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ABSTRACT 

OF THE PROJECT OF 

 

Hassan Haytham Zantout  for  Master of Science 

       Major: Environmental Technology 

 

 

Title: A Review of the Use of the Soil and Water Assessment Tool (SWAT) to Model 

Nutrient Loading in the Face of Climate Change  

 

As global climate patterns continue to evolve, the complex relation between land use, 

hydrology, and nutrient dynamics in watersheds becomes increasingly complex. The 

Soil and Water Assessment Tool (SWAT) has emerged as a robust tool for simulating 

the impacts of land management practices, climate variability, and changing 

environmental conditions on water resources. This thesis offers a comprehensive 

literature review of the application of SWAT in modeling nutrient loading, with a 

particular focus on addressing the challenges posed by climate change. It provides an 

insights into the strengths and limitations of SWAT, shedding light on its ability to 

capture the intricate relationships between climate, land use, and nutrient cycling. The 

review encompassed examining recent advancements and methodologies employed in 

utilizing SWAT to assess nutrient dynamics within diverse landscapes. Special attention 

was given to the tool's ability to predict nutrient transport, transformations, and loading 

under various climate change. The results of this work revealed weaknesses in the 

model’s ability to simulate nutrient transport in cold and mountainous regions. 

Moreover, it revealed a skew in the geographical extent where the model has been 

applied. Integration of future climate data projections was found to vary significantly 

between studies in terms of the spatio-temporal scale, GCM models adopted, and the 

use of ensemble estimates. This work helps policymakers identify the existing 

limitations of SWAT, while proposing future developments needed to improve its use as 

an effective predictive tool for assessing future water quality impairments in the face of 

a changing climate.   
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CHAPTER 1 

INTRODUCTION 

 

Watershed managers worldwide are pressed to expand their understanding of 

how the future impacts of climate change will impact watersheds (Kim et al., 2020). 

Projected changes in the climatic regimes will alter the watersheds’ natural processes 

and have long-term implications on the economic and ecological services they provide 

(Marshall & Randhir, 2008). Although the earth’s climate is dynamic and variable, 

anthropogenic activities (e.g., urbanization, population growth, fossil fuel burning, 

agriculture production, and deforestation) have accelerated the release of greenhouse 

gases (such as carbon dioxide, methane, nitrous oxide, ozone, etc.) into the earth’s 

atmosphere, thereby trapping heat and accelerating the warming of the global mean 

temperature and changing the hydrological cycle (USEPA, 2004). The Inter-

governmental Panel on Climate Change (IPCC) reported that sea levels rose by 

approximately 15 to 20 cm over the last century and surface temperatures increased by 

0.45-0.6 degrees Celsius (Marshall & Randhir, 2008). Moreover, the IPCC’s Fifth 

Assessment Report (AR5) projected that future temperatures may increase by 3.7 

degrees Celsius by 2100 (Kim et al., 2020). Future projections indicate that many areas 

will experience increases in water stress and/or extreme odds. Martel et al. (2021) 

reported that based on data compiled from fifty-eight (58) research studies rainfall 

extreme events in many areas are expected to increase in severity. For example, the 

probability associated with the current 20-year daily rainfall event was projected to 

become 3 to 4 times higher, while the probability of a 100-year daily rainfall event will 

become between 4 to 5 times higher. The projected changes in precipitation and 
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temperature will also play a significant role in altering soil moisture, which has a direct 

impact on weather forecasting, drought monitoring, and hydrological modeling 

(Yunqian Wang et al., 2019). Seager et al. (2012) reported that climate change will 

cause the annual mean soil moisture to drop by around 5% in the near future (2021 – 

2040) in California, Nevada, the Colorado River headwater, and Texas.  

The increasing global temperatures along with changes in other climatic forcings 

will inevitably impact the hydrologic processes at the watershed level. Such impacts 

will not only affect the hydrology but may lead to the impairment of water systems due 

to water quality degradation resulting from changes to surface runoff, sediment loading, 

nutrient loading, nutrient transformation, and transport processes (Me et al., 2018). 

Brown et al. (2007) concluded irreversible consequences to the hydrologic regimes, 

flow velocity, water levels, hydraulic characteristics, and habitat availability. 

Furthermore, Lane et al. (2007) affirmed that extreme rainfall events and flooding 

caused by climatic changes could increase loads of suspended solids, sediment yields, 

nutrient loadings, and other chemical/biological pollutants (Whitehead et al., 2009).  

While these nutrients (namely nitrogen and phosphorous) are essential for the 

growth and development of organisms, their availability in excessive levels within the 

hydrologic systems will render waterbodies eutrophic and unable to meet their 

designated uses (Molina-Navarro et al., 2014). For example, high nutrient levels can 

lead to the excessive growth of algae, the degradation of aquatic ecosystems, the 

depletion of oxygen levels in the receiving water, and the formation of cyanotoxins; all 

of which can lead to mass aquatic deaths and bring about negative socio-economic 

impacts (Figure 1) (SACEP, 2014). 
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Figure 1 Illustrative schematic showing the impacts of excessive nutrient 

loading (pollution) on waterbodies (Ariel L. Salas & Kumaran Subburayalu, 

2019) 

 

Changes in temperature and precipitation can increase nutrient loading to 

hydrologic systems. Whitehead et al. (2009) showed that an increase in temperature 

decreased summer flows, which sequentially diminished the ability to dilute nutrient 

loads. Meanwhile, increased extreme precipitation/rainfall events are expected to favor 

increased surface runoff and erosion and thus may amplify the nutrient loads reaching 

the aquatic system (Jeppesen et al., 2009). Although there is a consensus that climate 

change will have an impact on surface water quality, the magnitude of its effects on 

runoff, nutrient loading, nutrient transport, etc. is still less understood given the lack of 

quantitative results (Verma et al., 2015). There is thus a need to properly quantify and 

assess the impacts of climate change on water quantity and quality.  
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Scientists and researchers have developed hydrological and water quality models 

that can be coupled with climatic models and/or with climate data (Verma et al., 2015). 

These models are used to assess the linkages between climate parameters (such as 

precipitation, temperature, relative humidity, etc.), anthropogenic activities, and water 

resources (Verma et al., 2015). They have been used to simulate and predict the changes 

in hydrological processes, including but not limited to infiltration, evapotranspiration, 

recharge, percolation, surface flow, and subsurface flow (C. Baffaut, 2015), snow 

accumulation, and snowmelt along with other complementary processes (Shrestha et al., 

2012). These models are often run with a variety of climatic scenarios that are derived 

directly from the outputs of General Circulation Models (GCMs) (X. Wang et al., 

2018). To simulate the present climate and predict future climatic changes, climate 

models, such as the General Circulation Model (GCM) and Regional Climate Model 

(RCM) have been developed. It is worth noting that a 20-to-25-year period is most 

suitable for climate change studies to explore the potential responses in the future due to 

climate change relative to a baseline period (historical period) (Kujawa et al., 2020; 

Wang & Kalin, 2018). 

GCMs are considered the primary tool for understating how the global climate 

systems behave over the coming centuries. They have a considerable coarse resolution 

(typically ranging between 150 to 300 km) and so are only able to provide relevant 

information on large spatial scales. While RCMs focus more on specific areas and have 

much finer resolutions, usually about a few kilometers. Hence, the latter is considered 

much closer to the scale of real-world observations about land cover, soil types, and 

topography. 
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Given that GCMs’ output data are too coarse to be directly used in hydrological 

modeling, it would be problematic to predict variations in weather variables such as 

frequencies, topography, persistence, local variance, etc. Hence, the data output is often 

downscaled to use them with hydrological models. Downscaling plays a crucial role in 

narrowing down the spatial and temporal resolution gap between GCM and 

hydrological models (i.e., SWAT) at a local scale (Chokkavarapu & Mandla, 2019; 

Hausfather, 2018). Hence, different methods have been developed to downscale the 

output data from GCM models to “fit” with hydrological data and other variables. 

Figure 2 shows how a water quality model can be coupled with future climatic data as 

well as other input data related to topography, soil use, land use, etc. 

 

 

Figure 2 Schematic Flow Diagram of a typical coupled hydrological and climate 

simulation model. Adapted from (Nguyen et al., 2019) 
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Numerous water quality models have been developed to predict the changes in 

the hydrological processes and the associated water quality. Burigato Costa et al. (2019) 

identified seven of the most used models; these include the Water Quality Analysis 

Simulation Program (WASP), Spatially Referenced Regression on Watershed Attributes 

(SPARROW), CE-QUAL-W2, Environmental Fluid Dynamics Code (EFDC), Soil and 

Water Assessment Tool (SWAT), QUALS, and AQUATOX. Globally, the SWAT 

model is the most extensively applied water quality model. Figure 3 shows how the use 

of water quality models has increased over the past 20 years (1997 – 2017), with SWAT 

being the most used water quality model (Burigato Costa et al., 2019).  

 

 

Figure 3 Application of models to water quality over a period of 20 years (1997 

- 2017) (Burigato Costa et al., 2019) 

 

Some of the main strengths of SWAT include its ability: 1) to model watersheds 

with limited monitoring data, 2) to integrate with GIS platforms, 3) to make use of built-

in model calibration routines, and 3) to perform long-term simulations (Neitsch et al., 
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2012b; Verma et al., 2015). Another major advantage of SWAT is its ability to quantify 

and model the impacts of climatic, land use/landcover, policy/management, and 

hydrological changes on water quality (Li et al., 2011).  

SWAT has been extensively used to model the movement and transportation of 

nutrients (specifically nitrogen and phosphorous), pesticides, and sediments in aquatic 

systems (Arnold et al., 2012; Arnold, 2012). With regard to its use to estimate nutrient 

movement and transportation, SWAT has been successfully and extensively applied to 

modeling Nitrogen (N) and Phosphorous (P) loading, in their various forms (Almeida et 

al., 2018).  

This work will review previous studies that have attempted to assess the impacts 

of climate change on water quality using the SWAT model, with an emphasis on studies 

that have looked at nutrient loading. This study thus aims to examine, summarize, and 

synthesize the major assumptions, data sources, results, and limitations that have been 

outlined and discussed in the surveyed studies. Additionally, this work will identify the 

main research gaps and outline how best to use the SWAT model to assess the impacts 

of climate change variability on nutrient loading at the watershed level.  

To the best of our knowledge, no review has been conducted to study the use of 

the SWAT model when it comes to assessing the effects of future climate change on 

nutrient loading and water quality at the watershed level. This work thus provides a 

comprehensive review that summarizes what has been typically used about input data 

sources, scenario development, and model setup. We also discuss the existing 

assumptions and limitations of the different SWAT applications that have attempted to 

predict future nutrient loading at the watershed level. Finally, we provide 

recommendations on how future SWAT-related studies should assess the impacts of 
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climate change on nutrient loading at the watershed level. This work will help 

policymakers to identify the existing limitations of SWAT, while also highlighting to 

water quality modelers the future developments needed within the SWAT modeling 

environment to improve its use as a predictive tool for assessing water quality 

impairments in the face of a changing climate.  
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CHAPTER 2 

SOIL AND WATER ASSESSMENT TOOL (SWAT) 

 

2.1 The SWAT Model  

Eco-hydrological and water quality models have gained increased interest over 

the past few decades and have been used to evaluate the impacts of climate, land use, 

and land management practices on the quantity and quality of water resources (D. N. 

Moriasi, 2015). SWAT was developed by the US Department of Agriculture to simulate 

the generation and/or transport of runoff, sediment, and nutrients in ungauged 

watersheds (Ba et al., 2020). It is a continuous distributed model that operates on a daily 

or more frequent (smaller) time step (Records et al., 2014). The model characterizes the 

large-scale spatial variability in soil, land use, and management practices by discretizing 

the watershed into sub-units (or sub-basins) using a two (2) step approach: 

Step 1 comprises a topographic discretization that divides the watershed into 

sub-basins that serve as the basis for determining the routing structure of water and 

pollutants (nutrients) through the watershed. 

Step 2 further divides each sub-basin (sub-unit/sub-watershed) into one or 

several homogenous Hydrological Response Units (HRUs) obtained by overlying the 

soil, land use, and land management maps.  

The response of each HRU in terms of water, sediment, and nutrient losses is 

grouped at the sub-basin level and routed to the watershed outlet through the channel 

network (Bouraoui et al., 2004). It is worth noting that predicted flows are based on the 

water balance equation applied to the soil profile. SWAT thus accounts for 
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precipitation, infiltration, surface runoff, evapotranspiration, lateral flow, and 

percolation (Čerkasova et al., 2021; Tong et al., 2007). The hydrologic cycle simulated 

by SWAT is based on the following water balance equation: 

SWt = SW0 + ∑ (Rday − Qsurf − Ea −wseep − Qgw)
t
i=1     

Where SWt – final soil water content (mm H2O); 

SW0 – initial soil water content on the day i (mm H2O); 

t – time (days); 

Rday – the amount of precipitation on the day i (mm H2O); 

Qsurf – the amount of surface runoff on the day i (mm H2O); 

Ea – the amount of evapotranspiration on the day i (mm H2O);  

wseep – the amount of water entering the vadose zone from the soil profile on the 

day i (mm H2O); 

Qgw – the amount of return flow on the day i (mm H2O); 

 

The impacts of climate change on the watershed ecosystems and hydrologic 

processes are complex due to a range of components involved in the system. One of 

them is related to water quality and more specifically nutrient loading. In the SWAT 

modeling approach, nutrients (N and P) are described in terms of their different 

chemical forms and their respective sources (Ariel L. Salas & Kumaran Subburayalu, 

2019). SWAT simulates the movement and transformation of nutrients (mainly N and 

P) in the watershed by accounting for mineralization, immobilization, denitrification, 

volatilization, plant uptake for N and mineralization, immobilization, and plant uptake 

for P (Bouraoui et al., 2004).  
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Phosphorus is an essential plant macronutrient often not present in sufficient 

available forms in the soil for optimum crop growth requirements. P is added to the soil 

as fertilizer, manure, and/or as crop residue application. On the other hand, plant uptake 

and erosion are the two main processes for removing them from the soil (Trang et al., 

2017). P combines with other ions in the soil to form insoluble compounds that can 

precipitate out of the solution. This characteristic allows P to be transported primarily 

by surface runoff. Soluble forms of P that are plant available are the inorganic forms 

known as orthophosphates (H2PO4−or HPO4
2−). These forms are mobile and can be 

transported by diffusion or by surface water flow into field drains, but they are easily 

adsorbed to clay particles or immobilized by organic matter and therefore are limited to 

the upper soil layers (Trang et al., 2017). SWAT models six different pools of P in the 

soil; three pools are associated with the inorganic forms of P (solution, active, and 

stable), and the other three with the organic P forms (Mehdi et al., 2015). Organic P is 

associated with humus, insoluble forms of mineral P, and plant-available P in the soil 

solution. Phosphorus is transformed into organic P by algae’s death. The organic P can 

then be mineralized to soluble phosphorus. This process is impacted by temperature (Li 

et al., 2011).  

Nitrogen is an important nutrient. Its cycle is complex and includes the water, 

atmosphere, and soil. Nitrogen can be found in five forms namely, ammonium (NH4+), 

nitrate (NO3
-), fresh organic nitrogen, active organic nitrogen, and stable organic 

Nitrogen. Several processes take part in the nitrogen cycle. These include 

mineralization, decomposition, nitrification, ammonia volatilization, and denitrification 

(Li et al., 2011). The SWAT model has three major forms of nitrogen that it models in 

mineral soils: (1) the organic pool associated with humus, (2) a plant-available pool in 
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the soil solution, and (3) an insoluble inorganic component. There are five main pools 

associated with these nitrogen forms: two inorganic pools (NH4+ and NO3
-) and three 

organic pools (fresh plant residue, stable humic substances, and active humic 

substances) (Neitsch et al., 2012a).  

Most of the total nitrogen (TN) consists of nitrate with small proportions of 

nitrite and ammonium (Bouraoui, 2002). The dissolved forms of nitrogen (nitrate) are 

more related to the seasonality of streamflow and input from management practices 

within the watershed and therefore less influenced by changes in the number of large 

streamflow events (Ahmadi et al., 2014). Nitrogen may be removed from an HRU via 

plant assimilation, leaching, denitrification, volatilization, runoff, and soil erosion 

(Bouraoui et al., 2004). 

 

2.2 Model source code 

The SWAT model uses different source codes, such as SWAT versions 

2000/2005/2009/2012, SWAT-CUP, SWAT-HS, and ArcGIS SWAT (or ArcSWAT). 

These SWAT source codes are constantly updated (Yinping Wang et al., 2019). 

Extensive documentation (such as a user’s manual describing model input and output, 

and theoretical documents describing different equations) related to the different SWAT 

versions can be accessed at the SWAT website (http://swatmodel.tamu.edu). The 

different SWAT versions along with the main features of each, which have been used in 

the peer-reviewed articles that relate to nutrient modeling and/or climate simulations, 

are summarized in Table 1. 

