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Abstract
of the Thesis of

Leonid Adel Sarieddine for Master of Science
Major: Physics

Title: Newtonian and Post-Newtonian Aspects of Mimetic Gravity

Mimetic gravity is a modified theory of gravity which is able to incorporate dark matter
into the underlying geometry of space-time by isolating the conformal degree of freedom.
The theory has been studied extensively in the cosmological regime, as such, in this thesis,
we set out to study the implications of the theory at the solar system and galactic scales.
To that end, we carry out the post-Newtonian expansion of mimetic gravity to lowest
post-Newtonian order. We interpret the equations in the Newtonian limit and study
some of the implications of the theory at the astrophysical scale. We solve the associated
equations in several special cases. Then by establishing some bounds on the asymptotic
behavior of the fields we prove that any static spherically symmetric space-time with a
non trivial mimetic contribution cannot be asymptotically flat. Finally, we study static
spherically symmetric solutions. To explain the rotation curves, one needs a logarithmic
term in the potential, we show that even though the mimetic fluid can’t reconstruct an
exact logarithmic term, it is able to contribute a quasi-logarithmic term which recovers
the basic qualitative features of galactic rotation curves.
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Chapter 1

Brief Introduction to General
Relativity

1.1 Special Relativity

One of the most crucial steps in developing a geometric theory of gravity was the uni-
fication of the concepts of space and time. While space and time were absolute notions
in the Newtonian theory, this seemingly intuitive view of the world quickly changed with
the arrival of special relativity which postulates that the speed of light is constant for
all inertial observers. One immediate consequence of this postulate is that two di↵erent
observers may no longer agree on the length of their rods or the time that has passed
on their clocks. The constancy of the speed of light, however, ensures that there is one
quantity, quadratic in the space and time increments, which remains the same for all
observers:

�c
2�t

2 +�x
2 = �c

2�t
02 +�x

02 (1.1)

In other words, if we have two space-time events P1 and P2, and an observer measures a
spatial distance of �x and a time di↵erence of �t between the two events, while another
observer in an another inertial frame measures �x

0, �t
0 corresponding to those same

two events; then even though �x 6= �x
0 and �t 6= �t

0, they would still agree on this
quadratic combination of space and time increments written in (1).

Eq (1) could be derived from the postulates of special relativity and its physical content is
basically that the speed of light is constant to all inertial observers. To see this, consider
a hypothetical event P1 associated with the release of a photon and P2 the absorption of a
photon in the rest frame of an observer, then we know that this observer will measure an
associated �x (spatial length travelled by the photon) and a �t (time of travel). Since
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the speed of light is c for that observer then we know

�x

�t
= c

Then (1) immediately implies
�x

0

�t0
= c

Which means that the speed of light is also c for any other inertial observer. The con-
stancy of the speed of light leads to a direct relationship between space and time coor-
dinates which was otherwise absent in a Newtonian setting. If a light-like event satisfies
�x > �x

0 (such as the release/absorption of a photon in the primed frame which is
moving w.r.t the unprimed) then the constancy of the speed of light would force upon

you �t > �t
0 in order that

�x

�t
=

�x
0

�t0
= c be satisfied.

From a mathematical point of view, (1) leads to a rich mathematical structure since it
endows space-time with a pseudo-Riemannian metric, the so-called Minkowski metric. A
Newtonian space-time can only ever be equipped with a Riemannian metric on constant
time slices (i.e. only on the spatial 3-dimensional slices of space-time) hence it is neither
a Riemannian or a pseudo-Riemannian manifold.

1.2 Metric Theory of Gravity

Until now, nothing is mentioned about gravity, and indeed incorporating gravity into the
geometry of space-time has little to do with special relativity or the constancy of the
speed of light but rather all to do with gravity’s unique feature of accelerating all objects
in the same manner regardless of their matter composition. This curious fact, that gravity
acts like a fictitious force (at least locally) gives us the first hint that gravity is geometric
in nature. Newton’s first law tells us that a body will move in a straight line unless acted
upon by forces. If gravity is not a force one might hope to incorporate gravity into the
geometry of the underlying manifold by mimicking its e↵ects in terms of the curvature of
the manifold; in this way, Newton’s second law applied to gravity becomes Newton’s first
law but in a curved manifold. Indeed, this can be done by postulating that the equation
of motion for a test particle is the geodesic equation:

ẍ
µ + �µ

⌫↵ẋ
⌫
ẋ
↵ = 0

parametrized in terms of some parameter and where the �’s are the connection coe�-
cients. The key idea, however, is that the underlying manifold should be the space-time
manifold. It is impossible to incorporate gravity into geometry without a space-time
formulation; in other words, gravity can be modelled as a curvature of space-time but
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not of purely space. This leads to an entirely novel formulation of the dynamics of parti-
cles: instead of thinking of particles as moving on paths through three-dimensional space
which deviate from straight lines due to the force of gravity pushing on them, one thinks
of particles as moving on the straightest possible paths in a curved space-time.

If we want to incorporate gravity into geometry in a relativistic fashion we must take
into account special relativity as well. This is ensured by postulating that at every space-
time point one can create a locally inertial frame where the laws of special relativity hold.
Mathematically, this implies that space-time is equipped with a space-time metric g and
at each point one can cancel the e↵ects of gravity at that point (but only at that one point
in general) and reduce g to ⌘ at that point. This is physically saying that any observer
at the space-time point p would observe the speed of light to be c at p. The existence
of a space-time metric, imposed by local Lorentz invariance, allows us to describe the
geometry of space-time through the metric g. The fundamental theorem of Riemannian
geometry (or pseudo-Riemannian) tells us that the connection is uniquely determined by
the metric given that the connection is metric-compatible (i.e. straightest possible paths
are also shortest paths) and torsion-free. While metric-compatibilty is very natural to
assume, the fact that the connection is torsion-free follows from the existence of local
inertial frames and goes as follows. In a coordinate basis, the torsion tensor is given by

T
µ
�↵ = �µ

�↵ � �µ
�↵

Hence the existence of a local inertial frame, which implies that one can always make the
connection coe�cients vanish at one point, directly imply that the torsion tensor should
vanish at this point, then the tensorial character of the torsion tensor implies that it is
zero in any other coordinate system as well. Since one can make such a construction at
each point in the manifold (which is based on physics i.e. the equivalence principle) one
is directly lead to the fact that the connection is torsion free.

