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Abstract
of the Thesis of

Batool Ali Ibrahim for Master of Engineering
Major: Electrical and Computer Engineering

Title: 3D Autocomplete: Enhancing UAV Teleoperation with AI in the Loop

Manually teleoperating a flying robot can be a demanding task, especially for users
with limited levels of experience. This is primarily due to the nonlinear properties of
such robots in addition to the difficulty of controlling various degrees of freedom at
the same time. To help mitigate such limitations, this thesis proposes a framework
named ‘3D Autocomplete’ that aids users in teleoperation. It uses artificial intelli-
gence to predict in real-time the operator’s intended motion, and mixed reality to
convey the predicted motion to the user. Previous Autocomplete systems focused on
different 2D motions in the same plane (line, arc, sine). However, since many drone
tasks take place in a three-dimensional environment, 3D Autocomplete primarily
assists users in navigating challenging 3D motions around 3D geometric primitives
(cylinder, cone, and box). During teleoperation, the framework uses a real-time
change point detection algorithm called ‘just-in-time’ to monitor the user’s input,
and deep learning to early predict the motion type as one of predefined 3D motions.
Then, the predicted motion is augmented into the first person view in real-time
using a virtual reality headset. Finally, if the users accept the proposed trajectory,
3D Autocomplete completes their desired motion autonomously. We validate the
proposed mixed reality teleoperation approach by conducting different experiments
on a simulated quadrotor. The results illustrate 3D Autocomplete advantages over
traditional teleoperation methods through both subjective and objective evaluations
conducted via human subject experiments. The system achieves its primary goal of
reducing the users workload, and improves task completion time and covered dis-
tance by at least 30% compared to traditional teleoperation. Moreover, it enhanced
the system performance and trajectory smoothness by approximately 50%.
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Chapter 1

Introduction

Human-Robot Interaction (HRI) is an evolving field in robotics [1]. It arises from
the need to enhance the communication between humans and robots, primarily in
application areas that require human-robot collaboration [2]. A significant aspect of
HRI is teleoperation, which has been widely utilized to carry out tasks in hazardous
and inaccessible environments through remotely controlled robots. However, until
now, robot teleoperation from a remote location is still a challenging task, especially
when controlling flying robots, known as Unmanned Aerial Vehicles (UAVs) [3].

Despite the fact that UAVs are already used in various applications such as load
transportation [4], farming [5], and surveillance [6]; their teleoperation remains a
demanding task that requires a certain level of experience. This is due to several
factors: first, the under-actuated characteristics of these robots require mapping
a large number of actuator degrees of freedom on the robot’s side into a smaller
set of control inputs on the user’s side [7]. This mapping is often challenging and
demands extensive training for users to understand the interactions between the
control inputs and the robot’s behavior. Second, the UAV control inputs are not
always intuitive. In other words, the operators’ movements using devices like joy-
sticks or haptic controllers may not directly correspond to the robot’s actual motion.
Third, the limited perceptual capability and sensory feedback at the operator’s end
limit the user’s awareness of the surroundings [8]. This directly impacts the system
performance by compromising the operator’s ability to make informed decisions and
respond to dynamic environmental changes. All these contributing factors signifi-
cantly impact robot teleoperation and may lead to frequent crashes and potential
damage to the robot or the surrounding environment. Accordingly, for the pur-
pose of mitigating these limitations and assisting the users while remote controlling
UAVs, Autocomplete was proposed [9].

Autocomplete aids UAV operators by predicting their desired motions and com-
pleting them in an autonomous manner. In more detail, while a person is tele-
operating a UAV, Autocomplete uses the input joystick commands (input velocity
vectors) to predict the user’s intended-motion type with the help of Artificial Intel-
ligence (AI) which classifies the motion as one of several defined motion primitives.
Then, the user is shown the predicted motion through a User Interface (UI) and has
the option to accept, reject, or ignore. When the predicted motion is accepted, the
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Figure 1.1: 3D Autocomplete: the user’s manual motions are represented in red,
whereas the 3D Autocomplete autonomous motions are represented in black. The
motion around the tree is considered as a motion around a cylinder, around the
building as a box, and around the antenna as a cone.

system synthesizes and completes the user desired motion autonomously. However,
if the users reject or ignore the predicted motion, they retain the control of the UAV
using the joystick controller.

In previous works, Autocomplete was implemented using different approaches.
Initially [9], a support vector machine was used to classify the user’s partial motions,
and a UI was created to augment the predicted motions in the UAV’s camera video
stream. The conducted experiments in a Gazebo simulated environment on ROS
showed that trajectories conducted using Autocomplete are closer to the optimal
trajectories than using conventional teleoperation. The framework was upgraded
in [10], where a trained deep neural network was used, and mixed reality was in-
troduced to the system to provide the estimated trajectories to the users in an
intuitive manner. The deep learning model was improved using online learning [11]
and partial-feedback [12], where the user’s acceptance or rejection of the motion
were used to improve the model. In all of these works, the predicted and syn-
thesized motion primitives were focused on 2D motions, including lines, arcs, and
sinusoidal motions. However, teleoperating UAVs in a real-world requires a frame-
work that allows the UAV to perform more complex motions and navigate different
3D trajectories, like flying the UAV around a tree or a building. Such tasks are more
difficult for the user and the risk of accidents increase. Accordingly, the need for
autocomplete autonomy is more impactful to enhance the safety of UAV operations
and reduce the work load on human operators.
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In this regard, to make teleoperation of UAVs in complex scenarios more acces-
sible and practical, this thesis presents a 3D Autocomplete framework that handles
more complex motions. Mainly, 3D motions around 3D geometric primitives com-
monly encountered in any 3D environment: cylinder, cone, and box. Handling such
primitives enables the system to negotiate 3D objects with similar geometrical prop-
erties (see Fig. 1.1), like buildings (box) or towers (cylinder); in addition to more
complex shapes that are a combination of those primitives. For example, a motion
around a tree can be considered as a motion around a cylinder followed by a motion
around a cone.

The proposed 3D Autocomplete framework relies on trained deep neural net-
works to classify the motion type based on the input velocity vectors. This requires
collecting a diverse dataset of 3D motions for model training. Moreover, since mo-
tions can have different scales depending on the geometric primitive in which the
UAV is flying around (large building versus small tree), my framework uses a just-in-
time early motion prediction algorithm that monitors the UAV’s motion and allows
the system to determine when to predict the motion type in real-time, ensuring
scale-agnostic operation. Finally, the predicted motions are communicated to the
user through a mixed reality UI and a VR headset for a more efficient teleoperation
experience.

The contributions of this thesis are summarized as follows:

• I propose a system that detects the user intended 3D motion from the joystick
control commands based on trained deep neural networks.

• I propose a just-in-time algorithm to perform an early prediction of the user’s
motion and to make the framework scale agnostic.

• I deal with the prediction of variable motion sizes instead of considering a
constant time interval and a fixed number of velocity vector samples.

• I propose a motion synthesis algorithm that generates the trajectory needed
to complete the user’s desired motion autonomously after predicting its type.

• I introduce a mixed reality UI that enables the operator to observe the 3D
predicted motions augmented directly to the surrounding environment scene
using a MR headset.

This thesis report is structured as follows: Chapter 2 covers the related work
in Autocomplete, deep learning, and mixed reality in teleoperation. Chapter 3
presents the proposed approach for 3D Autocomplete, including detailed descrip-
tions of the methodology, algorithms, and models employed. Chapter 4 presents
and discusses the obtained results considering both quantitative and qualitative as-
sessments. Chapter 5 provides a concise overview of the framework’s achievements,
limitations, and opportunities for future enhancements. Finally, chapter 6 includes
the conclusion of this report and suggests potential paths for future research.

10



Chapter 2

Literature Review

This thesis introduces 3D Autocomplete, an assisted teleoperation framework de-
signed to support users during teleoperation. It combines deep learning to predict
the user’s motion type and mixed reality for user communication. Accordingly, to
substantiate my contributions, this chapter conducts a review of the state-of-the-art
and recent developments in assisted teleoperation, deep learning, and mixed reality
within the context of teleoperation.

