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ABSTRACT 

OF THE THESIS OF 

 
Rami Ali Hoteit               for  Master of Science 

Major: Computer Science 

 

 

Title: Learning Branching Strategies for Parameterized Vertex Cover 

 

The Parameterized Vertex Cover (PVC) problem is a central problem on graphs, where given 

a graph G and a positive integer k the goal is to decide whether the graph contains a set of at 

most k vertices whose deletion destroys all edges of the graph. In other words, a set of 

vertices is called a vertex cover of a graph if after deleting those vertices we obtain an 

edgeless graph. The problem is one of Karp’s 21 NP-complete problems (Erickson, 

2010)(Karp, 1972), meaning that the problem is computationally hard, takes exponential time 

to solve, and is not expected to be solvable in polynomial time unless P = NP. For most 

practical purposes, heuristics, approximation, or parameterized algorithms are the only 

reasonable way to solve large instances of the problem in a reasonable amount of time. We 

are interested in solving the problem exactly and one method for solving PVC is the Branch 

& Reduce paradigm. In a Branch & Reduce algorithm, we construct a search tree to solve a 

given instance by either branching on which vertices to include into a solution or applying 

reduction rules to reduce the search space. At a high level, the typical algorithm for PVC 

selects a vertex of highest degree and branches on either including said vertex in a solution or 

including all of its neighbors. Several reduction rules are also applied whenever possible. In 

this work, we investigate a new approach based on machine learning for optimizing vertex 

selection while solving PVC instances. We constructed a system that uses graph features as 

inputs to make inferences about the best weighting strategies to be applied on the different 

node features in order to select the best vertex to branch on. In our approach we utilize 

reinforcement learning technology to train our model. Our results show that we were able to 

outperform the high degree strategy in 85% of instances. 
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CHAPTER I 

 

INTRODUCTION 
 

Graph theory is a branch of discrete mathematics that deals with the study of graphs. 

Graphs are a discrete data structure that consists of nodes connected by edges.(Gross et 

al., 2018) These graphs are used in various fields including computer science, molecular 

science, and circuit design.(“Graph Theory in Chemistry: A Brief Review,” 2022; Riaz 

& Ali, 2011; Toscano et al., 2015) Graphs are often used to model computational 

problems specifically in the field of computer science. One such problem is vertex 

cover. The vertex cover problem asks the question that given a graph G find the 

minimum set of vertices such that removing those vertices and the edges incident to 

them produces an independent graph, that is a graph without any edges. In other words, 

vertex cover tries to find the minimum set of vertices such that each edge has at least 

one of its endpoints within that set.  

More Formally The vertex cover problem can be formally defined in the context of 

a graph G = (V, E), where V represents the set of vertices and E represents the set of 

edges connecting these vertices. The goal is to find a subset V’ such that for every edge 

(u, v) in E, at least one of the vertices u or v is in V'. The set V' is referred to as a vertex 

cover of G. The objective of the vertex cover problem is to identify the smallest 

possible vertex cover, meaning the vertex cover V' with the minimum number of 

vertices. This problem is known to be NP-complete, indicating that no known 

polynomial-time algorithm can solve all instances of the vertex cover problem 

efficiently for large graphs. (Tyagi & Batra, 2016) 

Vertex cover has many variations but the one we consider in our study is 

parametrized vertex cover. Parameterized vertex cover is a variation of the classical 
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vertex cover problem studied from the lens of parameterized complexity. Parameterized 

complexity is a subfield of complexity theory which is a field in computer science and 

mathematics that studies the computational resources required to solve problems. In the 

realm of parameterized complexity, these problems are analyzed with an additional 

consideration other than the size of the input and that is an additional parameter chosen 

for the specific problem. Parameterized complexity tries to reduce the computational 

running time of problems by introducing this parameter. The goal is to identify 

problems that are fixed-parameter tractable (FPT), meaning that they can be solved in 

time, that is polynomial in the size of the input and some fixed parameter. (Downey & 

Fellows, 2013) 

Choosing the right parameter for the problem can be a hard decision to make, 

especially since this choice affects the running time of the parameterized problem. In 

the case of vertex cover one commonly chosen parameter is the maximum allowed size 

of the vertex cover denoted by K. The problem considered then becomes: Does there 

exist a set V' ⊆ V, with |V'| ≤ K, such that each edge in E is incident to at least one 

vertex in V'? 

Vertex cover is an NP-complete problem meaning a problem that is both in the 

complexity class NP and is also NP-hard. A problem is in NP if a given solution to that 

problem can be verified in polynomial time, and it is NP-hard if every problem in the 

NP class can be reduced (mapped) to that problem using a polynomial-time algorithm.  

(Niedermeier, 2006; Trevisan, 2011) 

Being NP-complete means that solving vertex cover requires an exponential time 

algorithm if we assume that P!=NP while the parameterized version of vertex cover is 

fixed-parameter tractable which means that it can be solved in polynomial time in the 
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size of the input and a fixed parameter. Solving such problems can be a burden which is 

why a lot of research has gone into algorithms to help optimize the running time of 

solving these problems. One of the most prominent algorithms is known as Branch & 

Reduce.(Downey & Fellows, 2013) 

This algorithm has two main components, the first being the branching element and 

the second being the reduction. Branching is the process of using a search tree to find 

the answer to a certain problem. It involves dividing the problem into smaller 

subproblems until a base case or a leaf is reached. The second component, which is the 

reduction component, is the process of using problem-specific rules to reduce the size of 

the current problem. (Yamout et al., 2022) The two components work hand in hand to 

construct a search tree that branches on a decision at every level and then reduces the 

resulting instance from the decision until the optimal solution is found or proven 

to be unreachable.  

In the case of Parameterized Vertex Cover, Branch & Reduce can be used to 

construct a search tree that divides the search space into smaller subproblems and 

systematically explores each subproblem in a recursive manner, which allows for a 

more efficient solution compared to brute-force methods in terms of running time. Yet 

the running time of Branch & Reduce can be improved further by utilizing many 

refinements. One of the most important factors affecting the size of search trees is 

vertex selection. Vertex selection is the process of choosing which vertex to branch on 

next. Branching on Vertex Cover consists of choosing a vertex where the left branch 

will be picking that vertex and including it in our vertex cover and the right branch will 

be choosing its neighbors and including them in the vertex cover instead. Whenever a 

vertex is included in a solution, we assume that it is deleted from the graph along with 
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the edges incident on it resulting in smaller instances. In most cases, the vertex picked is 

the one with the highest degree or the vertex with the greatest number of neighbors. 

This is an intuitive choice that makes sense from a greedy perspective as eliminating 

this vertex would cover the greatest number of edges. 

The main motivation behind the choice of the vertex and the application of 

reduction rules is to reduce the size of the search tree as that would in turn greatly 

reduce the running time of the Branch & Reduce algorithm which is why this 

dissertation is dedicated to studying the choice of the vertex selected to branch and 

making sure that this selection reduces the size of the search tree relative to other 

approaches most notably the high degree branching strategy. To optimize our decision 

of vertex we decided to employ the use of reinforcement learning which is a type of 

machine learning that involves an agent learning to make decisions in an environment to 

maximize a reward signal. (Sutton & Barto, 2018) Unlike supervised learning, 

reinforcement learning does not require labeled input/output pairs and instead focuses 

on finding a balance between exploration and exploitation of current knowledge. This 

paradigm makes the most sense as it is suited to optimize a decision-making process 

and because it does not need any data which in our case would prove to be almost 

impossible considering that obtaining enough data to make optimal decisions would 

require exponential time. 

The main idea behind our approach is to train a reinforcement learning agent that 

observes specific features of the graph in question and then produces a weighting 

scheme for its vertex features that would enable us to make the decision on which 

vertex is best to branch on for the given graph in question. This approach would enable 

us to not only produce an agent that learns which features of a vertex are important to 
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consider when branching but also explain which of these vertex features are the most 

important when considering this question. 

In the sections to follow we will first look at the current literature on the problem in 

the related work section then we will discuss the methodology used to tackle the 

problem in question after which we will preview and discuss the results of our research 

and finally we will conclude our work while highlighting future areas this research 

could head in. 
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CHAPTER II 

 

RELATED WORK 

 

In this chapter, we will provide a thorough overview of the existing research 

surrounding vertex selection for branching. We will provide insight into methods 

relating to solving PVC and other parameterized combinatorial optimization problems. 

We will also explore the current selection strategies in the literature, which is 

predominantly max degree vertex selection, and finally, we will survey work relating to 

branching variable selection (BVS) when solving Mixed Integer Linear Programming 

using Branch & Bound which is where most of the work related to this topic exists. We 

will provide an overview of the techniques, findings, and limitations of the existing 

work and lay the groundwork for our method, introduced in the subsequent chapter. 

 

A. Solving Parameterized Vertex Cover 

Vertex cover is one of the most studied problems in the field of parameterized 

complexity which means many algorithms have been devised to optimize its running 

time. In this section, we will go over the most famous algorithms and techniques 

commonly used to solve PVC and other parameterized combinatorial optimization 

problems. 

 

1. Kernelization 

In the realm of parameterized algorithms, kernelization stands out as a cornerstone 

technique, especially in addressing PVC. Kernelization is a framework that provides a 

systemic way to reduce the size of the problem being solved to a smaller and more 

manageable version without changing the correctness and solvability of that problem. 
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The condensed version of the problem that is reached is called the “kernel”. In essence, 

this kernel is the crux of the problem or the part of the problem that is hard to 

solve.(Downey & Fellows, 2013; Fomin et al., 2019) Usually, after we get to the kernel, 

we can solve it exhaustively since we would have reduced the initial problem enough to 

enable us to do so without exploding the running time. 

Kernelization revolves around the principle of preprocessing the input graph 

denoting the initial state of the problem until the process yields a kernel which is a 

reduced instance of that problem whose size is a function of the parameter k, rather than 

the overall size of the input. This is done through the application of a series of reduction 

rules. Each of these rules systematically identifies and removes and sometimes modifies 

parts of the graph in such a way that each decision made is one that is found in the 

optimal set of decisions. This technique significantly reduces the size of the search 

space for the solution and in turn reduces the running time of running an exhaustive 

method on the kernel. The most important part about kernelization is that we are 

guaranteed a solution for the original problem instance if the kernelized version has a 

solution. (Lokshtanov et al., 2012) 

More formally kernelization is a technique used in parameterized complexity theory 

that aims to reduce the size of the problem instance while preserving the answer to the 

decision problem. It is a polynomial time algorithm for a parameterized problem P that 

transforms it from (I, K) [where I is the problem instance and K is the parameter that we 

parameterize the instance by] to (I’, K’) where I’ is the kernel and K’ is the new 

parameter. For kernelization to be valid: 

1. The instance (I’, K’) is a yes instance of P if and only if (I, K) is a yes 

instance 
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2. The size of I’ and K’ are both bounded by a function of f(K) 

3. The running time of the kernelization algorithm is polynomial time 

The efficiency of the kernelization algorithm is measured by the size of the kernel it 

produces. This is obvious as smaller kernels generally mean that the exhaustive search 

algorithm is much more efficient. Advances in kernelization have led to kernels that are 

not only functions of k but are sometimes linear or polynomial. (Hespe et al., 2019) 

Kernelization is a pivotal pre-processing technique in parameterized complexity that 

helps reduce the size of the problem significantly making the problem much easier to 

solve. It provides a structured framework that can be applied to a variety of problems. 

However, kernelization is not without its drawbacks as it is highly dependent on the size 

of the kernel that it produces. Furthermore, some kernelization algorithms can introduce 

their own significant computational overhead to the problem making its use less 

effective in reducing the overall running time. 

 

2. Crown Decomposition 

Crown Decomposition is a powerful technique used in combinatorial optimization, 

especially in the context of vertex cover. The main idea is to try to identify a particular 

structure in the graph known as a “crown”, and then to use that structure to simplify the 

graph and make the problem easier to solve. 

A crown decomposition partitions the graph into three parts: a central subgraph C, a 

periphery subgraph H, and a reminder subgraph R. The periphery subgraph H is an 

independent set of vertices and there are no edges between R and H. The central 

subgraph C has a matching with the periphery subgraph H and that matching covers H. 

(Thomassé, 2009) 
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A crown decomposition is a useful tool that can be used when trying to find kernels 

for the graph. It is especially useful when trying to solve PVC where we can prove that 

by removing the central subgraph C the remaining subgraph R will essentially act as our 

kernel. 