Now that we have established that the space-time is equipped with a metric tensor
and a metric-compatible torsion-free connection, the fundamental theorem mentioned
above allows us to compute the connection coe�cients entirely in terms of the metric:

�µ
�↵ =

1

2
g
µ⌫(g⌫�,↵ + g⌫↵,� � g�↵,⌫)

where the inverse metric is defined by

g
µ⌫
g⌫↵ = �

µ
↵

It follows that all the other geometric objects of interest, most importantly the curvature
tensors and scalars, can be written in terms of the metric as well. The Riemann curvature
tensor is defined to be a (3,1) tensor field and is given by the formula:

R(U, V )W = rUrVW �rVrUW �r[U,V ]W
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which represents the change in W after it is parallel transported around an infinitesimal
loop determined by tangent vectors U and V . In coordinates it reads

R
↵
�µ⌫ = �↵

⌫�,µ � �↵
µ�,⌫ + �↵

µ��
�
�⌫ � �↵

⌫��
�
�µ

One can then define the Ricci tensor to be

R�⌫ = R
µ
�µ⌫

and the Ricci scalar
R = R�⌫g

�⌫

The basic idea of GR is that energy and matter are the sources of space-time curvature.
In Newtonian gravity the mass density ⇢ was the source of gravity, but in a relativistic
theory this can’t be the case because ⇢ is not a lorentz scalar, but rather one component
of a rank-2 tensor called the energy-momentum or stress-energy tensor T µ⌫ . So the form
of the field equations must be

spacetime curvature / T
µ⌫

Local conservation of energy and momentum demand that the divergence of the stress
energy be zero.

rµT
µ⌫ = 0

Hence whatever is on the left-hand side must be divergence free. The unique symmet-
ric, divergence-free tensor which is made from second derivatives of the metric and/or
quadratic in first derivatives (this should be true by dimensional analysis) is the Einstein
tensor

Gµ⌫ = Rµ⌫ �
1

2
Rgµ⌫

The field equations then become (proportionality constant determined by Newtonian
limit).

Rµ⌫ �
1

2
Rgµ⌫ = 8⇡GTµ⌫

By taking the trace one can also write the equation in the following so-called trace-
reversed form

Rµ⌫ = 8⇡G(Tµ⌫ �
1

2
Tgµ⌫)

One important implication of the divergence-free condition of the Einstein tensor
(called the Bianchi identity) is that it guarantees the automatic conservation of energy
and momentum of the sources. Hence the equations of motion for the matter fields are
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automatically built in the Einstein field equations. The above equation could also be
derived from the so-called Einstein-Hilbert action:

S =

Z

M

p
�g (R + Lmatter)d

4
x

When one varies the first term in S with respect to gµ⌫ one gets the Einstein tensor, and
the left hand side is obtained by variation of the second term with respect to gµ⌫ .
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Chapter 2

Post-Newtonian Analysis in
General Relativity

2.1 Newtonian Limit of The Geodesic Equation

The Newtonian limit in GR is determined by 3 conditions:

1) Weak fields i.e. metric is approximately Minkowski

gµ⌫ = ⌘µ⌫ + hµ⌫

where
hµ⌫ <<< 1

2) Slow velocities of the sources and particles involved

3) Stationary fields i.e. hµ⌫ is independent of time

If all the above are satisfied then when we write the equations of motion of a particle.

ẍ
µ + �µ

⌫↵ẋ
⌫
ẋ
↵ = 0

we notice that since the particle has low velocity then

ṫ ⇡ 1

ẋi ⇡ 0
d

d⌧
⇡ d

dt
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So the only relevant term in the geodesic equation is the 00 term so the geodesic equation
becomes

ẍ
µ + �µ

00 = 0

Now using the weak field and static assumptions we find

�0
00 = �1

2
⌘
0↵(2@0h↵0 � @↵h00) = 0

�i
00 = �1

2
⌘
i↵(2@0h↵0 � @↵h00) = �1

2
@ih00

So the 0-component equation is trivially satisfied and the space component equations
become

d
2
x
i

dt2
=

1

2
@ih00

Hence we can clearly see that we can identify h00 with �2U where U is the Newtonian
gravitational potential (and indeed as we will see later it is compatible with the Newtonian
limit of the field equation).

2.2 Newtonian Limit of The Field Equations

Turning our attention to the Newtonian limit of the field equations, we first compute the
Ricci tensor

Rµ⌫ = @↵�
↵
µ⌫ � @⌫�

↵
µ↵ =

1

2
(@µ@↵h

↵
⌫ ��hµ⌫ � @µ@⌫h+ @⌫@↵h

↵
µ)

where h := ⌘
µ⌫
hµ⌫ and h

↵
µ := ⌘

↵⌫
h⌫µ

If we take a simple energy momentum tensor of the form Tµ⌫ = ⇢vµv⌫ where ⇢ is the
matter density and v is its four velocity, then in the Newtonian limit only the 00 com-
ponent contributes since the other velocity components are negligible (this is condition 2
which states that the sources have low velocities). If we note that

R00 = �1

2
�h00

and use the trace reversed form of EFE

Rµ⌫ = 8⇡G
�
Tµ⌫ �

T

2
gµ⌫

�

then we get
��h00 = 8⇡G⇢

for the 00 component, hence we see again that if h00 = �2U then this reduces to the
desired Poisson equation, the field equation in classical Newtonian gravity.
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2.3 Motivation for Post-Newtonian Expansion

To motivate the post-Newtonian expansion we first note that if we look at the Newtonian
limit we notice that h00 is of the order GM

rc2 (since we were working in units where c = 1
they were suppressed), which is of the order of 10�9 on the surface of the Earth and
decreases further if you go inside or farther away (assuming Earth has an approximately
constant density). Note that GM

rc2 is also of the order v2

c2 for a typical planet/particle in the
solar system by virial theorem, so we hope to develop a systematic expansion in powers
of such quantities. We know h00 is of the order of

v2

c2 as shown, but what about the other
components of the metric? To get a hint, we note that in the linearized regime the trace
reversed EFE to lowest order read

R00 / second derivatives of h00 /
G⇢

c2

R0i / second derivatives of h0i /
G⇢vi

c3

Rij / second derivatives of h00 and hij /
G⇢

c2

Hence we can conclude that the lowest order expansion for g00 starts at order v2

c2 ,

g0i starts at v3

c3 and gij starts at v2

c2 . This can be seen more rigorously by imposing the
harmonic gauge which we will get into shortly.