2.1 Assisted Teleoperation

Given the widespread usage of teleoperated robots, assistive teleoperation has been
addressed using different approaches. Zhang et al. [13] use Implicit Neural Field
(INF), which relies on neural networks to assist humans in teleoperating surgical
robots. The system takes as an input the ′leading hand′ commands conducted by the
operator, and corrects them with the help of INF to prevent any collisions with the
human tissues. In this approach, the users have to teleoperate the robot manually
throughout the entire task, while the system is optimizing their path. In contrast,
my proposed 3D Autocomplete requires only a partial user motion as a manual
input, and then can predict the desired motion type and complete it autonomously.

Maeda in [14] proposes a policy blending with primitives strategy that combines
the control policies of the robot and the human using dynamical movement primi-
tives. These primitives allow the robot to execute complex movements by breaking
them down into sub-movements while blending the real-time user inputs. A sim-
ilar approach is introduced in [15], where Gottardi et al. present a system that
generates a sequence of safe points to reach a specific goal while considering the
user’s intentions. The proposed systems are focused on applications that involve
targeting goals or dynamic obstacle avoidance. However, it is not suitable for other
application types such as surveillance or robot racing.

Havoutis et al. [16] present a framework that aids underwater vehicle teleoper-
ation. They introduce online Bayesian non-parametric learning algorithms to build
models of manipulation based on user demonstrations. Then, model predictive con-
trol is used to execute the motions autonomously. Ewerton et al. [17] address
cases when changes occur in the surrounding environment after demonstrations were
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made. They present a reinforcement learning algorithm, pearson-correlation-based
relevance weighted policy optimization, to learn and optimize the robot trajectory
distributions and assist its teleoperation in static and dynamic environments. The
entire framework is used to aid in the teleoperation of a 7-DoF robot arm in a dy-
namic environment while executing a specific task. In the same context, Dass et
al. [18] develop a policy-assisted teleoperation system to collect large datasets for
training Machine Learning (ML) robotic models. The primary goal of the system is
to reduce the mental load on users by automating repetitive tasks while collecting
robot demonstrations. To do so, they employ a hierarchical framework with two
levels: a high-level policy for subtask selection, and a low-level policy for gener-
ating robot control commands; both policies are based on deep neural networks.
The human-subject experiments showed that the proposed framework improved the
data collection efficiency while reducing the operators’ mental load. The limitation
of these approaches is that they are task-centered, which requires unique data for
each task. In contrast, my proposed Autocomplete system is user-centered; it iden-
tifies the user’s intended motion and completes it autonomously regardless of the
task.

Aligning with the focus of my study, Wang et al. [19] address assistive teleoper-
ation in flying robots. They propose a system that utilizes the human gaze and the
remote controller commands to generate a path that satisfies the operator’s inten-
tions. The gaze captures the targeted position, whereas the remote controller input
is used to identify the intended speed. Real world experiments have verified the
reliability and robustness of the proposed framework. However, such system relies
on the accuracy of the operator’s gaze data which may be affected by several factors
such as the lighting conditions or eye movements. Chen et al. [20] overcome such
limitations by proposing a system that adapts to these changes using reinforcement
learning. The proposed system is used to control a wheelchair-mounted Jaco arm
that performs simple tasks such as controlling light switches, unlocking doors, and
manipulating valves by mapping the user’s gaze features to joint torques. Although
human-subject tests yielded promising results, the system relies on a pre-determined
set of tasks for learning, which may not always be available in real-world scenarios.

Another work is presented in [21], where Yang et al. use a selector function to
choose a motion that reflects the user’s intentions from a subset of motion primi-
tives. This subset is sampled from a dense motion primitives library using impor-
tance sampling. Then, the selector function chooses the motion that has the most
similar parameterization to the operator joystick inputs. The proposed framework
is applied on gait systems and air vehicle (2D motions: line and arc). Although
such a system produced encouraging results, it is completely user-dependent where
a motion primitives library is generated for each user. My proposed Autocomplete
framework is collaborative and reduces the operator workload. Moreover, it consid-
ers 3D motions instead of only 2D motions.

Several works have viewed assistive teleoperation as a control problem to avoid
collisions. Perez-Grau et al. [22] introduce autonomous obstacle avoidance to the
teleoperation of small UAVs to aid inexperienced rescue team members to control
the UAV in inspection tasks. The semi-autonomous teleoperation system performs
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obstacle avoidance while planning the robot trajectory using a local planner, which
continuously checks for trajectory re-planning. In case an obstacle is detected by
the on-board visual sensors, it takes evasive action to keep the UAV inside the pre-
set safety distances. Xu et al. [23] use a control Lyapunov function for assisting
human operators to avoid potential obstacles. A collision avoidance rectifier is used
to execute a constrained quadratic optimization and modify the robot parameters
in order to satisfy the safety conditions. The limitation with such works is that they
do not take the user’s intentions into consideration, they only focus on bypassing
encountered obstacles. In contrast, 3D Autocomplete is designed with the user’s
intention as its primary focus.

2.2 Deep Learning in Teleoperation

A considerable number of works in the robotics literature rely on deep learning for
different tasks such as path and trajectory planning [24], motion control [25], surveil-
lance [26], etc. Moreover, the literature widely introduces prediction and recognition
systems for the user intentions in various robotics applications, including teleoper-
ation of mobile robots [27], driving wheelchairs [28], teleoperation of robotic hand
[29], etc. However, only few works consider deep learning for assisted teleoperation.

Based on deep learning in teleoperation, Laskey et al. [30] compares the Robot-
Centric (RC) sampling to the Human-Centric sampling (HC). A grid world environ-
ment and a physical robot object singulation task are used for the comparison. The
simulation results showed that policies learned with RC performed better than those
learned with HC for linear support vector machines; however, this advantage disap-
pears when highly expressive learning models such as deep models are used. Zhou
et al. [31] propose an intelligent interface to aid the teleoperation of an industrial
construction robot. The proposed interface reconstructs in Virtual Reality (VR) the
surrounding workspace scene model. Accordingly, the human operator could manip-
ulate the remote robotic arms with handheld controllers based on the reconstructed
scene. Deep learning is introduced for object detection in the captured scene. The
results of testing the proposed framework on Baxter manipulators showed that it is
more efficient compared to traditional robotic teleoperation. Li et al. [32] introduce
an end-to-end teacher-student deep Convolutional Neural Network (CNN). It is used
for dexterous robotic hands teleoperation based on a single-depth image. The pro-
posed network learns mappings between the joint angles of the robot hand and the
depth images of a human hand to produce similar poses. Based on the teleoperation
experiments done by novice users, TeachNet has shown its superiority compared to
other state of art vision-based teleoperation techniques. A similar study was in-
troduced by Zhang et al. [33], who construct a system that uses consumer-grade
VR in order to teleoperate a PR2 robot even in the case of complex tasks. They
concatenate RGB and depth images to feed a single deep CNN augmented with
auxiliary prediction connections. Accordingly, deep visuomotor policies are trained
to map pixels directly into actions using behavioral cloning. Using the same model
architecture and hyper-parameters across all tasks, the results showed that less than
30 minutes of demonstration data are sufficient for each task to learn a successful
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policy.
The previously mentioned works capture through CNN the spatial features of

the considered data. In this thesis, deep learning is introduced in 3D Autocomplete
to predict the user intended motions from the joystick commands. To make this
attainable, a dataset of different 3D motions is collected. This allows to build a
deep learning model that is able to capture the long-term dependencies alongside
the short-term dependencies of the data. Moreover, I propose an algorithm capable
of indicating when a prediction should be attempted. This was found to be a critical
need when machine learning predictive models are to be used on real-time time-series
data. Moreover, I rely on velocity vector commands instead of vision-based data.