 

 

http://swatmodel.tamu.edu/
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Table 1 Different SWAT versions 

SWAT version 
Nutrient modeling 

features 

Climate change 

modeling features 
References 

SWAT Versions 2000-2005 

SWAT version 

2000 

Discharge, sediment, 

inorganic nitrogen, 

inorganic phosphorous 

Temperature  
(Li et al., 2011; 

Tong et al., 2007) 

SWAT version 

2005 

NO3-N, TN, TP, 

suspended solids 

Temperature and 

precipitation 

projection 

(Jha et al., 2013; 

Johnson et al., 

2015), 

SWAT version 

2009 

sediment and nutrients 

(TP and TN) 

air temperature and 

precipitation 
(Van Liew, 2012) 

SWAT version 

2012 Rev. 

627/635/645/65

4/664 

TP, TN, DRP 

Temperature and 

precipitation 

projection 

(Kujawa et al., 

2020) 

SWAT version 

2012 integrated 

with Python 

TP, PO4-P, NO2-N, 

NO3-N, NH4-N, TN 

Temperature and 

precipitation 

projection 

(Bučienė et al., 

2019) 

SWAT version 

2012 Rev. 666 

Flow, TN, TP, Soluble 

P 

Temperature and 

precipitation 

projection 

(Mehan et al., 2019) 

SWAT version 

2012 Rev. 635 
TP, TN, DRP 

Temperature and 

precipitation 

projection 

(Miralha et al., 

2021) 

SWAT version 

2012 

Flow, sediment, 

nutrient (TN and TP) 

air temperature and 

precipitation 

(Thang et al., 2018; 

X. Wang et al., 

2018) 

ArcSWAT 

version 2012 

(2012) 

N and P are divided 

into different forms 

for cyclic conversion 

when simulating the 

TN and TP in the 

watershed 

Temperature and 

precipitation 

projection 

(Bi et al., 2018) 

version 

2012.10.13 

(2012) 

Flow rates and 

nutrient loading in 

streams (NO3- and 

SRP loadings) 

Temperature and 

precipitation 

projection 

(Coppens et al., 

2020) 
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SWAT version 
Nutrient modeling 

features 

Climate change 

modeling features 
References 

version 2012 

embedded in 

ArcGIS 10.2 

software (2012) 

streamflow 

parameters, sediment 

parameters, TN 

parameters, TP 

parameters 

Temperature, 

precipitation, 

relative humidity, 

wind speed 

(Li & Kim, 2019) 

version 510 run 

on ArcGIS 

9.3.1 (2009) 

streamflow. NO3-N, 

and TP loads 

Temperature and 

precipitation 

projection 

(Mehdi et al., 2015; 

Mehdi et al., 2016) 

version 2012 

rev. 637 

Different species of 

Nitrogen and 

Phosphorous 

impacts of climate 

change 

(precipitation and 

temperature) and 

land management 

practices (ex. 

Urbanization) on 

water quality 

(Nguyen et al., 

2019) 

version 2012 

embedded in 

ArcGIS 10.3 

(2012) 

TSS, NO3-N, PO4 3- 

Temperature and 

precipitation 

projection 

(Pinheiro et al., 

2019) 

version 

2012.10.21 

embedded in 

ArcGIS-

Arcview 

extension and 

graphical user 

interface for 

SWAT 

sediments, nitrate 

nitrogen, total 

nitrogen, mineral 

phosphorous, 

dissolved oxygen 

- 
(Pulighe et al., 

2019) 

ArcSwAT 

interface for 

SWAT2005 

Total Nitrogen and 

Total Phosphorous 

precipitation, 

temperature, solar 

radiation, wind 

speed, relative 

humidity 

(Shrestha et al., 

2012) 

Version 2.3.4 

(2015) 

flow, suspended 

solids, TP loads, 

Nitrate-N loads 

Temperature and 

precipitation 

projection 

(Verma et al., 2015) 

ArcSwAT 2.0 

interface for 

total suspended solids, 

total nitrogen, and 

total phosphorous 

- 
(Ye & Grimm, 

2013) 
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SWAT version 
Nutrient modeling 

features 

Climate change 

modeling features 
References 

SWAT2005 

(2008) 

SWAT-LAB 

daily flow, monthly 

flow, sediment, Total 

Nitrogen, and Total 

Phosphorous (high-

resolution model 

where data availability 

is limited. 

Precipitation 
(Čerkasova et al., 

2018, 2019, 2021) 

SWAT-CUP 

version 2012 
TP, PO4-P, NO2-N, 

NO3-N, NH4-N, TN 

Temperature and 

precipitation 

projection 

(Bučienė et al., 

2019) 

- 
sediments and TN 

loads 

precipitation, max., 

and min. 

temperatures, solar 

radiation, wind 

speed, relative 

humidity 

(Jisun, 2013) 

- 
Total Nitrogen and 

Total Phosphorous 

precipitation, 

temperature, snow 

melt, 

evapotranspiration, 

soil water 

(Marcinkowski et 

al., 2017) 

version 5.1.6.2 TP loads 

Temperature, 

precipitation, 

evaporation 

(Nazari-Sharabian et 

al., 2019) 

- 
TN and TP loading 

change 

Temperature 

change and rainfall 

change 

(Trang et al., 2017) 

version 2007 TN and TP loading 
temperature and 

precipitation 
(Yan et al., 2019) 

SWAT-HS 

suspended solids, 

streamflow, nitrate, 

dissolved 

phosphorous, TN 

air temperature, 

precipitation, 

relative humidity, 

and solar 

radiation 

(Mukundan et al., 

2020) 
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Amongst the peer-reviewed studies, different versions of SWAT were used. For 

example, SWAT version 2012 was supported with an automated system on Python. 

Moreover, SWAT versions 2000/2005/2009/2012 used an interface supported by 

ArcGIS with different model versions each having its code to represent different 

hydrological models (Jha et al., 2013; Johnson et al., 2015; Khoi et al., 2022; Li et al., 

2011). 

 Tong et al. (2007) ran the SWAT model (version 2000) using a SWAT 

extension interface known as the Better Assessment Science Integrating Point and Non-

Point Sources (BASIN). This version provides all relevant input data needed by SWAT 

to carry out the simulation. It also provides an environmental analysis system for 

watershed and water quality studies. This version was able to project/model future 

climatic changes related to temperatures (Li et al., 2011). Meanwhile, Version 2005 

included updated data inputs, calibration efforts, and additional climatic change 

projection parameters (i.e., precipitation) (Jha et al., 2013).  

SWAT version 2009 used by (Van Liew, 2012) enables modeling the transfer and 

internal cycling of the major forms of N and P. Different revisions of version 2012 are 

available. For example, rev. 666 was used to estimate the amount of P available for 

subsurface drain transport (Mehan et al., 2019), whereas rev. 635 included modification 

on the movement of soluble P through subsurface tile drains (Miralha et al., 2021). 

Another revision of SWAT2012 integrated Python to determine the causal relationship 

of changes in the concentration of N and P compounds in the Akmena Dane River and 

Ekete Rier, Lithuania (Bučienė et al., 2019). Meanwhile, Kujawa et al. (2020), used 5 

different versions of SWAT (SWAT 2012 rev. 627/635/645/654/664) and compared 

their outputs.  
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Different versions of ArcSWAT have been used. ArcSWAT primarily permits the 

construction of model inputs from digital maps using GIS (Ye & Grimm, 2013). It is 

also considered an interface that helps you set up the model. It was used across 11 

studies (Bi et al., 2018; Coppens et al., 2020; Li & Kim, 2019; Mehdi et al., 2015; 

Mehdi et al., 2016; Nguyen et al., 2019; Pinheiro et al., 2019; Pulighe et al., 2019; 

Shrestha et al., 2012; Verma et al., 2015; Ye & Grimm, 2013).  

SWAT-LAB, another model version, was used in different studies (Čerkasova et al., 

2018, 2019, 2021). It capitalizes on the benefits of the script-based input generator and 

the system flexibility in terms of automatic data generation (which is a unique feature 

among the different SWAT source codes) and helps create high-resolution hydrological 

and water quality models. It also supports different types of model discretization (sub-

basin, hillslope, or grid) to overcome the difficulties related to inconsistent data 

structure and availability, nutrient emission-based data availability on administrative-

level boundaries rather than sub-watersheds, inflexible and unpractical standard GIS-

only tool functionality (Čerkasova et al., 2021).  

SWATCUP is an interface developed for the SWAT model. It is used to conduct 

calibration/validation/uncertainty and sensitivity analysis of SWAT models. It has been 

used across different studies to carry out the needed calibration/uncertainty and 

sensitivity analysis (Bučienė et al., 2019; Jisun, 2013; Marcinkowski et al., 2017; 

Mehan et al., 2019; Mukundan et al., 2020; Nazari-Sharabian et al., 2019; Pinheiro et 

al., 2019; Thang et al., 2018; Trang et al., 2017; Y. Wang et al., 2018; Yan et al., 2019).  

Lastly, SWAT-HS represented a modified version of the SWAT model that is 

capable of simulating saturation excess runoff. Mukundan et al. (2020) used this model 
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for the Cannonsville Reservoir Watershed, New York, USA. The model is also set up to 

model streamflow and nutrient loading (P loading).  

 

2.3 SWAT input data 

The SWAT model requires two main types of input data (Li et al., 2011). The 

first set is a set of spatial data, which includes the topography data derived from a 

digital elevation map (DEM), soil maps (showing soil types and properties thus 

generating a soil database for future reference), and the land use or land cover maps 

(showing the different land uses in the selected study area such as agricultural, urban, 

etc.) (Li & Kim, 2019; Li et al., 2011; Verma et al., 2015; Zhang et al., 2012). It is 

worth noting that several studies conducted in the early 2000s used topographical data 

and DEMs with a resolution of 30 x 30 m (Čerkasova et al., 2019). More recent 

applications use 10 m resolutions (Bi et al., 2018; Jisun, 2013; Kujawa et al., 2020; 

Mehan et al., 2019; Mukundan et al., 2020; Nguyen et al., 2019; Pulighe et al., 2019; 

Tong et al., 2007; Van Liew, 2012), with a few applications attempt ting to work with 

even a finer resolution (e.g. Čerkasova et al. (2019) who used a 5m resolution).  

The second set of data is referred to as property data (Li et al., 2011); they include 

hydrological data (including different hydrological processes such as flow, surface 

runoff, and evapotranspiration), water quality or point source discharge data (such as 

sediment yield, concentrations of TN and TP or nutrient loading, etc.), 

climate/meteorological data (related to solar radiation, relative humidity, wind speed, 

precipitation, and temperature), soil data information (type and properties), and land 

management practices (fertilizer application, tillage crop, planting, harvesting, manure 

applications) (Verma et al., 2015). Property data plays an important role in enhancing 
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the quality of simulation and controlling water quality processes (Li & Kim, 2019). It is 

worth noting that the above input data are obtained from different sources such as 

governmental databases as well as public open-access databases. In some cases, climatic 

input data could be generated using the built-in weather generator in SWAT (Čerkasova 

et al., 2019, 2021; Jha et al., 2013; Lee et al., 2018; Molina-Navarro et al., 2014; 

Mukundan et al., 2020; Nazari-Sharabian et al., 2019; X. Wang et al., 2018).] 

 

2.4 SWAT outputs 

SWAT generates a range of outputs, including hydrological outputs such as 

surface runoff, groundwater recharge, streamflow, and sediment yield, as well as water 

quality outputs such as total nitrogen, total phosphorus, and sediment load. These 

outputs are generated for various spatial and temporal resolutions, depending on the 

specific research question or management application. For example, runoff and water 

quality can be simulated at daily, monthly, or annual time steps, while streamflow and 

sediment yield can be simulated at monthly or annual time steps. Spatial resolution can 

range from small sub-watersheds to large river basins, depending on the modeling needs 

and data availability. 

 

2.5 SWAT calibration and validation 

An extensive array of statistical indices have been used to evaluate SWAT 

models. Arnold (2012) mentioned 20 potential statistical tests that can be used for that 

purpose, including coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE), 

root mean square error (RMSE), t-tests, non-parametric function tests, objective 
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function, etc. D. N. Moriasi (2015) described different final performance evaluation 

criteria for recommended statistical performance measures (mainly R2, NSE, and 

PBIAS) to judge the success of SWAT (and other watershed and field scale models) 

results. The table below shows the ranges of performance evaluation criteria 

recommended for assessing the performance of the models as suggested by D. N. 

Moriasi (2015).  

 

Table 2 Ranges of performance evaluation criteria for recommended statistical 

performance measures (D. N. Moriasi, 2015) 

Measure 
Output 

Response 

Performance Evaluation Criteria 

Very Good Good 
Satisfactor

y 

Not 

Satisfactor

y 

R2 

Flow R2> 0.85 
0.75<R2<0.

85 

0.60<R2<0.

75 
R2<0.60 

Sediment R2> 0.80 
0.65<R2<0.

80 

0.40<R2<0.

65 
R2<0.40 

N/P R2> 0.70 
0.60<R2<0.

70 

0.30<R2<0.

60 
R2<0.30 

NSE 

Flow NSE>0.80 
0.70<NSE<

0.80 

0.50<NSE<

0.70 
NSE<0.50 

Sediment NSE>0.80 
0.70<NSE<

0.80 

0.45<NSE<

0.70 
NSE<0.45 

N/P NSE>0.65 
0.50<NSE<

0.65 

0.35<NSE<

0.50 
NSE<0.35 

PBIAS 

Flow PBIAS<±5 
±5<PBIAS

<±10 

±10<PBIA

S<±15 

PBIAS>±1

5 

Sediment 
PBIAS<±1

0 

±10<PBIA

S<±15 

±15<PBIA

S<±20 

PBIAS>±2

0 

N/P 
PBIAS<±1

5 

±15<PBIA

S<±20 

±20<PBIA

S<±30 

PBIAS>±3

0 

 

Parameter sensitivity analysis is often the first step conducted before proceeding 

with the calibration and validation processes of the SWAT model. This step provides 

insights as to which parameters contribute most to the output variance due to changes in 

input variables (Li et al., 2011) along with its significance in model development and 
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evaluation (Verma et al., 2015). It is a necessary step to determine the key parameters 

required for calibration. The parameter sensitivity analysis is an available tool/function 

included in different SWAT versions. One method commonly used in many studies is 

the Latin Hypercube on-factor-at-a-time (LH-OAT) method (Jordan et al., 2014; Li et 

al., 2011; Thang et al., 2018). 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

The scope of the work will consist of a series of interrelated activities. First, a 

comprehensive literature review will be conducted. The review will provide general 

information about the SWAT hydrological model, its capabilities, history, objectives, 

and its applications worldwide. Additionally, the study will shed light on the approaches 

adopted to couple the SWAT model with climate change models/data and how these 

couplings have evolved. Furthermore, the review will specifically focus on reviewing 

the studies that used the SWAT model to assess the impacts of future climate change on 

nutrient loading at the watershed level. Finally, the review discusses the existing 

limitations and proposes a set of recommendations to improve the capabilities of SWAT 

to assess nutrient pollution as a function of a changing climate. 

 

3.1 Literature review 

A mixed qualitative and quantitative research approach was adopted to identify 

and review the existing literature associated with the modeling of nutrient loading and 

water quality impairments at the watershed level using the SWAT model, while 

accounting for future climatic predictions. The review process explored the limitations 

of past applications and identified areas of need of further development. This process 

involved the collection, analysis, and synthesis of the existing literature and the 

generation of relevant visual summaries (statistics and graphic representations). Figure 

4 summarizes the adopted research methodology for the literature review.  
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Figure 4 Research methodology to develop the synthesis matrix. 
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As a first step, it was essential to define the research scope and objective(s) 

related to the application of the SWAT model in modeling nutrient loading in the face 

of climate change (under different future climatic scenarios) at the watershed level. This 

was done by determining inclusion/exclusion criteria mainly related to publication date, 

study of design and geographical focus before the comprehensive search strategy.  

To meet our main research objectives, we developed a comprehensive search 

strategy by identifying relevant electronic databases based on the research scope. We 

limited our search to three main knowledge databases that included the SWAT 

Literature Database, the Web of Science (WoS) Database, and the Google Scholar 

Database. These three resources were checked for research articles that used the SWAT 

model to assess the impacts of future climate change on nutrient loading at the 

watershed level. Moreover, suitable exclusion criteria (discussed in the below 

paragraphs) were applied to ensure the selection of high-quality and relevant literature. 

The selection process aimed to guarantee that the chosen articles were methodologically 

sound, contributed to the research topic/question(s), and provided a robust foundation 

for the theoretical framework and analysis for this paper. A tailored set of keywords and 

synonyms were generated using controlled vocabulary when applicable.  