Another point that needs to be addressed is the issue of time dependence. To re-
cover the Newtonian limit we needed to impose time independence conditions on the
metric components, but our hope with the post-Newtonian formalism is to include time-
dependent phenomena, hence we must allow time derivatives to enter the picture. Again
by analyzing the linear regime but this time allowing time dependence we get the following
relations when we focus on the space-time component:

R0i / space-space derivatives of h0i + space-time derivatives of h00 /
G⇢vi

c3

Now we know that h00 is of the order of v2

c2 and that h0i is of the order of v3

c3 hence the
above relation forces us to conclude the following.

@0h0i

@jh0i
/ v

c

So time derivatives introduce a higher order term in the expansion. Another way of
saying this is that if we introduce the characteristic lengthscale R then we have

@

@xi
/ 1

R

12



@

@t
/ v

cR

So if a certain quantity is of the order v2

c2 (like h00 for example) then

@ih00 /
v
2

c2R

@0h00 /
v
3

c3R

With the above facts established we now proceed with the systematic expansion in powers
of v

c . To avoid clutter in the notation from hereon out we just refer to this as an expansion
in powers of v2.

2.4 Post-Newtonian Expansion

Now that we have established the basic rules of expansion we begin by expanding the
metric as follows (see also [1]):

g00 = �1+
(2)
g00 +

(4)
g00 +

(6)
g00 +...

gij = �ij+
(2)
gij +

(4)
gij +

(6)
gij +...

g0i =
(3)
g0i +

(5)
gij +...

where
(n)
gµ⌫ means that it is a quantity of order vn. From the following condition

gµ�g
�⌫ = �

⌫
µ

we obtain the expansion for the inverse metric:

g
00 = �1+

(2)

g
00 +

(4)

g
00 +

(6)

g
00 +...

g
ij = �

ij+
(2)

g
ij +

(4)

g
ij +

(6)

g
ij +...

g
0i =

(3)

g
0i +

(5)

g
0i +...

Where

13



(2)

g
00= �g00

and similar expressions for the other components.

Similarly, the Christo↵el symbols are expanded as follows:

�µ
⌫� =

(2)

�µ
⌫� +

(4)

�µ
⌫� +...,

for �i
00,�i

jk,�0
i0.

�µ
⌫� =

(3)

�µ
⌫� +

(5)

�µ
⌫� +...,

for �i
0j,�0

00,�0
ij, and where

(n)

�µ
⌫� are quantities of order vn

R .

The Ricci tensor defined as:

Rµ⌫ = ��
µ⌫,� � ��

µ�,⌫ + ��
µ⌫�

↵
�↵ � ��

µ↵�
↵
�⌫

is expanded in powers of vn

R2 as follows:

R00 =
(2)

R00 +
(4)

R00 +
(6)

R00 +...

Rij =
(2)

Rij +
(4)

Rij +
(6)

Rij +...

R0i =
(3)

R0i +
(5)

Rij +...

Explicitly we can write Ricci tensor expansion in terms of the metric expansion:

(2)

R00 = �1

2
�

(2)
g00

(3)

R0i =
1

2
(�@0@i

(2)
gjj +@i@j

(3)
gj0 +@0@j

(2)
gij ��

(3)
g0i)

(2)

Rij =
1

2
(@i@j

(2)
g00 �@i@j

(2)
gkk +@i@k

(2)
gkj +@k@j

(2)
gik ��

(2)
gij)

Now we will impose the following gauge condition to simplify the expressions.

��
µ⌫g

µ⌫ = 0

14



The motivation for imposing such a gauge has a long and interesting history. Fock advo-
cated the use of harmonic coordinates based on his assertion that harmonic coordinates
are the analogues of inertial coordinates in GR. He was able to show in fact, but under
rather strict conditions, that the harmonic coordinates are unique up to a Lorentz trans-
formation [2]; in this way, he argued, harmonic coordinates are the direct analogues of
Cartesian coordinates in curved space-time. In any case, if we expand the above equation
we find that we can write the Ricci tensor in a simplified form

(2)

R00 = �1

2
�

(2)
g00

(3)

R0i = �1

2
�

(3)
g0i

(2)

Rij = �1

2
�

(2)
gij

the Ricci scalar R = g
µ⌫
Rµ⌫ is expanded as

R =
(2)

R +
(4)

R +
(6)

R +...

where
(n)

R is of order
v
n

R2
. Thus to lowest order we have:

(2)

R = �
(2)

R00 +
(2)

Rjj

where
(2)

Rjj:=
(2)

R11 +
(2)

R22 +
(2)

R33

Finally, we expand the Einstein tensor Gµ⌫ = Rµ⌫ �
R

2
gµ⌫

G00 =
(2)

G00 +
(4)

G00 +
(6)

G00 +...

Gij =
(2)

Gij +
(4)

Gij +
(6)

Gij +...

G0i =
(3)

G0i +
(5)

Gij +...

Where again
(n)

Gµ⌫ indicates it is of order
v
n

R2
.

Explicitly to lowest order we have

15



(2)

G00 =
1

2

(2)

R00 +
1

2

(2)

Rjj

(3)

G0i =
(3)

R0i

(2)

Gij =
(2)

Rij +
1

2

� (2)

R00 �
(2)

Rkk

�
�ij

We will use the above equations for the Einstein tensor for mimetic gravity. Meanwhile,
we focus on GR and rewrite the equations to lowest post-Newtonian order

(2)

R00 = �1

2
�

(2)
g00

(4)

R00 =
1

2

✓
��

(4)
g00 +@0@0

(2)
g00 +(@j@i

(2)
g00)

(2)
gij �(r

(2)
g00)

2

◆

(3)

R0i = �1

2
�

(3)
g0i

(2)

Rij = �1

2
�

(2)
gij

The expansion of the Energy-Momentum tensor proceeds in the same vein and we see
that if we define

Sµ⌫ = Tµ⌫ �
T

2
gµ⌫

then we can expand as follows

S00 =
(0)

S00 +
(2)

S00 +...

Si0 =
(1)

Si0 +
(3)

Si0 +...

