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Abstract
of the Thesis of

Ahmad Hisham Hussein for Master of Science
Major: Mathematics

Title: Analytic Disks and Mapping Problems for Real Hypersurfaces
in Complex Spaces

The thesis will review the theory of certain invariant objects associated to CR
submanifolds of Cn, especially families of attached analytic disks, and their
implications for the study of the properties of holomorphic maps. Particular
attention will be given to the dynamics of those invariants on the sphere in C2.
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Chapter 1

Introduction

The domain of Complex Analysis is a rich and an ongoing field of research, primarily
known and notable for its essentially different nature from Real Analysis. There is
a flavour of rigidity to the former that is not present in the latter. This flavour is
intriguingly present enough to force things like infinite differentiability (even being
analytic) to be equivalent to mere (one-time) differentiability, but also permissive
enough to allow for a variegated theory, especially when one considers more than
one variable.
The theory of Several Complex Variables (SCV) is yet on a different level. Many
results in one complex variable do not generalize to SCV in the manner one would
expect initially, and much of the motivation for SCV is this point.
One famous example of this is the Riemann mapping theorem, which we discuss in
Chapter 2. The inapplicability of this theorem in SCV opens questions as to what
sort of weaker yet worthwhile rigidity results one might have in SCV. This, together
with results such as Hartog’s theorem, motivates introduction of notions such as
domains of holomorphy and classifications such as pseudoconvexity.
CR Geometry, grounded in SCV, is most broadly the study of real hypersurfaces in
complex spaces. More particularly, it concerns the general question of what can be
said of functions defined on such hypersurfaces with the understanding that their
ambient space is Cn. Topics of CR Geometry are numerous, and our focus in this
thesis are the notions of stationary disks and automorphisms of real hypersurfaces
in the complex spaces Cn.
Stationary disks historically proved useful in various contexts. In this thesis, this
usefulness is reiterated in recovering particular CR automorphisms of hypersurfaces
that "locally look like a sphere". To do that, we primarily rely on the dynamics
between said automorphisms and the stationary disks which are attached to these
hypersurfaces.
We consider the paraboloid ℜw = |z|2 in C2 as our model, representing otherwise
strongly pseudoconvex hypersurfaces. We consider the stationary disks attached
to this paraboloid and passing through the origin at ζ = 1. Our starting point is
demonstrating the necessary and sufficient dependence of these disks on their second
jets at ζ = 1. Our next point is considering a random automorphism and pushing
the disks forward by the 2-jets of this automorphism at the origin. By imposing
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holomorphy, we then parameterize the automorphism by said 2-jets. As such, we
completely nail down the desired automorphisms and prove that they are equivalent
to the ones already present in the literature by other means.
The content of Chapter 2 is more or less routine preliminaries, motivations for SCV,
and familiarizing the reader with our notations. Chapter 3 is intended as a classical
summary of basic Differential Geometry and CR Geometry, as well as motivation
for our work and some background in similar problems.
Chapter 4 is mostly about studying the stationary disks attached to our model,
and the first section of Chapter 5 is where we parameterize our automorphisms and
conclude. In particular, Corollary 5.1.1 summarizes the results of the computations,
and the two corollaries 5.1.2 and 5.1.3 showcase the back and forth between the
obtained automorphisms and the ones already in the literature, specifically as listed
on page 19 of [9] (with slight modifications to accommodate our notation).
In the second section of Chapter 5, we very briefly describe some suggestions for
future work.
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Chapter 2

Prelude

The aim of this chapter is to introduce the reader to the basics of Several Complex
Variables and recall various notions that will be needed throughout this thesis. We
will assume that the reader is fairly familiar with one-variable Complex Analysis,
as well as the basics of Real Analysis, Topology, and Linear Algebra. The reader
who is familiar with Several Complex Variables can just skim through
this chapter.

2.1 Analysis and Calculus Notes and Notations

In this section, we review some basics of Metric Topology and Calculus, particularly
on vector spaces. We lay out the definitions and notations as well as a few tools
that we need.

2.1.1 Metric, Normed, and Hermitian Spaces

This subsection is intended as a quick refresher and a chance to introduce some
notations.

Definition 2.1.1. Let (X, d) be a metric space, a ∈ X and r > 0. The open ball in
X of center a and radius r is defined to be B(a, r) = {x ∈ X, d(x, a) < r}, and a set
O ⊂ X is called open if for each a ∈ O, there is some ϵ > 0 such that B(a, ϵ) ⊂ O.
A closed set is a set whose complement is open.

Definition 2.1.2. Let X be a metric space. A neighborhood of a point x ∈ X is an
open set O ⊂ X such that x ∈ O. The interior of a a subset A of X, denoted by
A◦, is the set of all x ∈ A such that x has a neighborhood O with O ⊂ A.

Remark 2.1.1. A set C in a metric space (X, d) is closed if and only if for each
(xn) ⊂ C, if (xn) is convergent in X, then limxn ∈ C.

Notation 2.1.1. Given a metric space X and a subset A of X, we denote by A′ the
set of all limit points of A. In other words,

A′ := {x ∈ X, ∀ϵ > 0, B(x, ϵ) ∩ A \ {x} ≠ ∅}
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Recall that, with this notation, the topological closure of A is simply A = A ∪ A′,
and ∂A = A \ A◦.

Definition 2.1.3. Let (X, d) be a metric space. A subset A of X is called dense in
X if A = X. Equivalently, A is dense in X if for each open set O ⊂ X, we have
A ∩O ̸= ∅.

Definition 2.1.4. Let (X, d) be a metric space. A sequence (xn) ⊂ X is called a
Cauchy sequence if limn,m d(xn, xm) = 0. In other words, (xn) is Cauchy if it holds
that ∀ϵ > 0,∃N ∈ N, ∀n,m ≥ N, d(xn, xm) < ϵ. A metric space (X, d) in which
every Cauchy sequence is convergent is called a complete metric space.

If (X, ∥ · ∥) is a normed vector space (nvs), then ∥ · ∥ induces a metric on X given by
d(x, y) = ∥x−y∥. This metric in turn induces a topology on X, the metric topology
associated to the norm ∥ · ∥. This structure induced by the norm allows for notions
of convergence, openness, continuity, etc. In particular, in this context, a subset U
of X is open if and only if:

∀x ∈ U,∃ϵ > 0, B(x, ϵ) = {y ∈ X : ∥y − x∥ < ϵ} ⊂ U

Recall that two norms ∥ · ∥1 and ∥ · ∥2 on a vector space X are said to be equivalent
if there are a, b > 0 such that for all x ∈ X:

a∥x∥1 ≤ ∥x∥2 ≤ b∥x∥1

Two equivalent norms generate the same topology on the given vector space.

Theorem 2.1.1. All norms on a finite dimensional vector space are equivalent, and
any two finite dimensional vector spaces of the same dimension are homeomorphic in
the topology induced by any choice of a norm. In particular, the Euclidean topological
spaces R2n and Cn are homeomorphic.

Definition 2.1.5. Let (X, ∥ · ∥) be a nvs. We call (X, ∥ · ∥) a Banach space if (X, d)
is a complete metric space, where d is the metric induced by ∥ · ∥.

Definition 2.1.6. A Hermitian form on a given vector space V is a functional
h : V × V → C which is C-linear in the first component and satisfies conjugate
symmetry, i.e. satisfies h(x, y) = h(y, x) for all x, y ∈ V . If V is a vector space and
h is a Hermitian form on V , then (V, h) is called a Hermitian space.

Definition 2.1.7. An inner product ⟨·, ·⟩ on a vector space V is a positive definite
Hermitian form. In other words, an inner product on V is a Hermitian form h on
V which satisfies h(x, x) > 0 for all x ∈ V \ {0}. If ⟨·, ·⟩ is an inner product on V ,
then (V, ⟨·, ·⟩) is called an inner product space.

Remark 2.1.2. If (X, ⟨·, ·⟩) is an inner product space, then ⟨·, ·⟩ induces a norm on
X given by ∥x∥ =

√
⟨x, x⟩.

Definition 2.1.8. Let (H, ⟨·, ·⟩) be an inner product space. We call (H, ⟨·, ·⟩) a
Hilbert space if the nvs (H, ∥ · ∥) is a Banach space, where ∥ · ∥ is the norm induced
by ⟨·, ·⟩.
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Definition 2.1.9. Given a metric space X, we say that X is disconnected if there
are two non-empty disjoint open sets A,B ⊂ X such that X = A ∪ B, and we say
that X is connected if X is not disconnected.

Definition 2.1.10. Let X be a metric space. We say that X is compact if every open
cover of X admits a finite subcover. Equivalently, X is compact if every sequence
in X has a convergent subsequence.

Theorem 2.1.2. (Heine-Borel theorem)
A subset of Rn is compact if and only if it is closed and bounded.

Theorem 2.1.3. (Extreme Value theorem)
Let X be a compact metric space, and let f : X → R be continuous. Then, f
admits both a maximum and a minimum on X, i.e. there are x0, x1 ∈ X such that
f(x0) = infx∈X f(x) and f(x1) = supx∈X f(x).

Definition 2.1.11. Let X be any set and (Y, d) be a metric space. A sequence of
functions (fn) from X to Y is said to converge pointwise to a function f : X → Y
if for each x ∈ X, the sequence (fn(x)) converges to f(x). Also, (fn) is said to
converge uniformly to f if ∀ϵ > 0,∃N ≥ 1, ∀n ≥ N,∀x ∈ X, d(fn(x), f(x)) < ϵ. If
Y is a nvs, we may talk of a series of functions from X to Y ,

∑
n≥1 fn, and such

a series is pointwise (resp. uniformly) convergent if its sequence of partial sums is
pointwise (resp. uniformly) convergent.

Definition 2.1.12. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be nvs. A linear map L : X → Y
is said to be bounded if there exists some M > 0 such that for all x ∈ X, we have
∥L(x)∥Y ≤M∥x∥X .

Proposition 2.1.1. Let X and Y be nvs and let L : X → Y be a linear map. Then,
L is continuous on X if and only if L is bounded (and this is also equivalent to L
being continuous at 0).

Remark 2.1.3. Given two vector spaces X and Y , the set of all linear functions
from X to Y is a vector space under the usual addition of functions and scalar
multiplication.

Notation 2.1.2. Given two nvs X and Y , we denote by L(X, Y ) the set of all
bounded (i.e. continuous) linear operators from X to Y .

Proposition 2.1.2. The set L(X, Y ) with the usual addition of functions and scalar
multiplication is a vector space. Furthermore, we may define ∥ · ∥ on L(X, Y ) by:

∥L∥ := sup
x∈X

∥L(x)∥Y
∥x∥X

This ∥ · ∥ is a norm, called the operator norm, and so (L(X, Y ), ∥ · ∥) is a nvs.

Definition 2.1.13. Let X1, . . . , Xn and Y be vector spaces. A map φ :
∏n

i=1Xi → Y
is called an n-linear map if φ is linear in each component.
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Remark 2.1.4. Let X1, . . . , Xn and Y be nvs. An n-linear map φ :
∏n

i=1Xi → Y
is called bounded if there is M > 0 such for all xi ∈ Xi, we have:

∥φ(x1, . . . , xn)∥Y ≤M

n∏
i=1

∥xi∥Xi

Also, the set of all n-linear maps from
∏n

i=1Xi to Y is a vector space with
respect to the obvious operations and actions, and one denotes this vector space by
L(X1, . . . , Xn;Y ).
Finally, if one puts, for φ ∈ L(X1, . . . , Xn;Y ),

∥φ∥ := sup
xi∈Xi

∥φ(x1, . . . , xn)∥Y
∥x1∥X1 · · · ∥xn∥Xn

then one gets a norm on L(X1, . . . , Xn;Y ) (the operator norm).

2.1.2 Differentiability: Main Definitions and Tools

Derivatives as multilinear maps, relevant terminologies, Taylor expansion, and a few
classical theorems.

Definition 2.1.14. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be nvs, let U ⊂ X and let f : U → Y
be a map. We say that f is (Fréchet) differentiable at a point x0 ∈ U if there exists
an L ∈ L(X, Y ) such that:

lim
x→x0

∥f(x)− f(x0)− L(x− x0)∥Y
∥x− x0∥X

= 0

or, equivalently,

lim
h→0

∥f(x0 + h)− f(x0)− L(h)∥Y
∥h∥X

= 0

Remark 2.1.5. This condition can also be reformulated using the ϵ − δ definition
as: ∀ϵ > 0,∃δ > 0,∀h ∈ X, ∥h∥X < δ =⇒ ∥f(x0 + h)− f(x0)− L(h)∥Y < ϵ∥h∥X .
We can also write it in Landau notation as: f(x0 + h) = f(x0) + L(h) + o(h).

Remark 2.1.6. In the above definition, if such an L exists, then it is unique.

Definition 2.1.15. With the same notation as above, this unique L is called the
(Fréchet) derivative of f at x0, and it is denoted by Df(x0).

Definition 2.1.16. Let X and Y be nvs, let U ⊂ X be open, and let f : U → Y .
We say that f is differentiable on U if f is differentiable at each point in U . If this
is the case, we denote by Df the map U → L(X, Y ) associating to each x ∈ U the
map Df(x) defined above. This map Df is called the derivative map of f .

Remark 2.1.7. The map Df is defined on U and lands in L(X, Y ) which is itself
a nvs, and we can talk of the continuity and differentiability of Df with respect to
these nvs.
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Definition 2.1.17. With the same setting as above, and assuming that f is
differentiable on U , so that the derivative map Df : U → L(X, Y ) is defined, we say
that f is twice differentiable at a point x0 ∈ U (resp. on U) if Df is differentiable
at x0 (resp. on U). In this case, the second derivative of f at x0 is then defined
to be D2f(x0) = D(Df)(x0). If the second derivative exists on all of U , we can
then define the second derivative map D2f : U → L(X,L(X, Y )). One can then
inductively define the notion of n-times differentiability and the n-th derivative of f
at x0.

Definition 2.1.18. With the same preceding notation, we say that f is of class Ck

at a point x0 ∈ U (resp. on U) if f is k-times differentiable on a neighborhood of x0
(resp. on U) and Dkf is continuous at x0 (resp. on U). We say that f is of class
C∞ at x0 (resp. on U) if for all n ∈ N, the n-th derivative of f exists at x0 (resp.
on U).

Terminology 2.1.1. Let X and Y be nvs, and let f : X → Y be a map. We say
that f is smooth on X if f is of class C∞ on X.

Remark 2.1.8. Per our notations, L(X, Y ;Z) denotes the vector space of all bounded
bilinear maps X × Y → Z. We note that L(X,L(Y, Z)) ∼= L(X, Y ;Z) (through an
isometric isomorphism), and so, one can look at the second derivative map as a map
which outputs bilinear maps X ×X → Y . More generally, the n-th derivative is a
function that outputs multilinear maps Xn → Y .

Theorem 2.1.4. (Taylor’s theorem)
Let X and Y be nvs, U ⊂ X be open, x0 ∈ U , and let f : U → Y be of class Cn+1

on U . If the segment connecting x0 to x0 + h, S(x0, x0 + h), lies in U , then there is
some ξ ∈ S(x0, x0 + h) such that:

f(x0 + h) =
n∑

k=0

1

k!
Dkf(x0)h

k +
1

(n+ 1)!
Dn+1f(ξ)hn+1

where Dkf(x0)h
k denotes Dkf(x0)(h, h, . . . , h) (with the multilinear notation).

Remark 2.1.9. Another widely-recognized way to write Taylor’s formula is in the
integral form:

f(x0 + h) =
n∑

k=0

1

k!
Dkf(x0)h

k +

∫ 1

0

(1− t)n

n!
Dn+1f(x0 + th)hn+1dt

Also, consequently, with the same assumptions, one may write:

f(x0 + h) =
n∑

k=0

1

k!
Dkf(x0)h

k + o(hn)

Note as well that if one puts x = x0 + h, then one may write:

f(x) =
n∑

k=0

1

k!
Dkf(x0)(x− x0)

k + o ((x− x0)
n)
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Terminology 2.1.2. With the same assumptions as in Theorem 2.1.4 and the same
notation as in Remark 2.1.9, the sum:

n∑
k=0

1

k!
Dkf(x0)(x− x0)

k

is called the n-th Taylor polynomial of f . Moreover, if f is smooth at x0 and
if the series of partial sums given by the Taylor polynomials of f at x0 converges
pointwise to f in a neighborhood of x0, then one says that f is analytic at x0, and
the sum:

∞∑
n=0

1

n!
Dnf(x0)(x− x0)

n

is called the Taylor series (or expansion) of f at the point x0.

Theorem 2.1.5. (Chain Rule)
Let X, Y, Z be three nvs. Let U ⊂ X be open, V ⊂ Y be open, f : U → Y and
g : V → Z, and suppose that f(U) ⊂ V . Let x0 ∈ U . If f is differentiable at x0 and
g is differentiable at f(x0), then g ◦ f is differentiable at x0, and one has:

D(g ◦ f)(x0) = Dg(f(x0)) ◦Df(x0)

Consequently, as well, if f is invertible onto f(U) and differentiable at x0, and if
f−1 : f(U) → U ⊂ X is differentiable at f(x0), then Df(x0) is invertible, and one
has:

Df−1(f(x0)) = [Df(x0)]
−1

Definition 2.1.19. Let X and Y be nvs and U ⊂ X be open. Let f : U → Y
be a map. We say that f is a diffeomorphism if f is differentiable, bijective, and
f−1 : Y → U ⊂ X is differentiable. Similarly, f is a Ck-diffeomorphism, for
k ∈ N ∪ {∞}, if f is of class Ck, bijective, and f−1 is of class Ck.

Proposition 2.1.3. Let {(Xi, ∥ · ∥i)}ni=1 be a collection of nvs and let X =
∏n

i=1Xi.
The functional ∥ · ∥∞ defined on X by ∥(x1, . . . , xn)∥∞ = max1≤i≤n ∥xi∥i is a norm
on X, called the maximum norm.

Proposition 2.1.4. With the same set-up as the preceding proposition, let (Y, ∥ · ∥)
be a nvs, U ⊂ X open, and f : U → Y be differentiable at a = (a1, . . . , an) ∈ U .
There’s a δ > 0 such that B∞(a, δ) ⊂ U . In particular,

∏n
i=1Bi(ai, δ) ⊂ U . Given

i, the map ei : ξ ∈ Bi(ai, δ) 7→ f(a1, . . . , ai−1, ξ, ai+1, . . . , an) is differentiable at ai,

and we introduce the notation:
∂f

∂xi
(a) := Dei(ai), which is what we call the "partial

derivative of f with respect to xi". We also write Dif(a) = Dei(ai).

Proposition 2.1.5. With the same preceding set-up, we have that for every point

(h1, . . . , hn) ∈ X, Df(a)(h1, . . . , hn) =
∑n

i=1

∂f

∂xi
(a)hi. Also, consequently, given i,

we have for all h ∈ Xi,
∂f

∂xi
(a)h = Df(a)(0, . . . , 0, h, 0, . . . , 0) (where h is at the ith

position).
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Proposition 2.1.6. Let X, Y and U be as above and let a ∈ U . Suppose that the
partial derivatives of f exist and are continuous on a neighborhood of a. Then, f is
differentiable at a.

Theorem 2.1.6. (Inverse Function theorem)
Let X and Y be Banach spaces, and let U ⊂ X be open. Let f : U → Y be of class
C1. Let x0 ∈ U and suppose that Df(x0) is an isomorphism. Then, there exists an
open neighborhood V ⊂ U of x0 and an open neighborhood W of f(x0) such that f
is a C1-diffeomorphism from V onto W .

Theorem 2.1.7. (Implicit Function theorem)
Let X, Y, Z be three Banach spaces, let U ⊂ X × Y be open, and let f : U → Z
be a map of class C1. Let (a, b) ∈ U with f(a, b) = 0. Then, there exists an open
neighborhood V ⊂ U of (a, b), there exists an open neighborhood W of a in X, and
there exists a map g : W → Y of class C1 such that:

{(x, y) ∈ W × Y, y = g(x)} = {(x, y) ∈ V, f(x, y) = 0}

In other words, (x0, y0) ∈ V is a solution of f(x, y) = 0 if and only if x0 ∈ W and
y0 = g(x0).

2.2 Notions of Several Complex Variables

Here, we delve directly into the theory of several complex variables. We mention
some of the major theorems, and we try to provide some motivation for this theory.

2.2.1 Basic Definitions and Notes

The complex space C is defined to be the R-algebra (R2,+, ·), with the addition
operation given by (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), and the multiplication
given by (x1, y1) · (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1). We define i = (0, 1) and
1 = 1C = (1, 0). Then, {1, i} forms a basis for C as an algebra over R, and a
complex number z ∈ C has then a unique expression z = x+ iy, x, y ∈ R.

Notation 2.2.1. We denote by C[z] the ring of all polynomials in z with
complex number coefficients, and we denote by deg(P ) the degree of a given non-zero
polynomial P .

Theorem 2.2.1. (Fundamental Theorem of Algebra)
Let P ∈ C[z] be non-constant. Then, P has exactly deg(P ) roots (including the
possibility of repeated roots) in C.

Notation 2.2.2. Given z = x+iy ∈ C, x, y ∈ R, we denote the "complex conjugate"
of z by z = x− iy. Also, throughout this section and elsewhere, whenever we write
zj = xj + iyj for a given z ∈ Cn = C× C× · · · × C︸ ︷︷ ︸

n times

, it is to be understood that

xj, yj ∈ R, and for a given z = x+ iy ∈ C, we will write ℜz for the "real part" x of
z, and ℑz for the "imaginary part" y of z. Finally, the modulus of z = x + iy ∈ C
is given by |z| =

√
x2 + y2.
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Remark 2.2.1. The set Cn is a Hilbert space under the inner product given by:

⟨z, z′⟩Cn =
n∑

j=1

zjz′j

We will drop this notation and simply write ⟨z, z′⟩ for
∑n

j=1 zjz
′
j.

This naturally gives Cn a metric topology induced by this inner product, its standard
(Euclidean) topology.

Remark 2.2.2. The R-vector spaces Cn and R2n are isomorphic.

Definition 2.2.1. Let U ⊂ Cn be open, and let f : U → C be a map. Let a ∈ U .
We say that f is complex-differentiable at a if f , looked at as a map from an
open subset of the C-vector-space Cn to C, is (Fréchet) differentiable at a. In other
words, if there are c1, . . . , cn ∈ C such that:

f(z) = f(a) +
n∑

j=1

cj(zj − aj) + o(z − a)

or, equivalently and adapting the previous notation,

f(a+ h) = f(a) +
n∑

j=1

cjhj + o(h)

If this is the case, the complex gradient of f at a is given by:

∂f(a) :=


c1
c2
...
cn


We say that f is holomorphic on U if f is differentiable at each point in U , and
we may then define the complex gradient on U , from which we get ourselves a map
∂f : U → Cn ≡ L(Cn,C) given at each point as defined above at a.
We say that f is twice differentiable at a ∈ U if f is holomorphic in a neighborhood
V ⊂ U of a and ∂f : V → Cn is differentiable at a. The second derivative of f is
often identified with the complex Hessian of f , which, given a ∈ U , is the matrix
representation of the bilinear map D2f(a).
We also call maps U ⊂ Cn → Cm complex-differentiable at a given point (resp.
holomorphic) if each of their component functions is complex-differentiable at the
given point (resp. holomorphic) according to the above definitions.

Note that the complex gradient of a complex-differentiable function f : U ⊂ Cn → C
at a point a is the vector of partial derivatives of f at a in the sense of the definition
in Proposition 2.1.4. In other words,

∂f(a) =


∂f

∂z1
(a)

. . .
∂f

∂zn
(a)
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Remark 2.2.3. We also talk of complex gradients of maps which are not necessarily
holomorphic but for which the partial derivatives with respect to the zj’s make sense
(although might produce non-holomorphic expressions). Specifically, when we do this
for a function f(z1, . . . , zn), we are looking at f as a function of the zj and the zk,
with the zj and zk variables looked at as independent variables. This will be the
case with local defining functions for hypersurfaces, for instance. When we do this,
we are meaning the vector of partial derivatives with respect to the zj’s as indicated
above.

Example 2.2.1. Consider ρ : C3 → R, given by ρ(z) = |z1z2|2+2ℜz3. This ρ is not
holomorphic. Indeed, it cannot possibly be because the only holomorphic real-valued
maps are the constant maps. However, we can write down its complex gradient.
First, we re-write ρ as ρ(z) = z1z1z2z2 + z3 + z3. Then, differentiate ρ with respect
to the zj:

∂ρ =

z1z2z2z1z1z2
1


Remark 2.2.4. This operation of taking the complex gradient of a map (which is not
necessarily holomorphic) can be looked at as a formal algebraic maneuver, and one
can verify that taking derivatives in this formal manner preserves the basic properties
we desire: sum/product rule, chain rule, etc. even when the other functions involved
are in fact holomorphic.

Notation 2.2.3. Let f : U ⊂ Cn → C be holomorphic, and denote the coordinates
in Cn by (z1, . . . , zn), writing for each j, zj = xj + iyj, xj, yj ∈ R. We may regard f

as a map U ⊂ R2n → C, and by differentiability, we may talk of
∂f

∂xj
and

∂f

∂yj
, and

we will define the following notations as well:

∂f

∂zj
:=

1

2

(
∂f

∂xj
− i

∂f

∂yj

)
and

∂f

∂zj
:=

1

2

(
∂f

∂xj
+ i

∂f

∂yj

)
More generally, we talk of the Wirtinger operators:

∂

∂zj
:=

1

2

(
∂

∂xj
− i

∂

∂yj

)
and

∂

∂zj
:=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
The first among the preceding notations actually coincides with the partial derivative
of f with respect to zj, and so no confusion arises from this usage. Also, note that
we used here the fact that holomorphy implies real-differentiability, which holds
because of Corollary 2.2.2, and we mention it as Corollary 2.2.3.
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Theorem 2.2.2. Let f : U ⊂ Cn → C, where U ⊂ Cn is a domain (meaning open
and connected). We may write f(z) = u(x1, y1, . . . , xn, yn) + iv(x1, y1, . . . , xn, yn)
where u, v : U ′ ⊂ R2n → R are real-valued functions of real variables and U ′ is U
sitting inside R2n. Then, f is holomorphic on U if and only if for every j, the maps:

∂u

∂xj
,
∂u

∂yj
,
∂v

∂xj
,
∂v

∂yj

exist and are continuous, and for all j,
∂f

∂zj
= 0.

Remark 2.2.5. These conditions are also known as the "Cauchy-Riemann
equations". The one-variable case is doable by direct verification, starting from the
definition of derivative, and one may prove the general case from the one-variable
case.

Definition 2.2.2. Let f : U ⊂ Cn → C be continuous, and let γ : [a, b] ⊂ R → Cn

be of class C1. We define the integral of f over the curve γ([a, b]) to be:∫
γ

f(z)dz =

∫ b

a

f(γ(t)) · γ′(t)dt

Remark 2.2.6. One can check that this is well-defined. In other words, regardless
of how the image of γ is parameterized (by γ or any other C1 map [a, b] → Cn), the
integral is invariant.