The SWAT Literature Database was first used, as this database records all peer-

reviewed scientific papers that have been published and that have used the SWAT 

model. Based on the SWAT literature database, there was a total of 5,208 journal papers 

published since its development (as of August 2022). Studies published before 2000 

were excluded from this study to capture the most recent advancements in the SWAT 

model. 
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To filter through these papers, keywords such as climate change, climate 

models, nutrient loading, and nutrient transportation were considered. Four searches 

were conducted in the SWAT Literature Database using the following search options: 

• The first search used the terms climate change and pollutant cycling/loss 

and transport. The search returned 33 journal papers. 

• The second search used the terms climate change and nutrient cycling/loss 

and transport. The search returned 10 journal papers. 

• The third search used the terms climate change and nitrogen cycling/loss 

and transport. The search found 7 journal papers. 

• The fourth search used the terms climate change and phosphorous 

cycling/loss and transport. The search found 3 journal papers. 

Collectively, the four searches identified 53 relevant and unique articles. A similar 

search strategy was adopted with the Web of Science and Google Scholar. For the Web 

of Science database, an advanced search was used with the following keywords selected 

to narrow down our search and specifically focus on the research topic. The keywords 

were “climate change”, “climate model”, “SWAT model”, “nutrient loading”, 

“nutrient losses” and “watershed”. This search returned 50 relevant articles based on 

the keyword selection.  

As shown in Figure 5, the number of studies has been increasing over time, especially 

after 2015. As can be seen in Figure 6, most of the published articles (~40%) were 

conducted in the United States of America (USA), followed by studies in the People’s 

Republic of China (PRC) (~30%), and Iran / Italy (~4% each).  
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Figure 5 Web of Science (WoS) number of publications related to the SWAT model 

based on the keyword search by year. 

 

 

Figure 6 Number of filtered Web of Science (WoS) publications by country/region. 

 

A similar approach was adopted with Google Scholar Database. In the advanced 

search criteria, we searched for and opted to select published articles starting from the 
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model”, “nutrient loading”, “nutrient losses”, and “watershed”. The search returned 

72 journals.  

Across the three databases, a total of 175 articles were identified (SWAT 

Database = 53, Web of Science = 50, and Google Scholar = 72). Given that several of 

the articles identified from these searches may be duplicated, we compiled them under 

one main reference file using EndNote20. Duplicate studies were identified and deleted. 

Accordingly, the number of research articles was reduced to 127.  

Each of the selected 127 articles was then assessed individually to assess its 

relevance regarding the study objectives. The method of identifying relevance was 

mainly based on establishing a systematic screening process. The screening process 

involved focusing on the research papers’ titles, identifying specific key 

terms/keywords (such as climate change, climate models, nutrient loading, SWAT 

model, water quality, watershed, and waterbodies (lakes, rivers, etc.), and reviewing the 

abstract and/or executive summary. Finding most or all these terms indicated that the 

article/publication was worth reading in detail. This process was the first filter 

(Preliminary Screening 1) that was used to further refine the initial selection process. 

Accordingly, the number of research articles was further reduced to 116. Appendix 1 

lists the studies that were removed during the 1st preliminary screening. 

The remaining 116 articles were further examined for relevance by going 

through their introduction, methodology, discussion, results, and conclusion sections. 

This process was the second filter method (Preliminary Screening 2) and was used to 

further refine the selection process. A total of 19 papers were found to be irrelevant and 

were excluded. This step resulted in retaining a total of 97 articles. Appendix 2 lists the 
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studies that were removed during the 2nd preliminary screening. The table below shows 

the final count of articles that were deemed relevant and were included in the review. 

 

Table 3 Number of significant references uploaded to EndNote based on the selected 

Databases. 

Research database Number of references 

SWAT literature database 24 

Web of Science (WoS) 33 

Google Scholar 40 

Total number of references 97 

 

Some of the peer-reviewed articles were excluded due to several factors (such as 

incomplete sets of data, lack of a particular level of evidence, etc.). Articles were 

excluded if they reported only on the impacts of climate change on nutrient loading by 

assessing historical climate data. Additionally, some articles were excluded since they 

only addressed the issue of climate change without focusing on its impact on nutrient 

loadings. For example, some papers did not specify the hydrological model (SWAT) or 

used different hydrological models (Li et al., 2020) or climate models (Burigato Costa 

et al., 2019; Neumann et al., 2021) or did not specify the type and future projection 

periods, or did not focus on nutrient modeling (N and P).   

Ultimately, we ended up with 88 significant articles that were examined and 

analyzed in detail. The 9 articles which were excluded due to the above-mentioned 

reasons are as follows (Table 4). 
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Table 4 Excluded Reference after final review.  

Ref. No Reference  

1 
Cousino, L. K., et al. (2015). "Modeling the effects of climate change 

on water, sediment, and nutrient yields from the Maumee River 

watershed." Journal of Hydrology: Regional Studies 4: 762-775. 

2 
Cui, T., et al. (2021). "Evaluation of Temperature and Precipitation 

Simulations in CMIP6 Models Over the Tibetan Plateau." Earth and 

Space Science 8(7). 

3 

Fan, M. and H. Shibata (2015). "Simulation of watershed hydrology 

and stream water quality under land use and climate change scenarios 

in Teshio River watershed, northern Japan." Ecological Indicators 50: 

79-89. 

4 
Gabriel, M., et al. (2018). "Modeling the combined effects of changing 

land cover, climate, and atmospheric deposition on nitrogen transport in 

the Neuse River Basin." J Hydrol Reg Stud 18: 68-79 

5 Gaudet, M. M. a. B. (2017). "'SRES' Scenarios and 'RCP' Pathways." 

From Meteorology to Mitigation: Understanding Global Warming. 

6 
Gunn, K. M., et al. (2021). "Integrating Daily CO2 Concentrations in 

SWAT-VSA to Examine Climate Change Impacts on Hydrology in a 

Karst Watershed." Transactions of the ASABE 64(4): 1303-1318. 

7 
James, T. S., et al. (2014). "Relative Sea-level projections in Canada 

and the Adjacent Mainland United States." Geological Survey of 

Canada. 

8 
Jayakody, P., et al. (2014). "Impacts of climate variability on water 

quality with best management practices in sub-tropical climate of 

USA." Hydrological Processes 28(23): 5776-5790. 

9 

Meehl, G. A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, 

J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy, A. Noda, S.C.B. 

Raper, and A. J. W. a. Z.-C. Z. I.G. Watterson (2007). "Global Climate 

Projections." The Physical Science Basis.Contribution of Working 

Group I to the Fourth Assessment Report of the Intergovernmental 

Panel on Climate Change. 

 

 

3.2 Assessment of recent literature 

The final remaining research articles (88) were assessed individually based on a 

unified set of questions. For that reason, a standardized data extraction form (Synthesis 

Matrix Questionnaire) was developed to systematically extract relevant information for 
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each study, which showed different questions categorized into 4 main sections that 

included:  

 

1) SWAT model application 

2) Climate models and SWAT integration 

3) Nutrients 

4) Challenges and future recommendations 

The synthesis matrix questionnaire is represented in (Table 5).  

 

3.2.1 SWAT model application  

Given the different versions of the SWAT model, this section aimed to identify 

the different source codes (such as ArcSWAT, SWAT2005, etc.) and the types of 

hydrological/instream processes (such as infiltration ET, and snow dynamics) used in 

each study. Additionally, the type of input data files used to carry out model simulations 

on nutrient loading was examined (mainly relating to topography ‘DEM’, soil type, land 

use data, meteorological data, hydrology, and water quality). Additional relevant data 

layers were assessed if they impact the transport of nutrients (examples include, 

fertilizer application, point and non-point source data). The inclusion of management 

practices (tiling, contouring, fertilizer timing, and amount) was also reviewed. Finally, 

the calibration and validation processes used were identified in terms of the model 

performance metrics (such as R2, NSE, and PBIAS), the duration/periods adopted, and 

the parameters considered. 
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3.2.2 Climate models and SWAT integration 

Climate models are used to understand the impacts of climate change on 

complex earth systems and to draw conclusions on past and future climate systems. Our 

inquiries focused on understanding which climatic parameters from the climate models 

were used in SWAT (such as precipitation and temperature). We also looked at the type 

of climate models (statistical, RCM, or GCM) used, and whether such climate models 

required further downscaling to improve the accuracy of climate change projections and 

impact assessments at local scales. After identifying the climate models and using the 

ideal downscaling method, we reported on the emission scenarios (Special Report on 

Emissions Scenarios - SRES vs. Representative Concentration Pathways - RCP) 

analyzed by each paper.  

 

3.2.3 Nutrients and Flow 

The questions proposed in this section mainly focus on the types of nutrients 

(Nitrogen and Phosphorous and their different forms) that were accounted for in the 

model. Moreover, it identifies whether nutrient loadings were allowed to change over 

time or if they were held constant (by modifying the land management practices such as 

fertilizer application rates, and land use land changes at the watershed area) as this can 

help to project and predict the impact on water quality and identify management 

strategies for reducing nutrient pollution in a watershed area. This section also looks at 

the nutrient processes that were used for the transformation between different types of 

nutrients, such as organic and inorganic, and how those were affected by changes in 



 

 38 

climate. Similarly, we look at how future flows were predicted and how the forcing 

functions were modeled over time and space. 

 

3.2.4 Challenges and Future Recommendations 

The integrated application of SWAT with climate models often reveals new 

research opportunities and identifies weaknesses and challenges regarding our 

understanding of the scale of this change or the data requirements needed to make such 

predictions. Consequently, limitations related to the development of SWAT and the 

adopted climate models were recorded, along with proposed future research 

development needs.  

 

Table 5 Synthesis Matrix Questionnaire used for each paper. 

 

Description  

1. SWAT 

• What model source code was used? 

• Did the model account for hydrological/instream processes (such as infiltration, 

ET, and snow dynamics)?  

• What were the input data files used and at what spatial and temporal resolution? 

• Were the land use/land cover as well as management practices assumed to be 

dynamic or static over time? 

• Was the model calibrated and validated? What model parameters were 

considered for calibration/validation? What methods were used/developed for the 

calibration and validation phases? How long were the time series used in the 

calibration/validation? What parameters were used in the calibration and 

validation process? 

• What methods were used to assess model performance (R2, NSE, PBIAS)? 

• Was a sensitivity analysis conducted? 

• Were model parameters allowed to change over time? And if so, which? 

• At what spatial and temporal level was the calibration conducted? 

2. Climate data and SWAT integration 

• What future climate data were used with the SWAT application (e.g., 

temperature, precipitation, snow, etc.)? 
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• What was the spatiotemporal resolution of the climatic data used? 

• What emission scenarios were considered (SRES vs. RCP)? What type of 

climate models/scenarios were used (GCM, RCM, others) to generate future 

climate data? 

• Was the climatic data downscaled and if so what type of downscaling 

methods were used? 

• Did the study use an ensemble of climate models or single climate models? 

3. Nutrients and flow 

• Which hydrological variables were modeled? 

• Which nutrients were modeled and in which form? 

• Was nutrient loading (N and P) allowed to change over time? If so how? 

• Was nutrient processing and transformation allowed to change over time? 

4. Challenges and future recommendations 

• What were the limitations of the study? 

• What were the identified future research development needs? 

 

It should be noted that our research methodology opted for a modified approach 

rather than using a particular research methodology such as the PRISMA methodology. 

The latter is a well-established and rigorous framework to guide the systematic review 

and meta-analysis process in healthcare and medical research. However, it is also 

applicable to reports of systematic reviews evaluating other non-health-related 

interventions (Alina Trifu & 2022).  
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 SWAT Model Application 

Of the combined 97 peer-reviewed publications retrieved from the 3 selected 

databases, 88 were found to be significant. Table 6 provides a detailed summary of 

those. The studies covered 57 different watersheds across different regions of the world. 

We found that most of the SWAT applications that assessed the impacts of climate 

change on nutrient loading were conducted in the US and China, with 18 and 8 

published studies since 2000, respectively.  

 

Table 6 List of peer-reviewed publications that used SWAT as a tool for modeling the 

future impacts of climate change on nutrient loading at the watershed level.  

Country/Region Watershed Name 
Watershed 

Area 
Reference 

United States 
Upper Mississippi 

River Basin 
492,000 km2 

• (Jha et al., 

2013) 

Vietnam, 

Cambodia, and 

Lao PDR 

3S River Basin 

(Sekong, Sesan and 

Srepok) 

78,650 km2 
(Khoi et al., 2022; 

Trang et al., 2017) 

China Launhe River Basin 44,750 km2 (Bi et al., 2018) 

China 
Lower Kaidu River 

Basin 
43,890 km2 (Ba et al., 2020) 

United States 
Connecticut River 

Watershed 
28,500 km2 

(Marshall & 

Randhir, 2008) 

United States Maumee River  21,538 km2 

(Kujawa et al., 

2020; Miralha et 

al., 2021; Verma 

et al., 2015) 

United States 
St. Croix River 

Basin 
20,000 km2 (Yang et al., 2019) 
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Country/Region Watershed Name 
Watershed 

Area 
Reference 

United States 

Western Lake Erie 

Basin, Maumee 

River 

17,100 km2 
(Cousino et al., 

2015) 

United States 

Western Lake Erie 

Basin, Maumee 

River 

17,000 km2 
(Kalcic et al., 

2019) 

United States Maumee River Basin 16,200 km2 
(Andreas M. 

Culbertson, 2016) 

China 
Miyun Reservoir 

Watershed 

15,400 km2 – 

15,788 km2 

(Feng & Shen, 

2021; Wang et al., 

2018) 

Canada 
Upper Assiniboine 

Catchment 
13,500 km2 

(Shrestha et al., 

2012) 

China 

Liao River basin, the 

Zhaosutai River 

basin, and the Tiaozi 

River basin 

11,283 km2 
(Wang et al., 

2018) 

Belarus, 

Lithuania, 

Poland, Russia, 

Latvia 

Nemunas River 

Basin 
9,7928 km2 

(Čerkasova et al., 

2018, 2021) 

Portugal Sorraia River Basin 7,730 km2 
(Almeida et al., 

2018) 

Vietnam 
Dong Nai River 

Basin 
7,500 km2 

(Thang et al., 

2018) 

United States 

Great Miami and 

Little Miami 

Watersheds 

7,078 km2 

(Ariel L. Salas & 

Kumaran 

Subburayalu, 

2019) 

South Korea 
Mountainous 

watershed 
6,640 km2 (Kim et al., 2014) 

China 
Xin’anjiang 

Catchment 
6,260 km2 

(Zhai & Zhang, 

2018) 

China (Hong 

Kong) 
Ru River Basin 5,803 km2 (Yang et al., 2018) 

China 
Lower Pearl River 

Basin 
5,092 km2 (Li et al., 2011) 

China 
Shitoukoumen 

Reservoir Catchment 
4,944 km2 

(Zhang et al., 

2012)  
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Country/Region Watershed Name 
Watershed 

Area 
Reference 

United States 
Little Miami River 

Watershed 
4,498 km2 (Tong et al., 2007) 

Poland 
Upper Narew and 

Barycz Catchments 

4,231 km2 (Marcinkowski et 

al., 2017) 5,522 km2 

United States 
Sprague River 

Watershed 
4,000 km2 

(Records et al., 

2014) 

Canada South Nation River 3,858 km2 
(El-Khoury et al., 

2015) 

Denmark 
Funen Island 

Catchment 
3,528 km2 

(Trolle et al., 

2015) 

United Kingdom 
Yorkshire Ouse 

Catchment 
3,500 km2 (Bouraoui, 2002) 

United States 
Sandusky River 

Watershed 
3,458 km2 (Xu et al., 2018) 

South Korea 
Saemangeum River 

Basin 
3,367 km2 

(Kim et al., 2020; 

Li & Kim, 2019) 

Lithuania Minijia River Basin 3,097 km2 

(Čerkasova et al., 

2019; Povilaitis et 

al., 2018) 

Japan 
Teshio River 

Catchment 
2,908 km2 

(Fan & Shibata, 

2015) 

Japan 
Asahi River 

Watershed 
1,810 km2 (Shimizu, 2011) 

Finland 
Vantaanjoki 

watershed 
1,682 km2 

(Bouraoui et al., 

2004) 

United States 
Shell Creek 

Watershed 
1,214 km2 (Van Liew, 2012) 

United States 
Cannonsville 

Reservoir Watershed 
1,178 km2 

(Mukundan et al., 

2020) 

Germany Almuhl River Basin 980 km2 

(Mehdi, Ludwig, 

et al., 2015; 

Mehdi et al., 

2016) 

Azerbaijan 
Mahabad Dam 

Watershed 
808 km2 

(Nazari-Sharabian 

et al., 2019) 

South Korea 
Youngsan River 

Basin 
646 km2 (Jisun, 2013) 
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Country/Region Watershed Name 
Watershed 

Area 
Reference 

Canada 
Pike River 

Watershed 
630 km2 

(Gombault et al., 

2015) 

Canada 
Pike River 

Watershed 
629 km2 

(Mehdi, Lehner, et 

al., 2015) 

Lithuania 
Akemnta-Dane 

River Catchment 
594 km2 

(Bučienė et al., 

2019) 

United States 
Sycamore Creek 

(Verde River) 
505 km2 

(Ye & Grimm, 

2013) 

Poland 
Reda River 

Catchment 
482 km2 

(Piniewski et al., 

2014) 

Australia 
Onkaparinga River 

Catchment 
317 km2 

(Shrestha et al., 

2017) 

United States 

Tuckhose Creek 

Watershed and 

Greensboro 

Watershed 

220 km2 

(Lee et al., 2018) 
290 km2 

United States 
Eagle Creek 

Watershed 
248 km2 

(Ahmadi et al., 

2014) 

Australia Torrens Catchment 200 km2 
(Nguyen et al., 

2019) 

Italy 
Zero River Basin / 

Catchment 
140 km2 

(Pesce et al., 

2018; Sperotto et 

al., 2019) 

Italy 
Sulcis River 

Catchment 
77 km2 

(Pulighe et al., 

2019) 

Spain 
Ompolveda River 

Catchment 
88 km2 

(Molina-Navarro 

et al., 2014) 

New Zealand 
Lake Rotorua 

Catchment 
80.8 km2 (Me et al., 2018) 

United States 
Mason Ditch 

Watershed 
46 km2 

(Mehan et al., 

2019) 

Brazil 
Concordia 

Catchment 
30 km2 

(Pinheiro et al., 

2019) 

Slovenia 
Reka River 

Catchment 
30 km2 

(Glavan et al., 

2015) 

Turkey 
Mogan Lake 

Catchment 
8 km2 

(Coppens et al., 

2020) 

United States Wolf Bay Watershed - 
(Wang & Kalin, 

2018) 
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Regarding the size of the watersheds studied, we found that they varied significantly 

(Figure 7). As can be seen, watersheds smaller than 1,000 km2 represented 24.56% of 

all studies. Similarly, watersheds between 100 and 5,000 km2 in size accounted for a 

quarter of all the studies (24.56%). Watersheds between 5,001 – 10,000 km2 represented 

14.04% of all studies, while those conducted on large watersheds (10,0001 – 100,000 

km2) represented 22.81%. Only 1.75% and 12.28% of the studies were conducted on 

watersheds that were either greater than 100,000 km2 or smaller than 100 km2, 

respectively.  

