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Abstract
of the Thesis of

Amir Monjed Jaber Chehayeb for Master of Science
Major: Mathematics

Title: A Proof of the Class Number Formula

The Class Number Formula helps compute several invariants of a number field,
including its Class Number, by relating them to the behavior of its Dedekind Zeta
function. The Class Number of a field is useful because it helps determine the extent
to which unique factorization fails in the associated number ring. A proof of the
general Class Number Formula is presented and a more refined version is computed
for the real quadratic case.
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Chapter 1

Introduction

The existence of unique prime factorization for integers is an invaluable tool that

underpins a lot of the common applications of math. Any positive integer can be

uniquely expressed as a product of primes.

This doesn’t hold true in broader mathematical settings. Even with some notion of

indecomposable prime-like elements, we can still have distinct factorizations for the

same element. For instance, in the ring Z[
p
10], we have two distinct factorizations

of 6 despite all factors below being ”irreducible”

6 = 2⇥ 3 ; 6 = (4 +
p
10)(4�

p
10)

Fortunately, some notion of unique factorization can still be established via subsets

of rings called ideals.

In chapter 2, we concretely define the mathematical space we’ll be working in to

be the number ring associated with finite extensions of Q known as number fields.

Then, we introduce important notions and study the additive structure of the ring.
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In chapter 3, we will develop the notion of ideal classes and introduce the ideal class

group. We explain unique factorization into prime ideals in Dedekind domains and

show that number rings are indeed Dedekind domains. We then explore the splitting

of primes in quadratic fields and conclude by proving that the ideal class group is

finite. We call its order the class number.

In Chapter 4, we study the distribution of ideals in ideal classes for real quadratic

number fields, and then for number fields in general.

In Chapter 5, we define the Dedekind Zeta function of a number field, and relate its

behavior to several invariants of the number field including the Class number. This

yields the Class number formula. We introduce characters of abelian groups and

L-sries, then use them to compute a more refined form in the case of real quadratic

number fields.
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Chapter 2

Number Rings

We define a number field to be a subfield of C having finite dimension as a vector

space over Q. For instance, given any square-free positive integer m, the set

Q
⇥p

m
⇤
= {a+ b

p
m

��a, b 2 Q}

is a vector space of dimension 2 over Q having basis {1,
p
m}. We call it a real

quadratic field. More generally, if ↵ is a root of some monic degree n polynomial

f 2 Q[x] which is irreducible over Q, then K = Q[↵] is the Q-vector space with basis

{1,↵, · · · ,↵n�1}. We call f the minimal polynomial of ↵, and denote by [K : Q] = n

the index of Q[↵] which coincides with its dimension and the degree of f .

2.1 Embeddings

Conjugates are numbers that share the same minimal polynomial over Q. Conju-

gates are vital in the study of embeddings - injective homomorphisms of K which

restrict to the identity on Q. Suppose � is an embedding, then by the above defini-

tion

f(�(↵)) = �(f(↵)) = �(0) = 0
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Therefore, an embedding must map an element to one of its conjugates. Hence,

noting that an embedding of Q[↵] is entirely defined by how it maps ↵, we deduce

that there are exactly n embeddings corresponding to the n conjugates of ↵.

In more general settings, given number fields K ⇢ L, we can view L as a vector

space over K whose dimension we define as the index of L over K = [L : K]. For

↵ 2 L, the minimal polynomial of ↵ is defined as the monic irreducible polynomial

f 2 K[x] having ↵ as a root. Embeddings of L can be constructed from those of K.

In fact,

Proposition 2.1. Every embedding of K in C extends to exactly [L : K] embed-

dings of L.

Proof. We argue by induction on the index. It’s trivially true for [L : K] = 1 in

which case L = K. Otherwise, assume the statement holds for subfields whose index

is smaller than [L : K]. Suppose � is an embedding of K in C.

Then, fix ↵ 2 L \ K, and denote by f its minimal polynomial over K. Let g be

the polynomial constructed by applying � to the coe�cients of f . Note that g must

be irreducible over �K. Otherwise, applying the reverse of the above construction

(embeddings are injective) on its factors would yield that f is reducible. For each

root � of g, the map K[↵] ! �K[�] that maps ↵ to � and mimics � on K is an

isomorphism and thus an embedding of K[↵]. Then, noting that the degree of f =

degree of g = [K[↵] : K], we get [K[↵] : K] such embeddings.

Finally, since [L : K[↵]] < [L : K], each of those embeddings extends to [L : K[↵]]

embeddings of L by the inductive hypothesis. This yields [L : K[↵]] · [K[↵] : K] =

[L : K] embedding extensions of � as required.
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A similar approach helps us characterize finite fields.

Proposition 2.2. Given K and L as before, L = K[↵] for some ↵.

Proof. If [L : K] = 1, L = K so it’s true. Otherwise, assume the statement holds

for indices smaller than [L : K]. Then, fix ↵ 2 L \K. By the inductive hypothesis,

since [L : K[↵]] < [L : K], we have L = K[↵][�] = K[↵, �] for some �.

Consider K[↵ + c�] for c 2 K. If it is not equal to L, then ↵ + c� must have

fewer than [L : K] conjugates. But, we know that the identity on K extends to

[L : K] embeddings of L. Recall that embeddings must map an element to its

conjugates. Therefore, we deduce that at least two of those embeddings of L that

fix K point-wise, �1 and �2, must map ↵ + c� to the same conjugate. Then,

�1(↵ + c�) = �2(↵ + c�) =) c =
�1(↵)� �2(↵)

�1(�)� �2(�)

Note that the denominator is not 0 since if the embeddings agree on �, then they also

agree on ↵ by the first equation, rendering them the same embedding. Therefore,

only finitely many c satisfy our assumption that K[↵+c�] 6= L. But K has infinitely

many elements, which completes our proof.

2.2 Integrality

Definition 2.3. An algebraic integer is a complex number if is the root of a

monic polynomial is in Z[x].

We denote the set of algebraic integers by A. We also note that the definition above

is equivalent to saying that the minimal polynomial of ↵ is monic in Z[x] due to the

following proposition.
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Proposition 2.4. Suppose ↵ 2 A, and let f be the monic polynomial of lowest

degree in Z[x] that admits ↵ as a root. Then, f is irreducible over Q, making it the

minimal polynomial of ↵.

We admit the following version of Gauss’ lemma. (Marcus [1], p.10)

Lemma 2.5. If f = gh, where f is monic in Z[x] and g, h are monic in Q[x], then

g, h are in fact in Z[x].

Proof. (of proposition) If f were reducible over Q, then write f = gh where both

g, h are monic. By the lemma, it follows that g and h are actually in Z[x]. At least

one of them admits ↵ as a root, and this leads to a contradiction since they’re both

of a smaller degree than f .

Given a number field K, we denote by AK = A \ K the set of algebraic integers

contained in K. We call AK the number ring associated with the number field K.

Clearly, AQ = Z. (The minimal polynomial of a/b is bx � a which is only monic if

b = 1.) Number rings are in fact rings. Before we prove it, we develop equivalent

charachterizations for integrality.

Proposition 2.6. ↵ 2 A , ↵G ⇢ G for some finitely generated additive subgroup

G ⇢ C.

Proof. The forward direction is straightforward. If ↵ is a root of a monic polynomial

of degree n over Z, then all powers of ↵ having degree n or higher can be expressed

as a Z� linear combination of 1,↵, · · · ,↵n�1. Therefore, taking G to be Z[↵] which

is finitely generated completes the argument.
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For the reverse direction, suppose G is generated by a1, · · · , an. Then, expressing

↵ai as a combination of the generators yields

0

BBBB@

↵a1
...

↵an

1

CCCCA
= M

0

BBBB@

a1
...

an

1

CCCCA

for some matrix M 2 Mn(Z). Then, since the ai’s are not all zero, ↵ is an eigenvalue

of M . Therefore, it’s a root of the determinant of |�I � M | which is a monic

polynomial of degree n over Z, completing the proof.

Corollary 2.7. Number rings are multiplicative rings.

Proof. It su�ces to show that A is a ring. Given ↵, � 2 A, we know that Z[↵] and

Z[�] are finitely generated. Suppose {↵1, · · · ,↵s} generates Z[↵] and {�1, · · · , �r}

generates Z[�]. Then, Z[↵, �] which we can view as Z[↵][�] is generated by {↵i�j
��1 

i  s, 1  j  r}. Since it contains ↵� and ↵+�, we deduce that they are in A.

2.3 Trace, Norm, and Discriminant

Our goal for the remaining of the chapter is to study the structure of the number

ring. We introduce two important maps that encode important information about

elements within a number field.

Definition 2.8. Given number fieldsK ⇢ L, we define the relative trace and relative

norm of ↵ 2 L as

TL

K
: K ! C NK : K ! C

↵ 7! TL

K
(↵) =

nX

i=1

�i(↵) ↵ 7! NK(↵) =
nY

i=1

�i(↵)

where �i are the n = [L : K] embeddings of L which fix K point-wise.
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Properties 2.9. We note a few remarks and important properties.

(1) Since the embeddings are ring homomorphisms, then the trace and norm inherit

their homomorphism properties. Namely, the trace is an additive homomor-

phism, and the norm is a multiplicative homomorphism. So, for ↵, � 2 L,

TL

K
(↵ + �) = TL

K
(↵) + TL

K
(�) ; NL

K
(↵�) = NL

K
(↵)NL

K
(�)

Recalling that the embeddings fix K point-wise, it follows that for � 2 K,

TL

K
(�) = n� NL

K
(�) = �n TL

K
(�↵) = �TL

K
(↵) NL

K
(�↵) = �nNL

K
(↵)

(2) Given ↵ 2 L such that [K[↵] : K] = d. Then, since each embedding of K[↵],

extends to exactly n/d embeddings of L, we deduce that

TL

K
(↵) =

n

d
TK[↵]
K

NL

K
(↵) =

⇣
NK[↵]

K

⌘n/d

Moreover, we know that the images of ↵ under the embeddings of K[↵] consti-

tute exactly all its conjugates over K. Then, noting that those conjugates of ↵

are all the roots of its monic minimal polynomial f 2 K[x], we deduce that TK[↵]
K

and NK[↵]
K

are the second coe�cient and the constant term of f respectively.

(3) By the argument above, since n/d = [L : K[↵]] 2 Z, it follows that TL

K
(↵), NL

K
(↵) 2

K. Also, if ↵ 2 A, then f 2 Z[x]. Therefore, its relative trace and norm are

integers.

(4) When we are working with only one number field K over Q, we simply refer to

the maps above as the trace and norm. Moreover, for ↵ 2 K, we assume the
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context is clear and denote

T (↵) = TK

Q (↵) ; N(↵) = NK

Q (↵) (both 2 Q)

(5) Finally, when we are working with more than two number fields, K ⇢ L ⇢ M ,

then for ↵ 2 M , we have transitivity - meaning

TK

L
(TM

L
(↵)) = TM

K
(↵) NK

L
(NM

L
(↵)) = NM

K
(↵)

We admit this without proof.(Jacobson [2], p. 426). It requires composing

the embeddings of L fixing K with those of M fixing L in a suitable context,

and then verifying that the compositions yield the correct number of distinct

embeddings corresponding to those of M over K.

The trace is closely associated with an the discriminant, an essential tool is that

defined over n-tuples.

Definition 2.10. Given K of degree n over Q, and ↵1, · · · ,↵n 2 K, we define their

discriminant to be the square of the determinant of the matrix whose entries are

given by �i(↵j) (where i indexes the rows and j indexes the columns).

disc(↵1, · · · ,↵j) = |�i(↵j)|2 =

�������������

�1(↵1) �1(↵2) · · · �1(↵n)

�2(↵1)
. . .

...

...
. . .

...

�n(↵1) · · · �n(↵n)

�������������

2

Switching the indexing would yield the same determinant. This allows us to relate

the determinant to the trace

disc(↵1, · · · ,↵n) = |�i(↵j)| |�j(↵i)| =

�����

nX

k=1

�k(↵i)�k(↵j)

����� = |T (↵i↵j)|

13



By similar reasoning to property (3) in 2.9, it follows that the disc(↵1, · · · ,↵n) 2 Q.

Moreover, if all ↵i 2 A, then so are their products. Therefore, all elements of the

matrix of traces are integers yielding an integer discriminant.

The relation above also allows us to observe that the discriminant characterizes

linear independence, in a fashion similar to the determinant.