Sij =
(0)

Sij +
(2)

Sij +...

where
(n)

Sµ⌫ are quantities of order vnM
R . The introduction of a characteristic mass parame-

ter M is actually not needed since the Energy-Momentum tensor is always multiplied by
G and GM

R is of order v2 as we established prior. Explicitly in terms of Energy-Momentum
tensor the components of S read

(0)

S00 =
1

2

(0)

T
00

16



(2)

S00 =
1

2

✓ (2)

T
00 �2

(2)
g00

(0)

T
00 +

(2)

T
ii

◆

(1)

S0i = �1

2

(1)

T
0i

(0)

S00 =
1

2
�ij

(0)

T
00

Of course the order of the corresponding T components are the same as those of S. We
can now apply the trace reversed EFE

�
(2)
g00 = �8⇡G

(0)

T
00

�
(4)
g00 = @0@0

(2)
g00 +(@j@i

(2)
g00)

(2)
gij �(r

(2)
g00)

2 � 8⇡G

✓ (2)

T
00 �2

(2)
g00

(0)

T
00 +

(2)

T
ii

◆

�
(3)
gi0 = 16⇡G

(1)

T
i0

�
(2)
gij = �8⇡G�ij

(0)

T
00

2.5 Solving the Equations

We proceed to solve these equations. The first equation is well known since we see the
identification

(2)
g00 = �2U

U(x, t) = �G

Z
d
3
x
0T

00(x0
, t)

kx� x0k
Similarly we can clearly see that

(2)
gij = �2�ijU

Meanwhile
(3)
gi0 is a vector potential and its solution is

(3)

gi0(x, t)= �4G

Z
d
3
x
0T

00(x0
, t)

kx� x0k
The fourth order equation is the trickiest. To solve it we first rewrite it in a more
convenient form:

�
(4)
g00 =

✓
(@j@i

(2)
g00)

(2)
gij �(r

(2)
g00)

2 + 16⇡G
(2)
g00

(0)

T
00

◆
�
✓
8⇡G

(2)

T
00 +8⇡G

(2)

T
ii �@0@0

(2)
g00

◆
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Focusing on the first term, and plugging in the solutions we found for g00 and gij in terms
of U we get

(@j@i
(2)
g00)

(2)
gij �(r

(2)
g00)

2 + 16⇡G
(2)
g00

(0)

T
00 = �4U�U � 4(rU)2

Now using the identity
2�(U2) = 4(rU)2 + 4UrU

We see that we can rewrite the fourth order equation as

�
(4)
g00 = �2�(U2) +

✓
� 8⇡G

(2)

T
00 �8⇡G

(2)

T
ii +@0@0

(2)
g00

◆

The other second part is linear in all the quantities involved, hence a closed form solution

for
(4)
g00 can be obtained

(4)
g00= �2U2 � 2V

Where

V (x, t) = �
Z

d
3
x
0

kx� x0k

✓
G

(2)

T
00(x0

, t) +G

(2)

T
ii(x0

, t) +
1

4⇡
@0@0U(x0

, t)

◆
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Chapter 3

Mimetic Gravity

3.1 Basic Idea

The original motivation for mimetic gravity was to isolate the conformal mode. More
explicitly, one begins by parametrizing the physical metric in terms of an auxilliary metric
and a scalar field [3]:

gµ⌫ = g
0
µ⌫g

0↵�
@↵�@��

g
0µ⌫
@µ�@⌫� acts as a conformal mode of the metric and one can immediately see that

the physical metric is invariant under conformal transformations of the auxilliary metric.
Intuitively this means we split the 10 components of the physical metric into a conformal
mode + other non conformal degrees of freedom akind to how we can write a vector in
terms of its magnitude multiplied by the unit vector indicating its direction.

Now write the Einstein-Hilbert action in terms of the auxilliary metric and the scalar
field.

S =

Z

M

q
�g(gµ⌫(g0µ⌫ ,�))

✓
R(gµ⌫(g

0
µ⌫ ,�)) + Lmatter

◆
d
4
x

Then one varies the action with respect to gµ⌫ which can be written in terms of variations
of g0µ⌫ and � subject to the parametrization above. The variation with respect to g0µ⌫ yields
the modified Einstein equation of motion

Gµ⌫ = Tµ⌫ � (G� T )@µ�@⌫�

Meanwhile variations with respect to � yield a continuity equation

rµ((G� T )@µ�) = 0

the contra-variant version of the parametrization condition also implies
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g
0↵�
@↵�@��g

µ⌫ = g
0µ⌫

This immediately leads to the constraint equation.

g
↵�
@↵�@�� = �1

It was later shown in [4] that an equivalent way to arrive at the above set of equations
is to start from the following action.

S =

Z

M

p
�g

✓
R + �(g↵�@↵�@��+ 1) + Lmatter

◆
d
4
x

where � is a lagrange multiplier. Varying with respect to gµ⌫ one gets the Einstein equa-
tion. A variation with respect to � yields the constraint equation, and finally variation
with respect to � yields its continuity equation. Finally one can identify the Lagrange
multiplier with G� T to finally yield the equations.

3.2 Mimicking Dark Matter

If we look at the governing equations we note that constraint equation implies that the
gradient of the mimetic field is timelike. Also note that G � T 6= 0 in general hence
one could potentially find solutions more general than the ones in GR. In principle one
could solve for � and G � T in terms of metric components using the continuity and
constraint equations, then plug them back into Einstein equations to solve for the metric.
To understand the physical significance of these equations let us start by making the
following identifications

⇢ := G� T

@µ� = vµ

then we can immediately see that the gradient of the scalar field can play the role of the
fluid velocity and the G� T can play the role of the energy density of the fluid. Clearly,
(G�T )@µ�@⌫� plays the role of the stress energy tensor of the fluid, and it has the exact
form of the stress energy tensor of dust (ideal pressure-less fluid), which is the standard
model for cold dark matter. Also, the fact that the gradient of the scalar field is timelike
directly leads to the normalization of the velocity field

v
µ
vµ = 1
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One very important feature of General Relativity is that the stress-energy tensor
is conserved on shell (local conservation of energy and momentum). In GR, this is
automatically built in via the Bianchi identity, i.e. due to the fact that

rµ
Gµ⌫ = 0

which would automatically imply that

rµ
Tµ⌫ = 0

In mimetic gravity the bianchi identity merely implies that

rµ(Tµ⌫ + (G� T )@µ�@⌫�) = 0

which by itself doesn’t imply that the matter stress energy tensor is conserved. However
we can prove that the mimetic stress energy tensor is conserved which would also imply
that the matter stress energy tensor is conserved.

rµ((G� T )@µ�@⌫�) = rµ((G� T )@µ�)@⌫�+ (G� T )@µ�rµ(@⌫�)

the first term is zero because of the continuity equation. The second term is zero because
the constraint equation implies that.

g
↵�
@↵�rµ@�� = 0

and
rµ@�� = r�@µ�

3.3 Cosmology

Applying this theory to cosmology, we start by working in the synchronous gauge.

ds
2 = dt

2 � gijdx
i
dx

j

taking
� = t

we automatically satisfy the constrain equation. The continuity equation then becomes

@0(
p
g(G� t)) = 0

which implies that

G� T =
C(x)
p
g
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with C(x) an integration constant that determines the amount of mimetic matter. For a
Friedmann universe we obtain

G� T =
C

a3

which, as expected, has the exact required density profile as dust. In this sense G� T is
able to mimic the energy density profile of cold dark matter on cosmological scales.

