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ABSTRACT 

OF THE THESIS OF 

 

Hadi Samih Hasan              for           Master of Engineering 

               Major: Electrical and Computer Engineering 

 

 

Title: Federated Machine Learning and TinyML Inference for Crop Disease and Pest 

Classification on Smartphones 

 

 

As the agricultural industry undergoes a technological revolution, the integration of 

machine learning (ML) and mobile technologies emerges as a promising solution to 

address crop disease management efficiently. In this thesis, we present a novel approach 

combining federated learning (FL) and TinyML inference for crop disease classification 

on smartphones. Our research encompasses the development of a web application for 

dataset collection, complemented by a mobile application tailored for farmers. Through 

rigorous training, we produced multiple ML models, each specialized in detecting 

diseases across different plant types. These models were subsequently hosted for offline 

use, empowering farmers with real-time disease identification capabilities directly on 

their smartphones. Leveraging FL techniques, our solution ensures adaptability and 

scalability, crucial factors in the agricultural domain. Furthermore, employing TinyML 

inference enables efficient model execution on resource-constrained devices without 

compromising accuracy. Evaluation results demonstrate an impressive average accuracy 

of 98% across all deployed models. This framework represents a significant step forward 

in democratizing access to advanced agricultural technologies, enhancing crop disease 

management, and contributing to global food security. 

 

Keywords - Federated Learning, TinyML, Crop Disease Classification, Dataset 

Collection, Offline Model Hosting, Real-time Disease Identification, Resource-

constrained Devices.  
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CHAPTER 1 

INTRODUCTION 
 

The widespread adoption of mobile phones equipped with cameras and internet 

connectivity has brought about transformative changes across multiple sectors, including 

agriculture. In this context, the data engineering industry has made significant advances 

in employing mobile technology to effectively tackle critical challenges, notably in the 

realm of crop disease identification and protection [1]. An encouraging development in 

this regard is the emergence of mobile applications that leverage field-captured images 

for disease identification. These applications heavily rely on powerful computational 

resources housed within data centers, enabling them to process extensive volumes of 

image data and deploy sophisticated deep learning models with remarkable efficiency. 

Through this process, they can accurately identify diseases and furnish timely and precise 

information for crop protection, facilitating informed decision-making by farmers. 

However, a prominent drawback of the current framework lies in its reliance on a 

robust and uninterrupted internet connection, particularly in rural areas where farmers 

often encounter limited or unreliable access to the internet. This instability in connectivity 

hinders the seamless functioning of these applications, thereby constraining farmers from 

fully harnessing the potential of machine learning technologies to protect their crops. 

The utilization of deep learning models in addressing the challenges posed in 

agricultural applications, particularly in the context of crop disease identification and 

protection, is motivated by several compelling reasons. One of the primary motivations 

is the capability of deep learning models to extract complex patterns and features from 

large volumes of data, such as images of crops and diseases. Deep learning models excel 
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at tasks like image recognition and classification, making them highly effective in 

identifying diseases affecting crops accurately. However, while deep learning models 

offer exceptional performance, they often come with significant memory and 

computational requirements. This presents a challenge, especially when deploying these 

models on resource-constrained devices like mobile phones. Here's why the thesis focuses 

on developing compressed deep learning models: 

1. Memory Size: Deep learning models, particularly convolutional neural 

networks (CNNs), can be memory-intensive. Mobile devices, especially in 

rural areas, might have limited memory available. Compressing these models 

reduces their memory footprint, making them more suitable for deployment 

on mobile phones without causing memory-related issues. 

2. Energy Consumption: Running complex deep learning models can be 

computationally expensive, leading to increased energy consumption. This is 

a critical concern, as mobile devices are often powered by batteries with 

limited capacity. Compressed models are not only easier to load into memory 

but also require less energy to execute, prolonging the device's battery life. 