Proposition 2.11. disc(↵1, · · · ,↵n) = 0 if and only if {↵1, · · · ,↵n} is linearly de-

pendent over Q.

Proof. The backward direction is trivial. Any linear dependence of the ↵0
i
s can be

translated into linear dependence between the columns since the embeddings are

additive homomorphisms. It follows that the determinant is 0.

On the other hand, assume the discriminant is 0. Then, the rows of the trace matrix

[T (↵i↵j)] are linearly dependent, so we may write a1R1+ · · ·+anRn = 0 for rational

numbers ai 2 Q that are not all 0. Then, for 1  j  n, jth component of the sum

above can be expressed as

0 =
nX

i=1

aiT (↵i↵i) = T

 
↵j ·

nX

i=1

a1↵i

!
= T (↵j↵) where ↵ =

nX

i=1

a1↵i

Suppose the set {↵i} were linearly independent. Then, it forms a basis for K over

Q and ↵ 6= 0. It follows that the set {↵↵i} is also a basis. Therefore, the trace map

must be identically 0 since it’s additive and 0 on a basis. This is a contradiction

since T (1) = n. Hence, {↵i} must be linearly dependent.
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2.4 The Structure of a Number Ring

In the final section, we will use the discriminant to study the structure of number

rings. More precisely, we will prove the following theorem.

Theorem 2.12. Given a number field K of degree n over Q, and R the correspond-

ing number ring A \K. Then, R is a free abelian group of rank n.

In other words, we’ll show that that R has an integral basis over Z consisting of

n elements �1, · · · , �n 2 R such that for every ↵ 2 R, there exists unique integers

m1, · · · ,mn with

↵ = m1�1 + · · ·+mn�n

Proof. The proof relies on the following key algebraic result. (Jacobson [2], p. 179)

Proposition 2.13 (Nielsen-Schreier Theorem). A subgroup of a free abelian group

of rank n is also a free abelian group of rank m  n

We will construct two free abelian groups A and B of rank n such that A ⇢ R ⇢ B.

Then, since R is an additive group, the proposition above shows that it must be free

abelian of rank n - completing the proof.

Construction of A: We will find a basis for K over Q consisting of algebraic

integers. This is straightforward due to the following lemma.

Lemma 2.14. For each ↵ 2 K, there exists m 2 Z such that m↵ 2 A.

Proof. (of lemma) Since ↵ 2 K, it has finite degree k  n over Q. Then, suppose

f = xk +
a1
b1
xk�1 + · · ·+ ak

bk
ai 2 Z, bi 2 Z \ 0

15



is the minimal polynomial of ↵. Letting b = b1b2 · · · bk and ci = b/bi 2 Z, we get

0 = f(↵) = bkf(↵) = bk↵k + bk�1 ba1
b1
↵k�1 + · · ·+ bk

ak
bk

= (b↵)k + a1c1(b↵)
k�1 + · · ·+ bk�1ckak = g(b↵)

where

g(x) = xk +
k�1X

i=1

aicib
i�1xk�1 2 Z[x]

Therefore, b↵ 2 A.

Applying the lemma on a basis for K over Q yields a new basis {↵1, · · · ,↵n} ⇢ R.

We take A to be the free group of rank n generated by this basis.

A = Z↵1 � · · ·� Z↵n ⇢ R

Construction of B: Take {↵1, · · · ,↵n} ⇢ R a basis for K over Q like above, and

let d = disc(↵1, · · · ,↵n)( 6= 0). We will show that R ⇢ B = 1
d
A. Given ↵ 2 R, we

may write

↵ = q1↵1 + · · ·+ qn↵n qi 2 Q

Applying each of the embeddings of K to the equation above yields a system of n

equations

�i(↵) = q1�i(↵1) + · · ·+ qn�i(↵n) 1  i  n

Using Cramer’s rule to solve the system

b = [�i(↵)] = [�i(↵j)][qj] = M [qj]

we get that qj = |Mj|/|M | where Mj is obtained from M by replacing the j-th

column by b.

16



Note that the matrices M and Mj have entries in A, and hence their determinants

must also be algebraic integers. Moreover, noting that |M |2 = d, we get that the

rational number mj := dqj = |M ||Mj| 2 A. Therefore, mj 2 AQ = Z. Putting it

together, we deduce

↵ =
m1

d
↵1 + · · ·+ mn

d
↵n ⇢ 1

d
A

As required, the latter is an abelian group of rank n having basis {↵1/d, · · · ,↵n/d}.

The theorem above shows that R has an integral basis. But, it is not unique. For

instance, if {�1, · · · �n} is an integral basis, then so are {�1, · · · , �n+�1} and similar

Z-linear combinations. However, it turns out that their discriminants are equal.

Proposition 2.15. If {�1, · · · , �n} and {�1, · · · , �n} are both an integral basis for

a number ring R, then disc(�1, · · · , �n) = disc(�1, · · · , �n).

Proof. For 1  i  n, since �i 2 R, we may write it as a Z-linear combination of the

�’s. Therefore, we have 0

BBBB@

�1
...

�n

1

CCCCA
= M

0

BBBB@

�1
...

�n

1

CCCCA

for some integer square matrix M . Applying each of the n embeddings {�j} to the

n equations above yields

[�j(�i)] =

0

BBBB@

�1(�1) · · · �n(�1)

...
. . .

...

�1(�n) · · · �n(�n)

1

CCCCA
= M

0

BBBB@

�1(�1) · · · �n(�1)

...
. . .

...

�1(�n) · · · �n(�n)

1

CCCCA
= [�j(�i)]

17



Then, taking the square of their determinants, we obtain

disc(�1, · · · , �n) = |M |2disc(�1, · · · , �n)

Applying the same process in reverse, expressing the �’s in terms of the �’s, results

in an analogous equation for some di↵erent integer matrix N .

disc(�1, · · · , �n) = |N |2disc(�1, · · · , �n) = |N |2|M |2disc(�1, · · · , �n)

SinceM,N have entries in Z, then |N |, |M | are both positive integers with |N |2|M |2 =

1. It follows that |N | = |M | = 1 which completes our proof.

The proposition above shows that the discriminant is actually an invariant of the

number ring R. We denote it by disc(K) or disc(R) where R = AK .

We conclude by computing the discriminant of number rings associated with the

real quadratic fields we defined at the beginning of the chapter.

Proposition 2.16. For squarefree d > 0, K = Q[
p
d],

disc(AK) =

8
>><

>>:

4d d ⌘ 2, 3 mod 4

d d ⌘ 1 mod 4

Note that the proposition is true for all d 2 Z, but we will be working mainly with

the case of real quadratic fields.

Proof. The minimal polynomial of ↵ = a + b
p
d 2 Q[

p
d] is x2 � 2ax + (a2 � db2).

For ↵ to be an integer, we must have

8
>><

>>:

r = 2a 2 Z

a2 � db2 = r
2

4 � db2 2 Z , r2 � 4db2 ⌘ 0 mod 4

18



If r is even (a 2 Z), then db2 2 Z, which implies b 2 Z since d is squarefree.

Otherwise, if r is odd (a 2 Z/2), then 4b2d ⌘ 1 mod 4, so 2b must also be an odd

integer, and hence d ⌘ 1 mod 4. Putting it together, we get

AK =

8
>><

>>:

Z[
p
d] d ⌘ 2, 3 mod 4

Z[1+
p
d

2 ] d ⌘ 1 mod 4

It follows that an integral basis for AK would be

8
>><

>>:

{1,
p
d} d ⌘ 2, 3 mod 4

{1, 1+
p
d

2 } d ⌘ 1 mod 4

Then, noting that the 2 embeddings of K aregiven by

�1(a+ b
p
d) = a+ b

p
d �1(a+ b

p
d) = a� b

p
d

We deduce that

disc(AK) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

��������

1
p
d

1 �
p
d

��������

2

= (�2
p
d)2 = 4d d ⌘ 2, 3 mod 4

��������

1 1+
p
d

2

1 1�
p
d

2

��������

2

= (�
p
d)2 = d d ⌘ 1 mod 4
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Chapter 3

Ideal Class Group and Prime

Decomposition

The simplest examples of number rings are Z and Z[i]. Both of those rings are

unique factorization domains. Each element can be uniquely expressed as a product

of irreducibles (elements which can only be factored further via units). In general,

as seen in the introduction, this is not true of all number rings. However, all number

rings do admit unique factorization into prime ideals.

In this chapter, we will define ideal multiplication and the ideal class group. We’ll

then show that number rings are so-called Dedekind domains which admit factor-

ization into prime ideals. Finally, we’ll explore the splitting of primes, and develop

tools which we use to show that the ideal class group is finite.

3.1 Ideal Class Group and Dedekind Domains

Let R be a domain, given ideals I, J ⇢ R we define their product

IJ =

(
nX

k=1

ikjk
�� ik 2 I, jk 2 J, k 2 N

)
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It is easy to see that IJ is an ideal. For ↵ 2 R, we denote by (↵) = ↵R the principal

ideal generated by ↵. We also define an equivalence relation on the set of ideals of

R given by

I ⇠ J i↵ ↵I = �J for some non-zero ↵, � 2 R

It is clear that this is a well-defied equivalence relation on the set of ideals. We call

the equivalence classes ideal classes and denote them by [I]. Moreover, it is easy to

see that all principal ideals (↵) = ↵R = ↵(1) are equivalent to the identity. Hence,

the set of all ideals classes, C, is a monoid whose identity element is the class of all

principal ideals, [1].

As we shall see, when working with number rings, the monoid C is in fact a group.

We will prove this for more general settings, known as Dedekind domains, which

include number rings. Then, we will prove that ideal multiplication does in fact

lead to unique factorization into prime ideals - which we recall are ideals I such that

ab 2 I only if at least one of a or b 2 I.

Definition 3.1. A Dedekind domain R is an integral domain satisfying

i. Every ideal in R is finitely generated. Equivalently, R is Noetherian: every

ascending chain of ideals eventually becomes stationary.

ii. Every non-zero prime ideal is a maximal ideal : an ideal that is not contained

in any other ideals besides R itself.

iii. Let K be the field of fractions of R = {↵/�
��↵, � 2 R, � 6= 0} Then, we require

that R be integrally closed in K: ↵/� 2 K is a root of a monic f 2 R[x] only

if ↵/� 2 R.

We verify that number rings are Dedekind domains.
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Theorem 3.2. Given a number field K such that [K : Q] = n, then the correspond-

ing number ring R = A \K is a Dedekind domain.

Proof. i. We have already seen in theorem 2.12 that R is a free abelian group of

rank n. Then, an ideal I ⇢ R is an additive subgroup of R. So, it follows by

proposition 2.13 that I is free abelian group of rank  n. Therefore, it’s finitely

generated. In fact, for any non-zero ↵ 2 I, (↵) ⇢ I has rank n, so I has rank

exactly n.

ii. We claim that R/I is finite for any ideal I. Fix a non-zero ↵ 2 I, then

m = NK(↵) is a non-zero integer by (3) in 2.9. We know that m = ↵ · �

where � is the product of all conjugates of ↵. So, � = m/↵ 2 R , and therefore

m 2 (↵) ⇢ I. Therefore, |R/I| ⇢ |R/(m)| which is finite of order mn (it looks

like Z↵1/mZ⇥ · · ·⇥Z↵n/mZ for some generators ↵1, · · · ,↵n which is a product

of cyclic groups of order m).

If I is a prime ideal, it follows that R/I is an integral domain. But, finite

integral domains are fields. Therefore, I is a maximal ideal since R/I is a field.

iii. Assume ↵ 2 C is the root of a monic polynomial f = xn + a1xn�1 + · · ·+ an 2

R[x]. For 1  i  n, we know that ai 2 A, then let di be the degree of fi, the

minimal polynomial of ai. Consider the set

H =
�
↵m · am1

1 · · · amn
n

��0  m < n, 0  mi < di
 

We claim thatH generatesG = Z[a1, · · · , an,↵]. Given an element ac11 · · · acn
n
↵c 2

G, then if c � n or ci � di, we may use the linear combination induced by the

minimal polynomials f and fi to express our element as a linear combination

of elements of with smaller exponents. Eventually, this becomes a linear com-

bination of elements of H. It follows that G has a finitely generated additive
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subgroup. And clearly, ↵G ⇢ G, therefore ↵ 2 A by proposition 2.6. Applying

this to any ↵ in the field of fractions of R proves that R is integrally closed.

We admit the following lemma concerning Dedekind domains. (Marcus [1], pg. 40)

Lemma 3.3. Let A be a proper ideal in R. Then, there exists � 2 K \R such that

�A ⇢ R.