It should also be noted that similar theories to mimetic gravity were also considered
before (see in particular [5]). Using the Lagrange multiplier approach, it becomes easy to
see that mimetic gravity is a form of scalar Einstein aether theory [6]. By modifying the
mimetic gravity action to include a potential which depends solely on the mimetic field
one can show that it can mimic inflationary periods, quintessence, bouncing universe,
and essentially any background cosmology that one desires [7]. By introducing further
terms in the action one can also resolve cosmological singularities [8] as well as black
hole singularities [9]. Static spherically symmetric space-times in mimetic gravity were
studied in [10] and [11], where they derived solutions with complex scalar fields and/or
assumed a space-like constraint for the gradient of the mimetic field.
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Chapter 4

Post-Newtonian Expansion in
Mimetic Gravity

4.1 Deriving the Equations

The equations of mimetic gravity are:

Gµ⌫ + (G� T )@µ�@⌫� = Tµ⌫

@µ(
p
�g(G� T )gµ⌫@⌫�) = 0

g
µ⌫
@µ�@⌫� = �1

Obviously we expect that the G� T term to be expanded as:

G� T =
(2)

G� T +
(4)

G� T +
(6)

G� T +....

where
(n)

G� T is of the order of
v
n

R2
.

As for �, it is to be expanded in the following manner:

� = t+
(1)

� +
(3)

� +
(5)

� +...

where
(n)

� is of the order of Rv
n. Perhaps a more suggestive way to look at the above

expansion is to note that � only ever appears in terms of derivatives and hence it’s more
suggestive to write the expansion of � in this case:

@i� =
(1)

@i� +
(3)

@i� +
(5)

@i� +...
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where now
(n)

@i� is of order vn, and

@0� = 1+
(2)

@0� +
(4)

@0� +
(6)

@0�

where
(n)

@0� is of order vn.

Now we begin by expanding the constraint equation. Using the expansion of the inverse
metric and � we compute:

g
00
@0�@0�+ 2g0i@0�@i�+ g

ij
@i�@j� = �1

(�1+
(2)

g
00 +

(4)

g
00 +...)(1+

(2)

@0� +
(4)

@0� +...)(1+
(2)

@0� +
(4)

@0� +...)

+2(
(3)
g0i +

(5)
g0i +...)(1+

(2)

@0� +
(4)

@0� +...)(
(1)

@i� +
(3)

@i� +
(5)

@i� +...)

+(�ij+
(2)

g
ij +

(4)

g
ij)(

(1)

@i� +
(3)

@i� +
(5)

@i� +...)(
(1)

@j� +
(3)

@j� +
(5)

@j� +...) = �1

We will expand the above equation to second order only, hence we obtain:

�1+
(2)

g
00 �2

(2)

@0� +�ij
(1)

@i�

(1)

@i� = �1

Hence the final equation which needs to be satisfied at second order is:

�1

2

(2)
g00 +

1

2
|

(1)

r� |2 =
(2)

@0�

Where we have used the fact that
(2)
g00 = �

(2)

g
00

Now we expand the second equation as follows:

@0(
p
�g(G� T )g0⌫@⌫�) + @i(

p
�g(G� T )gi⌫@⌫�) = 0

Note that the determinant can be expanded as:

�g = 1+
(2)
g +...

where
(2)
g is of order v2 and so on. Hence the square root can be expanded as:

p
�g =

q
1+

(2)
g +... = 1 +

1

2

(2)
g +...

Meanwhile the term g
0⌫
@⌫� can be expanded as:
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g
0⌫
@⌫� =

✓
� 1+

(2)

g
00 +

(4)

g
00 +...

◆✓
1+

(2)

@0� +
(4)

@0� +...

◆
+

✓ (3)

g
0i

+
(5)

g
0i +...

◆✓
(1)

@i� +
(3)

@i� +
(5)

@i� +...

◆

We only expand this to order 2:

g
0⌫
@⌫� = �1+

(2)

g
00 +

(2)

@0� +...

Meanwhile as for the g
i⌫
@⌫� term:

g
i⌫
@⌫� =

✓ (3)

g
0i +

(5)

g
0i +...

◆✓
1+

(2)

@0� +
(4)

@0� +...

◆
+

✓
�
ij+

(2)

g
ij +

(4)

g
ij +...

◆✓
(1)

@j� +
(3)

@j� +
(5)

@j� +...

◆

Finally we obtain:

g
i⌫
@⌫� =

(1)

@i� +(
(3)

@i� +
(2)

g
ij

(1)

@j� +
(3)

g
i0) + ...

Hence the full expansion is:

@0

 ✓
1 +

1

2

(2)
g +...

◆✓
(2)

G� T +....

◆✓
� 1+

(2)

g
00 +

(2)

@0� +...

◆!

+@i

 ✓
1 +

1

2

(2)
g +...

◆✓
(2)

G� T +....

◆✓
(1)

@i� +(
(3)

@i� +
(2)

g
ij

(1)

@j� +
(3)

g
i0) + ...

◆!
= 0

To extract the lowest order term recall that spatial derivatives are weighed di↵erently

than time derivatives. The term @0

� (2)

G� T
�
is clearly of order

v
3

R3
. The product of

(2)

(G� T )
(1)

@i� is of order
v
3

R2
and a spatial derivative introduces an extra factor of 1/R,

hence these two terms are of the same order; so to lowest order this equation reads:

@0

(2)

(G� T ) = @i

� (2)

(G� T )
(1)

@i�
�

25



This almost looks like a continuity equation and in fact will be whenever we interpret �
properly later on.

Now we expand the modified Einstein equation. To do that we first expand the (G �
T )@µ�@⌫� term:

(G� T )@0�@0� = (
(2)

G� T +
(4)

G� T )(1+
(2)

@0� +
(4)

@0�)(1+
(2)

@0� +
(4)

@0�)

hence it’s easily seen that to lowest order

(G� T )@0�@0� = (
(2)

G� T ) + ...

