 Choreography Of Active Matter Systems

In the rapidly evolving landscape of scientific research, active matter science has
emerged as an interdisciplinary field that integrates concepts from physics, chem-
istry, biology, and materials science to investigate the collective behavior of self-
propelled particles. These active systems, which convert energy into motion and
exhibit intricate interactions with their environment, represent a striking departure
from traditional equilibrium systems, and thus present a unique opportunity for
expanding our understanding of the microscopic world [1].

Spanning a wide range of natural and synthetic systems, from the coordinated mo-
tion of bird flocks [2] and fish schools [3] to the orchestrated dynamics of cellular
and bacterial assemblies [4], active matter science has captured the attention of re-
searchers worldwide. The endeavor to unveil the underlying principles that govern
the behavior of these self-driven systems carries immense potential for advancing
our knowledge and inspiring the development of innovative technologies.

(a) School of Fish (b) Flock of Bird

Figure 1.1: Active Matter Systems: Air And Sea
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(a) Bacillus Subtilis Clusters (b) Wildebeest Migration

Figure 1.2: Active Matter Systems: Micro to Macro

1.2 Modeling Collective Dynamics

The study of animal interactions, particularly among groups of individuals exhibit-
ing nonlinear behavior, is an essential and challenging area of research. In such
“nonlinear” systems, agents can influence each other in unexpected ways, making
the collective behavior of the group di�cult to predict or analyze using traditional
linear methods that assume a direct proportionality between cause and e↵ect. Un-
derstanding these interactions can help researchers gain insight into the underlying
mechanisms that govern collective behavior in various species. In [5] Lord draws
an analogy to statistical physics, where macroscopic observables are determined by
microscopic interactions, coordinated group behaviors appear to emerge from in-
teractions between individuals. It is also worth mentioning that correlational tools
[6], are not entirely suited for analyzing the interaction among agents especially
when the relationship between cause and e↵ect is not linear, in addition to the fact
that correlational tools most often lack the directionality needed when dealing with
causal interaction.

Diving deeper into this analogy with statistical physics to better understand collec-
tive group motion, researchers pursue three parallel approaches. The first approach
is a macroscopic analysis that focuses on observed group or large scale-level be-
haviors such as group morphology or material-like properties [7]–[9]. The second
approach involves a microscopic analysis that determines the nature of the interac-
tions between individuals [6], [10], [11]. Lastly, the final approach deals with the
macroscopic consequence of the agent-agent interactions, and specifically how these
small-scale interactions give rise to emergent behavior or macroscopic properties
[12].
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The most scientific attention normally goes to the third approach simply because
it is easy to simulate simple models of collective behavior on computer within this
agent-based modeling context, notably the classic Vicsek model [12], the Reynolds
model [13], and Couzin et al. models [14]. While these studies have been very
helpful in expanding our understanding of the macroscopic patterns and ordering
that can be found in active collective systems, to claim that these straightforward
models accurately depict genuine animal behavior, one must implicitly believe that
the interactions between individuals are e↵ectively represented, i.e that these simple
models actually reflect reality. We cannot say for sure if that is the case, but we
do know that these and most other models frequently make the assumption that
animals only interact with other animals that are physically close to them, which
gets rid of the complexity of having to deal with the whole network and instead
replace it with the much smaller proximity network [15]. In light of that, knowing if
spatial local neighbors dominate interactions is crucial to understanding collective
motion, while knowing that the introduction of even a small number of long range
interaction could qualitatively impact macroscopic behavior in a lattice as was shown
by Strogatz et al.[16], in addition to that these models make an assumption about
the number of interacting neighbors or the size of the interaction neighborhood.

In this thesis, we employ a novel approach to studying animal interactions by ap-
plying the optimal causation entropy (oCSE) principle developed by Sun, Bollt et
al. [17], to time series data obtained from optical tracking of the zebrafish, D. rerio,
of the wild-type TU strain [18]. The oCSE principle allows us to identify causal
relationships and quantify information flow among the fish, forming a network of
information flow within the swarm. [19], [20], [21].

This thesis represents a comprehensive exploration into the collective behavior and
dynamics of shoals of the juvenile zebrafish, across varying group sizes. Through
a multifaceted approach, we have connected the dots between physics, information
theory, graph theory, and machine learning, to dissect and understand the interac-
tion patterns within these shoals. Applying the Optimal Causation Entropy prin-
ciple, we constructed dynamic, causally-weighted networks reflecting interactions
within zebrafish shoals. Through these networks, we unraveled the phenomenon of
emergent coordination within increasingly dense systems.

In the final phase, we employed the Kramers-Moyal equation [22] and sparse re-
gression techniques [23] to derive analytical expressions of the stochastic di↵erential
equations governing the evolution of the rotation and polarization order parameters
and their coupling.

Our work highlights the importance of utilizing advanced non-paramteric methods
such as the oCSE principle and Kramer-Moyal expansions for studying complex,
nonlinear systems. The findings shed light on the interplay between collective be-
havior, emergent coordination, and information transfer in animal groups. They
form a foundational framework for future research into such complex systems.
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Chapter 2

Network Science

The motivation behind including a chapter on network science in this thesis stems
from the recognition that our research and results frequently employ network-related
concepts and terminology. To ensure that readers have a solid understanding of the
foundational notions in network science, this chapter will provide a comprehensive
overview of the basic principles, concepts, and methodologies within the field. By
familiarizing readers with these essential aspects, we aim to facilitate better com-
prehension and interpretation of our research findings and discussions throughout
the thesis.

2.1 Introduction

In today’s interconnected world, we are continually influenced by and engage in
a multiplicity of dynamic networks that shape various areas of our life. Our evo-
lution as a species has been closely related to our interactions within thousands
of years of ecological, biological, social, and other networks. As a result, complex
socio-technical ecosystems such as cities, water and electricity systems, and trans-
portation networks have emerged. The Internet and the World Wide Web have
further transformed how we access, distribute, and generate knowledge, underlining
the growing need of understanding the linkages, trends, and patterns within these
large networks in order to successfully address global concerns.

Network science is an interdisciplinary field that is quickly expanding. Its goal
is to develop theoretical and practical ways to better understand the structure and
function of natural and man-made networks. With foundations in disciplines such as
graph theory [24][25], sociology [26] [27], communication research [28], scientometrics
[29][30], biology [31], and physics [32]–[35] [36], researchers with varied work styles,
techniques, and research interests have been drawn to network science.

Despite the field’s diversity, problems exist in the form of parallel, unconnected
research strands and inconsistencies in nomenclature and techniques. To address
these issues, a truly multidisciplinary approach is required, in which techniques and
datasets from one domain can be utilized to further our understanding of networks
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in other domains. This interdisciplinary approach has already resulted in the iden-
tification of unexpected commonalities between seemingly unrelated systems, such
as social networks and the Internet [37]–[39], implying the existence of universal
principles and growth mechanisms underpinning multiple networks.

Network science is a relatively new field with many unanswered problems. Re-
searchers must contend with di�culties such as system-dependent limits on node
interconnectivity, changing node characteristics over time, and network embedding
within natural environments. Furthermore, networks are rarely isolated; rather,
they are frequently interconnected and influenced by the broader systems in which
they exist.

This chapter will provide a comprehensive introduction to network science, encom-
passing its fundamental concepts, methodologies, and applications. By presenting
a clear and coherent overview of network science, we aim to equip readers with the
foundational knowledge necessary to comprehend and interpret the research findings
and discussions that rely on network-related terminology and principles throughout
the thesis.

2.2 Graphs and Sub-graphs

In this section, we aim to provide essential concepts and terminologies required for
understanding networks. It is important to note that di↵erent fields within network
science have their own unique vocabulary. The most suitable foundation for a pre-
cise mathematical portrayal of networks can be found in graph theory, which we
will utilize here. In fact, graph theory has its origins in the groundbreaking e↵orts
of Euler to resolve the Königsberg bridges conundrum (Euler, 1736) [40]. Follow-
ing the introduction of the random graph model by Erdős and Rényi (1959)[41],
graph theory has matured into a discipline that provides an abundance of rigorous
mathematical and practical findings for network analysis.

Networks, also known as graphs, have a specific structure (or topology) and can
contain quantitative information. The structure may or may not be weighted and
may or may not be directed. There may exist quantitative information regarding
the types, weights, or other attributes of nodes and edges. This section introduces
various network types, their definitions, and their representations. We will begin by
describing graph structure.

2.2.1 Undirected Graphs

An undirected graph G = (V,E) is defined as a countable set V of nodes or vertices,
and a set E of edges or links between unordered pairs of di↵erent nodes. The nodes
are identified by their order i in the set V , and an edge (i, j) connects two adjacent,
connected, or neighboring nodes i and j. The graph’s size is denoted as N , which
corresponds to the cardinality of the set V . The set E has a cardinality of M , which
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represents the total number of edges in the graph. When M = N(N � 1)/2, the
graph is called a complete N -graph, because it connects all possible node pairs with
edges. Undirected graphs can be graphically represented by a set of dots representing
the nodes, connected by lines between the corresponding edges, as seen in Figure
2.1(a-d).

2.2.2 Directed Graphs

A directed graph, also known as a digraph, is made up of a set of non-empty count-
able nodes V and a set of directed edges ED, which are represented as ordered pairs
of di↵erent nodes. The directed character of the edges is generally expressed in
graphic depictions by an arrow denoting the direction of the edge. Refer to Figure
2.1e and 2.1f for an example. It is important to keep in mind that having an edge
from node i to node j (i.e., i ! j) in a directed graph does not necessarily imply
the presence of the reverse edge i j.

Figure 2.1: Adjacency matrix and graph representations of di↵erent undirected and
directed graphs

2.2.3 Trees

A tree graph is a hierarchical graph with a unique parent node for each edge, also
known as a child. A rooted tree is a tree graph that grows from a single parent node.
Tree graphs are distinguished by the fact that the number of nodes in a tree always
matches the number of edges plus one, which may be represented as N = E + 1.
Another important feature of trees is that if any edge is removed, the tree becomes
unconnected.
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2.2.4 Graph Representation

A convenient mathematical approach to defining a graph involves using an adjacency
matrix x = xij with dimension N ⇥ N . In this representation, xij = 1 if the edge
(i, j) 2 E and xij = 0 if (i, j) /2 E. It is worth noting that for undirected graphs,
the adjacency matrix is symmetric, that is xij = xji, and thus contains redundant
information. However, for directed graphs, the adjacency matrix is not necessarily
symmetric. Figure 2.1 illustrates the adjacency matrices and corresponding graph-
ical representations for four undirected graphs (a-d) and two directed graphs (e
and f). It is interesting to note that the adjacency matrix is also referred to as a
sociomatrix in the social network literature.

Using an adjacency matrix to depict the relationships between nodes in a network
is a succinct and informative approach to do so. The adjacency matrix can also be
used to compute di↵erent graph features such as the degree distribution, clustering
coe�cient, and centrality metrics. This representation can also be utilized in algo-
rithms that include matrix operations, such as finding the shortest path between
nodes or computing the adjacency matrix’s eigenvalues and eigenvectors. Despite
its value, the adjacency matrix representation can be computationally expensive for
big graphs, limiting its usefulness.

2.2.5 Subgraphs

In graph theory, a graph G0 = (V 0, E 0) is considered a subgraph of another graph
G = (V,E) if all the nodes in V 0 are contained in V and all the edges in E 0 are
included in E. More formally, E 0 ✓ E and V 0 ✓ V . Figure 2.1 b, d, and f illustrate
subgraphs of the graphs shown in Figure 2.1 a, c, and e, respectively. A clique is
a complete subgraph of size n < N . For instance, the graph shown in Figure 2.1
b is a 3-subgraph of the complete N -graph depicted in Figure 2.1 a. So far, the
definitions have been qualitative, describing the structure of a graph. Nevertheless,
quantitative information, such as edge weights, can also be assigned to a graph.

2.2.6 Weighted Graphs

Real networks often exhibit significant heterogeneity in the capacity and intensity
values of their edges [35], [42]–[44]. In social systems, for example, the strength
and frequency of contacts are important in characterizing corresponding networks,
whereas the volume of tra�c between internet routers and the number of passen-
gers using di↵erent airlines are important in comprehending the structure of these
systems. As a result, it is preferable to build a weighted network that goes beyond
simply topological representation and reflects the strength or worth of the links.
This can be achieved by associating each edge (i, j) with a weight wij.

Similar to the adjacency matrix x = xij, we can define a weighted adjacency matrix
W = wij. The weighted adjacency matrix can be used to represent undirected
weighted graphs where wij = wji and directed weighted graphs where wij 6= wji,
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although this may not always be the case. Because it combines both topology
and quantitative information, the weighted graph representation provides a deeper
description than the unweighted model.

2.3 Graph Connectivity

2.3.1 Node Degree

In undirected graphs, the degree k of a node refers to the number of edges connected
to it. In contrast, in directed graphs, the degree of a node is defined as the sum of
its in-degree and its out-degree, i.e., ki = kin,i + kout,i. The in-degree kin,i of node i
is the number of edges pointing towards i, while its out-degree kout,i is the number
of edges departing from i. Using the adjacency matrix, we can express the degree
of a node as the sum of its in- and out-edges, i.e.,

kin,i =
X

j

Aji (2.1)

kout,i =
X

j

Aij (2.2)

Where Aji is the (j, i)-th element of the adjacency matrix, representing an edge
pointing towards node i, and Aij is the (i, j)-th element representing an edge de-
parting from node i. Therefore, the degree of a node i can be expressed as the sum
of the in- and out-degrees:

ki = kin,i + kout,i =
X

j

Aji +
X

j

Aij. (2.3)

For undirected graphs, the adjacency matrix is symmetric, and thus kin,i = kout,i ⌘
ki. In this case, the degree of a node is simply the sum of its edges, i.e., ki =P

j Aji =
P

j Aij. For instance, in Figure 2.1 a, node 1 has a degree of three, while
in Figure 2.1 e, node 1 has an in-degree of two and an out-degree of one.