 

3. Bounded Search Tree 

Bounded search tree is a technique often used while solving parameterized 

combinatorial optimization problems efficiently. The approach is based on the recursive 

division of the problem into smaller subproblems in a tree structure commonly known 

as a search tree. The idea is to branch on a decision for every node of the search tree in 

such a way that the original problem would be reduced for every branch. (Cygan et al., 

2015) 

More formally, a bounded search tree is a variant of exhaustive search that is used 

in solving combinatorial optimization problems by exploring their solution space 

through a systemic and controlled search process. Starting from the root, which is the 

original instance of the problem, bounded search tree subsequently branches on a 

decision to be made for the problem with each resulting child node representing a 

partial solution for the problem instance after applying the decision on it with the edges 

representing the transition from one state to the other based on the decision that was 

made. In the case of vertex cover this can be translated to a decision of choosing a 

vertex to be included in the vertex cover and the child node of the decision is the 

original graph with the vertex removed along with all its edges. The term “bounded” in 

this method refers to imposing a limit on the depth of the tree which is often directly 

correlated to the complexity of the problem. The parameter that bounds the tree is 
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chosen based on the specific problem being solved. For vertex cover, that bound might 

be the size of the cover set.  

The method is efficient for small parameter sizes, making it more effective than 

brute force approaches. Furthermore, the method is both optimal and complete as it can 

be used to find the best possible solution and because it can enumerate every possible 

solution within the bounds as well. Yet this method is far from perfect as it suffers from 

exponential growth of the running time as the number of branches increases. Efficiency 

is also highly dependent on the parameter chosen which means that for poorly chosen 

parameters the complexity of the method varies greatly. As a conclusion, this method 

offers a compromise between exhaustive search and computational feasibility making it 

a valuable tool in algorithmic problem solving for parameterized problem instances with 

a well-chosen parameter. (Downey & Fellows, 2013) 

 

4. Iterative Compression 

Iterative Compression is a technique used in the design of algorithms that are used 

to solve optimization problems. The technique is effective for problems where the 

solution can be built incrementally such as parametrized vertex cover. Iterative 

Compression makes use of the idea that it is easier to modify an existing solution that 

might be “too large” instead of trying to construct an optimal solution from scratch. 

(Downey & Fellows, 2013; Fomin et al., 2010) 

The process of iterative compression is separated into several steps. We first start 

with an initial feasible solution. This solution might not necessarily meet the 

parameterized constraint. For example, we could start with a vertex cover of K+1 where 

K is the size of the maximum vertex cover allowed as a solution. The next step is the 
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compression step, in this step, we take the current solution and try to compress its size, 

so if the solution is of size K+10 we apply the compression step which in the case of 

parameterized vertex cover could be removing the redundant vertices from the solution 

(vertices whose removal does not increase the number of uncovered edges). The 

compression step is then applied iteratively until a satisfactory solution is found. 

Iterative compression offers a systemic technique to build a fixed-parameter 

tractable algorithm for problems that might seem intractable otherwise. It also uses a 

simple yet effective idea to achieve very efficient running times which is that oftentimes 

it is easier to build a solution iteratively rather than trying to find it from scratch. As 

with other techniques, Iterative compression has some drawbacks, mainly with the 

assumption that finding an initial solution is easily done which might not always be the 

case. Furthermore, the compression step itself might introduce a lot of complexity to the 

problem and might require very sophisticated algorithms to be able to compress the 

problem effectively. 

 

5. Color Coding 

Color coding is a randomized algorithmic technique used to solve certain 

combinatorial optimization. It has been applied to a variety of problems including 

subgraph isomorphism, cycle detection, and path problems in graphs. The idea behind 

this method is to randomly assign colors to elements of the problem; in the case of 

parameterized vertex cover these elements are vertices of the graph. After the color 

assignment, a search for a “colorful” solution is initiated where each part of the solution 

has a distinct color. The essence of the color-coding technique is the observation that, if 

we color some universe with k colors uniformly at random, then a given k-element 



20 

 

subset is colored with distinct colors with sufficient probability. (AlonNoga et al., 1995) 

The process of color coding goes as follows: First, we begin with some hard 

problem P that we want to solve on instance I (a graph in this case). Second, we 

transform instance I to instance I’ by coloring each vertex randomly. Third, we define 

an easier problem P’ to solve on instance I’ and we show that this problem can be 

solved quickly. Finally, we show that by repeating the problem a sufficient number of 

times we can find I’ with a high enough probability. (Bannach et al., 2015) 

Color coding is useful for tackling NP-hard problems that have been parameterized. 

It also does well at harnessing the power of parallelization as each attempt for coloring 

the graph can be done independently from one another. The disadvantages of using 

color coding and other randomized techniques lie in their random nature as having such 

an aspect does not guarantee a solution in any single run instead it provides a correct 

solution with a high probability after a sufficient number of iterations, however, it can 

be problematic as there will always be a non-zero probability of error, meaning that the 

algorithm might fail to find a solution ever if it did exist. 

 

6. Branch & Reduce 

Branch and reduce is a fundamental algorithmic technique in parameterized 

complexity that combines ideas from Bounded Search Trees and Kernelization. The 

idea is to systemically explore the solution space by alternating between two key steps. 

The first is branching, where the problem is split into smaller subproblems based on a 

certain decision, and the second is reducing where the problem is simplified based on 

specific rules. (Ryoo & Sahinidis, 1996) 

In the context of parameterized vertex cover the branching step involves selecting a 
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node and creating two subproblems: one where we include the vertex in our vertex 

cover but not its neighbors and one where we include its neighbors but not the vertex 

itself. The first branch decreases the K by 1 while the second branch decreases the K by 

|Nv| (the size of the neighborhood of vertex v). After each branch a set of reduction 

rules is applied to each new sub-problem, these rules aim to simplify the graph without 

altering the existence of a K-vertex cover. Common reduction rules include removing 

isolated vertices and including vertices with a degree greater than K in the vertex cover. 

The interaction between both the branching and the reduction is crucial for the 

efficiency of the algorithm. Well-designed branching rules create a balanced search tree 

which reduces the running time significantly while effective reduction rules can 

significantly decrease the size of the problem which can effectively prune large parts of 

the search space.  

The development of efficient branch and reduce algorithms has been a major focus 

in the last couple of years in the area of parameterized complexity. For parameterized 

vertex cover, the work of Buss and Goldsmith introduced a simple branching algorithm 

with a running time of O(2K.n) , where n is the number of vertices(Buss & Goldsmith, 

2006).  Improvements by Niedermeier and Rossmanith, and by Chen, Kanj, and Xia, led 

to the current best known FPT algorithm for PVC , running in time O(1.2738K + K.|N|) 

(Chen et al., 2010; Niedermeier & Rossmanith, 2003). Beyond parameterized vertex 

cover, branch and reduce has been applied to many parameterized problems in different 

domains most notably Feedback Vertex Set, Cluster Editing, and Dominating Set, 

among others. (Gaspers & Liedloff, 2006) 

Branch and reduce offers significant advantages. Firstly, branch and reduce is very 

versatile which means it can be applied to a wide range of problems. Secondly, unlike 
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approximation algorithms, branch and reduce finds exact solutions for the problem. 

Finally, since it is closely related to bounded search trees this technique shares many of 

the same advantages. This technique is not without its drawbacks as finding the right 

branching and reduction rules can be a complex task. It also suffers from high memory 

and computational usage. 

Throughout this dissertation, our focus will be on optimizing this technique. 

Specifically, our focus will be on designing an intelligent branching rule based on 

reinforcement learning techniques that would help reduce the size of the search tree 

significantly. 

 

7. Linear Programming 

Aside from algorithmically solving parameterized vertex cover, linear programming 

is a promising approach to achieving that goal. Integer Linear Programing (ILP) 

provides a robust framework for formulating and solving discrete optimization 

problems including combinatorial optimization. Employing ILP to solve parameterized 

vertex cover requires us to construct a linear model that reflects the constraints and 

objectives of the problem (Lancia & Serafini, 2018). The formulation is detailed below: 

Objective Function 

Minimize ∑ 𝑥𝑖
|𝑣|
𝑖=1  

Subject to the constraints: 

𝑥; +𝑥𝑗 ≥ 1   ∀(𝑣𝑗 , 𝑣𝑖) ∈ 𝐸 

𝑥𝑖 ∈ {0,1}   ∀ⅈ ∈ {1,2, … |𝑣|} 

∑ 𝑥𝑖

|𝑣|

𝑖=1
≤ 𝑘 
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Where:  

• |V| is the number of vertices. 

• vi is vertex i 

• xi is a binary variable associated with every vertex 

• K is the parameter of the problem 

• E is the edge set 

In this formulation (Chekuri, 2009),  we are trying to the number of binary variables 

xi that are set to 1. If a binary variable xi is set to one it corresponds to including vertex 

vi into the vertex cover. The first constraint details the fact that we must include at least 

one of every edge in our vertex solution so that our choice could cover that edge. The 

second constraint just forces the variable xi to be a binary variable. Finally, the last 

constraint ensures that the size of the vertex cover is less than K. 

Using this formulation, we can solve parameterized vertex cover using a 

commercial ILP solver like Gurobi (Gurobi, 2024) or CPLEX (IBM, 2024). These 

solvers take in an ILP formulated problem and output a valid solution that meets all the 

constraints. These solvers work by utilizing techniques used for optimization problems 

such as the branch-and-cut method (which is similar to branch and reduce) to efficiently 

explore the feasible region of the problem by branching on variables and trying to find 

the optimal solution that matches the objective function while adhering to the 

constraints. 

While ILP presents a theoretically robust solution for parameterized vertex cover, 

its performance however heavily relies on the size of the graph and the parameter k. As 

this increases, the complexity of the solution space can escalate and go beyond practical 

reach. Despite this drawback, ILP still remains a valuable tool in the exact algorithm 
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toolkit that offers practical applicability for solving parameterized vertex cover. 

 

8. Machine Learning 

The focus of research in this area has been towards solving the unparameterized 

version of vertex cover among other combinatorial optimization problems like the 

traveling salesman problem and feedback vertex set. Machine learning has been an 

increasingly attractive option as the complexity associated with solving these problems 

algorithmically is huge with them being NP-Hard problems. As such these problems 

present an ideal domain for the application of machine learning techniques that can 

approximate solutions to a very high level of accuracy in only a fraction of the time. We 

will explore some of the techniques that have been used to solve these problems using 

machine learning. 

 

a. Supervised Learning 

Supervised learning is a machine learning method that requires a model to learn on 

a labeled set of data. The method seeks to learn a mapping from the input features to the 

output labels. In the context of vertex cover, the input features can be derived from the 

graph properties such as node degrees, centrality measures, and local graph structures, 

while the output labels can indicate whether a vertex is part of the minimum vertex 

cover or not.(Bengio et al., 2021; Nasteski, 2017) 

One approach to applying supervised learning on vertex cover is to train a decision 

tree. Decision trees are a traditional machine learning technique that learns the hierarchy 

of if-then rules by on the input features. By training these trees on a graph dataset with 

labels for their minimal vertex covers, the model could learn to predict which nodes 
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should be included in the vertex cover based on their features. This approach has been 

explored in studies addressing similar NP-hard problems, such as the maximum 

independent set problem and the minimum dominating set problem,(Dai et al., 2017) 

providing a precedent for its application to vertex cover. 

Another supervised method that is employed is SVM or support vector machines. 

SVMs are a powerful binary classifier that seeks to find a hyperplane in the feature 

space that best separates two classes. For this to work on vertex cover we can label the 

vertices into “in vertex cover” and “out of vertex cover” and make the SVM learn the 

mapping between the vertex features and their label. SVMs have been successfully 

applied to various graph-related problems,(Bagattini et al., 2018) such as graph 

classification and link prediction, demonstrating their potential for addressing the vertex 

cover problem. 

 

b. Reinforcement Learning 

Reinforcement Learning (RL) is a machine learning paradigm where an agent learns 

to make a sequence of actions through interacting with an environment. The agent 

interacts with the environment which is represented by state S at every timestep by 

taking an action A and as such receiving a reward R (determined by the reward 

function) while moving to state S’ (determined by the transition function). The objective 

of this agent is to learn a policy that would maximize the cumulative reward over time. 