2.3 Mixed Reality in HRI

The recent technologies in MR have allowed humans to blend virtual objects with
their real surroundings. This has unveiled a new level of interaction and experience
in HRI fields. MR is used in manufacturing [34], medical surgeries [35], education
[36], etc. However, only a few works have considered MR in the context of assisted
teleoperation. Szczurek et al. [37] introduce a framework that assists operators
in teleoperating mobile robots in dangerous environments. They present a mixed
reality UI that enables both individual and multiple users to interact with 3D holo-
graphic representations of the controlled robot and its surrounding environment.
Experiments proved the effectiveness of the proposed system in enabling stable re-
mote teleoperation. In similar work, Sun el al. [38] used an MR interface with an
interaction proxy for teleoperating industrial robots. The proposed system utilizes
a Head-Mounted Display (HMD) interface with tracking technology for both head
and hand gestures in the virtual environment. While these works use MR to enable
remote teleoperation within a constructed scene, my proposed system directly aug-
ments the user’s desired trajectory into the real-world scene of the robot’s camera.

Hedayati et al. [39] introduce an augmented reality UI to improve the teleopera-
tion of UAVs. In their framework, they integrate information from the robot’s visual
stream into the user’s perspective of the UAV and its surroundings. Additionally,
the system provides real-time visual feedback on the UAV camera functionalities.
This allows for more effective robot control and task completion. Both quantitative
and qualitative results have validated the effectiveness of their system in enhanc-
ing the teleoperation of UAVs, similar work is presented in [40]. Moreover, Lee et
al. [41] introduced an innovative approach to robot teleoperation by incorporating
virtual fixtures into the environment scene. They propose that integrating virtual
fixtures is aimed at improving user understanding. The framework is suggested to
be used in risky challenges such as cleaning up nuclear waste.

The weakness of the works mentioned earlier lies in their exclusive emphasis
on enhancing the user’s perspective, and presuming constant visibility of the robot
within the user’s field of view (FOV). However, this approach may fail when the
robot is situated far away from the control station. In contrast, my proposed UI
adopts a first-person view approach. In other words, operators observe a live video
feed from the robot’s built-in camera using a mixed reality headset. This setup
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allows the user to maintain a view of the robot’s environment even when the robot
is not within the FOV.

15



Chapter 3

Proposed Approach

The objective of this thesis is to develop 3D Autocomplete for aiding UAV teleop-
eration in 3D motion scenarios. Accordingly, this chapter introduces the proposed
architecture, detailing each component within the system and exploring the theo-
retical principles behind the proposed algorithms.

3.1 Overview of System Components

The system structure of 3D Autocomplete is illustrated in Fig. 3.1.

Change Points
Detection

Adjusting the
input size

DL model

Unity

Motion Synthesis

Manual
teleoperation

Autonomous
teleoperationAccepted?

TrueFalse

3D Autocomplete

Predicted
motion

Velocity Vectors

Figure 3.1: 3D Autocomplete architecture
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3D Autocomplete takes as input the joystick commands conducted by the user
and monitors it using a change point detection algorithm (just-in-time). When
significant changes are detected, the input motion is forwarded to a deep learning
model to predict its type after resizing it to match the model’s input dimensions.
Then, 3D Autocomplete proposes the predicted motion through a UI, giving the
user the choice to either accept, decline, or ignore. If the user accepts, the system
synthesizes the suggested motion and directs it to the autonomous pilot to execute.
The components of 3D Autocomplete are addressed in the following subsections.

3.1.1 Change Points Detection: Just-in-time Algorithm

3D Autocomplete aims to predict the user’s intended motion from its partial input.
In other words, it tries to provide an early prediction of the user intended motion.
To perform such a task, the system should decide in real-time when to predict
the motion type. In previous works, Zein et al. [10] [9] considered a constant
time interval and a constant number of velocity vector samples to predict the user’s
motion. However, this might lead to the prediction being too early, where the model
might not have sufficient information to distinguish motions, or it might be too late
for the benefits of 3D Autocomplete to apply. Moreover, to fly a UAV around a 3D
shape, each geometric primitive size would require a different time interval to be
covered, and thus each motion is presented by a different number of samples. This
also leads to the model being scale-sensitive.

To address these issues, I develop a just-in-time algorithm based on spotting
important ‘change points’ in the operator’s 3D motion while flying the UAV. This
allows the system to predict the intended motion type after identifying these im-
portant changes in the motion. One of the important changes in the considered 3D
motions is the change of the motion direction, velocity vector direction, while the
UAV is moving around the shape, as shown in Fig. 3.2. These change points indi-
cate that the user has already covered a sufficient part of the 3D geometrical shape
by flying around it despite the shape size or type, and the needed time (number of
samples).

Figure 3.2: Spotting important changes in the user 3D motion: a change point,
presented by a cross, is detected when a change in the drone velocity vectors direction
take place.
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Our approach to detect these changes is summarized in Algorithm 1. While col-
lecting the velocity vectors that correspond to the UAV commands, the dot product
between the currently collected velocity vector (Vi) and a reference vector (VR) is
calculated. The reference vector presents the direction of the previously collected
vectors. Accordingly, based on the cosine of the angle between them, the dot prod-
uct interprets the direction of the new vector relative to the direction of the previous
ones as shown below:

dot(Vi, VR) = ∥Vi∥ · ∥VR∥ · cos(Vi, VR) (3.1)

V1

V2

V3

V6

V5

V4

𝜽2

𝜽3

𝜽4

𝜽5

𝜽6

Figure 3.3: Geometrical interpretation of dot product [42]: V1 and V2 are in the
same direction, where θ2 is less than 90 degrees (same half-plane). V1 and V4 are in
opposite direction, where θ4 is greater than 90 degrees.

Based on the sign of the obtained product, the algorithm can deduce the align-
ment of the new vector with respect to the previous ones. For example, if the new
vector and the previous vectors are in the same direction, the dot product will be
positive; if they are in opposite directions, it will be negative. This is because,
geometrically, the dot product is related to the angle between two vectors. If the
angle is acute (less than 90 degrees), the dot product is positive and the two vectors
are in the same half-space. If the angle is obtuse (greater than 90 degrees), the
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dot product is negative and the two vectors are in opposite half-space (see fig 3.3).
This concept applies to 3D space, as the definition of a vector is independent of any
specific position. In other words, a vector can have its tail located at any position.
Consequently, even though two vectors in 3D space can be oriented in any direc-
tion, they can be represented together on a 2D plane [42]. The reason 90 degrees is
selected as the change threshold is to allow the system to identify when the drone
was commanded ”around a corner”. Each subsequent detection represents turning
a corner and this way we are able to identify when the drone has covered a sufficient
path to allow for the algorithm to detect the shape.

After detecting a change point, the reference vector is updated to represent the
new direction of the motion. Subsequently, each new change point is detected with
respect to the updated reference vector as illustrated in Algorithm 1. This allows
3D Autocomplete to identify the changes in the UAV motion direction upon each
occurrence. Note that the commands generated by the user can be noisy, especially
for an inexperienced user. Therefore, to mitigate the effect of noise, a change point
is only detected when the change of the motion direction takes place for multiple
consecutive vectors.

Algorithm 1 Change Point Detection in Autocomplete

1: Initialization of Autocomplete components
2: k ← 0
3: Collect a velocity vector VR

4: while Repeat do
5: Collect a velocity vector Vi

6: Find the dot product between VR and Vi : di ← VR.Vi

7: if di < 0 then
8: k ← k + 1
9: if k > 5 then

10: Change point is detected at Vi

11: VR ← Vi

12: k ← 0

3.1.2 Motion Classifier: Deep Learning Model

After detecting important changes in the user’s motion, DL is employed to predict
the user’s desired motion type. To accomplish this, I collected a dataset of 3D
motion primitives and constructed a suitable model that matches the data type.

3.1.2.1 Data

Three 3D motion primitives are considered in my work: motion around a cylinder, a
cone, or a box. The Gazebo virtual environment [43] is used to collect the data (see
Fig. 3.4), and the “Tum simulator” package is used to simulate an AR.Drone 2.0.
quadrotor (see Fig. 3.5). Additionally, both “Ardrone Joystick” and “Joy Node”
are used to control the quadrotor using a PS4 joystick connected to the computer.
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The first step in the data acquisition process is creating the 3D shape that
the motion primitive will cover. For each 3D motion primitive, a corresponding
3D geometric primitive is created in the Gazebo virtual environment. Different
shape sizes (heights, radii, widths, etc.) are considered, in addition to different
orientations. Examples of the created shapes are shown in Fig. 3.6.