Notation 2.2.4. Given an open set U ⊂ Cn, with abuse of notation as to ignoring
the dimension, we denote by O(U) the vector space of all holomorphic functions with
domain U .

Theorem 2.2.3. (Cauchy’s Integral theorem)
Let U ⊂ Cn be a domain, and let K =

∏n
j=1Kj ⊂ U be a compact set. Let

f : U → C, and assume that f ∈ O(U). Then, one has:∫
∂K1

∫
∂K2

· · ·
∫
∂Kn

f(z1, . . . , zn)dzn · · · dz1 = 0

Definition 2.2.3. Let a ∈ Cn and r = (r1, . . . , rn) ∈ Rn with each rj > 0. The
open polydisk of center a and polyradius r is defined as:

P (a, r) = {z ∈ Cn,∀j, |zj − aj| < rj} =
n∏

j=1

B(aj, rj) =
n∏

j=1

Pj

where B(x, ρ) is the open ball in C of center x and radius ρ. If for all j, rj = δ, we
write P (a, δ) for P (a, r). The open unit polydisk is simply P (0, 1) = B(0, 1)n.

Notation 2.2.5. Given a metric space X and a nvs Y , we denote by C(X, Y ) the
vector space of all continuous functions from X to Y . When Y is clear from the
context, we simply write C(X) for C(X, Y ). When X is a nvs, for an open set
U ⊂ X, we define Ck(U, Y ), where k ∈ N ∪ {∞}, to be the vector space of all maps
U → Y that are of class Ck, and we also write Ck(U) when Y is understood.
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Theorem 2.2.4. (Cauchy’s Integral Formula)
Let U ⊂ Cn be open. Let P = P (a, r) =

∏n
j=1 Pj be an open polydisk centred at some

a ∈ Cn and of polyradius r. Let f : U → C and suppose that f ∈ C(P ) ∩ O(P ).
Write Γ =

∏n
j=1 ∂Pj. Then, one has for all z ∈ P :

f(z) = f(z1, . . . , zn) =
1

(2πi)n

∫
Γ

f(ζ)

(ζ1 − z1) · · · (ζn − zn)
dζ

Corollary 2.2.1. Let U be a domain in Cn, and let f : U → C be a holomorphic
map. Then, f is (complex) smooth on U .

Corollary 2.2.2. Let U ⊂ C be open and f ∈ O(U). Then, f is analytic in U ,
meaning that for any a ∈ U , there is a neighborhood V ⊂ U of a such that f
can be written in a power series on V - i.e. for some (an) ⊂ C, we can write
f(z) =

∑
n≥0 an(z − a)n for all z ∈ V . But moreover, this series is uniformly

convergent to f on the compact subsets of U , and one has for all z ∈ U :

f(z) =
∞∑
n=0

f (n)(a)

n!
(z − a)n

Note that the same also holds for maps defined on open subsets of Cn.

Corollary 2.2.3. Let f : U ⊂ Cn → C be holomorphic. Then, f is real-analytic,
meaning that if one views f as a map from the open subset U of the real vector space
Cn to the real vector space C, then f is still an analytic map.

Corollary 2.2.4. With the same setting as that of Theorem 2.2.4, and considering
a multi-index α = (α1, . . . , αn) ∈ Nn, one has for all z ∈ P :

f (α)(z) =
α!

(2πi)n

∫
Γ

f(ζ)

(ζ1 − z1)α1+1 · · · (ζn − zn)αn+1
dζ

where α! :=
∏n

j=1 αj! and:

f (α) :=
∂|α|f

∂zα1
1 · · · ∂zαn

n

where |α| =
∑n

j=1 αj is the "norm" of the multi-index α.

Theorem 2.2.5. (Identity theorem)
Let U ⊂ Cn be a domain, and let f : U → C be holomorphic. Let A ⊂ U with
A′ ∩ U ̸= ∅. If f ≡ 0 on A, then f ≡ 0 on U .

Theorem 2.2.6. (Maximum Modulus Principle)
Let U ⊂ Cn be a domain, and let f : U → C be holomorphic. If |f | : U → R admits
a maximum on U , then f is constant.

Corollary 2.2.5. Let U ⊂ Cn be a bounded domain. Let f : U → C and suppose
that f ∈ O(U) ∩ C(U). Then, |f | : U → R attains its maximum over the compact
set U on ∂U .

Corollary 2.2.6. Let U ⊂ Cn be a bounded domain. If f ∈ O(U) ∩ C(U) vanishes
everywhere on ∂U , then f ≡ 0 on U .
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2.2.2 Complications of Several Variables: Theorems and Examples

Many of the problems of several complex variables concern appropriate
generalizations or analogues to things we have seen in C and inspection of
multivariate phenomena that drastically differ from the one-variable-case, such as
Hartog’s phenomenon or the failure of the Riemann Mapping theorem in the
multivariable situation. This subsection serves to highlight these points.

Definition 2.2.4. Let U ⊂ Cm and V ⊂ Cn be open sets. Let f : U → V be a map.
We say that f is a biholomorphism if f is bijective and holomorphic, and f−1 is
holomorphic. We say that U and V are biholomorphic if there is a biholomorphism
between them.

Remark 2.2.7. The relation "biholomorphic to" is an equivalence relation on the
set of all subsets of ⊔nCn. Hence, the notion of "U and V being biholomorphic" is
well-defined.

Definition 2.2.5. A property in the context of complex analysis is said to be an
invariant if it is preserved under all biholomorphic transformations.

Definition 2.2.6. Let X be a metric space. A path in X from a point x ∈ X to a
point y ∈ X is a continuous function f : [0, 1] ⊂ R → X such that f(0) = x and
f(1) = y.

Remark 2.2.8. We can talk of paths (and the few upcoming notions) in general
topological spaces, and we don’t really need a metric or a metrizable topology.

Definition 2.2.7. A metric space X is said to be path-connected if for any two
points x, y ∈ X, there exists a path in X from x to y.

Definition 2.2.8. Let X and Y be metric spaces, and let f, g : X → Y be continuous
maps. A homotopy between f and g is a continuous function H : X × [0, 1] → Y
satisfying H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X. If there is such a
map between f and g, we say that f and g are homotopic. One should think of a
homotopy as a way to continuously transform one embedding of an object into the
embedding of another one. Note that "homotopic to" is an equivalence relation, and
thus this notion as formulated is well-defined.

Example 2.2.2. The closed unit disk B[0, 1] in R2 is homotopic to the origin. In
precise terms, let f : B[0, 1] → B[0, 1] be the identity map, and consider the map
0⃗ : B[0, 1] → B[0, 1] given by 0⃗(x, y) = (0, 0). Then, H : B[0, 1] × [0, 1] → B[0, 1]
given by H(x, t) = (1 − t)x is a homotopy between f and 0⃗. Here, one should
think of how the disk can be "shrunk" to the origin by "deforming" all the segments
connecting the origin to a point on the boundary of the disk to the origin in a
continuous manner.

Definition 2.2.9. Let X be a metric space. We say that X is simply connected
if X is path-connected and all the paths in X with the same starting point and the
same ending point are homotopic to each other.
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One should think of simple-connectedness as a way to formalize the notion of "having
no holes" in the set. The requirement that we can deform any two paths with the
same starting point and same ending point to each other functions to formalize
the notion of "scanning for holes and finding none". Each path in the set is to be
considered as a "first mark", and the homotopy sending it to another path (the
"second mark") in the set is to be thought of as the "scanning machine". The result
of the scanning is that there are no "missing points". See Figure 2.1 for an example
of a set with "holes" or "missing points". Note that holes might simply refer to
removed points and need not be about removed chunks. For instance, C \ {0} is not
simply connected. Most formally, one would say that a set is simply connected if
it’s path-connected and its fundamental group at each point (a group of equivalence
classes of loops based at the point, a way to formalize "the number of holes", where
a "hole" comes out as a generator of the group) is trivial, which means that it’s
isomorphic to the additive group ({0},+).

Notation 2.2.6. Here and elsewhere, we denote by ∆ the open unit disk in C,
i.e. ∆ := {ζ ∈ C, |ζ| < 1}, we denote by H+ the upper-half plane in C, i.e.
H+ := {ζ ∈ C,ℑζ > 0}, and we denote by Bn the open unit ball (i.e. the open unit

disk) in Cn, i.e. Bn =

{
z ∈ Cn, ∥z∥ =

(∑
j |zj|2

)1/2
< 1

}
.

Theorem 2.2.7. (Riemann Mapping theorem)
Every non-empty, open and simply connected subset of C that is not all of C is
biholomorphic to the open unit disk in C.

Figure 2.1: This set (the shaded region) is not simply connected. It has three "holes"
(the white parts are not part of the set).

Example 2.2.3. The set H+ can be proven to be simply connected, and it’s surely
non-empty and ̸= C. The Riemann Mapping theorem tells us that there exists a
biholomorphism from ∆ to H+ (or vice-versa). In fact, one can verify that the map
f : ∆ → H+ given by:

f(z) = i
1 + z

1− z

is a biholomorphism.

Remark 2.2.9. There is no n ≥ 2 for which the statement of the Riemann
Mapping theorem in Cn holds. We will show this after we prepare the necessary
ingredients in the next few lines.
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Definition 2.2.10. Let X and Y be metric spaces, and let f : X → Y be continuous.
We say that f is a proper map if the inverse image under f of any compact subset of
Y is a compact subset of X. In other words, f is proper if for every compact subset
K of Y , we have that f−1(K) is compact.

Definition 2.2.11. Let (X, d) be a metric space and (xn) ⊂ X. We say that a point
x ∈ X is an accumulation point of (xn) if it is true that: ∀ϵ > 0,∀n ∈ N,∃k > n
such that d(xk, x) < ϵ. Equivalently, x is an accumulation point of (xn) if x is the
limit of some subsequence of (xn).

Lemma 2.2.1. Let X ⊂ Rm and Y ⊂ Rd be bounded domains. Let f : X → Y be
continuous. Then, f is a proper map if and only if for every sequence (xn) ⊂ X
converging to some x ∈ ∂X, we have A ⊂ ∂Y , where A is the set of accumulation
points of (f(xn)).

Proof. Suppose that f is proper, and let (xn) ⊂ X with xn → x ∈ ∂X. Let y ∈ A.
Then, there is a subsequence (f(xnk

)) of (f(xn)) that converges to y. We know that
y ∈ Y . Suppose that y ∈ Y ◦. Then, ∃δ > 0 such that B(y, δ) ⊂ Y . As (f(xnk

))
converges to y, we know that there is N ≥ 1 such that f(xnk

) ∈ B := B(y, δ/2)
for all k ≥ N . In particular, f(xnk

) ∈ B for all k ≥ N . Then, xnk
∈ f−1(B)

for all k ≥ N . But B is compact, so since f is proper, f−1(B) is also compact.
Hence, f−1(B) is closed in Rm. So, x = limxnk

∈ f−1(B). As f is continuous and
B(y, δ) is an open subset of Y , we know that f−1(B(y, δ)) ⊂ X◦ = X. In particular,
f−1(B) ⊂ X. Hence, f−1(B) ∩ ∂X = ∅. But x ∈ f−1(B) ∩ ∂X. A contradiction.
Therefore, y /∈ Y ◦, so y ∈ ∂Y .
Now let’s show the backward implication. Let K ⊂ Y be compact. Then, K is
closed in Rd, and so f−1(K) is closed in X. Since X is bounded, so is f−1(K). So,
it’s enough to show that f−1(K) is closed in Rm. If it’s not, then there is a sequence
(xn) ⊂ f−1(K) such that xn → x ∈ ∂X (since f−1(K) is closed in X). We know
that (f(xn)) ⊂ K which is compact, so it has a convergent subsequence converging
to some y ∈ K. By our assumption, and since y is an accumulation point of (f(xn)),
we must have y ∈ ∂Y . Thus, y ∈ K ∩ ∂Y . But since Y is open, Y ∩ ∂Y = ∅, in
particular, K ∩ ∂Y = ∅. This is a contradiction. Therefore, f−1(K) is closed in Rm

and is thus compact. Therefore, f is proper.

Remark 2.2.10. It is not enough for f to be continuous for the previous lemma to
hold. Indeed, take X = (0, 3), Y = (0, 5), and consider the function f : X → Y
given by f(x) = 4x − x2. Obviously, X and Y are bounded domains, and f is

continuous. However, take (xn) ⊂ X to be the sequence given by xn = 3− 1

n
. Then,

xn → 3 ∈ ∂X, but f(xn) = 3 +
2

n
− 1

n2
→ 3 /∈ ∂Y .

Theorem 2.2.8. Let U ⊂ C be a domain, and let (fn) be a sequence of
holomorphic functions U → C. Suppose that fn → f uniformly on compact subsets
of U . Then, f is holomorphic, and f ′

n → f ′ uniformly on compact subsets of U .

Theorem 2.2.9. (Montel’s theorem)
Let U ⊂ C be open and (fn) be a sequence of holomorphic functions U → C. If (fn)
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is uniformly bounded on compact subsets of U (meaning that for any given compact
K ⊂ U , ∃cK > 0 such that |fk(z)| ≤ cK for all z ∈ K and all k ≥ 1), then there
exists a subsequence (fnk

) that converges uniformly on the compact subsets of U .

Theorem 2.2.10. (Open Mapping theorem)
Let U ⊂ C be a domain and f : U → C be a non-constant holomorphic function.
Then, f is an open map, meaning that for all open sets O ⊂ U , f(O) is open.

Theorem 2.2.11. (Rothstein)
For every n ≥ 2, the open unit ball in Cn and the open unit polydisk in Cn are not
biholomorphic. Hence, the statement of the Riemann Mapping theorem fails in Cn,
for all n ≥ 2.

The following proof is inspired by the one presented in section 1.4 of [3].

Proof. Suppose that they are biholomorphic, and let f : P (0, 1) = ∆n → Bn be a
biholomorphism. In particular, f is a holomorphic, proper map. Fix some η ∈ ∂∆n−1

and let (ηk) be a sequence in ∆n−1 such that ηk → η. Consider the sequence of
functions (gk) defined by gk : ∆ → Bn, gk(ζ) = f(ζ, ηk). Clearly, every gk is
holomorphic. Moreover, (gk) is uniformly bounded on compact subsets of ∆: in
fact, (gk) is uniformly bounded on ∆, as each gk(ζ) lives inside Bn. So, by Montel’s
theorem, there is a subsequence (gkj) of (gk) that converges uniformly on the compact
subsets of ∆ to some holomorphic function g : ∆ → B[0, 1] = Bn (the closed unit
ball in Cn). By the lemma, we know that g(∆) ⊂ ∂Bn, and by the Open Mapping
theorem, this implies that g is constant. Now the sequence of derivatives (g′kj)

converges (uniformly) to g′ ≡ 0 (on compact subsets of ∆). But, one has for each j,

g′kj(ζ) =
∂f

∂z1
(ζ, ηkj)

so that:
lim
j

∂f

∂z1
(ζ, ηkj) = 0

and this is true for all ζ. Now fix a ζ. The map ξ 7→ ∂f

∂z1
(ζ, ξ) is defined and

holomorphic on ∆n−1, and by the preceding reasoning, we may extend it continuously

to ∆n−1. By the Maximum Modulus Principle, one sees that
∂f

∂z1
(ζ, ·) ≡ 0, and this

holds for all ζ. We conclude that
∂f

∂z1
≡ 0. We may repeat the same argument

for the other variables to conclude that in fact ∂f ≡ 0. Thus, f is constant (by
connectedness), and this contradicts the fact that f is proper. Indeed, if f ≡ c is
constant, then the inverse image of any compact set containing c is P (0, 1) itself,
which is not compact. Alternatively, we can also conclude by saying that f being
constant contradicts its bijectivity.

Remark 2.2.11. It is a fact that if X and Y are nvs, U ⊂ X is open and connected,
and f : U → Y is differentiable on U with Df ≡ 0, then f is constant, and this is
what we used at the end above.
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Definition 2.2.12. Let U ⊂ Cn be a domain, and let V ⊂ U be a domain as well.
A domain V ′ is called an O(U)-analytic-completion (or just analytic completion)
of V if V ⊂ V ′ and ∀f ∈ O(U), f |V extends holomorphically to V ′.

Definition 2.2.13. A domain U ⊂ Cn is called a domain of holomorphy if for
all V ⊂ U , U contains all the analytic completions of V .

Remark 2.2.12. Any domain U ⊂ C is a domain of holomorphy. In fact, the only
analytic completions of a given subdomain V ⊂ U are V itself and subsets of U that
contain V . Indeed, suppose that V ′ is an analytic completion of V , and suppose
that V ′ ̸⊂ U . Let z0 ∈ V ′ \ U . Consider f : U → C given by f(z) = (z − z0)

−1.
Then, f extends holomorphically to V ′, given by some g. We know that g agrees
with z 7→ (z− z0)

−1 on the domain V , so by the Identity theorem, g(z) = (z− z0)
−1

for all z ∈ V ′, and this is impossible because z0 ∈ V ′. A contradiction. So, these
concepts are quite useless unless we are in Cn for n ≥ 2.

Theorem 2.2.12. (Hartog’s theorem)
Let n ≥ 2 and U ⊂ Cn be a domain. Let K ⊂ U be compact, and suppose that U \K
is connected (so that it is also a domain). Then, every map f ∈ O(U \K) extends
uniquely to a map f ∗ ∈ O(U).

One consequence of Hartog’s theorem is that Cn, for n ≥ 2, abundantly contains
domains which have non-trivial analytic completions. Give me a ball U = B(a, ϵ)
and denote by K its closure (so that K is compact). Let U ′ = B(a, ϵ + 1). Then,
U ′ is a domain, K ⊂ U ′ is compact and U ′ \K is the annulus of center a, smaller
radius ϵ and larger radius ϵ + 1, which is obviously connected. Let f : U ′ \K → C
be any holomorphic map. Then, by Hartog’s theorem, f extends holomorphically to
U ′. This shows that all annuli in Cn are not domains of holomorphy. One can see
from this how the concept of a domain of holomorphy emerged: it is interesting to
know what it is that makes certain sets (if any) immune to holomorphic extensions.
The earliest form of the "Levi problem" concerned this question, and it now has a
definitive answer: in Chapter 3, we define the notion of a "pseudoconvex" domain,
and we note that being a domain of holomorphy is the same as being a pseudoconvex
domain (see Theorem 3.1.3).

2.3 Further Complex-Analytic Notes

Some basic and requisite definitions for one-variable complex analysis are laid out
in the first subsection. In the second subsection, we talk a bit about some known
automorphisms in the context of C and we mention Cartan’s uniqueness theorem.

2.3.1 Useful One-Variable Definitions and Remarks

Here, we talk about singularities, meromorphicity, Laurent series and a few other
basic concepts.
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Definition 2.3.1. Let U ⊂ C be open. A map f : V ⊂ C → C is said to be
meromorphic on U if for every z0 ∈ U , there is a neighborhood W of z0 in U such
that on W , either f or 1/f is definable and holomorphic.

Notation 2.3.1. Given an open set U ⊂ C, we denote by M(U) the vector space
of all meromorphic functions on U .

Definition 2.3.2. Let U ⊂ C be open and let f ∈ M(U). A point z0 ∈ U is called
a pole of f of order n ≥ 1 if z 7→ (z − z0)

nf(z) is definable as a holomorphic and
nowhere-zero map in a neighborhood of z0.

Remark 2.3.1. In the previous definition, it is clear that if such an n exists, then
it is unique, and we talk of the order of the pole z0 of f .

Example 2.3.1. Let f : C \ {0} → C be the map f(z) = 1/z. Then, f ∈ M(C)
and 0 is a pole of f of order 1. Similarly, given n ≥ 2, we have that 0 is a pole of
z 7→ 1/zn of order n.

Definition 2.3.3. A set X is called countable if there is an injective map from X
to N (so that our notion of "countable" includes all the finite sets as well).

Proposition 2.3.1. Let U ⊂ C be open. If f ∈ M(U), then f is definable and
differentiable except at countably many points in U . The converse also holds, so
that meromorphic functions on an open set U ⊂ C are precisely those f for which
there’s a countable set A such that f ∈ O(U \ A).

Definition 2.3.4. Let U ⊂ C be open, z0 ∈ U , and f ∈ M(U) such that f is not
defined at z0. The point z0 is called a removable singluarity of f if limz→z0 f(z)
exists in C. On the other hand, z0 is called an essential singularity of f if z0 is
neither a removable singularity nor a pole of f .

Theorem 2.3.1. (Casorati-Weierstrass theorem)
Let U ⊂ C be open, z0 ∈ U , and f : U \ {z0} → C be holomorphic. Suppose that z0
is an essential singularity of f . Then, for every neighborhood V ⊂ U of z0, we have
that f(V \ {z0}) is dense in C.

Proposition 2.3.2. Let f : ∆ \ {0} → C be a holomorphic, injective map. Then, 0
is not an essential singularity of f .

Proof. Suppose that 0 is an essential singularity of f . Let V1 = B(0, 1/2) and
V2 = B(3/4, 1/4). Then, V1 and V2 are open and disjoint. As 0 ∈ V1 ⊂ U = ∆, we
know by the Casorati-Weierstrass theorem that f(V1 \ {0}) is dense. By the Open
Mapping theorem, f(V2) is open. Hence, by density, f(V2) ∩ f(V1 \ {0}) ̸= ∅. In
particular, by injectivity, f((V1 \ {0}) ∩ V2) = f(V2) ∩ f(V1 \ {0}) ̸= ∅. However,
V1 ∩ V2 = ∅, so f(V1 ∩ V2) = ∅. A contradiction.

Proposition 2.3.3. The properties of being a zero, a pole of a specific order, a
removable singularity and of being an essential singularity of a given map are all
invariants. In fact, let U, V ⊂ C be biholomorphic open sets by some biholomorphism
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φ : U → V . Let f ∈ M(U) and let z0 ∈ U be a zero (or a pole of order n ≥ 1,
or removable singularity, or essential singularity) of f . Then, f ◦ φ−1 ∈ M(V ),
and φ(z0) is a zero (resp. a pole of order n, a removable singularity, an essential
singularity) of f ◦ φ−1.

Proof. That f ◦ φ−1 ∈ M(V ) is obvious, and if z0 is a zero of f , i.e. f(z0) = 0,
then surely (f ◦ φ−1)(φ(z0)) = f(z0) = 0. Let’s show that poles are preserved (we
leave the rest to the reader). Suppose that z0 is a pole of f of order n ≥ 1. Then,
g : z 7→ (z − z0)

nf(z) is definable on a neighborhood W ⊂ U of z0, g ∈ O(W ) and
g(z) ̸= 0 for all z ∈ W . Let W ′ = φ(W ). Then, W ′ ⊂ V is a neighborhood of φ(z0).
Consider the map h : z 7→ (z − φ(z0))

n(f ◦ φ−1)(z). We have:

h(φ(z)) = (φ(z)− φ(z0))
nf(z) =

(
φ(z)− φ(z0)

z − z0

)n

g(z) = η(z)g(z)

The map η is defined on W \ {z0}, and by holomorphy of φ, we know that as
z → z0, we have η(z) → (φ′(z0))

n ∈ C. Hence, z0 is a removable singularity of η,
and η ∈ O(W ). Hence, h ◦ φ ∈ O(W ). As the composition of holomorphic maps is
holomorphic, we have h = (h ◦ φ) ◦ φ−1 ∈ O(W ′). Moreover, for any ξ ∈ W ′, there
is z ∈ W such that ξ = φ(z), and then we may write h(ξ) = h(φ(z)) = η(z)g(z).
We know that g(z) ̸= 0, so if h(ξ) = 0, then η(z) = 0, so that φ(z) = φ(z0). By
injectivity, z = z0, so 0 = η(z) = η(z0) = (φ′(z0))

n, hence φ′(z0) = 0, contradicting
the injectivity of φ. This shows that h(ξ) ̸= 0 for all ξ ∈ W ′. And therefore, φ(z0)
is a pole of f ◦ φ−1 of order n.

Remark 2.3.2. Let U ⊂ C be open and let f ∈ M(U). Let z0 ∈ U be a pole of f of
order n. We know that there is a neighborhood W of z0 such that z 7→ (z− z0)

nf(z)
is holomorphic on W , and by analyticity, we may then do a power series expansion
at z0:

(z − z0)
nf(z) =

∞∑
k=0

ck(z − z0)
k

and then,

f(z) =
c0

(z − z0)n
+

c1
(z − z0)n−1

+ · · ·+ cn−1

z − z0
+

∞∑
k=0

ck+n(z − z0)
k

Definition 2.3.5. The above expansion of f at z0 is called the Laurent series of
f at the pole z0, and cn−1 is called the residue of f at z0, and we use the notation
Res(f, z0) for the residue of f at z0.

Definition 2.3.6. Given z ∈ C \ {0}, let w =
z

∥z∥
. Then, w ∈ ∂∆, which is

parameterizable by θ ∈ [−π, π) 7→ cos θ + i sin θ, and there is a unique θ ∈ [−π, π)
such that w = cos θ + i sin θ = eiθ, and then z = ∥z∥eiθ. This θ is called the
principal argument of z, denoted by Arg(z). More generally, we talk of the set
valued function arg : C \ {0} → P(R) given by arg(z) = {Arg(z)+ 2kπ, k ∈ Z}, and
sometimes we talk of arg as a multi-valued correspondence, and then each value of
arg(z) is called an argument of z.
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2.3.2 A Few Words About Automorphisms

Automorphisms in Complex Analysis are naturally the biholomorphisms from a set
to itself. These provide a lot of insight into the objects at work, and this subsection
aims at familiarizing the reader a bit with this concept.

Proposition 2.3.4. Let U ⊂ C be open, and let f : U → C be a holomorphic and
injective map. Then, f ′(z) ̸= 0 for all z ∈ U .

Proposition 2.3.5. The automorphisms of C are precisely the non-constant maps
of the form f(z) = az + b for some a, b ∈ C.

Proof. Let f ∈ Aut(C). By analyticity, there is some (an) ⊂ C such that for all
z ∈ C, we have f(z) =

∑
n≥0 anz

n. Consider g : ∆\{0} → C given by g(z) = f(1/z).
It’s clear that g is holomorphic and injective. So, 0 is not an essential singularity
of g. So, 0 is either a removable singularity of g or a pole of g of some order k. We
have:

g(z) =
∑
n≥0

an
zn

so that if 0 is removable, then we must have an = 0 for all n ≥ 1, and so f is
constant, a contradiction to injectivity of f . Hence, 0 is a pole of g of order k,
and we must have an = 0 for all n ≥ k + 1. Thus, f(z) = a0 + a1z + · · · + akz

k,
with k ≥ 1. By the Fundamental Theorem of Algebra, f has k roots in C, and by
injectivity, these roots must all be equal. In other words, there are α, z0 ∈ C with
α ̸= 0 such that f(z) = α(z − z0)

k. Suppose that k ≥ 2. Then, for instance, the
equation f(z) = 1 has k different solutions, and this contradicts injectivity. Hence,
k = 1, and so, f(z) = α(z − z0) = az + b with a ̸= 0.