2.3.2 Nearest Neighbors

The nearest neighbors of a node i are the nodes that are directly connected to it
by an edge. In other words, the number of nearest neighbors of a node is equal to
its degree. For example, node 1 in Figure 2.1a has nodes 0, 2, and 3 as its nearest
neighbors, since these nodes are directly connected to node 1 by edges.

2.3.3 Clustering Coe�cient

The following explanation follows the Fagiolo Method for computing the Clustering
Coe�cient, see [45]
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Undirected Networks The tendency of a network to form closely connected neigh-
borhoods can be measured by the clustering coe�cient (CC). Considering a binary,
undirected network (BUN), described by a graph G = (N,A) with N as the number
of nodes and A as the adjacency matrix. The element aij is 1 if nodes i and j are
neighbors, and 0 otherwise. For a given node i, the degree ki represents the number
of its neighbors. The extent of clustering for i’s neighborhood can be evaluated by
the ratio between the number of triangles in G with i as a vertex (ti) and the total
possible triangles that i could have formed. Thus, the CC for node i is given by

CA
i =

1

2

X

j 6=i

X

h 6=(i,j)

aijaihajh ÷
1

2
ki(ki � 1) =

A3
ii

ki(ki � 1)
,

where A3
ii is the ith element of the main diagonal of A3. The network-wide CC for

graph G is then obtained by averaging Ci over the N nodes.

Weighted Undirected Networks Weighted undirected networks (WUN) incorpo-
rate the heterogeneity in the capacity and intensity of their connections. Each edge
ij in G (where aij = 1) is assigned a value wij proportional to the link’s weight in
the network. The concept of node degree in BUNs is replaced with node strength
si =

P
j wij. The extension of the CC of node i to WUNs is given by

C̃W
i =

1

2

X

j 6=i

X

h 6=(i,j)

w1/3
ij w1/3

ih w1/3
jh ÷ 1

2
ki(ki � 1) =

(W [1/3])3ii
ki(ki � 1)

,

where W 1/3
ii is the ith element of the main diagonal of the matrix W 1/3.

Directed Networks Directed networks involve non-mutual relationships, represented
by non-symmetric adjacency or weight matrices. The CC for binary directed net-
works (BDNs) can be defined in a similar manner to BUNs, but takes into account
all possible directed triangles formed by each node, regardless of the edge direction.
The CC for node i in BDNs is given by

CDA
i =

tDi
TD
i

=
(A+ AT )3ii

2(ktot
i (ktot

i � 1)� 2k$
i )

,

where tDi is the number of directed triangles formed by i and TD
i is the total possible

triangles that i could form. The overall CC for BDNs is defined as CD = 1
N

PN
i=1 C

D
i .

And note that when there are no self-interactions, the number of bilateral edges
between i and its neighbors (the number of nodes for which an edge i ! j and
j ! i exist is: k$

i =
P

j 6=i aijaji).

Weighted Directed Networks The CC for BDNs can be extended to weighted
directed networks (WDNs) by substituting A with W 1/3. Therefore, the CC for
node i in WDNs is given by
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C̃DW
i =

t̃Di
TD
i

=
(W 1/3 + (W T )1/3)3ii

2(ktot
i (ktot

i � 1)� 2k$
i )

,

where t̃Di is the number of weighted directed triangles formed by i.

2.3.4 Global E�ciency

Global e�ciency is a measure of the e�ciency of information exchange on a network
[46], and it is particularly useful for examining indirect paths between nodes. It is
the average of the inverse shortest path length and is computed as:

Eglob =
1

N(N � 1)

X

i 6=j

1

dij
(2.4)

where dij is the shortest path length between nodes i and j, and N is the total
number of nodes. High global e�ciency implies a high speed of information exchange
in the network due to the presence of short paths among nodes.

The e�ciency of a network can provide insights into the network’s overall struc-
ture and organization. High network e�ciency is often associated with optimized
processing and robustness to perturbations. For instance, a highly e�cient social
network may facilitate rapid communication and information spread among individ-
uals. Meanwhile, an e�cient transportation network enables quick and resource-light
routes, contributing to optimal tra�c management.

Understanding these measures can thus help to draw inferences about network per-
formance and to devise strategies for network improvement, resilience, and control.
These metrics can o↵er powerful tools for analyzing the structure and function of
various complex networks, including social networks, biological networks, and tech-
nological networks.

2.4 Modeling Complex Dynamics on Networks

The study of dynamic processes in large-scale complex networks has gained popular-
ity, resulting in ground-breaking breakthroughs in a variety of domains such as social
sciences, engineering, medicine, and natural sciences [47], [48]. Researchers have fo-
cused on understanding the role of network structures in shaping the dynamics of
various systems [49]–[53]. This understanding has contributed to the development
of strategies for managing network dynamics [54], [55], improving network resilience
[56], and optimizing network performance in di↵erent applications [57], [58].

One of the di�culties that researchers encounter is identifying network structure
without dramatically changing the underlying system. To get around this problem,
researchers used time series data to discover the network structure responsible for
the system’s behavior.
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It is critical to consider directed links that demonstrate “cause and e↵ect” linkages
while analyzing and understanding the relationships inside complex networks. In
contrast to non-directed relationships, such as correlations, which might occasion-
ally provide a superficial knowledge of the connections, directed interactions often
contain valuable information about the underlying mechanics of the system [59].

Various techniques have been employed to infer network structures from time series
data, including Granger causality [60], transfer entropy [61], and dynamic Bayesian
networks [62]. These methods each have their own set of assumptions and constraints
for determining directed relationships within the network. Comparing and testing
these methods in real-world applications is critical for improving network inference
accuracy and dependability.

Furthermore, network inference techniques can be applied to various fields. For
instance, they can be utilized to understand the spread of information or influence
in social networks [63], identify the structure of ecological networks and species
interactions [5], and analyze transportation networks to optimize tra�c flow [64].

In conclusion, the investigation of dynamic processes in large-scale complex net-
works has led to significant advancements in a wide array of disciplines. Focusing
on the role of network structure and utilizing time series data to infer these struc-
tures has proven to be a valuable approach for understanding and controlling the
dynamic properties of various systems. Accounting for directed “cause and e↵ect”
relationships in network inference techniques is crucial for gaining deeper insights
into the underlying mechanisms of these complex systems.
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Chapter 3

Causal Discovery From
Time-Series Data

In this chapter, we will discuss causal discovery methods for time series data, which
are essential for our research. The motivation behind this focus lies in the time
series data obtained from tracking zebrafish, as it holds valuable information about
their behavior. Analyzing this data is particularly important because it allows us
to uncover non-local interactions, understand the propagation of information, and
understand the emergence of coordination, providing a deeper understanding of the
complex dynamics governing zebrafish movement.

3.1 Introduction to Causality

Causality is a pivotal topic in science, with a long and rich history and causal
inference now being at the forefront of machine learning breakthroughs in policy
evaluation, social science, as well as marketing [65]–[67]. The following introduction
is inspired by the elaborate review of [68] on the topic of causality and its history.

The natural and social sciences have long sought cause-e↵ect relationships between
variables, events, and objects. Although some mathematicians, such as Russel [69],
tried to disprove ”causality” in mathematics and physics arguing that causal rela-
tionships and physical equations are incompatible, the concept is still used in the
language of various sciences, including mathematics and physics. The reason why
causality is di�cult to define is because math and physics go beyond equations and
in a sense causality can be mathematically analyzed as a ”flow” between processes.
In general, causation is the relationship between events, objects, variables, or states,
with the cause typically presumed to precede the e↵ect in time.

Causal relationships are frequently studied in situations influenced by uncertainty,
and when we think of uncertainty we think of probability theory. It is in fact the
latter that appears to be the most prevalent ”mathematical language” employed by
many scientific disciplines for causal modeling. Keeping in mind that in numerous
disciplines the objective goes beyond merely identifying causal relationships and ex-
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tends to measuring or quantifying the relative strengths of these relationships. And
while the literature on the topic of causal modeling is vast, touching on mathemat-
ical logic, Markov models, Bayesian probability, etc. [68], [70], we concentrate here
solely on information-theoretic approaches that perceive causality as a phenomenon
that can be “measured” and quantified.

Since the first goal of this thesis is to make use of information-theoretic tools to
uncover causality, we center our attention on defining causality within that specific
context, which means measuring causal influence from multivariate time series by
estimating entropy, mutual information, and discussing the relevant non-parametric
ways to estimate these quantities.

One of the early definitions of causality came from Suppes (1970) who proposed that
an event X is a cause of event Y if X occurs before Y , the likelihood of X is non-
zero, and the likelihood of Y given X is higher than the likelihood of Y occurring
alone. Then in 1956, Weiner proposed the first computationally measurable and
generic definition of causality [71], arguing that “For two simultaneously measured
signals, if we can predict the first signal better by using the past information from
the second one than by using the information without it, then we call the second
signal causal to the first one.”

3.1.1 Granger Causality

We now attribute the concept of causality in experimental frameworks, that is to
say using time-ordered data, to Clive W. J. Granger, the 2003 Nobel laureate in
economics. In his Nobel lecture [72], Granger drew inspiration from Wiener’s work
and outlined two key aspects of causality:

1. The cause precedes the e↵ect

2. The cause provides unique information about the e↵ect, which cannot be found
in any other variable.

What Granger found these to imply, is that the more data one has from the causative
variable the better the forecast is for the e↵ect variable. This type of causality, known
as Granger causality (GC), defines the extent to which one process Xt influences
another process Yt and is based on the concept of incremental predictability. A
process Xt is said to Granger-cause another process Yt if future values of Yt can be
better predicted using both Xt and Yt past values rather than solely Yt past values.
The standard GC test, developed by Granger [60], is based on a linear regression
model:

Yt = a0 +
LX

k=1

b1kYt�k +
LX

k=1

b2kXt�k + ✏t, (3.1)
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Where ✏t are uncorrelated random variables with zero mean, and variance �2, L is
the specified number of time lags, and t = L + 1, . . . , N . The null hypothesis that
Xt does not Granger-cause Yt is supported when b2k = 0 for k = 1, . . . , L, reducing
the equation to:

Yt = a0 +
LX

k=1

b1kYt�k + ✏̃t. (3.2)

This linear approach to measuring and testing causality has seen extensive applica-
tion not just in economics and finance [73], but also across various natural science
domains such as climatology [74] and neurophysiology. However, since this only
works for linear relationship and most real life systems do not abide by this simplis-
tic model, there was a need for more general methods.

3.1.2 Transfer Entropy

While many non-linear extensions to the Granger Causality were introduced, mak-
ing use of non-parametric regression [75] and local linear predictors [76] to name a
few, we turn our attention there to a specific measure, the non-parametric trans-
fer entropy developed by Schreiber [77] for measuring causal information transfer
between systems.

Schreiber proposed a non-parametric approach to quantify causal information trans-
fer between systems, known as transfer entropy. This measure is essentially an
information-theoretic functional of probability distribution functions. It will be
demonstrated that Schreiber’s transfer entropy [77] is equivalent to conditional mu-
tual information [78] when conditioned appropriately.

This information-theoretic method is used in climatology [79], physiology [80] and
neurophysiology [81]. In the following we will go into the details transfer entropy,
its generalization, its importance in the study of dynamical systems and subsequent
application. But first we need to work our way up to it.

3.2 Information Theoretic Approaches for Causality Detec-
tion

3.2.1 Definitions and Basics

Going back to the necessary conditions mentioned in 3.1.1 for the establishing a
causal association, we highlight that the first condition is relatively simple when
we have access to time series data, which is more and more available for many
systems where it didn’t exist before. However, the second condition is challenging
since it requires evaluating all available information from every variable’s time series
data; which is why many approximations are made such as neglecting time delay,
or limiting ourselves to only few variables (small-size networks with few nodes)
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[82], [83], or by partially neglecting the second condition, thus reducing the causal
network inference accuracy [84]. Given all of that, it is clear that inferring large scale
causal network using available time-ordered data is not only challenging, but had
remained unsolved until quite recently, since it not only required theoretical advances
but also algorithmic and computational ones. We will later show in that chapter
the recently proposed method to challenge that, which we picked and exploited to
fit the objective of this thesis[17], [85], [86].

In summary, the classical Granger causality test was designed for linear regres-
sion models, but several nonlinear extensions have been proposed. Information-
based causality inference addresses the model-dependent limitation in linear Granger
causality tests and Schreiber’s transfer entropy was one introduced method to mea-
sure information flow or e↵ective coupling between two processes regardless of their
functional relationship.

Transfer entropy from process Y to process X quantifies the uncertainty reduction
of X’s future states based on Y ’s past, given that X’s past is already known; it is
essentially the mutual information between X’s future and Y ’s history, conditioned
on X’s history. Although logically sound, this method falls short when applied
to multi-variable settings, and fails to detect the network structure properly, that
is because transfer entropy was created to identify information flow between two
processes [83], [87]. Since we are specifically interested, given a node i, in identifying
the other nodes directly impacting i, i.e its direct “causal parents” while avoiding
the inference of indirect or spurious causal links as illustrated in Figure 3.1(c), we
need to re-think the conditioning of the transfer-entropy based methods that are
likely to pick up on indirect influence and dominance of neighboring nodes [83].

Figure 3.1: The inference of causal network structures underlying observed dynamics
(a!b) is possible using high-dimensional time series data from simulations, experi-
ments, and data mining. The goal is to identify the direct causal links of each node
i while eliminating non-influential nodes (c) [17]

Knowing how to condition is essential as it can help split causal interactions into
direct and indirect ones, and proper conditioning is used widely in network inference
methods.[82], [83], [87]–[90]. However, even within this general theme, network
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inference requires a theoretically grounded approach that is also algorithmically
reliable and e�cient. Consequently, as Sun and Bollt put it, there are two crucial
steps in causal network inference, the first one in adopting a clear statistic for the
causal relationship inference; optimizing this step means focusing on accuracy and
generality of the statistic, while the second step is the more challenging one, and
that is devising an algorithm that can iteratively apply the first step to learn the
causal network. In the second step the focus is now on computational costs and
accuracy of the numerical methods that compute the statistics, adding onto that
finite-sized data, and it becomes very challenging as the number of nodes in our
system grows. Since one of the goals of the thesis is inferring large causal network
structure as they contain the most interesting interplay between coordination and
information flow, it is important for us to consider an e�cient algorithm.