Figure 3.4: Gazebo virtual environment: this environment is used to collect the 3D
motions dataset.

After creating the geometrical shape, the quadrotor is moved around it using
manual joystick control, thereby forming the 3D motion to be collected. Moreover,
in order to ensure the generalizability and diversity of the dataset, several motions
with varied directions are conducted for the same shape, i.e., upwards, downwards,
forwards, backward, clockwise, anticlockwise, etc. To begin collecting the data, a
start/stop button is used to indicate the beginning/end of the 3D motion. The
collected data includes the joystick’s velocity commands determined by its ana-
log sticks movements (input from the operator), in addition to their corresponding
timestamps. This data is gathered by observing the echoed messages being pub-
lished on the“Joy” topic. Such information presents the linear velocities in the x, y,
and z directions. Each motion primitive is represented as a three-channel sequence
of velocity commands in the form of [[vx1, vy1, vz1], [vx2, vy2, vz2], ..., [vxN , vyN , vzN ]],
where N represents the sequence size. I collected 295 motions around cylinders, 279
around boxes, and 217 around cones. Therefore, the available data set consists of
791 motions. The final data was split into 80% for training and 20% for testing and
validation.
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Figure 3.5: Simulated AR.Drone 2.0. quadrotor: the “Tum simulator” simulated
drone used to collect the 3D motion dataset.

Figure 3.6: Some of the considered shapes while collecting the dataset
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3.1.2.2 Model

The collected data is made up of time series sequences that represent the joystick
velocity commands. To deal with such type of data, two very efficient state of the
art techniques are presented: 1-Dimensional Convolutional Neural Networks (1D-
CNNs) and Gated Recurrent Units (GRUs) [44]. 1D-CNN layers are capable of
capturing the local/short-term dependencies and positional relationships between
adjacent samples in the sequence. However, GRU layers, a type of recurrent neural
network (RNN), capture global/long-term dependencies and retain information from
past time steps while being computationally and memory efficient. Accordingly, my
deep learning model is made up of a combination between these layers in addi-
tion to the Adam optimizer, categorical crossentropy loss function, and LeakyReLU
activation functions to avoid exploding/vanishing gradients (see table 3.1).

To construct the proposed model, different combinations were tested starting
from one convolutional layer combined with one GRU layer. Based on the results,
more layers were added. However, the number of GRU layers was limited to a
maximum of two layers since two layers have been shown to be sufficient to detect
complex features. As a result, the model converged to the deep network shown in
Fig. 3.7 consisting of four 1D-CNNs that return low-level feature outputs which
are introduced to the two GRU layers that output the high-level features used for
classification by Softmax output (SM). Moreover, two Dropout (DO) layers were
introduced to the model to minimize overfitting, in addition to Batch Normalization
(BN) to provide some regularization (see table 3.1).

3@1x200

64@1x200

128@1x200

128@1x100 128@1x100

256@1x100

256@1x1

15 35

Conv1D

Conv1D

Conv1D

Max-Pool

Conv1D

Conv1D

Max-Pool + 

DO

GRUs + DO 

+ BN

SM

Figure 3.7: Deep learning model architecture
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Table 3.1: Overview of Neural Network Components

Component Symbol/Function Description
Adam Optimizer Adam(η, β1, β2) Adam optimizer is an adaptive opti-

mization algorithm that adjusts the
weights and biases of the neural net-
work during training. It adjusts
learning rates for each parameter in-
dividually based on the historical
gradients.
η is the learning rate, β1 and β2 are
exponential decay rates for the mo-
ment estimates.

Categorical Crossentropy Loss L(y, ŷ) = −
∑

i yi log(ŷi) A loss function commonly used for
multi-class classification problems.
It measures the dissimilarity be-
tween the true distribution y and the
predicted distribution ŷ.

LeakyReLU Activation LeakyReLU(x, α) An activation function that allows a
small negative slope (α) for the neg-
ative input region, preventing inac-
tive neurons during training. Here,
x represents the input to the activa-
tion function, and α is the slope for
negative values.

Dropout (DO) DO(x, p) A regularization technique where
randomly selected neurons are ig-
nored during training with a proba-
bility p. It helps prevent over-fitting.
Here, x is the input to the dropout
layer, and p is the probability of
dropping out a neuron.

Batch Normalization BatchNorm(x) Normalizes the input of a layer to
have zero mean and unit variance
across the mini-batch. It helps sta-
bilize and speed up the training of
neural networks. Here, x is the in-
put to the batch normalization layer.
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3.1.3 Variable Input Size

Generally, each motion primitive will have a different sequence length depending on
the type of motion, the geometric primitive dimensions, the velocity of the UAV,
etc. Moreover, in my proposed framework, the motion prediction takes place after
the change point detection, so the number of sample points in each partial motion
introduced to the deep learning model varies. However, a deep learning model has
a fixed size input layer, so the input motion size could be smaller or larger than the
expected input size of the model. To resolve this issue, 3D Autocomplete performs
up-sampling or down-sampling allowing the input motion to fit into the input layer
of the deep learning model.

For motions with a length size greater than the input size, I propose an approach
inspired by piece-wise aggregate approximation [45]. A window size is defined based
on the size of the collected samples and the targeted size. Then, depending on
how many windows are needed to down sample the motion, windows are distributed
among the samples and the velocity vector samples falling in the defined windows
are replaced by their average (see fig. 3.8. For motions with a length size smaller
than the input size, zero padding is performed.

Algorithm 2 Down and Up sampling in Autocomplete

Input: Input Layer Sequence Length n, Motion of size m x =
[x1, x2, ....., xm]

Output: Motion of size n X = [X1, X2, ....., Xn]

1: Initialization of Autocomplete components
2: n← Input Layer Sequence Length
3: Collect a partial motion x = [x1, x2, ....., xm]
4: if m > n then
5: w ← ceil(m/n)
6: j ← 0
7: while i < m do
8: if i%(m ∗ w−1

m−n
) = 0 then

9: Xj =
1
w
∗
∑i+w−1

n=i xn

10: i← i+ w
11: else
12: Xj = xi

13: i← i+ 1

14: j ← j + 1

15: else
16: j ← m
17: while l < n do
18: Xj ← [0, 0, 0]
19: l← X length

20: return X
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Velocity Vector of length m

[Vx1, Vy1, Vz1] [Vx2, Vy2, Vz2] [Vx3, Vy3, Vz3] [Vx4, Vy4, Vz4]

[Vx12, Vy12, Vz12] [Vx3, Vy3, Vz3]

Velocity Vector of length n

[Vx1, Vy1, Vz1] [Vx2, Vy2, Vz2] [Vx3, Vy3, Vz3] [Vx4, Vy4, Vz4] [Vxm, Vym, Vzm]

Targeted length: n

Window size = w = m/n

For example,  if the targeted length is n=200 and the

actual length is m=400, the window size is w = 400/200

= 2

There is 200 extra sample (m-n=400-200=200)

The window size = w = 2

we need 200 windows, since in each window two

samples are replaced by only one sample

The windows should be distributed equally along the

vector to make sure that the downsampled vector is

as smooth as possible

so each 400/200 = 2 samples, a window is needed

[Vxm, Vym, Vzm]

[Vx4, Vy4, Vz4] [Vxn, Vyn, Vzn]

The samples falling in each window are placed

by their average

Figure 3.8: Downsampling Algorithm concept
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3.1.4 Mixed Reality User Interface

Rectangular/Upwards

Rectangular/Downwards

Cylindrical/Right Upwards

Conical/Right Upwards

Cylindrical/RightCylindrical/Downwards

Conical/DownwardsCylindrical/Left Downwards

Figure 3.9: Proposed user interface for 3D Autocomplete

After predicting the user intended motion, 3D Autocomplete suggests it through
a UI. Initially [9], the idea was to augment predicted trajectories, which were gen-
erated after synthesizing the motion, and overlaying them onto the live video feed
captured by the drone’s onboard camera. However, in 3D Autocomplete, a more
advanced approach is presented: mixed reality UI. Integrating mixed reality into
teleoperation enhances the user’s understanding of the robot’s actions and its sur-
rounding environment. This strengthens the interaction between humans and robots
and thus improves the performance of the system [37].
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First, the real-time video stream from the UAV’s onboard camera is presented to
the user through a VR headset rather than the traditional screen. This experience
eliminates distractions from the physical surroundings and enhances the user’s focus
during teleoperation. Moreover, it enhances the connection and interaction between
the operators and the remote environment.