Theorem 2.3.2. (Schwarz lemma)
Let f ∈ O(∆) with f(0) = 0 and |f(z)| ≤ 1 for all z ∈ ∆. Then, |f(z)| ≤ |z| for all
z ∈ ∆, and |f ′(0)| ≤ 1. Moreover, if |f(z0)| = |z0| for some z0 ̸= 0 or |f ′(0)| = 1,
then there is a ∈ ∂∆ such that f(z) = az for all z ∈ ∆.

Definition 2.3.7. A Blaschke factor is a map of the form Ba(z) =
z − a

1− az
for

some a ∈ ∆.

Remark 2.3.3. Blaschke factors are automorphisms of ∆, and given a ∈ ∆, we
have B−1

a (z) =
z + a

1 + az
.

Proposition 2.3.6. Let f ∈ Aut(∆). Then, there is some a ∈ ∂∆ such that for all
z ∈ ∆, Bb(f(z)) = az, where b = f(0).

Proof. We have Bb ◦ f ∈ Aut(∆), and Bb ◦ f(0) = Bb(f(0)) = Bb(b) = 0. So,
by Schwarz lemma, |Bb(f(z))| ≤ |z| for all z ∈ ∆. On the other hand, we know
that (Bb ◦ f)−1 ∈ Aut(∆), and (Bb ◦ f)−1(0) = 0, so again by Schwarz lemma, we
have |(Bb ◦ f)−1(z)| ≤ |z| for all z ∈ ∆. Now given z ∈ ∆, write ξ = Bb ◦ f(z).
Then, applying the latter inequality to ξ, we get |z| ≤ |Bb(f(z))|. We conclude
that |Bb(f(z))| = |z| for all z ∈ ∆. In particular, again by Schwarz lemma, there is
a ∈ ∂∆ such that Bb(f(z)) = az for all z ∈ ∆.
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Corollary 2.3.1. The automorphisms of ∆ are precisely the maps of the form

f(z) =
az + b

bz + a
for some a, b ∈ C with |a| = 1 and |b| < 1.

Proof. Let f ∈ Aut(∆). By above, there is a ∈ C with |a| = 1 such that for all z,
Bb(f(z)) = az, with b = f(0). Then,

f(z) = B−1
b (az) =

az + b

1 + baz
=
az + b

bz + a

and since b = f(0), we have |b| < 1.

Proposition 2.3.7. The automorphisms of a given domain U ⊂ Cn are invariants
in the following sense: let V ⊂ Cm and suppose that U and V are biholomorphic
through some biholomorphism φ : U → V ; we have Aut(V ) = φ ◦ Aut(U) ◦ φ−1, by
which we mean that: H ∈ Aut(U) if and only if φ ◦H ◦ φ−1 ∈ Aut(V ).

Definition 2.3.8. We call a Mobius transformation any function

T : U ⊂ C → C of the form T (z) =
az + b

cz + d
, where U is an appropriately chosen

domain of T , such that a, b, c, d ∈ C with ad− bc ̸= 0.

Corollary 2.3.2. Every automorphism of H+ (the upper-half plane) is a
Mobius transformations of H+ with real coefficients. More particularly, every

element of Aut(H+) is of the form T (z) =
az + b

cz + d
with a, b, c, d ∈ R and ad−bc > 0.

Proof. We already know the automorphisms of ∆, and Example 2.2.3 gives us a

biholomorphism f : ∆ → H+ which has the inverse f−1(z) =
z − i

z + i
. Hence, the

automorphisms of H+ are precisely the maps f ◦ H ◦ f−1, where H ∈ Aut(∆).
If we consider some H ∈ Aut(∆), one of the form displayed in Corollary 2.3.1
with parameters α, β ∈ C satisfying |α| = 1 and |β| < 1, then one can verify the
computation:

f ◦H ◦ f−1(z) =
(α + α + β + β)z − i(α− α) + i(β − β)

[i(α− α) + i(β − β)]z + α + α− (β + β)
=
az + b

cz + d

where clearly a, b, c, d ∈ R. Furthermore, one has ad−bc = 4|α|2−4|β|2 = 4(1−|β|2),
and since |β| < 1, we get ad− bc > 0.
Note that here we actually precisely nailed down Aut(H+), but we do not display
this in the statement of the corollary because it is a messy expression with many
conditions, hence we decided to just state a necessary condition.

Definition 2.3.9. Let U ⊂ Cn be a domain and let f ∈ O(U). The m-jet of f at a
point z0 ∈ U is the collection {f(z0), Df(z0), D2f(z0), . . . , D

mf(z0)}, and one says
that a family of functions F has an m-jet determination at a point z0 ∈ U if for all
f, g ∈ F , if f and g have equal m-jets at z0, then f = g.
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Theorem 2.3.3. (Cartan’s Uniqueness Theorem)
Let U ⊂ Cn be a bounded domain, and let z0 ∈ U and H ∈ Aut(U). If H(z0) = z0
and DH(z0) = I (the identity map of U), then H = I.

Remark 2.3.4. This theorem essentially says that automorphisms of bounded
domains have a 1-jet determination at any given point in these domains, and this is
a very powerful statement. Moreover, the reader should notice that Cartan’s theorem
is more or less a generalization of the Schwarz lemma.

Automorphisms are biholomorphisms, and in this respect, they are as important
as biholomorphisms are: a different way of looking at the structure and therefore
new information and an ameliorated understanding, as well as a way to capture the
invariants. The latter can be very helpful if one can move to a structure that is
simpler, as the Riemann Mapping Theorem allows one to do. But automorphisms
are essentially different machines. Automorphisms are particularly symmetries of
objects, and this means that they are the essence of invariance and that they display
invariant information in much better language and precision. For instance, if one
has a certain family of invariant objects of a structure X that is not completely
determined let’s say, then having a few automorphisms of X might allow us to get
more information about the family by giving us other members of it by passing
through an automorphism of X. We will discuss this in the upcoming chapters and
the reader will see how this approach applies to stationary disks. However, if one is
generally considering a biholomorphism, no information is expected to be obtained
about such a family by passing through the biholomorphism, as the latter mostly
only serves to explain the role of a member of that family in the new structure: it
is not expected to generate information about other members of the family.
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Chapter 3

Background in Differential
Geometry

In this chapter, we review the theory of Differential Geometry and we build up the
topic of this thesis. Of the things we do here is go over basic Differential-Geometric
concepts (manifolds, tangent bundles, the Levi form, convexity and related notions,
etc.), then talk about analytic and stationary disks, and we conclude this chapter
with explaining the motivation for and the goal of this thesis.

3.1 Manifolds, Complex Structures, and Real Hypersurfaces

In this section, we lay out some basics of Differential Geometry and CR Geometry.
It is intended as a quick revision leading to the topic of our work.

3.1.1 Smooth Real Manifolds and Complex Manifolds

This is a summary of the classical basic notions of Differential Geometry in which
we define smooth real manifolds and their tangent bundles, embedded submanifolds,
smooth maps between manifolds and related ideas, as well as briefly mention complex
manifolds.

Definition 3.1.1. Let M be a topological space. We say that M is a real
topological manifold of dimension n if M is Hausdorff and second countable, and
for each p ∈ M , there is a neighborhood U ⊂ M of p such that U is homeomorphic
to an open subset of Rn. If this is the case, we also say that M is a real n-manifold.

Definition 3.1.2. A chart for a real n-manifold M is a 2-tuple (U,φ) where U is an
open subset of M and φ : U → φ(U) ⊂ Rn is a homeomorphism, and the transition
map from a chart (U,φU) to a chart (V, φV ) is the map ψUV = φV ◦φ−1

U with domain
φU(U ∩ V ) and codomain φV (U ∩ V ). Two such charts are called compatible if ψUV

is a C∞-diffeomorphism.

Definition 3.1.3. A (smooth or differentiable) atlas for a real n-manifold M is a
collection A = {(Uj, φj), j ∈ J} of pairwise compatible charts such that M = ∪j∈JUj.
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And a maximal atlas for M is an atlas which contains every chart that is compatible
with every member of A.

Remark 3.1.1. It is a fact that for any real manifold M and any atlas A for M ,
there is a unique maximal atlas for M that contains A.

Definition 3.1.4. A maximal atlas on a real manifold M is called a smooth (or
differentiable) structure on M , and a manifold M equipped with a maximal atlas is
called a smooth real manifold.

We may also talk of real manifolds of class Ck, which are real topological manifolds
whose transition maps are Ck-diffeomorphisms rather than C∞-diffeomorphisms. A
smooth manifold is also called a manifold of class C∞. Note that all the concepts
we lay out here can be reformulated appropriately for manifolds of class Ck with
1 ≤ k <∞.

Example 3.1.1. The Euclidean space Rn is naturally a smooth real n-manifold, Cn

can be looked at as a smooth real 2n-manifold, and the unit sphere Sn ⊂ Rn+1 can
be made into a smooth real n-manifold.

Definition 3.1.5. Let M be a smooth, real m-manifold with (maximal) atlas
{(Uk, φk)}k∈K, and N be an n-manifold with atlas {(V j, ηj)}j∈J . Let F : M → N
be a continuous map. We say that F is differentiable if for every k ∈ K and j ∈ J ,
the map ηj ◦ F ◦ φ−1

k : φk(Uk ∩ F−1(Vj)) ⊂ Cm → Cn is differentiable. If, moreover,
F is a bijection and F−1 is differentiable in the aforementioned sense, we say that
F is a diffeomorphism, and M and N are then called diffeomorphic.

The notion of a differentiable map between smooth manifolds defined above is the
most natural way to generalize the concept of differentiability of a map on things
which are not necessarily open subsets of vector spaces. In fact, differentiability
is a local property - one originally talks of differentiability at a point and talks of
perturbation of the function near the point. This naturally generalizes to zooming
into coordinates near a point (which is what charts are about), with smoothness
of transition maps between charts expressing the irrelevance as to which particular
coordinates one chooses for the purposes of differentiability.

Example 3.1.2. The space Sn−1 \ {N} ⊂ Rn, where N = (0, . . . , 0, 1) is the "north
pole", is diffeomorphic to Rn−1, and one possible diffeomorphism between them is
the classical stereographic projection.

Definition 3.1.6. Let M be a smooth, real n-manifold. We define C∞(M) to be the
R-algebra of all maps f : M → R which are smooth in the sense of manifolds. One
also defines a derivation at a point p ∈ M to be a linear map D : C∞(M) → R
that satisfies the "product rule for derivatives" (aka "Leibniz rule"): for all maps
f, g ∈ C∞(M), D(fg) = D(f)g(p)+ f(p)D(g). Notice that from this rule, it follows
that D(1) = 0, and then that D(f) = 0 if f is constant.

31



Definition 3.1.7. Let M be a smooth, real n-manifold and let p ∈ M . We define
the tangent space of M at p, denoted by TpM , to be the (real) vector space of all
derivations at p, with the natural addition of, and scalar multiplication on, linear
maps.

Remark 3.1.2. A (smooth, real) n-manifold M comes naturally with a choice of
a maximal atlas, and then given p ∈ M , one considers a chart (U,φ) such that
p ∈ U , and then if one writes φ = (x1, . . . , xn) (i.e. if (x1, . . . , xn) are "local
coordinates" at p), one may define (with abuse of notation) a basis for TpM given

by
{

∂

∂x1
, . . . ,

∂

∂xn

}
, where given 1 ≤ j ≤ n and f ∈ C∞(M),

∂

∂xj
(f) :=

(
∂

∂xj

(
f ◦ φ−1

))
(φ(p))

Hence, dimTpM = dimM = n. Also, one should note well that such a basis depends
on the point p and the choice of a chart containing p.

Proposition 3.1.1. With the same setting as above and letting N be another smooth
manifold, a smooth map F : M → N with q = F (p) induces a linear map between
tangent spaces, dFp : TpM → TqM , called the differential of F at p. This map is
defined by the formula: dFp(X)(f) = X(f ◦ F ) for X ∈ TpM and f ∈ C∞(N).

Theorem 3.1.1. Let M and N be two smooth manifolds and let p ∈ M . If a map
F :M → N is local diffeomorphism at p (meaning that there is a neighborhood
U ⊂ M of p such that F : U → φ(U) is a diffeomorphism), then dFp as defined
above is an isomorphism. A partial converse also holds: if F is smooth and dFp is
an isomorphism, then F is a local diffeomorphism at p.

Remark 3.1.3. Since charts of smooth manifolds are by definition local
diffeomorphisms everywhere, one sees that for any chart (U,φ), we have at every
point p ∈M an induced isomorphism dφp : TpM → Tφ(p)φ(U).

Definition 3.1.8. Given a smooth, real manifold M , we define the tangent bundle
of M to be the disjoint union TM :=

⊔
p∈M TpM =

⋃
p∈M{p} × TpM equipped with

a particular smooth structure that we will unfold here. Define π : TM → M to be
the projection map π(p, v) = p. Fix p0 ∈ M and let (U,φ) be a chart with p0 ∈ U
and denote by (x1, . . . , xn) the associated coordinates. Define φ′ : π−1(U) → R2n by:

φ′

(
p,
∑
j

vj
∂

∂xj

)
= (φ(p), v1, . . . , vn)

We can do this for every chart (U,φ), and we get ourselves a collection of the form
{(U ′, φ′)} with U ′ = π−1(U) and φ′ as defined above for a given (U,φ). We then
equip TM with the following topology: a subset V of TM is open if for every such
(U ′, φ′) as defined above, we have that φ′(V ∩ π−1(U)) is open. And one can prove
that with this topology and with the charts (U ′, φ′), TM is a 2n dimensional real
topological manifold. Furthermore, these (U ′, φ′) form compatible charts of TM and
make it into a smooth manifold.
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Definition 3.1.9. Let M be a smooth real n-manifold. A subset S of M is called
an embedded submanifold of M of dimension d ≤ n if for all p ∈ S, there is a
neighborhood U of p in M and a chart φ : U → φ(U) such that:

φ(S ∩ U) = φ(U) ∩ {x ∈ Rn, xd+1 = · · · = xn = 0}

Remark 3.1.4. As defined above, S can be shown to be a smooth real d-manifold
(with appropriately defined charts). More elaborately, let us note that S itself is a
topological manifold of dimension d, and it has a smooth structure making it a smooth
d-manifold in such a way that the inclusion map S ↪−→M is an injective immersion
(see Terminology 3.1.1) and a topological embedding (i.e. a homeomorphism onto
its image in the subspace topology). Such a map as just described is usually referred
to as a "smooth embedding".

Remark 3.1.5. Although there are other different notions of "submanifold", when
we talk of a submanifold we will always be meaning "embedded submanifold". We
will not be concerned with other types of submanifolds.

Proposition 3.1.2. Let M be a smooth real manifold and let S ⊂M . Suppose that
for every p ∈ S, there is a neighborhood U of p in M such that S∩U is a submanifold
of U of dimension d. Then, S itself is a submanifold of M of dimension d.

Proposition 3.1.3. Let S be a submanifold of a smooth real manifold M , and let
p ∈ S. Then, TpN can be seen as (vector) subspace of TpM , where it is given by:

TpN = {X ∈ TpM,X(f) = 0 for all f ∈ C∞(M) with f |N≡ 0}

Also, a similar construction as outlined in Definition 3.1.8 may be carried out to
define the smooth tangent bundle TS of S.

Definition 3.1.10. Let M be a smooth real manifold. Let S be a submanifold of
M . A smooth vector field on S is a smooth map X : S → TS. It is common to
write Xp for X(p), p ∈ S.

Definition 3.1.11. Let F : M → N be a smooth map between two smooth real
manifolds. The rank of F at a point p ∈M , denoted by rankp F , is defined to be the
rank of the linear map dFp : TpM → TqN , where q = F (p).

Terminology 3.1.1. Such a map F as in the previous definition is called an
immersion at p if rankp F = dimM , and it is called a submersion at p if
rankp F = dimN . If F is an immersion at each point in M , then F is called
an immersion. Similarly, F is called a submersion if it is a submersion at each
point. Moreover, given r ≥ 0, F is said to be of constant rank r if for all p ∈M ,
we have rankp F = r, and in this case we write rankF = r.

Remark 3.1.6. A submersion M → N is the same thing as a (smooth) constant
rank map whose constant rank is dimN . Similarly, an immersion M → N is the
same as a constant rank map whose rank is dimM .
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Theorem 3.1.2. (Constant Rank theorem)
Let M and N be smooth real manifolds of dimensions m and n respectively, and let
F :M → N be a smooth map of constant rank r. Then, for every p ∈M , there are
charts (U,φ) around p and (V, η) around F (p) such that F (U) ⊂ V and the map
f := η◦F ◦φ−1 : φ(U) ⊂ Rm → η(V ) ⊂ Rn, the expression of F in these coordinates,
is given by the rule φ(U) ∋ x = (x1, . . . , xm) 7→ f(x) = (x1, . . . , xr, 0, . . . , 0).

Definition 3.1.12. Let X be any set. A level set of a function f : X → R is a
set of the form f−1(a) for some a ∈ R. Note that, in general, for a map f : X → Y
where Y ̸= ∅, and for a ∈ Y , one defines f−1(a) to be the set {x ∈ X, f(x) = a}.

Terminology 3.1.2. If S is a d-dimensional submanifold of an n-manifold M , we
say that S has codimension n− d, and we write codimS = n− d.

Corollary 3.1.1. (Constant Rank Level Set)
Let M and N be smooth real manifolds, and let F : M → N be a smooth map
of constant rank r. Then, every level set of F is a closed submanifold of M of
codimension r.

Corollary 3.1.2. (Submersion theorem)
Let F : M → N be a smooth map between smooth real manifolds M and N . If
F is a submersion, then every level set S of F is a closed submanifold of M with
codimS = dimN .

Definition 3.1.13. A complex topological manifold M of dimension n is also
a Hausdorff, second countable topological space, but with the charts (U,φ) of M
consisting of homeomorphisms φ : U → Bn ⊂ Cn and with each U being
homeomorphic to Bn.

Definition 3.1.14. A complex-differentiable or holomorphic manifold M is the
same as a smooth real manifold but with the transition maps being biholomorphisms.
Atlases and related notions are defined in the same manner.

Note that the notion of a holomorphic map between complex manifolds, the notions
of tangent space and tangent bundles, and all that we discussed for real manifolds is
defined in an analogous manner for complex manifolds with "holomorphic" replacing
"smooth" and with charts mapping into Bn.

3.1.2 Complexification and Decomplexification of Vector Spaces

Given a complex vector space V , one can "decomplexify" (or "realify") the space
V by restricting the action of C to that of its subset R. Conversely, given a real
vector space V , one can "complexify" V by basically defining multiplication by i.
Here and elsewhere, tensor products ⊗ are understood to be over R.

Definition 3.1.15. Let V be a complex vector space. If one looks only at the action
of R on V , one obtains a real vector space R ⊗ V , the decomplexification or
realification of V .
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Definition 3.1.16. If V and W be complex vector spaces and L : V → W is a
C-linear map, then L induces an R-linear map T : R ⊗ V → R ⊗ W , given by
T (v) = L(v) for all v ∈ V . This map T is called the decomplexification of L.

Proposition 3.1.4. Let V be a complex vector space, and let {e1, . . . , en} be a basis
of V over C. Then, E := {e1, . . . , en, ie1, . . . , ien} is a basis of V over R, i.e. a basis
of R⊗ V . In particular, we have dimR V = 2dimC V .

Proof. Given v ∈ V , there are cj ∈ C such that v =
∑n

j=1 cjej. Then, writing
cj = aj + ibj for each j = 1, . . . , n, where aj, bj ∈ R, we have:

v =
n∑

j=1

cjej =
n∑

j=1

(aj + ibj)ej =
n∑

j=1

aj +
n∑

j=1

bj(iej)

Thus, the ej and iej generate V over R. Now, given αj ∈ R and βj ∈ R such that:
n∑

j=1

αjej +
n∑

j=1

βj(iej) = 0

we have: ∑
j=1

(αj + iβj)ej = 0

and since the ej are C-linearly independent, we get αj + iβj = 0 for each j. In
particular, αj = 0 and βj = 0 for all j. This shows that E is a basis for V over R.
In particular, dimR V = |E| = 2 |{e1, . . . , en}| = 2dimC V .

Proposition 3.1.5. Let V and W be complex vector spaces, and let B = {e1, . . . , en}
and B′ = {e′1, . . . , e′m} be bases of V and W over C respectively. Let L : V → W
be a C-linear map, and let C be the matrix of L with respect to the bases B and B′.
We may write C = A + iB, where A and B are real m × n matrices. Then, the
matrix of the decomplexification T of L in the bases E = {e1, . . . , en, ie1, . . . , ien}
and E ′ = {e′1, . . . , e′m, ie′1, . . . , ie′m} is given by the block matrix:(

A −B
B A

)
Proof. To get the matrix of T with respect to the (ordered) bases E and E ′, we need
to find the components of the T (ej) and the T (iej) in terms of the e′j and ie′j. Let
us observe that, for instance, L(e1) is given in B′ by:

C


1
0
...
0

 = (A+ iB)


1
0
...
0

 = A


1
0
...
0

+B · i


1
0
...
0


So, if we write C = (cst), A = (ast) and B = (bst), then we may write:

L(e1) =
m∑
k=1

ck1e
′
k =

m∑
k=1

ak1e
′
k +

m∑
k=1

bk1(ie
′
k)
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Thus, since T is just L, we have:

T (e1) =
m∑
k=1

ak1e
′
k +

m∑
k=1

bk1(ie
′
k)

and this shows that the first column of the matrix of T with respect to E and E ′ is
given as such: the first column of A gives us the first m entries, and the first column
of B gives us the second m entries. The exact same reasoning applies to the T (ej)
for 2 ≤ j ≤ n. This gives us the first and third blocks of our desired matrix.
On the other hand, for all j, we have T (iej) = L(iej) = iL(ej) = iT (ej). Hence,

T (iej) = i

(
m∑
k=1

akje
′
k +

m∑
k=1

bkj(ie
′
k)

)
=

m∑
k=1

(−bkj)e′k +
m∑
k=1

akj(ie
′
k)

and this gives us the second and fourth blocks −B and A.

Definition 3.1.17. Let V be an real vector space. A complex structure on V is
a linear map J : V → V satisying J2 = −I, i.e. J ◦ J = −I. Here, I denotes the
identity map of V .

Proposition 3.1.6. Let V be a real vector space, and let J be a complex structure
on V . We may introduce the action of C on V given for a, b ∈ R and v ∈ V as:
(a+ ib)v = av+ bJ(v). Then, V endowed with this action is a complex vector space,
and the decomplexification of this latter complex vector space is the real vector space
we started with.

Corollary 3.1.3. If V is a finite dimensional real vector space on which there is a
defined complex structure J , then dimR V is even, and there is a basis of V over R
such that the matrix of J in this basis is given by the block matrix:(

0 −In
In 0

)
where In is the n× n identity matrix, 0 is the n× n zero matrix, and n =

dimR V

2
.

Proposition 3.1.7. Let V be a real vector space. Define on the external direct sum
V ⊕ V the operator J given by the formula J(v1, v2) = (−v2, v1). Then, J is a
complex structure on V ⊕ V .

Definition 3.1.18. Let V be a real vector space. The complexification of V is
defined to be the complex vector space one obtains from the real vector space V ⊕ V
through the action in Proposition 3.1.6 with J being the map defined just as in
Proposition 3.1.7. One denotes the complexification of V by C⊗ V .

To view the real vector space V inside C ⊗ V , one identifies V with the subspace
{(v, 0), v ∈ V } of V ⊗ V . Then, also note that one has i(v, 0) = J(v, 0) = (0, v)
for all v ∈ V . Hence, after viewing V as V ⊗ {0} ⊂ C ⊗ V , one may write every
(v1, v2) ∈ C ⊗ V as (v1, v2) = (v1, 0) + (0, v2) = (v1, 0) + i(v2, 0) = v1 + iv2. Thus,
we see that C⊗ V = V ⊕ iV .
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Proposition 3.1.8. Let V be a real vector space which has a complex structure J .

1) Every R-basis of V is a C-basis of C⊗V . In particular, dimR V = dimC C⊗V .

2) Let W be a real vector space with a complex structure, and let L : V → W be
an R-linear map. Then, the map L′ : C ⊗ V → C ⊗W given by the fomrula
L′(v1, v2) = (L(v1), L(v2)) is a C-linear map whose decomplexification is L.

Remark 3.1.7. The L′ in the second point of the latter proposition is usually called
the complexification of the linear map L.

Proposition 3.1.9. Let p ∈ Cn, where Cn is viewed as a smooth real manifold of
dimension 2n. Then, in the same notation of Remark 3.1.2, the set:{

∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂y1
, . . . ,

∂

∂yn

}
forms a basis for the real vector space TpCn.

Remark 3.1.8. One may then define by extension the linear operator J on TpCn

given at the basis elements of TpCn by:

J

(
∂

∂xj

)
=

∂

∂yj

and:
J

(
∂

∂yj

)
= − ∂

∂xj

for each 1 ≤ j ≤ n. It is easy to see that J2 = −I. Hence, J is a complex
structure on TpCn. Also, J is well-defined because the definition of J is independent
of the choice of holomorphic charts at p. Therefore, we obtain the complexification
C⊗TpCn of TpCn as in Definition 3.1.18, which is also commonly denoted by CTpCn.
Note that by Proposition 3.1.8, J extends to a C-linear operator on CTpCn, which,
with slight abuse of notation, we also denote by J .

3.1.3 Real Hypersurfaces, The Levi Form, and Related Notions

We aim in this subsection to revise a few things about real hypersurfaces: their
properties and associated concepts such as the Levi form of a hypersurface and
pseudocovexity. We also mention smooth domains and a characterization of domains
of holomorphy.

Definition 3.1.19. A subset M of Cn is called a smooth real hypersurface if for
every p ∈ M , there is a neighborhood U of p in Cn and a smooth (with Cn looked
at as an R-vector-space) map ρ : U → R such that for all q ∈ U , Dρ(q) ̸= 0,
and such that M ∩ U = {z ∈ U, ρ(z, z) = 0}. Such a ρ is called a local defining
function for M near p. If there is real-smooth ρ defined on an open set containing
M with nowhere vanishing derivative on M and with the property that for all z,
ρ(z) = 0 ⇐⇒ z ∈ M , then ρ is called a global defining function for M or just
defining function for M .
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Two notes are due. First, by Dρ, we are referring to the real differential of ρ,
i.e. its derivative as a map between real vector spaces. Hence, the statement that
Dρ(q) ̸= 0 for all q ∈ U is the statement that at least one of the real partial
derivatives ∂ρ/∂xj for some j or ∂ρ/∂yk for some k is non-zero at q. This, by the
way, is the condition needed to apply the Implicit Function theorem (Theorem 2.1.7)
which allows us to locally write the zero set {ρ = 0} as a graph, and that’s what
makes M a submanifold (see Proposition 3.1.11 for a rigorous proof of this fact).
Second, this definition includes some abuse of notation. The function ρ is indeed
defined on U , and it makes no sense to speak of ρ(z, z), as if ρ is taking an input in
Cn × Cn. Instead, one talks of ρ(z) for z ∈ Cn. This abuse of notation is standard,
and it is done because it is good to look at ρ as a function of z and z especially in
the context of holomorphic and anti-holomorphic tangent vectors and other notions,
for instance those related to the Levi form, discussed below.