 

 

Figure 7 SWAT topic-related publications based on watershed size (km2) 

 

Overall while the number of SWAT publications has increased dramatically 

since 2009, SWAT assessment of future climate change impacts on nutrient loadings at 

the watershed level started to increase in 2018. As illustrated in Figure 8, the number of 

articles published in 2018 was almost 5 times greater than those published in the 
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preceding year (i.e., 2017). Tan et al. (2020) reported that this might be due to the 

increase in extreme weather events occurrences around the world over the past few 

years.  

 

Figure 8 SWAT topic-related publications based on publication year (2000-2022) 

 

4.1.1 SWAT Model Input Data Files 

As mentioned in section 2.3 (SWAT input data), the SWAT model operates on 

various input data files that describe the hydrological and physical characteristics of the 

watershed being studied. The adopted spatial and temporal resolution of these input data 

can significantly affect the accuracy and detail of the simulation results. Moreover, it is 

worth noting that the spatial and temporal resolutions can vary based on the available 

data sources, the specific aims of the modeling study, and the size of the watershed 

being simulated. Finer spatial and temporal resolutions generally lead to more detailed 

and accurate simulations if the needed data are available. The below table, Table 7 
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represents the different SWAT input data files used in each study. These include digital 

elevation models (DEM), soil properties, meteorological data (such as precipitation, and 

temperature), farm management, hydrological data, and water quality monitoring data. 

It also demonstrates the different values (along with the spatio-temporal information) of 

the input data files used across the different studies.  

 

Table 7 Values of SWAT model input data files 

Reference 

Digital 

Elevation 

Model 

(DEM) 

Soil 

properties/da

ta   

Meteorologic

al Data 

(precipitatio

n, 

temperature, 

etc.) 

Hydrologic

al Data  

Water 

Quality 

Monitori

ng Data  

(Ahmadi et 

al., 2014) 
30m  

County-based 

soil data from 

the US Soil 

Survey 

Geographic 

Database 

Precipitation  

Temperature 

Daily 

Streamflow  
NO3- 

(Ariel L. 

Salas & 

Kumaran 

Subburayal

u, 2019) 

10m  
No data 

available 

Precipitation  

Temperature 

No data 

available 

No data 

available 

(Ba et al., 

2020) 
90m 1:1,000,000  

Daily 

Precipitation 

and 

Temperature  

Daily 

streamflow 

TP and 

TN 

(Bi et al., 

2018) 

No data 

available 
1:1,000,000 

Daily 

Precipitation 

and 

Temperature  

Monthly 

flow data  

TP and 

TN 

(Bouraoui, 

2002) 
50m 

Gridded-type 

map  

No data 

available 

No data 

available 

No data 

available 

(Bouraoui 

et al., 

2004) 

25m x 

25m  
1:1,000,000 

No data 

available 

No data 

available 

No data 

available 
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Reference 

Digital 

Elevation 

Model 

(DEM) 

Soil 

properties/da

ta   

Meteorologic

al Data 

(precipitatio

n, 

temperature, 

etc.) 

Hydrologic

al Data  

Water 

Quality 

Monitori

ng Data  

(Čerkasova 

et al., 

2018) 

35m x 

35m 
1:10 000 

Precipitation 

and 

Temperature 

Monthly 

flow data  

TP and 

TN 

(Čerkasova 

et al., 

2019) 

35m x 

35m 
1:10 000 

Precipitation 

and 

Temperature 

Daily Flow 
TP and 

TN 

(Coppens 

et al., 

2020) 

30m 
Used, no data 

available 

Daily 

precipitation, 

wind speed, 

max. and min 

temperature, 

solar 

radiation, and 

relative 

humidity  

Daily Flow 
NO3 and 

SRP  

(Cousino et 

al., 2015) 
30m 

Used, no data 

available 

Daily 

precipitation 

and 

temperature  

No data 

available 

No data 

available 

(Cui et al., 

2021) 
90m 

no data 

available 

Daily 

precipitation 

and 

temperature 

No data 

available 
TP 

(El-Khoury 

et al., 

2015) 

90m 
no data 

available 

Daily 

precipitation, 

wind speed, 

max. and min 

temperature, 

solar 

radiation, and 

relative 

humidity  

No data 

available 

NO3-, 

NO2. N, P 

(Feng & 

Shen, 

2021) 

30m 1:10,000,000 

precipitation 

and 

temperature 

Daily 

streamflow 
 

(Glavan et 

al., 2015) 
25m 1:25,000 ‘ Daily flow NO3-, TP 
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Reference 

Digital 

Elevation 

Model 

(DEM) 

Soil 

properties/da

ta   

Meteorologic

al Data 

(precipitatio

n, 

temperature, 

etc.) 

Hydrologic

al Data  

Water 

Quality 

Monitori

ng Data  

(Jisun, 

2013) 
10m 1:25,000 

Precipitation, 

air 

temperature 

(max., min.), 

solar 

radiation, 

wind speed, 

relative 

humidity 

Daily 

streamflow 

Sediment 

and TN 

(Khoi et 

al., 2022) 
250m 10km 

Daily Rainfall 

and 

max./min. 

temp. 

Daily 

Discharge  

TSS and 

TN 

(Li et al., 

2018) 

1:1,000,00

0 

no data 

available 

Precipitation, 

air 

temperature 

(max., min.), 

relative 

humidity, 

wind speed 

Daily 

streamflow 

TN and 

TP 

(Li et al., 

2011) 
1:250 000 1:1 000 000 

Precipitation, 

air 

temperature 

(max., min.), 

relative 

humidity, 

wind speed 

Yearly and 

Monthly 

Discharge 

Yearly 

Nutrient 

load (TP 

and TN) 

(Mehdi et 

al., 2015) 
50m 

no data 

available 

Precipitation, 

air 

temperature 

(max., min.), 

relative 

humidity, 

wind speed, 

cloud cover, 

hours of 

sunshine 

Daily Flow  
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Reference 

Digital 

Elevation 

Model 

(DEM) 

Soil 

properties/da

ta   

Meteorologic

al Data 

(precipitatio

n, 

temperature, 

etc.) 

Hydrologic

al Data  

Water 

Quality 

Monitori

ng Data  

(Mukundan 

et al., 

2020) 

10m 
no data 

available 

Precipitation 

and air 

temperature  

No data 

available 

NH4 / 

NO3- 

(Nguyen et 

al., 2019) 
10m 10m 

Daily 

precipitation, 

temperature, 

solar 

radiation, 

relative 

humidity  

Daily 

Streamflow 

Monthly 

TP and 

TN 

(Pesce et 

al., 2018) 
5m 500m x 500m 

Daily 

precipitation, 

temperature 

Daily 

Streamflow 

Nitrate 

and 

ammonia 

(Pulighe et 

al., 2019) 
10m 1:50,000 

precipitation, 

temperature, 

solar 

radiation, 

relative 

humidity 

Monthly 

Discharge 

SS, NO3-, 

TN, TP 

(Shimizu, 

2011) 
50m 1:200,000 

precipitation, 

temperature 

Monthly 

Discharge 

SS, TP, 

TN 

(Shrestha et 

al., 2017) 
30m 

no data 

available 

no data 

available 

Monthly 

flow 

TP and 

TN 

(Shrestha et 

al., 2012) 
90m 1:1 000 000 

precipitation, 

temperature 

No data 

available 

TP and 

TN 

(Thang et 

al., 2018) 
90m 1km 

precipitation, 

temperature, 

solar 

radiation, 

relative 

humidity 

Daily 

Streamflow 

TP and 

TN 

(Trang et 

al., 2017) 
250m 

no data 

available 

precipitation, 

temperature, 

solar 

radiation, 

relative 

Daily 

Discharge 

NO3_, 

NH4+, P 
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Reference 

Digital 

Elevation 

Model 

(DEM) 

Soil 

properties/da

ta   

Meteorologic

al Data 

(precipitatio

n, 

temperature, 

etc.) 

Hydrologic

al Data  

Water 

Quality 

Monitori

ng Data  

humidity, 

wind speed 

(Verma et 

al., 2015) 
30m 90m x 90m 

Daily 

precipitation 

and 

temperature 

Daily flow 

TSS< 

NO3-, 

NH4+ 

(X. Wang 

et al., 

2018) 

30m 1:1 000 000 

precipitation, 

temperature, 

solar 

radiation, 

relative 

humidity, 

wind speed 

Monthly 

streamflow 

TN and 

TP 

(Y. Wang 

et al., 

2018) 

90m 
no data 

available 

Daily 

precipitation, 

temperature, 

solar 

radiation, 

relative 

humidity, 

wind speed 

Streamflow 
TN and 

TP 

(Yan et al., 

2019) 
90m 1:1 000 000 

Daily 

precipitation, 

temperature, 

solar 

radiation, 

relative 

humidity, 

wind speed 

Monthly 

streamflow 
TN 

(Yang et 

al., 2019) 

90m x 

90m 

no data 

available 

 Daily 

precipitation, 

max., and 

min, 

temperature, 

solar 

radiation, 

relative 

humidity, 

wind speed 

no data 

available 

Sediment 

and Non-

Point 

Source 

Pollution 

(NPS)  
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The spatial resolution of the DEMs across the studies varied from 5 m (highest 

resolution) up to 250 m (lowest resolution). The higher the DEM resolution, the greater 

the preservation of the topographical land/watershed features. For example, Pesce et al. 

(2018) used a DEM of 5m spatial resolution to study the impact of climate change on 

nutrient loads in the Zero River Basin (ZRB) in Venice Italy. While (Khoi et al., 2022); 

Trang et al. (2017) opted for a DEM with a spatial resolution of 250 m for the 3S 

(Sesan, Sekong, and Srepok) River Basin in Laos, Vietnam, and Cambodia. The most 

commonly used DEM was at the 30 m spatial resolution, with 25% of studies using it. 

On another note, the most common hydrological data used across the studies was flow; 

yet it was used at different time steps. Most studies worked with daily flows. It is worth 

noting that hydrological data play an important role in the SWAT model, as they are 

essential for accurately representing the hydrological processes within the watershed 

(Jayakody et al., 2014). 

 

4.1.2 SWAT Hydrological/Instream Process 

The SWAT model simulates various hydrological processes within a watershed. 

Many studies have accounted for different instream hydrological processes such as 

infiltration, evapotranspiration, and potential evapotranspiration (PET). Kim et al. 

(2020) simulated changes in the PET for the future period (2050s - 2090s), which they 

predicted would increase in a similar fashion to streamflow. They estimated that the 

percent increase in streamflow in the Saemangeum River Basin in South Korea would 

range between 26.5% and 51.8%, while PET would increase between 5.1 and 11.4%. 

Marshall and Randhir (2008) assumed that the annual PET rate would increase by 19% 
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and 3% under a warming high (WH) and warming low (WL) scenarios, respectively 

when they studied the Connecticut River basin in Central New England, USA. 

Additionally, evapotranspiration rates were simulated to change under both climate 

scenarios as a result of temperature changes. Cousino et al. (2015) assumed PET and ET 

rates would increase under all climate scenarios when they assessed the Maumee River 

watershed in the USA. PET values were expected to increase on average by 10% and 

17% for 2046–2065 and 2080–2099, respectively. Increases in ET were more extreme, 

with an average rise of 28% for 2046–2065 and 46% for 2080–2099. These increases in 

ET were predicted to lead to decreases in the total water available for runoff. 

Marcinkowski et al. (2017) showed that ET was projected to increase by 2.6 to 6.8% in 

the Upper Narew (NE Poland) and the Barycz (SW Poland) catchments for the future 

periods of 2021-2050 and 2071-2100 under RCP 4.5, by the projected temperature 

increase. Kalcic et al. (2019) projected an increase between 1-11% in precipitation 

accompanied by a 24-50% decrease in snowfall and a 7-12% increase in 

evapotranspiration for the river basins in Western Lake Erie, USA. 

 

4.1.3 Sensitivity Analysis   

One of the first steps in the calibration and validation process in SWAT is the 

determination of the most sensitive parameters for a given area, this can be done by 

using sensitivity analysis. It is a method used for determining the rate of change in 

model output concerning changes in model input parameters (Arnold, 2012). In brief, it 

evaluates how different parameters influence a predicted output. Sensitivity analysis 

plays an integral part in model development and engages analytical examination of 

input parameters to aid in model validation and provide guidance for future research 
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(Khairi Khalida, 2016). Table 8 shows the assessed and most sensitive model 

parameters that were reported in each study along with how the sensitivity analysis was 

implemented and interpreted.  

Most of the studies assessed the sensitivity of the SWAT model by looking at how 

the hydrological changes affected runoff, infiltration, percolation, subsurface flow, 

streamflow, and nutrient concentrations. The water quantity parameter that was often 

cited as having the highest sensitivity was the CN2, which is the initial SCS runoff 

curve number for moisture content. It was identified as a sensitive variable in a total of 

23 studies (Pesce et al., 2018; Shrestha et al., 2012; Verma et al., 2015; Zhang et al., 

2012). As for the water quality parameters, 83% of the studies showed that the most 

sensitive parameters were related to flow, TN, TP, and suspended sediments. 
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Table 8 Sensitivity analysis methods and assessed sensitive parameters. 

 

Reference 

Sensitivity 

analysis 

method 

Number of 

assessed 

parameters 

Most sensitive 

parameters 

Decision based 

on changes in 

which 

parameter 

(Ba et al., 

2020) 

Sequential 

Uncertainty 

Fitting Ver. 2 

(SUIF-2) 

27 Parameters 

10 parameters  

LAT_TTIME 

Lateral flow 

travel time 

NPERCO 

Nitrogen 

percolation 

coefficient 

ALPHA_BF 

Baseflow alpha 

factor 

GW_REVAP 

Groundwater 

evaporation 

coefficient 

GW_DELAY 

Groundwater 

delay 

ESCO  

Soil evaporation 

compensation 

factor 

BIOMIX 

Biological mixing 

efficiency 

USLE_P USLE 

equation support 

practice 

BC1  

The rate constant 

for biological 

oxidation of NH3 

Impact on 

streamflow and 

water quality 

calculations 

(Bouraoui 

et al., 

2004) 

Monte-Carlo 

Sensitivity 

Analysis 

Method 

No data 

mentioned 

Curve Number  

Topsoil  

Saturated 

hydraulic 

conductivity  

No data 

mentioned 
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Reference 

Sensitivity 

analysis 

method 

Number of 

assessed 

parameters 

Most sensitive 

parameters 

Decision based 

on changes in 

which 

parameter 

Available water 

capacity  

Groundwater 

recession 

coefficient  

groundwater-root 

zone evaporation 

coefficient 

(Bučienė 

et al., 

2019) 

Particle 

Swarm 

Optimization 

(PSO) 

SWAT CUP 

Program 

No data 

mentioned 

No data 

mentioned 

No data 

mentioned 

(Coppens 

et al., 

2020) 

Sequential 

Uncertainty 

Fitting 

(SUIF-2) 

Global 

Sensitivity 

Analysis 

No data 

mentioned 

32 parameters 

related to flow 

rate or nutrient 

loading 

No data 

mentioned 

(Glavan et 

al., 2015) 
 

No data 

mentioned 

Flow 

Sediment  

Nitrate-nitrogen  

TP 

No data 

mentioned 

(Jordan et 

al., 2014) 

Automatic 

Sensitivity 

Analysis  

No data 

mentioned 

13 parameters 

related to flow 

and TSS 

No data 

mentioned 

(Laursen 

& Hanief, 

2017) 

one-on-one 

sensitivity 

analysis 

testing 

No data 

mentioned 

Snowfall 

temperature 

Snowmelt base 

temperature  

Melt factor for 

snow on Jun. 