While 3D Autocomplete is active, the predicted 3D motion is augmented directly
into the user’s field of view. For example, if the predicted motion is a helix, 3D
Autocomplete will display a helical motion within the augmented environment (see
Fig. 3.9). Moreover, to take into account the motion direction while displaying
the predicted class (a helix to the left, a helix to the right, etc.), I utilize Principle
Component Analysis (PCA) to identify the major axis of the motion. Since the
primary aim is to convey to the operator the ”rough” estimate and no need to
show the exact predicted motion, I consider eight orientations for each motion:
0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦. The augmented motion is then selected
based on the nearest angle.

3.1.5 Motion Synthesis

After predicting the motion type by the deep learning model and accepting it by
the user through the MR UI, Autocomplete synthesizes the user-intended motion.
Synthesizing the motion generates an estimated 3D trajectory that fits well the
user’s partial motion and the user’s intentions. This allows the UAV to complete
the desired motion autonomously by following this generated trajectory.

The 3D motions are synthesized by fitting the partial motion performed by the
user into the predicted motion type: motion around a cylinder, motion around a
cone, or motion around a box. These motions are presented as a cylindrical helix,
a conical helix, and a rectangular helix, respectively. For example, if the predicted
motion is a motion around a cylinder, Autocomplete fits the user’s partial motion
into a cylindrical helix. This will estimate the parameters that define this motion,
such as the radius of the helix, the pitch, etc. Accordingly, the rest of the trajectory
can be estimated based on these parameters (see Fig. 3.10).

3.1.5.1 Motion Around a Cylinder: Cylindrical Helix

A cylindrical helix has a constant radius and pitch. It is defined by the following
parametric equation: 

x = r · cos(t)
y = r · sin(t)
z = p · t

(3.2)

where p is the pitch of the helix, r is the radius, and t ∈ [0, 2π). Fitting the data into
a cylindrical helix involves estimating the parameters r and p. Accordingly, Least
Square (LS) optimization is used to find their optimal values. LS fits the input
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Fitted Partial
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Figure 3.10: Motion synthesis for 3D motions: after predicting the class of the
motion, the input partial motion will be fitted into the predicted motion type using
Least Squares. Then, the full motion will be synthesized by completing the fitted
motion.

data into the predicted motion by minimizing a sum of the squared errors objective
function. The objective function is presented below:

f(r, p) =
n∑

i=1

[
(xi − x′

i)
2 + (yi − y′i)

2 + (zi − z′i)
2
]

(3.3)

where n is the number of data points. Levenberg-Marquardt (LM) is used to min-
imize this function. It is one of the most effective algorithms for non-linear LS
problems.

3.1.5.2 Motion Around a Cone: Conical Helix

A conical helix has a variable radius that increases/decreases exponentially over
time. It is defined by the following parametric equation:

x = r · e−k·t · cos(t)
y = r · e−k·t · sin(t)
z = p · t

(3.4)

where p is the pitch of the conical helix, r is the radius, k controls the tightness or
wideness of the helix, and t ∈ [0, 2π). Fitting the data into a conical helix involves
estimating the parameters r, p, and k. To do so, the same approach is used as that
of the cylindrical helix.
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3.1.5.3 Motion Around a Box: Rectangular Helix

A rectangular helix has a rectangular cross-section. It is defined by the following
parametric equation [46]:

x = a ·max

(
−1,min

(
4

π
arcsin

(
sin

(
πt

2
+

π

4

))
, 1

))
y = b ·max

(
−1,min

(
− 4

π
arcsin

(
cos

(
πt

2
+

π

4

))
, 1

))
z = p · t

(3.5)

where p is the pitch of the rectangular helix, a/b are the dimensions of a 2a×2b
rectangle that represents the helix cross-section, and t ∈ [0, 2π). LS and LM are
also used to fit the user’s partial motion into a rectangular helix by estimating the
parameters a, b, and p.

Additionally, to account for the orientation and the position of the considered
motion, I introduce a rotation matrix and a translation vector into all the parametric
equations. This involves incorporating the Euler angles within a rotation matrix
and the components of a 3D translation vector into the optimization problem. As
a result, the system will have the estimated parameters of the user’s motion in
addition to its orientation and position. Accordingly, to estimate the future desired
trajectory, the system sets the variable ‘t’ to an ‘upcoming’ value, typically within
the range of [2π, 4π), and calculates the corresponding values for x, y, and z. This
process generates target points relative to the UAV’s current position, allowing
autonomous completion of the user’s desired motion.

3.1.6 Autonomous Navigation

After accepting the Autocomplete motion that aligns with the user’s intentions, the
estimated trajectory is fed into the UAV controller for trajectory following. A lot of
works in the literature have tackled the drones navigation of 3D helical trajectories
[47] [48] [49]. In this thesis, the UAVs used were already controlled using a PID
controller. The simulated model of AR.Drone 2.0 includes the needed sensors for
implementing a robust autonomous navigation system.
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Chapter 4

Results and Experiments

To validate my proposed system, I conducted human-subject experiments that in-
volved multiple stages. First, I trained and tested the proposed deep learning model,
and prepared the necessary implementation environment to assess the system. This
chapter offers implementation details, discusses the experiments conducted to sup-
port the advantages of 3D Autocomplete, and presents the achieved subjective and
objective results.

4.1 Preparing the Data

3D Autocomplete predicts the input motion type after detecting important change
points in the motion and adjusting its size to fit the deep learning model (up-
sampling or down-sampling). Therefore, the collected data used for training and
testing the deep learning model should be pre-processed through the just-in-time and
the up/down-sampling algorithms to make the model compatible with the overall
architecture.

Accordingly, to prepare the data, I detected important change points in the
training and testing data. Then, after choosing to predict the motions after the
second detected point, Algorithm 2 is introduced for motions with sizes smaller
than or greater than the deep learning model input size, which is 200 (the average
length of the 3D motions). As a result, I attained a dataset that presents 3D motion
primitives after two detected change points and of size 200 for each motion. Finally,
this dataset is introduced for the deep learning model. Some samples of change
point detection are shown in Fig. 4.1.

4.2 Deep Learning Model

This section details the training and testing phases of the deep learning model.

4.2.1 Training

The model presented in Section 3.1.2 is trained over 80% of the collected dataset.
The validation data was used in order to tune some parameters presented in the
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Figure 4.1: Just-in-time algorithm: each plot presents a sample 3D motion primitive,
Algorithm 1 is applied on these motions. The yellow dot presents the starting point
of the motion and the red cross presents the detection of a change point.

model such as the dropout, the number of filters, and the filter sizes. During training,
early stopping was introduced to the process to avoid overfitting by monitoring the
validation loss.

The learning curves, learning accuracy and loss, are shown in Fig. 4.2, where the
model does not overfit and converges to a training/validation accuracy of 80/70% .
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Figure 4.2: Learning curves: training/validation (a) accuracy and (b) loss during
training phase.

4.2.2 Offline Evaluation

Before testing the trained model in real-time on ROS/Gazebo, I evaluated it using
the collected testing data.

The model reached 89% f1-score. The confusion matrix is shown in Fig. 4.3
where the misclassifications between cylindrical and conical motions are the main
source of error. This is because the two motion primitives are geometrically similar
in form.
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Table 4.1: Real time simulation results of the DL Model.