The first and most intuitive thing to consider is testing a candidate causal association
by conditioning on all other variables. In other words a directed link j ! i is flagged
as truly causal if the value of the statistic remains non-negligible when we condition
on all other variables in our system, this is in fact one of the available methods
in literature [82]. The issue is obviously clear, the method requires evaluating the
statistic in a space with the dimensionality being as high as the whole system which
will be computationally too expensive for large networks. Before we go on to the
method we have decided to use, it’s important to mention one other algorithm
that improved upon the previous, namely, The PC algorithm [90]. This algorithm
addresses this issue by repeatedly testing candidate causal links conditioned on
subsets of the remaining variables [89]. More specifically, a link j ! i is considered
to be non-causal if it is negligible when conditioned on some subset of the nodes.
That would clearly reduce the dimensionality of the search space and make it as
large as the conditioning set that could be much smaller than the system size. The
problem however is that if there is no upper bound to the size of the conditioning
set, in other words, if the maximum degree or number of causal neighbors of a node
is not known beforehand, the PC algorithm will need to search conditioning sets
that can be as large as the whole network, which brings us back to the problem of
inferring causal network for large network structures. Given all that, a compromise
must be made between an algorithm’s computational cost and its data e�ciency.

3.2.2 Framework, Terminology, and Assumptions

Inferring causal networks from high-dimensional time series begins with a theoretical
framework. The framework works for linear and nonlinear systems, following the
method and terminology in [17] we will work our way up to the oCSE algorithm.

Consider a network (graph) G = (V,E), and V = {1, 2, ..., n} is the set of nodes
and E ✓ V ⇥ V ⇥ R is the set of weighted links. The adjacency matrix A = [Aij]nn
is defined in the following way:

Aij =

(
weight of the link j ! i if j ! i in the network,

0 otherwise.
(3.3)
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Let’s call the corresponding unweighted adjacency matrix �0(A) defined by its entries
by �0(A)ij = 1 i↵ Aij 6= 0 and �0(A)ij = 0 i↵ Aij = 0. We also define the set of
causal parents of i as

Ni = {j|Aij 6= 0} = {j|�0(A)ij = 1}. (3.4)

If we have a subset of nodes I ⇢ V , we define its set of causal parents in the following
way,

NI =
[

i2I

Ni. (3.5)

We can define for each node i the stochastic dynamics in the network as such:

X(i)t = fi (Ai1X(1)t�1, Ai2X(2)t�1, ..., AijX(j)t�1, ..., AinX(n)t�1, ⇠(i)t) , (3.6)

where X(i)t 2 Rd is a random variable representing the state of node i at time t,
this is practically one of the time series data available or computed, such as speed,
acceleration, turn-rate, etc. ⇠(i)t 2 Rd is simply the fluctuation or the noise on node
i at time t, and fi : Rd⇥(n+1) ! Rd models the functional dependence of the state
of node i on the past states of nodes j with Aij 6= 0. Note that other than the noise
term ⇠(i)t, the state X(i)t only depends on the past states of its causal parents,
X(j)t�1(j 2 Ni).

Once we have quantitative observations on the behavior of each node’s dynamic
states, practically the time series data, determining the causal system’s dynamics is
in fact equivalent to finding out three things:

1. The causal network topology, �0(A)

2. The connection weights, Aij

3. The specific functional dependencies between nodes, fi.

These problems are intertwined and each has its own challenges, but let’s first con-
sider the problem of finding out the topology �0(A). Mathematically this is ex-
pressed as such:

8
>><

>>:

Given: Samples of the node states x(i)t (i = 1, 2, . . . , n; t = 1, 2, . . . , T ).

Goal: Determine the underlying causal network structure,

i.e., find argmin
Â

||�0(A)� Â||0
(3.7)

Sun and Bollt [17], suggest that a practical causation inference method should meet
these three criteria:

1. Model-free: no presumptions should be made about the shape or parameters
of the underlying process model in order for the method to work.
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2. Computationally e�cient: the method should be computationally e�cient.

3. Data e�cient: the method should be able to produce reliable results from a
small sample size.

One such method that meets these requirements is the optimal causation entropy
principle as proven by Sun and Bollt [17], and it is this method that we aim to use
to infer the causal network.

3.2.3 Markov Assumptions

We examine the system within a probabilistic framework, assuming stationarity and
the existence of a continuous distribution. We also make the following assumptions
concerning the conditional distributions p(·|·) that arise from the stationary process
defined by (3.6). For every node i 2 V and time indices t, t0,

8
>>>>>>>>><

>>>>>>>>>:

(1) Temporally Markov:

p(Xt|Xt�1, Xt�2, . . . ) = p(Xt|Xt�1) = p(X 0
t|Xt0�1).

(2) Spatially Markov:

p(X(i)
t |Xt�1) = p(X(i)

t |X(Ni)
t�1 ).

(3) Faithfully Markov:

p(X(i)
t |X(K)

t�1 ) 6= p(X(i)
t |X(L)

t�1) whenever (K \Ni) 6= (L \Ni).

(3.8)

The first condition implies that the underlying dynamics is a time-invariant Markov
process. The second condition ensures that when determining a node’s future state,
information about the past of any other node becomes irrelevant if knowledge of
the past states of all its causal parents Ni (defined in (3.4)) is provided. The third
condition guarantees two things, first that the set of causal parents is unique and
second that each causal parent has an observable e↵ect independently from the
information given by any other causal parent.

3.2.4 Optimal Causation Entropy

We quickly review a few information theory basics before getting to the heart of the
matter: causation entropy, a model-free information-theoretic statistic used to infer
direct causal relationships. [83].

Since we have defined the flow of information from an agent X to another agent Y
as the sharing of information between the future states of Y and the past states of
X that cannot be explained by any other variable in the system, we need to be able
to precisely define the information associated with a variable, as well as the concept
of shared information, to that end we begin by introducing Shannon Entropy.

Shannon entropy is used to quantify the information content of a random variable.
If p(x) denotes the probability that a measurement of a variable X takes a specific
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value x, the uncertainty associated with that variable is defined as its Shannon
entropy,

H(X) ⌘ �
X

x

p(x) log p(x) (3.9)

Now let’s add another random variable Y , where the joint distribution with X
is given by p(x, y). The joint entropy of these variables as it is called is defined
analogous to Eq. (3.9) such that

H(X;Y ) = �
X

y

X

x

p(x; y) log p(x; y) (3.10)

Similarly, define the conditional distribution of Y givenX as p(y|x), which represents
the probability that Y = y given that X = x. Conditional entropy is given by

H(Y |X) = �
X

y

X

x

p(x, y) log p(y|x) (3.11)

=
X

y

X

x

p(x, y) log
p(x)

p(x, y)
(3.12)

The Eqs. (3.9)-(3.12) apply to random variables that take on discrete values, how-
ever similar definitions are present for continuous variables by simply replacing the
summations by the correct integrals; imagine X is a continuous random variable,
we can interpret p(x) as the probability density function of X and use di↵erential
entropy in the following way:

h(X) ⌘ �
Z 1

�1
p(x) log p(x)dx (3.13)

We can similarly define the joint entropy and the conditional entropy between two
variables X and Y in the following way (also see Figure 3.2(a))

8
>>>>>>>><

>>>>>>>>:

Joint entropy: H(X, Y ) ⌘ H(Y,X) ⌘ �
RR

p(x, y) log p(x, y) dxdy.

Conditional entropies:

H(X|Y ) ⌘ �
RR

p(x, y) log p(x|y) dxdy,

H(Y |X) ⌘ �
RR

p(x, y) log p(y|x) dxdy.

(3.14)

For an in-depth review of information theory in the continuum limit a full review
can be found in [91].

Since the Shannon entropy defined in Eq. (3.9) holds the information content of a
random variable, then, the entropy of a pair of random variables or the joint entropy

30



can also be defined as the sum of the entropy of one variable plus the conditional
entropy of the other. That is the famous entropy chain rule [91]

H(X;Y ) = H(X) +H(Y |X) (3.15)

Now introduce another random variable Z, a corollary of Eq. (3.15) states that:

H(X;Y |Z) = H(X|Z) +H(Y |X,Z) (3.16)

One other important measure is Mutual information, an information-theoretic con-
cept that measures the reduction in uncertainty about X given all of the available
information about Y . Mutual information is defined as

I(X;Y ) = H(X)�H(X|Y ) (3.17)

= H(Y )�H(Y |X) (3.18)

When two random variables, X and Y , are considered, the information in X can be
divided into information that belongs only to X and information that is shared with
Y . The mutual information, I(X;Y ), describes the shared information between X
and Y , and is defined as

I(X;Y ) = H(X) +H(Y )�H(X, Y ) (3.19)

where H(X, Y ) represents the entropy of the joint random variable (X, Y ).

Figure 3.2: Visual Representation of Conditional, Mutual, and Causation Entropy
[17]

A visual way of understanding the above is the following (refer to Figure 3.2); con-
ditioning is analogous to removing part of a circle from a Venn diagram, leaving the
remaining part. The conditional entropy of Y givenX, H(Y |X) = H(X, Y )�H(X),
quantifies the uncertainty associated with Y given knowledge about X. Conditional
entropy is crucial for understanding swarm behavior since it allows for finding the
mutual information between two variables that is not present in a third variable.
if we now add another random and discrete variable Z, the so-called conditional
mutual information now defined, of X and Y given Z, is:

31



I(X;Y |Z) = H(X|Z)�H(X|Y, Z) (3.20)

Let me take the time to prove (3.20), starting with the expression for conditional
mutual information

I(X;Y |Z) =
X

x

X

y

X

z

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z)

Apply the properties of logarithms to separate the terms inside the logarithm

I(X;Y |Z) =
X

x

X

y

X

z

p(x, y, z)


� log p(x|z) + log

p(x, y|z)
p(y|z)

�

Using the Bayes’ Rule on the second term in the brackets, we get that

p(x, y|z)
p(y|z) =

p(x, y, z)

p(y, z)
= p(x|y, z)

Distribute the probability term p(x, y, z) among the three logarithms

I(X;Y |Z) = �
X

x

X

z

p(x, z) log p(x|z) +
X

x

X

y

X

z

p(x, y, z) log p(x|y, z)

Recognize the first term as the conditional entropy H(X|Z)

�
X

x

X

z

p(x, z) log p(x|z) = H(X|Z)

Recognize the second term as the negative of conditional entropy H(X|Y, Z)
X

x

X

y

X

z

p(x, y, z) log p(x, y|z) = �H(X|Y, Z)

Combine the terms to obtain

I(X;Y |Z) = H(X|Z)�H(X|Y, Z)

And it becomes evidently clear as well that:

I(X;Y |Z) = H(Y |Z)�H(Y |X,Z)

Given all of that we can now translate Transfer Entropy into a type of conditional
mutual information. If information in X “flows” to Y , then two conditions must be
met
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1. There must be information contained in Y at a future time, say t+ ⌧ , that is
not explained by the state of Y at time t, and

2. This information would be shared by Y at time t + ⌧ and X at time t.
For information to “flow” from X to Y over time ⌧ , it is necessary that
I(X(t);Y (t + ⌧)|Y (t)) > 0. The measure on the LHS is considered as the
Transfer Entropy TX!Y

Transfer Entropy is thus:

TX!Y = I(X(t);Y (t+ ⌧)|Y (t)) (3.21)

= H(Y (t+ ⌧)|Y (t))�H(Y (t+ ⌧)|X(t), Y (t)) (3.22)

Since H(Y (t + ⌧)|Y (t)) measures the uncertainty of Y (t + ⌧) given information
about Y (t) and H(Y (t+ ⌧)|X(t), Y (t)) measures the uncertainty of Y (t+ ⌧) given
information about both X(t) and Y (t) then the transfer entropy TX!Y can be
understood as the decrease in uncertainty regarding the future states of Y when the
present state of X is given alongside that of Y .

However, real networks have more than two nodes. Transfer entropy cannot dis-
tinguish direct and indirect causality in networks without proper conditioning, as
mentioned earlier and as is in fact shown by Sun and Bollt [17], [83] that looked at
dynamic systems involving a number of nodes larger than two, and since transfer en-
tropy disregards additional sources of information it incorrectly identified couplings
between nodes that in fact didn’t exist, at least not directly. In other words, indi-
rect and spurious influences will be interpreted as direct. It’s obvious from Equation
(3.22) that transfer entropy is a pairwise measure, i.e., the contributions to Y (t+ ⌧)
by Y (t) and X(t) are captured, but any additional contribution by a possible third
state Z(t) is not accounted for: introducing the generalization of transfer entropy,
called causation entropy developed in [83] and [17], which will be the defined below
and will be used as the foundational method to uncover causal associations in this
thesis. The connections among entropy, transfer entropy, and causation entropy are
depicted in Figure 3.2(b).

Causation Entropy (CSE) is a quantity designed to detect direct information chan-
nels. Which means that if X, Y , and Z are variables related to three agents, then
the Causation Entropy of X to Y given Z is

CX!Y |Z = I(X(t);Y (t+ ⌧)|Z(t)) (3.23)

= H(Y (t+ ⌧)|Z(t))�H(Y (t+ ⌧)|X(t), Z(t)) (3.24)

In other words, CX!Y |Z is the information shared between X(t) and Y (t + ⌧) that
is not already contained in Z(t). Where Z is a third stationary stochastic process
or collection of states. To obtain a more general definition of causation entropy, let
a set of processes be given by Z. Then, The above value CX!Y |Z can be read as
the causation entropy from X to Y given Z and is always non-negative [17], [83].
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It is clear that by setting Z = Y , Eq. (3.23) becomes the transfer entropy from X
to Y , and thus, the causation entropy can be viewed as a generalization of transfer
entropy, since the conditioning set does not necessarily contain information about
the past of Y. Finally, note that Z can be selected as the empty set resulting in

CX!Y |; = CX!Y (3.25)

= H(Y (t+ ⌧))�H(Y (t+ ⌧)|X(t)) (3.26)

= I(X(t);Y (t+ ⌧)) (3.27)

Which is just the mutual information between Y (t+ ⌧) and X(t).