Example 3.1.3. Given any smooth domain U ⊂ Cn (see Definition 3.1.26), we
have that ∂U is a real hypersurface in Cn. For instance, the unit sphere ∂Bn in Cn

is a real hypersurface in Cn.

Example 3.1.4. Consider Cn+1 with coordinates (w, z) ∈ C × Cn, and the subset
M with local defining function ρ = ℜw− ∥z∥2. This is a hypersurface in Cn+1, and
most of our attention in this thesis will be on it.

Figure 3.1: Real hypersurfaces in Cn are real submanifolds of Cn of codimension 1
(see Proposition 3.1.11). This figure illustrates how one would imagine such objects:
what is shown here is a real submanifold of R3 of codimension 1.
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Example 3.1.5. The unit sphere S2n−1 in Cn is a hypersurface with local defining
function ρ = ∥z∥2 − 1. Note that the hypersurface S2n−1 \ {N} is homeomorphic to
M , the hypersurface in the previous example (this time in Cn and not Cn+1), where
N = (0, . . . , 0, 1) ∈ Cn is the "north pole". Indeed, let φ : S2n−1 \ {N} → Cn be the
map φ = (φ1, . . . , φn) given by:

φj(z) =
izj

1− zn
for 1 ≤ j ≤ n− 1, and φn(z) =

1 + zn
1− zn

This φ lands in M . Indeed, for any z ∈ S2n−1 \ {N}, and writing zn = xn + iyn, we
have:

φn(z) =
(1 + zn)(1− zn)

|1− zn|2
=

(1 + xn + iyn)(1− xn + iyn)

|1− zn|2
so:

ℜφn(z) =
1− (x2n + y2n)

|1− zn|2
=

1− |zn|2

|1− zn|2
=

∑n−1
j=1 |zj|2

|1− zn|2
=

n−1∑
j=1

|zj|2

|1− zn|2
=

n−1∑
j=1

|φj(z)|2

Moreover, φ is a bijection onto M , and φ−1 : M → S2n−1 \ {N} is given by
(ψ1, . . . , ψn), where:

ψj(z) =
−2izj
1 + zn

for 1 ≤ j ≤ n− 1, and ψn(z) =
−1 + zn
1 + zn

It’s obvious that φ and φ−1 are continuous maps, so that φ is a homeomorphism.
Furthermore, note that the map φ is a biholomorphism (a biholomorphic change of
coordinates) between the open sets {zn ̸= 1} and {zn ̸= −1}.

Proposition 3.1.10. Let M be a real hypersurface in Cn. Let p ∈ M , and let ρ1
and ρ2 be two local defining functions for M near p with associated neighborhoods
U1 and U2 respectively. Then, there is an open set U ⊂ U1 ∩ U2 containing p and a
map g ∈ C∞(U) such that ρ2 = gρ1 on U and g is nowhere zero on U . Moreover,
if ρ1 and ρ2 are global defining functions for M with associated open sets U1 and U2

resepctively containing M , then there is an open set U ⊂ U1 ∩U2 and a g ∈ C∞(U)
such that ρ2 = gρ1 and g is nowhere zero on U .

Proposition 3.1.11. A subset S of Cn is a real hypersurface in Cn if and only if
S is a real submanifold of the smooth, real manifold Cn, with codimS = 1.

Proof. Suppose that S is a (real) submanifold of (the smooth, real manifold) Cn and
that S has codimension 1. Let p ∈ S. By Definition 3.1.9, there is a chart (U,φ)
around p such that:

φ(S ∩ U) = φ(U) ∩
(
R2n−1 × {0}

)
In other words, if one writes φ = (φ1, . . . , φ2n−1, φ2n), then one may say:

φ(S ∩ U) = {(φ1(z), . . . , φ2n−1(z), 0) , z ∈ U}

Take ρ = φ2n : U → R. If there is a point q ∈ U such that Dρ(q) = 0, then
dφ(q) is non-invertible, and by Theorem 3.1.1, this implies that φ is not a local
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diffeomorphism, a contradiction. Hence, Dρ(q) ̸= 0 for all q ∈ U . Moreover, for
z ∈ S∩U , φ(z) ∈ φ(S∩U), so ρ(z) = φ2n(z) = 0. Hence, S∩U ⊂ {z ∈ U, ρ(z) = 0}.
On the other hand, let z ∈ U and suppose that ρ(z) = 0. As z ∈ U , φ(z) ∈ φ(U),
and by definition of ρ, we have φ2n(z) = 0. Hence, φ(z) ∈ φ(U) ∩ (R2n−1 × {0}),
so that φ(z) ∈ φ(S ∩ U). As φ is injective, we have z ∈ S ∩ U . This shows that
{z ∈ U, ρ(z) = 0} ⊂ S ∩U . Therefore, we conclude that S ∩U = {z ∈ U, ρ(z) = 0}.
We have thus shown that S is a real hypersurface in Cn.
Now suppose that S is a real hypersurface in Cn. Let p ∈ S. By definition, there is
a neighborhood U of p in Cn and a smooth map ρ : U → R such that Dρ nowhere
vanishes on U and S ∩ U = {z ∈ U, ρ(z) = 0}. As Dρ nowhere vanishes, we
know that ρ has constant rank 1 = dimR, so that ρ is a submersion. Moreover,
S ∩ U = ρ−1(0). Hence, by Corollary 3.1.2, we see that S ∩ U is submanifold of U
of codimension 1. By Proposition 3.1.2, we deduce that S is a submanifold of Cn of
codimension 1.

Definition 3.1.20. Let p ∈ Cn and let X ∈ TpCn, where Cn is looked at as a smooth
real manifold of dimension 2n. Then, by Proposition 3.1.9, we know that there are
aj, bj ∈ R such that:

X =
n∑

j=1

aj
∂

∂xj
+

n∑
j=1

bj
∂

∂yj

Given a hypersurface M ⊂ Cn with p ∈ M , we say that X is tangent to M at p if
X(ρ) = 0, i.e. if:

n∑
j=1

aj
∂ρ

∂xj
(p, p) +

n∑
j=1

bj
∂ρ

∂yj
(p, p) = 0

where ρ is any local defining function of M near p.

Note that this definition is independent of the choice of a local defining function ρ
near p. The tangent space at p of M as a manifold is the same as the tangent space
of M defined as:

TpM = {X ∈ TpCn, X is tangent to M at p}

The complexified tangent space CTpM of M at p and the complexified tangent
space CTpCn of C at p are both defined just as in the previous subsection 3.1.2, and
we can also understand them as those spaces which emerge when allowing the aj
and bj in the latter expressions to range over the complex numbers.
Using the Wirtinger notation as in Notation 2.2.3, which applies and works as it
should in terms of corresponding holomorphic charts, we may write CTpCn in the
form:

CTpCn =

{
n∑

j=1

aj
∂

∂zj
+

n∑
j=1

bj
∂

∂zj
, aj, bj ∈ C

}
Definition 3.1.21. Following the latter discussion, given X ∈ CTpCn, we may
write:

X =
n∑

j=1

aj
∂

∂zj
+

n∑
j=1

bj
∂

∂zj

40



for some aj, bj ∈ C. We then say that:

a) X is a holomorphic vector at p if for all j, bj = 0.

b) X is an anti-holomorphic vector at p if for all j, aj = 0.

Note that, by the chain rule, we can show that this definition is independent of the
choice of holomorphic charts.

Notation 3.1.1. We denote by T 1,0
p Cn the vector subspace of CTpCn consisting of

all holomorphic tangent vectors to Cn at p, and we denote by T 0,1
p Cn the subspace

of all anti-holomorphic tangent vectors at p.

Remark 3.1.9. The vector space T 1,0
p Cn has the C-basis {∂/∂z1, . . . , ∂/∂zn}. On

the other hand, T 0,1
p Cn has the C-basis {∂/∂z1, . . . , ∂/∂zn}. In particular, we have

dimC T
1,0
p Cn = dimC T

0,1
p Cn = n. Moreover, note that CTpCn = T 1,0

p Cn ⊕ T 0,1
p Cn,

and that dimC CTpCn = 2n.

Notation 3.1.2. Let M be a real hypersurface in Cn, and let p ∈ M . We denote
by Vp the space of all anti-holomorphic vectors tangent to M at p. In other words,
we put Vp := T 0,1

p Cn ∩ CTpM . We also write T 0,1
p M for Vp. On the other hand, we

denote by Vp the space of all holomorphic vectors tangent that are tangent to M at
p, i.e. Vp = T 1,0

p Cn ∩ CTpM .

Definition 3.1.22. For a real hypersurface M ⊂ Cn and p ∈M , define the complex
tangent space of M at p, T c

pM , to be TpM ∩ J−1(TpM). Or, in other words, we
define T c

pM := {X ∈ TpM,J(X) ∈ TpM}, where J is as defined in Remark 3.1.8.

Proposition 3.1.12. In the same setting as above, J restricts to an operator on
T c
pM and so defines a complex structure on T c

pM . Also, J extends to a C-linear
operator on CT c

pM .

Proposition 3.1.13. Let M ⊂ Cn be a real hypersurface and let p ∈ M . Then,
we have that Vp = {X ∈ CTpM,J(X) = −iX}. Moreover, Vp ⊕ Vp = CT c

pM ,
dimC CT c

pM = 2n− 2, and dimC Vp = dimC Vp = n− 1.

Many of the above (and below) definitions can also be made for real submanifolds of
Cn which are not necessarily of codimension 1, i.e. not necessarily real hypersurfaces
(see Chapter 1 of [6] for explication). For instance, if one defines Vp for a general
real submanifold M of Cn, one says that M is a CR submanifold of Cn if dimC Vp

is constant for p ∈M . This constant dimension is called the CR dimension of M .
In particular, following the very latter proposition, every real hypersurface in Cn is
CR submanifold of CR dimension n− 1.

Definition 3.1.23. A smooth complex vector field X on a hypersurface M ⊂ Cn

is map which associates to each p ∈ M an element Xp of CT c
pM in a real-smooth

manner. In other words, such an X may be written as:

X =
n−1∑
j=1

aj(·)
∂

∂zj
+

n−1∑
j=1

bj(·)
∂

∂zj
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where the aj, bj :M → C are real-smooth maps, i.e. X acts as p 7→ Xp where:

Xp =
n−1∑
j=1

aj(p)
∂

∂zj
+

n−1∑
j=1

bj(p)
∂

∂zj

Moreover, X must satisfy Xp(ρ) = 0 for all pairs (p, ρ) with p ∈ M and ρ a local
defining function at p:

n−1∑
j=1

aj(p)
∂ρ

∂zj
+

n−1∑
j=1

bj(p)
∂ρ

∂zj
= 0

Definition 3.1.24. Let M ⊂ Cn be a real hypersurface. A smooth complex vector
field X on M is called a CR vector field on M if for all p ∈M , we have Xp ∈ Vp.
Also, a function f ∈ Ck(M) for some k ≥ 1 is called a CR function if Xf ≡ 0
for every CR vector field on M .

Stated otherwise, a CR vector field X on M is a map of the form:

X =
n−1∑
j=1

bj(·)
∂

∂zj

where every bj : M → C is real-smooth. The condition that Xf ≡ 0 for such a CR
vector field X on M and a map f ∈ Ck(M) with k ≥ 1 is then the condition that
for all p ∈M :

n−1∑
j=1

bj(p)
∂f

∂zj
= 0

Definition 3.1.25. Let f : Cn → R be a real-smooth function on Cn. We may
define the Levi form of the map f at a point p ∈ Cn as the bilinear form on
Cn × Cn given by the formula:

Lp(f)(ξ, η) =
n∑

j=1

n∑
k=1

∂2f

∂zj∂zk
(p)ξjηk

where f is looked at as a function of the zj and zj.

Note that it is also customary to define the Levi form as being instead the quadratic
form associated to that bilinear form, i.e.

Lp(f)(ξ) =
n∑

j=1

n∑
k=1

∂2f

∂zj∂zk
(p)ξjξk

from which one can reconstruct that original bilinear form by standard techniques
of bilinear algebra.
Also, note that instead of understanding f as a function of the zj and zj, we may
understand the zj and zj derivatives as being derivations (living in CTpCn) and
acting on the element f of C∞(Cn).
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Remark 3.1.10. With f being as a above, Lp(f) is in fact a Hermitian form. This
will also be the case for the Levi form of a smooth domain in Cn and that of a real
hypersurface in Cn, mentioned below.

Definition 3.1.26. Let U ⊂ Cn. U is called a smooth domain if U is given by
{z ∈ Cn, ρ(z) < 0} i.e. {ρ < 0} and if ∂U = {ρ = 0} for some real-smooth map
ρ : Cn → R such that Dρ(z) ̸= 0 for all z ∈ ∂U . Such a ρ is called a defining
function for U .

Remark 3.1.11. If U ⊂ Cn is a smooth domain, then ∂U is a real hypersurface.

Let U ⊂ Cn be a smooth domain. Given a defining function ρ of U and a point
p ∈ ∂U , we may look at the Levi form Lp(ρ) of ρ at p. If σ is any other defining
function of U , then Lp(ρ) and Lp(σ) have the same signature, i.e. the same number
of positive, zero, and negative eigenvalues. Moreover, this is true even if one applies
a holomorphic change of coordinates. Hence, Lp(ρ) is positive semi-definite i.e. PSD
(resp. positive definite i.e. PD) if and only if Lp(σ) is PSD (resp. PD), and these
properties are biholomorphic invariants.

Definition 3.1.27. Given a smooth domain U ⊂ Cn and p ∈ ∂U , we say that U is
pseudoconvex if for a given defining function ρ of U , we have that Lp(ρ) is PSD.
We say that U is strongly pseudoconvex if instead Lp(ρ) is PD.

The pseudoconvexity condition is very analogous to the "Hessian principle" in real
analysis of several variables regarding convexity/concaveness. If the Levi form,
which in essence is modeling a complex Hessian matrix of a sort, is PSD, then
the shape is convex in a particular sense. In fact, if one does the Taylor expansion
of a real-smooth map f : Cn → R and then one employs the Wirtinger notation to
write things in terms of the zj and zk derivatives, then one obtains an expansion in
which the Levi form appears naturally and suggests this role of a Hessian.

Definition 3.1.28. A real hypersurface M ⊂ Cn is said to be pseudoconvex (resp.
strongly pseudoconvex) if M is the boundary of some pseudoconvex (resp. strongly
pseudoconvex) smooth domain U .

Usually, one defines the Levi map of an abstract CR manifold M at a point p ∈M
as a certain bilinear map Vp × Vp → CTpM/(Vp ⊕ Vp) = CTpM/CT c

pM . This map
is generally not a Hermitian form. For a rigorous construction of the Levi map, one
can refer to Chapters 1 and 2 of [6]. If M is a real hypersurface (and in more general
contexts), this Levi map induces a Levi form on M at a given point p and coheres
with the definitions we are making here. In particular, one may define what it means
for a real hypersurface to be pseudoconvex or strongly pseudoconvex starting from
this Levi map.

Theorem 3.1.3. (Solution to the classical Levi problem)
Let U ⊂ Cn be a smooth domain. Then, U is a pseudoconvex domain if and only if
U is a domain of holomorphy.
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Proposition 3.1.14. Let M = {(w, z) ∈ C× Cn, ρ(w, z) < 0}, where ρ is the map
ρ(w, z) = ∥z∥2 − ℜw. We have that M is a smooth strongly pseudoconvex domain
in Cn+1 with boundary {ρ = 0}.
Proof. It is clear that ρ is real-smooth. Let us write the coordinates as w = x0+ iy0
and zj = xj + iyj for all 1 ≤ j ≤ n. We have:

∂ρ

∂x0
=

∂

∂x0

(
n∑

j=1

(x2j + y2j )− x0

)
= −1

so the real differential Dρ is never zero, because Dρ is the column vector whose
components are the ∂ρ/∂x0, . . . , ∂ρ/∂xn, ∂ρ/∂y0, . . . , ∂ρ/∂yn.
Let (w, z) ∈ C × Cn and suppose that ρ(w, z) = 0. Let {(wn, zn)}n ⊂ Cn+1 be the

sequence given by zn = z and wn = w − 1

n
for all n ≥ 1. Then, for all n,

ρ(wn, zn) = ∥zn∥2 −ℜwn = ∥z∥2 −ℜw − 1

n
= ρ(w, z)− 1

n
= − 1

n
< 0

so, {(wn, zn)}n is a sequence in M . Clearly (wn, zn) → (w, z), so that (w, z) ∈ ∂M .
Conversely, let (w, z) ∈ ∂M . Then, there is a sequence in M converging to (w, z),
and by continuity of ρ this implies that ρ(w, z) ≤ 0. Since (w, z) ∈ ∂M , and since
M is an open set (by continuity of ρ), we necessarily have (w, z) /∈ M , so that
ρ(w, z) = 0. This show that ∂M = {ρ = 0}.
Let us now compute the (general) Levi form of ρ. We have:

L(ρ)(ξ, η) =
n∑

j=1

∂2ρ

∂w∂zj
ξ0ηj +

n∑
j=1

∂2ρ

∂zj∂w
ξjη0 +

n∑
j=1

n∑
k=1

∂2ρ

∂zj∂zk
ξjηk

But for all t:

∂2ρ

∂w∂zt
=

∂2

∂w∂zt

(
n∑

j=1

zjzj −
1

2
(w + w)

)
=

∂

∂w
(zt) = 0

and for all t:
∂2ρ

∂zt∂w
=

∂

∂zt

(
−1

2

)
= 0

Finally, for all j and k, we have:

∂2ρ

∂zj∂zk
=

∂

∂zj
(zk) =

{
1, if j = k

0, if j ̸= k

Therefore, we have:

L(ρ)(ξ, η) =
n∑

j=1

ξjηj

In particular,

L(ρ)(ξ, ξ) =
n∑

j=1

ξjξj =
n∑

j=1

|ξj|2

Hence, clearly L(ρ)(ξ, ξ) > 0 for all ξ ̸= 0, i.e. L(ρ) is PD. This shows that M is
strongly pseudoconvex.
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3.2 Analytic and Stationary Disks

We define analytic and stationary disks, discuss some strong reasons why they are
useful objects, and motivate our work in Chapters 4 and 5.

3.2.1 Analytic Disks: a More General Viewpoint

Analytic disks are holomorphic embeddings of ∆ in Cn with a continuous boundary.
It is common to understand that analytic disks are the complex-analytic analogue
of segments in real analysis: a one-complex-dimensional bounded simply connected
holomorphic complex-analytic object is what corresponds to the smoothest form of
a one-real-dimensional bounded connected real-analytic object.

Definition 3.2.1. An analytic disk in Cn is a function f : ∆ → Cn which is
continuous on ∆ and holomorphic on ∆.

Definition 3.2.2. An analytic disk f : ∆ → Cn is called attached to a subset M
of Cn if f(∂∆) ⊂M . Also, the center of such an analytic disk is the point f(0).

Notation 3.2.1. For a subset M of Cn, we denote by A(M) the set of all analytic
disks in Cn attached to M .

The following theorem is stated as Proposition 6.2.2 in [6] but for what are termed
generic submanifolds of Cn. A generic submanifold of Cn is a real submanifold M of
Cn that admits at every p ∈M a local defining function whose components’ complex
gradients are linearly independent over C. See Chapter 1 in [6]. Real hypersurfaces
are by default a subfamily of generic submanifolds because their defining functions
have only one component whose complex gradient does not vanish anywhere (if
it vanishes somewhere, so would its real-differential Dρ, which we know doesn’t
happen). To stay consistent with the build-up we made, we state the theorem here
for real hypersurfaces instead. We stress, though, that it applies more generally.

Theorem 3.2.1. Let M be a real hypersurface in Cn, and let p ∈ M . There is an
open neighborhood U ⊂M of p such that for every CR function f on U of class C1

there exists a continuous function F defined on W , where:

W :=
⋃

g∈A(U)

g
(
∆
)

with the following properties:

1) For all g ∈ A(U), we have F ◦ g ∈ O(∆).

2) The restriction of F to U is f .

3) F ∈ O (W ◦).
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This result says that for certain types of submanifolds (including hypersurfaces),
every CR function locally admits a holomorphic extension to an open set generated
by all sufficiently small analytic disks attached to the submanifold. This reveals a
robust connection between analytic disks and questions of holomorphic extensions,
and it is already a great reason for one to be interested in analytic disks in general
questions of construction of holomorphic maps. It is one of the primary reasons
we adapt our approach to finding our desired automorphisms to considerations of
certain types analytic disks, the stationary disks, our next topic.

3.2.2 Stationary Disks and their Relation to Automorphisms

Stationary disks attached to real hypersurfaces in Cn are a subfamily of attached
analytic disks that satisfy a certain lifting condition. Stationary disks proved very
useful in general mapping problems, and they are biholomorphic invariants. These
two facts, alongside results like Theorem 3.2.1, naturally push us to explore very
basic questions such as the one we tackle in our thesis: is it possible to better
understand automorphisms of real hypersurfaces in Cn by observing how
they interact with attached stationary disks?
Specifically, we ask the question for hypersurfaces which have a "nice" enough shape
locally, the strongly pseudoconvex ones, which are locally more or less a "perturbed"
sphere. In our work, we study the paraboloid {(w, z) ∈ C × C,ℜw = |z|2} from
the suggested point of view, and we recover certain types of automorphisms of this
paraboloid. Something which we rely on a lot in our work is that we do not need to
worry about local issues: we have as many "slanted" disks as we want at our disposal
because the paraboloid is a relatively simple model. Other models, though, might
pose local issues, and one then needs to tweak their approach to accommodate for
this necessity of staying close enough to the origin. Furthermore, other more general
models, "perturbed" ones, might prove challenging in terms of nailing down the disks
and thus add other layers of restrictions.

Definition 3.2.3. Let M ⊂ Cm be a real hypersurface given by a global defining
function σ : Cm → R. A map f : ∆ → Cm is called a stationary disk attached to
M if the following conditions hold:

1. f ∈ O(∆) ∩ C(∆)

2. f(∂∆) ⊂M

3. There exists a continuous map c : ∂∆ → R∗, such that the map:

∂∆ ∋ ζ 7→ ζc(ζ)∂σ(f(ζ))

extends holomorphically to ∆.

Note that by ∂σ, we are referring to the complex gradient of σ in the sense of
Remark 2.2.3. Most definitely, the only possible holomorphic defining functions are
the constant functions, for the same reason mentioned in Example 2.2.1.
The stationarity condition, expressed in the third point, can also be formulated as
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being that the map ∂∆ ∋ ζ 7→ c(ζ)∂σ(f(ζ)) admits a meromorphic extension to
∆, holomorphic on ∆ \ {0}, with a possible pole of order at most 1 at 0. In the
formulation of Definition 3.2.3, the role of the ζ in ζc(ζ)∂σ(f(ζ)) is to take care of
that potential pole.
Geometrically, the stationarity condition is formulated in terms of cotangent and
conormal bundles. See Definition 1.4 in [8] for instance, where this formulation is
done in precise terms and adequate references are provided for further exploration.
The reason we do not approach stationarity in this manner is that we do not wish
to use any geometric language of that sort in our work. Our primary interest in
these kinds of disks is, as mentioned above, two-fold. First, they are biholomorphic
invariants (Proposition 3.2.2). Second, they are "abundant" enough in a sense which
will become clear in Chapter 4 as we discuss further.

Figure 3.2: For a stationary disk f attached to a hypersurface M , the image f(∂∆)
traces M and closes on itself, just as here the (black) curve traces this hypersurface
in R3 and closes on itself.

Proposition 3.2.1. The stationarity condition is independent of the global defining
function for the considered real hypersurface M .

Proof. Let M be a real hypersurface in Cm and let ρ and σ be two global defining
functions for M . Let f be a stationary disk attached to M looked at as defined
by ρ. By Proposition 3.1.10, there is an open set U ⊂ Cm containing M and a
real-smooth map g : U → R such that σ = gρ on U and g is nowhere zero on U .
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Following Remark 2.2.4, we have ∂σ = (ρ)∂g + (g)∂ρ on U . In particular, we have
for all ζ ∈ ∂∆:

∂σ(f(ζ)) = ρ(f(ζ))∂g(f(ζ)) + g(f(ζ))∂ρ(f(ζ))

and since f(ζ) ∈ M for all ζ ∈ ∂∆, we have ρ(f(ζ)) = 0 for all ζ ∈ ∂∆. Hence, for
all ζ ∈ ∂∆:

∂σ(f(ζ)) = g(f(ζ))∂ρ(f(ζ))

Define c′ : ∂∆ → R∗ by:

c′(ζ) =
c(ζ)

g(f(ζ))

This c′ is well-defined because g is nowhere zero on U , in particular nowhere zero on
M . As g is real-continuous (since it’s real-smooth) and f is real-continuous on ∂∆
(Theorem 2.1.1), the map c′ is real-continuous on ∂∆, hence complex-continuous
(again, Theorem 2.1.1). In summary, c′ as defined is a continuous maps between the
topological spaces ∂∆ and R∗. Now, observe that for all ζ ∈ ∂∆:

ζc′(ζ)∂σ(f(ζ)) = ζ
c(ζ)

g(f(ζ))
g(f(ζ))∂ρ(f(ζ)) = ζc(ζ)∂ρ(f(ζ))

hence, since the map ∂∆ ∋ ζ 7→ ζc(ζ)∂ρ(f(ζ)) extends holomorphically to ∆, so
does the map ∂∆ ∋ ζ 7→ ζc′(ζ)∂σ(f(ζ)). This shows that f satisfies the stationarity
condition for M looked at as defined by σ, which is what we wanted to prove.

Proposition 3.2.2. (Biholomorphic invariance of stationary disks)
Let M,N ⊂ Cn be two real hypersurfaces. Let U, V ⊂ Cn be open sets with M ⊂ U
and N ⊂ V . Let H : U → V be a biholomorphism with H(M) = N , and let f be a
stationary disk attached to M . Then, the map F : ∆ → Cn given by F = H ◦ f is a
stationary disk attached to N .