Motion Primitive Accuracy f1-score Total number
Cylinder 0.9 0.8 25
Cone 0.8 0.83 23
Box 0.79 0.84 21

4.2.3 Real Time Simulations

To test my system in real time, a Gazebo virtual environment full of different geo-
metrical shapes is prepared as shown in Fig. 4.4. I used an AR.Drone 2.0 quadrotor
from “Tum simulator” package and controlled it using a PS4 joystick connected to
the computer. We started by moving the UAV around the targeted shape and ac-
cordingly we were notified on the terminal window when a change point detection
took place (CDP). After two CDPs, a prediction of the intended motion is observed
as shown in Fig. 4.4 (upper right corner). The system was tested by different users
and the results of the real time simulations are shown in table 4.1. Similar to the
offline tests, the real-time experiments show that the proposed 3D Autocomplete is
capable of detecting early, with high accuracy, the user’s intentions based on the
joystick commands only.
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Figure 4.4: Gazebo Testing Environment for the real time simulations: the environ-
ment is full of different geometrical shapes to fly the UAV around while testing.
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4.3 Implementation Details

4.3.1 AR.Drone 2.0

As mentioned in section 3.1.2, an AR.Drone 2.0. quadrotor is used in a Gazebo
virtual environment in my simulation study (see Fig. 3.5). The UAV measures
53cm x 52cm and weighs 420g; it is equipped with an HD camera (720p 30fps) for
video recording with a field of view of 73.5°x 58.5°, and a vertical QVGA camera (60
fps) to estimate the ground speed. Moreover, it is enhanced with a 3-axis gyroscope,
magnetometer, accelerometer, and an ultrasound altimeter which functions at 25 Hz.

4.3.2 Mixed Reality

Unity with Vuforia Engine SDK was used to augment the 3D motions into the
user’s scene. To do so, I emulate the existence of a physical camera using ZeroMQ
(ZMQ) network protocol and Magic Camera software. This is because augmenting
an object within the physical world through Unity, necessitates the presence of an
AR Camera Object, which is typically done when a physical camera is linked to
the host PC. Accordingly, the ZMQ publisher on the ROS PC, where the UAV is
controlled, transmits the frames captured by the simulated camera on Gazebo to
the ZMQ subscriber on the Unity host PC. This will open a real-time video stream
window utilizing openCV and captured by a Magic Camera screen recording tool.
Then, the recorded video feed is transformed into a Virtual Webcam identified and
utilized by Unity. Finally, to transmit the predicted motion class from ROS to Unity,
it is transmitted from the DL node to Unity via ROS bridge. This architecture is
illustrated in Fig. 4.5.

ZeroMQ
Publisher

Deep Learning
Model

ZeroMQ
Subscriber

Magic Cam
Screen Recorder

ZeroMQ
Publisher

Deep Learning
Model

ZeroMQ
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Magic Cam
Screen Recorder

Unity UI

Drone
Frames
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AR_Node

Recv_Node DL_Node

Figure 4.5: Components of the proposed MR user interface
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4.3.3 VR-headset

As mentioned before, the user is presented with a real-time video stream from the
UAV’s onboard camera through a VR headset. In my tests, I used an Oculus Quest
2 from Meta (see Fig. 4.6) which is enhanced with its own operating system. The
Oculus device can be connected through USB or Bluetooth.

Figure 4.6: Oculus Quest 2

4.4 Experiments

To test the 3D Autocomplete framework in real-time, I conducted human-subject
testing within Gazebo virtual environment integrated with ROS. The primary ob-
jective of these experiments was to assess the effectiveness and efficiency of 3D
Autocomplete compared to the traditional teleoperation without autocomplete. All
human-subject testing was approved by the university’s Institutional Review Board
(IRB); approval ID SBS-2023-0163. All invited participants were above 18 years old
and familiar with driving flying robots, but with limited levels of experience.

Each experiment (per each operator) is divided into five trails or iterations. In
each trail the operator is asked to fly a simulated AR.Drone 2.0. quadrotor around
a 3D shape (a box, a cone, or a cylinder) twice (once through manual teleoperation
and once using 3D Autocomplete). The shapes and their dimensions were chosen
randomly, but in each new trail, a new shape with new dimensions is considered.
The experimental procedures are as follows:

• The participants are introduced to the experimental tasks and are given some
time before the experiment to adapt to the system and its components (joy-
stick, VR headset).

• A 3D shape is chosen randomly, in addition to randomly deciding which case
to start with (3D Autocomplete or traditional teleoperation).
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• After each trial, the operator completes a survey to assess their experience
subjectively. Note that in the both cases the motion is considered complete
when it finishes covering the entire shape.

The same procedure is applied in all the experiments. The number of participants
was 14, reaching a total of 140 trials divided equally between Autocomplete and
manual teleoperation. The testing environment is shown in Fig. 4.7.

Figure 4.7: Testing environment

4.5 Results

This section presents and analyzes the experimental results, encompassing both
subjective and objective assessments.

4.5.1 Subjective Evaluation

I subjectively validated my system using the NASA Task Load Index (NASA-TLX)
which assesses a task by evaluating the perceived workload rates [50]. It considers six
sub-scales: the mental demand, physical demand, temporal demand, performance,
effort, and frustration level during task execution. This assessment is essential in
my study, given that the primary objective of 3D Autocomplete is to reduce user
workload during teleoperation. Thus, after each trial, users were asked to complete
the NASA-TLX questionnaire (see Fig. 4.8).

The results indicate that 3D Autocomplete outperforms traditional teleoperation
by effectively reducing the demands across all the subscales, while sustaining a high
level of performance. This is because in 3D Autocomplete the users only have to
perform a partial motion, instead of the entire motion, and the autopilot completes
the remaining motion, which reduces the workload and effort. Also, the MR UI
allows the users to be more focused on the task and isolated from the surrounding
noises, which is reflected in the system performance.
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Each user experienced at least one collision during manual control (the trial was
restarted in such cases), highlighting the challenges of UAV teleoperation. On the
other hand, collisions rarely occurred while using 3D Autocomplete and resulted
from the user deviation from the targeted shape in their conducted partial motion.
This occurs because the trajectory generated for the autopilot is based on the fitted
partial motion. If the partial motion deviates significantly from the intended motion
to cover the shape, it can adversely affect the generated trajectory and potentially
lead to collisions with the shapes.
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Figure 4.8: NASA-TLX Survey Scores
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4.5.2 Objective Evaluation

To evaluate my proposed system in an objective manner, I consider three metrics:

• The duration taken to complete the assigned task: Time is a significant param-
eter in optimizing the effectiveness of teleoperation missions. The measuring
of time begins when the user initiates UAV teleoperation and ends when the
user completes the assigned task by fully covering (flying the UAV around)
the specified 3D shape.

• The distance traveled by the UAV: This measurement also begins at the start
of the teleoperation task and extends to the full coverage of the 3D shape.
The distance reflects the user’s convergence or divergence from the intended
trajectory.

• The smoothness of the conducted path: This parameter is also essential for
optimizing the effectiveness of teleoperation missions. It takes into account
the curvature or sharp turns in the UAV trajectory.

Consequently, I compare the results of the two teleoperation methods: traditional
teleoperation and 3D Autocomplete.

Table 4.2: Quantitative results of the human-subject tests

Average time [sec] Average Distance [m] Average Smoothness [radians]
Manual Auto Manual Auto Manual Auto

Cylinders 39.12 25.12 29.624 20.73 6450.493 3134.975
Cones 36.6 23.86 30.618 20.603 5010.52 2919.78
Boxes 36.68 22.5 27.45383 16.5568 6137.663 3125.872

The average time, distance, and smoothness of 70 tests per method (total of 140
iterations) are shown in Table 4.2. Notably, 3D Autocomplete surpasses manual tele-
operation across all metrics. On average, it demonstrates a significant improvement,
with approximately 35% less time required to complete the task, a 30% reduction in
the distance traveled, and a remarkable 50% improvement in trajectory smoothness
when compared to the manual method. Note that the deep learning model predicted
correctly all the users motions.