Reinforcement learning has been successfully applied to a wide range of sequential 

decision-making problems including game-playing, robotics (Polydoros & Nalpantidis, 

2017) , and resource management. (Mazyavkina et al., 2020) 

Vertex cover is a very suitable problem for reinforcement learning as it can be used 
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to develop intelligent strategies for incrementally constructing a vertex cover. The 

environment can be modeled as a graph with each state being a graph G and a partial 

vertex cover VC while the agent’s actions correspond to selecting a vertex to include in 

the vertex cover. The rewards could be designed to encourage the agent to find the 

minimal vertex cover. For instance, the agent could receive a positive reward for each 

edge that it covers with a negative reward for every additional vertex that it includes.  

Several RL algorithms, such as Q-learning and policy gradient can be employed to 

learn effective strategies for solving the vertex cover problem. Q-learning is a value-

based method that learns a function called action-value or Q. This function estimates the 

expected cumulative reward for taking a particular action in a given state. Policy 

gradient methods on the other hand seek to directly optimize a policy that maps states to 

actions using gradient ascent to maximize the expected reward. (Sutton & Barto, 2018) 

The use of RL in solving combinatorial optimization has shown promising results. 

For example,(Bello et al., 2016) applied policy gradient methods to the traveling 

salesman problem, learning policies that outperformed traditional heuristics. Similarly, 

(Dai et al., 2017) used Q-learning to address the maximum independent set problem, 

demonstrating the effectiveness of RL for solving NP-hard graph problems. These 

successes suggest that RL could be a valuable approach for tackling the vertex cover 

problem as well. 

 

c. Deep Learning 

Deep learning has revolutionized many fields including computer vision, natural 

language processing, and robotics. It has done that by enabling complex neural 

networks to learn high-level embeddings from raw data. In the context of combinatorial 
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optimization, deep learning has been adapted to learn meaningful representations of 

problem instances that helped guide the search for optimal solutions. (K. Li et al., 2021) 

In the context of vertex cover deep learning has been applied successfully many 

times. One approach used convolutional neural networks or CNNs to extract relevant 

features from the graphs to classify the nodes of the graph. However, CNNs perform 

well on structured data which requires us to transform the graph to a grid-like format 

such as an adjacency matrix which can then be fed into the CNN to make a prediction. 

This technique was used by (Gu & Yu, 2014) who proposed a CNN-based approach for 

solving the maximum clique problem. 

Another deep learning technique that has proved its merit is recurrent neural 

networks or RNNs. RNNs are neural networks designed to process sequential data like 

the movement of something over time. This makes them suitable for problems that 

require making a series of sequential decisions much like choosing the minimal vertex 

cover. In this context, RNNs can be used to generate a sequence of vertices to include in 

the vertex cover based on the graph structure of the previous graphs. (Bello et al., 2016) 

employed a combination of RNNs and reinforcement learning to solve the traveling 

salesman problem or TSP where they introduced an RNN-based policy network that 

generates a sequence of cities to visit and another critic network that evaluates the 

quality of the generated solution. This method is referred to as an actor-critic method 

which is a method often used in reinforcement learning and which we use in this 

dissertation as well. A similar approach can be used for vertex cover where the RNN 

would generate a sequence of vertices to include in the vertex cover and the a critic 

network would evaluate each choice being made. 
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d. Graph Neural Networks 

A subfield of deep learning that is very relevant to our particular use case is graph 

neural networks or GNNs. GNNs are a class of deep learning models that are 

specifically designed to operate on graph-structured data. In recent years the use of 

GNNs has skyrocketed due to their ability to learn rich representation from graph data 

that capture both global and local information. GNNs have been successfully applied to 

a wide range of graph-related problems such as node classification, link prediction, and 

graph classification. (Wu et al., 2021) 

The key idea behind GNNs is to iteratively update the representation of each node 

by aggregating information from its neighbors in a process referred to as message 

passing. GNNs are composed of two main components: a message-passing component 

and an update component. In the message-passing phase, each node sends its current 

representation combined with its features as a message to all neighboring nodes. This 

representation is often captured by passing the node features in a fully connected layer 

that aims to learn valid embeddings from the vertex features. These messages are then 

aggregated using a permutation invariant function like average or sum. In the update 

phase, each node updates its representation based on the aggregated messages received 

from its neighbors and its previous representation. This updated representation captures 

local the context of the node in the graph. The message-passing and update phases are 

repeated for a fixed number of iterations or until a desired level of abstraction is 

reached. By stacking multiple GNN layers, the model can learn hierarchical 

representations that capture increasingly global information about the graph structure. 

The final node representations, often referred to as node embeddings, can be used for 

various downstream tasks, such as node classification, link prediction, or, in the case of 
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the vertex cover problem, predicting the likelihood of a node being part of the minimum 

vertex cover. (Scarselli et al., 2009) 

Various GNN architectures, such as Graph Convolutional Networks (GCNs) (Kipf 

& Welling, 2016), GraphSAGE (Hamilton et al., 2017), and Graph Attention Networks 

(GATs) (Veličković et al., 2017), have been proposed to handle different types of graph 

structures and learning tasks. For instance, GCNs use a message-passing scheme to 

aggregate information from neighboring nodes, while GATs employ attention 

mechanisms to weigh the importance of different neighbors during the aggregation 

process. 

This method can be applied to the vertex cover problem by learning sufficient node 

embeddings to determine if a node should be included in the vertex cover or not. In fact, 

GNNs have been proven to be effective in solving combinatorial optimization problems 

by (Z. Li et al., 2018) used a combination of GCNs and reinforcement learning to 

address the minimum vertex cover problem, learning policies that outperformed 

traditional heuristics. 

 

B. Branching Rules 

Solving Parameterized Vertex Cover using branch and reduce requires one to pick a 

branching rule to branch on every decision. This decision often significantly impacts the 

efficiency of the algorithm. Branching rules determine how the problem will be split 

into smaller subproblems at each branching step. In the literature, a handful of these 

rules have been proposed each comes with its own set of pros and cons, and in this 

section, we will discuss some of these rules. 

The simplest and most used of these branching rules is the high-degree branching 
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rule. This rule selects the vertex with the highest degree to branch and subsequently 

creates two branches in the tree. The first branch includes the vertex itself as part of the 

vertex cover and one where it is excluded but instead, its neighbors are included as part 

of the vertex cover. This is because every vertex cover will include this node or all of its 

neighbors as it would have to cover every edge in the graph including the edges 

associated with this node. The intuition behind this rule is that the high-degree vertices 

are more likely to be part of the minimum vertex cover as they would naturally cover 

more edges than other vertices. This is a greedy approach to solving this problem but 

has been widely used in practice and has proven its efficacy over time. (Chang et al., 

2016; Lokshtanov et al., n.d.; Wang et al., 2019)  

Another popular branching rule is the edge branching rule that selects an edge (u, v) 

and branches on it, creating two subproblems: one where u is included in the vertex 

cover and one where v is included instead. This rule has proven to be effective for dense 

graphs where the average degree is high and thus the high degree branching algorithm 

would not yield as good of results. By branching on edges instead of vertices, the edge 

branching rule can lead to more balanced subproblems and faster convergence for 

vertex cover. 

Additionally, other more sophisticated techniques have been proposed to improve 

the efficiency of the branching strategies like those in (Harris & Narayanaswamy, 2022) 

 

C. Variable Selection 

Variable Selection, also known as branching variable selection or node selection is 

an important component in branch and bound algorithms used in solving integer linear 

programming problems. The process involves choosing which variables to branch on at 
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each step of the algorithm to efficiently navigate the solution space and to converge 

efficiently to the optimal solution. Variable selection works as follows: if we have a 

problem where we want to maximize an objective function that includes a variable x, 

we could create two branches for x, one where x <= 4 and one where x >= 5. This 

means that for the first branch, we include an extra constraint for our ILP problem 

which is that the decision variable x has to be equal or less than 4. This would help 

reduce the search space significantly for that branch and thus reduce the complexity of 

the problem significantly. The question would then be what variables should we branch 

on every branching step to create an optimal search tree in terms of computational 

complexity? 

The reason why variable selection is important in our context is because of two 

reasons: the first of which is that it has been widely studied in the literature over the 

years using a huge variety of methods, and second is because it is very similar to the 

problem we are tackling in this dissertation which is choosing a vertex to branch on in a 

branch and reduce algorithm for parameterized vertex cover. These reasons make 

studying this problem important to guide this dissertation. 

One of the seminal works in the area was by (Khalil et al., 2016) where the authors 

proposed using imitation learning to learn branching policies. This means that they 

trained a model to learn to imitate a technique called strong branching to pick the best 

variable. Strong branching is a sophisticated technique used in branch and bound 

algorithms that tentatively branches on several candidate variables and calculates the 

potential impact of each branch. The impact is a measure of how much the objective 

function improves or how much the size of the tree is expected to be reduced. The node 

with the most promising score is then picked. The issue with strong branching is that it 
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is computationally expensive which is why in this work Khalil et al. tried to cut down 

the running time by essentially training a model to be able to closely approximate the 

strong branching outcome which would cut the running time significantly. To do so 

they employed a learning-to-rank approach to imitate the strong branching strategy and 

demonstrated how it led to speed up over the SCIP solver on benchmark instances. 

Building upon this work was (Alvarez et al., 2017) who proposed an alternative 

approach of approximating strong branching scores using a linear regression model. 

Instead of learning on a per-instance basis, they trained the model offline to be able to 

predict strong branching scores of nodes. This approach embedded each subproblem by 

a set of features and then used these features to predict the outcome of the strong 

branching algorithm. 

Another advancement came shortly after with the work (Gasse Mila et al., 

2019),who introduced a graph convolutional network (GCN) to help learn branching 

strategies. The idea was to represent the ILP problem as a bipartite graph where the left 

side nodes were the constraints and the right side where the variables and there would 

be an edge between both sides if the variable was included in the constraint. Once the 

problem was represented by a bipartite graph a GCN would be employed to be able to 

approximate a variable selection policy based on the bipartite graph input. The data 

required for training this supervised method would be generated using strong branching 

and stored for use during training. This method achieved state-of-the-art results, 

especially showcasing an ability to generalize to bigger graph sizes than those seen 

during training which is a core consideration when training such models. 

In addition (Gupta et al., 2020) were able to propose a more efficient hybrid 

architecture that combines both Graph Neural Networks and Multi-layer Perceptrons to 
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learn a branching heuristic for MILP. The key idea was to use the expressive but 

computationally expensive power of the GNN at the root not of the branch and bound 

tree to extract relevant information (since the structure doesn’t usually change that 

much along the subsequent nodes), and then to use the less computationally expensive 

MLP to extract information about the subsequent nodes to make branching decisions.  

Finally, (Lin et al., 2022)proposed a novel tree aware branching transformer (T-

BranT) framework that also learns variable selection policies for heterogeneous mixed 

integer linear programming problems. The idea was to input 3 sets of information to the 

model: first the local candidate features that capture each candidate’s importance, 

second local tree features that capture the structure of the decision tree so far this could 

give the model insight into how far along the problem it is in, and third past branching 

node features that show the model the decisions and features at previous nodes; this 

would provide the model with the necessary temporal information to make an informed 

decision not only based on the current features but also on the features of previous 

timesteps. To do this (Lin et al., 2022)train a novel transformer and GAT architecture 

that integrates local, global, and temporal features of the problem. T-BranT generalizes 

well across widely heterogeneous problems and outperforms previous tree-

parameterized approaches in terms of solution and branching decision quality, 

especially on harder instances. This work demonstrates the potential of advanced neural 

architectures and global tree representations for learning effective and generalizable 

branching policies. 

In summary, these papers showcase the progression and potential of applying 

machine learning techniques, particularly imitation learning, to enhance variable 

selection strategies in MIP solvers. The approaches range from learning branching rules 
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offline on similar instances to learning policies on a per-instance basis using graph 

representations or search tree features. The representation of subproblems using search 

tree states has emerged as a promising direction for achieving generalization across 

heterogeneous instances. Overall, this line of research has gained significant attention 

and has shown impressive results in improving the efficiency of MIP solvers. 
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CHAPTER III 

 

METHODOLOGY 
 

 

In this chapter, we present our methodology for learning efficient branching 

strategies in the branch-and-reduce paradigm for solving the parameterized vertex cover 

problem. We will begin by giving a formal definition of the problem, followed by a 

definition of the branching environment including the reduction rules employed. We 

will then provide an overview of the method used to tackle the problem which includes 

a trained model that produces weights for node features given graph features. After that, 

we will describe the state representation used in our RL formulation which consists of 

the graph features of the current problem instance. We will also discuss the node 

features used for every node upon which we will apply the weighting produced by the 

trained model. Finally, we will discuss details in general about reinforcement learning 

and detail our use of the Proximal Policy Optimization (PPO) algorithm for training, 

and the two training paradigms used to train our model. 