In this thesis the goal is three fold, we first want to apply causation entropy to
identify causal relations and their strength among a number of swimming agents,
secondly we want to see how this method scales when the number of agents (nodes)
grows and what could be then inferred about causal relationships in self-propelled
agents, are causal relations only local or can we identify long range interactions? Is
the number of causal parents for an agent related to the group size? Is coordination
in larger groups linked to a graph theoretic measure of our recovered causal networks,
and do we see an ease in information flow in larger groups? How can we quantify
leadership, does it arise, if so how long does it persist, and how does all of that
changes as the number of agents grow?

As a result of defining causation entropy (CSE) by using conditioning sets, the
challenge now lies in selecting the appropriate conditioning sets in order to discover
the direct flow of information within a network. In light of this, we will talk about
optimal causation entropy, also known as oCSE, which is an algorithmic method
that successfully learns the fundamental network interaction structure.

The initial conditioning set is used as a foundation for the oCSE, which then adds as
many variables as are required. This stage is known as the discovery phase, and it is
immediately followed by the removal phase, during which redundant elements from
the set are eliminated. Let X = X1, X2, . . . , Xm. Initially, let Z be an empty set,
unless there are prior knowledge on what Z or some of the elements it must contain.
On each iteration, the variable Xi is added to Z if CXi!Y |Z = maxXj /2Z CXj!Y |Z > 0.
The discovery phase ends when no such variable can be found from the remaining
set of variables.

The final set Z might contain redundancies since it’s a set of nodes that communicate
with Y because the value of CXi!Y |Z can be positive due to indirect information
flow from Xi to Y , unless Z contains all other true causal components, but we can’t
be sure, therefore, the removal phase that follows eliminates elements from Z if they
are redundant given other elements in Z. On each iteration, a new member of Z,
Zi, is chosen and removed if and only if CZi!Y |Z\Zi = 0 which means that if the
information provided by any of the other variables in the set Z is enough to explain
Y , then Zi is redundant.

34



Algorithm 1 Aggregative discovery of causal nodes.

1: Input: Set of nodes I ⇢ V
2: Output: K (which will include NI as its subset)
3: Initialize: K  ;, x 1, p ;.
4: while x > 0 do
5: K  K [ {p}
6: for every j 2 (V �K) do
7: xj  Cj!I|K
8: end for
9: x maxj2(V�K) xj, p argmaxj2(V�K) xj

10: end while

Algorithm 2 Progressive removal of noncausal nodes.

1: Input: Sets of nodes I ⇢ V and K ⇢ V
2: Output: cNI (inferred set of causal parents of I)
3: for every j 2 K do
4: if Cj!I|(K�{j}) = 0 then
5: K  K � {j}
6: end if
7: end for
8: cNI  K

Once we have treated all the variables of Z, and removed the redundancies, the
remaining variables in Z are the direct causal parents of Y , which means that
information flows directly from the elements of Z to Y . This assertion was proven
in [17] by Sun and Bollt. The causal parent relationship is written as Xi ! Y . The
set of relationship or direct causal associations Xi ! Xj forms a directed graph
in which the variables are the nodes and links or edges represent the direction of
causality, and the weights are the values of the causation entropy for the remaining
variables after passing the redundancy test.

Having discussed the concept of optimal causation entropy, we can now proceed to
explain how this concept can be employed to derive a network from the given time
series data. In this network, the interactions among the agents are represented by
the causation entropy values. As a result, we can construct an adjacency matrix for
a weighted directed graph, which may not necessarily be symmetric.
This adjacency matrix is composed of the causation entropy values, where each
entry in the matrix represents the causation entropy for the interaction between two
agents, consider the matrix below:

0

BBB@

Cx1!x1|{x} Cx1!x2|{x} · · · Cx1!xN |{x}
Cx2!x1|{x} Cx2!x2|{x} · · · Cx2!xN |{x}

...
...

. . .
...

CxN!x1|{x} CxN!x2|{x} · · · CxN!xN |{x}

1

CCCA
(3.28)
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The matrix displays the causation entropy values for all possible directed interactions
between the agents. Since we will apply method on a sliding window of data, at the
end we will have an evolving adjacency matrix for a weighted directed graph. The
result will look something like the matrix below:

C
x
(1)
1 !x

(1)
1 |{x} · · · C

x
(1)
N !x

(1)
1 |{x}

C
x
(1)
1 !x

(1)
2 |{x} · · · C

x
(1)
N !x

(1)
2 |{x}

...
. . .

...

C
x
(1)
1 !x

(1)
N |{x} · · · C

x
(1)
N !x

(1)
N |{x}

C
x
(2)
1 !x

(2)
1 |{x} · · · C

x
(2)
N !x

(2)
1 |{x}

C
x
(2)
1 !x

(2)
2 |{x} · · · C

x
(2)
N !x

(2)
2 |{x}

...
. . .

...

C
x
(2)
1 !x

(2)
N |{x} · · · C

x
(2)
N !x

(2)
N |{x}

C
x
(N)
1 !x

(N)
1 |{x} · · · C

x
(N)
N !x

(N)
1 |{x}

C
x
(N)
1 !x

(N)
2 |{x} · · · C

x
(N)
N !x

(N)
2 |{x}

...
. . .

...

C
x
(N)
1 !x

(N)
N |{x} · · · C

x
(N)
N !x

(N)
N |{x}

This will enable us to better understand the underlying dynamics of the system and
identify influential agents or important causal relationships, as well as the number
of interacting ”neighbors” on average, check whether causal neighbors are or are not
necessarily spatial neighbors, and how all that changes with group size.

3.2.5 Practical Computational Considerations

Estimating CSE values based on collected data is required for use in practical ap-
plications. Because CSE is expressed as a conditional mutual information, it funda-
mentally necessitates the utilization of a reliable and ”good” estimator for the data
being collected. The development of such estimators is an important computational
and statistical issue that is relevant to a significant portion of the body of research
that has been done. Binning techniques, such as histograms, which estimate the
probability density p(x) by measuring the frequency of data points within a fixed-
size area surrounding the point, are a straightforward way to calculate entropy and
related values. These techniques can be used to calculate entropy and related val-
ues. Although these methods are simple to understand and put into practice, it has
been discovered that they converge slowly. This is especially true for multivariate
data sets, which su↵er from poor scaling with the embedding dimension. Nonpara-
metric estimators that make use of k-nearest neighbor (knn) statistics are capable
of achieving quicker convergence than their parametric counterparts. The core idea
entails arriving at an estimate of the density at a particular location by taking into
account the distance to the k neighbors who are located closest to that location as
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opposed to the neighbors who reside in an area of constant size. A non-parametric
estimator based on that idea is the Kraskov-Strögbauer-Grassberger (KSG) estima-
tor [92] for mutual information is data-e�cient (resolving structures at the small-
est possible scales with k=1), adaptive (providing higher resolution where data is
more abundant), and minimally biased (bias primarily stems from nonuniform den-
sity at the smallest resolved scale, leading to typical systematic errors scaling as
functions of k/N for N points). Here, we make use of an extension of the Kraskov-
Strögbauer-Grassberger (KSG) estimator for mutual information [93]. The details
of this estimator can be found in the Appendix A.

In algorithmic inference, like oCSE, it is important to figure out if the estimated
CSE value CX!Y |Z should be considered strictly positive, since it is unlikely that
we will get 0 exactly when computing. We use a shu✏e test for the null hypothesis
CX!Y |Z = 0 to figure out how to solve this problem [17]. So following the methodol-
ogy outlined in [5] and hypothesized by Sun and Bollt[17], given time series samples
(xt, yt, zt) of a stochastic process (Xt, Yt, Zt), the estimated value of CX!Y |Z should
typically be larger than CX0!Y |Z , where X 0 represents dummy data obtained by
replacing xt with x0

t, where x0
t is a random permutation of the set xt. We consider

CX!Y |Z significant if it is greater than a fraction (1 � ↵) of the values of CX0!Y |Z
after running numerous permutations, and ↵ is a pre-chosen significance level.

Each iteration of oCSE necessitates computing O(n) CSE values, assuming a con-
stant sample size and CSE estimator of choice. The computational complexity of
oCSE for determining the parents of a single node or variable in a network is O(Kn),
where K  n is the total number of iterations. Computational complexity for in-
ferring a sparse network is O(m), where m < n2 is the number of links in the
network, because the value of K typically corresponds to the target node’s degree
[17]. Contrast this with the computational complexity of O(n2(n� 1)k�1/(k � 1)!)
for inferring the entire network using a classical combinatorial-search-based algo-
rithm such as the PC algorithm [90], where k is the maximum degree. Because of
its incremental, non-combinatorial nature, oCSE relies more on the density of links
than the size of the network n to achieve a given inference accuracy level (for a
directed pair).

In summary, the number of data samples required to achieve a given level of inference
accuracy for a specific directed pair is less dependent on the network size n when
using the oCSE algorithm due to its incremental and non-combinatorial nature. The
algorithm relies more on the number of links in the network than on any other single
factor. This is helpful because the algorithm’s complexity scales with the number of
links m rather than the total number of connections n2, allowing for more e↵ective
processing of sparse networks with a large number of nodes, in addition to that
oCSE’s ability to adapt to varying link densities, and use a nonparametric estimator
for conditional mutual information makes it a valuable tool for studying complex
systems.
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Chapter 4

Learning Stochastic Equations
From Data

4.1 Introduction

Di↵erential equations are an essential tool for modeling complex dynamical systems,
which are common in a variety of fields, including ecology [94]. The significance of
space and stochasticity in the system being investigated will determine which type
of di↵erential equations - ordinary, stochastic, or partial - will be employed in the
analysis. Even if the rules or interactions on a smaller scale that make up a complex
system are straightforward, it may still be possible to translate that complexity
into di↵erential equations. To give an example, in the context of an ecological
population, these local regulations may have their origins in processes such as the
birth and death of organisms [95], the movement and interaction of organisms [96],
[97], or the interaction of organisms with their surrounding environment [98], [99].
These micro-level interactions eventually add up to have an e↵ect on the dynamics
of macro-level entities such as groups, populations, or even entire ecosystems [99],
[100]. The incorporation of empirical data into these models, despite the power
and insights o↵ered by such dynamical systems, continues to present a significant
challenge.

Now, in the age of big data, we can track the evolution of biological systems through
time-stamped, high-resolution records[101], [102]. The data capture behaviors at all
levels of biological organization, from cells to animals[102], from groups to entire
populations [97], [103], [104] , and from population sizes to population fitness[105],
[106]. These data sets are paving the way for a more e↵ective integration of models
and data.

In order to capture the dynamics of real-world systems accurately, it is necessary
to treat state variables as stochastic, taking into account both the mean properties
and the inherent randomness cite [98]. The randomness inherent in biological sys-
tems causes unexpected outcomes that do not occur in deterministic systems [100],
[101]. A suitable framework for studying these stochastic dynamics can be found in
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stochastic di↵erential equations (SDEs). The primary objective here is how can we
go from time series data to stochastic di↵erential equations.

Indeed there are many ways, and with the advances in machine learning models on
one hand and numerical methods on the other, it is now possible to do so in ways that
weren’t possible before. Stochastic di↵erential equations can be inferred from time
series data using conventional stochastic calculus techniques, which involve the esti-
mation of jump moments [107]–[109] while more recent techniques employing neural
networks have also been employed for SDE discovery [110]. On the other hand, in
deterministic models, recent advancements in equation learning have enabled the
discovery of simple, interpretable di↵erential equation models from time series data
[23], [111], which permits and motivates a combination of the jump moments and
equation learning. Combining equation learning with jump moments methods is
highly e↵ective as is outline by [22], as it facilitates the extraction of straightfor-
ward and analytical and understable SDE models directly from data [112]–[114].

To accomplish this, we make use of the Python library Pydaddy (Python library for
Data Driven Dynamics) [22], which unifies these various approaches into a single,
cohesive framework. This allows us to conduct our research in a more streamlined
and e↵ective manner.

4.2 SDE Discovery

A one-dimensional stochastic process can be viewed as a mapping that transports a
real time variable t into an appropriate state space that elucidates the random vari-
able x(t) dynamics, which are impacted by random perturbations. A prototypical
stochastic process is represented by the stationary Langevin equation, an illustrative
example of a stochastic di↵erential equation expressed as:

dx(t) = a(x)dt+ b(x)dB(t), (4.1)

where a(x) denotes the drift term, b(x) symbolizes the di↵usion term, and B(t)
is an independent Brownian motion. In cases where the dynamics attributes, i.e.,
a(x) and b(x) are independent of time, these processes are referred to as station-
ary. Stochastic processes can also be characterized by discontinuities, despite the
Langevin equation being continuous in time. A straightforward approach to encom-
passing these discontinuities is by integrating an elementary Lévy process L(t) into
the equation, manipulated by an amplitude h(x) (Applebaum, 2011):

dx(t) = a(x)dt+ b(x)dB(t) + h(x)dL(t). (4.2)

In this extended equation, the interpretation of a(x) and b(x) as drift and di↵usion
still holds. It should be noted that Langevin processes are merely a specific type of
Lévy processes and all such processes are Markovian.
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Stochastic processes can be depicted in terms of evolving random variables, which
adhere to a stochastic di↵erential equation, or through the progression of their con-
ditional probability density function p(x, t|x0, t0), which follows a partial di↵erential
equation. For instance, if a single particle’s movement obeys the Langevin equa-
tion, its probability density function p(x, t|x0, t0) evolves in accordance with the
Fokker–Planck equation, articulated as:

@p(x, t|x0, t0)

@t
= �@D1(x)p(x, t|x0, t0)

@x
+
@2D2(x)p(x, t|x0, t0)

@x2
, (4.3)

considered in the stationary scenario, i.e., no explicit time dependence of the coef-
ficients D1(x) and D2(x), which are directly linked to the drift and di↵usion terms
in the first equation:

D1(x) = a(x), (4.4)

D2(x) =
1

2
b2(x). (4.5)

For discontinuous processes, the Fokker–Planck equation proves inadequate (Risken
and Frank, 1996; Stemler et al., 2007; Gardiner, 2009; Tabar, 2019). Discarding the
continuity condition, the temporal evolution of the conditional probability density
follows the Kramers–Moyal equation:

@p(x, t|x0, t0)

@t
=

1X

m=1

(�1)m@
mDm(x)p(x, t|x0, t0)

@xm
, (4.6)

where Dm(x) symbolizes the mth Kramers–Moyal (KM) coe�cient, defined from
the corresponding conditional moments Mm(x, ⌧) of the variable x and a time-lag
⌧ :

Dm(x) =
1

m!
lim
⌧!0

Mm(x, ⌧)

⌧
=

1

m!
lim
⌧!0

1

⌧
h(x(t+ ⌧)� x(t))m|x(t) = xi, (4.7)

where h·i denotes the expected value. If a stochastic process is ’su�ciently’ contin-
uous, the third and all higher KM coe�cients become null according to Pawula’s
theorem (Pawula, 1967a, b) [115], and the Kramers–Moyal equation simplifies to
the Fokker–Planck equation. Moreover, the Kramers–Moyal equation allows single
particle’s motion to assume di↵erent functional forms that represent di↵erent (dis-
continuous) stochastic processes. Regardless of these variants, the KM coe�cients
can be related to the stochastic process properties in a similar manner as equation
(4.4-4.5)

In practice, an essential aspect of using a description like the Kramers–Moyal equa-
tion is the ability to estimate the coe�cients Dm(x) directly from data. To obtain
the KM coe�cients Dm(x) from a single stochastic process realization, i.e., a sin-
gular time series, we appraise the transition probability densities in the limit of a
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disappearing time step ⌧ ! 0, which numerically corresponds to considering the
minimal increment �t in the data (⌧ ! �t):

Dm(x) ⇡
1

m!