Theorem 3.4. If R is a Dedekind domain, then the set of its ideal classes C is a

group, which we call the ideal class group.

Proof. We only need to prove that every class [I] has an inverse. Therefore, it

su�ces to find an ideal J such that IJ is principal (2 [1]). Fix a non-zero ↵ 2 I

and consider

J = {� 2 R
���I ⇢ (↵)}

J is an ideal, and ↵ 2 J ensures that J is non-zero. By definition, IJ ⇢ (↵). We

want to prove the reverse inclusion. To that end, we construct A = 1
↵
IJ . It is clear

that A is an ideal. Moreover, J ⇢ A since I contains ↵, so every � 2 J can be

expressed as 1
↵
↵� 2 A.

Assume A 6= R, then we may apply the lemma above to obtain � 2 K \R such that

�A ⇢ R. Then, for every � 2 J , we have

8
>><

>>:

�� 2 �J ⇢ �A ⇢ R

��

↵
I = � 1

↵
�I ⇢ �A ⇢ R =) ��I ⇢ (↵)

=) �� 2 J

This shows that �J ⇢ J . Then, recalling that J is finitely generated since R is a
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Dedekind domain, we may fix a set of generators of J, {�1, · · · , �n}. So, we get

�

0

BBBB@

�1
...

�n

1

CCCCA
= M

0

BBBB@

�1
...

�n

1

CCCCA

where M 2 Mn(R). It follows that � is an eigenvalue of M whose determinant is

a monic polynomial R[x]. This is a contradiction since R is integrally closed and

� 62 R. Therefore, A = R which implies IJ = (↵) as desired.

The result above allows us to establish three key properties of ideals that we shall

use to prove unique factorization.

Corollary 3.5. Given ideals A,B,C in a Dedekind domain R, then

(a) AB = BC =) B = C

(b) A
��B , B ⇢ A

(c) Every proper ideal is contained in some maximal ideal 6= R.

Proof. (a) By the theorem , there exists an ideal J such that AJ = (↵) for some

↵. Then, multiplying by J yields (↵)B = (↵)C which is the same as ↵B = ↵C.

Recalling that Dedekind domains are integral domains, it follows that B = C.

(b) We define A
��B to mean that B = AC for some ideal C. Since AC ⇢ A it

follows that B ⇢ A. On the other hand, assume that B ⇢ A, then choose an

ideal J such that AJ = (↵). Consider the ideal C = 1
↵
JB ⇢ 1

↵
JA ⇢ R. We

have AC = 1
↵
AJB = 1

↵
(↵)B = B, so A

��B.

(c) Let I be a proper ideal. If I is not maximal, then I ( I1 ( R. Iterating,

we get an ascending chain of ideals which must become stationary since R is

Noetherian.
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We can now prove

Theorem 3.6. In a Dedekind domainR, every proper ideal is uniquely representable

as a product of prime ideals.

Proof. Existence:

First, we prove that such a representation exists. Let S =
S

↵2A I↵, be the set

containing proper ideals which can not be written as a product of prime ideals. We

want to show S is empty.

If S were not empty, then it must have a maximal element M that is not contained

in any other element of S. Otherwise, we may construct a strictly ascending chain

of ideals which is not possible in Dedekind domains.

Then, by (C) above, M is contained in some maximal ideal P 6= R. Hence, since

maximal ideals are prime, we deduce that M = IP for some ideal I by (b) above.

Then, M ( I (if M = I, then M = RM = PM =) R = P by (a) above).

Therefore, I 62 S since M is maximal. But this leads to a contradiction since it

implies that I factors into a product of primes, and M = PI would factor as well.

Uniqueness:

Suppose P1 · · ·Ps = Q1 · · ·Qr where the Pi, Qi are primes. Then, Q1 · · ·Qs ⇢ P1 by

(2) above. If none of the Qi were contained in P , then choosing ai 2 Qi \P for each

i would yield a product a1 · · · as 2 P whose factors are all not in P . This contradicts

the fact that P is prime. So, asume Q1 ⇢ P1 without loss of generality. Then, since

prime ideals are maximal in Dedekind domains, we conclude that Q1 = P1. Using

(1) above, we may cancel them to get P2 · · ·Ps = Q2 · · ·Qr. Proceeding as such, we

deduce that r = s, and that the factors are identical.
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3.2 Splitting of Primes

From hereon, we use primes to refer to prime ideals. Primes in Z may not be prime

in larger number rings. For example, (2) = (2, 1+
p
�5)2 in Z[

p
�5]. We say (2) ⇢ Z

splits into the square of the prime ideal (2, 1 +
p
�5) ⇢ Z[

p
�5] lying over (2).

Given number fields K ⇢ L, and their corresponding number rings R = AK ⇢ S =

AL, we will study how the ideal generated by primes P in S splits in S.

Definition 3.7. Let P be a prime of R, and Q a prime of S. Then, Q lies over P

or P lies under Q if any of the following equivalent conditions hold.

Q | PS
by 3.5() PS ⇢ Q

Q ideal in S() P ⇢ Q () Q \R = P
A \ Q = Q() Q \K = P

The third implication holds since P , being prime, is maximal. It is contained in

Q\R 6= R since 1 /2 Q. Therefore, Q\R = P . The equivalence of conditoins allows

us to easily prove the following.

Proposition 3.8. Every prime P of R lies under at least one prime Q of S. On the

other hand, every prime Q of S lies over a unique prime P of R.

Proof. For the first part, it su�ces to show that PS 6= S. It will follow that PS

has at least one prime divisor Q which lies over P . By lemma 3.3, since P is a

proper ideal in R, there exists � 2 K \ R such that �P ⇢ R. If 1 2 PS, then

� = �1 2 �PS ⇢ RS = S is a contradiction since � /2 A. Therefore, 1 /2 PS, so

PS 6= S.

The second statement is equivalent to showing that Q \ R is prime in R. Suppose

a, b 2 R such that ab 2 P . Then, ab 2 Q so it follows that either a or b 2 Q

since Q is prime. Therefore, either a or b 2 R. Moreover, P is proper since Q is
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proper (1 /2 Q). Finally, P is non-zero. Fix a non-zero element a 2 Q, then by

property 2.9 0 6= NL

K
(a) 2 R ⇢ S since a 2 A. Then, NL

K
(a) = ab where b is the

product of the conjugates of a, and b = NL

K
(a)/a 2 S since § is a ring. It follows

that NL

K
(a) ⇢ aS \K ⇢ QS \K = P .

We will introduce two important numbers which we associate with primes and their

splitting. Given a pair of primes P,Q with Q lying over P , we know that Qe|PS for

some e � 1. We call the highest power of Q dividing PS the ramification index of

Q over P , and denote it e(Q|P ). If e(Q|P ) > 1, we say that P ramifies in L.

Also, since P,Q are maximal, then the quotient rings R/P and S/Q are fields. These

are called the residue fields associated with P and Q. We know by statement (ii)

in theorem 3.2 that they’re finite. The inclusion R ,! S/Q has kernel R \ Q = P .

Therefore, we obtain an injective embedding R/P ,! S/Q which allows us to view

R/P as a subfield of S/Q, or equivalently S/Q as a finite extension of R/P . We

denote the degree of this extension by f(Q|P ) = log|R/P ||S/Q| and call it the inertial

degree of Q over P . We have the following important theorem relating the degree

n = [L : K] with the inertial degrees and ramification indices of primes lying over

primes in L. More precisely,

Theorem 3.9. Let P be a prime in R , and denote by Q1, · · ·Qr the primes in S

lying over P . Then,

rX

i=1

eifi = n where ei = e(Qi|P ), fi = f(Qi|P )

For an ideal I ⇢ R, we denote the size of the residue field |R/I| by
����I

����. The result

follows from studying the multiplicativity of those indices. Specifically, we have the

following proposition.
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Proposition 3.10. (Marcus [1], p. 46) Taking R, S as before,

i. For ideals I, J in R,
����IJ

���� =
����I

���� ·
����J

����

ii. For the S-ideal IS,
��S/IS

�� =
����IS

���� =
����I

����n =
��R/I

��n

iii. For a principal ideal (↵) ⇢ R,
����(↵)

���� =
��NK

Q (↵)
��

The theorem follows immediately. We know that PS =
Q

r

i=1 Q
ei
i
. So,

����P
����n by ii.

=
����PS

���� by i.

=
rY

i=1

����Qi

����ei def of fi=
rY

i=1

⇣����P
����fi

⌘ei

=)
rX

i=1

eifi = n

3.3 Splitting in Real Quadratic Fields

We will formulate four key propositions which will be of use later when working

strictly with real quadratic fields. First, we will admit the following theorem from

Marcus [1] p. 50.

Theorem 3.11. Let p be a prime in Z that ramifies in a number ring R, then

p | disc(R).

Given a quadratic field Q[
p
d] where d > 0 squarefree and its associated number

ring R, we can now determine exactly how primes p 2 Z split in R .

Proposition 3.12. We tackle three separate cases.

i. If p | d, then pR = (p,
p
d)2.

ii. If 2 - d, then

2R =

8
>>>>>><

>>>>>>:

(2, 1 +
p
d)2 if d = 3 mod 4

⇣
2, 1+

p
d

2

⌘⇣
2, 1�

p
d

2

⌘
if d = 1 mod 8

prime if d = 5 mod 8
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iii. If p - d and p is odd, then

pR =

8
>><

>>:

(p, n+
p
d)(p, n�

p
d) if d = n2 mod p

prime otherwise

Proof. We will only prove ii. since the others follow by identical arguments.

Suppose d = 3 mod 4. Proceeding as above, (2, 1+
p
d)2 = (4, 2+2

p
d, 1+d+2

p
d).

This is contained in 2R since 2 divides all factors (d is odd). On the other hand,

the reverse inclusion follows since

2 + 2
p
d� (1 + d+ 2

p
d) = d� 1 =) gcd(d� 1, 4) = 2 2 (2, 1 +

p
d)2

Suppose d = 1 mod 8. By proposition 2.16, we have R = Z[(1+
p
d)/2] since d = 1

mod 4. It’s clear that

 
2,

1 +
p
d

2

! 
2,

1�
p
d

2

!
=

✓
4, 1�

p
d, 1 +

p
d,

1� d

4

◆
⇢ 2R

The other inclusion follows since 2 = 1�
p
d+1+

p
d. Finally, note the factors are

distinct since by 3.11 above, and proposition 2.16, we deduce that 2 does not ramify

in R.

Suppose d = 5 mod 8. Then, we also have R = Z[(1 +
p
d)/2] since d = 1 mod 4.

Consider the polynomial f(x) = x2+x+ 1�d

4 2 Z[x] and note that f((1+
p
d)/2) = 0.

Assume P is a prime lying over 2. Then, f has a root in R/P since it has a root in

R. But [f ]2(x) = x2 + x+ 1 2 Z2[x] has no roots. Therefore, R/P 6⇠= Z2. It follows

that f(P |p) 6= 1. So, by theorem 3.9, we must have f(P |p) = 2. Therefore, pR is

prime. ( If pR = P1P2, then 2 = e1f1 + e2f2 � 4 is a contradiction.) Note that

for statement iii., a similar argument where we consider x2 � d yields the desired

result.
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We have the following immediate corollary due to proposition 2.16.

Corollary 3.13. For a prime p 2 Z, p ramifies in R = AQ[
p
d] i↵ p | disc(R).

We briefly recall Galois Groups before proceeding to our second proposition. Given

number fields K ⇢ L. We say, that L is normal over K i↵ L is closed under taking

conjugates over K. Equivalently, every embedding of L that fixes K point-wise is

an automorphism of L. We define the Galois Group of L over K, Gal(L/K), to be

the group of automorphisms of L which fix K point-wise.

We will work in the special context of cyclotomic fields since every quadratic field

is contained in a cyclotomic field . Let K be a subfield of Q[!],! = e2⇡i/m. We

can identify Z⇤
m

with the Galois Group G = Gal(Q[!]/Q) by mapping a to the

embedding ! 7! !a (Washington [3] pg. 11) . Let H be the subgroup of Z⇤
m

that

fixes K pointwise. Since G = Z⇤
m

is abelian, then H is normal in G. For a prime

p - m, let fp denote the order of [p] in G/H. Then, we have the following result.

Lemma 3.14. For any prime P ⇢ K lying over p, f(P |p) = fp.

Proof. This is an immediate corollary of Marcus [1] Theorem 33 p . 78.