 

A. Definition of problem 

Parameterized Vertex Cover (PVC) is a combinatorial optimization problem 

formally defined as the following: Given an undirected graph G = (V,E), where V is the 

set of vertices that belong to graph and E is the set of edges of the graph, along with a 

parameter K, the objective is to determine whether there exists a vertex cover of size at 

most K. (Downey & Fellows, 2013) A vertex cover is a subset of vertices 𝑆 ⊆ 𝑉 such 

that for every edge ⅇ ∈ 𝐸 at least one of its endpoints is part of the vertex cover. In 

other words, the task of Parameterized Vertex Cover is to find a subset of vertices with 

size at most K such that removing this set of vertices would produce a graph without 
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any edges or an independent graph. Parameterized Vertex Cover is a well-known 

problem with many applications in a variety of domains, including network security, 

bioinformatics, and social network analysis.  

As discussed in the previous section, Parameterized Vertex Cover is a well-studied 

problem with many different methods of solving it. One of the methods which we will 

focus on in this dissertation is the Branch-and-Reduce method. This method as indicated 

previously is an algorithmic paradigm used to solve PVC and other parameterized 

problems. This method includes two main components: The first is branching, where 

the problem is split into smaller subproblems based on a certain decision, and the 

second is reducing where the problem is simplified based on specific rules. The 

algorithm starts by applying reduction rules on the graph which would simplify the 

problem instance, this could be something like removing the vertices with degree 

greater than K and including them in vertex cover. The algorithm then proceeds to 

recursively branch on a selected vertex which would create two subproblems one that 

includes the selected vertex in the vertex cover while removing it from G and one that 

includes all its neighbors in the vertex cover while removing them from G, while 

applying reduction rules after every branching step. 
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The performance of Branch-and-Reduce heavily depends on the choice of the vertex 

to branch on at each step. Particularly, well-chosen vertices would lead to a smaller 

branching tree size which would minimize the running time of the algorithm. As 

discussed previously, the most used branching strategy in practice is branching on the 

vertex with the highest degree but it is not proven to be optimal. This is why in this 

work we aim to learn an effective branching strategy for solving parameterized vertex 

cover using branch and reduce by employing reinforcement learning to do so. By 

training a policy network to select the most promising vertex to branch on. 

 

B. Overview of the Solution 

To solve the problem of finding the best vertex to branch on for Branch-and-Reduce 

we propose a novel reinforcement learning approach to effectively pick a vertex based 

Figure 1. Branch and Reduce 
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on the structure of the graph. Below we detail how the trained model would behave: 

 

 

The method depicted in the figure is an RL-based approach for making branching 

decisions for Branch-and-Reduce applied on parameterized vertex cover. The general 

idea is for the model to predict a set of node feature weights. These weights are inferred 

based on the graph structure which is implied from a set of curated graph features. Once 

the weights are inferred they would be used to determine which node features are the 

most important when considering which node Branch-and-Reduce should branch on. 

This is done by calculating a score based on those node weight features. We detail the 

exact steps of the method: 

1. Extract Node Features: Extract a vector of node features for every node in the 

graph we want to solve parameterized vertex cover on. This step is essential as it 

captures the attributes of each node in the graph such as the degree, centrality 

measures, and other metrics. These features help us distinguish each node from one 

another and give each one a profile which the reinforcement learning model would 

choose to branch on. 

2. Extract Graph Features: Extract a set of features for the graph that offers a 

holistic view and describes the overall structure of the graph. These features include 

Figure 2. Overview of Model Inference 



39 

 

the density, average degree, and even temporal features based on the branching tree 

constructed so far. This set of features will be the input to our reinforcement 

learning agent and will allow it to make informed decisions by considering the 

structure of the graph. 

3. Infer Node Weights: Infer using the trained reinforcement learning agent a set of 

weights to be applied to the node features. This effectively adjusts the importance of 

each node feature to the branching decision based on the graph’s global features. 

This step essentially infers which node profile is ideal to branch on based on what 

the graph looks like. 

4. Apply Weights on Node Features & Get Node Scores: This step applies the 

inferred weights to the node features. What this means is that the inferred weights 

are taken and the dot product between these weights and the node features is 

calculated for each node. This will provide us with a final score for each node which 

indicates how good it is to branch on each of these nodes. 

5. Take the Node with the Highest Score: Once the score for every node is 

calculated the node with the highest score is selected and branched on. This entails 

creating two branches, one where the selected node is included in the vertex cover 

and removed from the graph, and another where its neighbors are included in the 

vertex cover and removed from the graph. Each branch’s graph is then reduced by 

applying the reduction rules to each of them. This step is handled in our branching 

environment. 

Overall, this process systemically transforms raw graph data into a sophisticated 

decision-making framework that leverages this raw data to give insight into which node 

features are most important during the branching process based on the current graph’s 
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structure. The next section will go into more detail on every component of the approach. 

 

C. Features for nodes 

Node-level features are crucial in guiding the branching process in our formulation. 

Particularly these node features will be used to capture the local properties of individual 

vertices. Our model aims to produce proper weightings for these features to indicate at 

every step which features are the most significant to focus on while branching. These 

weights are multiplied by the node feature they correspond to, and all the values are 

added to get the final score for the vertex. All features were normalized and set to 

values between 0 and 1. The following node features are considered in this work: 

• Degree: The number of edges incident to the vertex. The degree indicates 

the local connectivity and the number of neighboring vertices it has. 

Vertices with higher degrees are more likely to be part of the vertex cover as 

they would cover the greatest number of edges. In the typical high-degree 

branching rule where we branch on the vertex with the highest degree, the 

degree would have a weight of 1 while all other node features would have a 

degree of 0. This means that while considering which node to branch on we 

only consider the degree, in that sense our approach is a generalization of 

this method that tries to find the optimal weights for every graph. 

• Clustering Coefficient: The clustering coefficient measures the proportion 

of the vertex’s neighbors that are also neighbors to each other. It is 

calculated using this formula 
2𝑇(𝑣)

deg(𝑣)∗deg(𝑣)−1
 where T(v) is the number of 

triangles that vertex v is part of and deg(v) is the degree or number of 

neighbors of that vertex. This coefficient is important because it captures the 
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local density of the vertex’s neighborhood. Vertices with higher clustering 

coefficients are part of tightly connected subgraphs which could influence 

the branching choice. 

• Coreness: The coreness of a vertex is the maximum k-core value it belongs 

to, where a k-core is a maximal subgraph in which every vertex has a degree 

of at least k. The coreness of a vertex v is calculated by iteratively removing 

vertices with degrees less than k until no more vertices can be removed. The 

coreness of v is the highest value of k for which it remains in the graph. The 

coreness provides a measure of the centrality and importance of a vertex 

within the graph. Vertices with higher coreness values are more deeply 

embedded in the graph structure and may have a greater impact on the 

vertex cover. 

• PageRank: PageRank computes a ranking of the nodes in the graph G based 

on the structure of the incoming links. It was originally designed as an 

algorithm to rank web pages. PageRank is computed iteratively using the 

formula: 

 𝑃𝑅(𝑣) =  
(1−𝑑)

𝑁
+ 𝑑 ∗ ∑

𝑃𝑅(𝑢)

deg (𝑢)
 

PageRank captures the global importance and influence of a vertex based on 

the structure of the graph. Vertices with higher PageRank scores are more 

likely to be part of the vertex cover and may have a greater impact on the 

overall solution. 

• Second Degree Neighbor: The second-degree neighbors of a vertex are the 

vertices that are two hops away from it in the graph. The number of second-

degree neighbors provides information about the broader neighborhood of a 
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vertex and its potential impact on the graph structure. 

• Closeness Centrality:  Closeness centrality measures the average shortest 

path distance from a vertex to all other vertices in the graph. It is calculated 

using this formula:  where d(y,v) is the distance from y to v. 

Closeness centrality captures the notion of how close a vertex is to all other 

vertices in the graph. Vertices with high closeness centrality are more 

central and can reach other vertices quickly, which may be relevant for the 

vertex cover problem. 

• Betweenness Centrality: Betweenness centrality measures the extent to 

which a vertex lies on the shortest paths between other pairs of vertices.  It is 

calculated as follows: ∑
𝑆𝑃(𝑠,𝑡,𝑣)

𝑆𝑃(𝑠,𝑡)𝑠,𝑡∈𝑉   where SP(s,t) is the number of shortest 

paths from vertex s to vertex t, and SP(s,t,v) is the number of those paths 

that pass through vertex v. Betweenness centrality identifies vertices that act 

as bridges or bottlenecks in the graph. Vertices with high betweenness 

centrality may have a significant impact on the connectivity and structure of 

the graph, making them potential candidates for branching. 

• Eccentricity: The eccentricity of a vertex is the maximum shortest path 

distance from that vertex to any other vertex in the graph. Eccentricity 

provides a measure of how far a vertex is from the farthest vertex in the 

graph. 

• Density, Average Clustering Removed: 2 features that indicate the density 

and average clustering coefficient of the graph after removing a vertex and 

its incident edges. These features capture the change in the graph when a 
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vertex is removed. Vertices whose removal leads to a significant decrease in 

density and average clustering coefficient may be important for the vertex 

cover problem. 

• Density, Average Clustering Neighbors Removed: 2 features that indicate 

the density and average clustering coefficient of the graph after removing 

the neighbors of the vertex.  

• Reducible Feature: Indicates the number of vertices that would be removed 

due to the reduction rules if the vertex was removed from the graph. This 

provides insight on how removing the vertex might affect the size and 

complexity of the graph instance which would affect the branching decision 

process. 

 

D. Features for graphs (Input for Model) 

In this section, we present a detailed description of the graph features used as input 

to the reinforcement learning agent used to make branching decisions in the branch-and-

reduce algorithm. The graph features are also normalized to be between 0 and 1. We 

will define each feature formally as well as its calculation, and its significance in the 

context of the problem: 

• Density: The ratio of the actual number of edges to the maximum possible 

number of edges in the graph. We calculate the density using this formula  

2∗|𝐸|

|𝑉|∗|𝑉−1|
  . The density is an important metric that helps us measure the 

overall connectivity and completeness of the graph. 

• Clustering Coefficient Measures (Average, Standard deviation, 

Variance): The measure of the average clustering coefficient as well as its 
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standard deviation and variance for all nodes in the graph. The clustering 

coefficient for 1 vertex is calculated as follows: 
2𝑇(𝑣)

deg(𝑣)∗deg(𝑣)−1
 where T(v) is 

the number of triangles that vertex v is part of and deg(v) is the degree or 

number of neighbors of that vertex. These measures are important to show 

the tendency of vertices to cluster together and form tightly connected 

graphs. 

• Degree Measures (Average, Standard Deviation, Variance): These are 3 

features that quantify the degrees in the graph. The degree is the measure of 

how many neighbors a vertex has. We take the average, standard deviation, 

and variance for all vertices in the graph. The average degree provides an 

understanding of the typical connectivity, while its dispersion metrics inform 

on the uniformity or concentration of edges across the graph. 

• Betweenness Centrality Measures (Average, Standard Deviation, 

Variance): Involves 3 measures for the betweenness centrality which is also 

a node feature that we get the average, standard deviation and variance for 

all vertices in the graph. The betweenness centrality measures the extent to 

which nodes act as bridges along the shortest path between other nodes. It is 

calculated as follows: ∑
𝑆𝑃(𝑠,𝑡,𝑣)

𝑆𝑃(𝑠,𝑡)𝑠,𝑡∈𝑉   where SP(s,t) is the number of shortest 

paths from vertex s to vertex t, and SP(s,t,v) is the number of those paths that 

pass through vertex v. This measure is very important to get an idea of how 

many bridge like nodes exist in the graph. 