1

�t
h(x(t+�t)� x(t))m|x(t) = xi, (4.8)

through which we estimate the various KM coe�cients directly from the data.

In the below i will follow through the explanation of the Pydaddy paper [22].
The objective is to use the time series data to determine the drift (f) and di↵usion
functions (g2). In particular, we hope to find simple, easily interpretable analytical
expressions that characterize f and g2 quantitatively in addition to qualitatively.
The two-step process, which is laid out in greater depth later in the chapter, is as
follows:

• Using the so-called jump moments or the Kramer-Moyal coe�cients, we first
extract the drift and di↵usion components from the supplied time series data
[109].

• Then, we extract the drift and di↵usion functions and use an approach based
on sparse regression, also known as equation learning, to find interpretable
analytical expressions for these functions [23], [112].

First, we will go over how to find meaningful di↵usion and drift functions. Let’s
pretend x is a d-dimensional state variable and �t is the sampling interval. We can
define the instantaneous drift and di↵usion as functions of t and the instantaneous
value of the state variable x if the time series is generated by the underlying SDE
ẋ = f(x) + g(x) · ⌘:

F̃ (t;x) =
x(t+�t)� x(t)

�t
(4.9)

G̃(t;x) =
(x(t+�t)� x(t))(x(t+�t)� x(t))T

�t
(4.10)

With these instantaneous drift and di↵usion functions F̃ and G̃, we can seek com-
prehensible mathematical expressions for F and G, using the approach we used, as
presented by Brunton et al. [23]

Now, imagine a collection of potential functions {F1, F2, ...Fk}. The Fi might stand
in for monomials up to some degree, or it could also be another appropriate basis
like a Fourier or Chebyshev basis, and if we have some prior knowledge it could also
be problem-specific fundamental functions.

The goal is to express F , the drift function, as a linear combination of a small subset
of these potential expressions. To be more precise, we are looking for coe�cients ⇠i
such that F (x) =

P
⇠iFi(x), where a small subset of the ⇠i’s are nonzero. As will

be seen below, sparse regression is a useful tool for accomplishing this.
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To di↵erentiate between the estimated drift and di↵usion and the real f and g, we
represent them with capital letters F and G. The estimated F is f and the estimated
G is ggT and finding analytical expressions for drift and di↵usion is formulated as a
sparse regression problem. The sparse regression procedure for the drift function in
the scalar case is described in detail. For the di↵usion function, a similar procedure
is used.

If we consider the column vector xT⇥1 containing the state variable x sampled at each
point of time, i.e., xi = x(i�t). T being the total number of observations. Given the
expression for the drift we have in eq. (4.9) we can compute the instantaneous drift
values, so consider �T⇥1 as a column vector containing the instantaneous values
of the drift, i.e., �i = F̃ (i�t). Assuming we have selected a library of functions
{F1, F2, ...Fk} for the drift function, we define a dictionary matrix ⇥T⇥k with the
ith column given by ⇥i = Fi(x). The notation Fi(x) is used as shorthand for
evaluating Fi on each entry of x. The sparse regression problem in terms of � and
⇥ corresponds to finding the sparse vector ⇠ that solves the equation

� = ⇥⇠ (4.11)

Finding a sparse ⇠, requires a procedure called sequentially thresholded least squares
(STLSQ). The execution of this algorithm takes place in several stages: first, a
solution for ⇠ is found using ordinary least-squares. After that, and given a pre-
defined sparsity threshold, all entries of ⇠ smaller than that threshold are set to zero,
which will remove the corresponding columns from ⇥. The process is then repeated
with the remaining terms until no more terms can be removed.

In the STLSQ algorithm, the choice of the sparsity threshold is extremely important,
and it must be made in an appropriate manner in order to guarantee that the correct
models are recovered. In most cases, the selection of the threshold is determined by
an information criterion such as the Akaike Information Criterion (AIC), or by the
accuracy as determined by cross-validation. In this instance, the second method is
utilized, and k-fold cross-validation is utilized for the purpose of model selection.

The idea behind cross-validation is to train a model with only a portion of the
available data (referred to as the training set), and then evaluate the performance
of the model using another set of data (referred to as the validation set). A model
that performs well on the validation set is presumed to not have over-fit on the noise
in the training data and may therefore be more generalizable. This is because good
performance on the validation set measures how well the model predicts unseen data.
Practically, the dataset gets split in k equal chunks. Each model is fit using k � 1
chunks and the remaining chunk as the validation set. The procedure is repeated for
a given model, each time taking one of the chunks of as the validation set, the average
validation error is then calculated for each model. The best model is normally the
one with lowest cross-validation error. However, we also require model parsimony,
and since the model with the lowest cross validation error may not always be the
best, we want to avoid a non-sparse model being chosen. To do that, we sort the
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models by complexity and choose the model with the greatest cross-validation error
reduction.

In conventional approaches the drift and di↵usion are both computed as functions
of x using the respective conditional moments. However, in contrast to those, the
precision of the estimated functions F and G does not depend on the sampling
interval �t when using the Pydaddy approach. Both the requirement to subsample
the time series and the elimination of the bin-width parameter from the estimation
procedure are brought to an end as a result of this. This method, which combines
sparse regression with the instantaneous drift and di↵usion, enables us to do away
with two arbitrary parameter choices that were previously involved in the estimation
procedure. These choices were the bin width and the subsampling time scale. In
contrast to this, the traditional methods necessitate the selection of the value of �t
that is most suitable.
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Chapter 5

Results

5.1 Analysis of Fish Data

We begin with time series data of groups of fish, for each fish in any group, we
have its x(t) and its y(t). Our data consists of 5 groups of fish containing 4, 10,
60, 80 and 100 individuals, respectively. The first thing we will do is take a look
at basic trajectory analysis and collective behavior analysis to get a sense of what
our systems look like and how they behave, especially since we are not interested in
comparing the behavior of di↵erent group sizes.

5.1.1 Trajectories

Our fish are swimming freely in a shallow tank with a radius of approximately 25
fish body lengths. The details of the zebrafish rearing, handling, and experimental
set-up are found in [18], The figure below shows the trajectory covered by the group
of four fish at di↵erent time steps.

Figure 5.1: Covered trajectories for the group of four fish at di↵erent time instances

It is easy to infer from graph 5.1 that the fish tend to swim in circles at the edge
of the tank, which prompts us to take a look at the spatial distribution of the fish
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within the tank. This is achieved by using the method of Gaussian Kernel Density
Estimation (KDE), refer to Appendix B for more details.

Each fish’s positions are used to compute a 2-dimensional Gaussian KDE, which
e↵ectively gives us a smoothed, continuous approximation of the distribution of the
fish’s positions. This allows us to identify areas of the tank where the fish tends to
spend most of its time (high density) and areas where it rarely goes (low density).

The resulting KDEs are then visualized as heat maps, with color indicating the
estimated density of positions. All heat maps share the same color scale, which
facilitates the comparison of spatial distributions between di↵erent fish. Refer to
the below for the results:

Figure 5.2: Positions heatmap with Gaussian KDE for four fish system

We clearly see how the fish spend most of their time on the periphery of the tank,
in addition to that we see no clear distinction between the behavior of any one of
the fish, in other words any fish could be substituted for another over long periods
of time, this will be rendered clearer when we now look at the distributions of the
speeds and acceleration.

5.1.2 Speeds and Accelerations

Following the spatial analysis, we now turn our attention to the study of the dy-
namic behavior of the fish, specifically their speeds and accelerations. Speeds and
accelerations are fundamental quantities in the study of motion and provide critical
insights into the overall dynamics of the system.

We are particularly interested in examining the distributions of these quantities.
Distributions, essentially, tell us about the statistical properties of our measure-
ments: where the bulk of the values lie (central tendency), how spread out they are
(variability), and what range of values they take on (extremes). In the case of our
fish, examining the distributions of speed and acceleration could reveal typical or
average behavior, variations, and possible extremes.

Importantly, we compare these distributions across di↵erent fish. This is an es-
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sential step as it allows us to investigate whether individual fish behave similarly
or distinctly when it comes to their speed and acceleration. Identifying common
patterns across multiple individuals can suggest shared behavioral characteristics or
responses to the environment.

Moreover, we consider the aggregated distribution of speeds and accelerations from
all fish combined. This provides a holistic view of the dynamics of the entire group,
going beyond individual behaviors. Comparing this total distribution with those of
individual fish allows us to assess whether the group behavior is merely an average
of individual behaviors or if there are emergent properties at the group level.

Figure 5.3: Speed PDF for the four fish system

Figure 5.4: Acceleration PDF for the four fish system

Figure 5.5: Distance to Center PDF for the four fish system

A significant observation emerges: there is no discernible distinction between the
distributions of speeds and accelerations among individual fish, nor is there a dis-
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tinction between an individual’s distribution and the aggregate distribution of all
fish combined as will be seen below.

This result is particularly noteworthy as it implies a high level of homogeneity in
the dynamics of individual fish within the group, as well as a strong correspondence
between individual and group behaviors. Essentially, this suggests that each fish is
moving with similar speed and acceleration patterns as its peers, and that the overall
group movement is well-represented by the movement of any single individual.

5.1.3 Comparison Between The Five Groups

We’ve looked at the system of four fish so far, it’s now worthwhile to look at the
distribution from the the di↵erent group sizes for the speeds and acceleration, we
show below the mentioned distributions for all the fish for each of the group sizes.

(a) Speed PDF: 4 fish (b) Speed PDF: 10 fish

(c) Speed PDF: 60 fish (d) Speed PDF: 80 fish
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(a) Speed PDF: 100 fish

Figure 5.7: Distribution for the Speeds of the fish in the di↵erent systems

And the same thing for the accelerations:

(a) Acc. PDF: 4 fish (b) Acc. PDF: 10 fish

(c) Acc. PDF: 60 fish (d) Acc. PDF: 80 fish
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(a) Acc. PDF: 100 fish

Figure 5.9: Distribution for the Acceleration of the fish in the di↵erent systems

From the above plots, we see that the distributions of the speeds and accelerations is
very much the same for all individuals as well as the aggregate speed and aggregate
acceleration for all the agents, regardless of group size. Of course we see that as the
group size is large there exists some di↵erences in the distribution since they don’t
overlap the same way they do for smaller group size, however there’s no reason to
believe that this is due to any actual significant di↵erence between the individual
and purely due to the limited length of the time series being studied, especially that
the tank will tend to get crowded as the group gets larger, which means that during
the period when the system is studied some individuals will not be able to explore
all possible speeds and acceleration the same way that the 4 fish freely swimming
did. It is however clear that there’s a tendency for the average speed, or the most
frequent speed, as well as the acceleration to move to the left as the group size grows,
this is to be expected since density and speed are inversely proportional, to that end
we look at the aggregate distribution of the speeds and velocity as a function of
group size:
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Figure 5.10: Comparison of Speed PDF for all groups
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Figure 5.11: Comparison of Acceleration PDF for all groups

The tendency of the peak to move to the left as the group size increases is now
clearer, for both speed and acceleration, we track that peak as a function of group
size in the below:
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(a) Peak speed vs group size (b) Peak acceleration vs group size

Figure 5.12: Values of the most frequent speeds and accelerations as a function of
group size

And below are their corresponding fits on a log-log plot, since we suppose the ten-
dency to be somewhat of a decreasing exponential for both:

(a) Best fit: Peak speed vs group size (b) Best fit: Peak Acc. vs group size

Figure 5.13: Best fits for the most frequent speeds and accelerations vs group size

We infer the relationships between peak velocity (vpeak), peak acceleration (apeak)
and group size (N) from our data, albeit cautiously given the limited number of
data points.

Assuming a power-law relationship between peak velocity (vpeak), peak acceleration
(apeak) and group size (N), we propose initial relationships of the forms:
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vpeak = aN�⌫ (5.1)

apeak = bN�µ (5.2)

where a and b are proportionality constants and ⌫ and µ are the exponents of the
power law.
To make the estimation of these parameters more manageable, we transform our
data and the relationships by taking the natural logarithm of both sides. This
yields the linear equations:

log(vpeak) = �⌫ log(N) + log(a) (5.3)

log(apeak) = �µ log(N) + log(b) (5.4)

In these linear forms, we proceed with a least-squares fitting approach. Upon obtain-
ing the best fit lines, the slopes provide the values of ⌫ and µ, while the y-intercepts
correspond to log(a) and log(b).
From our data analysis, we derived the following relationships:

log(vpeak) = �0.45 log(N) + log(7.5) (5.5)

log(apeak) = �0.5 log(N) + log(15.3) (5.6)

Converting these back to their original forms gives:

vpeak = 7.5N�0.45 (5.7)

apeak = 15.3N�0.5 (5.8)

These final expressions represent the power-law relationships between peak velocity,
peak acceleration, and group size observed from our data.