The reduction in time and distance is primarily attributed to the fact that, in
many cases, users tend to deviate from the desired trajectory due to the challenges
of teleoperating 3D motions. This deviation not only extends the time required
to complete their tasks but also results in increased travel distance. On the other
hand, while running 3D Autocomplete during teleoperation, the user may initially
deviate from the desired trajectory. However, once they accept the suggested motion
by 3D Autocomplete, the autopilot completes their motion by following a smooth
helix (conical, cylindrical, or rectangular), effectively reducing both the distance
traveled and the time required to complete the task by eliminating any possible user
deviations during manual teleoperation. These results highlight the effectiveness
and efficiency of the Autocomplete system in enhancing performance in all aspects.
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The system required minimal time to predict the motion type upon detecting
change points, as well as to synthesize the user’s motion after user acceptance. This
is crucial to ensure the smoothness of the user’s motion and prevent delays between
user input and autopilot takeover. Furthermore, it confirms that the conducted
experiments were in real-time. The average time taken for 25 iterations is presented
in Table 4.3.

Table 4.3: Prediction and Motion synthesis processing time

Average time to predict the motion type [ms] 48.63
Average time to synthesize the motion [sec] 0.55

All obtained p-values for the subjective and objective results are very small (<
0.005, see table 4.4 and fig 4.8) which indicates that the results are statistically
significant.

Table 4.4: P-values of Quantitative Results

Distance Time Smoothness
Cylinder 0.000103 9.46× 10−6 0.00135
Cone 0.00315 2.07× 10−5 0.001519
Box 0.001127 0.000185 0.005045

Finally, Fig. 4.9 presents some of the motions tested using manual teleoperation
and 3D Autocomplete. The figure illustrates the challenges faced during user teleop-
eration, where the user’s motions appear irregular and occasionally deviate from the
desired trajectory. In contrast, when employing the 3D Autocomplete, the autopilot
smoothly completes the user’s intended motion after predicting its type from par-
tial inputs. This enhances the objective results in Table 4.2, where the trajectories
executed by 3D Autocomplete are smoother than the user manual trajectories by
approximately 50% as mentioned before.
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Figure 4.9: 3D Trajectories: using only manual teleoperation (left); and trajectories
with 3D Autocomplete (right)

41



Chapter 5

Discussion

This thesis introduces 3D Autocomplete, a framework designed to assist users in
teleoperating UAVs within 3D environments. During teleoperation, 3D Autocom-
plete uses a change point detection algorithm to identify important changes in the
user’s motion. When sufficient changes are detected, deep learning is used to classify
the user’s partial motion as one of the predefined motion primitives (motion around
a cylinder, a cone, or a box). Then, mixed reality is used to communicate the
proposed trajectories to the user by augmenting the trajectories onto a first-person
live video feed from the UAV’s camera. Finally, if the user accepts the motion,
3D Autocomplete completes the intended motion autonomously after synthesizing
it using LS optimization. To validate 3D Autocomplete, I conducted human-subject
tests with 14 participants. These experiments involved teleoperating a simulated
UAV on ROS/Gazebo using manual joystick control (traditional teleoperation) and
using 3D Autocomplete. In this chapter, I provide a discussion of the findings and
achievements resulting from my work. Additionally, I explore the limitations of my
system and analyze areas where enhancements can be added for future development.

5.1 Findings and Achievements

Throughout this thesis, I have achieved several significant milestones that contribute
to the field of UAV-assisted teleoperation. These accomplishments are detailed
below:

• Reducing user’s workload during teleoperation: In my subjective evaluation,
I assessed the workload using NASA-TLX survey scores. As mentioned in
the results, all the demands (effort, temporal demand, mental demand, phys-
ical demand) were significantly lower when running 3D Autocomplete during
teleoperation. This is because manual teleoperation demands a high level of
focus, particularly when controlling a high dimensional system with under-
actuated properties. This increases the mental, physical, and temporal loads
on the user. However, in the case of 3D Autocomplete, these demands are
significantly reduced due to the assistance provided by autonomous driving.
Similarly, the effort required from the user while running 3D Autocomplete is
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distributed between the user and the autopilot, with the autopilot taking over
the teleoperation task after a certain period.

• Reducing time required to finish a teleoperation task: As shown in my objec-
tive results, the average time needed to finish a certain task using 3D Auto-
complete was approximately 35% less than that while using manual driving.
This is because 3D Autocomplete takes over the teleoperation task by follow-
ing a defined (synthesized) trajectory. This approach is more time-efficient
compared to an inexperienced user attempting to complete the task due to
the challenges of teleoperation, especially in 3D scenarios.

• Reducing covered distance: Based on my objective results, 3D Autocomplete
reduced the drone covered distance by 30% compared to manual teleoperation.
When the users manually operate the drone, they often perform imprecise heli-
cal motion rich in noise and deviations from the intended trajectory. Accord-
ingly, this increases the covered distance during teleoperation. In contrast,
3D Autocomplete synthesizes motion more accurately, enabling the drone to
follow a helical path with reduced noise and deviations.

• Increasing the smoothness of the drone trajectory: 3D Autocomplete enhanced
trajectory smoothness by 50% when compared to manual teleoperation. This
improvement is also attributed to the smooth motions synthesized by 3D Au-
tocomplete during autopilot teleoperation.

• Enhancing human-robot communication: 3D Autocomplete uses an MR inter-
face to communicate the predicted motion to the operator. This communica-
tion method significantly improved the system performance, double as that of
using manual teleoperation (Fig. 4.8). This is because the usage of a VR head-
set not only enhances user focus but also improves the user’s understanding
of robot actions.

• Improving teleoperation performance: This is reflected in both subjective and
objective evaluation. The overall system performance is improved compared
to manual teleoperation, by decreasing the user workload, the time required
to finish the task, the covered distance, and the sharpness/noise of the UAV
trajectory.

5.2 Limitations and Possible Enhancements

Even though the proposed system achieved promising results, it is essential to con-
sider certain limitations and explore potential avenues for enhancing 3D Autocom-
plete. These limitations and possible enhancements are listed below:

• Assessment through simulated experiments: The framework was evaluated
through simulation experiments on ROS/Gazebo. Nevertheless, it’s crucial to
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acknowledge that simulations may not fully capture the complexities of real-
world scenarios. Therefore, it is important to conduct real-world experiments
with an actual drone to introduce a more realistic evaluation.

• Consecutive motions: One of the fundamental concepts of 3D Autocomplete is
negotiating 3D objects that are combinations of the considered basic geometric
primitives (e.g. tree as a cylinder and a cone). Covering such shapes necessi-
tates a direct transition from one motion to another. However, this impacts
the data collected from the user joystick by concatenating both the previous
and the new motion data. Therefore, given that this data serves as an input to
the deep learning model and the motion synthesis algorithm, it influences the
motion prediction and the generated trajectory. Accordingly, it is essential to
consider such transition for consecutive motions in future development.

• User takeover: In 3D Autocomplete, even when the autopilot is autonomously
completing the user’s motion, the user is always in the loop and can take over
at any time. While this flexibility is advantageous, transitioning from autopilot
to manual control is abrupt and potentially frustrating. This is because the
drone is already following a predetermined trajectory at a certain speed, in
other words, the user needs time to adapt to the UAV’s new position/velocity
and initiate a new motion.

• Change point detection sensitivity: Change point detection is used in my
system to identify when to do the motion prediction. However, since it relies
on the direction of the collected velocity vectors, it is sensitive to the user’s
joystick commands. In some cases, it may detect a change point that is not
actually intended by the user, leading to potential mistakes. Therefore, it is
important to advance my algorithm to distinguish the intended change points.