• Closeness Centrality Measures (Average, Standard Deviation, 

Variance): 3 descriptive statistics for the closeness centrality of the vertices 

of the graph that include their average, standard deviation, and variance. The 
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closeness centrality is the reciprocal of the sum of the shortest path distances 

from a vertex to all other vertices. It is calculated as follows for 1 vertex: 

𝑁−1

∑ 𝑑(𝑦,𝑣)𝑦
 where d(y,v) is the distance from y to v. This measure gives a sense 

of the proximity of the vertices to other vertices in the graph. 

• Eccentricity Measures (Average, Standard Deviation, Variance): 3 

descriptive statistics for the vertices of the graph that include their average, 

standard deviation, and variance. The eccentricity of a vertex is the 

maximum shortest path from the vertex to any other vertex in the graph. 

These measures indicate how far apart vertices in the graph are which could 

show how stretched a graph is. 

• Transitivity: The ratio of the number of the number of triangles to the 

number of connected triples in the graph. A triangle is a set of three vertices 

that are all connected to one another. A connected triple is a set of three 

vertices where at least one vertex is connected to the other two. The 

transitivity is computed as 
3∗𝑛𝑢𝑚_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠

𝑛𝑢𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑_𝑡𝑟𝑖𝑝𝑙𝑒𝑠
 . This measure is significant 

as it helps quantify the presences of cliques or tightly connected subgraphs 

in the graphs. 

• Radius: The minimum eccentricity of any vertex in the graph. This measure 

indicates the minimum distance to reach all vertices from any single vertex 

in graph and it shows how far apart or close vertices in the graph are. 

• Number of Connected Components:  The count of connected components 

in the graph. It is obtained by performing a depth-first search or breadth-first 

search traversal on the graph and counting the number of disjoint 

components. This measure is significant because it shows the connectivity 
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and fragmentation of the graph. 

• Normalized Average Shortest Path: The average shortest path length 

between all pairs of vertices, normalized by the maximum possible path 

length. It is computed as the average of the shortest path distances between 

all pairs of vertices, divided by the maximum possible distance (i.e., the 

number of vertices minus one). It provides a normalized measure of the 

average distance between vertices in the graph. 

• Normalized K: With K being the parameter of the problem. This measure is 

computed as the current value of K divided by the initial value of K. It 

indicates the proportion of the remaining budget relative to the initial budget, 

providing a measure of the problem's progress. 

• Degree Bucketed: This feature is a binary bucketing mechanism for the 

degree based on the average value across the graph, it divides the vertices 

into two categories: those below the average and those at or above the 

average.  The significance of this approach lies in its ability to reduce 

complexity and potentially improve the interpretability and efficiency of the 

degree. 

• Temporal Features: This is composed of 5 features for the parent node of 

the current graph in the search tree. These features include density, 

normalized k, and the three-degree measures (average, standard deviation, 

and variance of the degrees in the graph). In other words, these features are 

essentially some graph features of the predecessor graph in the search tree. 

These features help us get a sense of the temporal evolution of the graph 

across the search tree. 
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E. Branching Simulator 

In this section, we will discuss the Branch-and-Reduce simulator we implemented 

to apply parameterized vertex cover. The functionality of this simulator is to produce a 

branching tree given a starting graph G and a set of vertex decisions on which branching 

will occur.  

 

As shown in the figure, the simulator is a decision tree where each node is a graph. 

Starting from the root with the original graph we want to solve parameterized vertex 

cover on. The simulator also includes the parameter K which limits the size of the 

vertex cover. It works as follows: 

• Starting from the root a vertex is given to the simulator. 

• The simulator creates two branches one where it includes the vertex chosen in 

the vertex cover and decrements k by 1 and one where the neighbors of the 

vertex are chosen and included into the vertex cover and k is decremented by |N| 

(the length of the of set of neighbors of the chosen vertex). This step is valid 

based on the logical premise that for any edge in the graph, at least one of its 

Figure 3. Branching Simulator 
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endpoints must be included in the vertex cover to satisfy the problem's 

constraints. By exploring both possibilities—either the vertex itself or its 

neighbors being in the cover—we ensure that all potential configurations are 

considered, and the solution space is thoroughly searched for an optimal or near-

optimal solution. 

•  After creating each branch, the reduction rules are applied to each branch’s 

graph respectively and K is decremented based on how many vertices are 

removed during the reduction process 

• This process is repeated every time we give the simulator a new vertex to 

branch on in a depth-first manner until the search tree is exhausted as we are 

studying the worst-case scenario performance. 

 

F. Reduction rules 

As mentioned before applying reduction rules is one of the two main components of 

the Branch-and-Reduce algorithm. Particularly, reduction rules are applied after every 

branching decision to simplify the graph structure and reduce the search space (Yamout 

et al., 2022). This allows for more efficient exploration of the solution space. In this 

section, we present the four reduction rules we used in this dissertation for the branch 

and reduce algorithm. 

• Removing Vertices of Degree 0: The first reduction rule focuses on 

vertices with a degree of 0, also known as isolated vertices. If a vertex has 

no neighbors, it cannot be part of any vertex cover since it does not cover 

any edges. Therefore, such vertices can be safely removed from the graph 

without affecting the optimal solution. 



49 

 

• Removing the Neighbor of Vertices of Degree 1: The second reduction 

rule deals with vertices of degree 1, also known as pendant vertices. If a 

vertex has only one neighbor, that neighbor or the vertex must be included 

in any vertex cover to cover the edge between them. Since the vertex only 

covers 1 edge but the neighbor might cover more than 1 edge it is always 

better to include the neighbors in the vertex cover and then remove both 

vertices. After applying this rule, the value of K (the parameter in the 

problem instance) is reduced by 1 to indicate that we included the neighbor 

of the degree 1 vertex in the solution. 

• Degree 2 Neighbors Rule: The third reduction rule addresses the case 

where two vertices of degree 2 are neighbors of each other. In this scenario, 

if both vertices are not already removed, they can be safely removed from 

the graph and added to the vertex cover. This is because any vertex cover 

that includes one of these vertices must also include the other to cover the 

edge between them. After applying this rule, the value of K (the parameter 

in the problem instance) is reduced by 2 to indicate that we included the 2 

vertices in the solution. 

• Removing Vertices of Degree Greater than K: The fourth and final 

reduction rule focuses on vertices with a degree greater than the parameter 

K, which represents the maximum size of the vertex cover. If a vertex has 

more than K neighbors, it must be included in the vertex cover since at least 

one endpoint of each incident edge needs to be covered, which means that 

we have to choose from including the vertex or all of its neighbors, but since 

including all of the neighbors will produce an infeasible solution the 
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decision to include the vertex itself becomes a necessary one. After applying 

this rule, the value of K (the parameter in the problem instance) is reduced 

by 1 to indicate that we included the vertex in the solution. 

These rules are applied in a loop to the graph instance until no more rules can be 

applied which would indicate that the graph can no longer be simplified using reduction 

rules. The reduction rules are important for the efficiency and correctness of the 

Branch-and-Reduce algorithm in solving the Parameterized Vertex Cover problem. By 

removing vertices and edges that can be safely excluded or included in the solution, 

these rules help in simplifying the problem and reducing the search space, ultimately 

leading to faster convergence towards the optimal vertex cover. 

 

G. Reinforcement Learning 

Reinforcement Learning (RL) is a powerful machine learning paradigm that enables 

an agent to learn optimal decision-making strategies through interaction with an 

environment to achieve some goal. The agent learns from the outcomes of its actions, 

rather than from being taught explicitly. This learning involves discovering which 

actions yield the most reward by trying them out and assessing the results. (Sutton & 

Barto, 2018) 

Reinforcement Learning consists of several key components that work together to 

enable an agent to learn and make informed decisions. These components include: 

• Agent: The decision-maker, which interacts with the environment. 

• Environment: The world through which the agent moves, providing 

specific states to the agent. 

• State: A configuration or condition that the environment can be in at any 
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given time. 

• Action: All possible moves that the agent can make. 

• Reward: Feedback from the environment in response to the actions taken by 

the agent. It’s a scalar value that the agent tries to maximize over time. 

• Policy: A strategy that the agent employs to determine the next action based 

on the current state. 

• Value Function: A prediction of future rewards the agent expects to 

receive, used to evaluate which states are most beneficial. 

 

The typical reinforcement learning pipeline is as follows: the agent receives the 

current state St from the environment and acts based on its policy. After the action is 

taken, the environment transitions to a new state St+1 and emits a reward Rt, signaling 

the effectiveness of the action. This reward feeds into the agent's learning process, 

helping it refine its policy to maximize cumulative rewards over time. The loop 

represents the ongoing nature of this process, highlighting the sequential decision-

making characteristic of RL, where each action influences future states and rewards, 

forming a continuous cycle of interaction and adaptation. 

In this section, we will detail how we formulated the problem of choosing the 

Figure 4. Reinforcement Learning Overview 
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optimal node feature weights to decide which vertex to branch on for parameterized 

vertex cover as a reinforcement learning problem discussing each component in the 

formulation. 

 

1. State 

The state is a snapshot of the environment at a certain timestep. Part of this state 

will be used as input for the model to make inferences and output an action. In our 

formulation, the state consists of 2 components: the first are two branching simulators, 

there will be two branching simulators (the branching simulator is detailed in a previous 

section) one dedicated to our model and another dedicated to the opponent which we 

will be trying to outperform. This opponent will either be using high-degree branching 

or the best-performing model so far (more on that in the training section). The second 

component is the graph features for the current graph in the branching simulator of the 

model. These features capture the relevant properties of the graph at each step of the 

branch-and-reduce algorithm, such as the degree distribution, clustering coefficient, 

centrality measures, and other attributes. These features will be the input that the agent 

will see to make informed decisions and produce optimal weights for the node features. 

 

2. Action 

The action taken by the agent at every step is a decision that this agent makes based 

on its policy. The policy is determined by the underlying model of the agent be it a 

neural network or something else. In our formulation, the action will be a set of weights 

with the same size as the node features.  These weights will determine how important 

each node feature is in the calculation of the final score. In particular, the final score of 
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each vertex is calculated by taking the dot product between these weights and the node 

features of the vertex in question.  

 

3. Reward 

The reward is a scalar value that indicates how good the action that the agent took 

was. This reward feeds into the learning algorithm of the agent to help train it to 

perform better. The reward system is crucial as it provides the feedback signal that the 

agent uses to learn from its interactions with the environment. The goal of the agent is 

to maximize the cumulative reward over time, which it does by adjusting its policy. In 

our formulation, we tested 4 different reward formulations as follows: 

• Versus Reward: This is a competitive reward mechanism where the agent is 

rewarded or penalized based on its performance relative to an opponent 

(either a previous version of the agent or a heuristic that chooses vertices 

with high degrees). If the RL agent's selection leads to a better outcome 

compared to the opponent, it receives a positive reward (+1). Conversely, if 

the opponent performs better, the agent is penalized (-1). The agent beats the 

opponent in case the branching simulator of the agent produces a smaller 

final search tree than the opponent’s branching simulator. This reward is 

adjusted by a factor that decreases over tree size, calculated as 
𝐵𝑎𝑠𝑒 𝑅𝑒𝑤𝑎𝑟𝑑

𝑇𝑟𝑒𝑒 𝑆𝑖𝑧𝑒
, 

encouraging the agent to improve rapidly. 

• Reduction Reward: The agent is rewarded based on the proportion of nodes 

it can remove from the graph at each step using the reduction rules. This is a 

direct incentive for reducing the graph's size using these rules. The reward is 

calculated as a ratio of the total reduction in nodes to the size of the graph, 
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multiplied by a factor to scale the reward appropriately as follows: 

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜𝑑𝑒𝑠 𝑅𝑒𝑑𝑢𝑐𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑜𝑑𝑒𝑠
∗ 𝐶  where C is the scaling constant. 

• Leaf Reward: The agent receives a reward for each leaf node found in the 

search tree, which encourages the discovery of terminal states where no 

further branching is necessary. This aligns with the goal of finding a vertex 

cover as efficiently as possible. The leaf reward is scaled based on the 

number of steps taken to reach the leaf, which incentivizes the agent to find 

leaves quickly and potentially favors solutions that lead to smaller search 

trees. The formula for this reward is: 
𝐿𝑒𝑎𝑓 𝑅𝑒𝑤𝑎𝑟𝑑 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑆𝑡𝑒𝑝𝑠 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ 𝐿𝑒𝑎𝑓
 . 