Proposition 3.15. Suppose K is a quadratic field with Q[
p
d] ⇢ Q[!]. Then, with

notation as above, for prime p - m, if p is odd,

p 2 H () d = a2 mod p for some a

Otherwise, for p = 2,

p 2 H () d = 1 mod 8

where p represents the congruence class of p mod m.

Proof. By 3.14, it is clear that p 2 H is equivalent to having fp = 1. The result

then follows by immediately by proposition 3.12.

30



3.4 The Class Number

Earlier in the chapter, we proved that the ideal classes of a number ring do indeed

form a group. We will conclude the chapter by showing that this group is finite.

Given a number field K of degree n over Q and its associated number ring R = AK ,

we start by introducing an embedding of the number ring into Rn, which we will

repeatedly use throughout the next chapters.

Let �1, . . . , �r and ⌧1, ⌧1, . . . , ⌧s, ⌧s denote the real and complex embeddings of K

respectively. Thus, r + 2s = [K : Q] = n. Then, we can obtain an embedding � of

K in Rn defined by

�(↵) = (�1(↵), . . . , �r(↵),R⌧1(↵), I⌧1(↵), . . . ,R⌧s(↵), I⌧s(↵))

where R and I denote the real and imaginary parts of the complex embeddings

respectively. We have the following theorem.

Theorem 3.16. The embedding � above sends R onto an n-dimensional lattice,

^R. A fundamental parallelotope for this lattice has volume 1
2s

p
|disc(R)|.

An n-dimensional lattice is defined as the Z-span of an R-basis for Rn. For a basis

{v1, . . . , vn}, we define the corresponding fundamental parallelotope of the lattice as

(
nX

i=1

aivi | 0  ai < 1

)

Proof. By 2.12, we may fix an integral basis ↵1, . . . ,↵n for R. We know that

R =
L

n

i=1 ↵iZ, and clearly from the definition � is an additive homomorphism.

Therefore, ^R =
L

n

i=1 � (↵i)Z. We want to show that the images � (↵i) are linearly

independent over R.
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Recall that the volume of a fundamental parallelotope for an n-dimensional lattice

is the absolute value of the determinant of the matrix formed by a basis. Therefore,

computing the determinant of the n⇥ n matrix A = (aij) defined by aij = (�(↵i))j

will simultaneously verify the linear independence of the � (↵i)’s and prove the

remaining clause in the theorem.

By applying elementary column operations on A, we get

����������

...
...

...
...

...

· · · �r(↵i) R⌧1(↵i) I⌧1(↵i) · · · R⌧s(↵i) I⌧s(↵i)

...
...

...
...

...

����������

2

For 1  j  s

???y
Cr+2j�1!Cr+2j�1�i·Cr+2j

Cr+2J!�Cr+2j+
1
2 ·Cr+2j�1

����������

...
...

...
...

...

· · · �r(↵i) ⌧1(↵i)
1
2 ⌧1(↵i) · · · ⌧s(↵i)

1
2 ⌧s(↵i)

...
...

...
...

...

����������

2

=
1

2s+1
|disc(R)|

It follows that

Vol
�
RN/^R

�
=

�����

r
1

2s+1
|disc(R)|

����� =
1

2s
p
|disc(R)|

We denote it by Vol
�
RN/^R

�
since we know that the discriminant is invariant of

the choice of basis, so this volume is an invariant of ^R.

We will use this embedding to prove the following theorem.
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Theorem 3.17. For every non-zero ideal I in R, there exists a non-zero ↵ 2 I such

that
��NK(↵)

��  �kIk where � =

✓
2

⇡

◆sp
| disc(R)|

Proof. Let ^I denote the image of I under �. Since we know |R/I| is finite, we de-

duce that that ^R/^I is a finite group and subsequently that ^I is an n-dimensional

sublattice of ^R. It follows by the structure theorem for finitely generated abelian

groups that ^R/^I is a product of at most n cyclic groups whose orders we denote

c1, · · · , cn such that ci | ci+1. Choosing appropriately, we may get {v1, . . . , vn} a

basis for ^R such that {c1v1, · · · , cnvn} is a basis for ^I . It follows that

Vol(Rn/^I) = c1 · · · cnVol(Rn/^R) =
1

2s
p
| disc(R)|

����I
����

We will use this in tandem with Minkowski’s theorem in order to find the desired

↵ 2 I. Define N : Rn ! R by

N(x) = x1 · · · xr(x
2
r+1 + x2

r+2) · · · (x2
r+2s�1 + x2

r+2s)

and note that N(�(↵)) = NK(↵) for ↵ 2 R. Consider the set

A =

⇢
x 2 Rn

����|xi|  1, (x2
r+2j�1 + x2

r+2j)  1 for 1  i  r, 1  j  s

�

Clearly A is convex, closed under taking opposites, and |N(a)|  1 for a 2 A. Then,

Minkowski’s theorem (Marcus [1] p. 97) guarantees that ^I contains a point a 2 A

with

|N(a)| 
2n

Vol(A)
· Vol(Rn/^I)

Taking ↵ = ��1(a) and noting that Vol(A) = 2r⇡s proves the theorem.
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Corollary 3.18. The ideal class group of a number ring R is finite.

Proof. Given an ideal class C, fix an ideal I belonging to C�1 and obtain an ↵ 2 I

as in the theorem above. By unique factorization, since (↵) ⇢ I, we must have

(↵) = IJ for some J 2 C. Then, using proposition 3.10, we get

��NK(↵)
�� = kIk · kJk  ↵kIk =) kJk  ↵

So, every ideal class must contain an ideal J with
����J

����  �. But, there can only be

finitely many J since this bound clearly permits only finitely prime factorizations

also by proposition 3.10.

We denote the cardinality of the class group by h, the class number. In what

remains, we develop a formula to calculate h via studying the behavior of functions

associated to the number field.
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Chapter 4

Distribution of Ideals

In order to study the class number of a ring, we will need a fundamental result

concerning the distribution of ideals within classes. More precisely, given a number

field K of degree n and its associated number ring R, let F (C, t) denote the ideals

in a fixed class C of R with
����I

���� =
��R/I

��  t. Then, we are going to prove

Theorem 4.1. F (C, t) = t+O(t1�1/n) for some constant .

The main approach of the proof is to translate the problem into di↵erent contexts

that facilitate the counting process. We start o↵ with the following proposition.

Proposition 4.2. Fix an ideal class C and an ideal J in C�1. Then, every ideal I in

C with ||I||  t corresponds uniquely to a principal ideal (↵) ⇢ J with ||↵||  t||J ||

Proof. IJ must be principal since it belongs to CC�1 = [(1)]. Then, I corresponds

to IJ = (↵) and ||↵|| = ||I|| · ||J ||  t||J ||. On the other hand, given a principal

ideal (↵) ⇢ J with ||↵||  t||J ||, we know that (↵) = IJ for some I. It follows that

I 2 C�1 and ||I||  t .
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We have now simplified the problem into counting principal ideals (↵) ⇢ J , a fixed

ideal in C, with
����(↵)

���� =
��NK(↵)

��  t
����J

����. In essence, we’re counting elements

↵ 2 J whose norm is bounded by t
����J

����. The delicate part of this process is ac-

counting for associates - elements that only di↵er by a unit. They generate the same

principal ideal so we want to avoid double counting. In order to resolve this issue,

we must first understand how those associates are spread out through understanding

the structure of the unit group.

We will first prove the theorem for the real quadratic case where the structure of

the unit group U makes it feasible to visually tackle our problem.

4.1 Real Quadratic Case

In what follows, K = Q[
p
m] for squarefree m 2 Z, R is the associated number

ring, and U is its group of units. For simplicity, we assume m = 2, 3 mod 4 so

R = AQ[
p
m] = Z[

p
m].

Theorem 4.3. There exists a fundamental unit u 2 R such that

U = {±uk
��k 2 Z}

We will require the following proposition concerning certain subgroups in Rm.

Proposition 4.4. Let G be a subgroup of Rm such that every bounded subset is

finite. Then, G is a lattice.

Proof. Let ^ = Z-span{v1, · · · , vd} be a lattice of maximal dimension contained in

G, (possibly just 0). Then, G is contained in the subspace generated by ^. Oth-

erwise, there would exist a v 2 G \ R-span{v1, · · · , vd}. Then, the lattice given by

Z-span{v, v1, · · · , vd} ⇢ G contradicts the maximality of ^.
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Fix a fundamental parallelotope F for ^ defined as

F =

(
nX

i=1

aivi
��ai 2 [0, 1)

)

Clearly, F is bounded. Moreover, by subtracting integer multiplies of the basis, every

element v 2 G can be translated into F via elements of ^. Hence,
��G/^

�� 
��G\F

��

which is finite by assumption. It is not di�cult to see that G/^ is in fact a finite

group with the binary operation

[a]^ + [b]^ = [a+ b]^ (we denote [a]^ = a+ ^)

Taking r to be the least common multiple of the orders of elements in G/^, we

deduce that rG = [0]^ ⇢ ^. This implies rG is a free abelian group of rank  d by

2.13. Since r 6= 0, it follows G must be a free abelian group with the same rank as

rG. Then, rG ⇢ ^ ⇢ G and hence rank G = d.

Finally, we admit the stacked bases theorem (equivalent to expressing a basis for ^

in terms of G and applying the normal form from Jacobson [2] pg. 181). It asserts

that we may choose a Z-basis for G, {a1, · · · , ad} such that {c1a1, · · · , cdad} is a basis

for ^ for some integers c1, · · · , cd. Then, ^ being a lattice ensures that {a1, · · · , ad}

are R-independent, which in turn implies G is a lattice.

We now proceed with the proof of the unit theorem.

Proof. We recall the natural embedding of R into the lattice ^R ⇢ R2 that maps an

element to its conjugates.

� : U ⇢ R ! ^R

a+ b
p
m 7!

�
a+ b

p
m, a� b

p
m
�
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We restrict the mapping above to the unit group U ⇢ R and compose it with a

logarithmic mapping, L, in order to encode the multiplicative structure of our unit

group into an additive lattice structure. We naturally define L component-wise by

L : R⇤ ⇥ R⇤ ! R2

(z, w) ! (log|z|, log|w|)

We refer to the composition as log = L � �.

log : U ⇢ R \ {0} �! ^R \ {0} L! {x+ y = 0} ⇢ R2

↵ = a+ b
p
m 7!

�
a+ b

p
m, a� b

p
m
�
7!

�
log

��a+ b
p
m
�� , log

��a� b
p
m
���

Note that for ↵, � in U , log↵� = log ↵ + log�. It follows that, for ↵ 2 U , the

coordinate sum of log ↵ = log|NK(↵)| = 0. Therefore, log : U ! {x + y = 0} is a

group homomorphism.

In addition, note that if |log↵|  M , then each of its coordinates must be less than

M , therefore |↵| 2 (e�M , eM). Since bounded subsets of a lattice are finite, we

deduce that bounded subsets of log(U) are finite since they have a bounded (and

hence finite) pre-image. Therefore, by 4.4, log(U) is a lattice in R2 which we will

denote by ^U from hereon.

In conclusion, log(U) is an additive one-dimensional lattice on the line x = �y.

Therefore, it has two opposite minimal norm elements. We choose the one with the

positive x-value, and denote it log(u). Hence, U is multiplicatively generated by u,

the fundamental unit, which is the smalllest unit > 1.
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Proof of theorem 4.1 for real quadratic fields. Recall that we were interested in the

structure of the unit group in order to count principal ideals via the sets of associates

that generate them. If we view the unit group U to be acting on R via multiplica-

tion, then those associates belong to the orbit of some unit u. In other words, our

principal ideals are actually in bijection with the orbits of the unit group U acting

on elements of R by multiplication.

So, our problem boils down to finding a subset S ⇢ R of orbit representatives for U ,

then counting the elements of J \ S whose norm is bounded by t
����J

����. To simplify

our task, we will actually find a set S 0 of representatives for V = {uk} and account

for the opposites that will be represented twice in our coset.

In order to benefit from the additive structure of our ideal J , we again exploit the

geometric embedding from earlier. J maps isomorphically onto a lattice ^J ⇢ R2.

Similarly, the group V maps isomorphically onto a subgroup V 0. So, we will find a

set of orbit representatives of V 0 ⇢ (R⇤)2, and our norm NK in R translates into

N :(R⇤)2 ! R

(x1, x2) 7! x1x2

since the norm is just the product of the two embeddings.