• Unreliable partial motions: After the user accepts the predicted motion, 3D
Autocomplete uses the partial motion to synthesize and complete it. In some
cases, the user’s partial motion deviates from the intended trajectory due to
the challenges of performing 3D motions. Accordingly, even if the trained deep
model correctly predicted the intended motion, fitting such data can lead to
the generation of an unreliable trajectory. I encountered such situations during
the testing phase, which resulted in collisions with the considered 3D shape.
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Chapter 6

Conclusion

In conclusion, this thesis proposed 3D Autocomplete to aid users in teleoperating
UAVs while performing 3D motions. My proposed approach has made significant
contributions that are highly valuable in the field of robot teleoperation. Results
from 140 iterations confirmed the effectiveness of my system, showcasing quanti-
tative and qualitative superiority over traditional manual teleoperation methods.
3D Autocomplete reduced the time needed to cover the 3D shape, the distance
traveled, and the trajectory smoothness by at least 30%. Furthermore, it success-
fully achieved its primary goal by reducing operators’ workload and enhancing the
system’s performance.

Several approaches were introduced before reaching the final proposed frame-
work. Each of these approaches aimed to resolve specific challenges faced by the
users or even the system itself during Autocomplete teleoperation. A significant
issue addressed was the determination of when to predict the intended motion type.
Instead of using a constant time interval, 3D Autocomplete employs a change point
detection algorithm to identify substantial changes in the user’s partial motion,
enabling accurate motion prediction. Real-time simulations demonstrated the al-
gorithm’s success in detecting the motion turns around the 3D shapes, leading to
approximately 80% F1-score of early motion prediction. Another significant aspect
is the proposed deep learning model which is based on recurrent neural networks.
It predicts the user’s motion from the joystick commands, specifically velocity vec-
tors. This approach can be generalized to accommodate various motion types with
similar time series characteristics. Additionally, my framework succeeded in solving
the problem of a constant number of samples in the input layer of the deep learn-
ing model. In more detail, instead of using only the first ‘n’ samples of the user’s
motion, 3D Autocomplete takes the entire sequence and downsamples it smoothly
before the prediction. In cases requiring upsampling, zero padding is employed.
These have been shown to make my system scale-agnostic while maintaining the
accurate predictions of the model. Finally, this thesis enhanced the communication
between users and the assisted teleoperation system through the use of an MR inter-
face, allowing users to maintain better focus and consequently enhancing the overall
system performance as illustrated in the experimental results.

In future work, I aim to extend my evaluation to real-life test scenarios, building
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upon the promising results obtained in simulation. This transition from simulation
to real-life testing will provide valuable insights into the practical applicability and
performance of the system. Moreover, I aspire to evaluate the generalizability of 3D
Autocomplete for coordinating a formation of UAVs. Enhancing user teleoperation
for such scenarios is crucial, as it addresses the increasing challenges posed by these
demanding tasks. Finally, since the communication between the operator and the
UAV is an essential component in 3D Autocomplete (through the VR headset or
the joystick), it is important to address the possible loss of communication during
teleoperation.
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tional assistance for intelligent wheelchairs by means of an implicit personal-
ized user model,” 8, vol. 58, Elsevier, 2010, pp. 963–977.

48



[29] K. Khokar, R. Alqasemi, S. Sarkar, K. Reed, and R. Dubey, “A novel teler-
obotic method for human-in-the-loop assisted grasping based on intention
recognition,” IEEE, 2014, pp. 4762–4769.

[30] M. Laskey, C. Chuck, J. Lee, et al., “Comparing human-centric and robot-
centric sampling for robot deep learning from demonstrations,” IEEE, 2017,
pp. 358–365.

[31] T. Zhou, Q. Zhu, and J. Du, “Intuitive robot teleoperation for civil engineering
operations with virtual reality and deep learning scene reconstruction,” vol. 46,
Elsevier, 2020, p. 101 170.

[32] S. Li, X. Ma, H. Liang, et al., “Vision-based teleoperation of shadow dexterous
hand using end-to-end deep neural network,” IEEE, 2019, pp. 416–422.

[33] T. Zhang, Z. McCarthy, O. Jow, et al., “Deep imitation learning for complex
manipulation tasks from virtual reality teleoperation,” IEEE, 2018, pp. 5628–
5635.

[34] P. Wang, S. Zhang, M. Billinghurst, et al., “A comprehensive survey of ar/mr-
based co-design in manufacturing,” vol. 36, Springer, 2020, pp. 1715–1738.

[35] A. J. Lungu, W. Swinkels, L. Claesen, P. Tu, J. Egger, and X. Chen, “A review
on the applications of virtual reality, augmented reality and mixed reality in
surgical simulation: An extension to different kinds of surgery,” 1, vol. 18,
Taylor & Francis, 2021, pp. 47–62.

[36] Z. Pan, A. D. Cheok, H. Yang, J. Zhu, and J. Shi, “Virtual reality and mixed
reality for virtual learning environments,” 1, vol. 30, Elsevier, 2006, pp. 20–28.

[37] K. A. Szczurek, R. M. Prades, E. Matheson, J. Rodriguez-Nogueira, and M.
Di Castro, “Multimodal multi-user mixed reality human–robot interface for re-
mote operations in hazardous environments,” vol. 11, IEEE, 2023, pp. 17 305–
17 333.

[38] D. Sun, A. Kiselev, Q. Liao, T. Stoyanov, and A. Loutfi, “A new mixed-
reality-based teleoperation system for telepresence and maneuverability en-
hancement,” 1, vol. 50, IEEE, 2020, pp. 55–67.

[39] H. Hedayati, M. Walker, and D. Szafir, “Improving collocated robot teleoper-
ation with augmented reality,” 2018, pp. 78–86.

[40] M. E. Walker, H. Hedayati, and D. Szafir, “Robot teleoperation with aug-
mented reality virtual surrogates,” IEEE, 2019, pp. 202–210.

[41] D. Lee and Y. S. Park, “Implementation of augmented teleoperation system
based on robot operating system (ros),” IEEE, 2018, pp. 5497–5502.

[42] K. Sung and S. Gregory, “Basic math for game development with unity 3d,”
Springer, 2019.

[43] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-
source multi-robot simulator,” IEEE, vol. 3, 2004, pp. 2149–2154.

49



[44] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” 2014.

[45] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Dimensionality
reduction for fast similarity search in large time series databases,” 3, vol. 3,
Springer, 2001, pp. 263–286.

[46] J. M. ain39;t a mathematician (https://math.stackexchange.com/users/498/j-
m-aint-a-mathematician), “Equation of a rectangle.” eprint: https://math.
stackexchange.com/q/69134.

[47] T. Muslimov and R. Munasypov, “Fuzzy model reference adaptive control of
consensus-based helical uav formations,” IEEE, 2022, pp. 196–201.

[48] S. Kumar and S. R. Kumar, “Barrier lyapunov-based nonlinear trajectory
following for unmanned aerial vehicles with constrained motion,” IEEE, 2022,
pp. 1146–1155.

[49] M. A. H. Abozied and S. Qin, “High performance path following for uav based
on advanced vector field guidance law,” IEEE, 2016, pp. 555–564.

[50] S. G. Hart, “Nasa-task load index (nasa-tlx); 20 years later,” 9, Sage publica-
tions Sage CA: Los Angeles, CA, vol. 50, 2006, pp. 904–908.

50

https://math.stackexchange.com/q/69134
https://math.stackexchange.com/q/69134

	ACKNOWLEDGEMENTS
	ABSTRACT
	ABBREVIATIONS
	Introduction
	Literature Review
	Assisted Teleoperation
	Deep Learning in Teleoperation
	Mixed Reality in HRI

	Proposed Approach
	Overview of System Components
	Change Points Detection: Just-in-time Algorithm
	Motion Classifier: Deep Learning Model
	Data
	Model

	Variable Input Size
	Mixed Reality User Interface
	Motion Synthesis
	Motion Around a Cylinder: Cylindrical Helix
	Motion Around a Cone: Conical Helix
	Motion Around a Box: Rectangular Helix

	Autonomous Navigation


	Results and Experiments
	Preparing the Data
	Deep Learning Model
	Training
	Offline Evaluation
	Real Time Simulations

	Implementation Details
	AR.Drone 2.0
	Mixed Reality
	VR-headset

	Experiments
	Results
	Subjective Evaluation
	Objective Evaluation


	Discussion
	Findings and Achievements
	Limitations and Possible Enhancements

	Conclusion
	Bibliography