• Step Reward: The agent receives a constant negative reward for each step it 

takes. This is a common technique to encourage efficiency; by penalizing the 

agent for each action, it learns to reach the goal in fewer steps, leading to 

solutions that require smaller search trees. 

 

4. Training Algorithm: Proximal Policy Optimization 

To train our agent we need a reinforcement learning training algorithm that modifies 

the agent policy based on the rewards it receives from interacting with the environment. 

Proximal Policy Optimization (PPO) is a popular and effective reinforcement learning 

algorithm that has gained significant attention in recent years.(Schulman et al., 2017) 

PPO is an on-policy algorithm that belongs to the class of policy gradient methods. It 

aims to learn an optimal policy by directly optimizing the policy parameters to 

maximize the expected cumulative reward. The crux of PPO lies in updating policies 

incrementally to avoid large, destabilizing updates while maintaining enough flexibility 

to explore and adapt. PPO is made up of several components: 
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• Policy Network: The policy network in PPO is a neural network that 

directly defines the policy function π(a∣s,θ), mapping states s to a probability 

distribution over actions a, with parameters θ. This network is responsible 

for deciding which actions the agent should take given a particular state. 

During training, the policy network's parameters are updated to maximize 

expected rewards. The network's architecture can vary widely depending on 

the complexity of the state space and the required granularity of the action 

space. 

• Value Network: The value network is a separate neural network that 

estimates the value of states, V(s). It helps in evaluating how good it is for 

the agent to be in a certain state and plays a crucial role in calculating the 

advantage function. Unlike the policy network, which outputs a probability 

distribution, the value network outputs a single scalar representing the 

expected sum of future rewards from the state. 

• Advantage Function: The advantage function, denoted as A(s,a), measures 

the relative benefit of taking a specific action a in state s, compared to the 

average action at that state. It is often computed as V(st+1)+rt−V(st), where 

V(s) is the value function representing the expected return of being in state s. 

The advantage function is pivotal for the policy gradient estimation as it tells 

the agent which actions are better or worse than the current policy's average. 

• Clipped Surrogate Objective: PPO introduces a novel objective function 

that adds a clipping mechanism to the policy gradient estimator. This 

clipping limit the size of the policy update by modifying the objective to 

penalize changes that move the probability ratio 
 π(a∣s,θ)

 π(a∣s,θold)
  away from 1 by 
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more than a specified clipping range. This clipped objective function helps 

in maintaining the updates within a trust region, reducing the likelihood of 

making a harmful large update that could decrease performance. 

PPO operates by collecting data from the current policy's interactions with the 

environment, estimating the expected returns, and calculating the advantage of the 

actions taken. The core component of PPO is the objective function it maximizes, which 

incorporates a novel clipping mechanism that prevents the new policy from deviating 

too far from the old one. This function allows for policy updates that are "proximal" 

(close) to the previous policy, hence the name. 

The PPO algorithm iterates through the following steps: 

1. Collect Data: For each iteration, the algorithm collects data in the form of 

(St, Rt, St+1, At) where they represent the state, reward, next state, and action 

respectively. The agent acts according to the policy network. 

2. Calculate Advantage: The advantage is calculated for all the actions 

collected according to the formula: V(st+1)+ Rt−V(st) where we use the value 

network to derive the V(s) values. 

3. Update the Policy Network: we update the policy network by minimizing 

the following loss function: 

LCLIP( ) = Et[min(Rt.At , clip(Rt, 1- ϵ, 1+ ϵ). At)] 

4. Update the Value Network Parameters: we update the value network by 

minimizing the mean squared error (MSE) between the predicted value V(s) 

and the actual cumulative reward from the s until the end of the episode: 

(V(s) – R(s))2 
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5. Repeat: the cycle with the updated policy. 

 

5. Training 

Training a reinforcement learning (RL) agent is an iterative process that fine-tunes 

the agent's policy so it can perform a task more effectively. By interacting with its 

environment, the agent learns to associate certain states with actions that maximize 

cumulative rewards. This learning phase is crucial for the agent to make intelligent, 

goal-oriented choices. In the context of our formulation, the agent learns to identify key 

Figure 5. Proximal Policy Optimization Overview 

Figure 6. Training Overview (Method 1) 
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features for the vertices to help guide the vertex selection process while branching. 

Training is done guided by a tailored reward system that reinforces beneficial actions.  

A common approach to training an RL model is adversarial training, a technique 

that pits two opponents against each other in a competitive environment. This method is 

similar to the concept of iron sharpening iron; as one agent learns from the environment, 

its counterpart adapts to the changing strategies, creating a dynamic learning process 

that can lead to more robust and sophisticated policies. The adversarial nature of this 

training method helps prevent overfitting and encourages the discovery of strategies that 

are not immediately apparent. By continuously challenging the agents to outperform 

their adversaries, they explore and learn a broader range of strategies and, in turn, 

develop a deeper understanding of the environment and the task at hand. Adversarial 

training is particularly effective in complex environments where the optimal strategies 

are not known a priori. In our case we train our agent on two different opponents: First, 

we train the agent to beat high degree branching strategy to help build a solid base of 

the agent reasoning then we train the agent on the best previous version of itself helping 

it patch up any weaknesses it had before.  

The pipeline for the training on the high degree opponent is as follows: 

1. Graph Generation: The loop begins with the generation of a random graph. 

This graph represents the initial instance of the PVC problem that the RL 

agent needs to solve using branching.  

2. Graph Duplication: The generated graph is duplicated to allow for parallel 

comparison between the RL method and an opponent. This ensures that both 

methods operate on identical instances of the problem. 

3. Best Node Identification: For the RL method, node features are extracted, 
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and an inference model is used to select the best node for branching by 

calculating the score based on the inferred node feature weights from the 

model. In parallel, a high-degree heuristic method identifies the node with 

the highest degree and selects it. 

4. Branching Decision: Each method's selected node is then used to branch in 

their respective branching simulators. The RL method uses its current policy 

to decide which vertex to branch on, while the high-degree method simply 

selects the vertex with the highest degree. 

5. Reward and Training: The results of each branching decision are then 

evaluated. If the RL branching simulator indicates that the branching tree is 

finished before the high degree branching simulator then the model is given 

a positive reward. Conversely, if the high degree branching simulator 

finishes first the model receives a negative reward. This reward signal is 

used to train the model, adjusting the policy to improve future decision-

making. 

For the second level of training a similar pipeline is used where we just replace the 

high degree inference mechanism with a previous agent as follows: 

Figure 7. Training Overview (Method 2) 
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H. Training Specifics 

In this section we will detail some of the technical details behind the training of our 

model. 

 

1. Graph Generation 

When training reinforcement learning models in the context of graph-related 

problems, it's vital to expose the model to a variety of graph structures. This diversity 

ensures that the learned policies are generalizable and robust to different kinds of 

network topologies. Here is an overview of graph generation methods used in our 

training: 

1. Gnm Random Graph: This method creates a graph by randomly adding 

edges until a total of 'm' edges are reached. Each potential edge has an equal 

probability of being chosen in each step of the process.  

2. Random Density Graph: Similar to the previous method, graphs are 

generated by continually adding edges until a specified density is achieved. 

Density, defined as the ratio of the number of edges to the number of 

possible edges, is used here as a target metric to dictate the stopping point 

for edge addition/ 

3. Erdős-Rényi: Named after the mathematicians Paul Erdős and Alfréd 

Rényi, this model creates graphs by including each possible edge with a 

fixed probability. This process results in networks where the degree 

distribution follows a binomial distribution. 

4. Barabási-Albert: The Barabási-Albert model generates scale-free networks 

through a preferential attachment mechanism, where new nodes are more 
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likely to connect to existing nodes that already have a higher degree. This 

model mimics the power-law distribution observed in many real-world 

networks, including the Internet and social networks, where few nodes 

(hubs) accumulate a large number of connections. 

5. Watts-Strogatz: Starting with a regular ring lattice, the Watts-Strogatz 

model introduces randomness by rewiring edges with a certain probability. 

This method is known for producing 'small-world' networks that exhibit high 

clustering like regular lattices and short average path lengths similar to 

random graphs. 

2. Libraries 

To build the code base for our project we used the programming language python. 

We also utilized several state-of-the-art libraries to aid in the development of the 

project. Notably: 

• OpenAI Gymnasium: offers a standardized interface for a diverse suite of 

Figure 8. Graph Generation 
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environments, enabling the development and benchmarking of 

reinforcement learning algorithms. It is instrumental for defining and 

managing the environment where the RL agent operates, providing a 

controlled and replicable setup for training and evaluating the agent's 

performance. We used OpenAI Gym to create the environment in which our 

model was trained on. 

• Stable Baselines 3: is a set of reliable implementations of reinforcement 

learning algorithms in PyTorch. It facilitates the training process by 

providing a collection of pre-coded RL algorithms, including Proximal 

Policy Optimization (PPO), which can be easily deployed and customized. 

This library is crucial for streamlining the RL training process, reducing 

development time, and ensuring the agent's training is grounded in well-

established methods. We used StableBaselines to train our agent using PPO. 

• NetworkX: is a Python package for the creation, manipulation, and study of 

the structure, dynamics, and functions of complex networks. With its 

comprehensive suite of graph generation and analysis tools, NetworkX is 

ideal for simulating the varied graph structures that the RL agent must learn 

to navigate. Its versatility in handling graphs makes it an indispensable tool 

for generating training and evaluation datasets and for implementing the 

graph-related functions required for problem-solving in the project. We used 

NetworkX to generate the graphs used in our training as well as for other 

graph related operations. 
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3. Parameters 

In the training regimen for the reinforcement learning model, a specific set of 

parameters was methodically chosen to shape the learning environment and define the 

scope of the training process.  

1. The size of the graphs: used during training ranged from 20 to 45 

nodes, providing a spectrum of complexity while keeping computational 

demands within reasonable limits.  

2. The parameter K, defining the upper bound of the vertex cover size, 

varied adaptively between half to an eighth of the number of nodes  N/2 

to N/8, ensuring a diversity of problem constraints. 

3. Timesteps: The model underwent an extensive training phase 

comprising 500,000 timesteps, each timestep representing a complete 

sequence of interactions with the environment. 

This comprehensive training setup was designed to equip the RL model with the 

experience needed to navigate the complexity of vertex covers across a broad spectrum 

of potential graph types. 

 

I. Limitations 

There were many limitations faced during the training process most notably: 

• Variable Size Features: In graph-based machine learning, handling 

variable-size features is a common challenge. Traditional machine 

learning models require fixed-size input, but graphs can vary widely in 

the number of nodes and edges. Techniques to handle this, like padding, 

can introduce noise or computational inefficiency. Graph Neural 
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Networks (GNNs) address this to some extent, but their integration in all 

frameworks is not yet standard. 

• Lack of Support for GNNs: While GNNs are gaining traction for their 

ability to directly process graphs, their adoption is not yet universal 

across all machine learning frameworks and libraries especially in RL 

libraries. This limits the choice of tools and can hinder performance 

optimization.  

• Exponential Data Growth for Supervised methods: Supervised 

learning methods can struggle with combinatorial problems like the 

vertex cover problem due to the exponential growth of the data. As the 

size of the graph increases, the number of potential solutions and, 

therefore, the amount of training data required can grow exponentially, 

making it computationally infeasible to generate and process.  
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CHAPTER IV 
 

RESULTS & DISCUSSION 

In this section, we present a comprehensive analysis of the results produced 

from all the experiments conducted in this dissertation. The main goal is to evaluate the 

efficacy of using reinforcement learning to optimize the vertex selection process in 

branch-and-reduce. We will first provide an overview of the experimental process 

detailing the various configurations of each experiment as well as the hardware used 

during training. We will also discuss the testing pipeline used during these experiments. 

We will then display the results of our experiments in a clear tabular format while 

providing a clear analysis of each result. Furthermore, we will provide a detailed 

discussion of the node feature importance analysis. We end this section by mentioning 

the limitations we encountered during our various experiments.  

 

A. Experimental Setup 

We conduct our training and testing on an ASUS TUF A15 laptop equipped with 

an AMD Ryzen 7000 series 9, NVIDIA GTX 4050, and a 1000 GB SSD, the 

experiments aimed to refine an RL agent's proficiency in selecting optimal node feature 

weights for effective branching within a branch-and-reduce framework. Our 

experimental framework was designed to span a variety of graph sizes and complexities. 