5.1.4 Calculation of Order Parameters

The order parameters of interest in this study were the rotation order parameter
and the polarization order parameter. These parameters were calculated using the
time-dependent positions xi(t) and yi(t) for each fish i. The methods of calculating
these order parameters are detailed below.

Rotation Order Parameter
The rotation order parameter quantifies the coordinated rotation of the fish about a
central point. The process of calculating the rotation order parameter involves the
following steps:
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1. Calculation of Displacement: for each fish i, the displacement ~di(t) from
the center of mass is calculated. If the center is a fixed point (xc, yc), this in-
volves subtracting the center coordinates from the fish’s position, i.e. ~di(t) =
(xi(t)�xc, yi(t)�yc). If the center’s position varies with time, the correspond-
ing center position at time t is subtracted, i.e., ~di(t) = (xi(t) � xc(t), yi(t) �
yc(t)). In our case the center of mass position varies with time.

2. Calculation of Angular Momentum: The 2D cross product of the velocity
~vi(t) of each fish and its displacement vector ~di(t) is calculated. This gives
the scalar angular momentum Li(t) of each fish relative to the center, i.e.,
Li(t) = ~vi(t)⇥ ~di(t).

3. Summation of Angular Momenta: The angular momenta of all fish are
summed to give the total angular momentum Ltotal(t) at each time point t,
i.e., Ltotal(t) =

P
i Li(t).

4. Average Angular Momentum: The average angular momentum per fish,
also known as the rotation order parameter, is obtained by dividing the total
angular momentum by the number of fish N , i.e., OProtation(t) =

1
NLtotal(t).

Polarization Order Parameter
The polarization order parameter characterizes the degree to which the fish are
moving in the same direction. It is calculated as follows:

1. Velocity Calculation: The velocities ~vi(t) of the fish are computed by taking
the di↵erence between their positions at consecutive time points, i.e., ~vi(t) =
(xi(t+ 1)� xi(t), yi(t+ 1)� yi(t)).

2. Velocity Normalization: Each velocity vector is normalized to a unit vector,
i.e., v̂i(t) =

~vi(t)
|~vi(t)| , where |~vi(t)| is the magnitude of ~vi(t).

3. Summation of Normalized Velocities: The normalized velocities are summed
to obtain the resultant vector ~R(t) for each time point t, i.e., ~R(t) =

P
i v̂i(t).

4. Polarization Order Parameter: The polarization order parameter is com-
puted by dividing the magnitude of the resultant vector by the number of fish

N , i.e., OPpolarization(t) =
|~R(t)|
N .

Here are the results for the di↵erent group sizes:
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Figure 5.14: Order Parameters for the 4 fish group, time in seconds

Figure 5.15: Order Parameters for the 10 fish group, time in seconds
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Figure 5.16: Order Parameters for the 60 fish group, time in seconds

Figure 5.17: Order Parameters for the 80 fish group, time in seconds
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Figure 5.18: Order Parameters for the 100 fish group, time in seconds

Through our examination of the Polarization and Rotation order parameters across
di↵erent fish group sizes, an intriguing interplay becomes evident as we transition
from smaller groups of 4 fish to larger groups of 100 fish.
The Polarization order parameter measures the alignment of the fish group in their
direction of movement. A high value indicates that the group members are moving
coherently in the same direction, whereas a low value suggests random, uncoor-
dinated movement. On the other hand, the Rotation order parameter provides a
measure of the coordinated rotational movement around a group center. A posi-
tive value indicates a counterclockwise rotational motion, a negative value implies a
clockwise motion, and a value close to zero represents a lack of coordinated rotational
movement.

In smaller groups, such as those of 4 and 10 fish, we observed that the Rotation
order parameter fluctuates around zero. This suggests that in these smaller groups,
rotational motion around a common center is less prevalent, and any rotational
behavior that does occur is more likely to be a random occurrence rather than a
coordinated group movement. This observation aligns with the theory that smaller
groups may lack the necessary structure to form a consistent vortex-like pattern, a
behavior that would contribute to a non-zero Rotation order parameter.

As we move to larger group sizes, the Rotation order parameter shows a tendency
to stabilize at either -10 or 10 (BL2/s), indicating a consistent clockwise or coun-
terclockwise rotation of the fish around the group’s center of mass. This pattern
can be attributed to the increased complexity of the larger groups’ dynamics. More
specifically, in larger groups, fish have more potential neighbors influencing their
movement, leading to emergent rotational behaviors as they strive to align them-
selves with the nearest neighbors. This coherent rotational motion is a form of
collective behavior often seen in larger animal groups, including fish schools and
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bird flocks.

The Polarization order parameter, in contrast, does not show a clear trend with
increasing group size. This is likely due to the interplay between alignment and
rotational behaviors. In larger groups, despite the potential for increased alignment
(higher Polarization), the emergent rotational behavior (indicated by the Rotation
order parameter) can cause group members to have di↵ering instantaneous directions
even though they are following the same overall circular path. This can decrease the
Polarization value, removing the expected positive correlation between Polarization
and group size.

To quantify things further, and since there seems to be a tendency to persist in a
certain state as groups get larger, we thought it would be interesting to look at the
decay time of the auto-correlation functions of both the rotation and polarization
order parameter, to do so we obtain the auto-correlation function and fit to it a
decaying exponential of the for ae�bx + c and considered the decay time to be the
time it takes for this exponential to drop by 1/e of it’s maximum/initial value, below
we summarize our findings and compare the di↵erent decay times for the di↵erent
group sizes:

Figure 5.19: Auto-correlation function and exponential fit of order parameters for
the group of 4 fish
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Figure 5.20: Auto-correlation function and exponential fit of order parameters for
the group of 10 fish

Figure 5.21: Auto-correlation function and exponential fit of order parameters for
the group of 60 fish
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Figure 5.22: Auto-correlation function and exponential fit of order parameters for
the group of 80 fish

Figure 5.23: Auto-correlation function and exponential fit of order parameters for
the group of 100 fish

And here’s a summary of the decay rates, we notice clearly a tendency to persist in
rotational motion much more than polarization, by the nature of the circular tank
and the behavior of these types of active systems:
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Figure 5.24: Comparison in the decay rates of the order parameters for all group
sizes

In summary, our observations highlight the intricate balance and interplay between
di↵erent forms of collective behavior, specifically alignment and rotation, in fish
schools of varying sizes. Understanding these dynamics is key to understanding
the complexities of group behavior and has potential implications in various fields,
including the study of biological systems, robotics, and crowd control.

5.2 Causation Entropy and Network Recovery

While over long periods it seems that no fish can be distinguished from another, we
want to explore whether that holds true for shorter time scales, and we are especially
interested in the information flow among the agents during the short time periods.

To that end, we aim to use the Optimal Causation Entropy Principle (oCSE) to
recover temporally evolving directed causal network structures for three groups of
fish, size 4, 10 and 60 due to computational limitations while performing the recov-
ery on the larger groups of 80 and 100. We believe the group of 60 fish is fairly
representative of of the behavior of dense fish systems given all previous analysis of
the behavior of the order parameters in the large groups (60, 80 and 100).

Employing the oCSE algorithm explained in its respective section give us three series
of directed, temporally evolving, networks where the weight of the links represents
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the value of the Causation Entropy (i.e the Causality Strength for our purposes),
in the following, we use the acceleration time series for two reasons: first because
it represents in active matter what’s called ”social force”, and because it shows the
least autocorrelation, we then set the time steps ⌧ = 5, i.e 5 time steps since we find
that the average cross-correlation maximum lag to be at 5 time steps (0.16s), we
also run 500 trials per hypothesis test, we chose hypothesis tests with significance
level ↵ = 0.1 in both the aggregation and removal phases of the oCSE algorithm,
and K=4 as the KSG estimator parameter, a very small value picks up too much
noise, and a very high value will smooth out a lot of important information.

The goal of that analysis is two-fold:

1. First, we’re interested in understanding the information transfers at the fish
level, in other words understanding if there are prominent/persistent leader
fish in any group size, how long does a leader’s term last, etc. And knowing how
many individuals does each fish influence on average and how many individuals
does a fish keep track of on average.

2. Second, we’re interested in making use of graph theory and network analysis
tools in order to understand information flow on a macro level, hoping that
this will give us insight into why larger group sizes seem better coordinated
and have longer ”memory” times as compared with smaller groups for their
rotation and polarization order parameters.

5.2.1 Causal Parents Evolution

Now that we have the networks, we begin by looking at the evolution of the causal
parents for random nodes (fish) in our system, to show how fish in larger group sizes
tend to longer bonds than those in the smaller systems:
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Figure 5.25: Evolution of the Causal Parents for a fish in group 4

Figure 5.26: Evolution of the Causal Parents for a fish in group 10
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Figure 5.27: Evolution of the Causal Parents for a fish in group 60

It seems from the graphs above that the group of 60 might exhibit formations of
causal bonds for longer times than the other two groups, with the group of 10 fish
showing the least amount of long term bonds, one reason could be that in the group
of 4 fish some causal pairs might appear for some time and tend to persist until
another fish comes and knocks out the causal pair, while in the system of 10 it’s
much more likely for the whizzing fish to keep knocking out causal pairs. Until the
density is high enough for some causal stability to arise.

Now we look at the causal networks build over the real space, the way we do that is
by considering the average position of each fish during the time-series window upon
which we built the causal network, which is 150 frames. And since we know that
the average might not be enough information of how that fish moved and could be
a misleading representation we show circles centered at the average position of each
fish with a radius equal to the standard deviation of the position vector.
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Figure 5.28: Causality network for group 4, where the arrows show the directed
causal links, and the red circles have a radius equal to one standard deviation of the
position vector of the time window used to build the network
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Figure 5.29: Causality network for group 10, where the arrows show the directed
causal links, and the red circles have a radius equal to one standard deviation of the
position vector of the time window used to build the network
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Figure 5.30: Causality network for group 60, where the arrows show the directed
causal links, and the red circles have a radius equal to one standard deviation of the
position vector of the time window used to build the network

5.2.2 Leadership and Influence

Next, since we have temporally evolving networks that tell us how each fish is
interacting with it’s neighbors as a function of time, we go back to our original
questions: does leadership arise? how to quantify it? and how does it change as a
function of group size?

To that end we define a ”leadership” time series, which is simply the sum of the
causal outflow from a fish at any time instant, it’s an intuitive measure of leadership.
In network science lingo that is called the ”Weighted Out-Degree”, the sum of the
weights of the links leaving a node. We define as well the ”followership” time series,
simply as the the sum of the causal inflow onto a node. Put simply, the node with
the highest out-degree is the leader.
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Figure 5.31: In degree time-series for each fish in the group 4, i.e followership time-
series

Figure 5.32: Out degree time-series for each fish in the group 4, i.e leadership time-
series

Now we look at leadership from another perspective, while out definition of lead-
ership as the total causal outflow from a link is quite intuitive, it’s worth making
use of a network science concept called betweenness centrality to look at leadership
from another perspective. In the study of network science, betweenness centrality
is a measure of a node’s centrality, or importance, in a network. It quantifies the
number of times a node acts as a bridge along the shortest path between two other
nodes.

Formally, the betweenness centrality CB(v) of a node v is given by the expression:

CB(v) =
X

s 6=v 6=t

�st(v)

�st
(5.9)

where �st is the total number of shortest paths from node s to node t and �st(v) is
the number of those paths that pass through v.

In the context of our zebrafish group, nodes represent individual fish and edges
represent interactions between them. Importantly, in our network, ’distance’ is not
spatial but is instead defined in terms of inverse causal strength. Hence, a ’shorter’
path in this network represents a path of stronger causal interaction. Therefore, a
fish with high betweenness centrality may not directly influence many other fish but
plays a critical role in the network due to its position along paths of strong causal
interaction.

68



Figure 5.33: Betweenness Centrality time-series for each fish in the group 4

Below are the results for the group 10 and group 60:

Figure 5.34: In degree time-series for each fish in the group 10, i.e followership time-
series

Figure 5.35: Out degree time-series for each fish in the group 10, i.e leadership time-
series

Figure 5.36: Betweenness Centrality time-series for each fish in the group 10

Clearly the noise hides most of the details, so for visual purposes we show the same
results but with a moving average of window 15 steps. And we show directly the
results of the group 60 with a moving average.
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Group 10:

Figure 5.37: Moving Average: In degree time-series for each fish in the group 10, i.e
followership time-series

Figure 5.38: Moving Average: Out degree time-series for each fish in the group 10,
i.e leadership time-series

Figure 5.39: Moving Average: Betweenness Centrality time-series for each fish in
the group 10

Group 60:

Figure 5.40: Moving Average: In degree time-series for each fish in the group 60, i.e
followership time-series
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Figure 5.41: Moving Average: Out degree time-series for each fish in the group 60,
i.e leadership time-series

Figure 5.42: Moving Average: Betweenness Centrality time-series for each fish in
the group 60

5.2.3 Coups and Regime Stability

In the following we will make use of these time-series in two ways, first we will look
at evolution of the leader with time and see how that compares for di↵erent group
size, we will also see how many leadership changes (Coups) happen to know how
volatile these system are, and what is the average term that a leader serves before
another takes his place. The leader was simply defined at the node with the highest
causal outflow for each network.

The below graphs show a white bar marking the leader at each time step:
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Figure 5.43: Evolution of the leader in group 4

Figure 5.44: Evolution of the leader in group 10
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Figure 5.45: Evolution of the leader in group 60

The above show that the group of 60 fish, exhibit more stability in leadership than
do groups 4 and 10, while 10 showing the most instability, which ties very well with
the conclusions from figures 5.25,5.26,5.27.