Similarly the other terms to lowest order are:

(G� T )@0�@i� = (
(2)

G� T )
(1)

@i� +...

(G� T )@i�@j� = (
(2)

G� T )
(1)

@i�

(1)

@j� +...

Note that the space-space term starts at order 4 and hence won’t contribute to lowest
order field equations. Hence finally we can write down the field equations to lowest order;
plugging in the expansion of the Einstein tensor previously derived we get the following:

1

2

(2)

R00 +
1

2

(2)

Rjj +(
(2)

G� T ) =
(2)

T00

(3)

R0i +(
(2)

G� T )
(1)

@i� =
(3)

T0i

(2)

Rij +
1

2

� (2)

R00 �
(2)

Rkk

�
�ij =

(2)

Tij

If we write these explicitly in terms of the metric (and note that
(2)

Tij = 0 from standard
post-Newtonian theory) then:

�1

4
�

(2)
g00 �

1

4
�

(2)
gjj =

(2)

T00 �(
(2)

G� T )

�1

2
�

(3)
g0i =

(3)

T0i �(G� T )
(1)

@i�

�1

2
�

(2)
gij +

1

4
(��

(2)
g00 +�

(2)
gkk)�ij = 0
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It is possible to further simplify the equations; taking the 3-trace of the last equation we
obtain:

3

4
�

(2)
g00 =

1

4
�

(2)
gkk

plugging this back into the first equation we obtain:

�
(2)
g00 = �

(2)

T00 +(
(2)

G� T )

Finally, we arrive at the Post-Newtonian Mimetic equations as:

�
(2)
g00 = �

(2)

T00 +(
(2)

G� T )

�1

2
�

(3)
g0i =

(3)

T0i �(G� T )
(1)

@i�

@0

(2)

(G� T ) = @i

� (2)

(G� T )
(1)

@i�
�

�1

2

(2)
g00 +

1

2
|

(1)

r� |2 =
(2)

@0�

4.2 Interpreting The Equations

We will be working with the 4 equations above and hence to simplify notation we define
g00 := �2U E := (G�T )

2 , and  := ��, all evaluated to lowest order.
Notice that if we take the gradient of the last equation we obtain:

rr ·r + @0r = �rU

Where rr is the Hessian of  and · is the vector tensor dot product. Notice that this
is exactly the Euler equation for a presureless fluid with r playing the role of a velocity
field. The left hand side represents the convective derivative of the velocity field and
the RHS is the gravitational force. Of course this could have also been derived by the
conservation of energy momentum tensor (and expanding it to lowest order). We also
have a continuity equation:

@0E = �r · (Er )

We see the somewhat expected final result that mimetic gravity is equivalent to Newto-
nian gravity coupled to an Eulerian pressureless fluid whose velocity field comes from a

27



potential function. This fluid, however, is of course not part of any regular matter but
may be thought of as an intrinsic component of gravity.

4.3 Some Interesting Implications

Let us re-write the 3 main equations (we drop the space-time Einstein equation since it
plays no role in what follows) where we also reinstate relevant constant:

�U = 4⇡G⇢� E (4.1)

@0E = �r · (Er ) (4.2)

U

c2
+

1

2
kr k2 = �@0 (4.3)

Notice that this is a system of 3 non-linear PDE’s for 3 unknowns provided that ⇢ is
given; if not then we would couple it to the standard hydrodynamic matter. So even
if the matter density is given, one can’t in general write a closed form solution for the
potential U since it is also determined by E which in turn is coupled to  which in turn
is coupled back to the potential U . We notice that if E = 0 then (4.2) is identically
satisfied and the solution for U agrees with the standard GR/Newtonian solution. Then
 is determined in terms of U via (4.3). In this case,  doesn’t directly a↵ect U neither
the dynamics of particles in the Newtonian limit (which are only sensitive to U ; this can
be seen from the expansion of geodesic equation). Also the fact that E is subtracted from
⇢ is not particularly significant since in practice its sign is determined by an integration
constant.

To obtain solutions not equivalent to GR we must have E 6= 0. Let us begin by assuming
that E is time independent, then (4.2) implies that a general class of solutions for Er 
is given by:

Er = r⇥ ~A (4.4)

~A is a free parameter of the theory and may be thought as representing the amount
of mimetic matter as well as its direction (in the same spirit as when it was originally
conceived to mimic cold dark matter in the original paper). Hence ~A immediately implies
a preferred direction in space or a preferred frame. This is of course not surprising
because there is a well known link between Mimetic gravity and Einstein aether theories
as mentioned in the introduction. We will eventually be interested in applying the theory
to explain the e↵ects of dark matter on astrophysical scales. (4.4) also allows us to
immediately write down the solution to g0i:
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(3)
g0i = �2

Z
(3)

T0i �(r⇥ ~A)i

Note that mimetic gravity’s original success was attributed to it being able to incorporate
cosmological dark matter into the geometry of space-time, so the natural question is
whether it is able to do so on astrophysical scales. After all, the original evidence for
dark matter came from analyzing the so called rotation curves of galaxies and it was
realized that the visible matter couldn’t account for the observations [12], hence the
standard solution to the problem is to postulate the existence of an extra component of
matter called dark matter (the other being to modify the gravitational theory itself, as
for example is done in MOND). Mimetic gravity is able to incorporate dark matter into
the geometry of space-time on cosmological scales where it is assumed that space-time
(and hence, by extension, matter) is homogeneous and isotropic. This is a very special
setting and possesses a very high degree of symmetry; when we go down to astrophysical
scales (where Newtonian limit still applies), we observe that mimetic gravity is unable
to incorporate the e↵ects of dark matter into the mimetic fluid. To see this we first note
that to obtain the required rotation curve on galactic scale it is required that the density
profile of E to satisfy

E / 1

r2

outside the regular matter (where ⇢ = 0). From the continuity equation we see that

E 
0 / 1

r2

Hence we see that to get the required profile we must have  0 = constant. But (4.3) then
implies that U is also a constant (assuming a static case). On the other hand, using (4.1)
we get

U = �GM/r + term linear in r

Clearly, contradicting the existence of such a profile. So we see that on astrophysical
scales mimetic gravity can’t mimic the exact profile dark matter.