The training was executed over 500,000 timesteps, with each session extending 

approximately 12 hours, ensuring thorough exposure to the problem space. The graphs 

for training were generated within the size range of 20 to 45 nodes, simulating a 

controlled yet challenging environment for the agent to learn. Testing, however, 

expanded this scope significantly, involving graphs ranging from 40 to 130 nodes, to 
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evaluate the model's generalization capabilities and scalability. The parameter K, 

dictating the vertex cover's upper size limit varied between half to an eighth of the 

graph's node count (N/2 to  N/8), presenting a dynamic range of problem difficulties. 

 

B. Training Results 

 This section presents the results of the two different training methodologies 

applied to the reinforcement learning agent tasked with solving the parameterized vertex 

cover problem. The first approach referred to as Base Training, involves training the 

agent against a heuristic strategy that branches on vertices with the highest degree. The 

second approach, versus (VS.) Training, entails training the agent against the best-

performing version of itself in a form of self-play, where the agent attempts to 

outperform its previous iterations. 

The Base Training graph shows the evolution of average rewards over episodes, 

with rewards being grouped per 199 episodes and smoothed with a moving average 

(window=7). The graph illustrates a trend where the agent initially experiences a steeper 

learning curve, indicated by a gradual increase in rewards, followed by a period of 

fluctuation. This suggests that the agent is learning to improve its policy over time by 

exploring and exploiting the decision space defined by the vertex cover problem. 

However, the consistency of the agent's performance is subject to variability, possibly 

due to the exploratory nature of its policy in the complex environment. 

Conversely, the VS. Training graph, which groups rewards per 351 episodes, 

exhibits a noticeably different trend. Here, the moving average indicates a steadier 

ascent towards higher rewards. This improvement pattern suggests that the agent 

benefits from the adversarial training approach, potentially due to the constant pressure 
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of competing against a more capable opponent – itself. The self-play paradigm appears 

to provide the agent with more robust and challenging scenarios, fostering a more 

refined policy over time. 

The effectiveness of reinforcement learning strategies for combinatorial 

optimization problems is influenced by the dichotomy in training approaches. Base 

Training, while foundational, may limit the agent's exposure to sophisticated strategies, 

as it relies on a static heuristic for branching decisions. In contrast, VS. Training 

encourages the agent to continuously adapt and overcome increasingly challenging 

benchmarks set by its prior achievements. This dynamic method seems to result in an 

agent that not only performs better but may also generalize more effectively across 

different instances of the problem. 

 

The upward trends in the VS. Training graph compared to the oscillations in the 

Base Training graph underscore the potential of iterative self-improvement 

methodologies in machine learning. These results suggest that pitting the agent against 

itself in an ever-escalating series of challenges can lead to more consistent and higher-

Figure 9. Training Results 
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quality performance in complex tasks such as the vertex cover problem addressed in this 

work. 

 

C. Testing Pipeline 

To test our approach, we compare the agent’s performance against the high 

degree branching strategy. We compare the size of the resulting search tree from the 

agent and high degree strategy to see which produces a smaller search tree. Ideally, we 

want our agent to consistently produce smaller search trees than the high-degree 

branching strategy. 

 

The diagram details the testing pipeline used to evaluate the performance of the 

trained agent. These are the steps: 

• First, we generate a random graph using one of the generation methods 

discussed in the methodology section. 

• Second, we create to copies of the graph to test on high degree and on 

the agent. 

• Third, we branch on the two graphs using two separate branching 

Figure 10. Testing Pipeline Overview 
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simulators and following the two approaches: high degree and the 

agent’s policy. 

• Finally, we compare the sizes of the search trees produced by both 

branching simulators to determine which one performed better.  

 

D. Main Model Results 

Two primary models emerged from our experiments resulting from both training 

strategies we used. The first model (Model Base) was pitted against a heuristic strategy 

favoring vertices of high degrees. Over 500 iterations, the RL model demonstrated 

superior performance in 64% of the cases, tied in 10% of the instances. This result 

underscores the model's capacity to learn and adopt strategies that outperform basic 

heuristics. 

The second model (Model Plus) was Model Base trained against the best 

version of itself, a scenario designed to assess incremental learning and self-

improvement. The model outperformed the high degree heuristic in 88% of the trials, 

with only 1% ties, and a 6% average difference in tree size (with a standard deviation of 

±5%), across 500 iterations. This not only attests to the model's effectiveness but also its 

ability to refine and enhance its policy over time. 

 

Table 1. Main Model Results 

Model Name 
Wins Against 

High Degree 

Average tree 

size difference 

Size standard 

deviation 

# Test 

Iterations 

Model Base 64% 4% 8% 500 

Model Plus 88% 6% 5% 500 
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The performance of the reinforcement learning agent is evaluated using several 

metrics: 

• Wins Against High Degree: This metric represents the percentage of 

times the learned branching strategy outperforms the high-degree 

heuristic, which selects the node with the highest degree for branching. 

• Average Tree Size Difference: This metric measures the difference in 

the size of the search tree between the learned branching strategy and the 

high-degree heuristic. (A positive score indicates that the model 

produced a smaller tree size than high degree branching) 

• Size Standard Deviation: This metric captures the variability in the size 

of the search tree explored by the learned branching strategy. A lower 

standard deviation suggests more consistent performance across different 

test instances. 

• # Test Iterations: This represents the number of test instances used to 

evaluate the performance of the learned branching strategy for each 

graph generation method 

These results provide compelling evidence of the model's capability to navigate 

the complexities of the vertex cover problem efficiently. Through rigorous training and 

testing phases, the RL agent demonstrated a significant understanding of strategic 

vertex selection, optimizing the balance between exploration and exploitation to achieve 

commendable performance metrics. 

 

E. Experiments 

 We conducted a variety of experiments to find the best training configurations to 
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train our model. The experiments consisted of varying several different aspects and 

comparing the resulting models. The variables included: the training algorithm, reward 

scheme, graph generation methods, reduction rules applied, as well as the size of the 

graph and the parameter K.  

 

1. Training Algorithm 

 In this experiment we vary the training algorithm used to train the agent between 

three different choices:  

• Deep Deterministic Policy Gradient (DDPG): is a model-free, online, off-

policy reinforcement learning method. A DDPG agent is an actor-critic 

reinforcement learning agent that searches for an optimal policy that maximizes 

the expected cumulative long-term reward. 

• Twin Delayed Deep Deterministic policy gradient (TD3): is a model-free, off-

policy reinforcement learning method that builds upon the Deep Deterministic 

Policy Gradient (DDPG) by introducing twin Q-networks and delayed policy 

updates, aiming to reduce overestimation bias and improve learning stability. 

• Proximal Policy Optimization (PPO): is a model-free, on-policy reinforcement 

learning algorithm that optimizes policy gradients by maintaining a balance 

between exploration and exploitation with a clipped objective function to ensure 

stable and efficient learning. 
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Table 2.  Varying Training Algorithm 

Training 

Algorithm 

Wins Against 

High Degree 

Average tree 

size difference 

Size standard 

deviation 

# Test 

Iterations 

PPO 70% 3% 15% 500 

DDPG 62% 2% 10 500 

TD3 56% 1% 11% 500 

 

These results suggest that while PPO achieves the highest improvement over the 

heuristic strategy, its variability is higher, which might indicate occasional overfitting or 

exploratory decisions that do not always result in the most optimal tree size reduction. 

DDPG, while not outperforming PPO, offers a balance between performance and 

consistency. TD3's more conservative improvement could either point to a need for 

further tuning or inherent conservative decision-making in the algorithm's design. 

 

2. Rewards 

 In this experiment, we vary the reward schema used in the training. We use the 4 

rewards schemas found in the methodology section alone to test how each one 

performs. The rewards include: 

• Versus Reward: Gains a point for outperforming an opponent's tree size, 

loses a point for underperforming. 

• Reduction Reward: Earns points based on the percentage of nodes removed 

from the graph using the reduction rules 

• Leaf Reward: Receives points for reaching leaf nodes quickly in the search 

tree. 

• Step Reward: Incurs a penalty for each step taken to encourage more direct 

solutions. 
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Table 3. Varying Reward Experiment 

Reward 

Applied 

Wins Against 

High Degree 

Average tree 

size difference 

Size standard 

deviation 

# Test 

Iterations 

Versus Reward 57% 6% 8% 500 

Reduction 

Reward 
46% 4% 9% 500 

Leaf Reward 24% -6% 9% 500 

Step Reward 19% -8% 10% 500 

 

The Versus Reward, where the RL model competes against a high-degree 

strategy, shows a promising 57% win rate, indicating that the RL model often 

outperforms the high-degree baseline with a notable average tree size reduction of 6%. 

However, the Reduction Reward seems less effective, with a lower 46% win rate and a 

smaller average tree size difference, suggesting that focusing solely on the reduction 

may not be as advantageous. The Leaf and Step Rewards appear to disincentivize the 

model, with win rates dropping to 24% and 19%, respectively, and the average tree size 

difference turning negative. This points to a potential over-penalization for steps taken, 

leading to suboptimal paths and decisions that increase the search tree size, as reflected 

by the size standard deviations which indicate a consistent variance across all reward 

types. These outcomes highlight the delicate balance required in reward system design 

to steer the agent toward the most efficient strategies. 

 

3. Graph Generation 

 In this experiment we vary the graph generation method used to train our model. 

We use only a single graph generation method to train the agent and test it on all the 

rest. The graph generation methods used are as follows: 

• Gnm Random Graph: Generates graphs by adding edges randomly until a 
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pre-defined total is met, ensuring each edge has an equal chance of selection. 

• Random Density Graph: Produces graphs by adding edges to achieve a 

specific edge-to-possible-edge ratio, dictating graph density. 

• Erdős-Rényi: Forms graphs by including each potential edge with a 

constant probability, leading to a binomial degree distribution. 

• Barabási-Albert: Creates scale-free networks using preferential attachment, 

where nodes tend to connect to already well-connected hubs. 

• Watts-Strogatz: Begins with a ring lattice and introduces randomness by 

rewiring edges, generating networks with high clustering and short path 

lengths. 

 

Table 4. Varying Graph Generation Experiment 

Graph Generation 

Method 

Wins Against 

High Degree 

Average tree 

size difference 

Size standard 

deviation 
# Test Iterations 

Gnm Random Graph 53% -3% 23% 500 

Random Density Graph 57% 2% 15% 500 

Erdős-Rényi 20% -10% 33% 500 

Barabási-Albert 33% -11% 20% 500 

Watts-Strogatz 62% 3% 10% 500 

 

The results indicate that the agent performs best when trained on the Watts-

Strogatz graph generation method, winning against the high-degree heuristic in 62% of 

the test instances and achieving a 3% reduction in the average search tree size. On the 

other hand, training on the Erdős-Rényi and Barabási-Albert methods leads to lower 

performance, with the agent winning in only 20% and 33% of the test instances, 

respectively. 

These results suggest that the choice of graph generation method used for 
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training the reinforcement learning agent has a significant impact on its performance 

and generalization ability. Training on graphs with certain structural properties, such as 

high clustering and short path lengths (Watts-Strogatz), may lead to more effective 

branching strategies that can generalize well to other graph types. However, training on 

graphs with more extreme degree distributions (Erdős-Rényi and Barabási-Albert) may 

result in less robust branching strategies. 

 

4. Reduction Rules 

 In this experiment we vary the reduction rules applied in training. We test all 

possible combinations of applying the reduction rules to see which ones had the biggest 

impact on the algorithm. The 4 reduction rules are as follows:  

• Removing Vertices of Degree 0: Eliminates isolated vertices as they don't 

contribute to covering any edges. 

• Removing the Neighbor of Vertices of Degree 1: Includes the single 

neighbor of pendant vertices in the cover, then removes both, optimizing the 

cover by leveraging vertices that cover more edges. 

• Degree 2 Neighbors Rule: If two degree 2 vertices are neighbors, both are 

added to the cover and removed from the graph, ensuring the covered edge 

between them doesn't necessitate additional vertices. 

• Removing Vertices of Degree Greater than K: Includes vertices with 

connections exceeding the cover size limit (k) directly into the cover, as 

excluding them would lead to an infeasible solution. 