Melt factor for 

snow in 

December.  

Surface runoff lag 

coefficient  

No data 

mentioned 
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Reference 

Sensitivity 

analysis 

method 

Number of 

assessed 

parameters 

Most sensitive 

parameters 

Decision based 

on changes in 

which 

parameter 

Plant uptake 

compensation 

factor  

Baseflow alpha 

factor in bank 

storage  

Groundwater 

delay  

Maximum canopy 

storage  

SCS runoff curve 

number  

Soil bulk density  

Soil evaporation 

compensation 

Saturated 

hydraulic 

conductivity 

(Li et al., 

2018) 

Sequential 

Uncertainty 

Fitting 

(SUIF-2) 

Global 

Sensitivity 

Analysis 

using the 

Latin 

hypercube 

one-factor-at-

a-time. 

(LH-OAT) 

sampling 

method 

No data 

mentioned 

15 runoff and 13 

water quality 

parameters   

No data 

mentioned 

 

Sequential 

Uncertainty 

Fitting 

(SUIF-2) 

Global 

Sensitivity 

Analysis 

using the 

No data 

mentioned 

6 hydrologic 

parameters (in 

hypercube one-

factor-at-a-time 

type of sensitivity 

analysis result is 6 

of 

These sensitive 

parameters were 

found to 

considerably 

influence the 

stream 

discharge of the 

watershed 
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Reference 

Sensitivity 

analysis 

method 

Number of 

assessed 

parameters 

Most sensitive 

parameters 

Decision based 

on changes in 

which 

parameter 

Latin 

hypercube 

one-factor-at-

a-time. 

(LH-OAT) 

sampling 

method 

the 14 hydrologic 

parameters (CN2, 

SOL_AWC, 

SOL_K, ALPHA) 

(Li et al., 

2011) 

Latin 

Hypercube-

One-At-a-

Time (LH-

OAT) 

method 

No data 

mentioned 

Discharge, 

sediment, 

inorganic nitrogen 

and phosphorous 

No data 

mentioned 

(Me et al., 

2018) 

Latin 

Hypercube-

One-At-a-

Time (LH-

OAT) 

method 

No data 

mentioned 

Q, SS, ORGP, 

DRP, ORGN, 

NH4–N, and 

NO3–N 

No data 

mentioned 

(Nazari-

Sharabian 

et al., 

2019) 

SWAT-CUP 

program 

No data 

mentioned 

Streamflow 

parameters 

t-stat values and 

p-values were 

used to measure 

the sensitivities 

of parameters 

(Nguyen 

et al., 

2019) 

Sequential 

Uncertainty 

Fitting 

(SUIF-2) 

Global 

sensitivity 

analysis 

No data 

mentioned 

No data 

mentioned 

No data 

mentioned 

(Pinheiro 

et al., 

2019) 

SWAT-CUP 

Program 

Automatic 

Sensitivity 

Analysis 

using SUFI-2 

No data 

mentioned 

No data 

mentioned 

t-stat values and 

p-values 

(Pulighe 

et al., 

2019) 

SWAT-CUP 

sensitivity 

analysis and 

No data 

mentioned 

 

27 parameters 

related Waterflow 

No data 

mentioned 
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Reference 

Sensitivity 

analysis 

method 

Number of 

assessed 

parameters 

Most sensitive 

parameters 

Decision based 

on changes in 

which 

parameter 

manual trial-

and-error 

procedure 

Sediment  

Nitrate 

TN 

Phosphorous  

DO 

(Shimizu, 

2011) 

Latin 

Hypercube-

One-At-a-

Time (LH-

OAT) 

method 

No data 

mentioned 

Phosphorous 

Discharge 

Support Practice 

Factor (USLE_P) 

No data 

mentioned 

(Shrestha 

et al., 

2013) 

SWAT-CUP 

Program 

Automatic 

Sensitivity 

Analysis 

using SUFI-2 

No data 

mentioned 

No data 

mentioned 

No data 

mentioned 

(Thang et 

al., 2018) 

Latin 

Hypercube-

One-At-a-

Time (LH-

OAT) 

method 

No data 

mentioned 

Hydrology 

sediment and 

nutrient processes 

(nitrogen and 

phosphorus) 

Manning’s value 

for main 

channel 

(CH_CN2), the 

curve number 

(CN2), the 

saturated 

hydraulic 

conductivity 

(SOL_K), the 

groundwater 

‘delay’ 

time 

(GW_DELAY), 

and the 

groundwater 

‘revamp’ 

coefficient 

No data 

mentioned 
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Reference 

Sensitivity 

analysis 

method 

Number of 

assessed 

parameters 

Most sensitive 

parameters 

Decision based 

on changes in 

which 

parameter 

(GW_REVAP) 

(Verma et 

al., 2015) 

Sensitivity 

Analysis Tol 

in the 

ArcSWAT 

interface  

No data 

mentioned 

13 parameters 

related to flow  

No data 

mentioned 

(Y. Wang 

et al., 

2018) 

SWAT-CUP 

Program 

Automatic 

Sensitivity 

Analysis 

using SUFI-2 

No data 

mentioned 

five snowmelt 

parameters 

SFTMP, 

SMTMP, 

SMFMX, 

SMFMN, and 

TIMP 

No data 

mentioned 

(Yan et 

al., 2019) 

SWAT-CUP 

Program 

Automatic 

Sensitivity 

Analysis 

using SUFI-2 

No data 

mentioned 

Hydrology, 

nitrogen, nitrate 

No data 

mentioned 

(Zhang et 

al., 2012) 

No data 

mentioned 

No data 

mentioned 

CN2 (curve 

number), soil 

evaporation 

compensation 

factor, soil 

available water 

capacity, and base 

flow alpha factor 

No data 

mentioned 

 

 

4.1.4 Model Performance 

The performance of the SWAT model can be assessed by comparing its simulated 

values with observed data. Various statistical measures, such as R2, Nash-Sutcliffe 

Efficiency (NSE), and Percent Bias (PBIAS) can be used to evaluate the model's 

goodness of fit. R2 mainly describes the degree of collinearity between measured and 
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simulated data, its value ranges between 0 and 1, where 0 indicates no correlation and 1 

represents perfect correlation. Whereas NSE is used to provide a measure of how well 

the simulated output matches the observed data, its value ranges between -∞ and 1 

where the value of 1 describes a perfect fit between the simulated and the observed. 

Likewise, PBIAS is used to assess the accuracy of the model by quantifying the 

systematic errors or deviations it introduces when estimating a quantity or making 

predictions. Table 9 provides a summary of the model performance metrics that were 

used across several studies as well as their reported values. 
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Table 9 Model performance values across the selected studies 

Reference 

Model performance 

parameter 

(Flow/Discharge) 

Model performance parameter 

(Nutrient N/P forms) 
Time step value 

R2 NSE PBIAS R2 NSE PBIAS Daily Monthly 

(Pesce et 

al., 2018) 
0.2 0.61 - 

NO3- 

0.8 

NH4+ 

0.59 

NO3- 

0.6 

NH4+ 

0.51 

NA Y  

(Shrestha 

et al., 

2012) 

0.7 0.7 - 

TN 

0.95 

TP 

0.89 

TN 0.95 

TP 0.7 
NA  Y 

(Zhang et 

al., 2012) 
- - - 

TN 

0.27  

TP 

0.68 

- - Y  

(Khoi et 

al., 2022) 
- 

0.53-

0.89 

-30 to 

33% 
- 

TN 

0.53-

0.94 

-12% to 

18% 
 Y 

(Molina-

Navarro 

et al., 

2014) 

0.6 0.44 13.4% 

NO3- 

0.66 

TP 

0.80 

NO3- 

0.51 

TP 0.57 

NO3- 

45.2% 

TP 38% 

 Y 

(X. Wang 

et al., 

2018) 

- 0.75 - 

TN 

and TP 

0.75 

TN and 

TP 0.75 
-  Y 

(Bi et al., 

2018) 
0.95 0.95 - 

TN 

0.64 

TP 

0.79 

TN 0.58 

TP 

0.0.74 

-  Y 

(Thang et 

al., 2018) 

0.76-

0.89 

0.67-

0.87 
- 

TN 

0.55 

TP0.64 

TN 0.49 

TP 0.54 
-  Y 

 

The most reported and used model performance indices were NSE (51.7%) and R2 

(41.37%). It is worth noting that nutrient loads in the SWAT model are closely linked 

with the performance of flow. Several studies (Bi et al., 2018; Thang et al., 2018) 

reported low skill for nutrients but a high skill for flow simulations. The selected model 
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parameters were adjusted to improve agreement between the simulated and the observed 

data. On the other hand, other studies (Molina-Navarro et al., 2014; Pesce et al., 2018) 

have reported a high skill for nutrients but a low skill for flow. Experiencing variations 

in model performance for nutrient and flow simulations in the SWAT model is 

attributed to different reasons, such as insufficient data quality, which in turn should be 

accurate and representative of the studied watershed. Additionally, model calibration 

and validation processes play pivotal roles in for achieving accurate simulations. (Lee et 

al., 2018). Other studies (Khoi et al., 2022; X. Wang et al., 2018) have reported flow 

and nutrient skills similarly.  

Shrestha et al. (2012) reported that the SWAT model predicted flows with a high 

skill (R2 = NSE = 0.7) with similar predictions for nutrients (TN: R2 = NSE = 0.95 and 

TP: between 0.7 and 0.89). However, they attributed the difficulties in reproducing the 

observed nutrient loads to uncertainties with model parameter selection, missing or low-

quality input data, and limitations with the process algorithm (e.g., SWAT doesn’t 

account for frozen soil process, which can strongly affect the magnitude and rate of 

runoff and related nutrient transport).  

Thang et al. (2018) showed that while the simulated streamflow followed the trend 

of the observed streamflow, it could not capture well the observed high flow. They 

attributed this to the uneven rain gauge distribution (as there was only one rain gauge 

station located in one area of the Dong Nair River Basin).  

 

4.1.5 Land use/land cover and management practices 

Given that the main objective of the targeted studies was to assess the future impacts 

of climate change on nutrient loading at the watershed level, many of them held the 
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non-climatic factors, such as land use/land cover (LULC), as well as management 

practices constant over time. Pesce et al. (2018) for example, kept the land-use/land 

cover, management practices (tilling, fertilizer timing and amount), and anthropogenic 

emissions (i.e., WWTP, industrial discharges) in the Zero river basin, Italy unchanged 

when assessing the impacts of climate change on their study region. Similar 

assumptions were considered by Kujawa et al. (2020) in the Maumee River basin 

located in parts of Michigan, Indiana, and Ohio, USA during the selected future 

projected mid-century period 2046-2065. Marcinkowski et al. (2017) held these factors 

constant in the Upper Narew (Northeast Poland) catchment and Barycz (Southwest 

Poland) catchment for the near (2021-2050) and far (2071-2100) futures. Shrestha et al. 

(2012) also did not account for changes to non-climatic factors, such as land use, crop 

type, and fertilizer application when they assessed the Upper Assiniboine Catchment, 

Canada during the future period (2041-2070). Similarly, Yan et al. (2019) for the Miyun 

Reservoir Basin (MRB), China had crop management practices and fertilizer application 

unchanged over their future assessment periods 2021-2035 and 2051-2065.  

Interestingly, several studies allowed the management practices and land use and 

land cover to be dynamic over time along with changes in climate by using the land use 

change method implemented in SWAT. Molina-Navarro et al. (2014) developed 

different future land use management scenarios that included land use change (e.g., 

change land from forests to agricultural land), modification of fertilizer application 

rates, change in crop types (replacement of winter barely by sunflower which requires 

less fertilizer application), changes in crop rotation (plantation of winter barely for 3 

years and the 1-year growing peas) in their study on the Ompólveda River catchment 

river basin, in central Spain. Similarly, Almeida et al. (2018) developed a combination 
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of societal (shared socio-economic pathways (SSPs)) and climate scenarios (RCPs), 

whereby each of the SSPs describes a varying socio-economic pathway coupled with a 

climate change scenario and integrated into the SWAT model. Bi et al. (2018) 

developed different land use change scenarios, which have different impacts on water 

quality, underlying surface properties, and other hydrological and nutrient processes.  

 

4.2 Climate Models and SWAT Integration 

4.2.1 GCMs and RCMs 

The responses of water quality to climate change are complex and controlled by a 

variety of factors. Warmer temperatures can lead to increased loads of some nutrients in 

water bodies (e.g., nitrate) (Ahmadi et al., 2014), while also reducing loads of other 

constituents (e.g., organic nitrogen and phosphorus) through accelerated decomposition 

and mineralization, as well as altering the timing and magnitude of low and high flows 

(Coppens et al., 2020). Additionally, changes in the frequency and intensity of 

precipitation brought about by climate change can result in increased nutrient fluxes via 

greater stream discharge and accelerated surface runoff and erosion of highland soils. It 

is also worth noting that in climate change, precipitation and temperature are the two 

dominant factors impacting streamflow and non-point source pollution loads, where 

precipitation has the greatest influence on streamflow and sediment loads, while 

temperatures influence nitrogen (N) and Phosphorous (P) concentrations and their 

transport in surface waters (Li & Kim, 2019). As temperatures increase, nutrient 

biogeochemical reaction rates generally increase, thus affecting the availability and 

cycling of nutrients in water systems (such as the rates of nitrification, mineralization, 
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and denitrification). For instance, warmer temperatures increase decomposition and 

mineralization of organic nutrients forms in soils, hence making them available for 

transport to adjacent waterbodies (Shrestha et al., 2012). Different peer-reviewed 

articles have explored the future impacts of climate change on nutrient loading by 

running SWAT simulations (Shrestha et al., 2012).  

Of the studies assessed, 61% directly used weather data from GCM without relying 

on downscaling techniques. Based on the selected peer-reviewed articles, the three most 

used GCM models were the GFDL-ESM2M (developed by Geophysical Fluid 

Dynamics Laboratory Earth System models – United States of America), IPSL-CM 

(developed by Institut Pierre Simon Laplace Climate Models – France) and HadGEM 

(developed by Hadley Centre Global Environmental Model – United Kingdom). Around 

18% of the studies used statistical downscaled data. We also found that 6% of the 

studies directly used data from Regional Climate models (RCMs) to run their SWAT 

models. The remaining 15% either did not use climate models but rather developed 

future scenarios by assuming a certain rate of change in temperature or precipitation 

over time (Jisun, 2013; Li et al., 2011; Marshall & Randhir, 2008; Me et al., 2018; 

Molina-Navarro et al., 2018; Nazari-Sharabian et al., 2019). For example, Li et al. 

(2011) based their predictions on the IPCC estimates that temperatures in China will 

rise by 1.4 degrees Celsius by 2050 and by 2-3 degrees Celsius by the end of the 21st 

century. Marshall and Randhir (2008) developed 2 scenarios, which they named the 

warming high and the warming low scenarios. Though GCMs are widely used to make 

climate predictions and are more commonly used worldwide, especially for 

hydrological models, Nazari-Sharabian et al. (2019), opted to use Earth System Models 

(ESMs) as they tend to reach far beyond GCMs and simulate all relevant aspects of the 
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earth’s system (physical, chemical, and biological processes). Additionally, ESMs can 

be used to study climate variability at different timescales, account for interactions 

between the ocean and atmosphere, and carbon-climate feedback. The percent 

distribution of climate models/data sources used in the reviewed SWAT studies is 

summarized in Figure 9. 

 

 

Figure 9 Percentage distribution of climate models used among the selected studies. 

 

For the studies that used climate models, different statistical downscaling techniques 

were used; the most common methods of downscaling are listed in Table 10. 
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Table 10 Common downscaling methods used.  

Downscaling 

Techniques 
Description GCM 

Parameter 

downscaled 
Resolution Period References 

None  

CCSM4 

CMCC–CM 

CMCC–CMS 

CNRM–CM5 

FGOALS_S2 

 

IPSL–CM5A–MR 

MIROC5 

MPI–ESM–MR 

MRI–CGCM3 

NorESM1–M 

 

N

 

Monthly 
Kim et al., 

2020 

BCC-CSM1-1 

CanESM2 

GFDL-ESM2G 

HadGEM2-CC 

INM-CM4 

MIROC-ESM 

Precipitation 

Min. and 

Max. 