The structure of ^R does not encode the special nature of our units, and hence is less

convenient for constructing a set of coset representatives. So, we will again resort

to the log mapping from earlier.
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log : U ⇢ R \ {0} ��! ^R \ {0} L�! {x+ y = 0} ⇢ R2

↵ = a+ b
p
m 7!

�
a+ b

p
m, a� b

p
m
�
7!

�
log

��a+ b
p
m
�� , log

��a� b
p
m
���

It is clear from the definition that ker(log)= {±1}. Then, by the fundamental ho-

momorphism theorem, U/{±1} ⇠= log(U) = ^U ⇢ R2. Recalling that U = ±V , we

deduce that log|V is an isomorphism. It follows that L : V 0 ⇢ (R⇤)2 ! ^U) is an

isomorphism. In which case, log(V ) = L(�(V )) = L(V 0) = ^U . Then, we claim

that our desired subset of orbit representatives is D = L�1(D0), where D0 is a set of

orbit representatives for ^U ⇢ R2.

To summarize, our task has been transformed as follows

F(C, t) = the number of
ideals I ⇢ C with

����I
����  t

F(C, t) = the number of
principal ideals (↵) ⇢ J
with

����(↵)
����  t

����J
����

S, a set of orbit represen-
tatives for U = {±uk}
in R and F(C, t) =��S \ J \ {NK(x)  t

����J}
��

S 0, a set of orbit repre-
sentatives for V = {uk}
in R and 2 · F(C, t) =��S \ J \ {NK(x)  t

����J
����}

��

D, a set of orbit representatives
for V 0 = �(V ) ⇢ (R⇤)2

and 2 · F(C, t) =
��D \

^J \ {Ñ(x)  t
����J

����}
��

D is the log pre-image of D0,
a set of orbit representatives
for log(V 0) = ^U ⇢ R2

Proposition 4.2

Theorem 4.3

Proposition 4.5

Figure 4.1: Summary of approach

The final assertion follows from the following proposition which we apply to G =

(R⇤)2 and the map L.
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Proposition 4.5. Given a homomorphism of abelian groups, f : G ! G0, and a

subgroup S of G that is isomorphic to its image S 0 in G0, then the pre-image of a

set of coset representatives for S 0 is a set of coset representatives for S.

Proof. Let D0 denote a set of coset representatives for S 0, and let D = f�1(D0).

Then, for g 2 G, we know that f(g) ⇠ a for some a 2 D0.Hence, f(g) = a + s0

for some s0 2 S 0. But, f(S) ⇠= S 0, so there exists a unique s such that f(s) = s0.

Therefore, a = f(g) � f(s) = f(g � s) from which it follows that g � s 2 D, and

g ⇠ g � s. So, every element in G has an orbit representative in D.

To show this representative is unique, assume d1, d2 2 D satisfy d1 ⇠ d2. Then,

d1 = d2 + s for some s 2 S. So, f(d1) = f(d2) + f(s) and f(d1) ⇠ f(d2). But, this

implies f(d1) = f(d2) since they are both inD0 which is a set of coset representatives.

Therefore, f(s) = 0, and hence s = 0, since f |S is an isomorphism. Hence, d1 = d2.

We have shown that every element of G has a unique representative in D. Therefore,

D is a set of coset representatives of S in G.

We may apply the proposition to L since the orbits of the subgroups by multi-

plication are essentially cosets. Fix a fundamental parallelotope F of ^U . Then,

F = {clog(u)
��0  c < 1} is the line segment from the origin to the image of the fun-

damental unit u. Crossing said segment with the perpendicular line in the direction

of v = (1, 1) will yield a set of coset representatives D0 for ^U 2 R2. Then,

D = L�1(D0) = L�1(F + Rv) = {x 2 (R⇤)2
��L(x) 2 F + R(1, 1)}

So, all that is left is to show that

����D \ ^J{|N(x)|  t ·
����J

����
���� = O(t)
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Figure 4.2: D = L�1(D0)

Note that D is homogenous since D = aD for every non-zero real number a. Indeed,

if x = (x1, x2) 2 D,

L(x) = f + c(1, 1) , f 2 F, c 2 R

=) L(ax) = log(|ax1|, |ax2|) = (log(|a|), log(|a|)) + L(x) = f + (c+ log|a|)(1, 1)

Then, letting Da = D \ {|N(x)|  a}, it follows that Da =
p
aD1. We may now

benefit from the following proposition that describes how bounded subsets interact

with lattices in R2.

Proposition 4.6. Given a lattice ^ in R2 and a bounded subset B of R2 such that

its boundary @B is piecewise-smooth, then for a 2 R

�� ^ \aB
�� = a2

vol(B)

vol(R2/^) +O(a)

Proof. We claim that we may take ^ = Z2 without loss of generality. We know that
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^ maps to Z2 through a bounded linear transformation T that preserves smooth-

ness, and scales all volumes by an equal factor. Hence, letting D = T (B)

��Z2 \ aD
�� =

�� ^ \aB
�� ;

vol(B)

vol(R2/^) =
vol(T (B)

vol(R2/T (^)) =
vol(D)

vol(R2/Z2)
= vol(D)

The key idea is that both the number of lattice points in aD and its volume can

be approximated by dividing the region into small cubes. Then, the di↵erence will

amount to no more than the cubes on the boundary which we’ll show can be nicely

bounded by a linear multiple of a. Divide the grid into 1 ⇥ 1 cubes centered at Z2

as shown in the images of an example set D, 2D below. (Note the more refined grid

on the right representing 2D).

Each cube has volume 1 and so letting I(aD) denote the number of cubes inside

Figure 4.3: Using grids to measure volume and lattice points

aD and @aD denote the number of cubes intersecting the boundary, we have

vol(aD)� I(aD)  @(aD) ; |Z2 \ aD|� I(aD)  @(aD)

Combining the two, we get that

��|Z2 \ aD|� vol(aD)
��  2@(aD)
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Therefore, it remains to show that @(aD) is O(a). The boundary of D is piecewise

smooth. So, it’s the union of finitely many smooth segments, and it su�ces to show

that for a smooth segment, f([0, 1]), @(af([0, 1])) = O(a). Consider the example

below where we closely analyze the top-right chunk of D from above.

Figure 4.4: Studying how [0, 1] behaves under f when scaled

For any a > 1, divide [0, 1] into [a] small cubes S of size 1/[a]. f is smooth, so it has

continuous partial derivatives. Moreover, each of its partial derivatives are bounded

on [0, 1] since it’s a compact set. By applying the Mean Value Theorem on each of

the two components, we have for x1, x2 2 S ⇢ [0, 1],

f(x1)� f(x2) = (x1 � x2)

✓@f
@x

(c1),
@f

@x
(c2)

◆
for some c1, c2 2 [x1, x2]

It follows that f(S) has diameter at most �/[a] for some �. Then, the diameter of

af(S) is at most a�/[a]  2�. Zoom into af(S), and construct a circle of radius

2� around any point. Clearly af(S) is contained within this circle. Moreover, this

circle intersects at most (2diam(f(s)+2)2  (4�+2)2 of our 1⇥1 cubes from above.

Finally, noting that we have [a] small cubes, we get that the smooth segment

af([0, 1]) intersects at most [a](4� + 2)2 cubes which is O(a). Since, @(aD) con-

sists of finitely many piecewise smooth segments, this shows that @(aD) is O(a),

completing our proof.
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Figure 4.5: Bounding af(S)

Applying our proposition with ^ = ^J , and B = Dt||J || and recalling that

vol(R2/^J) = vol(^R/ ^J | · vol(R2/^R) =
��R/J

��pdisc(R) =
����J

����pdisc(R)

we get

���� ^J \Dt||J ||

���� =
���� ^J \

q
t
����J

����D1

���� = t
����J

���� ·
vol(D1)

����J
����pdisc(R)

+O

✓q
t
����J

����
◆

=
vol(D1)
p

disc(R)
t+O(t1/2)

Summing it all together,

F(C, t) = 1

2

���� ^J \Dt||J ||

���� = t+O(t1/2) where  =
vol(D1)

2
p
disc(R)

completing the proof.

Proposition 4.7.  =
2log(u)
p

disc(R)
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Proof. The result follows immediately if we can show that vol(D1) = 4log(u). Recall

that u is the smallest fundamental unit greater than 1. Assume its conjugate |u| < u.

The, our initial region D0 was defined as the region between the lines

y = x and y= x+ log

����
u

u

����

Then, taking the inverse of the log mapping, we get that D is defined as the region

between

|y| = |x| and |y|=

�������

u

u
x

�������

Then, D1 is the portion of D bounded by |N(x)| = |xy| = 1. Finally, we show that

the volume of A below is log(u) which completes our proof since D1 consists of four

copies of A.

Figure 4.6: Vol(D1) = 4Vol(A)
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vol(A) =

Z q
|uu |

0

⇣���
u

u

���� 1
⌘
x dx+

Z 1

q
|uu |

✓
1

x
� x

◆
dx

=
1

2
�

q��u
u

��

2
+�1

2
� log

 s����
u

u

����

!
+

q��u
u

��

2

= �1

2
log

0

B@
u

u

1

CA = log(u)

where the final equality follows since u/u = N(u)/u2 = 1/u2.

4.2 General Case

In general, a similar procedure holds for any number ring. Some of our tools will

have to be adjusted to a more general context and may require more technical work,

but the underlying trajectory is unchanged. In what follows, given any number field

K of degree n over Q and the associated number ring R, we let r and 2s denote

the number of real and complex embeddings of K, where r+ 2s = n. We will again

need to understand the structure of the group of units.

Theorem 4.8. (Unit Theorem) Let U denote the group of units, and W denote the

group consisting of the roots of 1. Then, U is the direct product W ⇥ V where V is

a free abelian group of rank r + s� 1.

Note that in the case of the real quadratic fields, r+ s� 1 = 1 and W consists only

of ±1, which coincides with our earlier result. In general, rather than having solely

one fundamental unit, we have a fundamental system of units u1, · · · , ur+s�1 which

generates V . In other words,

V = {uk1
1 · · · ukr+s�1

r+s�1

��ki 2 Z}
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Proof. The proof idea is similar to the quadratic case, but some steps need to be ad-

justed to the new context. Letting �1, · · · , �r, ⌧1, · · · ⌧s denote the real and complex

embeddings of K, we can construct the embedding of K into Rn via

� : K ! Rn

↵ 7!
✓
�1(↵), · · · , �r(↵),<⌧1(↵),=⌧1(↵) · · ·<⌧s(↵),=⌧s(↵)

◆

We know from earlier that the restriction of this embedding to R sends it to a lattice

^R. Then, we again define the log sequence of mappings below in order to encode

the multiplicative nature of U into the additive nature of lattices.

log : U ⇢ R \ {0} ��! ^R \ {0} ⇢ Rn L�! ^U ⇢ H = {z1 + · · ·+ zr+s = 0} ⇢ Rr+s

where the definition of L is adjusted to become

L : (R⇤)n ! Rr+s

(x1, · · · , xr, y1, · · · , y2s) 7!
�
log|x1|, · · · , log|xr|, log(y21 + y22), · · ·

�

Note that this does indeed function like the log mapping in the previous section:

i. L is well-defined on ^R since all the conjugates of ↵ are non-zero. Therefore,

their norms are strictly positive.

ii. For ↵ 2 U , the field norm of U is ±1, hence the coordinate sum of log(↵) is

given by

log|�1(↵)|+ · · ·+ log|�r(↵)|+ log(|⌧r+1(↵)|2) + · · ·+ log(|⌧s(↵)|2)

= log
���1(↵) · · · �r(↵)⌧r+1(↵)⌧ r+1(↵) · · · ⌧s(↵)⌧ s(↵)

�� = log|NK(↵)| = 0

Thus U does indeed map into the hypersurface H.
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iii. For ↵, � 2 ^R \ {0}, log(↵�) = log(↵)+ log(�) since the embeddings are multi-

plicative so

|�i(↵�)| = |�i(↵)�i(�)| = |�i(↵)| · |�i(�)|

Therefore, log(↵�)i = log(↵)i+ log(�)i.

iv. The previous two remarks show that log: U ! H is in fact a group homomor-

phism from the multiplicative group U to the additive group H. Moreover, note

that for any ! 2 W , !n = 1 =) nlog(!) = 0. Therefore, W ⇢ Ker(log).

v. Given a bounded subset B in Rr+s such that |x|  M for all x 2 B, then

every element in L�1(B) must have coordinates bounded above by eM . There-

fore, L�1(B) ⇢ [�eM , eM ]n
T
^R ⇢ Rn. Hence, L�1(B) is finite since bounded

subsets of a lattice are finite.

vi. The property above shows that the Ker(log) is a finite subgroup (� is an iso-

morphism). So, for every element of the kernel ! has finite order which implies

!k = 1 for some k. Therefore, W is in fact the kernel. Alternatively, we could

have observed that for any root of 1, its minimal polynomial must be a cyclo-

tomic polynomial of order d|n of which there are finitely many. In either case,

we can conclude that W is a subgroup of the group of |W |-th roots of unity

which is cyclic, therefore W is also cyclic.

vii. Also note that a bounded subset of log(U) must be finite since its pre-image is

finite. Therefore, by lemma 4.4 we deduce that U is a lattice, which we denote

^U as above.