We denote the reductions used in the training as a binary vector as follows: 

 [degree 0 rule, degree 1 rule, degree 2 rule, degree k rule] 
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[1,0,0,0] indicates only degree 0 rule was applied during training. 

 

Table 5  Varying Reduction Rules Experiment 

Reduction 

Rules 

Wins Against 

High Degree 

Average tree 

size difference 

Size standard 

deviation 

# Test 

Iterations 

[1,1,1,1] 65% 6% 4% 500 

[1,0,0,0] 49% 4% 8% 500 

[1,1,0,0] 7% -7% 20% 500 

[1,0,1,0] 19% -3% 15% 500 

[1,1,1,0] 5% -10% 13% 500 

[1,0,0,1] 10% -8% 15% 500 

[1,1,0,1] 4% -8% 20% 500 

[1,0,1,1] 9% -5% 17% 500 

  

We applied the reduction rules during training but when we ran the testing 

pipeline we applied all of them. This shows that the model learned to integrate the 

reductions rules into its strategy which explains the relatively low results across the 

rows.  

 

5. Varying K 

In this experiment we vary the parameter in PVC while we train to see the 

impact it has on the final model. 

 

Table 6.  Varying K Experiment 

K Range 
Wins Against 

High Degree 

Average tree 

size difference 

Size standard 

deviation 

# Test 

Iterations 

N/6 – N/10 46% -1% 6% 500 

N/4 – N/8 57% 4% 8% 500 

N/2 – N/6 56% 6% 5% 500 

 

The experiments show no big impact for this change but it is noticeable that the 
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N/6 – N/10 range performs slightly worse than the other ranges. This can be attributed 

to the problem being harder and unsolvable as the K would have decreased 

significantly. 

 

6. Varying N 

In this experiment we vary the N or the number of nodes in the graph during 

training. 

Table 7.  Varying Graph Size Experiment 

Graph Size 

Range 

Wins Against 

High Degree 

Average tree 

size difference 

Size standard 

deviation 

# Test 

Iterations 

40 – 70 45% 2% 7% 500 

20 – 45 57% 4% 6% 500 

15 – 25  60% 6% 6% 500 

 

 The results show that graph sizes do not make a very big difference as well. The 

drop in the higher range can be attributed to the higher complexity of the problem and 

the insufficient training time since we applied the same amount of training across all 3 

cases which makes sense since harder problems will take more time to converge. 

  

F. Node Feature Analysis 

In this section, we conduct a node feature analysis to add explainability to the 

trained model’s results. We generate different graphs and for each graph feature, we 

plot the relationship between that graph feature and the weight predictions of a model 

for various node-level features. Each scatter plot corresponds to a different node feature. 

We include the full plot for 5 graph features: Density, Average Clustering, Average 

Betweenness Centrality, Normalized K, and Average Neighbor Degree. Each plot will 

provide us insight how the decision for each node feature weight is affected by the 
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variation of each graph feature. 

 

1. Density 

 

Figure 11. Density Feature Analysis 
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As density increases, certain node features may gain prominence in the model's 

predictive framework up to a saturation point. This can happen with features like node 

degree, where initially, a denser graph means more connections per node, increasing the 

feature's importance. However, once a graph becomes sufficiently dense, adding more 

edges doesn't significantly change the model's perception of a node's degree since many 

nodes are already highly connected. This is interesting to see as it would suggest that 

picking the highest degree is non-optimal and could even be a bad choice in some cases 

which would suggest that the high degree branching heuristic can be outdone by a 

trained agent like our model. 

For other node features, increased density might actually diminish their 

importance. For example, in a very dense graph, individual node centrality might 

become less distinctive since many nodes are central, diminishing the uniqueness of the 

feature across the graph. 

In some cases, the relationship is not straightforward, suggesting that the model 

might interpret these features differently at various stages of graph density. This can 

lead to profiles where features are valued by the model only within specific density 

ranges, potentially reflecting structural changes that occur in graphs as they grow 

denser.  
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2. Average Clustering 

 

 

 

Figure 12.  Average Clustering Feature Analysis 
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As the average clustering coefficient of a graph increases, the graph becomes 

more densely connected within local neighborhoods. In other words, nodes tend to form 

tightly-knit groups characterized by a higher number of triangles, where nodes are more 

likely to be connected to their neighbors' neighbors. This increased local connectivity 

leads to the formation of distinct clusters or communities within the graph, resulting in a 

more structured and organized network topology. 

In a graph where average clustering is on the rise, the node feature degree may 

initially increase in importance, as the model recognizes the growing number of 

connections per node in emerging cliques. However, beyond a certain level of 

clustering, each additional connection may become less informative due to the high 

prevalence of connections overall, which could explain a plateau or even a decrease in 

the importance assigned to the degree. 

Interestingly, for betweenness centrality, there is a marked decrease in weight as 

clustering increases, which implies that nodes that were once critical for connecting 

different parts of the graph become less so as more triangles form, providing alternative 

paths. This diminishing importance suggests that the model perceives such nodes to be 

less critical in facilitating communication or flow within the graph as clustering 

tightens. 

For features related to reduction like reducible features, there's an uptrend in 

weight with increased clustering, possibly highlighting the model's strategy to focus on 

nodes that, if removed, would lead to a significant reduction in the overall graph size or 

help simplify the graph's structure efficiently. This trend suggests that the model's 

strategy evolves to prioritize the potential impact of a node's removal in highly 

interconnected networks. 
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3. Normalized K 

 

Figure 13.  Normalized K Feature Analysis 
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In the context of a parameterized vertex cover problem, as the parameter K (which 

determines the maximum size of the vertex cover) increases, it affects both the 

complexity of the problem and the strategy for finding a solution. The vertex cover 

problem asks to find the smallest set of vertices such that every edge of the graph is 

incident to at least one vertex in the set. Increasing the parameter K means we are 

allowing for larger vertex covers, which may increase the solution space and potentially 

simplify finding a cover, but it could also lead to less efficient solutions since we're not 

constrained to find the smallest set. 

As K increases, the weight assigned to the degree feature remains relatively high 

and stable, suggesting that the degree of a node (the number of connections it has) is 

consistently important in determining its likelihood of being part of the vertex cover, 

regardless of the allowed size of the cover. The weight for clustering decreases as k 

increases, which could imply that the tight-knit clusters of nodes become less critical to 

include in the vertex cover when we have more flexibility in the cover's size. 

In contrast, the coreness feature weight remains high, highlighting the significance 

of core nodes that are part of the main structure of the graph rather than peripheral 

nodes. The consistent high weight for closeness centrality suggests that nodes central to 

the graph remain vital to include in the vertex cover because they can cover many edges 

due to their short distances to all other nodes in the graph. 
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4. Average Neighbor Degree 

 

Figure 14.  Average Neighbor Feature Analysis 
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As the average neighbor degree increases, reflecting the graph’s trend toward 

connectivity, the model’s response varies distinctively across different features. The 

weight predictions for degree initially decrease as the average neighbor degree 

increases, which suggests that in the context of nodes with highly connected neighbors, 

the model devalues the direct degree of a node, possibly due to the sufficiency of 

indirect connections for network robustness. This trend reverses at the higher end of 

neighbor degree averages, indicating an adaptation to the increased importance of direct 

connections in maintaining network integrity. 

For closeness centrality, the weight predictions rise steadily with the average 

neighbor degree, aligning with the concept that as nodes are more closely linked, the 

centrality of nodes becomes increasingly relevant for efficient information 

dissemination. Interestingly, the predictions for betweenness centrality show a marked 

drop and then level off, which may imply that the nodes’ role as intermediaries becomes 

less critical as the average connectivity of their neighbors grows. 

In the reducible feature, there's a sharp increase in weight as the neighbor degree 

increases. This might reflect a strategy where the model gives priority to reducing the 

graph complexity when nodes are highly connected, perhaps aiming to streamline the 

network's structure to more efficiently solve the vertex cover problem. 
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5. Average Betweenness Centrality 

Figure 15. Average Betweenness Centrality Feature Analysis 
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 Betweenness centrality is a measure of the number of times a node lies on the 

shortest path between other nodes. When the average betweenness centrality increases, 

it suggests that nodes are increasingly functioning as bridges within the network. This 

typically means there are more bottleneck points through which information or flow 

passes, indicating a less clustered and potentially more hierarchical or sparsely 

connected graph structure. 

As average betweenness centrality increases, a decrease in the weight for 

closeness centrality might suggest that nodes central in terms of betweenness are not 

necessarily the quickest to reach all other nodes, indicating a more broker-like position 

rather than a hub. A decrease in clustering weight could imply that nodes that frequently 

act as bridges in the network (high betweenness centrality) are part of less clustered or 

tightly-knit groups, perhaps because they connect disparate parts of the graph. 

The increase followed by a plateau and subsequent decrease in the weight 

assigned to degree might indicate that nodes with an initially higher degree benefit from 

their many connections but only up to a point. After this peak, the importance of having 

additional connections diminishes, possibly because the role of a node as a critical 

bridge is sufficiently established, and further connections may not significantly enhance 

that role. 

Lastly, the decrease in weight for eccentricity as betweenness centrality 

increases could indicate that nodes that act as important connectors tend to be closer to 

the center of the graph (lower eccentricity). This makes sense as such nodes are 

strategically positioned to influence the flow of information or connectivity within the 

network, making them less peripheral (hence lower eccentricity) and more central in 

terms of control over network flow
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CHAPTER V 
 

CONCLUSION AND FUTURE WORK 

In this dissertation, we explored a novel approach to optimizing the branch-and-

reduce algorithm for solving the parameterized vertex cover problem using 

reinforcement learning. Our goal was to develop an intelligent agent capable of learning 

effective branching strategies by selecting the most promising vertex to branch on at 

each step based on the graph's structural features. 

We formulated the problem as a Markov Decision Process and employed the 

Proximal Policy Optimization (PPO) algorithm to train our reinforcement learning 

agent. The state representation consisted of graph-level features capturing the overall 

structure and properties of the graph at each step. The agent's action space corresponded 

to predicting weights for node-level features, which were then used to calculate scores 

for each vertex, guiding the branching decision. 

Through extensive experiments and ablation studies, we evaluated the 

performance of our trained agent against the traditional high-degree branching heuristic. 

Our best-performing model, trained using adversarial play against itself and against 

high degree branching with a carefully designed reward functions, consistently 

outperformed the high-degree strategy, achieving an 88% win rate and an average tree 

size reduction of 6%. 

We also conducted a thorough analysis of the learned node feature weights, 

providing insights into the agent's decision-making process. The results showed that the 

agent adapted its strategy based on the graph's structural properties, assigning varying 

importance to different node features depending on the graph's density, clustering 

coefficient, and other characteristics. 
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Our work demonstrates the potential of reinforcement learning in tackling 

combinatorial optimization problems like parameterized vertex cover. By learning to 

make intelligent branching decisions based on the graph's structure, our approach offers 

a promising avenue for improving the efficiency of branch-and-reduce algorithms. 

However, our work also has some limitations that open up opportunities for 

future research. One limitation is the scalability of our approach to very large graphs, as 

the computational complexity of extracting graph-level features and performing 

inference on the policy network can become prohibitive. Future work could explore 

more efficient graph representation techniques, such as graph embeddings or sampling 

strategies, to enable the application of our approach to larger-scale problems. 

Another direction for future research is the integration of graph neural networks 

(GNNs) into our reinforcement learning framework. GNNs have shown great promise 

in learning powerful graph representations and capturing complex structural patterns. 

By incorporating GNNs into our state representation or action selection mechanism, we 

could potentially enhance the agent's ability to make more informed branching decisions 

based on the graph's local and global structure. 

Furthermore, our approach could be extended to other combinatorial 

optimization problems on graphs, such as the maximum clique problem or the minimum 

dominating set problem. Adapting our reinforcement learning framework to these 

problems would require defining appropriate state representations, action spaces, and 

reward functions tailored to the specific problem constraints and objectives. 

In conclusion, this dissertation presents a novel reinforcement learning approach 

to optimizing the branch-and-reduce algorithm for parameterized vertex cover. Our 

results demonstrate the effectiveness of learning intelligent branching strategies based 
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on the graph's structural features, paving the way for further research at the intersection 

of reinforcement learning and combinatorial optimization on graphs.
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