Temperatures 

Relative 

Humidity  

Wind speed  

solar radiation 

 Daily Li et al., 2020 

Delta Change / Factor 

Method 

Modifies the 

observed 

historical time 

series by adding 

the difference 

BCCR-RCM2.0 

CCCMA_CGCM3.1 

CNRM_CM3 

CSIRO_MK3.0 

GFDL-CM2.0 

Precipitation  

Temperature 
 Monthly 

(Jha et al., 

2013; Lee et 

al., 2018; 

Thang et al., 
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Downscaling 

Techniques 
Description GCM 

Parameter 

downscaled 
Resolution Period References 

between the 

future and the 

baseline periods 

as simulated by a 

GCM. It has been 

widely used due 

to its simplicity 

which enables the 

rapid generation 

of a wide range of 

plausible climate 

scenarios from a 

group of GCMs 

GFDL-CM2.1 

MIROC3.2_MEDRES 

MIUB_ECHO_G 

MPI_ECHAM5 

MRICGCM2.3.2A 

2018; Verma 

et al., 2015) 

BCC-CSM1-1.1 

CCSM4.1  

GFDL-ESM2G.1  

IPSL_CM5A-1. R.1  

MIROC_ESM-

CHEM.1 

Precipitation  

Temperature  

CO2 

concentrations 

 Monthly 
Lee et al., 

2018 

CanESM2 

CNRM-CM5 

HadGEM2-AO 

IPSL-CM5A-LR 

MPI-ESM-MR 

Precipitation  

Temperature 
 -- 

Thang et al., 

2018 

CGCM3 

GFDL-CM2  

HadCM3 

Precipitation  

Temperature 
12 × 12 km2 Monthly 

Verma et al., 

2015 

Bilinear Interpolation 

Method 

Used to 

interpolate GCMs 

grid point data to 

precipitation and 

temperature 

observation 

stations in the 

studied watershed 

ACCESS1.3  

HadGEM-ES 

Precipitation  

Temperature 
30 × 30 m2 -- 

(Feng & Shen, 

2021) 
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Downscaling 

Techniques 
Description GCM 

Parameter 

downscaled 
Resolution Period References 

Multivariate Adaptive 

Constructed Analog 

(MACA)  

Used to improve 

the coarse 

resolution of 

GCMs to a higher 

spatial resolution 

that captures 

different observed 

patterns of 

meteorological 

data and 

simulated 

changes in 

climate models. It 

is favored over 

the other 

downscaling 

methods as it has 

direct daily 

interpolate bias 

correction in 

regions of 

complex terrain 

due to its use of a 

historical library 

of observations 

and multivariate 

approach. 

20 GCMs 

air 

temperature, 

precipitation, 

relative 

humidity, and 

solar radiation 

4 km 

grid 
 

(Mukundan et 

al., 2020) 
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Downscaling 

Techniques 
Description GCM 

Parameter 

downscaled 
Resolution Period References 

Nonhomogeneous 

Hidden Markov Model 

(NHMM) 

 

CanESM2 

CNRM-CM5 

GFDL-ESM2M 

IPL-CM5B-LR 

MIROC5 

MRICGM3 

daily rainfall 

Temperature 

 

Daily 

(Nguyen et al., 

2019; Shrestha 

et al., 2017) 

CanESM2  

CNRM-CM5 

GFDL-ESM2M 

IPSL-CM5B-LR 

MIROC5  

MRI-CGCM3 

daily rainfall 

 

Daily 
Shrestha et al., 

2017 

Coefficient adjustment 

method 

involves 

producing the 

projected daily 

series of climate 

data (mainly 

precipitation and 

temperature) 

under different 

scenarios of the 

selected GCMs, 

rather than 

directly using the 

daily outputs 

generated by 

GCMs. 

21 GCMs 
Precipitation  

Temperature 
1° lat/long Daily 

(Zhai & 

Zhang, 2018) 
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Interestingly, most of the studies (79%) conducted did not use an ensemble of 

climate models but instead used individual GCM/RCMs (Figure 10). Those that used 

ensemble models are summarized in Table 11.  

 

 
Figure 10 Usage of ensemble and non-ensemble climate models percent distribution 
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Table 11 Climate models used in the SWAT studies 

Reference 
Country / 

Region  

Evaluated 

Parameters 

Climate Model 
Ensemble? 

GCM / RCM 

(Ahmadi et 

al., 2014) 

United 

States 

Precipitation  

Min. and Max. 

Temperatures 

16 GCMs 
Non-

Ensemble 

(Almeida et 

al., 2018) 
Portugal 

Precipitation 

Surface air 

temperatures 

2 GCMs 

GFDL-ESM2M 

IPSL-CM5A-LR 

Non-

Ensemble 

(Andreas M. 

Culbertson, 

2016) 

United 

States 

Precipitation  

Daily min. and 

max. 

temperatures 

Other 

meteorological 

parameters were 

simulated by the 

SWAT weather 

generator 

15 GCMs Ensemble 

(Ba et al., 

2020) 
China  -- 

3 GCMs 

HadGEM3-RA 

RegCM4  

SUN-MM5 

Non-

Ensemble 

(Bi et al., 

2018) 
China  -- 

Y. 5 GCMs 

GFDL-ESM2M 

HADGEM2-ES 

IPSL-CM5A-LR 

MIROC-ESM-CHEM 

NORESM1-M 

Non-

Ensemble 

(Bouraoui, 

2002) 

United 

Kingdom 

Precipitation  

Temperature  

4 GCMs 

CSIRO-Mk2 

ECHAM4 

CGCM1 

HadCM2 

Non-

Ensemble 

(Čerkasova et 

al., 2018; 

2021) 

Belarus, 

Lithuania, 

Poland, 

Russia, 

Latvia 

Precipitation  

Daily min. and 

max. 

temperature 

values  

CO2 

concentration 

change  

5 GCMs 

GFDL-ESM2M 

HadGEM2-ES 

IPSL-CM5ALR 

MIROC 

NorESM1-M 

Ensemble 
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Reference 
Country / 

Region  

Evaluated 

Parameters 

Climate Model 
Ensemble? 

GCM / RCM 

(Čerkasova et 

al., 2019) 
Lithuania 

Precipitation  

Temperature 

1 GCM 

HadGEM2-ES 

Non-

Ensemble 

(Coppens et 

al., 2020) 
Turkey 

Precipitation  

Temperature 

1 GCM 

MPI-ESM-MR(MPI) 

Non-

Ensemble 

(Cousino et 

al., 2015) 

United 

States 

Daily 

Precipitation  

Daily 

Temperature  

2 GCMs 
Non-

Ensemble 

(Fan & 

Shibata, 2015) 
Japan 

Precipitation  

Temperature 
1 GCM 

Non-

Ensemble 

(Feng & Shen, 

2021) 
China 

Precipitation  

Temperature 

2 GCMs 

ACCESS1.3  

HadGEM-ES 

Non-

Ensemble 

(Glavan et al., 

2015) 
Slovenia  -- 

4 RCMs nested with 2 

GCMs 

Non-

Ensemble 

(Gombault et 

al., 2015) 
Canada  -- CGCM3-ARP 

Non-

Ensemble 

(Jha et al., 

2013) 

United 

States 

Daily 

Precipitation  

Daily min and 

max.Temperatur

e  

10 GCMs 

BCCR-RCM2.0 

CCCMA_CGCM3.1 

CNRM_CM3 

CSIRO_MK3.0 

GFDL-CM2.0 

GFDL-CM2.1 

MIROC3.2_MEDRES 

MIUB_ECHO_G 

MPI_ECHAM5 

MRICGCM2.3.2A 

Non-

Ensemble 

(Jisun, 2013) 
South 

Korea 
  No data available Ensemble 

(Kalcic et al., 

2019) 

United 

States 

Precipitation  

Temperature 

A 5-member ensemble 

of climate models was 

used in this study  

1 global model from 

the CMIP5 - CESMI-

CAMS 

2 regional dynamically 

Non-

Ensemble 
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Reference 
Country / 

Region  

Evaluated 

Parameters 

Climate Model 
Ensemble? 

GCM / RCM 

downscaled models - 

CRCM-CGCM3 & 

RCM3-GFDL from 

CMIP3 

2 regional models 

dynamically 

downscaled from 

CMIP5 - RCM4-GFDl 

& RCM4-HadGEM 

(Khoi et al., 

2022; Trang 

et al., 2017) 

Vietnam, 

Cambodia

, and Lao 

PDR 

Rainfall  

Temperature  

5 GCMs 

CanESM2 

CNRM-CM5 

HadGEM2-A0 

IPSL-CM5A-LR 

MPI-ESM-MR 

Non-

Ensemble 

(Kim et al., 

2020) 

South 

Korea 
  10 GCMs 

Non-

Ensemble 

(Li & Kim, 

2019) 

South 

Korea 

PrecipitationMin

. and Max. 

Temperatures 

Relative 

Humidity Wind 

speed solar 

radiation  

6 GCMBCC-CSM1-

1CanESM2GFDL-

ESM2GHadGEM2-

CCINM-CM4MIROC-

ESM 

Non-

Ensemble 

(Kim et al., 

2014) 

South 

Korea 
   Non-

Ensemble 

(Kujawa et 

al., 2020) 

United 

States 

Precipitation  

Temperature 

6 GCMs 

CanESM2 

CSIRO_r6 

CSIRO_r4 

CSIRO_r10 

MPI-ESM 

NorESM 

Non-

Ensemble 

Miralha et al., 

2021 
Germany 

Precipitation  

Min. and Max. 

Temperatures 

4 GCMs 

CCSM4 

MPI-ESM-MR (i.e. 

MPI) 

CNRM-CM5 (i.e. 

CNRM) 

IPSL-CM5A-MR 

(IPSL) 

Non-

Ensemble 
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Reference 
Country / 

Region  

Evaluated 

Parameters 

Climate Model 
Ensemble? 

GCM / RCM 

(Verma et al., 

2015) 

United 

States 

Monthly 

Precipitation  

Temperature 

3 GCM 

CGCM3 

GFDL-CM2  

HadCM3 

Ensemble 

(Lee et al., 

2018) 

United 

States 

Precipitation  

Temperature  

CO2 

concentrations 

5 GCMs 

BCC-CSM1-1.1 

CCSM4.1  

GFDL-ESM2G.1  

IPSL_CM5A-1.R.1  

MIROC_ESM-

CHEM.1 

Non-

Ensemble 

(Li et al., 

2011) 

check dates 

China   No data available 
No data 

available 

(Marcinkowsk

i et al., 2017) 
Poland 

Daily 

Precipitation  

Temperature 

8 GCM-RCM runs 

provided with EURO-

CORDEX experiment 

Non-

Ensemble 

(Marshall & 

Randhir, 

2008) 

United 

States 

Daily 

Precipitation  

Temperature 

No data available 
No data 

available 

(Me et al., 

2018) 

New 

Zealand 

Precipitation  

Temperature 
No data available 

No data 

available 

(Mehan et al., 

2019) 

United 

States 
  

9 GCMs 

bcc_csm1_1 

CCSM4 

GFDL_ESM2G  

GFDL_ESM2M 

IPSL_CM5ALR 

IPSL_CM5AMR 

MIROCESM  

MIROCESMCHEM 

NorESM1M 

Non-

Ensemble 

(Mehdi, 

Lehner, et al., 

2015) 

Canada   

RCM piloted by GCM  

3 Scenarios  

CC1 CRCM4.1.1 with 

CGCM3-4 

CC2 CRCM4.2.3 with 

CGCM3-5 

Non-

Ensemble 
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Reference 
Country / 

Region  

Evaluated 

Parameters 

Climate Model 
Ensemble? 

GCM / RCM 

CC3 CRCM4.2.3 with 

ECHAM5 

(Mehdi, 

Ludwig, et al., 

2015; Mehdi 

et al., 2016) 

Germany   

Each RCM simulation 

was driven by a 

coupled general 

circulation model 

(GCM) 

 

CRC-CGC-45k 

RAC-ECM-MB1-50k 

RAC-ECM-MB2-50k 

RAC-ECM-MB3-50k 

RCA-BCM-50k 

RCA-ECM-50k 

RCA-HCM-50k 

Ensemble 

(Molina-

Navarro et al., 

2014) 

Spain 

Monthly 

Average of 

Rainfall 

Daily Min. and 

Max 

Temperatures 

No data available 
No data 

available 

(Mukundan et 

al., 2020) 

United 

States 
  20 GCMs 

Non-

Ensemble 

(Nazari-

Sharabian et 

al., 2019) 

Azerbaija

n 

Daily Climate 

Predictions 
No data available 

No data 

available 

(Nguyen et 

al., 2019) 
Australia 

Rainfall  

Temperature  

6 GCM 

CanESM2 

CNRM-CM5 

GFDL-ESM2M 

IPL-CM5B-LR 

MIROC5 

MRICGM3 

Ensemble 

(Pesce et al., 

2018; 

Sperotto et al., 

2019) 

Italy 

Precipitation  

Min. and Max 

Temperatures 

General Circulation 

Model/ Regional 

Climate Model 

(GCM/RCM) nested 

simulations available 

with the highest spatial 

resolution were 

Non-

Ensemble 
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Reference 
Country / 

Region  

Evaluated 

Parameters 

Climate Model 
Ensemble? 

GCM / RCM 

selected 0.75x0.75 

degree, Coupling GCM 

CMCC-CM with RCM 

COSMO-CLM 

(Pinheiro et 

al., 2019) 
Brazil   No data available 

Non-

Ensemble 

(Piniewski et 

al., 2014) 
Poland 

Precipitation 

Temperature  

CO2 

Concentrations 

(But also CO2 

concentration 

was considered 

to better 

represent the 

future climate 

conditions) 

1 RCM RCA3 coupled 

with GCM ECHAM5 
Ensemble 

(Records et 

al., 2014) 

United 

States 

Precipitation 

Temperature 

3 GCMs  

INMCM4 

MIROC5 

CanESM2 

Non-

Ensemble 

(Shrestha et 

al., 2017) 
Australia   

6 GCM 

CanESM2  

CNRM-CM5 

GFDL-ESM2M 

IPSL-CM5B-LR 

MIROC5  

MRI-CGCM3 

Ensemble 

(Shrestha et 

al., 2012) 
Canada 

Daily 

Precipitation  

Min. and Max. 

Temperature 

CRCM 

HRM3  

RCM3 

Ensemble 

(Thang et al., 

2018) 
Vietnam 

Precipitation  

Temperature  

5 GCMs: 

CanESM2 

CNRM-CM5 

HadGEM2-AO 

IPSL-CM5A-LR 

MPI-ESM-MR 

Non-

Ensemble 

(Tong et al., 

2007) 

United 

States 
 No data available 

No data 

available 
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Reference 
Country / 

Region  

Evaluated 

Parameters 

Climate Model 
Ensemble? 

GCM / RCM 

(Trolle et al., 

2015) 
Denmark 

Precipitation  

Air Temperature  

(precipitation 

for quantifying 

water and 

nutrient runoff), 

which are the 

main drivers of 

change in 

hydrology and 

nutrient 

dynamics 

No data available Ensemble 

(Van Liew, 

2012) 

United 

States 

Monthly 

Temperature  

Precipitation 

 Non-

Ensemble 

(Wang & 

Kalin, 2018) 

United 

States 

Precipitation  

Temperature  

4 GCMs 

GFD-CM2-0 

GISS-model-e-r 

NCAR-CCSM3-0  

UKMO-HadCM3 

Non-

Ensemble 

(Wang et al., 

2018) 
China 

Daily 

Precipitation  

Min. and Max. 

Temperature 

1 GCM 

HadCM3 

Non-

Ensemble 

(Xu et al., 

2018) 

United 

States 
  

1 GCM 

CESM1 

Non-

Ensemble 

(Yang et al., 

2019) 

United 

States 

Daily 

Precipitation  

Daily 

Temperature  

4 GCM 

ESM2M 

HadGEM-ES 

IPSL-CM5A-LR 

MIROC-ESM-CHEM 

Non-

Ensemble 

(Yang et al., 

2018) 

China 

(Hong 

Kong) 

  16 GCMs 
Non-

Ensemble 

(Ye & 

Grimm, 2013) 

United 

States 

Precipitation  

Min. and Max 

Temperatures 

1 GCM.  

CGCM2 

Non-

Ensemble 

(Zhai & 

Zhang, 2018) 
China 

Precipitation  

Temperature 
21 GCMs 

Non-

Ensemble 

(Zhang et al., 

2012) 
China   

1 GCM  

HadCM3 

Non-

Ensemble 
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4.2.2 Climate Change Scenarios 

It is worth noting that many of the studies used a range of SRES scenarios, i.e., 

using A1B, B1, B2, and A2 in the same study. The most applied SRES scenarios were 

the A2 (used in 13 studies), A1B (used in 9 studies), B1 (used in 6 studies), followed by 

B2 (used in 2 studies). As for the updated set of emission scenarios (i.e., RCP), the most 

utilized were RCP 4.5 (applied in 26 studies) and RCP 8.5 (applied in 33 studies). The 

following table lists the different emissions scenarios used (RCP and SRES) in each 

study while also showing the future projected study periods.  