Proof. First, F ∈ O(∆) since f ∈ O(∆) and H ∈ O(U), and F ∈ C(∆) since
f ∈ C(∆) and H ∈ C(U). Second, F (∂∆) = H(f(∂∆)) ⊂ H(M) = N .
Now, let’s show that F satisfies the stationarity condition. By Proposition 3.2.1, it
is enough to show that the stationarity condition is satisfied for a choice of a defining
function for N . Let ρ be a defining function for M , and let σ : V → R be the map
σ = ρ ◦H−1. Let’s first show that σ is a defining function for N .
As ρ is real-smooth and H−1 is holomorphic hence real-smooth (Corollary 2.2.3),
we know that σ is real-smooth. Also, we have Dσ(z) = DH−1(z)Dρ(H−1(z)) for all
z ∈ V , where DH−1 is the differential of H−1 as a map between real vector spaces.
Note that the biholomorphicity of H makes H a real-diffeomorphism, for the same
reasons of Corollary 2.2.3. In particular, by the Chain Rule (Theorem 2.1.5), the
real differential DH(η) is an isomorphism for all η ∈ U , and we have:

[DH(η)]−1 = DH−1(H(η))

Hence, for all z ∈ V , 0 is not an eigenvalue of the linear map DH−1(z). Hence, for
all z ∈ V , if DH−1(z)Dρ(H−1(z)) = 0 then Dρ(H−1(z)) = 0, which is never the
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case because Dρ never vanishes. Thus, Dσ(z) ̸= 0 for all z ∈ V . Moreover, we have
for all z ∈ V :

σ(z) = 0 ⇐⇒ ρ(H−1(z)) = 0 ⇐⇒ H−1(z) ∈M ⇐⇒ z ∈ N

Thus, we have shown that σ is a defining function for N .
We know that f satisfies the stationarity condition for M , so there is a continuous
map c : ∂∆ → R∗ such that G : ∆ → Cn given by G(ζ) = ζc(ζ)∂ρ(f(ζ)) is
holomorphic on ∆. Notice that, again by the Chain Rule, for all ζ ∈ ∆, we have:

∂σ(F (ζ)) = DH−1(F (ζ))∂ρ(H−1(F (ζ)) = DH−1(F (ζ))∂ρ(f(ζ))

Hence, we have for all ζ ∈ ∆, ζc(ζ)∂σ(F (ζ)) = DH−1(F (ζ))G(ζ).
We may identify DH−1 ◦ F as a matrix and G as a column vector, both of whose
entries are holomorphic maps because of the holomorphy of H−1, F and G. Hence,
the map ∆ ∋ ζ 7→ ζc(ζ)∂σ(F (ζ)) is holomorphic, showing that F satisfies the
stationarity condition. This completes the proof.
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Chapter 4

Stationary Disks Attached to
the Sphere

In this chapter, we focus all of our attention on the hyperquadric Q ⊂ Cn+1 given
by the zero set of ρ, where ρ : Cn+1 → R is given by

ρ(z) = ρ(z0, . . . , zn) = ℜ(z0)−
n∑

j=1

|zj|2 =
1

2
(z0 + z0)−

n∑
j=1

zjzj

We let M = {z ∈ Cn+1, ρ(z) > 0}, so that M is a smooth strongly pseudoconvex
domain in Cn+1 (see Proposition 3.1.14), and Q = ∂M . We will find the stationary
disks attached to Q and study some of their properties and dynamics with the
automorphisms of Q that fix 0.

4.1 Studying the Attached Stationary Disks

In this section, we characterize the stationary disks attached to Q, then list some of
their properties, and then in 4.1.3, we provide the proofs and computations of the
facts mentioned in 4.1.2.

4.1.1 Their Characterization

We state what the stationary disks attached to Q look like and provide a proof
which details on the outline described in [7].

Theorem 4.1.1. (Blanc-Centi)
The stationary disks attached to Q are the functions f : ∆ → Cn+1 of the form
f = (f0, f1, . . . , fn), where:

f0(ζ) = vtv + 2vtw
ζ

1− αζ
+

wtw

1− |α|2
1 + αζ

1− αζ
+ iy0

and for all j ≥ 1,

fj(ζ) = vj + wj
ζ

1− αζ

where v, w ∈ Cn, y0 ∈ R, and α ∈ ∆.
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Figure 4.1: An oversimplified graphical respresentation of the domain M ⊂ Cn+1

and its boundary Q (our hyperquadric). The plane is supposed to represent the
hyperplane ℜz0 = 0, the boundary of the paraboloid is Q, and the interior of the
paraboloid is M .

Proof. Let f : ∆ → Cn+1 be a stationary disk attached to Q, and let us write
f = (f0, . . . , fn). By definition, we have a non-zero function c : ∂∆ → R+ such that
the map f ∗ : ∂∆ → Cn+1 given by f ∗(ζ) = ζc(ζ)∂ρ(f(ζ)) extends holomorphically
to ∆. We will also write f ∗ = (f ∗

0 , . . . , f
∗
n).

We have that:

∂ρ(z) = ∂ρ(z0, z1, . . . , zn) =


1
2

−z1
−z2

...
−zn


Let’s expand our c in Fourier series (c is continuous on ∂∆). We have for all ζ ∈ ∂∆:

c(ζ) =
∞∑

k=−∞

γkζ
k
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where for all k, γk ∈ C. But since c is real-valued, we must have that γ0 ∈ R, and
that for all k ≥ 1, γ−k = γk. Also, note that for ζ ∈ ∂∆, one has ζ−1 = ζ. Thus, we
may write for all ζ ∈ ∂∆:

c(ζ) = · · ·+ γ2ζ
2
+ γ1ζ + γ0 + γ1ζ + γ2ζ

2 + · · ·

and then,
ζc(ζ) = · · ·+ γ2ζ + γ1 + γ0ζ + γ1ζ

2 + · · ·

From the expression of ∂ρ, we have:

f ∗
0 (ζ) =

1

2
ζc(ζ)

As f ∗ is holomorphic on ∆, so is every f ∗
j for each j ∈ {0, 1, . . . , n}. In particular,

so is f ∗
0 , and this means that ζc(ζ) is holomorphic, forcing the γk, for k ≥ 2, to be

0. We conclude that:
ζc(ζ) = γ1 + γ0ζ + γ1ζ

2

We may re-write this as:
ζc(ζ) = a+ bζ + aζ2

where a ∈ C and b ∈ R.
For each 1 ≤ j ≤ n, we will write for ζ ∈ ∂∆:

fj(ζ) =
∞∑
k=0

A
(j)
k ζk

Looking at ∂ρ once again, we see that for all j ≥ 1, we have:

f ∗
j (ζ) = ζc(ζ)

(
−fj(ζ)

)
Hence, for j ≥ 1,

−f ∗
j (ζ) =

(
a+ bζ + aζ2

)( ∞∑
k=0

A
(j)
k ζk

)
=
(
a+ bζ + aζ2

) (
A

(j)
0 + A

(j)
1 ζ + A

(j)
2 ζ

2
+ · · ·

)

Expanding, we get:

aA
(j)
0 + bA

(j)
1 +aA

(j)
2 +

(
bA

(j)
0 + aA

(j)
1

)
ζ+aA

(j)
0 ζ2+

∞∑
k=1

(
aA

(j)
k + bA

(j)
k+1 + aA

(j)
k+2

)
ζ
k

Holomorphy forces the relation:

aA
(j)
k + bA

(j)
k+1 + aA

(j)
k+2 = 0,∀j, k ≥ 1 (4.1)
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If we already have a = 0, then, since c is not the zero map, we must have b ̸= 0, and
the relation (4.1) becomes just A(j)

k+1 = 0, ∀j, k ≥ 1, i.e. A(j)
k = 0 for all j ≥ 1 and

k ≥ 2. This implies that for all j ≥ 1, fj(ζ) = αj + βjζ for some αj, βj ∈ C and all
ζ ∈ ∂∆. By Corollary 2.2.6, this holds for all ζ ∈ ∆.
Now since f(∂∆) ⊂ Q, we must have ρ(f(ζ)) = 0 for all ζ ∈ ∂∆. This means that
for all ζ ∈ ∂∆, one has:

f0(ζ) + f0(ζ) = 2
n∑

j=1

fj(ζ)fj(ζ) (4.2)

But we have:
n∑

j=1

fj(ζ)fj(ζ) =
n∑

j=1

(αj + βjζ)
(
αj + βj · ζ

)
=

n∑
j=1

(
|αj|2 + βjαjζ + αjβjζ + |βj|2

)
This shows that:

f0(ζ) =
n∑

j=1

(
|αj|2 + 2αjβjζ + |βj|2

)
+ iy0

for some y0 ∈ R.
Define v, w ∈ Cn as:

v =

α1
...
αn

 , w =

β1...
βn


Then, we can re-write f0 as:

f0(ζ) = vtv + 2vtwζ + wtw + iy0

and then one gets:

f(ζ) =
(
vtv + 2vtwζ + wtw + iy0, v + wζ

)
Now suppose that a ̸= 0, and let us solve the recurrence relation:

aBk + bBk+1 + aBk+2 = 0,∀k ≥ 1 (4.3)

There are many ways to do this. We will do it here using a classical "generating
function" approach. In particular, let g(x) =

∑∞
k=1Bkx

k. In (4.3), multiplying
through by xk and summing over the values of k, we get:

a
∞∑
k=1

Bkx
k + b

∞∑
k=1

Bk+1x
k + a

∞∑
k=1

Bk+2x
k = 0
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so that

ag(x) +
b

x

∞∑
k=1

Bk+1x
k+1 +

a

x2

∞∑
k=1

Bk+2x
k+2 = 0

hence,

ag(x) +
b

x
(g(x)−B1x) +

a

x2
(
g(x)−B1x−B2x

2
)
= 0

which we can re-arrange to get:

g(x)

x
=
aB1 + (bB1 + aB2)x

a+ bx+ ax2

Consider now the quadratic polynomial a + bx + ax2. Let a1 and a2 (possibly
equal, but won’t be equal as we will see now) be the roots of this quadratic. Then,

a1a2 =
a

a
, so |a1a2| = |a1||a2| = 1. Now if |a1| = |a2|, then |a1| = |a2| = 1, and this

means that our quadratic has a root η ∈ ∂∆. But this implies that η =
1

η
is a root

of a + bx + ax2 i.e. of xc(x), so ηc(η) = 0, hence c(η) = 0, and this is impossible
since η ∈ ∂∆ where c never vanishes. Thus, we can’t have |a1| = |a2|. Let’s then
WLOG say 0 < |a1| < 1 < |a2|.

Let’s do partial fraction decomposition for
g(x)

x
. We have:

g(x)

x
=
aB1 + (bB1 + aB2)x

a(a1 − x)(a2 − x)
=

λ

a1 − x
+

µ

a2 − x

where:
λ =

aB1 + (bB1 + aB2)a1
a(a2 − a1)

and
µ =

aB1 + (bB1 + aB2)a2
a(a1 − a2)

Now, we expand in power series with the understanding that |x| < |a1| and that we
do not care about x in any case. We have:

g(x)

x
=

λ

a1 − x
+

µ

a2 − x

=
λ

a1
· 1

1− x

a1

+
µ

a2
· 1

1− x

a2

=
λ

a1

∞∑
k=0

(
x

a1

)k

+
µ

a2

∞∑
k=0

(
x

a2

)k

=
∞∑
k=0

(
λ

ak+1
1

+
µ

ak+1
2

)
xk
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But we know that:

g(x)

x
=

1

x

(
B1x+B2x

2 +B3x
3 + · · ·

)
= B1 +B2x+B3x

2 + · · ·

=
∞∑
k=0

Bk+1x
k

and therefore, we have for all k ≥ 0,

Bk+1 =
λ

ak+1
1

+
µ

ak+1
2

i.e.
Bk =

λ

ak1
+
µ

ak2
,∀k ≥ 1 (4.4)

As we would expect, plugging in k = 1 or k = 2 in (4.4) will not give us any new
information. However, (4.4) will determine the Bk for k ≥ 3 as a function of B1 and
B2. In short, the solution to (4.3) is: B1, B2 ∈ C arbitrary, and Bk for k ≥ 3 as
displayed in (4.4).
We may then solve (4.1). We have that A(j)

1 and A
(j)
2 are free for all j ≥ 1, and for

all k ≥ 3 and j ≥ 1 we have:

A
(j)
k = λj

1

a1
k
+ µj

1

a2
k

where

λj =
aA

(j)
1 +

(
bA

(j)
1 + aA

(j)
2

)
a1

a(a2 − a1)

and

µj =
aA

(j)
1 +

(
bA

(j)
1 + aA

(j)
2

)
a2

a(a1 − a2)

Then, for j ≥ 1,

fj(ζ)− A
(j)
0 =

∞∑
k=1

A
j)
k ζ

k

=
∞∑
k=1

(
λj

1

a1
k
+ µj

1

a2
k

)
ζk

= λj

∞∑
k=1

(
ζ

a1

)k

+ µj

∞∑
k=1

(
ζ

a2

)k

Now the formula:

fj(ζ) =
∞∑
k=0

A
(j)
k ζk
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is at least valid for |ζ| = 1, i.e. this series converges for |ζ| = 1, and so does the

geometric series of common ratio
ζ

a2
, but not the geometric series of common ratio

ζ

a1
(because of the assumptions on |a1| and |a2|). This forces λj = 0 for all j ≥ 1,

and therefore
A

(j)
k = µj

1

a2
k
, ∀j, k ≥ 1

As λj = 0, the numerator of λj is also 0, and we can then write:

bA
(j)
1 + aA

(j)
2 = −aA

(j)
1

a1

in particular, the A(j)
2 are no more free. Plugging into µj, one gets:

µj =
1

a1a1a2
A

(j)
1

Write α = a1a1a2. Then, µj =
1

α
A

(j)
1 , so:

A
(j)
k =

A
(j)
1

α

1

a2
k

and therefore,

fj(ζ) = A
(j)
0 +

A
(j)
1

α

∞∑
k=1

(
ζ

a2

)k

= A
(j)
0 +

A
(j)
1

α
· ζ
a2

· 1

1− ζ

a2

= A
(j)
0 +

A
(j)
1

a1a1a2
· ζ

a2 − ζ

= A
(j)
0 + A

(j)
1

ζ

|a1a2|2 − a1a1a2ζ

= A
(j)
0 + A

(j)
1

ζ

1− αζ

where α = a1a1a2. Notice that |α| = |a1a2| · |a1| = 1 · |a1| = |a1| < 1.
Now once again, since f(∂∆) ⊂ Q, we have that (4.2) holds for any ζ ∈ ∂∆. Putting:

v =

A
(1)
0
...

A
(n)
0

 , w =

A
(1)
1
...

A
(n)
1
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one has:

f0(ζ) + f0(ζ) = 2
n∑

j=1

(
vj + wj

ζ

1− αζ

)(
vj + wj

ζ

1− αζ

)

= 2
n∑

j=1

(
|vj|2 + vjwj

ζ

1− αζ
+ vjwj

ζ

1− αζ
+ |wj|2

1

(1− αζ)(1− αζ

)
To determine f0, we will need to do the following decomposition:

1

(1− αζ)(1− αζ)
=
A+Bζ

1− αζ
+
A+Bζ

1− αζ

Upon solving for A and B, one gets:

A =
1

2(1− |α|2)
, B =

α

2(1− |α|2)

and therefore,

1

(1− αζ)(1− αζ)
=

1

2(1− |α|2)

(
1 + αζ

1− αζ
+

1 + αζ

1− αζ

)
and then we deduce that:

f0(ζ) = vtv + 2vtw
ζ

1− αζ
+

wtw

1− |α|2
1 + αζ

1− αζ
+ iy0

and for all j ≥ 1,

fj(ζ) = vj + wj
ζ

1− αζ

where v, w ∈ Cn, y0 ∈ R, and α ∈ ∆. This concludes the proof.

An essential step in the proof was the expansion of c into Fourier series on ∂∆. This
comes from the general theory of Fourier series: it is well-known that for a function
c which is continuous on the unit circle in C (i.e. our ∂∆), the sequence of Fourier
polynomials of c will converge to c in the max norm ∥ · ∥∞ on C(∂∆) given by
∥a∥∞ = maxζ∈∂∆ |a(ζ)|, i.e. uniformly. We do not mention this in the preliminary
pages because we assume the familiarity of the reader with this.

4.1.2 Some Properties of these Disks

Here, we merely list the properties we will be needing, and we postpone the
statements and proofs to the next subsection. The purpose of this subsection is
to keep an easy-to-read list. In this list of facts, f = (f0, g) : ∆ → C × Cn is a
stationary disk attached to Q with f(1) = 0. Also, p = (p0, p

′) = f(0). Note that if
p = 0, then f ≡ 0, and in this list we assume p ̸= 0. Finally, when n = 2, we write
f ′(1) = (c1, c2) and f ′′(1) = (c3, c4).
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Figure 4.2: An intuitive illustration of our paraboloid. The slanted black disk
represents the kind of disk we are dealing with here (attached to the origin).

Fact 4.1.1. We can write f in terms of only α and v. We have:

f0(ζ) =
2(1− α)∥v∥2

1− |α|2
1− ζ

1− αζ

and:
g(ζ) =

1− ζ

1− αζ
v

Fact 4.1.2. In terms of α and p, the 2-jet of f at any point ζ is given by:

f ′(ζ) =
α− 1

(1− αζ)2
p

And:
f ′′(ζ) =

2α(α− 1)

(1− αζ)3
p
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Fact 4.1.3. The 2-jet of f at 1 is given in terms of α and v by:

f ′
0(1) =

2∥v∥2

|α|2 − 1

f ′′
0 (1) =

4α∥v∥2

(|α|2 − 1)(1− α)

g′(1) =
1

α− 1
v

g′′(1) =
−2α

(1− α)2
v

Fact 4.1.4. In terms of p, we have v = p and:

α = 1− 2(ℜp0 − ∥p′∥2)
p0

Fact 4.1.5. In terms of p, we may write:

f(ζ) =
1− ζ

1− αζ
p

with α as displayed in the previous fact.

Fact 4.1.6. In terms of p, the 2-jet of f at 1 is given by:

f ′(1) =
p0

2(∥p′∥2 −ℜp0)
p

f ′′(1) =
(p0 − 2∥p′∥2)p0
2(∥p′∥2 −ℜp0)2

p

Fact 4.1.7. The α, v, c1 and c3 are all functions of c2 and c4, and we have:

α =
c4

2c2 + c4

and:
v = − 2c22

2c2 + c4

and for the ci,

c1 = − 2|c2|4

|c2|2 + ℜ(c2c4)
and:

c3 = − 2|c2|2c2c4
|c2|2 + ℜ(c2c4)

Fact 4.1.8. The expressions of c1, c2, c3 and c4 in terms of p are:

c1 =
|p0|2

2(|p′|2 −ℜp0)
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c2 =
p0p

′

2(|p′|2 −ℜp0)

c3 =
(p0 − 2|p′|2)|p0|2

2(|p′|2 −ℜp0)2

and:
c4 =

(p0 − 2|p′|2)p0p′

2(|p′|2 −ℜp0)2

Fact 4.1.9. Let us not take p to be f(0), and let’s suppose that the ci are known.
The solution to f(0) = q is given by q = (q0, q

′), where q = 0 if c1 = 0, and else:

q0 =
2c21

c3 + 4|c2|2

and:
q′ =

2c1c2
c3 + 4|c2|2

4.1.3 Proofs and Computations

This subsection is more or less the proper mathematical treatment of the preceding
list of facts.

Proposition 4.1.1. The stationary disks f attached to Q satisfying f(1) = 0 are
the ones of the form f = (f0, g) : ∆ → C× Cn with:

f0(ζ) =
2(1− α)∥v∥2

1− |α|2
1− ζ

1− αζ

and:
g(ζ) =

1− ζ

1− αζ
v

where α ∈ ∆ and v ∈ Cn. Moreover, the 2-jets of these maps at 1 are given by:

f ′
0(1) =

2∥v∥2

|α|2 − 1

f ′′
0 (1) =

4α∥v∥2

(|α|2 − 1)(1− α)

g′(1) =
1

α− 1
v

g′′(1) =
−2α

(1− α)2
v

Proof. Let f be a stationary disk attached to Q. Then, by Theorem 4.1.1, there are
v, u ∈ Cn, α ∈ ∆, and y0 ∈ R such that f = (f0, g), where:

f0(ζ) = ∥v∥2 + 2⟨v, u⟩ ζ

1− αζ
+

∥u∥2

1− |α|2
1 + αζ

1− αζ
+ iy0
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and
g(ζ) = v + u

ζ

1− αζ

As g(1) = 0, we have that v and u are linearly dependent, in particular u = (α−1)v.
Hence, from f0(1) = 0, we see that:

∥v∥2 + 2(α− 1)∥v∥2 1

1− α
+

|α− 1|2∥v∥2

1− |α|2
1 + α

1− α
+ iy0 = 0

i.e.
∥v∥2 − 2∥v∥2 − (α− 1)(α− 1)(α + 1)∥v∥2

(1− αα)(α− 1)
+ iy0 = 0

hence,

−∥v∥2 + (1− α)(1 + α)

1− αα
∥v∥2 + iy0 = 0

which we can rearrange to: (
α− α

1− |α|2

)
∥v∥2 + iy0 = 0

i.e.
i

(
y0 +

2ℑα
1− |α|2

∥v∥2
)

= 0

and therefore,

y0 =
2ℑα

|α|2 − 1
∥v∥2

Let’s now substitute back the u and y0 into f . First,

g(ζ) = v + (α− 1)v
ζ

1− αζ
=

(
1 +

(α− 1)ζ

1− αζ

)
v =

1− ζ

1− αζ
v

Second,

f0(ζ) = ∥v∥2 + 2(α− 1)ζ

1− αζ
∥v∥2 + |1− α|2

1− |α|2
1 + αζ

1− αζ
∥v∥2 + i

(
2ℑα

|α|2 − 1

)
∥v∥2

=

(
1 +

2(α− 1)ζ

1− αζ
+

|1− α|2

1− |α|2
1 + αζ

1− αζ
+

2iℑα
|α|2 − 1

)
∥v∥2

=

(
1 +

2(α− 1)ζ

1− αζ
+

(1− α)(1− α)

1− αα

1 + αζ

1− αζ
+

α− α

|α|2 − 1

)
∥v∥2

The factor of ∥v∥2 can be re-written after taking (1 − αζ)(1 − αα) as a common
denominator as:

(1− αα)(1− αζ) + 2(α− 1)(1− αα)ζ + (1− α)(1− α)(1 + αζ)− (α− α)(1− αζ)

(1− |α|2)(1− αζ)

The numerator of this expression, fully expanded, is given by:

1− αζ − αα + α2αζ − 2ζ + 2ααζ + 2αζ − 2α2αζ + 1 + αζ − α
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−ααζ − α− α2ζ + αα + α2αζ + α− ααζ − α + α2ζ

and this is just 2 + 2αζ − 2ζ − 2α, i.e. 2(1− α)(1− ζ). Therefore, we get:

f0(ζ) =
2(1− α)(1− ζ)

(1− |α|2)(1− αζ)
∥v∥2

Now, note that:
d

dζ

(
1− ζ

1− αζ

)
=

α− 1

(1− αζ)2

and
d2

dζ2

(
1− ζ

1− αζ

)
=

2α(α− 1)

(1− αζ)3

so that f ′
0, g

′, f ′′
0 and g′′ are given by:

f ′
0(ζ) = − 2(1− α)2∥v∥2

(1− |α|2)(1− αζ)2

g′(ζ) =
α− 1

(1− αζ)2
v

f ′′
0 (ζ) = − 4α(1− α)2∥v∥2

(1− |α|2)(1− αζ)3

and:
g′′(ζ) =

2α(α− 1)

(1− αζ)3
v

and then one just substitutes ζ = 1 to get the f ′
0(1), f

′′
0 (1), g

′(1) and g′′(1) as
displayed above.

Proposition 4.1.2. Let f = (f0, g) be a stationary disk attached to Q with
f(1) = 0. Then, f is completely determined by its value at 0. In fact, if f(0) = 0,
then f ≡ 0. Else, p0 ̸= 0 and p′ ̸= 0, and if we write f(0) as p = (p0, p

′) ∈ C× Cn,
then we have:

f0(ζ) =
1− ζ

1− αζ
p0

and
g(ζ) =

1− ζ

1− αζ
p′

where:
α = 1− 2(ℜp0 − ∥p′∥2)

p0

In other words, f is just the map:

f(ζ) =
1− ζ

1− αζ
p
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Proof. Let f(0) = p = (p0, p
′) ∈ C× Cn. We know that p is in the region bounded

by Q, so ℜp0 > ∥p′∥2. The previous proposition gives us the expressions of f0 and
g in terms of v and α, and as g(0) = p′, we have v = p′. Now from f0(0) = p0, we
have:

2(1− α)∥p′∥2

1− |α|2
= p0

If p′ = 0, then f is the zero map and there is nothing to prove. Assume then that
p′ ̸= 0. Then, we also have p0 ̸= 0, and:

1− α =
1− |α|2

2∥p′∥2
p0

so:
α = 1− 1− |α|2

2∥p′∥2
p0

Write p0 = x+ iy, so that:

α =

(
1− 1− |α|2

2∥p′∥2
x

)
+ i

(
−1− |α|2

2∥p′∥2
y

)
hence:

|α|2 =
(
1− 1− |α|2

2∥p′∥2
x

)2

+

(
1− |α|2

2∥p′∥2
y

)2

= 1− 1− |α|2

∥p′∥2
x+

(1− |α|2)2

4∥p′∥4
|p0|2

= 1 + µ(1− |α|2) + λ(1− |α|2)2

= λ|α|4 − (2λ+ µ)|α|2 + λ+ µ+ 1

with:
λ =

|p0|2

4∥p′∥4
> 0 and µ = − ℜp0

∥p′∥2

Rearranging, we get:

λt2 − (2λ+ µ+ 1)t+ λ+ µ+ 1 = 0

where t = |α|2, which is a quadratic in t with discriminant:

δ = (2λ+ µ+ 1)2 − 4λ(λ+ µ+ 1)

= µ2 + 2µ+ 1

= (µ+ 1)2

Note that:
µ+ 1 =

∥p′∥2 −ℜp0
∥p′∥2

< 0
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so that
√
δ = −µ− 1, and then the solutions to the quadratic are:

t1 =
2λ+ µ+ 1 + µ+ 1

2λ
= 1 +

µ+ 1

λ

and:
t2 =

2λ+ µ+ 1− µ− 1

2λ
= 1

But t2 is not a viable solution because then |α|2 = 1, i.e. |α| = 1, which contradicts
the fact that a ∈ ∆. So, t1 is the only solution, so that:

|α|2 = 1 +
µ+ 1

λ
= 1 +

4∥p′∥2(∥p′∥2 −ℜp0)
|p0|2

hence,

1− |α|2 = 4∥p′∥2(ℜp0 − ∥p′∥2)
|p0|2

and thus,

α = 1− 1− |α|2

2∥p′∥2
p0 = 1− 2(ℜp0 − ∥p′∥2)

|p0|2
p0 = 1− 2(ℜp0 − ∥p′∥2)

p0

Noting that:

1− α =
1− |α|2

2∥p′∥2
p0

we may write:

f0(ζ) =

2

(
1− |α|2

2∥p′∥2
p0

)
∥p′∥2

1− |α|2
1− ζ

1− αζ
=

1− ζ

1− αζ
p0

and:
g(ζ) =

1− ζ

1− αζ
p′

Corollary 4.1.1. Let f = (f0, g) be a stationary disk attached to Q with f(1) = 0
and f(0) = p = (p0, p

′) ∈ C× Cn. Then, the 2-jet of f at any ζ is given by:

f ′(ζ) =
α− 1

(1− αζ)2
p

And:
f ′′(ζ) =

2α(α− 1)

(1− αζ)3
p

In particular, the 2-jet of f at 1 is given by:

f ′(1) =
p0

2(∥p′∥2 −ℜp0)
p

f ′′(1) =
(p0 − 2∥p′∥2)p0
2(∥p′∥2 −ℜp0)2

p
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Proof. From the preceding proposition, we have:

f(ζ) =
1− ζ

1− αζ
p

with α as explicitly mentioned above in terms of p. Recall that:

d

dζ

(
1− ζ

1− αζ

)
=

α− 1

(1− αζ)2
and

d2

dζ2

(
1− ζ

1− αζ

)
=

2α(α− 1)

(1− αζ)3

so,

f ′(ζ) =
α− 1

(1− αζ)2
p

And:
f ′′(ζ) =

2α(α− 1)

(1− αζ)3
p

so that also in particular:

f ′(1) =
1

α− 1
p =

p0
2(∥p′∥2 −ℜp0)

p

and:

f ′′(1) = − 2α

(1− α)2
p = −2

(
1− 2(ℜp0 − ∥p′∥2)

p0

)
p0

2

4(∥p′∥2 −ℜp0)2
p

=
(2ℜp0 − 2∥p′∥2 − p0)p0

2(∥p′∥2 −ℜp0)2
p

=
(p0 − 2∥p′∥2)p0
2(∥p′∥2 −ℜp0)2

p

which is what we claimed.