The below table summarizes additional findings from the above plots:

Table 5.1: Summary of the Political Landscape of The Di↵erent Group Sizes

Group Size Number of Coups Avg. Term (s) Longest Term(s)
4 327 0.082 1.156
10 545 0.049 0.375
60 241 0.11 1.313

For a more in depth analysis we take a look at the decay times of the autocorrelation
functions for the in-degree, out-degree and betweenness centrality for each of the fish
in each of the group sizes. To do so we obtain for each group size, the autocorrelation
function for all of the mentioned time series, then we fit an exponential to them of
shape ae�b+ c and we record the decay time as the time step when the value of that
function falls below 0.37 of it’s maximum value. We show a few of these plots for
reference, and then summarize the findings.

Here are examples of the decay time calculation:
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Figure 5.46: Example of Autocorrelation Functions and Decay Time Calculation by
Exponential Curve Fitting

Below is a close up, to see the above fits on the first 50 frames, since the rest after
that is considered as noise:
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Figure 5.47: Close up Example of Autocorrelation Functions and Decay Time Cal-
culation by Exponential Curve Fitting

We can now look at the decay time values for the di↵erent fish in each of the systems
for the three types of time-series:

Figure 5.48: Values of the decay time for the In-Degree time series in the group of 4
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Figure 5.49: Values of the decay time for the Out-Degree time series in the group
of 4

Figure 5.50: Values of the decay time for the Betweenness Centrality time series in
the group of 4
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Figure 5.51: Values of the decay time for the In-Degree time series in the group of
10

Figure 5.52: Values of the decay time for the Out-Degree time series in the group
of 10
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Figure 5.53: Values of the decay time for the Betweenness Centrality time series in
the group of 10

Figure 5.54: Values of the decay time for the In-Degree time series in the group of
60
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Figure 5.55: Values of the decay time for the Out-Degree time series in the group
of 60

Figure 5.56: Values of the decay time for the Betweenness Centrality time series in
the group of 60

To conclude this part of the analysis we take a look at the distributions of these
decay values per group size:
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Figure 5.57: Distribution of the In-Degree decay times across the group sizes

Figure 5.58: Distribution of the Out-Degree decay times across the group sizes
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Figure 5.59: Distribution of the Betweenness decay times across the group sizes

One final part of the analysis on the autocorrelation functions of these metrics,
consists of looking at the average autocorrelation function for in-degree, the out-
degree, and the betweenness centrality time series. This is simply done by obtaining
the autocorrelation function in each system for each individual fish, then taking the
averages of these and computing the decay rate in the same way we’ve done at the
beginning of this section. Below is an example of the fits, and three bar chart plots
showing the values of the decay rates of the average autocorrelation functions for
the three groups:
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Figure 5.60: Example Showing the average autocorrelation functions and their cor-
responding fits and decay rates

And below are the values of the decay rates of the average autocorrelation function
for each of these groups:
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Figure 5.61: Decay times for the average autocorrelation function of the in-degree
time series

Figure 5.62: Decay times for the average autocorrelation function of the out-degree
time series
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Figure 5.63: Decay times for the average autocorrelation function of the betweenness
centrality time series

5.2.4 Communication E�ciency and Information Flows

In this final analysis on the causal networks, we take a look at three interesting mea-
sures: the average number of causal neighbors in each group, the average clustering
coe�cient which measures how causally tied of system is, and the global e�ciency
of the network, which measurse how easily information can be communicated in a
network. The last two are graph theoretic tools which we use in our context to get
insight as to why the larger groups seem to be more able to persist in rotational
and/or orientational patterns as highlighted in the decay rates of the polarization
and the rotation order paramaters in fig. 5.22.

Here are the results for the average number of causal neighbors in time:
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Figure 5.64: Average number of Causal Neighbors across the di↵erent group sizes

The average clustering coe�cient and the global e�ency of each system across in
time:

Figure 5.65: Average Clustering Coe�cient across the di↵erent group sizes

85



Figure 5.66: Average Global E�ciency across the di↵erent group sizes

Noticing the clear di↵erence in the variability of the distribution in these di↵er-
ent time series we show below the violin plot of the distribution for the Average
Clustering Coe�cient and of the Global E�ciency across the three groups:

Figure 5.67: Violin plot of the Average Clustering Coe�cient Across the Three
Groups
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Figure 5.68: Violin plot of the Average Global E�ciency Across the Three Groups

Below is a summary of the findings:

Table 5.2: Average Number of Causal Neighbors (CN), Clustering Coe�ent (CC) ,
And Global E�ciency (GE)

Group Size Avg. CN number Avg. CC Avg. GE
4 0.44 0.033 0.331
10 1.55 0.158 0.561
60 4.75 0.203 0.680

Based on what we have learned so far, we think that the increased memory times for
the time series of the order parameter, or just the increased level of coordination in
the groups of zebrafish as the density goes up, has something to do with the causal
topology of the shoal becoming less variable and more consistent; while the Global
E�ciency of the group of 60 has an average that is slightly higher than that of the
group 4 and 10, it’s evident that the variance of it is much smaller than that of the
other groups, indicating an interplay between the consistency of the causal structure
and heightened levels of sustained coordination.

5.3 Reconstruction of Stochastic Di↵erential Equations

5.3.1 SDE Estimation for the Rotation Order Parameter

We begin with the four fish system following the methodology described above, and
ensuring that all diagnosis tests are done to understand when our estimations might
fail.
Below are the part of the time series for the Rotation Order Parameter, the bin-
averaged values for the drift and di↵usion, the distribution of the time series and
the auto correlation function.
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Figure 5.69: Time series of the Rotation OP, the scatter plot of the drift and di↵u-
sion, the distribution of the values of the time series and the autocorrelation function

Using Sparse Regression we fit for analytical expressions of the drift and the di↵usion
and obtain the following equations.
The drift:

F = (0.102± 0.033) + (�0.692± 0.061)x BL2/s2 (5.10)

And the di↵usion:

G = (0.326± 0.022) + (0.448± 0.048)x2 BL4/s3 (5.11)

Where x represents the Rotation OP. Below are the fits for the drift and the di↵usion:

88



Figure 5.70: Drift and di↵usion fits obtained by Sparse Regression

And in order to check the accuracy of the fit, we take a look at the distribution of the
data compared with the distribution of 20 simulated time series from the stochastic
equation that we recovered, and we see a very interesting match:

Figure 5.71: Comparison of the distributions of the original time series and the
recovered time series from simulations of the recovered Stochastic Di↵erential Equa-
tion

Below I will summarize the equations obtained from the di↵erent groups for the
Rotation Order Parameter denoted as R, along with their histogram distributions.
Note: When the errors-bars on the coe�cients create overlapping intervals we com-
bine the terms (by replacing them with their average):
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Table 5.3: Summary of Derived Stochastic Di↵erential Equations for the Rotation
Order Parameter

Group Size Equation

4 Ṙ = 0.1� 0.7R +
p
0.39(1 +R2)⌘(t)

10 Ṙ = �0.25R +
p
1.6 + 0.05R2⌘(t)

60 Ṙ = 1.5(sin(0.25R) + sin(0.125R) +
p
1 + cos(0.125R)⌘(t)

Moreover, we analyzed the distributions of these groups’ rotation order parameters.
Histograms representing these distributions are shown in the following figure:

Figure 5.72: Distribution of Rotation Order Parameters of Original and Re-
estimated time-series

(a) Group Size: 4 (b) Group Size: 10

(c) Group Size: 60

Analysis of Smaller Groups

Combining the obtained equations with the decay time obtained in section 5.1 we
notice the following:

For smaller group sizes (4 and 10), the rotation order parameter oscillates around
zero. This behavior is reflected in the SDEs, where the deterministic part contains
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negative terms proportional to R (-0.7R for group size 4 and -0.25R for group size
10). The negative R term in the deterministic part of the SDEs acts as a damping
force, driving the system back to zero whenever it deviates. This indicates a lack
of long-term coordination among the fish in smaller groups, as the rotation order
parameter does not maintain a constant value but instead tends to return to zero.

The noise term ⌘(t) in these equations is amplified by a term under the square root
that increases with the square of R. This implies that the stochastic forces increase
as the system deviates further from equilibrium (R=0). Thus, larger deviations
from the mean value are associated with larger uncertainties. This contributes to a
feedback mechanism that promotes the system’s return to zero.

This behavior is confirmed by the calculated memory times for these groups, which
are relatively short (1.4375s for group size 4 and 1.90625s for group size 10). This
shows that the rotation order parameter quickly forgets its past values, consistent
with the oscillatory behavior around zero.

Analysis of Larger Groups

In contrast, large groups exhibit distinct dynamics. The rotation order parameter in
these groups tends to stabilize around certain values for extended periods, indicating
a higher level of coordination among the fish. This is reflected in the significantly
longer memory times of 25.75s, 34.1875s, and 38.875s for group sizes 60, 80, and
100, respectively.

The SDE for the 60 groups involves trigonometric functions, which suggest complex,
oscillatory behavior. These equations imply a balance between forces that encourage
the rotation order parameter to oscillate and forces that stabilize the parameter
around certain values.

The noise term ⌘(t) in that SDE is modulated by a combination of constant and
trigonometric terms under a square root. This suggests that the influence of stochas-
tic forces on the system dynamics varies in a more complex manner compared to the
smaller groups. This may be interpreted as a reflection of the increased complexity
of interactions and coordination within larger groups of fish.

Our analysis reveals distinct di↵erences in the dynamics of the rotation order param-
eter across di↵erent group sizes. Smaller groups exhibit a tendency for the rotation
order parameter to fluctuate around zero, and larger deviations from zero lead to
stronger stochastic forces that push the system back to zero. Larger groups, in con-
trast, show a stabilization of the rotation order parameter around certain values,
indicative of sustained coordinated behavior.
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5.3.2 Coupled SDE Estimation for the Polarization Vector Order Pa-

rameters

In the previous sections, we have investigated several aspects of the polarization
phenomena. Now, we will focus our attention on the polarization vector, more
specifically, the Polarization Vector Order parameter M(Mx,My). The polarization
vector,M(t), represents the overall direction and degree of alignment of the velocities
in our system. It is computed as follows: Let ri(t) represent the position of the ith

fish at time t. Then, the velocity, vi(t), of the ith fish is computed as:

vi(t) = ri(t+ 1)� ri(t) (5.12)

for each fish i and time point t. After obtaining the velocities, we normalize each
velocity vector to obtain a unit vector. The normalized velocity v̂i(t) is given by:

v̂i(t) =
vi(t)

kvi(t)k
(5.13)

where k · k denotes the Euclidean norm. Next, we sum all the normalized velocity
vectors at each time point to get a single vector known as the ”polarization vector”
M(t):

M(t) =
1

N

NX

i

v̂i(t) (5.14)

where the sum is over all fish i at a specific time point t. The group polarization
vector, M(t) = (Mx,My), encapsulates the overall direction and degree of alignment
of the velocities of the group at each time point. And the goal of this section is
to obtain an equation of the form: Our goal in this subsection is to recover the
Stochastic Di↵erential Equations (SDEs) that govern the evolution of this order
parameter. The equation we aim to derive has the following form:

✓
dMx(t)
dMy(t)

◆
=

✓
F1

F2

◆
dt+

✓
g1,1 g1,2
g2,1 g2,2

◆✓
dw1

dw2

◆
, (5.15)

where the first term on the right-hand side represents the drift, and the second term
corresponds to the di↵usion (along with the o↵-diagonal cross-di↵usion terms). And
here are the results:
First for the group of four fish:
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Figure 5.73: Time series of the group polarization vector components, the scatter
plot of the drift and di↵usion, the distribution of the values of the time series and
the autocorrelation function

And here are the best fit surfaces for the drift and the di↵usion, extending the work
done in 1D in fig. 5.24 to two dimensions:
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Figure 5.74: Drift and Di↵usion fits obtained by Sparse Regression in the 2D case,
neglecting the cross di↵usion terms

In the above, the fits for the di↵usion XY and di↵usion YX (the cross di↵usion
terms) are neglected since the best fits for them are practically 0. The obtained
equations for the drift and the di↵usion are the following:
First for the drift components:

F1 = (�0.125± 0.023)Mx + (0.256± 0.024)My (5.16)

F2 = (�0.247± 0.024)Mx + (�0.146± 0.025)My (5.17)
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And for the di↵usion:

G11 = (0.302± 0.011) + (�0.295± 0.014)Mx
2 + (�0.281± 0.014)My

2 (5.18)

G22 = (0.324± 0.012) + (�0.261± 0.015)Mx
2 + (�0.329± 0.015)My

2 (5.19)

G12 = 0 (5.20)

G21 = 0 (5.21)

The stochastic equation for the group polarization vector is therefore:

ṁ =

✓
�0.125 0.256
�0.247 �0.146

◆
m+

p
0.3 (1� |m|2) · ⌘(t) (5.22)

Here are the results of the simulated distribution of this equation in comparison
with the original distributions of |m| as well as the comparison of their respective
auto-correlation functions. We also show the simulation of the mx in comparison
with the original. We look at mx alone only to avoid crowdedness in the comparison
plot.