^U = log (U) is a free abelian group of rank d  r + s � 1. Thus, we fix a Z-basis

for it denoted by log(u1), · · · log(ud), and let V be the subgroup of U generated by
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u1, · · · , ud. Then, for every element ↵ 2 U , we may express

log(↵) = k1log(u1) + · · ·+ kdlog(ud) = log(uk1
1 · · · ukd

d
) , ci 2 Z

Hence, ↵ = ! · uk1
1 · · · ukd

d
for some ! 2 Ker log = W . Therefore, U = W ⇥ V . All

that remains is to show that log(U) has rank r+ s� 1 by generating r+ s� 1 units

whose log images are linearly independent over R. We admit the following lemma.

Lemma 4.9. There exists a unit u such that log(u)1 is positive and all other coor-

dinates of log(u) are negative. (Marcus [1] pg. 145)

Applying the lemma above allows us to generate special units u1, · · · , ur+s such that

all coordinates of log(ui) are negative except the i-th which is necessarily positive

since the coordinate sum of log(ui) is 0. Then, take the square matrix

M =

0

BBBBBBB@

log(u1)

log(u2)

...

log(ur+s)

1

CCCCCCCA

= (c1|c2| · · · |cr+s)

We note that the sum of the columns
P

i
ci is 0 so M can have rank at most

r+s�1. Assume the first r+s�1 columns are linearly dependent, and without loss

of generality that c1 has the largest coe�cient in a relation of linear dependence.

Then, after normalizing, we can write c1 + t2c2 + · · · + tr+s�1cr+s�1 = 0 where

ti  1, are not all 0. Considering the first row in this equation and recalling that

log(u1) = (log(u1)1, · · · log(u1)r+s) has coordinate sum 0 and is only non-negative in
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its first coordinate, we get a contradiction.

0 = log(u1)1 +
r+s�1X

j=2

tjlog(u1)j = |log(u1)1|�
r+s�1X

j=2

tj|log(u1)j|

� |log(u1)1|�
r+s�1X

j=2

|log(u1)j| (since tj  1)

> |log(u1)1|�
r+sX

j=2

|log(u1)j| =
r+sX

j=1

log(u1)j = 0

Therefore, M has rank r + s� 1, and as a result V is of rank r + s� 1.

As in the quadratic case, our goal of counting ideals in a certain class C that are

bounded by t can be rephrased in a di↵erent context. It is equivalent to finding a

subset of orbit representatives for U ⇢ R, and then counting the elements of J in

this subset whose norm is bounded by t||J ||. Again, it is easier to simplify the struc-

ture of U by working with a subset of orbit representatives for V and accounting for

the |W | factor in the final tally.

We can view ^R as a subset of (R⇤)r ⇥ (C⇤)s in order to benefit from their multi-

plicative group structure. Then, we can adjust our earlier log mapping accordingly

to preserve it.

V ⇢ R \ {0}
�

,�! V 0 ⇢ (R⇤)r ⇥ (C⇤)s
L�! ^U ⇢ H = {z1 + · · ·+ zr+s = 0} ⇢ Rr+s

↵ 7!
✓
�1(↵), · · · , ⌧1(↵), · · ·

◆
7!

✓
log|�1(↵)|, · · · , 2log|⌧1(↵)|, · · ·

◆

We know from the earlier proof that the this is in fact an isomorphism since the

generators of V map to the Z-basis of ^U . Therefore, a set of orbit representatives

for the elements of the group V acting on R through multiplication maps isomor-
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phically to a set of orbit representatives for the subgroup V 0, a fundamental domain

D for V 0. And using the fact that J maps isomorphically to ^J , we can undergo our

counting process in (R⇤)r ⇥ (C⇤)s instead.

In this scenario, our task has become counting the lattice elements of ^J inside D

whose ”equivalent” norm obeys N(x)  t||J ||. More precisely, N(x) is the same

map on Rn from above but adjusted to our new viewpoint of (R⇤)r ⇥ (C⇤)s. So,

N(x1, · · · , xr, z1, · · · , zs) = x1 · · · xs|z1|2 · · · |zs|2

We recall our two lemmas from the quadratic case.

Lemma 4.10 (A). Given a homomorphism of abelian groups, f : G ! G0, and a

subgroup S of G that is isomorphic to its image S 0 in G0, then the pre-image of a

set of coset representatives for S 0 is a set of coset representatives for S.

Lemma 4.11 (B). Given a lattice ^ in Rn and a bounded subset D of Rn such that

its boundary @B is piecewise-smooth, then for a 2 R

�� ^ \aB
�� = an

vol(B)

vol(Rn/^) +O(an�1)

The proof of Lemma B is exactly identical to the earlier proof, but with the dimen-

sions properly adjusted.

Applying Lemma A to

f = L : S = V 0 ⇢ G = (R⇤)r ⇥ (C⇤)s ! S 0 = ^U ⇢ G0 = Rr+s
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we see that it it su�ces to find a set of orbit representatives D0 for ^U ⇢ H ⇢ Rr+s,

and D = f�1(D0) will be our desired set. Fix a fundamental parallelotope F for

^U , then as in the quadratic case, we can take D0 to be the sum of F and Rv for a

vector v 62 H. Then,

D = log�1(F � Rv) =
�
x 2 (R⇤)r ⇥ (C⇤)s

��log(x) 2 F � Rv
 

In order to preserve the homogeneity of D as in the quadratic case, we may take

v = (
r times

1, · · · , 1,
s times

2, · · · , 2)

Then, we get that for any x 2 D,and non-zero a 2 R,

log(ax) = log(a)+log(x) = log|a|v+f+cv = f+(log|a|+c)v for some f 2 F, c 2 V

which shows that D is homogenous. Taking Da = D
T
{|N(x)|  a}, if we are able

to apply Lemma B with B = D1 and use the same line of reasoning as earlier, we

deduce that

|W | · F(C, t) =
���� ^J

\
Dt||J ||

���� =
���� ^J

\
n
p
(t||J ||)D1

����

=
vol(D1)||J ||
vol(Rn/^J)

t+O((t||J ||)(n�1)/n) =
vol(D1)||J ||
vol(Rn/^R)

t+O(t1�1/n)
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which proves our theorem with

 =
2svol(D1)

|W |
p

|disc(R)|

Therefore, the final step is verifying that the boundary of D1 is indeed Lipschitz-

parametrizable, and then calculating its volume.

We recall that

D1 =
�
x 2 (R⇤)r ⇥ (C⇤)s

��log(x) 2 F � Rv and |N(x)|  1
 

where F is a fundamental parallelotope for ^U and v = (
r times

1, · · · , 1,
s times

2, · · · , 2). We

simplify D1 in two respects. First, note that for x 2 D1, we have

log(x) = (log|x1|, · · · , log|xr|, 2 log|z1|, · · · , 2 log|zs|) = f + av for f 2 F, a 2 V

Then, by the homomorphism properties of the log, we may express the coordinate

sum of log(x) as

rX

i=1

log|xi|+
sX

j=1

2log|zj| = log
�
|x1| · · · |xr| · |z1|2 · · · |zs|2

�
= log(|N(x)|)  0

where the inequality follows since |N(x)|  1. On the other hand, this is equal to

the coordinate sum of f + a which is (r + 2s)a since f 2 ^U ⇢ H has coordinate

sum 0. Therefore, a  0. So, D1 can be more precisely described as

D1 =
�
x 2 (R⇤)r ⇥ (C⇤)s

��log(x) 2 F � (�1, 0]v and |N(x)|  1
 

Our next simplification follows from noting that our log mapping is even with respect

to the real coordinates x1, · · · , xr since it does not depend on their signs. So, we may
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expressD1 as the union of 2r identical regions, where each element � = (�1, · · · , �r) 2

{�1, 1}r corresponds to

D� = D1

\
{�ixi  0

��i = 1, · · · , r}

Note also that the regions D� are disjoint since the conjugates of a non-zero element

x 2 R \ {0} must be non-zero. Therefore, it su�ces to show that one of D� is

Lipschitz-parametrizable and the volume of D1 would be 2r vol (D�). We take

� = (1, · · · , 1) for simplicity and denote the region D+
1 . We will now proceed to

parametrize its boundary by first parametrizing all of D+
1 by a half-open cube in

Rn, and then letting the parametrization extend to the boundary. We fix a Z-basis

{v1, · · · , vr+s�1} for ^U ⇢ Rr+s, so the fundamental parallelotope F can be described

by

F =

(
r+s�1X

k=1

tkvk
��0  tk < 1

)

For every k, we write vk = (v1
k
, · · · , vr+s

k
). Then, using polar coordinates, any

x = (x1, · · · , xr, ⇢1ei✓1 , · · · , ⇢sei✓s) 2 D+
1 where ✓j 2 (0, 2⇡] can be described by the

equations

log(x1) =
r+s�1X

k=1

tkv
1
k
+ a

...

log(xr) =
r+s�1X

k=1

tkv
r

k
+ a

log(2⇢1) =
r+s�1X

k=1

tkv
r+1
k

+ 2a

...

log(2⇢s) =
r+s�1X

k=1

tkv
r+s

k
+ 2a
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where tk 2 [0, 1) for 1  k  r + s� 1 and a  0.

Let tr+s = ea 2 (0, 1] and tr+s+j = ✓j/2⇡ 2 (0, 1] for j = 1, · · · , s. Then, exponen-

tiating the equations above yields a parametrization of D+
1 given by the restriction

of f to [0, 1)r+s�1 ⇥ (0, 1]s+1, where

f : [0, 1]n
f1! Rn f2! Rr ⇥ Cs

(t1, · · · , tr+2s) 7! (g1, · · · , gn) ! (g1, · · · , gr, gr+1e
igr+s+1 , · · · )

and

gj =

8
>>>>>><

>>>>>>:

tr+s exp
�P

r+s�1
k=1 tkv

j

k

�
1  j  r

tr+s exp
�
1
2

P
r+s�1
k=1 tkv

j

k

�
r < j  r + s

2⇡tj r + s < j  n

Then, the Jacobian (@gj/@tk) of f1 above is given by

J =

0

BBBBBBBBBBBBBBBBBBBBBBBB@

v11g1 · · · vr1gr
1
2v

r+1
1 gr+1 · · · 1

2v
r+s

1 gr+s

...
...

...
... 0

v1
r+s�1g1 · · · vr

r+s�1gr
1
2v

r+1
r+s�1gr+1 · · · 1

2v
r+s

r+s�1gr+s

g1/tr+s · · · gr/tr+s gr+1/tr+s · · · · · · gr+s/tr+s

2⇡

2⇡

0 . . .

2⇡

1

CCCCCCCCCCCCCCCCCCCCCCCCA

We note the following.
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i. All the partial derivatives are continuous, and therefore f1 is smooth.

Moreover, polar transformations are smooth by the same reasoning since their

components (xcos(y), ixcos(y)) have continuous derivatives. Then, f2 is smooth

and therefore f as a whole is smooth in each of its components.

ii. We claim that f is an open map since both f1 and f2 are open. The log and

exponential functions map open intervals to open intervals on the real-line, and

the polar transformation maps a product of open intervals in R2 to a sector of a

circle in C. Therefore, recalling that the product of open intervals is a basis for

the product topology on Rn, we may deduce that f2 as well as the maps below

are open.

h : (x1, · · · , xn) ! (x1, · · · , xr+s�1, log(xr+s), xr+s+1, · · · , xn)

g : (x1, · · · , xn) ! (ex1 , · · · , exr ,
1

2
exr+1 , · · · , 1/2exr+s , 2⇡xr+s+1, · · · , 2⇡xn)

Then, it’s clear that f1 can be written as the composition h �M � g, where M

is the linear transformation given by

0

BBBBBBBBBBBBBB@

v1

· · · 0
vr+s�1

v

0 1

1

CCCCCCCCCCCCCCA

We know that the rows are linearly independent, so M is clearly invertible and

thus open. Therefore, f is open.
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iii. Note that f([0, 1]n) = D1
+

since the f is compact so the image must be a

compact set containing D+
1 . On the other hand, we know that the half open

cube [0, 1)r+s�1 ⇥ (0, 1]s+1 is dense in [0, 1]n and maps to D1. Therefore, D1

is dense in the image, from which the statement follows. Since f is open, we

conclude that the boundary of the n-cube is mapped onto a set containing the

boundary B = @D1. The boundary of the n-cube consists of 2n(n � 1) cubes.