 

Table 12 Climate Emission Scenarios (SRES vs. RCP)  

Reference 

Emission Scenario  

Studied Period(s) 
SRES RCP 

A

2 

B

1 

B

2 

A1

B 

2.

6 

4.

5 
6 

8.

5 

(Ahmadi et 

al., 2014) 
Y Y   Y         

Mid-Century 2045 - 2064 

Late Century 2080-2099 

(Almeida et 

al., 2018) 
          Y   Y 

Early Century 2025-2034 

(2030s) 

Mid-Century 2055 - 2064 

(2060s) 

(Andreas M. 

Culbertson, 

2016) 

          Y   Y 

Near Century 2010-2039 

Mid-Century 2040-2069 

Late-Century 2070-2099 

(Ba et al., 

2020) 
          Y   Y Future Period 2040-2044 

(Bi et al., 

2018) 
        Y Y   Y Future Period till 2050 

(Bouraoui, 

2002) 
                

4 Transient scenarios of 30 

years centered on the year 

2050 were selected  

 

2020 (1 GCM) 

2050 (4 GCMs) 

2080 (1 GCM) 

 

% change scenarios for 
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Reference 

Emission Scenario  

Studied Period(s) 
SRES RCP 

A

2 

B

1 

B

2 

A1

B 

2.

6 

4.

5 
6 

8.

5 

precipitation and 

temperature were considered 

for each period  

(Čerkasova et 

al., 2018; 

2021) 

          Y   Y 

Near Term Period up to 

2050 

Long Term Period up to 

2100 

(Čerkasova et 

al., 2019) 
          Y   Y 

Near Term Period 2020-

2050 

Long-Term Period 2051-

2099 

(Coppens et 

al., 2020) 
          Y   Y Future Period 2020-2090 

(Cousino et 

al., 2015) 
        Y Y Y Y 

Near Future Period 2046-

2065 

Late Future Period 2080-

2099 

(Fan & 

Shibata, 

2015) 

  Y             

Short Term Period 2010-

2039 

Mid-Term 2040-2069 

Long Term 2070-2099 

(Feng & 

Shen, 2021) 
          Y   Y 

Near Period 2020-2042 

Future Period 2060-2082 

(Glavan et 

al., 2015) 
      Y         

Early Period 2001-2030 

(2030s) 

Mid-Period 2031-2060 

(2060s) 

Later Period 2061-2090 

(2090s) 

(Gombault et 

al., 2015) 
Y               Future Period 2041-2070 

(Jha et al., 

2013) 
      Y         

Mid-century period 2045-

2065 

(Jisun, 2013)           Y   Y 
Mid-Century Period 2020-

2069 

(Kalcic et al., 

2019) 
Y             Y 

Future Mid-Century Period 

2046-2065 

(Khoi et al., 

2022; Trang 

et al., 2017) 

          Y   Y 

Early Period 2030s 

Mid Period 2060s 

Late Period 2090s 

(Kim et al., 

2020) 
              Y   
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Reference 

Emission Scenario  

Studied Period(s) 
SRES RCP 

A

2 

B

1 

B

2 

A1

B 

2.

6 

4.

5 
6 

8.

5 

(Li & Kim, 

2019) 
          Y   Y 

First Period: - 2019-

2059Second Period - 2060-

2099 

(Kim et al., 

2014) 
Y Y   Y   Y   Y 

Early Period 2020-2059 

(2040s) 

Late Period 2060-2099 

(2080s) 

(Kujawa et 

al., 2020) 
              Y 

Future Mid-Century Period 

2046-2065 

 

A 20-year time window is 

appropriate for climate 

change studies based on the 

revised climate period from 

the World Meteorological 

Organization 

Miralha et al., 

2021 
              Y Future Period 2046-2065 

(Verma et al., 

2015) 
      Y         

Mid-Century Period 2045-

2055 

Far-Century Period 2089-

2099 

(Lee et al., 

2018) 
              Y Future Period 2083-2098 

(Li et al., 

2011) 

check dates 

                  

(Marcinkows

ki et al., 

2017) 

          Y     

Near Future Period 2021-

2050 

Far Future Period 2071-

2100 

(Marshall & 

Randhir, 

2008) 

Y               Future Period 2060-2100 

(Me et al., 

2018) 
              Y   

(Mehan et al., 

2019) 
Y         Y   Y 

Mid-Century Period 2020-

2069 

Far Century Period 2070-

2099 
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Reference 

Emission Scenario  

Studied Period(s) 
SRES RCP 

A

2 

B

1 

B

2 

A1

B 

2.

6 

4.

5 
6 

8.

5 

(Mehdi, 

Lehner, et al., 

2015) 

Y               Future Period 2041-2070 

(Mehdi, 

Ludwig, et 

al., 2015; 

Mehdi et al., 

2016) 

Y     Y         Future Period 2041-2070  

(Molina-

Navarro et 

al., 2014) 

Y Y   Y         

Near Future Period 2046-

2065 

Far Future Period 2081-

2100 

(Mukundan 

et al., 2020) 
              Y 

Mid-Century Period 2051-

2060 

(Nazari-

Sharabian et 

al., 2019) 

          Y   Y Future Period 2020-2050 

(Nguyen et 

al., 2019) 
          Y   Y Future Scenario 2021-2050  

(Pesce et al., 

2018; 

Sperotto et 

al., 2019) 

          Y   Y 
Mid-term period 2041-2070 

long term period 2071-2100 

(Pinheiro et 

al., 2019) 
          Y   Y   

(Piniewski et 

al., 2014) 
      Y         Future Period 2035-2064 

(Records et 

al., 2014) 
          Y   Y Future Period 2040s 

(Shrestha et 

al., 2017) 
          Y   Y Future Period 2046-2070 

(Shrestha et 

al., 2012) 
Y               Future Period 2041-2070 

(Thang et al., 

2018) 
          Y   Y 

Near Future Period 2015-

2040 (2020s) 

Mid-Furure Period 2045-

2070 (2050s) 

Far Future Period 2075-

2100 (2080s) 

(Tong et al., 

2007) 
                  

(Trolle et al., 

2015) 
                Future Period 2071-2099 
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Reference 

Emission Scenario  

Studied Period(s) 
SRES RCP 

A

2 

B

1 

B

2 

A1

B 

2.

6 

4.

5 
6 

8.

5 

(Van Liew, 

2012) 
Y Y   Y         Future Period 2040-2059 

(Wang & 

Kalin, 2018) 
Y Y   Y         

Period 2016-2040 

25 years is a good period 

long enough to explore the 

potential responses in the 

future due to climate change 

relative to a baseline period. 

(Wang et al., 

2018) 
          Y   Y 

2021-2040 (2020s) 

2041-2070 (2050s) 

2071-2100 (2080s) 

(Wang et al., 

2018) 
  Y Y           

Near Future Period 2021-

2050 

(Xu et al., 

2018) 
Y             Y Future Period 2042 - 2065 

(Yang et al., 

2019) 
          Y   Y Future Period 2020-2099 

(Yang et al., 

2018) 
          Y   Y 

Mid Centrury Period 2040-

2060 

Late Century Period 2070-

2090 

(Ye & 

Grimm, 

2013) 

    Y           Future Period 1991-2100 

(Zhai & 

Zhang, 2018) 
        Y Y   Y 

2021-2030 (2020s) 

2031-2040 (2030s) 

(Zhang et al., 

2012) 
Y               

2010-2039 (2020s) 

2040-2069 (2050s) 

2070-2099 (2080s) 

 

Even though the RCP scenarios represent a profoundly different approach to 

examining future climate than what was considered in the previous scenarios (SRES), 

there are similarities between some RCP and SRES scenarios in terms of median 

temperature increase by 2100 (James et al., 2014), as illustrated in Table 13.  
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Table 13 Comparison between RCP and SRES Scenarios 

RCP Scenario (Equivalent) SRES 

RCP 2.6 None 

RCP 4.5 SRES B1 

RCP 6.0 SRES B2 

RCP 8.5 SREs A1F1/A1B 

 

 

The choice of climate scenarios, particularly between SRES and RCP, reflects 

advancements in climate science and a desire for more realistic and policy-relevant 

projections. The SRES scenarios provided a range of potential future emissions based 

on different socioeconomic storylines. However, they became outdated as the 

understanding of climate science and the complexities of human activities influencing 

climate evolved. The RCPs on the other hand address these shortcomings by focusing 

on specific radiative forcing pathways and considering a broader range of potential 

future climates. RCPs offer a more robust framework for integrating emission scenarios 

with climate modeling, allowing for a more comprehensive exploration of climate 

change impacts. Moreover, RCPs align with the Intergovernmental Panel on Climate 

Change's (IPCC) Fifth Assessment Report, providing a standardized and globally 

accepted set of scenarios that facilitates consistency and comparability across studies. 

The RCPs, ranging from low to high radiative forcing (RCP 2.6, 4.5, 6, & 8.5), allow 

researchers, policymakers, and stakeholders to assess a spectrum of potential climate 

futures, enhancing the relevance and applicability of climate projections for a wide 

array of applications. Consequently, this was evident in the peer-reviewed articles 

chosen.  
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4.2.3 Other Climate Variables 

Other climate variables (such as windspeed, relative humidity, solar radiation, 

etc.) were generated using the automated SWAT weather generator. This feature is used 

to simulate future weather conditions based on historical/observed weather data and 

statistical patterns collected from weather gauge stations. It is also worth noting that 

they do not predict weather with high precision but generate synthetic weather 

sequences that can be used for various purposes (impact of different climate scenarios 

on waterbodies). For example, Kujawa et al. (2020) and Miralha et al. (2021) used the 

automated weather generator to predict different climatic variables (such as windspeed, 

relative humidity, and solar radiation) for the mid-future century time period 2046 to 

2065. Others such as (Lee et al., 2018; Thang et al., 2018; Verma et al., 2015) also used 

the weather generator to model the above-mentioned climate variables (windspeed, 

relative humidity, solar radiation) for different future periods (far-future century period 

2070-2100). 

 For watersheds that are affected by snow, it is important to note how the SWAT 

applications accounted for future changes in snow (snow accumulation, snowmelt, snow 

dynamics, etc.). Gombault et al. (2015), used a modified version of SWAT 2005 to 

simulate hydrological process and NPS pollution changes in the Pike River watershed in 

Southern Quebec, Canada. It was evident in that study that the SWAT model had certain 

limitations in simulating snowmelt or snowfall at extremely low temperatures (zero 

degrees Celsius) during the future projection period (2041-2070), which caused 

overestimation or underestimation of several parameters such as sediment and TP loads. 

Kim et al. (2014) assessed the impacts of potential climate change on snowmelt and 

how that affected non-point source pollution loads reaching a stream in a South Korean 
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watershed. They used the Terra MODIS NDSI (Moderate Resolution Imaging 

Spectroradiometer Normalized Difference Snow Index - a remote sensing index 

specifically designed for snow cover detection) to obtain the snow cover area in the 

studied watershed and determined the snow depletion parameters using an 11-year data 

historical period (2000-2010) for future projection. To conduct future projections, the 

SWAT model was set up using the different observed historical input data (such as 

inflow, sediment, TN, TP, etc.), meteorological data (precipitation and temperature), 

snow depth data (which are necessary to determine the snow depletion parameters for 

the watershed) as per the below equation.  

snocov = SNO/SNO100 x (SNO/SNO100) + exp (cov1 - cov2 x SNO/SNO100)) -1; 

Accordingly, the SWAT snowmelts parameters and TERRA MODIS images were 

linked to obtain the snow cover area and the snow depth distribution (SDD), which were 

then used to project snow dynamics for future periods (2040s and 2080s). Shrestha et al. 

(2012) used SWAT version 2005, which is equipped with a temperature-index modeling 

approach, to estimate snow accumulation and melt in the upper Assiniboine catchment, 

located in the Lake Winnipeg watershed, Canada.  

 

4.3 Nutrients and flow 

4.3.1 Changes in Flow/Streamflow/Discharge 

Changes in temperature and precipitation play important roles in nutrient 

mineralization, immobilization, and emission to the atmosphere. In addition, such 

climatic changes regulate nutrient export by affecting water availability for nutrient 

delivery from land to rivers, and nutrient phase change along the transport pathways 
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(Yang et al., 2019). An important transport pathway for nutrient and sediment export is 

via discharge or streamflow (Miralha et al., 2021). Around 49% of the reviewed studies 

reported an increase in flow due to increased seasonal precipitation (Andreas M. 

Culbertson, 2016; Čerkasova et al., 2018; Lee et al., 2018; Shrestha et al., 2012; Thang 

et al., 2018; Tong et al., 2007; Trang et al., 2017; Trolle et al., 2015; Yan et al., 2019; 

Yang et al., 2019). The range of projected increase varied from as low as 1% up to 

100%. The lowest projected increase was reported in the 3SRB River Basin of the 

Lower Mekong Basin, Thailand, where minor changes in rainfall and temperature were 

expected to increase future flows by 1% under RCP 8.5 by the mid-century future 

period (2040s) (Khoi et al., 2022). On the other hand, the highest future projected 

increase in flow was reported in the St. Croix River basin, USA where it was expected 

to increase between 60% to 100% by the last 2 decades of the 21st century (the 2080s-

2090s) under RCP 8.5 (Yang et al., 2019).  

On the other hand, almost 40% of the studies projected a decrease in future 

flows, which was attributed to a decrease in precipitation and an increase in both 

evapotranspiration and temperature (Almeida et al., 2018; Molina-Navarro et al., 2014; 

Nazari-Sharabian et al., 2019; Nguyen et al., 2019; Y. Wang et al., 2018; Ye & Grimm, 

2013). The range of decrease recorded among the selected studies varied between 1.8% 

to 60%. The lowest recorded decrease in flow was reported by Nguyen et al. (2019) in 

the Mediterranean Torrens Catchment, South Australia as a result of a decrease in 

precipitation and an increase in temperature during the future projected period (2021-

2050) under both RCP 4.5 and 8.5. The highest projected reduction in flow was 60% 

reported by Coppens et al. (2020) during the future projected period (2060-2080) under 

RCP 8.5 in Lake Mogan, near Ankara, Turkey also due to the temperature increases and 
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decreases in precipitation. Likewise, Ye and Grimm (2013) reported a decrease in flow 

in the Sycamore Creek (a tributary of the Verde River, Phoenix, Arizona) by 31% for 

the 2011-2040 period, by 47% for the 2041-2070 period, and 56% for the 2071-2100 

period, under SRES ‘B2’ as a result of increased temperature and decreased 

precipitation. They also presumed that other hydrological processes such as lateral flow, 

soil water, and groundwater recharge were also projected to decrease.  

Other studies (11%) reported no clear trends (increase/decrease) in future 

projected river flows. For example, Zhang et al. (2012) reported a variable 

increase/decrease in flow trend in the Shitoukoumen Reservoir Basin, China (2010-

2022 upward trend, 2022-2040 downward trend, 2040-2062 sharp increase, 2062-2078 

slow declining trend, 2082-2088 sharp upward and downward trends, 2088-2099 

increasing trend) under SRES ‘A2’. Čerkasova et al. (2021) and Pinheiro et al. (2019) 

reported no projected trends under different emissions scenarios (RCP 4.5 and 8.5) 

during the studied future periods due to the high variability of historical/observed data. 

 

4.3.2 Changes to Phosphorous 

The highest projected increase in phosphorus concentrations was reported by 

(Almeida et al., 2018). They expected that TP levels would increase by 200% and 

500%, respectively, during the future period 2060 (defined as a 10-year average from 

2055 to 2064) under the different emission storylines (RCP 4.5 and RCP 8.5). This 

increase was a result of projected increases in the use of fertilizers and a decrease in 

water availability in the river (as the precipitation during the projected period was 

expected to decrease).  
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(Čerkasova et al., 2018, 2021) simulated the TP and TN loadings under emission 

scenarios RCP 4.5 and 8.5, using the SWAT model in a large-scale watershed 

(Nemunas River Basin) shared among several countries Belarus, Lithuania, Poland, 

Russia, and Latvia. The study projected a significant increase in TP (62%) (under RCP 

4.5) and TN (32%) (under RCP 8.5) concentrations in the fall, winter, and spring 

months (October to April), and then a reduction in loads for the summer period for the 

long-term future projected period (2100). The increase in TP was primarily associated 

with the projected increase in sediment loads during the simulation period, which was 

reported as the main source of particle-bound phosphorous (Čerkasova et al., 2018).  