Corollary 4.1.2. Fix n = 2, so that Q = {(w, z) ∈ C2,ℜw = |z|2}. Let f be
a stationary disk attached to Q with f(1) = 0. Write f = (f0, g), g′(1) = c2,
g′′(1) = c4, f ′

0(1) = c1 and f ′′
0 (1) = c3. Also, write p = (p0, p

′) = f(0). Then, we
have:

c1 =
|p0|2

2(|p′|2 −ℜp0)

c2 =
p0p

′

2(|p′|2 −ℜp0)

c3 =
(p0 − 2|p′|2)|p0|2

2(|p′|2 −ℜp0)2

and:
c4 =

(p0 − 2|p′|2)p0p′

2(|p′|2 −ℜp0)2
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Proof. The proof is merely a matter of writing down the definitions of the ci and
substituting the expressions in terms of p obtained in Corollary 4.1.1:(

c1
c2

)
=

(
f ′
0(1)
g′(1)

)
= f ′(1)

and the latter we already have in terms of p. Similarly for c3 and c4.

Proposition 4.1.3. With the same setting as in Corollary 4.1.2, we have that if
c4 ̸= 0, then 2c2 + c4 ̸= 0. If this is the case, or if c4 = 0 and α = 0, then we have
f as displayed in Proposition 4.1.1, with:

α =
c4

2c2 + c4

and:
v = − 2c22

2c2 + c4

and then, since |α| < 1, we have |α|2 − 1 ̸= 0, so |c4|2 − |2c2 + c4|2 ̸= 0, so that
|c2|2 + ℜ(c2c4) ̸= 0, and:

c1 = − 2|c2|4

|c2|2 + ℜ(c2c4)
and:

c3 = − 2|c2|2c2c4
|c2|2 + ℜ(c2c4)

Else, c4 = 0 and α ̸= 0, and then v = 0, thus f ≡ 0, so that ci = 0 for i = 1, 2, 3, 4.
Therefore, in particular, f is completely determined by g′(1) and g′′(1).
As a useful remark, c1 is given in terms of α and v by:

c1 =
2|v|2

|α|2 − 1

and c3 is given in terms of α and c1 or α and v by:

c3 =
2α

1− α
c1 =

4α|v|2

(|α|2 − 1)(1− α)

Proof. Suppose first that c4 ̸= 0. As g′(1) = c2, we have v = (α − 1)c2, and as

g′′(1) = c4, we have that
−2α

(1− α)2
v = c4, so that

−2α

(1− α)2
(α− 1)c2 = c4, and hence

2αc2 = (1 − α)c4, and this gives (2c2 + c4)α = c4, which implies that 2c2 + c4 ̸= 0

(else, c4 = 0, which is impossible), thus α =
c4

2c2 + c4
. Now we just substitute back

to get v:

v = (α− 1)c2 =

(
c4

2c2 + c4
− 1

)
c2 = − 2c22

2c2 + c4

Now:

c1 = f ′
0(1) =

2|v|2

|α|2 − 1
= 2

4|c2|4

|2c2 + c4|2
1

|c4|2

|2c2 + c4|2
− 1
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=
8|c2|4

|c4|2 − |2c2 + c4|2

=
8|c2|4

|c4|2 − (4|c2|2 + |c4|2 + 4ℜ(c2c4)

= − 2|c2|4

|c2|2 + ℜ(c2c4)

and:

c3 = f ′′
0 (1) =

4α|v|2

(|α|2 − 1)(1− α)

= 4
c4

2c2 + c4

4|c2|4

|2c2 + c4|2
1(

|c4|2

|2c2 + c4|2
− 1

)(
1− c4

2c2 + c4

)
=

16c4|c2|4

(2c2 + c4 − c4)(|c4|2 − |2c2 + c4|2)

=
16c4|c2|4

2c2(−4|c2|2 − 4ℜ(c2c4))

= − 2|c2|2c2c4
|c2|2 + ℜ(c2c4)

Moreover, if one compares c1 and c3 in terms of α and v, one readily sees that:

c3 =
2α

1− α
c1

Finally, if c4 = 0, then if α = 0, g′(1) = c2 implies v = −c2. Else, if α ̸= 0, then
g′′(1) = c4 implies v = 0, and this means that f ≡ 0.

Proposition 4.1.4. Fix n = 2, so that Q = {(w, z) ∈ C2,ℜw = |z|2}. Let f
be a stationary disk attached to Q, with f(1) = 0. Write f ′(1) = (c1, c2)

t and
f ′′(1) = (c3, c4)

t. Let q = (q0, q
′) ∈ C2 be a given point in the region bounded by Q.

Suppose that f(0) = q. Then, we either have c1 = 0, and then f ≡ 0 and q = 0, or
c1 ∈ R \ {0}, in which case we necessarily have that c1c3 + 4|c2|2c1 ̸= 0, and q0 and
q′ are given in terms of the ci by:

q0 =
2c21

c3 + 4|c2|2

and:
q′ =

2c1c2
c3 + 4|c2|2

Proof. The expressions for f ′(1) and f ′′(1) that we obtained in Corollary 4.1.1 give
us this set of equations:

|q0|2

2(|q′|2 −ℜq0)
= c1 (1)
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q0q
′

2(|q′|2 −ℜq0)
= c2 (2)

(q0 − 2|q′|2)|q0|2

2(|q′|2 −ℜq0)2
= c3 (3)

(q0 − 2|q′|2)q0q′

2(|q′|2 −ℜq0)2
= c4 (4)

Notice how from (1) we have c1 ∈ R. If c1 = 0, then q0 = 0 as well, and then
c2 = c3 = c4 = 0, so by Proposition 4.1.3, α = v = 0, and so we must have f ≡ 0,
and then q = 0.
So, assume that c1 ̸= 0. Then q0 ̸= 0 as well. From (1), we have:

|q′|2 −ℜq0 =
|q0|2

2c1

and if we substitute this in (2), we get:

q0q
′

2

(
|q0|2

2c1

) = c2

so that
q0q

′c1
q0q0

= c2, and so q′ =
c2
c1
q0.

Now, substituting these information in (3) gives us:(
q0 − 2

∣∣∣∣c2c1 q0
∣∣∣∣2
)
|q0|2

2
(

|q0|4
4c21

) = c3

i.e.
2

(
q0 −

2|c2|2

c21
|q0|2

)
c21

|q0|2
= c3

hence,
2(c21 − 2|c2|2q0)

q0
= c3

and this reduces to:
2(c21 − 2|c2|2q0) = c3q0

rearranging, we get:
(c3 + 4|c2|2)q0 = 2c21

We already know that c1 ̸= 0, so that necessarily c3 + 4|c2|2 ̸= 0, and one gets after
cojugating:

(c3 + 4|c2|2)q0 = 2c21
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and therefore,

q0 =
2c21

c3 + 4|c2|2

and:
q′ =

c2
c1
q0 =

2c1c2
c3 + 4|c2|2

and this completes the proof.

4.2 In the Context of the Automorphisms of Q

In this section, we mention without proof the automorphisms of Q, and we discuss
how they relate to the stationary disks attached to Q.

4.2.1 The Automorphisms we are After

The main way automorphisms of Q interact with stationary disks is straightforward:
the automorphisms map stationary disks attached to Q to stationary disks attached
to Q in a non-trivial manner. It will turn out that this is enough to understand the
automorphism group of Q. We start by displaying a tweaked version of the list of
automorphisms mentioned in [9].

Theorem 4.2.1. The group of automorphisms of Q is generated by the families
H−2, H−1, H

1
0 , H

2
0 , H1 and H2, which are given by the following formulas:

H−2(w, z) = (w − ir, z)

H−1(w, z) =
(
w + ||a||2 + 2⟨a, z⟩, z + a

)
H1

0 (w, z) = (λ2w, λz)

H2
0 (w, z) = (w,Uz)

H1(w, z) =
1

1− 2i⟨b, z⟩+ ||b||2w
(w, z + iwb)

H2(w, z) =
1

1 + isw
(w, z)

where r, s, λ ∈ R with λ > 0, a, b ∈ Cn, and U ∈ Mn×n(C) a unitary matrix with
respect to (z, z′) 7→ ⟨z, z′⟩, are parameters of these families.

Proposition 4.2.1. The generators of the group of automorphisms of Q, listed
above, map stationary disks of Q to stationary disks of Q.

Proof. See Proposition 3.2.2 for the more general proof that stationary disks are
biholomorphic invariants.
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What follows is almost a proof and is not the most natural way to approach this fact.
There are a few non-trivial gaps that one should fill, but most of the calculations
and required conditions are displayed here. This is what it looks like if one would
want to verify this by "brute force". However, as we have already mentioned, this
fact is straightforward if one looks at Proposition 3.2.2.

Proof. Recall that the stationary disks attached to Q are given by the family of
maps f : ∆ → Cn+1 parameterized by v, u ∈ Cn, y0 ∈ R and α ∈ ∆, with
f = (f0, f1, . . . , fn), where:

f0(ζ) = vtv + 2vtu
ζ

1− αζ
+

utu

1− |α|2
1 + αζ

1− αζ
+ iy0

and ∀j ≥ 1,

fj(ζ) = vj + uj
ζ

1− αζ

Let Φ : Cn × Cn × ∆ × R →
{
g : ∆ → Cn+1, g is a stationary disk attached to Q

}
be the map given by: Φ(v, u, α, y0) = f as displayed above.
Let’s fix such a stationary disk f = Φ(v, u, α, y0) and feed it into each of the H’s,
trying to compute the corresponding parameters for the outputs H ◦ f . For
convenience, we will use the notation f ′ for (f1, . . . , fn). So that one has:

f ′(ζ) = v + u
ζ

1− αζ

It’s clear that H−2 ◦ f = Φ(v, u, α, y0 − r) is a stationary disk attached to Q.
For H−1, let’s look at the second component of H−1(f(ζ)):

f ′(ζ) + a = v + u
ζ

1− αζ
+ a = (v + a) + u

ζ

1− αζ

hence, we will tailor the first component of H−1(f(ζ)) in such a way as to make the
v+ a appear and we compute the rest of the new parameters. This first component
is just:

f0(ζ) + ∥a∥2 + 2⟨a, f ′(ζ)⟩

which is:

∥v∥2 + 2⟨v, u⟩ ζ

1− αζ
+

∥u∥2

1− |α|2
1 + αζ

1− αζ
+ iy0 + ∥a∥2 + 2

〈
a, v + u

ζ

1− αζ

〉
equivalently:

∥v∥2+⟨a, v⟩+⟨v, a⟩+∥a∥2+2⟨v + a, u⟩ ζ

1− αζ
+

∥u∥2

1− |α|2
1 + αζ

1− αζ
+iy0+⟨a, v⟩−⟨v, a⟩

i.e.
∥v + a∥+ 2⟨v + a, u⟩ ζ

1− αζ
+

∥u∥2

1− |α|2
1 + αζ

1− αζ
+ i (y0 + 2ℑ⟨a, v⟩)
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and we conclude that H−2 ◦ f = Φ(v + a, u, α, y0 + 2ℑ⟨a, v⟩) is again a stationary
disk attached to Q.
ForH1

0 andH2
0 , we clearly haveH1

0◦f = Φ(λv, λu, α, y0) andH2
0◦f = Φ(Uv, Uu, α, y0),

stationary disks attached to Q.
For H1, we are going to write H1 ◦ f = Φ(v′, u′, α′, y′0) and solve for v′, u′, α′ and y′0.
First, let’s consider the case u = 0. In this case, f0(ζ) = ∥v∥2 + iy0 and f ′(ζ) = v,
so that f is a constant function. Since f is attached to Q and H1 is an auto-
morphism of Q, we know that H1(f(ζ)) = (A,B) ∈ Q, so that ℜA = ∥B∥2. Let
v′ = B and y′0 = ℑA. Then, one has that H1(f(ζ)) = (∥v′∥2 + iy′0, v

′), and so
H1 ◦ f = Φ(v′, 0, 0, y′0) is indeed a stationary disk attached to Q (we did not need to
take α′ = 0, surely any α′ ∈ ∆ works here).
Now, we consider the case u ̸= 0. First, let’s look at the expression:

1

1− 2i⟨b, z⟩+ ∥b∥2w

∣∣∣∣∣
(z,w)=f(ζ)

and let’s play around with it. This is just:

1

1− 2i⟨b, f ′(ζ)⟩+ ∥b∥2f0(ζ)
=

1− αζ

η + µζ

where:

η := 1− 2i⟨b, v⟩+ ∥b∥2∥v∥2 + ∥b∥2 ∥u∥2

1− |α|2
+ iy0∥b∥2

µ := −α + 2iα⟨b, v⟩ − 2i⟨b, u⟩ − ∥b∥2∥v∥2α + 2∥b∥2⟨v, u⟩+ ∥b∥2 ∥u∥2

1− |α|2
α− iαy0∥b∥2

α′ := −µ
η

We need to verify many things. First, that η ̸= 0. Second, that this α′ satisfies
|α′| < 1. And third, that this α′ is indeed the α′ we are looking for.
Let’s write:

η =

(
1 + 2ℑ⟨b, v⟩+ ∥b∥2∥v∥2 + ∥b∥2 ∥u∥2

1− |α|2

)
+ i
(
y0∥b∥2 − 2ℜ⟨b, v⟩

)
If ℑη ̸= 0, there’s nothing to show. Suppose that ℑη = 0, so that:

η = 1 + 2ℑ⟨b, v⟩+ ∥b∥2∥v∥2 + ∥b∥2 ∥u∥2

1− |α|2

By the Cauchy-Schwarz inequality, one has:∣∣ℑ⟨b, v⟩∣∣ ≤ |⟨b, v⟩| ≤ ∥b∥∥v∥

hence,

1 + 2ℑ⟨b, v⟩+ ∥b∥2∥v∥2 ≥ 1− 2∥b∥∥v∥+ ∥b∥2∥v∥2 = (1− ∥b∥∥v∥)2
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so that:
η ≥ (1− ∥b∥∥v∥)2 + ∥b∥2 ∥u∥2

1− |α|2

hence, η ≥ 0. If in fact η = 0, then we must have:

1− ∥b∥∥v∥ = 0

and:
∥b∥2 ∥u∥2

1− |α|2
= 0

hence b cannot possibly be 0, so that we must have u = 0, but this is also not
possible. Therefore, η ̸= 0.
Now, one needs to check that |α′| < 1, and we will leave this for the interested
reader.
We will now show that this α′ works for our purpose.
First, we look at the second component of H1(f(ζ)). This is:

1

η

(1− αζ)

(
v + u

ζ

1− αζ
+ if0(ζ)b

)
1− α′ζ

which we can re-write as:

1

η

v + (u− αv)ζ

1− α′ζ
+
1

η

(
∥v∥2 + ∥u∥2

1− |α|2
+ iy0

)
b+

(
−α∥v∥2 + 2⟨v, u⟩+ ∥u∥2

1− |α|2
α− iy0α

)
bζ

1− α′ζ

This must equal:

v′ + u′
ζ

1− α′ζ

Upon multiplying both sides by η(1− α′ζ) and regrouping, one gets on the LHS:[
v +

(
∥v∥2 + ∥u∥2

1− |α|2
+ iy0

)
b

]
+

[
u− αv +

(
−α∥v∥2 + 2⟨v, u⟩+ ∥u∥2

1− |α|2
α− iy0α

)
b

]
ζ

and on the RHS:
ηv′ + η(u′ − α′v′)ζ

so that:
v′ =

1

η
v +

1

η

(
∥v∥2 + ∥u∥2

1− |α|2
+ iy0

)
b

and:

u′ =
1

η
u+ α′v′ − α

η
v +

1

η

(
−α∥v∥2 + 2⟨v, u⟩+ ∥u∥2

1− |α|2
α− iy0α

)
b

Let’s now write out the first component of H1(f(ζ)). This is just:

1

η

(1− αζ)f0(ζ)

1− α′ζ
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which, as mentioned above, we can rearrange as:

1

η

(
∥v∥2 + ∥u∥2

1− |α|2
+ iy0

)
+

(
−α∥v∥2 + 2⟨v, u⟩+ ∥u∥2

1− |α|2
α− iy0α

)
ζ

1− α′ζ

this should equal:

∥v′∥2 + 2⟨v′, u′⟩ ζ

1− α′ζ
+

∥u′∥2

1− |α′|2
1 + α′ζ

1− α′ζ
+ iy′0

Upon equating these two and multiplying through by η(1 − α′ζ), one gets on the
LHS: (

∥v∥2 + ∥u∥2

1− |α|2
+ iy0

)
+

(
−α∥v∥2 + 2⟨v, u⟩+ ∥u∥2

1− |α|2
α− iy0α

)
ζ

and on the RHS:

η

(
∥v′∥2 + ∥u′∥2

1− |α′|2
+ iy′0

)
+

(
µ∥v′∥2 + 2η⟨v′, u′⟩ − ∥u′∥2

1− |α′|2
µ+ iy′0µ

)
ζ

so that one gets:
η∥v′∥2 + ∥u′∥2

1− |α′|2
η + iy′0η = ∥v∥2 + ∥u∥2

1− |α|2
+ iy0

µ∥v′∥2 + 2η⟨v′, u′⟩ − ∥u′∥2

1− |α′|2
µ+ iy′0µ = −α∥v∥2 + 2⟨v, u⟩+ ∥u∥2

1− |α|2
α− iy0α

and this gives us two ways of writing y′0, let’s go with the first one:

y′0 =
1

η
y0 −

i

η
∥v∥2 − i

η

∥u∥2

1− |α|2
+ i

∥u′∥2

1− |α′|2
+ i∥v′∥2

For completeness, one must check that y′0 ∈ R, and must verify that y′0 satisfies the
equation we did not use.
Finally, we show this for H2. As with H1, we write H2 ◦ f = Φ(v′, u′, α′, y′0) and
solve for these parameters.
If v = u = 0, then f(ζ) = (iy0, 0), and:

H1(f(ζ)) =
1

1− sy0
(iy0, 0)

so that H1 ◦ f = Φ

(
0, 0, 0,

y0
1− sy0

)
is once again a stationary disk attached to Q.

Else, let’s proceed with the fraction:

1

1 + isf0(ζ)
=

1

1 + is

(
∥v∥2 − 2⟨v, u⟩ ζ

1− αζ
+

∥u∥2

1− |α|2
1 + αζ

1− αζ
+ iy0

)
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This is just:

1− αζ

1− αζ + is

(
∥v∥2 − α∥v∥2ζ + 2⟨v, u⟩ζ + ∥u∥2

1− |α|2
(1 + αζ) + iy0 − iαy0ζ

)
which we will rewrite as:

1− αζ

η + µζ
=

1

η

1− αζ

1− α′ζ

where:

η := 1 + is∥v∥2 + is
∥u∥2

1− |α|2
− sy0

µ := −α− iαs∥v∥2 + 2is⟨v, u⟩+ isα
∥u∥2

1− |α|2
+ αsy0

α′ := −µ
η

Notice that η = 0 ⇐⇒ sy0 = 1 and s

(
∥v∥2 + ∥u∥2

1− |α|2

)
= 0 =⇒ u = v = 0, a

contradiction. Hence, η ̸= 0.
As above, one needs to verify that |α′| < 1.
Let’s show now that this α′ works for our purpose. The second component of
H2(f(ζ)) is just:

1

η

(1− αζ)

(
v + u

ζ

1− αζ

)
1− α′ζ

=
1

η

v + (u− αv)ζ

1− α′ζ

and this should equal:

v′ + u′
ζ

1− α′ζ

Equating these two and multiplying through by η(1− α′ζ), one gets:

v + (u− αv)ζ = ηv′ + (ηu′ − ηα′v′)ζ

so that:
v′ =

1

η
v

and
u′ = α′v′ +

1

η
(u− αv)

Looking now at the first component of H1(f(ζ)):

1

η

(1− αζ)

(
∥v∥2 + 2⟨v, u⟩ ζ

1− αζ
+

∥u∥2

1− |α|2
1 + αζ

1− αζ
+ iy0

)
1− α′ζ

74



this is:

1

η

(
∥v∥2 + ∥u∥2

1− |α|2
+ iy0

)
+

(
−∥v∥2α + 2⟨v, u⟩+ ∥u∥2

1− |α|2
α− iαy0

)
ζ

1− α′ζ

and this must equal:

∥v′∥2 + 2⟨v′, u′⟩ ζ

1− α′ζ
+

∥u′∥2

1− |α′|2
1 + α′ζ

1− α′ζ
+ iy′0

Multiplying through by η(1− α′ζ), one gets on the LHS:(
∥v∥2 + ∥u∥2

1− |α|2
+ iy0

)
+

(
−∥v∥2α + 2⟨v, u⟩+ ∥u∥2

1− |α|2
α− iαy0

)
ζ

and on the RHS:

η

(
∥v′∥2 + ∥u′∥2

1− |α′|2
+ iy′0

)
+ η

(
−α′∥v′∥2 + 2⟨v′, u′⟩+ α′ ∥u′∥2

1− |α′|2
= iy′0α

′
)
ζ

comparing the constant parts, we get:

y′0 =
−i
η
∥v∥2 + i∥v′∥2 − i

η

∥u∥2

1− |α|2
+ i

∥u′∥2

1− |α′|2
+

1

η
y0

And finally, for completion, one must check that y′0 is indeed real and satisfies the
other equation.

4.2.2 Connecting to Stationary Disks

We go back to our stationary disks and lay out the notations and alogrithm that we
will be carrying out in Chapter 5 to nail down our desired automorphisms.

Definition 4.2.1. Given a hypersurface M ⊂ Cm with 0 ∈M , we define Aut(M, 0)
to be the group of automorphisms of M which map 0 to 0, which is known as the
isotropy group of M . What we will care about in the subsequent pages are these
isotropic automorphisms.

Remark 4.2.1. Given F : U ⊂ C2 → C2, and supposing that F is twice complex-
differentiable on some neighborhood V ⊂ U of a ∈ U , we know that DF lands in
L(C2,C2), and then DF (a), looked at as a matrix, is a 2 × 2 matrix with complex
entries, so it’s determined by 4 numbers in C. Moreover, we have that D2F lands
in L(C2,L(C2,C2)) ≡ L(C2,C2;C2), so that D2F (a) is determined by 8 complex
numbers, and because of symmetry in the mixed second order partial derivatives, we
only need 6 numbers in total to determine it.

Proposition 4.2.2. Let U ⊂ C2 be open and H : U → C2 be of class C2. Let
V ⊂ C be open and f : V → C2 be of class C2 with f(V ) ⊂ U . Write H = (H1, H2)
and f = (f0, g), and write the coordinates in C2 as (w, z). Let h = (h0, k) be the
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map h = H ◦ f . Then, with the understanding that what is being fed into the partial
derivatives is f(ζ), we have:

h′0(ζ) =
∂H1

∂w
f ′
0(ζ) +

∂H1

∂z
g′(ζ)

k′(ζ) =
∂H2

∂w
f ′
0(ζ) +

∂H2

∂z
g′(ζ)

h′′0(ζ) =
∂2H1

∂w2
(f ′

0(ζ))
2 + 2

∂2H1

∂w∂z
g′(ζ)f ′

0(ζ) +
∂2H1

∂z2
(g′(ζ))2 +

∂H1

∂w
f ′′
0 (ζ) +

∂H1

∂z
g′′(ζ)

k′′(ζ) =
∂2H2

∂w2
(f ′

0(ζ))
2 + 2

∂2H2

∂w∂z
g′(ζ)f ′

0(ζ) +
∂2H2

∂z2
(g′(ζ))2 +

∂H2

∂w
f ′′
0 (ζ) +

∂H2

∂z
g′′(ζ)

Remark 4.2.2. This was a direct consequence of the Chain Rule (Theorem 2.1.5).
We can also formulate things in terms of linear/multilinear maps, but we prefer this
display because we are going to employ precisely these equations in the next few lines.

From here on, we will fix n = 2.

Notation 4.2.1. Given H = (H1, H2) ∈ Aut(Q, 0), with abuse of notation, will
denote by Λ the 2-jet of H at 0: Λ = (Λ0,Λ1,Λ2), where Λ0 = 0, and:

Λ1 =

(
Λ

(1)
w Λ

(1)
z

Λ
(2)
w Λ

(2)
z

)
and:

Λ2 =

(
Λ

(1)
ww Λ

(1)
wz Λ

(1)
zz

Λ
(2)
ww Λ

(2)
wz Λ

(2)
zz

)
where the first and second rows of Λ1 are ∂H1 and ∂H2 respectively, and the first
and second rows of Λ2 are the vectors of second partial derivatives of the Hi in the
obvious manner.

Proposition 4.2.3. Let f = (f0, g) be a stationary disk attached to Q with
f(1) = 0. Let H ∈ Aut(Q, 0), and let Λ be the 2-jet of H at 0. Let h = (h0, k) be
the stationary disk attached to Q given by h = H ◦ f . We then have h(1) = 0, and
with the ci as in Proposition 4.1.3 and c2 = k′(1) and c4 = k′′(1), one has:

c′2 = Λ(2)
w c1 + Λ(2)

z c2

and
c′4 = Λ(2)

wwc
2
1 + 2Λ(2)

wzc1c2 + Λ(2)
zz c

2
2 + Λ(2)

w c3 + Λ(2)
z c4

Proof. We have h(1) = H(f(1)) = H(0) = 0. Now, by the previous proposition,
one has:

c′2 =
∂H2

∂w
(0, 0)f ′

0(1) +
∂H2

∂z
(0, 0)g′(1) = Λ(2)

w c1 + Λ(2)
z c2

We compute c′4 in the same manner.
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Figure 4.3: In this loose pciture, the black disk is f and the dark grey disk is h. We
are trying to understand H by observing how its jets act on the disks.