It follows by (i.) that the boundary B is piecewise smooth. So, we may apply

Lemma B as claimed.

Note that for j  r + s column j is multiplied by gj, and row r + s is divided by

tr+s. So, using basic properties of determinants and multiplying the s columns r+1

through r + s by 2 , we may express

det(J) =
(2⇡)sg1 · · · gr+s

tr+s

·
n

2s

����������������

v1
...

vr+s�1

1
n
v

����������������

=
⇡sf1 · · · gr+s

tr+s

· n · reg(R)

where the middle determinant is called the regulator ofR and expressed as reg(R).This

allows us to nicely compute the volume of D+
1 . Using the formula for change of polar

coordinates, we have

vol(D+
1 ) =

Z

D
+
1

dx1 · · · dxr⇢1d⇢1d✓1 · · · ⇢sd⇢sd✓s

Then, using the map f1 from above and the determinant of the Jacobian, this be-

comes
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vol(D+
1 ) = n⇡s · reg(R)

Z

[0,1]n

f1 · · · frf 2
r+1 · · · f 2

r+s

tr+s

dt1 · · · dtn

Finally, note that by definition of the functions gi,

g1 · · · grg2r+1 · · · g2r+s
= tn

r+s
· exp

 
r+sX

j=1

r+s�1X

k=1

tkv
j

k

!
= tn

r+s
· exp

 
r+s�1X

k=1

tk

r+sX

j=1

vj
k

!

The innermost sum is 0 for all k since the vectors vk have coordinate sum 0. Then,

putting it all together ,

vol(D+
1 ) = ⇡sreg(R)·n

Z 1

0

tn�1
r+s

dtr+s·
Z

[0,1]n�1

dt1 · · · dtr+s�1dtr+s+1 · · · dtn = ⇡sreg(R)

Thus, we have proved theorem 4.1, and also proved that

 =
2r+s⇡sReg(R)

|W |
p

|disc(R)|
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Chapter 5

Class Number Formula

In this final chapter, we will use the result on the distribution of ideals to define and

study the Dedekind Zeta function of a number field K. We will express the class

number h in terms of this function, and compute a simplified form for h in the case

of quadratic fields.

5.1 Dedekind Zeta Functions

The Dedekind Zeta Function of a number field K is defined as

⇣K(s) =
1X

n=1

jn

ns

<(s) > 1

where jn is the number of ideals in R = A\K with
����I

���� = n. This function is well-

defined and analytic on the half-plane <(s) > 1 due to the following convergence

proposition.

Proposition 5.1. Given the Dirichlet Series

f(s) =
1X

n=1

an

ns
an, s 2 C
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such that
��Pt

n=1 an
�� = O(tr), then f converges and is analytic on the half-plane

<s > r.

Proof. See Serre [4] p. 66.

By theorem 4.1, we know that
P

t

n=1 jn = F(t) ⇠ ht. Then, applying the propo-

sition to our Zeta functions establishes their convergence on the half-plane x > 1.

When K = Z, jn = 1 since there is exactly one ideal of size n in Z. In the case, we

get the Riemann Zeta function

⇣(s) := ⇣Z(s) =
1X

n=1

1

ns

We will extend ⇣K to a meromorphic function on the half-plane x > 1� [K : Q]. To

do so, we will first need to extend ⇣. We do so by considering the two series

f(s) = 1�
1

2s
+

1

3s
�

1

4s
+ · · · ; g(s) = 1 +

1

2s
�

2

3s
+

1

4s
+

1

5s
�

2

6s
+ · · ·

It is clear that f, g converge to analytic functions for x > 0 by 5.1. Moreover, for

x > 1, by absolute convergence, we may write

f(s) =
1X

n=1

1

ns
� 2

1X

n=1

1

(2n)s
= (1� 21�s)⇣(s)

g(s) =
1X

n=1

1

ns
� 3

1X

n=1

1

(3n)s
= (1� 31�s)⇣(s)

This allows us to extend ⇣ to a meromorphic function on x > 0 in two di↵erent

ways.

⇣(s) =
f(s)

1� 21�s
; ⇣(s) =

g(s)

1� 31�s

f is analytic on the half-plane x > 0, so the only possible poles of f(s)/(1 � 21�s)
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are the simple poles at the points where

21�s = 1 =) e(1�s)log(2) = 1 =) s := sk = 1 +
2k⇡i

log(2)
; k 2 Z

However, it turns out that for k 6= 0, f(sk) = 0 cancelling out the simple pole

of the denominator. This can be observed by noting that the only possible poles

of g(s)/(1 � 31�s) lie at tk = 1 + 2k⇡i
log(3) which only coincide with sk for k = 0.

(log(2)/log(3) is irrational). Hence, for k 6= 0,

lim
x!1+

s=x+ 2k⇡i
log(2)

g(s)

1� 31�s
= ⇣(s) = lim

x!1+

s=x+ 2k⇡i
log(2)

f(s)

1� 21�s

which implies that f(s)/(1 � 21�s) has no poles except at s = 1 since f(1) =

log(1/2) 6= 0. We take this as the extension of ⇣ and use it to extend ⇣K . For x > 1,

by absolute convergence, we have

⇣K(s) =
1X

n=1

jn � h+ h

ns
=

1X

n=1

jn � h

ns
+ h⇣(s)

By theorem ?? and proposition 5.1, the Dirichlet series converges to an analytic

function on the half-plane x > 1 � 1
[K;Q] . Combining this with the extension of ⇣

leads to our desired extension of ⇣K on x > 1� 1
[K;Q] , which is analytic everywhere

except at s = 1.

Our goal is to find an equation for h, the class number of our field. Rearranging the

above, we may write

h =
⇣K(s)

⇣(s)
�

P1
n=1

jn � h

ns

⇣(s)
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The Dirichlet series converges in the half-plane x > 1�
1

[K : Q]
, specifically at s = 1.

Meanwhile, ⇣ has a simple pole at s = 1. Therefore, taking the limit as s ! 1+, we

deduce that

h = lim
s!1+

⇣K(s)

⇣(s)

Note from the definition that the residue of ⇣ at s = 1, Res(⇣, 1) = 1. Therefore,

combining this with the value of  obtained in theorem ??, we get the class number

formula in its most general form

h =
|W |

p
|disc(R)|

2r+s⇡sReg(R)
· lim
s!1+

(s� 1)⇣K(s)

In what remains, we will obtain a formula for h assuming K is an abelian extension

of Q. Equivalently, by the Kronecker-Weber theorem [1], K is contained in some

cyclotomic field Q[!],! = e2⇡i/m. In order to benefit from this structure of K, we

will first need to define explore characters of finite abelian groups.

5.2 Characters of Finite Abelian Groups

Let G be a finite abelian group. Then , we define

Definition 5.2. A character of G is a homomorphism � : G ! C⇤, the non-zero

complex numbers.

The simplest example of a character is the principal character �0 = 1. It acts like

the identity element since the characters of G form a group under multiplication,

which we denote by Ĝ, with ��1 = 1/�. In fact,

Proposition 5.3. G ⇠= Ĝ

Proof. We will first prove the proposition for finite cyclic groups. Suppose G = hai

is cyclic of order n. Then, since � is a homomorphism, �(a)n = �(an) = �(e) = 1.

63



Therefore, �(a) is an nth roof of unity. On the other hand, every nth root of unity

! defines a character of G by �(a) = !. Therefore, Ĝ is also cyclic of order n since

it’s isomorphic to the group of nth roots of unity.

In order to prove the general case, we need to show that given any two finite abelian

groups G,H, the map  : Ĝ⇥Ĥ ! \G⇥H defined by  (�1,�2)(g·h) = �1(g)�2(h) is

an isomorphism. It is easy to check that  is an injective homomorphism. Moreover,

given a character � 2 \G⇥H, define �1(g) = �(g · eH),�2(h) = �(eg · h) which be-

long to Ĝ and Ĥ respectively. Then,  (�1,�2)(gh) = �1(g)�2(h) = �(geH)�(eGh) =

�(gh). Therefore,  is surjective.

Summing it up, given any finite abelian group G, we may write G = G1 ⇥ · · ·⇥Gn

by the fundamental theorem of finite abelian groups (Jacobson [2] p. 188). Then,

Ĝ ⇠= Ĝ1 ⇥ · · · Ĝn
⇠= G1 ⇥ · · ·⇥Gn = G.

We have simultaneously proved the following important proposition.

Properties 5.4. Suppose G is cyclic of order n, and write G = hai. Then, Ĝ =
�
�k(am) = e2⇡ikm/n

��0  k  n� 1
 
.

Corollary 5.5. Suppose G is cyclic of order n. Then,

X

�2Ĝ

�(g) =

8
>><

>>:

n ; g = e

0 ; g 6= e

;
X

g2G

�(g) =

8
>><

>>:

n ; � = �0

0 ; � 6= �0

Proof. For g = am, let d = gcd(m,n) and f = n/d = |hgi| be the order of g. Con-

sider the evaluation map ✏ : Ĝ ! C given by ✏(�) = �(g). It is clear that the kernel

of ✏ consists of characters which map g to 1. Therefore, it is in bijection with the

character group \G/hgi. By 5.3, this has order |G|/f . Therefore, the image must
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consist of all the f -roots of 1. Hence, the first sum would consist of d copies of the

f -th roots of unity. Those roots sum up to the trace of the polynomial xf � 1 which

is the opposite of the (f � 1)th coe�cient. This is 0 except for the case when f = 1,

in which case the trace is 1 and the sum is d = n.

Similarly, for �k, letting d = gcd(k, n), the first sum would consist of d copies of

the n/d-th roots of unity. Those roots sum up to the trace of xn/d � 1 which is 0

whenever d < n.

For reasons that will soon become clear, we are interested in a special family of

characters, known as Dirichlet characters. Let T denote the unit circle {|z| = 1} ⇢

C.

Definition 5.6. A Dirichlet character mod m is a homomorphism � : Z⇤
m

! T.

Every character mod m has a natural extension to the natural numbers which we

also denote by �, defined as

�(n) =

8
>><

>>:

�([n]m) = �(n) gcd(m,n) = 1

0 gcd(m,n) = 1

We are now ready to define L-series which we will use to compute ⇣K in a more

e�cient manner.

5.3 Computing ⇣K in terms of L-series

Definition 5.7. An L-series is a Dirichlet series whose coe�cients correspond to

characters. We write

L(s,�) =
1X

n=1

�(n)

ns

where s 2 C and � is a character mod m.
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It is clear by proposition 5.1 as well as corollary 5.5 that L(s,�) converges on the

half-plane x > 1 since
P

t

n=1 �(n)  t. We will need the following lemma concerning

”Euler Products” from Marcus [1] p.133.

Lemma 5.8. Let a1, a2 · · · 2 C such that |ai| < 1 and the
P1

i=1 |ai| converges.

Then,

1Y

i=1

1

1� ai
= 1 +

1X

j=1

X

(r1,··· ,rj)

ar11 · · · arj
j

where the second sum is taken over all (r1, · · · , rj) 2 Nj�1
0 ⇥ N.

Recalling that � is multiplicative and applying the lemma with the set {�(p)/ps | p prime},

we may write

L(s,�) =
Y

p prime

1

1� �(p)
ps

=
Y

p-m

1

1� �(p)
ps

(5.3.1)

where the latter equality follows since �(p) = 0 whenever (p,m) > 1. Recall that

we are interested in refining our class number formula for the case where K is a

finite abelian extension. We admit the Kronecker-Weber theorem (Washington [3]

p. 319) which asserts that this is equivalent to K ✓ Q[!],! = e2⇡i/m for some m.

We assume without loss of generality that every prime p | m is ramified in K. If

p | m is not ramified, then we have K ⇢ Q[!̃], !̃ = e2⇡i/m
0
where m0 = m/pk and pk

is the highest power of p dividing m.