Another study by Trang et al. (2017) showed that TP annual yield was predicted 

to increase for all future periods (the 2030s,2060s, and 2090s) with the highest recorded 

in the 2090s during the wet season under emission scenarios RCP 4.5 and 8.5. This 

increase was directly associated with the increase in river discharge because of 

increased precipitation in the 3S River Basin (Sekong, Sesan, and Srepok Rivers) 

(Trang et al., 2017). This was also the case as reported by X. Wang et al. (2018), who 

projected an increase in TP loading under emissions scenarios A2 (2%) and B2 (6%) as 

a result of increased precipitation, rainfall intensity, and soil erodibility in the Liao 

River basin, China during the near future projected period 2021-2050. This was also 

reported by Molina-Navarro et al. (2014) who studied changes to TP loading in the 

catchment of the Ompólveda River in Spain under different climate change scenarios. 

They found that the TP export showed a strong statistical relationship with the amount 

of direct runoff and TP concentrations, implying that soil erosion caused by increased 

runoff events was one of the main sources of TP. Yang et al. (2019) reported that 

projected climate conditions would generally result in increasing nutrient export (in 
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specific TP) in the St. Croix River Basin (SCRB), USA during the period 2020-2099 

under RCP 4.5 by 18% and RCP 8.5 by 35.7%. (Kim et al., 2014) studied the impacts 

on nutrient loads during snowmelt periods. They reported an 115% increase under 

scenario RCP 4.5 and a 110.8% increase under scenario 8.5. In conclusion, TP loads 

during the snowmelt period under RCP scenarios (4.5 and 8.5) showed a greater 

increase in annual total loads as compared to the SRES scenarios (A1B, B1, A2) which 

showed an overall decrease in loads. The reasoning behind this was due to the big 

differences in precipitation during the snowmelt period between the SRES and RCP 

scenarios. 

On the other hand, other studies reported a projected decrease in TP loadings. 

Shrestha et al. (2017) estimate a 20% decrease in annual TP loads, with an overall 

decrease across all seasons, with spring experiencing the highest decline, with a 44.9% 

drop under emission scenario RCP 8.5 during the future studied period (2046-2070). 

The decrease in TP loads was a result of a decrease in precipitation (9.7% decrease), 

flow (up to a 20.5% decrease), and sediment yields. Y. Wang et al. (2018) also reported 

that TP would decrease in the future due to climate change. They reported that 

reductions were largest under RCP 8.5 as compared to RCP 4.5 in the Liao River, 

Northeastern China. The opposite was reported by Čerkasova et al. (2019) in the Mnija 

River, Lithuania, as their results indicated a 35% decrease in TP loading under RCP 4.5 

and a 28% decrease under RCP 8.5 for the period between 2051-2099. (Coppens et al., 

2020), reported that SRP was predicted to decline by 11% across most emissions 

scenarios. The decrease in SRP loading was more associated with changes in the lateral 

groundwater flows rather than to the changes in surface runoff. 
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Several studies recorded no significant changes in TP or fluctuations during the 

future projected period. For example, (Zhang et al., 2012) reported a fluctuating upward 

trend for the simulated period between 2042 2048 and a downward trend for the 2070-

2078 period. Bi et al. (2018) projected that there would be no future incidence of TP 

pollution under RCP 2.6 and 8.5.  

Several articles (Bi et al., 2018; Gombault et al., 2015; Jisun, 2013; 

Marcinkowski et al., 2017; Shrestha et al., 2017; Thang et al., 2018; Y. Wang et al., 

2018) showed that the incidence of TP pollution indicates a positive correlation with 

precipitation change and runoff/streamflow and a negative correlation with temperature. 

This will impact surface runoff and consequently soil erosion, transportation of the bulk 

of sediment-attached particles, and nutrient transport. The higher the increase in 

precipitation, especially during winter and flood seasons, the higher the quantity of 

surface and total runoff, resulting in the transport of a greater number of sediments, TP, 

and TN from the land into water courses (Gombault et al., 2015).  

 

4.3.3 Changes to Nitrogen 

X. Wang et al. (2018) reported an annual 6% to 10% increase in TN load under 

SRES scenarios A2 and B2, respectively, in the Liao River Basin for the future studied 

projected period (2021-2050). It was shown that TN was mainly controlled by the 

amount of streamflow and capacity of soil infiltration. Marcinkowski et al. (2017) 

projected an increase of 35% and 45% in TN loading in the Baric and Upper Narew 

Catchments, Poland, respectively in the far future period (2071-2100) using RCP 4.5. 

Similarly, Gombault et al. (2015) projected a TN increase of 24-34% for the future 

projected period (2041-2070); yet they reported considerable increases in certain 
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months. Shrestha et al. (2012) showed an overall increase in TN loading over the future 

period (2041-2070). Whereby TN load was expected to increase between 10 and 50%, 

depending on the RCM. Noting that fertilizer inputs were held constant, they concluded 

that these increases resulted from enhanced decomposition and mineralization of 

biomass.  

 Kim et al. (2014), projected future climate change using different emissions 

scenarios (SRES and RCP) for two different future periods (the 2040s and 2080s). 

Running the models under SRES emissions scenarios A1B, A2, and B1 showed that 

future monthly TN values would experience a big increase during the month of April as 

compared to baseline records; yet an overall annual decrease in TN loading ranging 

between 1% to 8.9% during the 2040s period and 0.5% to 11.6% during the 2080s 

period. They reported that under scenarios RCP 4.5 and 8.5 TN loadings were projected 

to increase by 63.6% and 69.6%, respectively during the 2080s period. Meanwhile, oth 

Khoi et al. (2022) and Yan et al. (2019) showed an increase in TN loads of 11.35% and 

14%-26.9% based on the emission scenarios used (RCP 4.5 and 8.5). Though, Khoi et 

al. (2022) projected a declining trend in precipitation ranging between 28-34% during 

the future studied period (2020-2099). The variations in TN load projections were 

attributed to the projected changes in streamflow. It is worth noting that the highest 

increase in TN loads was also observed in the months witnessing increased precipitation 

or during the flood season (June through September). Yan et al. (2019) showed the 

largest increase in TN loading during the month of July under RCP 4.5 and 8.5. The 

seasonal variation in the TN loading was consistent with projected seasonal changes in 

streamflow. The strongest increase in the TN loading would occur in the flood season 

between June and September. Lee et al. (2018) justified that their future projected 66% 
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increase in annual nitrate loads in Tuckhose Creek Watershed (TCW) and 56% increase 

for Greensboro Watershed (GW), Maryland, USA were not solely a result of the 

increase associated with the change in rate of precipitation but also due to significant 

export of nitrate from fertilization application. Mukundan et al. (2020) and Marshall and 

Randhir (2008) carried out a SWAT simulation using future climate change scenarios 

RCP 4.5 and SRES A2, respectively. Future projections showed an increase in the 

loading of particulate forms of N due to an increase in the frequency and magnitude of 

large storm events that carry sediments and particulate forms of nitrogen. Runoff from 

rainfall and snowmelt events is known to drive nitrate transport processes. NO3-loading 

was mostly determined by runoff and therefore more linked with changes in 

precipitation than with temperature changes (Kim et al., 2020). On the other hand, Li et 

al. (2011) attributed the increase of the inorganic form of nitrogen to temperature 

increase, whereby a 3-degree (C) increase resulted in a 40% increase in load. In their 

study, the increase in inorganic nitrogen was greater than that of sediment and 

discharge, which indicates that inorganic nitrogen was more sensitive to temperature 

change as compared to the other parameters. It was also mentioned that with an 

expected temperature increase, an increase in microbial activity was expected to 

accelerate decomposition and enhance nutrient transformation from organic to inorganic 

forms (Li et al., 2011). Tong et al. (2007) reached the conclusions and showed that in 

almost all species of nitrogen (including NH4+), the average daily concentration 

increased under future projections as the degree of dryness increased, thus attributing 

the increase of NH4+ to an increase in temperature. The driest scenario (using emission 

scenario RCP 8.5) produced the highest average daily concentration, this indicates that 

the pollutant is likely to become more concentrated as the runoff volume decreases. Me 
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et al. (2018) reported an increase of 14.4% because of a 2.7-degree Celsius increase in 

temperature. 

 Verma et al. (2015) projected that changes in nitrate loads were similar to the 

changes projected in average monthly flows, as there was a rise in nitrate loads during 

winter and spring months (high flows/discharge) for both future periods (2045-2055 and 

2089-2099 by 17% and 28% respectively) and a decrease in summer months (low 

flows/discharge) during the same future periods (by 43% and 33%). A similar trend was 

observed in (Coppens et al., 2020), whereby NO3-loading was projected to decrease by 

45% due to the decrease in precipitation, reduction in the runoff, and groundwater flow. 

The nitrate loadings in the Upper Mississippi River Basin (Jha et al., 2013) showed 

large variations in nitrate loading trends as the Iowa sub-watersheds were expected to 

show decreasing trends throughout the course of the future periods whereas the Illinois 

sub-watersheds showed an increasing trend. This variation between the sub-watersheds 

was due to the different environmental characteristics of each.  

In general, the trends of sediment yield, TN, and TP loads occur in the same 

direction as the trend of streamflow (Thang et al., 2018). Overall, the above results 

indicate that future TN and TP loadings will change with the timing and magnitude of 

runoff. Changes in TN and TP (or nutrient transport regime) are attributed to changes in 

climatic variables (Shrestha et al., 2012).  
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4.4 Limitations and Future Framework  

4.4.1 Limitations in the SWAT model  

SWAT is a widely used water quality model dealing with many aspects related 

to water cycle simulation, but it still has limitations. A common limitation of the SWAT 

model is related to its limited ability for simulating and predicting snowmelt runoff. 

SWAT is equipped with a simplified snowmelt module that uses a degree-day method, 

which relies on temperature indices, mainly snowpack temperature and air temperature 

on snowmelt. This in turn does not allow the model to capture the spatial and temporal 

variability of snow accumulation and snow melting in mountainous regions accurately. 

Additionally, this method may not fully account for the impact of other meteorological 

factors such as solar radiation. Solar radiation according to (Ariel L. Salas & Kumaran 

Subburayalu, 2019) is one of the main energy sources of snow melting and is expected 

to be more influential as compared to temperature, given that part of the solar radiation 

energy is used to warm the snow up and the rest to melt the snow (Meriö, 2015). 

 The SWAT model has also been shown to have limited capabilities to predict 

flows and subsequently nutrient loads in cold regions, with frozen ground. Shrestha et 

al. (2012) showed poor correspondence between measurements and model-predicted 

nutrient response for cold regions/environments. They also showed the lack of SWAT 

to capture intra-seasonal variations in nutrient responses due to the lack of an 

appropriate process algorithm in SWAT for dealing with frozen ground. Their study 

suggested that new source codes should be written to better deal with frozen 

ground/soils so that the SWAT model can be more effectively employed in such 

regions. A study by Gombault et al. (2015) also reported that SWAT’s limitations to 
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properly simulate snowmelt or snowfall at temperatures close to 0 degrees Celsius 

generally led to overestimating sediment and TP loads during the snowmelt season.  

Another major limitation that has been commonly cited among the reviewed 

articles is related to the coarse spatial and temporal scales of the data often used to 

calibrate the model. In terms of spatial scale limitations, it was shown by Li et al. (2011) 

and Trang et al. (2017) that adopting a relatively coarse spatial resolution (DEM 250 m) 

will often lead to an inaccurate representation of the fine-scale hydrological processes. 

Another limitation associated with the adopted spatial scale was highlighted by (Wang 

& Kalin, 2018); they showed that the assumption of homogeneity for sub-watersheds in 

terms of soil properties, land use, and climate does not accurately represent the actual 

variability observed within smaller sub-watersheds. This assumption may not hold in 

highly heterogenous landscapes. In terms of temporal scale limitations, the SWAT 

model mainly uses a daily time step when making predictions. This scale may not 

capture the short-term, high-intensity events (e.g., flash floods) or rapid changes in land 

use and management practices that may be occurring at a finer timestep. This limitation 

is particularly important when simulating the impacts of climate variability, extreme 

weather events, or certain land management practices that occur on shorter time scales 

(such as hourly or sub-daily scales) (James et al., 2014).  

Another major limitation of SWAT studies is their assumption that land use and 

management practices remain constant over the entire simulation period. Changes in 

land use or management practices within the simulation period may not be well 

captured, limiting the model's ability to assess the impact of dynamic changes (Martel et 

al., 2021). 
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Another source of limitations is the limited capability of SWAT to integrate with 

future climate models. Almost all studies only considered future changes in temperature 

and precipitation and neglected changes to other meteorological parameters (such as 

relative humidity, wind speed, and solar radiation) that can affect estimates of flow and 

water quality (Coppens et al., 2020; Pesce et al., 2018). Additionally, SWAT models do 

not account for the uncertainties associated with the downscaling techniques. The 

performance of the available downscaling methods varies greatly and unfortunately, that 

uncertainty is never accounted for in SWAT. Jha et al. (2013) showed that uncertainty 

arises from climate model simulations, as current climate models provide inconsistent 

projections. Similarly, (Mukundan et al., 2020; Swain, 2017; Yan et al., 2019; Ye & 

Grimm, 2013) identified several distinct uncertainties in climate models stemming from 

internal variability (related to structural and parameter uncertainty), scenario 

uncertainty, poor quality of input data, insufficient knowledge of the modeler regarding 

various process that can be incorporated by the model, and exclusion of some important 

hydrological processes from the model that might have critical effects on climate 

change. Equally important is the limited use of ensemble future climate estimates when 

working with SWAT. Moreover, the dependence on GCMs is another limitation. While 

GCMs are valuable tools for understanding global and regional climate trends, they 

cannot often capture microclimates properly. Microclimates can exhibit rapid changes 

on much shorter time scales, ranging from minutes to hours. GCMs might not capture 

the rapid fluctuations in local weather conditions, making them less suitable for 

studying short-term events or phenomena. 

Another limitation which was evident among the peer-reviewed articles was the 

lack of representation of certain locations, such as the Middle East and Sub-Saharan 
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Africa. These regions often present unique complexities in terms of topography, land 

cover, and climate processes that are challenging to capture accurately in global and 

regional-scale models. The Middle East, for example, exhibits intricate interactions 

between large bodies of water, arid deserts, and complex mountainous terrains, making 

it difficult to represent these features adequately at the coarse resolution of many 

climate models (Neumann et al., 2021). Additionally, limited data availability, 

especially for historical observations and local climate processes, further hinders the 

development of accurate models for these regions. The lack of comprehensive 

representation in these areas underscores the need for increased research focus, data 

collection, and model refinement to better address the specific climatic challenges and 

vulnerabilities faced by the populations in such areas.  

 

4.4.2 Additional Research  

Though substantial improvements have been witnessed over the recent years in 

terms of linking hydrological models with climate models, there are several gaps to the 

best of our knowledge that follow from our findings and would benefit from further 

research. As such additional research is needed to be considered, such as: 

1. Allowing SWAT to account for temporally variable land management practices 

and land use/land cover changes (during the future projected period) over time. 

Moreover, there is a need to couple these changes with different climatic 

forcings. Changes in land use/land cover may alter the values of many important 

meteorological and hydrological processes/parameters (Ahmadi et al., 2014; Y. 

Wang et al., 2018). 
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2. Accounting for farm-scale changes in the SWAT model enhances its accuracy 

and utility for studying the impact of climate change on nutrient loadings. Since 

farms are considered a primary source of nutrient inputs to watersheds, 

incorporating such changes in the SWAT model allows for an enhanced spatial 

resolution, thus enabling the model to capture different variations in land use, 

management practices, and nutrient application rates. Farm changes are directly 

linked to land use changes (mentioned above – point no. 1). Future work should 

focus on providing data at the farm level. 

3. Incorporating heavily irrigated lands and modeling the formation of water 

gullies at the farm level in the SWAT model. Such improvements can help 

assess how climate change influences nutrient transport and runoff, particularly 

during intense storms. This improvement can provide information for adaptive 

management strategies. Moreover, this can allow for a better understanding of 

how changes in land use, irrigation practices, and gully erosion influence water 

quality.  

4. Yang et al. (2019) and Kalcic et al. (2019) suggest that future SWAT studies 

also need to evaluate how future population growth and urbanization would 

further affect nutrient export to better understand future changes in water 

quality. This will help in the development of local water quality improvement 

policies or zoning restrictions and regulations.  

5. There is a need to improve the SWAT model by allowing for a better blending 

of process- and data-based approaches. The development of a hybrid SWAT 

model can potentially give robust solutions when dealing with large watersheds 

with limited data. Examples of such hybrid models include the incorporation of 
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SWAT with artificial neural networks (ANN). The usefulness of this approach 

has been shown by Noori et al, (2020).  

6. Improved understanding and representation of different regions such as the 

Middle East and Africa since they are expected to face some of the most 

significant changes in future climate and are a major source of nutrient pollution. 
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