Remark 4.2.3. By Proposition 4.1.3, this completely determines h, albeit with a few
conditions that one must be careful about. In fact, if α′ and v′ denote the parameters
of h, then one has:

α′ =
c′4

2c′2 + c′4

and
v′ = − 2c′22

2c′2 + c′4

and h is given by:

h0(ζ) =
2(1− α′)|v′|2

1− |α′|2
1− ζ

1− α′ζ
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and
k(ζ) =

1− ζ

1− α′ζ
v′

and one has the following conditions: |α′| < 1, c′3 =
2α′

1− α′ c
′
1, and:

c′1 = − 2|c′2|4

|c′2|2 + ℜ(c′2c′4)

Now the picture is as follows. Having f(0) = 1 and knowing the c2 and c4 for f
completely determines f , and given only the 2-jet of an H ∈ Aut(Q, 0), by above
we can determine the c′2 and c′4 for h, and these, along with the "inversion" work in
Proposition 4.1.4, allow us to determine h.
By definition, we have h(0) = H(f(0)) = H(p). Thus, we are able to find H(p) for
every p that is the center of an attached stationary disk f with f(1) = 0. But we
already know from Proposition 4.1.2 that such an f can be found for any p that is
not the origin (which is all we need, we know that H maps the origin to the origin).
Hence, we are able to find H itself.
A subtlety here is that for this procedure to really give us an automorphism, we
should impose holomorphy. As we will see in Chapter 5, this process doesn’t a
priori give us an automorphism because of holomorphy issues.
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Chapter 5

Parameterizing the
Automorphisms

We remind the reader that the parameters of our computations will be Λ, the second
jet at 0 of our supposed automorphismH, and p = (p0, p

′). We let f be the stationary
disk whose center is p and which satisfies f(1) = 0. We also put h = H ◦ f . Recall
that if we write c1 = f ′

0(1), c2 = g′(1), c3 = f ′′
0 (1) and c4 = g′′(1), and if the c′j are

to denote the analogous parameters for h, then one has:

c′2 = Λ(2)
w c1 + Λ(2)

z c2

and:
c′4 = Λ(2)

wwc
2
1 + 2Λ(2)

wzc1c2 + Λ(2)
zz c

2
2 + Λ(2)

w c3 + Λ(2)
z c4

where:
c1 =

|p0|2

2(|p′|2 −ℜp0)

c2 =
p0p

′

2(|p′|2 −ℜp0)

c3 =
(p0 − 2|p′|2)|p0|2

2(|p′|2 −ℜp0)2

and:
c4 =

(p0 − 2|p′|2)p0p′

2(|p′|2 −ℜp0)2

And once we have the c′2 and c′4, we may reconstruct h as follows:

α′ =
c′4

2c′2 + c′4

and
v′ = − 2c′22

2c′2 + c′4
and h is given by:

h0(ζ) =
2(1− α′)|v′|2

1− |α′|2
1− ζ

1− α′ζ
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and
k(ζ) =

1− ζ

1− α′ζ
v′

On the other hand, we may also determine the c′1 and c′3 from the c′2 and c′4, as
Proposition 4.1.3 shows that:

c′1 = − 2|c′2|4

|c′2|2 + ℜ(c′2c′4)

and:

c′3 = − 2|c′2|2c′2c′4
|c′2|2 + ℜ(c′2c′4)

and these allow us, for instance, to determine q = h(0) = (q0, q
′) as displayed in

Proposition 4.1.4:

q0 =
2c′21

c′3 + 4|c′2|2

and:
q′ =

2c′1c
′
2

c′3 + 4|c′2|2

5.1 Our Direct Approach

In this section, we nail down the isotropic automorphisms of Q using the most direct
approach and the information we have ourselves about the stationary disks attached
to the origin.

5.1.1 Computing with the q0 and q′

We first turn our attention to the q0 and q′ mentioned above. We write them
explicitly in terms of Λ and p, and then we study their holomorphicity.

Proposition 5.1.1. If p is not the origin, then we have:

q0 =
4|φ|2|p0|2p0

(2|p′|2 − |p0|2ℜω)(2− p0ω)

and:
q′ =

2p0φ

2− p0ω

or, most explicitly,

q′ =
2
(
Λ

(2)
w p0 + Λ

(2)
z p′

)2
2Λ

(2)
w p0 + 2Λ

(2)
z p′ − Λ

(2)
wwp20 − 2Λ

(2)
wzp′p0 − Λ

(2)
zz p′2

where:
φ = φ(p0, p

′) = Λ(2)
w +

p′

p0
Λ(2)

z
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and:
ψ = ψ(p0, p

′) = Λ(2)
ww +

2p′

p0
Λ(2)

wz +
p′2

p20
Λ(2)

zz

and:
ω = ω(p0, p

′) =
ψ(p0, p

′)

φ(p0, p′)
=
ψ

φ

Proof. Note that we may write c2 =
p′

p0
c1 and c4 =

p′

p0
c3, and recall that c1 ∈ R. We

have:

c′2 = Λ(2)
w c1 + Λ(2)

z c2

= Λ(2)
w c1 +

p′

p0
Λ(2)

z c1

=

(
Λ(2)

w +
p′

p0
Λ(2)

z

)
c1

= φc1

and:

c′4 = Λ(2)
wwc

2
1 + 2Λ(2)

wzc1c2 + Λ(2)
zz c

2
2 + Λ(2)

w c3 + Λ(2)
z c4

= Λ(2)
wwc

2
1 + 2

p′

p0
Λ(2)

wzc
2
1 +

p′2

p20
Λ(2)

zz c
2
1 + Λ(2)

w c3 +
p′

p0
Λ(2)

z c3

=

(
Λ(2)

ww + 2
p′

p0
Λ(2)

wz +
p′2

p20
Λ(2)

zz

)
c21 +

(
Λ(2)

w +
p′

p0
Λ(2)

z

)
c3

= ψc21 + φc3

Note that:
c3 =

(p0 − 2|p′|2)c1
|p′|2 −ℜp0

and then,

c′1 =
−2|c′2|4

|c′2|2 + ℜ(c′2c′4)

=
−2|φ|4c41

|φ|2c21 + ℜ(φc1c′4)

=
−2|φ|2c31

c1 + ℜ(c′4/φ)

=
−2|φ|2c31

c1 + ℜ{c21ω + c3}

=
−2|φ|2c31

c1 + c21ℜω +
c1

|p′|2 −ℜp0
(ℜp0 − 2|p′|2)
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=
−2|φ|2c21

1 + c1ℜω +
ℜp0 − 2|p′|2

|p′|2 −ℜp0

=
−2|φ|2c21(|p′|2 −ℜp0)

|p′|2 −ℜp0 +
|p0|2

2
ℜω + ℜp0 − 2|p′|2

=
4|φ|2c21(|p′|2 −ℜp0)
2|p′|2 − |p0|2ℜω

Next,

c′3 =
c′1c

′
4

c′2

=
c′1
c1

c′4
φ

=
4|φ|2c1(|p′|2 −ℜp0)
2|p′|2 − |p0|2ℜω

(c21ω + c3)

=
4|φ|2c1(|p′|2 −ℜp0)
2|p′|2 − |p0|2ℜω

(
c21ω +

p0 − 2|p′|2

|p′|2 −ℜp0
c1

)
=

4|φ|2c21
2|p′|2 − |p0|2ℜω

(
c1(|p′|2 −ℜp0)ω + p0 − 2|p′|2

)
=

4|φ|2c21
2|p′|2 − |p0|2ℜω

(
|p0|2

2
ω + p0 − 2|p′|2

)
=

2|φ|2c21(|p0|2ω + 2p0 − 4|p′|2)
2|p′|2 − |p0|2ℜω

Now we may compute q0:

q0 =
2c′21

c′3 + 4|c′2|2

=

2

(
16|φ|4c41(|p′|2 −ℜp0)2

(2|p′|2 − |p0|2ℜω)2

)
2|φ|2c21(|p0|2ω + 2p0 − 4|p′|2)

2|p′|2 − |p0|2ℜω
+ 4|φ|2c21

=
16|φ|2c21(|p′|2 −ℜp0)2

(2|p′|2 − |p0|2ℜω)(|p0|2ω + 2p0 − 4|p′|2 + 2(2|p′|2 − |p0|2ℜω))

=
4|φ|2|p0|4

(2|p′|2 − |p0|2ℜω)(2p0 − |p0|2ω)

=
4|φ|2|p0|2p0

(2|p′|2 − |p0|2ℜω)(2− p0ω)

Finally, we compute q′:

q′ =
c′2
c′1
q0
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=
φc1

4|φ|2c21(|p′|2 −ℜp0)
2|p′|2 − |p0|2ℜω

q0

=
2|p′|2 − |p0|2ℜω
4φc1(|p′|2 −ℜp0)

q0

=
2|p′|2 − |p0|2ℜω

2φ|p0|2
4|φ|2|p0|4

(2|p′|2 − |p0|2ℜω)(2p0 − |p0|2ω)

=
2φ|p0|2

2p0 − |p0|2ω

=
2p0φ

2− p0ω

which matches the claim.
Furthermore, if we now write φ, ψ and ω in terms of Λ and p, we have:

p0φ = Λ(2)
w p0 + Λ(2)

z p′

and:

p0ω = p0
ψ

φ
=

Λ
(2)
wwp20 + 2Λ

(2)
wzp′p0 + Λ

(2)
zz p′2

Λ
(2)
w p0 + Λ

(2)
z p′

and if one substitutes into the expression of q′, one gets:

q′ =
2
(
Λ

(2)
w p0 + Λ

(2)
z p′

)
2− Λ

(2)
wwp20 + 2Λ

(2)
wzp′p0 + Λ

(2)
zz p′2

Λ
(2)
w p0 + Λ

(2)
z p′

=
2
(
Λ

(2)
w p0 + Λ

(2)
z p′

)2
2Λ

(2)
w p0 + 2Λ

(2)
z p′ − Λ

(2)
wwp20 − 2Λ

(2)
wzp′p0 − Λ

(2)
zz p′2

and this finishes the proof.

Remark 5.1.1. Notice that q′ is a holomorphic function of p0 and p′, regardless of
whether or not the Λ’s are coming from an automorphism. Hence, we only need to
focus our attention on q0.

Remark 5.1.2. The map M ∋ (p0, p
′) 7→ (q0, q

′) maps Q to Q in a bijective manner.
Indeed, we have:

q0 =
4|p0φ|2

(2|p′|2 − |p0|2ℜω)
p0

(2− p0ω)

so that:
ℜq0 =

4|p0φ|2

(2|p′|2 − |p0|2ℜω)
· 1
2

(
p0

2− p0ω
+

p0
2− p0ω

)
i.e.

ℜq0 =
4|p0φ|2

(2|p′|2 − |p0|2ℜω)
2ℜp0 − |p0|2ℜω

|2− p0ω|2
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and:
|q′|2 = 4|p0φ|2

|2− p0ω|2
Hence,

ℜq0 = |q′|2

⇐⇒
4|p0φ|2

(2|p′|2 − |p0|2ℜω)
2ℜp0 − |p0|2ℜω

|2− p0ω|2
=

4|p0φ|2

|2− p0ω|2

⇐⇒
2ℜp0 − |p0|2ℜω = 2|p′|2 − |p0|2ℜω

⇐⇒
ℜp0 = |p′|2

Proposition 5.1.2. The map (p0, p
′) 7→ q0 corresponds to an automorphism of M

if and only if Λ(2)
z ̸= 0 and either (i) or (ii), where:

(i) Λ
(2)
w = 0, Λ(2)

ww = 0, Λ(2)
zz = 0, and ℜ

(
Λ

(2)
z Λ

(2)
wz

)
= 0

(ii) Λ
(2)
w ̸= 0, and the following non-linear system of 5 equations in Λ

(2)
w , Λ(2)

z , Λ(2)
ww,

Λ
(2)
wz , and Λ

(2)
zz has a solution:

2
∣∣Λ(2)

w

∣∣2 Λ(2)
w − Λ(2)

z Λ
(2)
w Λ

(2)
wz + Λ(2)

wzΛ
(2)
w Λ

(2)
z +

∣∣Λ(2)
z

∣∣2 Λ(2)
ww = 0 (5.1)

4Λ(2)
z Λ

(2)
w + Λ(2)

zz Λ
(2)
z = 0 (5.2)

−2
∣∣Λ(2)

w

∣∣2 Λ(2)
wz + Λ(2)

wwΛ
(2)
w Λ

(2)
z + 2Λ(2)

w Λ
(2)
wwΛ

(2)
z = 0 (5.3)

2
∣∣Λ(2)

w

∣∣2 Λ(2)
z +

∣∣Λ(2)
z

∣∣2 Λ(2)
wz + Λ(2)

wzΛ
(2)
z

2

− Λ(2)
z Λ

(2)
w Λ

(2)
zz = 0 (5.4)

2Λ(2)
w Λ

(2)
wzΛ

(2)
z + Λ(2)

wwΛ
(2)
z

2

− 2
∣∣Λ(2)

w

∣∣2 Λ(2)
zz = 0 (5.5)

Proof. By the Cauchy-Riemann equations, we know that q0 is holomorphic if and

only if
∂q0
∂p0

= 0 and
∂q0

∂p′
= 0. Hence, we compute these derivatives and solve the

equations. In fact, these equations hold if and only if:(
∂ num

∂p0

)
denom−

(
∂ denom

∂p0

)
num = 0

and: (
∂ num

∂p′

)
denom−

(
∂ denom

∂p′

)
num = 0

where num = p0φ and denom = 4|p′|2−2|p0|2ℜω are the "potentially non-holomorphic"
parts of q0. Indeed, by Proposition 5.1.1, we have:

q0 =
num

denom
· 8p20φ

2− p0ω
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and we know that, then, the function q0 is holomorphic if and only if
num

denom
satisfies

the Cauchy-Riemann equations.

We have
∂ num

∂p0
= Λ

(2)
w , and:

2|p0|2ℜω = 2ℜ
{
|p0|2ω

}
= 2ℜ

p0p0
Λ

(2)
ww +

2p′

p0
Λ

(2)
wz +

p′2

p20
Λ

(2)
zz

Λ
(2)
w +

p′

p0
Λ

(2)
z


= 2ℜ

{
Λ

(2)
wwp20p0 + 2Λ

(2)
wzp′p0p0 + Λ

(2)
zz p′2p0

Λ
(2)
w p0 + Λ

(2)
z p′

}

=
Λ

(2)
wwp20p0 + 2Λ

(2)
wzp′p0p0 + Λ

(2)
zz p′2p0

Λ
(2)
w p0 + Λ

(2)
z p′

+
Λ

(2)
wwp0

2p0 + 2Λ
(2)
wzp′p0p0 + Λ

(2)
zz p′

2
p0

Λ
(2)
w p0 + Λ

(2)
z p′

so that denom is given by:

4p′p′ − Λ
(2)
wwp20p0 + 2Λ

(2)
wzp′p0p0 + Λ

(2)
zz p′2p0

Λ
(2)
w p0 + Λ

(2)
z p′

− Λ
(2)
wwp0

2p0 + 2Λ
(2)
wzp′p0p0 + Λ

(2)
zz p′

2
p0

Λ
(2)
w p0 + Λ

(2)
z p′︸ ︷︷ ︸

Ω

Now,

∂

∂p0

(
Λ

(2)
wwp20p0 + 2Λ

(2)
wzp′p0p0 + Λ

(2)
zz p′2p0

Λ
(2)
w p0 + Λ

(2)
z p′

)
=

Λ
(2)
wwp20 + 2Λ

(2)
wzp′p0 + Λ

(2)
zz p′2

Λ
(2)
w p0 + Λ

(2)
z p′

and
∂Ω

∂p0
is given by:

(
2Λ

(2)
wwp0p0 + 2Λ

(2)
wzp′p0

)(
Λ

(2)
w p0 + Λ

(2)
z p′

)
− Λ

(2)
w

(
Λ

(2)
wwp0

2p0 + 2Λ
(2)
wzp′p0p0 + Λ

(2)
zz p′

2
p0

)
(
Λ

(2)
w p0 + Λ

(2)
z p′

)2
which reduces, upon expanding the numerator, to:

∂Ω

∂p0
=

Λ
(2)
wwΛ

(2)
w p0

2p0 + 2ΛwwΛ
(2)
z p0p′p0 + 2ΛwzΛ

(2)
z p′

2
p0 − Λ

(2)
zz Λ

(2)
w p′

2
p0(

Λ
(2)
w p0 + Λ

(2)
z p′

)2
and this way we have ourselves

∂ denom

∂p0
. We then come back to the equation:

(
∂ num

∂p0

)
denom−

(
∂ denom

∂p0

)
num = 0
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and we write out each term explicitly.
Upon multiplying both sides by

(
Λ

(2)
w p0 + Λ

(2)
z p′

)(
Λ

(2)
w p0 + Λ

(2)
z p′

)
, we get:

term1− term2− term3+term4+term5 = 0

where:

term1 = 4Λ
(2)
w p′p′

(
Λ(2)

w p0 + Λ(2)
z p′

) (
Λ

(2)
w p0 + Λ

(2)
z p′

)
term2 = Λ

(2)
w

(
Λ(2)

wwp
2
0p0 + 2Λ(2)

wzp
′p0p0 + Λ(2)

zz p
′2p0
) (

Λ
(2)
w p0 + Λ

(2)
z p′

)
term3 = Λ

(2)
w

(
Λ

(2)
wwp0

2p0 + 2Λ
(2)
wzp′p0p0 + Λ

(2)
zz p′

2
p0

) (
Λ(2)

w p0 + Λ(2)
z p′

)
term4 =

(
Λ(2)

wwp
2
0 + 2Λ(2)

wzp
′p0 + Λ(2)

zz p
′2) (Λ(2)

w p0 + Λ
(2)
z p′

)2
and term5 is given by:(
Λ

(2)
wwΛ

(2)
w p0

2p0 + 2ΛwwΛ
(2)
z p0p′p0 + 2ΛwzΛ

(2)
z p′

2
p0 − Λ

(2)
zz Λ

(2)
w p′

2
p0

) (
Λ(2)

w p0 + Λ(2)
z p′

)
Upon full expansion, one gets the equation:

6∑
j=1

term′
j = 0

where:

term′
1 = 4

∣∣Λ(2)
w

∣∣2 Λ(2)
w |p0|2|p′|2 + 4Λ(2)

z Λ
(2)
w

2

p0|p′|2p′ − 2
∣∣Λ(2)

w

∣∣2 Λ(2)
wz |p0|2p0p′

term′
2 = −2Λ(2)

z Λ
(2)
w Λ

(2)
wz |p0|2|p′|2 + Λ(2)

wwΛ
(2)
w Λ

(2)
z |p0|2p0p′ + 2Λ(2)

wzΛ
(2)
w Λ

(2)
z |p0|2|p′|2

term′
3 = Λ(2)

zz Λ
(2)
w Λ

(2)
z p0|p′|2p′ + 4

∣∣Λ(2)
w

∣∣2 Λ(2)
z p0|p′|2p′ + 4

∣∣Λ(2)
z

∣∣2 Λ(2)
w |p′|4

term′
4 = 2Λ(2)

w Λ
(2)
wwΛ

(2)
z |p0|2p0p′ + 2

∣∣Λ(2)
z

∣∣2 Λ(2)
ww|p0|2|p′|2 + 2Λ(2)

w Λ
(2)
wzΛ

(2)
z p20p

′2

term′
5 = 2

∣∣Λ(2)
z

∣∣2 Λ(2)
wzp0|p′|2p′ + Λ(2)

wwΛ
(2)
z

2

p20p
′2 + 2Λ(2)

wzΛ
(2)
z

2

p0|p′|2p′

term′
6 = Λ(2)

zz Λ
(2)
z

2

|p′|4 − 2
∣∣Λ(2)

w

∣∣2 Λ(2)
zz p

2
0p

′2 − 2Λ(2)
z Λ

(2)
w Λ

(2)
zz p0|p′|2p′

Next, we group these terms together according to the p’s, and we get the form of
the equation we are seeking, which is a polynomial equation in p0, p0, p′, and p′:

η1|p0|2|p′|2 + η2p0|p′|2p′ + η3|p0|2p0p′ + η4p0|p′|2p′ + η5|p′|4 + η6p
2
0p

′2 = 0

where:

η1 = 4
∣∣Λ(2)

w

∣∣2 Λ(2)
w − 2Λ(2)

z Λ
(2)
w Λ

(2)
wz + 2Λ(2)

wzΛ
(2)
w Λ

(2)
z + 2

∣∣Λ(2)
z

∣∣2 Λ(2)
ww

η2 = 4Λ(2)
z Λ

(2)
w

2

+ Λ(2)
zz Λ

(2)
w Λ

(2)
z
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η3 = −2
∣∣Λ(2)

w

∣∣2 Λ(2)
wz + Λ(2)

wwΛ
(2)
w Λ

(2)
z + 2Λ(2)

w Λ
(2)
wwΛ

(2)
z

η4 = 4
∣∣Λ(2)

w

∣∣2 Λ(2)
z + 2

∣∣Λ(2)
z

∣∣2 Λ(2)
wz + 2Λ(2)

wzΛ
(2)
z

2

− 2Λ(2)
z Λ

(2)
w Λ

(2)
zz

η5 = 4
∣∣Λ(2)

z

∣∣2 Λ(2)
w + Λ(2)

zz Λ
(2)
z

2

η6 = 2Λ(2)
w Λ

(2)
wzΛ

(2)
z + Λ(2)

wwΛ
(2)
z

2

− 2
∣∣Λ(2)

w

∣∣2 Λ(2)
zz

This cannot happen unless ηj = 0 for each j ∈ {1, 2, 3, 4, 5, 6}. As a result, one gets
a system of 6 equations given by ηj = 0, 1 ≤ j ≤ 6.
We will now show that the second equation given by the p′ derivative gives the same
set of equations.

We have
∂ num

∂p′
= Λ

(2)
z , and:

∂

∂p′

(
4p′p′ − Λ

(2)
wwp20p0 + 2Λ

(2)
wzp′p0p0 + Λ

(2)
zz p′2p0

Λ
(2)
w p0 + Λ

(2)
z p′

)
= 4p′

also,
∂Ω

∂p′
is given by:

(
2Λ

(2)
wz |p0|2 + 2Λ

(2)
zz p′p0

)(
Λ

(2)
w p0 + Λ

(2)
z p′

)
− Λ

(2)
z

(
Λ

(2)
wwp0

2p0 + 2Λ
(2)
wzp′p0p0 + Λ

(2)
zz p′

2
p0

)
(
Λ

(2)
w p0 + Λ

(2)
z p′

)2
which simplifies to:

∂Ω

∂p′
=

2Λ
(2)
wzΛ

(2)
w |p0|2p0 + 2Λ

(2)
zz Λ

(2)
w p′|p0|2 + Λ

(2)
zz Λ

(2)
z p0p′

2 − Λ
(2)
z Λ

(2)
wwp0

2p0(
Λ

(2)
w p0 + Λ

(2)
z p′

)2
which thus gives us

∂ denom

∂p′
.

As before now, we write out fully and explicitly the equation:(
∂ num

∂p′

)
denom−

(
∂ denom

∂p′

)
num = 0

We multiply both sides of the equation by
(
Λ

(2)
w p0 + Λ

(2)
z p′

)(
Λ

(2)
w p0 + Λ

(2)
z p′

)
, and

we get ourselves:

term′′
1 − term′′

2 − term′′
3 − term′′

4 +term′′
5 = 0

where:

term′′
1 = 4Λ

(2)
z p′p′

(
Λ(2)

w p0 + Λ(2)
z p′

) (
Λ

(2)
w p0 + Λ

(2)
z p′

)
term′′

2 = Λ
(2)
z

(
Λ(2)

wwp
2
0p0 + 2Λ(2)

wzp
′p0p0 + Λ(2)

zz p
′2p0
) (

Λ
(2)
w p0 + Λ

(2)
z p′

)
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term′′
3 = Λ

(2)
z

(
Λ

(2)
wwp0

2p0 + 2Λ
(2)
wzp′p0p0 + Λ

(2)
zz p′

2
p0

) (
Λ(2)

w p0 + Λ(2)
z p′

)
term′′

4 = 4p′
(
Λ(2)

w p0 + Λ(2)
z p′

) (
Λ

(2)
w p0 + Λ

(2)
z p′

)2
and term′′

5 is given by:(
2Λ

(2)
wzΛ

(2)
w |p0|2p0 + 2Λ

(2)
zz Λ

(2)
w p′|p0|2 + Λ

(2)
zz Λ

(2)
z p0p′

2 − Λ
(2)
z Λ

(2)
wwp0

2p0

) (
Λ(2)

w p0 + Λ(2)
z p′

)
Fully expanded, this equation is:

6∑
j=1

term′′′
j = 0

where:

term′′′
1 = −4

∣∣Λ(2)
w

∣∣2 Λ(2)
w |p0|2p0p′ − 4Λ(2)

z Λ
(2)
w

2

p0
2p′2 + 2

∣∣Λ(2)
w

∣∣2 Λ(2)
wz |p0|4

term′′′
2 = 2Λ(2)

z Λ
(2)
w Λ

(2)
wz |p0|2p0p′ − Λ(2)

wwΛ
(2)
w Λ

(2)
z |p0|4 − 2Λ(2)

wzΛ
(2)
w Λ

(2)
z |p0|2p0p′

term′′′
3 = −Λ(2)

zz Λ
(2)
w Λ

(2)
z p0

2p′2 − 4
∣∣Λ(2)

w

∣∣2 Λ(2)
z |p0|2|p′|2 − 4

∣∣Λ(2)
z

∣∣2 Λ(2)
w p0|p′|2p′

term′′′
4 = −2Λ(2)

w Λ
(2)
wwΛ

(2)
z |p0|4 − 2

∣∣Λ(2)
z

∣∣2 Λ(2)
ww|p0|2p0p′ − 2Λ(2)

w Λ
(2)
z Λ

(2)
wz |p0|2p0p′

term′′′
5 = −2

∣∣Λ(2)
z

∣∣2 Λ(2)
wz |p0|2|p′|2 − Λ(2)

wwΛ
(2)
z

2

|p0|2p0p′ − 2Λ(2)
wzΛ

(2)
z

2

|p0|2|p′|2

term′′′
6 = −Λ(2)

zz Λ
(2)
z

2

p0|p′|2p′ + 2
∣∣Λ(2)

w

∣∣2 Λ(2)
zz |p0|2p0p′ + 2Λ(2)

z Λ
(2)
w Λ

(2)
zz |p0|2|p′|2

Upon grouping these terms with respect to the p’s, one gets precisely:

−η1|p0|2p0p′ − η2p0
2p′2 − η3|p0|4 − η4|p0|2|p′|2 − η5p0|p′|2p′ − η6|p0|2p0p′ = 0

so that:

η1|p0|2p0p′ + η2p0
2p′2 + η3|p0|4 + η4|p0|2|p′|2 + η5p0|p′|2p′ + η6|p0|2p0p′ = 0

and, although this is a different equation than the one we got before in terms of
the monomials in the p’s, its result is exactly the same: it holds iff each ηj = 0,
1 ≤ j ≤ 6, and we get our original system again. We now proceed to discuss this
system.
First, note if Λ

(2)
z = 0, then η1 = 0 gives Λ

(2)
w = 0 as well, and this implies that

the Jacobian of the automorphism which q0 corresponds to is non-invertible at the
origin. However, we know that diffeomorphisms have invertible Jacobians, so we
know that this case is invalid. Hence, we have Λ

(2)
z ̸= 0.