Figure 5.75: Comparison between the original and re-estimated distributions for |m|
as well as the auto-correlation functions of each
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Figure 5.76: Simulated Mx time series versus the original Mx for the four fish group

Below I will summarize the equations obtained from the di↵erent groups for the
group Polarization Order Parameter denoted as m, along with their histogram dis-
tributions, auto-correlation functions, and simulated vs actual time series. Note:
When the errors-bars on the coe�cients create overlapping intervals we combine the
terms as we had done previously with the equations obtained for the rotation order
parameter:

Table 5.4: Summary of Derived Stochastic Di↵erential Equations Group Polarization
Vector

Group Size Equation

4 ṁ =

✓
�0.125 0.256
�0.247 �0.146

◆
m+

p
0.3 (1� |m|2) · ⌘(t)

10 ṁ = �0.1J2

✓
mx

mx ·my

◆
+
p
0.1 (1� |m|2) · ⌘(t)

60 ṁ =

✓
�0.84m3

x

�0.13m2
xmy � 0.4mxm2

y

◆
+
p
0.02 · ⌘(t)

80 ṁ =

✓
�0.3m2

xmy �mxm2
y � 0.26m3

y

�0.16my + 0.76m2
xmy + 0.1m3

y

◆
+
p
0.009 · ⌘(t)

100 ṁ =

✓
�0.1mx � 0.45m2

xmy + 0.35mxm2
y + 0.27m3

y

�0.1my � 0.43mxm2
y + 0.1m3

x + 0.2m3
y

◆
+
p
0.006 · ⌘(t)

Moreover, we analyzed the distributions of these groups’ polarization vector order
parameters. Histograms and auto-correlation functions are shown in the following
figures:
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Figure 5.77: Distribution of Group Polarization Vector Order Parameter of Original
and Re-estimated time-series

(a) Group Size: 10 (b) Group Size: 60

(c) Group Size: 80 (d) Group Size: 100

And here are the simulated mx from our equations compared with the original time
series:
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Figure 5.78: Simulated time series for mx from our estimated SDEs compared with
the original time series

(a) Group Size: 4

(b) Group Size: 10

(c) Group Size: 60

(d) Group Size: 80

(e) Group Size: 100
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Following in the footsteps of the analysis of rotation order parameter, the analysis
of the group behaviors can be separated into two main clusters: the smaller groups,
with sizes of 4 and 10, and the larger groups, with sizes of 60, 80 and 100.

Analysis of Smaller Groups

For the deterministic parts: for the group size of 4, we have a linear deterministic
system and for the group size of 10, it seems we are dealing with a nonlinear, yet
quite simple system of equations where the dynamics of m are regulated by mx

and the interaction between mx and my. The
p
0.3 (1� |m|2) and

p
0.1 (1� |m|2)

terms in the equations represent the di↵usion coe�cients which are modulated by
the magnitude of m.

While the histograms for these groups show that the magnitude |m| is densely cen-
tered around its maximum value of 1, which indicates a strong directional preference
within the group, the clear volatility marked by the increased randomness for larger
values of |m| in the di↵usion functions proves that the increased coordination in
terms of polarization is spurious for these systems and is only a byproduct of their
small number, since consistent polarized coordination is unsustainable. Further-
more, the short decay times of 1.5 and 2.5625 seconds for these small groups implies
rapid memory loss, suggesting a high reactivity to changes in their environment,
this ties well with the results for the rotation OP.

Analysis of Larger Groups

For the larger groups (60, 80, 100), the deterministic behavior is governed by a
more complex nonlinear system, characterized by cubic and quadratic terms. As
the group size increases, these nonlinearities become more prevalent, implying that
the interactions within larger groups are more intricate.

The di↵usion coe�cients decrease for larger groups as shown by the
p
0.02,

p
0.009,

and
p
0.006 terms in the respective equations. This suggests that as group size

increases, the e↵ect of stochasticity on the group’s movement lessens, making the
deterministic behavior more pronounced.

However, contrary to small groups, the |m| values in larger groups are concentrated
around much smaller values, indicating a weaker average directional preference. This
weaker alignment is consistent with the presence of the more complex interactions
introduced by the higher order terms in the deterministic equations, and as we’ve
already mentioned, in larger groups, the emergent rotational behavior can cause
group members to have di↵ering instantaneous directions even though they could
be following the same overall circular path
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5.3.3 Coupled SDE of the Rotation and Polarization Order Parame-

ters

Finally, we look at a the rotational order parameter, and the magnitude of the
polarization order parameter, aiming to look at the coupled stochastic equation that
describes their evolution, but before doing that we pre-process the data, namely, we
do a min-max re-scaling on the rotation order parameters, preserving the original
shape of the data but now having the ranges of both parameters in [0,1]. Following
the same methodology outlined above, we extract the 2D surfaces that best fit the
drift and the di↵usion:
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Figure 5.80: Drift and Di↵usion and Cross Di↵usion fits obtained by Sparse Regres-
sion in the 2D case, for the Coupled SDE of the rotation and the polarisation order
parameters

And here our generated equations:

F1 = (�0.362± 0.149)x+ (�0.454± 0.219)x3 + (0.424± 0.151)y

+ (�1.024± 0.343)y2 + (0.748± 0.271)y3

F2 = (0.293± 0.055) + (�2.165± 0.335)y + (�1.021± 0.712)x2y

+ (4.156± 0.761)y2 + (0.852± 0.718)xy2

+ (�3.118± 0.601)y3

G11 = (0.022± 0.003)x+ (�0.023± 0.008)x2

G12 = 0

G21 = 0

G22 = (0.095± 0.015)x+ (�0.094± 0.034)x2

+ (0.055± 0.035)y2 + (�0.080± 0.028)y3

The full equation is thus:

✓
Ṙ
Ṗ

◆
=

✓
�0.362R� 0.454R3 + 0.424P � 1.024P 2 + 0.748P 3

0.293� 2.165P � 1.021R2P + 4.156P 2 + 0.852RP 2 � 3.118P 3

◆

+

✓
0.023R(1�R) 0

0 0.095R(1�R) + 0.055P 2 � 0.080P 3

◆
· ⌘(t) (5.23)

Below are our checks for self-consistency, by looking at the re-estimated distribution
of the magnitude of the vector ⇢ =

p
R2 + P 2, its autocorrelation, and the time

series of R and P compared with the original time series:
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Figure 5.81: Comparison of the Original and Re-estimated Time Series for the
Rotation OP

Figure 5.82: Comparison of the Original and Re-estimated Time Series for the
Polarization OP

And the Distributions and Autocorrelation:
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Figure 5.83: Comparison of the Original and Re-estimated Distribution and Auto-
correlation of ⇢
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Chapter 6

Conclusion and Future Work

In conclusion, this study has demonstrated the potential of a multifaceted approach,
combining physics, information theory, graph theory, and stochastic analysis to gain
a deeper understanding of the collective behavior and dynamics of juvenile zebrafish
shoals of varying group sizes.

The Optimal Causation Entropy principle (oCSE) proved to be an e↵ective method
to construct dynamic, causality-weighted networks, thereby o↵ering a new lens
through which we can analyze the interplay of coordination and density within
these biological systems. With this new analysis tool, we’ve managed to explore the
emergence of coordination and decipher the complex interactions within these causal
networks across di↵erent group sizes, essentially reducing them to time-evolving pair-
wise interactions weighted by the interaction strength. We’ve been able to demon-
strate how dense systems’ increased memory times for maintaining their structure,
particularly in their rotational motion, aligns with how larger group sizes have sig-
nificantly less variability in the causal structure of the group. We’ve also empirically
obtained the average number of interacting neighbors using real data, thus open-
ing the door for applications to other species and in di↵erent environments. This
approach permits an analysis of individual interactions, surpassing the confines of
standard group analysis, which often focuses on mean-field behaviors, contrary to
standard models of swarming and group behaviors our results hint at the existence
of long-range interactions, thus showing that causal neighbors are not necessarily
spatial neighbors. This is a direction that we wish to explore in the future, believing
that understanding these long-range causal interactions is integral to shaping the
behavior of groups, especially in water-borne systems where information could be
transmitted through the medium and not only by sight.

In the last part of our study, we used the Kramers-Moyal equation and sparse regres-
sion techniques to get analytical expressions of the stochastic di↵erential equations
that describe how order parameters change over time. This permits the study of
interacting systems by minimizing the number of assumptions required to model
active matter, allowing for more accurate simulations if needed, and potentially
providing a model-free approach to understanding active matter.
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One immediate goal after that would be to build jump-di↵usion stochastic equa-
tions [116] that describe the turn rates of the fish but which would require going in
Kramers-Moyal expansion to much higher order terms, since the time series of the
turn rates of our fish show clear jumps that could be explained by an additional
jump-di↵usion term to the stochastic equation (possibly modeled by a Poisson pro-
cess). The reason for doing that would be to challenge available models in literature
that assume that the functional form of the turn rates in the drift of the stochastic
equation describing it depends on the local neighborhood of the fish [117], and po-
tentially show that instead of summing over spatial neighbors, we could get better
results by summing over causal neighbors.

Other potential areas of research are to expand the variables considered in our
models beyond acceleration, to include other metrics such as position, velocity, or
a combination thereof. This could potentially o↵er a more comprehensive under-
standing of the collective dynamics at play. Additionally, future research should
also consider the variance in memory mechanisms and response times across dif-
ferent species. This would entail experimenting with di↵erent time delays in our
calculations to discern whether there might be an optimal choice specific to each
species.

Another promising avenue is the development of improved estimators of CSE or con-
ditional mutual information. Given the rapidly evolving experimental conditions and
data collection methods, it is expected that more data will become available in the
future, likely leading to more accurate inferences. Moreover, developing estimators
that minimize inference errors, even if the estimator itself might not be optimal in
inferring individual CSE values, is a worthy pursuit. Alongside this, the develop-
ment of an exact test for causality inference remains a potential issue. Despite these
challenges, it is crucial to remember that the meaning and inference of causality still
require a level of assumption and careful interpretation.
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Appendix A

Kraskov-Strögbauer-
Grassberger (KSG) estimator

extension for mutual
information

The KSG estimator can be e↵ectively extended to estimate conditional mutual in-
formation. This extension has been recently proposed by Frenzel and Pompe [118]
and independently by Vejmelka and Paluš [119]. Consider n independent samples
{w1, w2, . . . , wn} of the joint random variable W = (X, Y, Z) where wi = (xi, yi, zi).
The estimate of I(X;Y |Z) is given by:

I(X;Y |Z) =  (k)� h (nxz + 1) +  (nyz + 1)�  (nz + 1)i (A.1)

In the equation, h·i denotes the average over the samples and  (t) = �0(t)
�(t) is the

digamma function.
For a fixed value of k, let �(i) denotes the distance from wi = (xi, yi, zi) to its k-th
nearest neighbor, where distance is measured as the max-norm in the joint space,

||wi � wj||xyz = max
n
|xi � xj|x, |yi � yj|y, |zi � zj|z

o
, (A.1)

and the norms used in the subspaces can be arbitrary but oftentimes the max norm
is used (which is our choice for this paper) as well. From this we obtain

• nxz(i): number of points (xj, zj) ( j 6= i) with
||(xj, zj)� (xi, zi)||xz = max

�
|xj � xi|x, |zj � zi|z

 
< �(i)

• nyz(i): number of points (yj, zj) ( j 6= i) with

||(yj, zj)� (yi, zi)||yz = max
n
|yj � yi|y, |zj � zi|z

o
< �(i)

• nz(i): number of points zj ( j 6= i) with��zj � ziz
�� < �(i)
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Appendix B

Kernel Density Estimation using
Gaussian Kernel

Kernel Density Estimation (KDE) is a non-parametric method for estimating the
probability density function of a given random variable. It is called ’non-parametric’
because it does not assume any underlying distribution for the data. One of the
popular implementations of KDE is available in the SciPy library, which uses the
Gaussian kernel.

B.1 KDE in One Dimension

B.1.1 Gaussian Kernel

A kernel is a weighting function used in the estimation of the PDF. The Gaussian
kernel is a popular choice due to its properties. The Gaussian kernel K(x) for a
one-dimensional input is defined as:

K(x) =
1p
2⇡

e�
1
2x

2

where x is the distance between the data point and the location where we want to
estimate the density.

B.1.2 Kernel Density Estimation

The kernel density estimate f(x) at a point x for a given datasetX = {x1, x2, . . . , xn}
is given by:

f(x) =
1

nh

nX

i=1

K

✓
x� xi

h

◆

where:

• n is the number of data points

• K(x) is the kernel function
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• h is the bandwidth which controls the smoothing parameter

h a critical factor in KDE that influences the bias-variance trade-o↵ of the estima-
tion. A small value of h may lead to a high-variance (over-fitted) estimate, while a
large value may lead to a high-bias (under-fitted) estimate.

B.1.3 Bandwidth Selection

In Scipy python library, the bandwidth h is chosen automatically using Scott’s Rule
if not specified by the user:

h = n� 1
d+4

where n is the number of data points and d is the number of dimensions. This rule
is a rule of thumb for bandwidth selection.

B.2 Gaussian Kernel Density Estimation in Two Dimen-
sions

When we extend the KDE to two or more dimensions, the calculations become
slightly more complex, but the principle remains the same. We’ll specifically look
at the two-dimensional case here.

B.2.1 Two-Dimensional Gaussian Kernel

The Gaussian kernel for a two-dimensional input vector x = [x1, x2] is defined as:

K(x) =
1

2⇡
e�

1
2x

Tx

where xT is the transpose of the vector x, and xTx is the dot product of x and its
transpose.

B.2.2 Kernel Density Estimation in Two Dimensions

The kernel density estimate f(x) at a point x for a given datasetX = {x1,x2, . . . ,xn}
is given by:

f(x) =
1

n

nX

i=1

1

|H|1/2K
�
H�1/2(x� xi)

�

where: n is the number of data points, K is the two-dimensional Gaussian kernel
function, H is the bandwidth matrix, which replaces the scalar bandwidth h from
the one-dimensional case. H controls the shape of the kernel, and |H| denotes the
determinant of H
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B.2.3 Bandwidth Matrix Selection

In the Scipy python library, if the bandwidth matrix H is not specified by the user,
it is chosen automatically using a generalization of Scott’s Rule:

H = n�1/(d+4)⌃

where n is the number of data points, d is the dimension of the data (in this case,
d = 2, ⌃ is the covariance matrix of the data).

109



Bibliography

[1] T. Vicsek and A. Zafeiris, “Collective motion,” Physics reports, vol. 517,
no. 3-4, pp. 71–140, 2012.

[2] S. Ramaswamy, “Active matter,” Journal of Statistical Mechanics: Theory
and Experiment, vol. 2017, no. 5, p. 054 002, 2017.

[3] D. S. Calovi, U. Lopez, S. Ngo, C. Sire, H. Chaté, and G. Theraulaz, “Swarm-
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[107] J. Gradǐsek, S. Siegert, R. Friedrich, and I. Grabec, “Analysis of time series
from stochastic processes,” Physical Review E, vol. 62, no. 3, p. 3146, 2000.
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