A natural question at this point would be the following: What kind of constraints
can we put on the mimetic matter/fluid such that it agrees with solar system tests? The
general method to answer such a question would be to compute the PPN parameters of
the theory and relate them to the experimentally known values. Unfortunately, mimetic
gravity doesn’t seem to fit in the parametrized post-Newtonian framework as established,
say, in [13], hence more direct methods are required. We can, however, say something
about a static space-time. As mentioned in the introduction, previous work on static
space-times in mimetic gravity assumed that the mimetic field is independent of time. In
our work, we expanded � around the solution � = t, hence it is not time-independent,
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but this is of no harm since one notices that only gradients of � enter the equations,
hence we can still study static space-times.

We find that any static solution would necessarily lead to a di↵erent Newtonian limit
than standard GR. To see this, a static space-time implies the solution to (4.2) is given
by (4.4) which implies that:

E
2kr k2 = kr ⇥ ~Ak2

Then (4.3) implies that (assuming U < 0 which it is in regular Newtonian case).

kr k2 = �2U

c2
(4.5)

Then assuming E > 0 (energy density of mimetic fluid is positive) we have

E =
ckr ⇥ ~Akp

�2U

Plugging this back in (4.1) we obtain:

�U = 4⇡G⇢� ckr ⇥ ~Akp
�2U

Clearly this will lead to a solution quite di↵erent than the standard Newtonian case,
and the deviation could be thought of as being measured by the free parameter ~A (if
~A or r ⇥ ~A = 0 we recover GR). Hence we conclude that all non-GR static solutions
(with E 6= 0) necessarily lead to noticeable deviations from the standard Newtonian
potential. This is to be contrasted to the Einstein vector theory where one can obtain
a solution in which the aether field is in the direction of the killing vector @t and the
result would just be a modification of the e↵ective gravitational constant [14]. But the
proportionality constant between geometry and matter is determined by the Newtonian
limit hence there’s no contradiction with Newtonian theory. Such a thing is not possible
in mimetic gravity because, among other things, a mimetic fluid being in the direction of
the time-like Killing vector contradicts (4.3).

4.4 Lack of Asymptotic Flatness

Here we shall show that any static spherically space-time cannot be asymptotically flat .
Let us take our domain to be D = {x 2 R

3 : kxk � R} for some radius R. We will prove
the claim by a contradiction. Suppose that space-time is asymptotically flat; this implies
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U ! 0 as r ! 1; then (4.5) implies kr k ! 0 as well. So there exist a constant b and

a radius R0 such that
1

kr k � b for all r � R
01.

Static space-time implies E is time-independent and hence

r · (Er ) = 0

Using the divergence theorem, this implies that for any spherical surface of radius r

(denoted by Sr) we have:
I

Sr

Er · ds =
I

SR

Er · ds = L

where L is a constant. If r � R
0 and if E doesn’t change sign (which is reasonable since

E is an energy density analogue) then we have

|L| =
����
I

Sr

Er · ds
���� =

��4⇡r2 0
E
��

Hence we have the following bound, for r � R
0:

b|L| 
��4⇡r2E

��

Now we turn to U . By using Gauss law we have

U
0(r)4⇡r2 =

Z

kx0kR0
(⇢� E) d3x0 �

Z

r�kx0k�R0
E d

3
x
0

U
0(r) =

1

4⇡r2

✓Z

kx0kR0
(⇢� E) d3x0 �

Z

r�kx0k�R0
E d

3
x
0
◆

The first integral clearly leads to a contribution to U (not U 0) that vanishes at 1 hence
we concentrate on the second one:

1

4⇡r2

����

Z

r�kx0k�R0
E d

3
x
0
���� =

1

4⇡r2

����

Z r

R0
E4⇡r02 dr0

���� �
b|L|
4⇡r2

(r �R
0) =

b|L|
4⇡r

� b|L|R0

4⇡r2

Hence by integrating the above expression we see that as r ! 1 we have:

|U(r)| � b|L|
4⇡

ln(r)±O(
1

r
)

1Without loss of generality we assume that the matter density vanishes exterior to R0
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leading to a contradiction. Essentially this says that the right hand side term E in (4.1)
doesn’t decay fast enough to have an asymptotically flat space-time. Or in pure Newto-
nian terms, the mimetic energy density E doesn’t decay fast enough to have a vanishing
potential at infinity.

This would imply that mimetic (static) black holes can’t be asymptotically flat, since if
they were, then in the asymptotic region the post Newtonian expansion would be valid.
The argument above, however, shows that in the asymptotic region the contribution of
the mimetic fluid is always significant enough to guarantee a non-asymptotically flat
solution, which leads to a contradiction. This is in agreement with [6] [15] (although it
should be noted that neither is working within the exact same framework as we are).

4.5 Static Spherically Symmetric Case: Approximate Solutions

Let us now study the physically most interesting situation where we assume static spher-
ically symmetric space-time. As pointed out before, spherically symmetric space-times
were already studied, but only with space-like constraints or complex scalar field. We
study real solutions and seek to qualitatively explain rotation curves. Even though we
already showed that an exact 1/r2 profile can’t be obtained, the basic qualitative features
can be obtained in the mimetic framework. Note that [11] [6] explained rotation curves
through an additional potential term (as well as complex scalar field and/or space-like
constraint), we seek to do so without any extra potential terms with a real mimetic field.
A static space-time immediately implies that E should be time-independent and a func-
tion of r only, and that  is a function of r and possibly linear in t. We start by assuming
it’s independent of t. Then (4.2) implies:

r · (Er ) = 0

If we assume Er vanishes at infinity then we obtain:

Er =
↵~r

r3
(4.6)

where ↵ is the free parameter of our theory. If we set it to zero this will immediately
imply that E is zero (otherwise (4.3) would be inconsistent), hence we assume it’s not
zero and proceed. In that case (4.3) reads:

U

c2
+
 

0(r)2

2
= 0

Hence assuming �U > 0 we obtain:

 
0(r) = ±1

c

p
�2U
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Plugging that in (4.4) we obtain:

E = � ↵c

r2
p
�2U

where the sign ambiguity has been absorbed into ↵ (the sign of ↵ is chosen so that �E

comes out positive because this is the only physically relevant case). Plugging this back
into (4.1) we arrive at the equation for the potential U :

�U = 4⇡G⇢+
↵c

r2
p
�2U

(4.7)