If Λ(2)
w = 0, then η1 = 0 gives us Λ(2)

ww = 0, and η5 = 0 gives us Λ(2)
zz = 0. This makes

all the equations trivial except for η4 = 0, and η4 = 0, upon substituting Λ
(2)
w = 0

and dividing both sides by Λ
(2)
z , precisely says that:

Λ(2)
z Λ

(2)
wz + Λ(2)

wzΛ
(2)
z = 0
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i.e.
ℜ
(
Λ(2)

z Λ
(2)
wz

)
= 0

and this gives us the case (i).
On the other hand, if Λ(2)

w ̸= 0, then we may divide both sides of η2 = 0 by Λ
(2)
w to

get (5.2). If one divides both sides of the equation η5 = 0 by Λ
(2)
z , one gets precisely

(5.2) again. The equations η1 = 0 and η4 = 0 can be divided both sides by 2 and
from this one gets (5.1) and (5.4) respectively. The equation η3 = 0 is (5.3), and
the equation η6 = 0 is (5.5).
This completes the proof.

5.1.2 Solving for the Λ’s and Concluding

We now have ourselves the conclusions that allow us to get the desired isotropic
automorphisms, and in this subsection, this is what we do. We will also show how
the family of automorphisms we get is generated by the automorphisms as listed in
Theorem 4.2.1.

Proposition 5.1.3. The automorphisms corresponding to the case (i) of Proposition
5.1.2 are the ones of the form:

H(w, z) =
1

λ1 − λ2w

(
|λ1|2λ1w, λ21z

)
where λ1, λ2 ∈ C with λ1 ̸= 0 and ℜ

(
λ1λ2

)
= 0.

Proof. We have Λ
(2)
w = Λ

(2)
ww = Λ

(2)
zz = 0, and writing λ1 = Λ

(2)
z and λ2 = Λ

(2)
wz , we

have ℜ
(
λ1λ2

)
= 0. Also, note that λ1 ̸= 0 by Proposition 5.1.2.

Using the notations of Proposition 5.1.1, we have φ = λ1
p′

p0
, ψ = 2λ2

p′

p0
, and

ω =
ψ

φ
= 2

λ2
λ1

. Hence,

ℜω =
λ2
λ1

+
λ2

λ1
=
λ1λ2 + λ2λ1

|λ1|2
=

2ℜ
(
λ1λ2

)
|λ1|2

= 0

so that:
q0 =

4|λ1p′|2p0

2|p′|2
(
2− 2

λ2
λ1
p0

) =
|λ1|2p0

1− λ2
λ1
p0

=
|λ1|2λ1p0
λ1 − λ2p0

On the other hand,

q′ =
2p0φ

2− p0ω
=

2λ1p
′

2− 2
λ2
λ1
p0

=
λ21p

′

λ1 − λ2p0
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In our notation, p0 (the first component) corresponds to w, and p′ (the second
component) corresponds to z. Hence, q0 and q′ being, respectively, the first and
second components of the map H, one gets:

H(w, z) =

(
|λ1|2λ1w
λ1 − λ2w

,
λ21z

λ1 − λ2w

)
i.e.

H(w, z) =
1

λ1 − λ2w

(
|λ1|2λ1w, λ21z

)
as claimed.

Proposition 5.1.4. The automorphisms corresponding to the case (ii) of the Propo-
sition 5.1.2 are the ones of the form:

H(w, z) =
1

2λ1λ2 + 4|λ1|2z − λ2λ3w

(
2|λ2|2λ1λ2w, 2λ1λ2 (λ2z + λ1w)

)
where λ1, λ2, λ3 ∈ C \ {0} are such that ℜ

(
λ1λ3

)
= −2|λ1|4

|λ2|2
.

Proof. In the case (ii), we have Λ
(2)
w ̸= 0. Also, note that we already have Λ

(2)
z ̸= 0.

Let us write Λ
(2)
w = λ1,Λ

(2)
z = λ2 and Λ

(2)
ww = λ3. From the equation (5.2), one has:

Λ(2)
zz = −4λ2λ1

λ2

If we substitute this into (5.4), we get:

2|λ1|2λ2 + |λ2|2Λ(2)
wz + λ2

2
Λ(2)

wz − λ2λ1

(
−4λ2λ1

λ2

)
= 0

i.e.
λ2

2
Λ(2)

wz + |λ2|2Λ(2)
wz = −6|λ1|2λ2

hence,
λ2Λ

(2)
wz + λ2Λ

(2)
wz = −6|λ1|2

so that:
ℜ
(
λ2Λ

(2)
wz

)
= −3|λ1|2

One may write (5.1) as:

2|λ1|2λ1 + λ1

(
λ2Λ

(2)
wz − λ2Λ

(2)
wz

)
+ |λ2|2λ3 = 0

i.e.
λ1
(
2iℑ
(
λ2Λ

(2)
wz

))
= −2|λ1|2λ1 − |λ2|2λ3

90



hence,

iℑ
(
λ2Λ

(2)
wz

)
= −|λ1|2 −

|λ2|2λ3
2λ1

so that:

iℑ
(
λ2Λ

(2)
wz

)︸ ︷︷ ︸
∈iR

= −|λ1|2 −ℜ
{
|λ2|2λ3
2λ1

}
︸ ︷︷ ︸

∈R

+

(
ℜ
{
|λ2|2λ3
2λ1

}
− |λ2|2λ3

2λ1

)
︸ ︷︷ ︸

∈iR

(5.6)

and this warrants two conclusions.
First:

−|λ1|2 −ℜ
{
|λ2|2λ3
2λ1

}
= 0

so:

−|λ2|2ℜ
(
λ3

λ1

)
= 2|λ1|2

i.e.
ℜ
(
λ3
λ1

)
= −2|λ1|2

|λ2|2

Note also that:

|λ1|2ℜ
(
λ3
λ1

)
= ℜ

{
|λ1|2

λ3
λ1

}
= ℜ

{
λ1λ1

λ3
λ1

}
= ℜ

(
λ1λ3

)
= ℜ

(
λ1λ3

)
so:

ℜ
(
λ1λ3

)
= |λ1|2ℜ

(
λ3
λ1

)
thus, we may also write:

ℜ
(
λ1λ3

)
= −2|λ1|4

|λ2|2

which is part of our claim.
Notice that if λ3 = 0, then this very last equality implies that λ1 = 0, and this is
impossible. So that, also as claimed, one has λ1, λ2, λ3 ∈ C \ {0}.
The second conclusion from (5.6) is that:

iℑ
(
λ2Λ

(2)
wz

)
= ℜ

{
|λ2|2λ3
2λ1

}
− |λ2|2λ3

2λ1

and so,

λ2Λ
(2)
wz = ℜ

(
λ2Λ

(2)
wz

)
+ iℑ

(
λ2Λ

(2)
wz

)
= −3|λ1|2 + ℜ

{
|λ2|2λ3
2λ1

}
− |λ2|2λ3

2λ1
(⋆)
= −3|λ1|2 +

|λ2|2λ3
2λ1

−ℜ
(
|λ2|2λ3
2λ1

)
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= −3|λ1|2 +
|λ2|2λ3
2λ1

− |λ2|2

2
ℜ
(
λ3
λ1

)
= −3|λ1|2 +

|λ2|2λ3
2λ1

− |λ2|2

2

(
−2|λ1|2

|λ2|2

)
= −2|λ1|2 +

|λ2|2λ3
2λ1

where, to get (⋆), we used the fact that for all z ∈ C, one has ℜz − z = z − ℜz,
which can be easily checked.
Thus, dividing through by λ2 one gets:

Λ(2)
wz = −2|λ1|2

λ2
+
λ2λ3
2λ1

With the information we have now, let us note that:

(5.3)

⇐⇒

−2|λ1|2
(
−2|λ1|2

λ2
+
λ2λ3

2λ1

)
+ λ3λ1λ2 + 2λ1λ3λ2 = 0

⇐⇒
4|λ1|4

λ2
− λ1λ2λ3 + λ3λ1λ2 + 2λ1λ3λ2 = 0

⇐⇒
4|λ1|4

λ2
+ λ2

(
λ1λ3 + λ1λ3

)
= 0

⇐⇒

2λ2ℜ
(
λ1λ3

)
= −4|λ1|4

λ2
⇐⇒

ℜ
(
λ1λ3

)
= −2|λ1|4

|λ2|2

Hence, our solution is consistent with (5.3), and (5.3) does not present to us any
new information.
We also have the same situation with (5.5).
Indeed,

(5.5)

⇐⇒

2λ1λ2

(
−2|λ1|2

λ2
+
λ2λ3

2λ1

)
+ λ3λ2

2 − 2|λ1|2
(
−4λ2λ1
λ2

)
= 0

⇐⇒
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−4|λ1|2λ1λ2
λ2

+
λ1λ2

2
λ3

λ1
+ λ3λ2

2
+

8|λ1|2λ1λ2
λ2

= 0

⇐⇒
4|λ1|2λ1
λ2

+
λ1λ2λ3

λ1
+ λ3λ2 = 0

⇐⇒
λ2
(
λ1λ3 + λ1λ3

)
λ1

= −4|λ1|2λ1
λ2

⇐⇒

λ1λ3 + λ1λ3 = −4|λ1|4

|λ2|2

⇐⇒

ℜ
(
λ1λ3

)
= −2|λ1|4

|λ2|2

and so, our solution is also consistent with (5.5), and (5.5) does not provide us with
any new information.
This completes the solution to the system in (ii), and now we may substitute the
expressions we got for Λ(2)

wz and Λ
(2)
zz in terms of the λ1, λ2 and λ3, as well as use the

conditions on λ1, λ2 and λ3 to figure out q0 and q′.
With the notations of Proposition 5.1.1, one has:

p0φ = λ1p0 + λ2p
′

and:

p20ψ = λ3p
2
0 + 2Λ(2)

wzp
′p0 + Λ(2)

zz p
′2

= λ3p
2
0 +

(
−4|λ1|2

λ2
+
λ2λ3
λ1

)
p′p0 −

4λ2λ1

λ2
p′2

so,

p0ω = p0
ψ

φ
=
p20ψ

p0φ
=

λ3p
2
0 +

(
−4|λ1|2

λ2
+
λ2λ3
λ1

)
p′p0 −

4λ2λ1

λ2
p′2

λ1p0 + λ2p′

We recall that:
q0 =

4|p0φ|2p0
(2|p′|2 −ℜ(p0p0ω))(2− p0ω)

and that:
q′ =

2p0φ

2− p0ω

The reader may verify by direct manipulation and comparison, and without needing
any special assumptions such as the relation we obtained above between the λi’s, that
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the following symbolic equality follows from the very latter expressions of p0φ, p0ω
and q0:

q0 =
4λ1λ2 |λ1p0 + λ2p

′|2 p0(
2|p′|2 −ℜ

{
λ3
λ1

|p0|2 − 4
λ1

λ2
p′p0

})(
2λ1λ2 + 4|λ1|2p′ − λ2λ3p0

)
Now, observe that:

2|p′|2 −ℜ
{
λ3
λ1

|p0|2 − 4
λ1

λ2
p′p0

}
= 2|p′|2 − |p0|2ℜ

{
λ3
λ1

}
+ 4ℜ

{
λ1

λ2
p′p0

}
= 2|p′|2 − |p0|2

(
−2|λ1|2

|λ2|2

)
+ 4ℜ

{
λ1

λ2
p′p0

}
=

2

|λ2|2

(
|λ2p′|2 + |λ1p0|2 + 2ℜ

{
|λ2|2

λ1

λ2
p′p0

})
=

2

|λ2|2
(
|λ2p′|2 + |λ1p0|2 + 2ℜ

(
λ1p0λ2p

′))
=

2

|λ2|2
(
λ1p0λ1p0 + λ1p0λ2p

′ + λ2p′λ1p0 + λ2p′λ2p
′)

=
2

|λ2|2
(
λ1p0 + λ2p′

)
(λ1p0 + λ2p

′)

=
2

|λ2|2
|λ1p0 + λ2p

′|2

Therefore,

q0 =
4λ1λ2 |λ1p0 + λ2p

′|2 p0(
2

|λ2|2
|λ1p0 + λ2p′|2

)(
2λ1λ2 + 4|λ1|2p′ − λ2λ3p0

)
=

2|λ2|2λ1λ2p0
2λ1λ2 + 4|λ1|2p′ − λ2λ3p0

On the other hand, one can also verify as above that the following symbolic equality
follows merely from the above-displayed expressions of p0φ, p0ω and q′:

q′ =
2λ1λ2 (λ2p

′ + λ1p0)

2λ1λ2 + 4|λ1|2p′ − λ2λ3p0

Finally, as our p0 corresponds to w and our p′ corresponds to z, one gets the auto-
morphism:

H(w, z) =

(
2|λ2|2λ1λ2w

2λ1λ2 + 4|λ1|2z − λ2λ3w
,

2λ1λ2 (λ1w + λ2z)

2λ1λ2 + 4|λ1|2z − λ2λ3w

)
or, in other words,

H(w, z) =
1

2λ1λ2 + 4|λ1|2z − λ2λ3w

(
2|λ2|2λ1λ2w, 2λ1λ2 (λ1w + λ2z)

)
This completes the proof.

94



Corollary 5.1.1. The group of isotropic automorphisms of Q is generated by the
families of functions Hτ,κ and Hα,β,γ given by:

Hτ,κ(w, z) =
1

τ − κw

(
|τ |2τw, τ 2z

)
and:

Hα,β,γ(w, z) =
1

2αβ + 4|α|2z − βγw

(
2|β|2αβw, 2αβ (βz + αw)

)
where κ ∈ C, τ, α, β, γ ∈ C \ {0}, ℜ(τκ) = 0, and ℜ(αγ) = −2|α|4

|β|2

Proof. This is merely a restatement of the propositions 5.1.3 and 5.1.4.

Corollary 5.1.2. Every function H displayed in Theorem 4.2.1 and satisfying
H(0, 0) = (0, 0) is an isotropic automorphism of Q.

Proof. These (families of) functions are H1
0 , H

2
0 , H1 and H2. Note that, since n = 1

in our work, we should write:

H2
0 (w, z) = (w, ηz)

and:
H1(w, z) =

1

1− 2ibz + |b|2w
(w, z + ibw)

for some η, b ∈ C, with |η| = 1.
To get H1

0 , one can just take λ1 = λ > 0 and λ2 = 0 in Proposition 5.1.3: we have
λ1 ̸= 0 and ℜ

(
λ1λ2

)
= 0 by default, and with these values of λ1 and λ2, we get

precisely H(w, z) = (λ2w, λz).
To get H2

0 , it is enough to take λ1 = η and λ2 = 0 in Proposition 5.1.3. As |η| = 1,
we have η ̸= 0, and surely we have ℜ

(
λ1λ2

)
= 0. One gets H(w, z) = (|η|2w, ηz),

i.e. H(w, z) = (w, ηz), as desired.
For H2, we also use Proposition 5.1.3, this time with λ1 = 1 and λ2 = −is. We have
ℜ
(
λ1λ2

)
= ℜ(is) = 0 since s ∈ R, and one gets exactly:

H(w, z) =
1

1 + isw
(w, z)

Finally, for H1, if b = 0, then H1 is just the identity map, and this is already
obtainable from Proposition 5.1.3 by taking λ1 = 1 and λ2 = 0. If b ̸= 0, we
take λ1 = ib, λ2 = 1, and λ3 = −2i|b|2b in Proposition 5.1.4. We indeed have
λ1, λ2, λ3 ∈ C \ {0}. Moreover,

ℜ
(
λ1λ3

)
= ℜ

(
ib(2i|b|2b)

)
= −2|b|4

and:
−2|λ1|4

|λ2|2
= −2|ib|4 = −2|b|4
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so that ℜ
(
λ1λ3

)
= −2|λ1|4

|λ2|2
.

With these values of the λi, we get:

H(w, z) =
1

2ib+ 4|b|2z − (−2i|b|2b)w
(2ibw, 2ib(z + ibw))

i.e.
H(w, z) =

2ib

2ib (1− 2ibz + |b|2w)
(w, z + ibw)

hence,

H(w, z) =
1

1− 2ibz + |b|2w
(w, z + ibw)

which is precisely H1.

Corollary 5.1.3. The group of isotropic automorphisms of Q is generated by the
isotropic automorphisms displayed in Theorem 4.2.1 .

Proof. Consider an automorphism H of the type displayed in Proposition 5.1.3. In
other words, let λ1, λ2 ∈ C satisfy λ1 ̸= 0 and ℜ

(
λ1λ2

)
= 0, and write:

H(w, z) =
1

λ1 − λ2w

(
|λ1|2λ1w, λ21z

)
Upon dividing through by λ1, we can write:

H(w, z) =
1

1− λ2
λ1
w

(
|λ1|2w, λ1z

)

Put λ = |λ1|. As λ1 ̸= 0, we have λ > 0. Also put η =
λ1
|λ1|

. Clearly, |η| = 1.

Finally, put s = − 1

|λ1|2
ℑλ2
λ1

. We have:

ℜ
(
λ2
λ1

)
=

1

2

(
λ2
λ1

+
λ2

λ1

)
=

ℜ
(
λ1λ2

)
|λ1|2

= 0

so:
λ2
λ1

= iℑ
(
λ2
λ1

)
hence:

i|λ1|2s = −λ2
λ1

and thus, with λ being the parameter of H1
0 , η being that of H2

0 , and s being that
of H2, we have:

H2 ◦H1
0 ◦H2

0 (w, z) = H2

(
H1

0

(
H2

0 (w, z)
))
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= H2

(
H1

0 ((w, ηz))
)

= H2

(
λ2w, ληz

)
= H2

(
|λ1|2w, λ1z

)
=

1

1 + is (|λ1|2w)
(|λ1|2w, λ1z)

=
1

1− λ2
λ1
w

(
|λ1|2w, λ1z

)
and this shows that H = H2 ◦H1

0 ◦H2
0 .

Now consider an automorphism H of the type displayed in Proposition 5.1.4, and
divide through by 2λ1λ2 to get:

H(w, z) =
1

1 +
2λ1

λ2
z − λ3

2λ1
w

(
|λ2|2w, λ2z + λ1w

)

Let λ =

∣∣∣∣ 1λ2
∣∣∣∣ = 1

|λ2|
, and let η =

|λ2|
λ2

. Then, λ > 0 and |η| = 1, and we will take

these to be the parameters of H1
0 and H2

0 respectively. Take b =
−iλ1
|λ2|2

to be the

parameter of H1, and, finally, take s =
1

2|λ2|2
ℑ
(
λ3
λ1

)
to be the parameter of H2.

Observe, then, that:

λ3
λ1

= ℜ
(
λ3
λ1

)
+ iℑ

(
λ3
λ1

)
= −2|λ1|2

|λ2|2
+ 2i|λ2|2s

hence,

is− λ3
2|λ2|2λ1

= is− 1

2|λ2|2

(
−2|λ1|2

|λ2|2
+ 2i|λ2|2s

)
=

|λ1|2

|λ2|4
= |b|2

Now:

H2 ◦H ◦H1
0 ◦H2

0 (w, z) = H2

(
H1

(
H1

0

(
w,

|λ2|
λ2

z

)))
= H2

(
H

(
1

|λ2|2
w,

1

λ2
z

))

= H2

 1

1 +
2λ1
|λ2|2

z − λ3
2|λ2|2λ1

w

(
w, z +

λ1
|λ2|2

w

)

= H2

 1

1− 2ibz − λ3
2|λ2|2λ1

w

(w, z + ibw)
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= H2

 w

1− 2ibz − λ3
2|λ2|2λ1

w

,
z + ibw

1− 2ibz − λ3
2|λ2|2λ1

w


Thus, H2 ◦H ◦H1

0 ◦H2
0 (w, z) is:

1

1 + is

 w

1− 2ibz − λ3
2|λ2|2λ1

w



 w

1− 2ibz − λ3
2|λ2|2λ1

w

,
z + ibw

1− 2ibz − λ3
2|λ2|2λ1

w



which is just:
1

1− 2ibz − λ3
2|λ2|2λ1

w + isw

(w, z + ibw)

therefore,

H2 ◦H ◦H1
0 ◦H2

0 (w, z) =
1

1− 2ibz +

(
is− λ3

2|λ2|2λ1

)
w

(w, z + ibw)

=
1

1− 2ibz + |b|2w
(w, z + ibw)

= H1(w, z)

Hence, H2 ◦H ◦H1
0 ◦H2

0 = H1, so that: H = H−1
2 ◦H1 ◦ (H2

0 )
−1 ◦ (H1

0 )
−1.

This completes the proof.

5.2 Suggestions for Future Work

In this section, we give very brief outlines and discussions of suggested methods for
analogous future work regarding our general question.

5.2.1 The Method of Horizontal Disks

As we hinted previously, the reason our computations were straightforward was that
we had the simplest model of a strongly pseudoconvex hypersurface. In general,
the situation isn’t as workable, and since strong pseudoconvexity is only a local
property, we can only hope to have something that looks like our paraboloid in a
neighborhood of the considered point. It turns out that the local automorphisms
of the paraboloid are also the global ones, but this generally doesn’t apply. This
means that we will need to restrict our attention to the disks living inside the given
arbitrary neighborhood.
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Figure 5.1: The horizontal disks (white) extend arbitrarily close to the origin. We
can always work with them regardless of which neighborhood we are "stuck" in. It’s
not per se the fact that they are horizontal that is most relevant, but the fact that
they are stationary disks living arbitrarily close to the origin.

Thus, we suggest a general approach to finding the automorphisms based on this
neighborhood restriction. For simplicity, we pretend that - locally - we are living in
this simple paraboloid which we studied in Chapters 4 and 5. This will help us give
concrete pointers, and one can glean from these pointers our intuition regarding this
local issue.
First, we assume we are living in a neighborhood U of the origin and we consider
as starting parameters the 2-jets at the origin of an automorphism H. We fix a
slanted disk f living inside U , which we may pretend is given by something like
f(ζ) = (2(1− ζ), 1− ζ) (its precise expression doesn’t matter for our purposes here,
what matters is that it is sufficiently small and that it is of the type we discussed
in our work). We have f(1) = 0, and it can be checked that f is stationary and
attached to our paraboloid, so that f is of the type we discussed previously. By
continuity and compactness, it can be argued that f has a "slanted neighborhood"
V ⊂ U , which allows the doing of our previous work to determine H inside V in
terms of its 2-jets at the origin. Our goal is then to further determine this H on the
entire neighborhood U .
Let us define a horizontal disk attached to Q to be any stationary disk Γ : ∆ → C2

attached to Q and given by Γ(ζ) = (|c|2 + iy0, cζ) for some c ∈ C and y0 ∈ R. This
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Figure 5.2: Here, we are "cornered" in the displayed neighborhood, bounded by this
plane. A "slanted" neighborhood of the kind we are discussing is represented by
this aggregation of (white) disks.

is naturally what we would understand by the term "horizontal": it has a constant
first component. Note that - generally speaking - it is a rarity for such disks i.e. the
horizontal ones to be stationary, and we shouldn’t expect this. However, one can
try to capture stationary "perturbations" of such horizontal disks. We will discuss
this in the next subsection. For now, let us assume that we have this simple enough
situation where the Γ’s as defined are all stationary, which indeed they are.
The reason these Γ’s are relevant is threefold. First and most importantly, they
are stationary. Second, they have very simple expressions. Third, they inhabit any
given neighborhood of the origin, allowing one to choose from them in a very useful
manner however close one is from the origin.
We start with a point p = (p0, p

′) ∈ U . We pick out an attached horizontal disk Γ
which passes through p. To do this, we just pick y0 = ℑp0 and choose c in such a
manner that |c| =

√
ℜp0. Then, the corresponding Γ will pass through p at ζ0 = p′/c.

Since p ∈ M , ℜp0 > |p′|2, so |c| > |p′|. Hence, |ζ0| < 1, i.e. ζ0 ∈ ∆, so the disk
indeed passes through p.
We find out the point of intersection r of our horizontal disk Γ with the slanted disk
f we mentioned (the white point in Figure 5.3). To find r, we solve |c|2+ iy0 = 2cζ,
i.e. p0 = 2cζ. So, f indeed passes through r at ζ1 = p0/2c.
We want now this ζ1 to play the role played previously by ζ = 1, and so we want
r to play the role previously played by the origin. What follows then is once again
doing the procedure of Chapter 4 and Chapter 5 to determine H(p). Indeed, we
have H inside V , so we have the 2-jets of H at r. The chain rule, once applied
to h := H ◦ Γ at ζ = ζ1, produces the 2-jets of h at ζ = ζ1. Assuming we have

100



Figure 5.3: The intuitive picture we have in our mind with horizontal disks. Shown
as the white point in the figure, this point of intersection of our horizontal disk with
an appropriately chosen slanted disk we suggest will play the role previously played
by the origin. Note that, mostly, these disks won’t intersect in this manner, i.e.
won’t intersect on the boundary.

the procedure to nail down h starting from its 2-jets at ζ = ζ1 (which should be
doable but is a bit more messy because h(ζ1) is not the origin), we then evaluate:
H(p) = H(Γ(ζ0)) = h(ζ0). Finally, by imposing holomorphy like before, one obtains
H on all of U .

5.2.2 Perturbation Problems

The previous subsection concerned situations that, although are more complicated
than our model of work, are still nice enough to allow similar procedures with the
only significant constraint being the restriction to an arbitrary neighborhood of the
point considered. However, we might generally encounter hypersurfaces of strongly
pseudoconvex type which are very perturbed and might not be as workable.
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Figure 5.4: A "wiggly" hypersurface like this one might prove challenging to work
with even using the horizontal disk approach. The black curve at the top is the
boundary of a cross-section, to help the reader better visualize such a hypersurface.

First, for such hypersurfaces, we might not necessarily have explicit formulas for
the attached stationary disks. Second, even if such explicit formulas are known,
we cannot hope to have stationary "horizontal sections", and the slanted disks we
talked about might behave differently.
For this type of situation, we propose the idea of a holistic perturbation, where one
adds to the entire admixture a parameter - say similar in spirit to the ones found
in the classical Chern-Moser normal form - which serves to measure in a sense the
"deviation" of the hypersurface from being a genuine sphere locally. This parameter
is 0 if the hypersurface is a locally a sphere, and "how much" it is different from 0
serves to indicate how heavily perturbed it is.
In fact, this parameter is really the defining function itself, so it is not a number or
a parameter in the usual sense. This will mean that instead of working in a finite
dimensional space with numerical parameters, one will need to work with infinite
dimensional (Banach) spaces allowing for appropriate incorporation of the Implicit
Function theorem (Theorem 2.1.7). See [8] for related discussions. It can be argued
that the whole procedure as applied to such a perturbed hypersurface will be a
perturbation of the procedure outlined in Chapter 4 and Chapter 5.
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