Then, the Galois group of K, G = Gal(K/Q) is a quotient group of Gal(Q[!]/Q).

We know that the latter is identified with Z⇤
m
by mapping a 2 Z⇤

m
to the embedding

! ! !a. Therefore, G can be identified with a a subgroup of Z⇤
m
, i.e. there exists a

surjective homomorphism � : Z⇤
m
! G. Then, we can view characters of G as char-

acters mod m by composing them with �. So, we consider Ĝ to be a subgroup of cZ⇤
m
.

We will prove the following theorem.
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Theorem 5.9.

h =
1



Y

p|m

✓
1� 1

ps

◆✓
1� 1

pfps

◆�rp Y

�2Ĝ
� 6=1

L(1,�)

where rp is the number of primes in R = AK lying over p and fp is the inertial degree

of those primes.

Proof. Recall that by definition

⇣K(s) =
1X

n=1

jn

ns

where jn is the number of ideals of size n. Since this is absolutely convergent for

x > 1, then we can rewrite this as

⇣K(s) =
1X

n=1

X

||I||=n

1
����I

����s =
X

I 6=0

1
����I

����s for x > 1

By unique factorization into prime ideals, and the fact that
���� ·

���� is multiplicative,

we may apply lemma 5.8 to the set {1/||P || | P prime in R} to get

⇣K(s) =
X

P

0

B@1 +
1

||P ||s +
1

||P ||2s + · · ·

1

CA =
X

P

1

1� 1
||P ||s

For p 2 Z, and P lying over p, we have
����P

���� = pf(P |p). However, since the extension

is Galois, then f(P |p) is constant for all P . So , we denote it by fp. Therefore, for

x > 1, we can write

⇣K(s) =
Y

p

 
1

1� 1
p
fps

!rp

As discussed earlier, characters of G = Gal(K/Q) can be viewed as characters mod

m. Subsequently, Ĝ is a subgroup of cZ⇤
m
.
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Fix a p - m, and consider {�(p)
�� � 2 Ĝ}. Under the canonical homomorphism

 : Z⇤
m

! G that maps a to the embedding ! ! !a, �(p) runs through the f -th

roots of 1 where f = |h (p)i| is the order of  (p) in G. By proposition, ?? f = fp,

from which it follows that {�(p)
�� � 2 Ĝ} is exactly |G|/fp copies of the fpth roots

of 1. However, since p is unramified, then e(P |p) = 1 for all P lying over p. It

follows that |G|/fp = n/fp = rp the number of primes lying over p. Combining this

with the fact that

xfp � cfp =
Y

!
fp=1

(x� !c) =) 1� 1

pfps
=

Y

!
fp=1

✓
1� !

pfps

◆

we deduce that

Y

�2Ĝ

✓
1�

�(p)

ps

◆
=

Y

!
fp=1

✓
1� !

pfps

◆rp

=

✓ 1

1� 1
p
fps

◆rp

It follows by equation 5.3.1 that for x > 1, using absolute convergence

Y

�2Ĝ

L(s,�) =
Y

�2Ĝ

Y

p-m

✓
1�

�(p)

ps

◆
=
Y

p-m

Y

�2Ĝ

✓
1�

�(p)

ps

◆
=
Y

p-m

✓ 1

1� 1
p
fps

◆rp

We may also use equation 5.3.1 in addition to lemma 5.8 to conclude that for � = 1,

L(s, 1) =
Y

p-m

✓
1� 1

ps

◆�1

=
Y

p

✓
1� 1

ps

◆�1Y

p|m

✓
1� 1

ps

◆
= ⇣(s)

Y

p|m

✓
1� 1

ps

◆

Combining the above, we get

⇣K(s) =
Y

p|m

 
1

1� 1
p
fps

!rp Y

p-m

 
1

1� 1
p
fps

!rp

=
Y

p|m

 
1

1� 1
p
fps

!rp Y

�2Ĝ

L(s,�)

=
Y

p|m

 
1

1� 1
p
fps

!rp Y

�2Ĝ
� 6=1

L(s,�) · L(s, 1)
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Therefore,

⇣K(s)

⇣(s)
=
Y

p|m

 
1

1� 1
p
fps

!rp ✓
1� 1

ps

◆Y

�2Ĝ
� 6=1

L(s,�)

Since � 6= 1, then it follows by 5.5 that
P

t

n=1 �(n)  m. Therefore, L(1,�) converges

for x > 0. Then, taking s = 1 proves the theorem.

Proposition 5.10. Let X be a non-trivial character mod m. Then,

L(1,�) = �
1

m

m�1X

k=1

⌧k(�)log(1� w�k)

where ! = e2⇡i/m and ⌧k(�) =
P

a2Z⇤
m
�(a)wak and we take the principal branch of

log(z) for z 2 C.

Proof. By definition, for s in the half-plane x > 1,

L(s,�) =
1X

n=1

�(n)

ns

If two indices m,n are equal mod m, i.e. n = m = a, then �(n) = �(m) = �(a).

So, recalling that �(a) = 0 when (a,m) > 1, we write

L(s,�) =
m�1X

a=1

�(a)
X

n=a
n�1

1

ns
=

X

a2Z⇤
m

�(a)
X

n=a
n�1

1

ns
(1)

Given a 2 Z⇤
m
, consider the function

⌦a(n) =
1

m

m�1X

k=0

!(a�n)k
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When n = a, (a� n) = dm for some d 2 Z. Therefore,

⌦a(n) =
1

m

m�1X

k=0

!(a�n)k =
1

m

m�1X

k=0

e2⇡idk =
1

m

m�1X

k=0

1 = 1

Otherwise (a� n,m) = d < m, so letting G be the group of m/d-th roots of unity,

we may write by 5.5

⌦a(n) =
d

m

X

�2G

�(g) for some g 6= e

It follows that

⌦a(n) =

8
>><

>>:

1 n = a

0 n 6= a

=)
X

n=a
n�1

1

ns
=

1X

n=1

⌦a(n)

ns

Substituting in (1), we get

L(s,�) =
X

a2Z⇤
m

�(a)
1X

n=1

⌦a(n)

ns
=

1

m

X

a2Z⇤
m

�(a)
1X

n=1

P
m�1
k=0 !

(a�n)k

ns
(2)

The infinite series is absolutely convergent for x > 1 since its numerator is bounded.

So, we may interchange the order of summation to get

L(s,�) =
1

m

X

a2Z⇤
m

�(a)
m�1X

k=0

1X

n.=1

!(a�n)k

ns
=

1

m

m�1X

k=0

0

@
X

a2Z⇤
m

�(a)!ak

1

A
1X

n=1

!�nk

ns

Note that ⌧0(�) =
P

a2Z⇤
m
�(a) = 0 by 5.5. We need to consider the Dirichlet series

1X

n=1

!�nk

ns
=

1X

n=1

(!�k)n

ns
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for 1  k  m� 1. As before, we have
P

t

n=1 !
�nk  m is bounded for all t. Then,

the series converges for x > 0. Therefore, we can now substitute s = 1, and use the

power series representation

log(1� z) = �
1X

n=1

zn

n
; |z| < 1,

to deduce that for x > 1,

L(s,�) = � 1

m

m�1X

k=1

⌧k(x)log(1� !�k)

We will conclude by using primitive characters to further simplify our expression for

L(1,�), and finally computing a simplified form in the real quadratic case.

Definition 5.11. Suppose �0 is character mod d such that d|m, and we have

�([p]m) =

8
>><

>>:

�0([p]d) if (p,m) = 1

0 if (p,m) 6== 1

.

Then, we say �0 induces �. If � is only induced by itself, we call � a primitive

character mod m.

It is clear by the definition of L(1,�) that if �0 induces �,

L(1,�) =
Y

p|m
p-d

✓
1� �0(p)

p

◆
L(1,�0)

We will admit the following important proposition concerning primitive characters.
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Proposition 5.12. Let � be a primitive character mod m. Then, |⌧(�)| =
p
m and

⌧k(�) =

8
>><

>>:

�(k)⌧(�) if (k,m) = 1

0 if (k,m) 6= 1

Proof. See Marcus [1] pg. 141.

We say a character � is even if �(1) = �(�1). Since we are only interested in the

norm of |L(1,�)| for our purposes, then we may now use the propositions above to

prove the following.

Theorem 5.13. Let � be an even primitive character mod m, then

|L(1,�)| = 2p
m

����
X

k2Z⇤
m

k<m/2

�(k) log

✓
sin

k⇡

m

◆ ����

Proof. Applying proposition 5.12 to 5.10, we get

L(1,�) = � 1

m

X

k2Z⇤
m

⌧(�)�(k)log(1� !�k)

= �
⌧(�)

m

X

k2Z⇤
m

�(�k)log(1� !k) (Letting k = �k)

Since � is even and multiplicative, then �(�k) = �(k)�(�1) = �(k). Using Euler’s

formula and double angle identities, we have the following equality

1� e2⇡ik/m = 1� cos(2⇡k/m)� isin(2⇡ik/m)

= 2sin2(⇡k/m)� 2isin(⇡k/m)cos(⇡k/m)

= �2isin(⇡k/m)

✓
cos(⇡k/m) + sin(⇡k/m)

◆

= 2ei(⇡k/m�⇡/2)sin(⇡k/m)
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It follows that

log(1� !k) = log(2) + log

✓
sin

k⇡

m

◆
+

✓
k

m
� 1

2

◆
⇡i

Substituting back into L(1,�), and noting that k 2 Z⇤
m
, m� k 2 Z⇤

m

|L(1,�)| =
����
⌧(�)

m

���� ·

��������

✓
log(2)� ⇡i

2

◆ =0z }| {X

k2Z⇤
m

�(k)+
X

k2Z⇤
m

✓
k

m
�(k) + log sin

k⇡

m
�(k)

◆
��������

=

����
⌧(�)

m

���� ·

�����������

X

k2Z⇤
m

k<m/2

=�(m�k)z}|{
�(k)

✓
k +m� k + log sin

k⇡

m
+ log sin

(m� k)⇡

m| {z }
=sin(⇡�k/m)
=sin(k/m)

◆

�����������

=
2p
m|{z}

by5.12

��������

X

k2Z⇤
m

k<m/2

�(k) log

✓
sin

k⇡

m

◆
��������

0

@m ·
X

k2Z⇤
m

�(k) = 0

1

A

We will conclude by using the above expression for L(1,�) to compute the number

of ideal classes in the case of real quadratic fields.

Given a quadratic field K = Q[
p
d] with d > 0 squarefree, and its associated number

ring R = A \K, we note the following.

i. K ⇢ Q[!] where ! = e2⇡i/m. This can be shown explicitly by computing

that for prime p, disc(A \ Q[e2/⇡i/p]) = ±pp�2. Then, by the properties of the

discriminant, it will follow that the p � th cyclotomic field contains either
p
p

or
p
�p. Finally, since we know by 2.16 that m = |d| or m = 4|d|; then an

argument which involves factorizing d into primes yields the desired inclusion.

(See Marcus [1] p. 29)
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ii. By proposition 3.13, p is ramified in K i↵ p | m.

iii. Gal(K/Q) consists of the embeddings
p
d 7! ±

p
d. Thus, there is only one

non-trivial character mod m, �. Recall that � : Z⇤
m

! {±1} since Gal(K/Q)

has order 2. For p 2 Z⇤
m
, it corresponds to the embedding ! 7! !p. Then, �(p)

is the order of this embedding in Gal(K/Q). It follows by proposition 3.15 that

for odd p,

�(p) =

✓
d

p

◆
:=

8
>><

>>:

1 if d is a square mod p

�1 otherwise

And if m is odd (d = 1 mod 4), then �(2) = 1 i↵ d = 1 mod 8. By extending

multiplicatively, �(n) is defined for all positive integers n which are relatively

prime to m. So, for odd numbers, � coincides with the so-called Jacobi symbol.

It then becomes clear that � is a character modm since we know that the Jacobi

symbol satisfies ✓
d

n

◆
=

✓
[d]n
n

◆

Finally, it is well-known that � is primitive and even for d > 0 (see Apostol [5]

chapter 9).

Then, applying theorem 5.13, we get our desired result

Theorem 5.14. Let R = AQ[
p
d] with d > 0 squarefree, and let m = |disc(R)|.

Then, the number of ideal classes in R is expressed as

h =
1

log(u)

����
X

k2Z⇤
m

k<m/2

�(k) log

✓
sin

k⇡

m

◆ ����

where u denotes the fundamental unit of R.
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