In general this has no closed form solution; hence we will obtain the solution numeri-
cally, but before we do so we can attempt to solve it approximately. To do this we first
choose a characteristic length-scale R of the solar system (say 1AU). Then we notice
that ↵ has dimensions of v2; intuitively it is an energy/mass flux free parameter which
represents the amount of mimetic contribution to the background. Hence by dimensional
analysis we can compare it to a quantity made up of characteristic mass and lengths of
the system: GM

R . If we assume that

↵ ⌧
✓
GM

R

◆ 3
2 1

c
(4.8)

then it is apparent that we can solve the equation perturbatively. It will also turn out that
this approximate solution will exhibit the basic qualitative features of the more precise
numerical solution. Hence we solve the equations perturbatively. At zeroth order we have
the well known solution:

U = �GM

r

where

M =

Z
⇢(x)d3x

Then we plug this solution back in (4.7) to obtain:

�U = 4⇡G⇢+
↵c

r2

r
2
GM

r

Since we are interested in the behavior far away from the sources (where ⇢ = 0) we obtain:

�U =
↵c

r2

r
2
GM

r

=
↵cp

2GMr3
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Since U is only a function of r we have:

1

r2

d

dr

✓
r
2dU

dr

◆
=

↵cp
2GMr3

Integrating twice we finally obtain the full solution as

U = �GM/r + ↵c

r
8r

9GM
(4.9)

Clearly if ↵ satisfies (4.8) then the second term is negligible on the solar system scale.
In this way the mimetic fluid wouldn’t a↵ect the predictions on the solar system scale.
However the hope is that it could play a role on galactic scales and explain the flat
rotation curves.

If we now apply the theory to the galactic scale and attempt (at least qualitatively) to
reconstruct the dark matter potential, then M would be the mass of the galaxy, and
R would be the characteristic length of the galaxy (say, the radius of visible matter).
Then the second term must be of the same order as the first term (of course, then the
perturbative analysis would break down but we’ll do a numerical simulation shortly which
will reveal the same qualitative features) at this radius R, from this one can determine
↵:

↵ ⇡
✓
GM

R

◆ 3
2 1

c

Then from (4.9) we can see that the second term will dominate beyond the radius R. To
recover this result in a more rigorous manner one needs to perform a numerical simulation.
Recall, however, that if  is time independent, then (4.3) implies that U can’t be positive.
However one needs U to have positive values to recover the correct galactic potential (with
dark matter contribution). One can do this by assuming  linearly depends on t. This
would still lead to a static space-time, since only derivatives of  appear in the equations.
Hence if we assume that  is of the form  (t, r) = �kt+ f(r) then (4.3) would imply

f
0(r) =  

0(r) =

r
�2U

c2
+ 2k

then the modified Poisson equation to be solved is

�U = 4⇡G⇢+
↵

r2
q

�2U
c2 + 2k

(4.10)

k is dimensionless and must be of order v2

c2 to be consistent with the expansion. To get rid
of c let us redefine the variables ↵ ! ↵c, so now ↵ has dimensions of v3 and k ! kc

2 so
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now k has dimensions of speed squared and must be of order v2, then the above equation
becomes

�U = 4⇡G⇢+
↵

r2
p
�2U + 2k

(4.11)

We will solve this equation numerically. To do so we make the following further assump-
tion: We assume that inside the radius R only the first term contributes and so the second
term is actually multiplied by a step function. Another way of saying this is as follows:
We choose units in which GM = 1 and R = 1. Then we will simulate the equation

�U =
↵

r2
p
�2U + 2k

(4.12)

with the boundary condition U(1) = �1, U 0(1) = 1

Figure 4.1: Numerical method 4th order Runge Kutta was used, with max step size
0.0001. The domain was taken to be [1,10] and the boundary conditions were U(1) = �1,
U

0(1) = 1 in accordance with the standard Newtonian solution. k = 5, ↵ = 1.

Note that when we choose k = 5 what we actually mean is k = 5GM
R . We can also

plot the energy density and compare it with a 1
r2 density.
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Figure 4.2: Plot of E vs r with domain size [1,10]. Same Boundary conditions as above.

Figure 4.3: Comparison of E with an inverse square density on a [1,10] domain.

If we choose a bigger domain then the comparison would be as follows:
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Figure 4.4: Comparison of E with an inverse square density with [1,100] domain.

As for the potential, choosing an even bigger domain reveals that this extra potential
term has essentially a logarithmic dependence at large r:

Figure 4.5: The domain was taken to be [1,1000] and the boundary conditions were
U(1) = �1, U 0(1) = 1. k=5, ↵ = 1.

A direct comparison shows that it actually varies slower than a logarithm but faster
than the square root of a logarithm. A logarithmic term is exactly what one needs to
explain flat rotation curves. Once the potential is computed, one can solve for the velocity
profile by equating the centrifugal force/acceleration to the gradient of the potential.
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Hence, we recover the basic qualitative features of the rotation curves by fixing particular
boundary conditions.

Figure 4.6: galaxy rotation curves. The domain was taken to be [0.1,50], the boundary
conditions used are U(0.1) = 0.1, U 0(0.1) = �0.1.

Fixing the boundary conditions amounts to fixing the amount of mimetic contributions
inside the radius r = 0.1. Here is the plot of the same boundary conditions with various
values for ↵.

Figure 4.7: galaxy rotation curves. The domain was taken to be [0.1,50], the boundary
conditions used are U(0.1) = 0.1, U 0(0.1) = �0.1.
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Chapter 5

Conclusion and Future Work

We carried out the post-Newtonian expansion in Mimetic gravity. We were then able to
derive the Newtonian limit of the theory. The mimetic contribution is characterized by
an energy flux parameter; using this parameter we sought to mimic the e↵ects of dark
matter on astrophysical scales. We are able to recover the Newtonian solution as well
as qualitatively explain flat rotation curves on galactic scales. To account precisely for
the e↵ects of dark matter one needs a logarithmic term in the potential; we show that
even though such a term can’t be obtained as an exact solution to the equations, by
using numerical simulations one can obtain a quasi-logarithmic term in the potential. In
this way, we are able to recover the flat rotation curves. We also prove a theorem that
all static spherically symmetric solutions with non trivial mimetic contributions are not
asymptotically flat.

To get an even better picture of where mimetic gravity stands regarding the galactic
rotation curves, one needs to compare the numerical simulation curves to the most recent
dark matter profiles/velocity curves coming from observational data. Note that one also
has to solve the equations of mimetic gravity starting from inside the visible galactic
matter (we only did so starting from the outside).
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