3. Offline Execution: In rural agricultural areas, stable internet connectivity can 

be scarce. Deep learning models that require constant internet access for 

cloud-based processing can be impractical. By developing compressed 

models that can run directly on mobile devices offline, farmers gain the 

advantage of continuous access to disease identification tools, even in areas 

with limited or unreliable internet connections. 

4. Accessibility: The ultimate goal is to make these applications more accessible 

to farmers in rural areas. Compressed deep learning models enable the 
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deployment of disease identification tools on affordable, low-end mobile 

devices, ensuring that even resource-constrained farmers can benefit from 

advanced technology without the need for high-end smartphones or constant 

internet access. 

In response to this challenge, this thesis aims to investigate and develop offline 

compressed deep learning models capable of execution directly on mobile phones, by 

reducing the model size without compromising performance. 

The key objectives of this thesis are as follows: 

1. Offline Compressed Deep Learning Models: This thesis investigates the 

impact of federated learning on training TinyML models directly on mobile 

devices. It examines how this approach affects model accuracy and efficiency, 

considering the constraints of mobile hardware. Additionally, the study 

explores the implications of developing machine learning models specific to 

each type of plant disease on both model size and accuracy instead of training 

models on the entire dataset. By analyzing the trade-offs between model 

complexity and performance, insights into optimizing disease identification 

capabilities for diverse crop varieties are gained.  

2. Pipeline for Collecting Image Datasets: This thesis outlines the development 

of a pipeline for efficiently collecting and processing images for training and 

validation purposes. This pipeline streamlines the data acquisition process, 

ensuring the availability of high-quality data for model training. Lastly, the 

study focuses on the creation of a mobile application designed to assist 

farmers in classifying diseases using an offline model with high accuracy. By 

leveraging the optimized models and efficient image processing pipeline, the 



 

 12 

application empowers farmers to make timely and informed decisions 

regarding crop health, even in areas with limited internet access.   

3. Empowering Farmers in Rural Areas: By leveraging offline capabilities, this 

project seeks to grant rural areas farmers access to cutting-edge machine 

learning technologies in the agricultural domain. Even in areas lacking reliable 

internet access, farmers can still utilize the advanced disease identification 

model integrated into the mobile application, ensuring their access to valuable 

technology. 

4. Federated Model Training: Acknowledging the evolving nature of agricultural 

settings, this research thesis investigates the utilization of federated learning 

methods. Federated model training enables ongoing model refinement by 

distributing training tasks across multiple mobile devices that generate local 

data samples. By decentralizing the training process across multiple mobile 

devices, this approach ensures that the models learn from the diverse and 

dynamic datasets generated by farmers in different regions. This not only 

facilitates the detection of new and region-specific disease patterns but also 

enhances the models' ability to adapt swiftly to the ever-changing agricultural 

environment. 

In conclusion, this research project aims to bridge the digital gap in agriculture by 

harnessing the power of offline compressed deep learning models. By enabling farmers 

with limited internet access to access state-of-the-art disease identification technology, 

the project aims to empower agricultural communities, enhance crop protection, and 

foster sustainable farming practices. The investigation into federated model training 
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further ensures that the models remain up-to-date and capable of handling emerging 

challenges in agriculture. 
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CHAPTER 2 

RELATED WORK 
 

2.1 TinyML for Image Classification 

TinyML, also known as Tiny Machine Learning, has garnered significant 

attention in the field of image classification due to its potential to deploy lightweight 

machine learning models directly on edge devices, such as mobile phones and IoT 

devices. Researchers have explored various techniques to create efficient and accurate 

TinyML models for image recognition tasks. 

  

2.1.1 Overview of TinyML in Mobile Devices 

TinyML is a revolutionary field that aims to deploy machine learning models on 

resource-constrained devices, such as mobile phones, Internet of Things (IoT) devices, 

and microcontrollers [2]. The integration of TinyML in mobile devices has opened up 

new possibilities for on-device AI processing, enabling real-time inference and reducing 

the dependence on cloud-based services for machine learning tasks. Researchers and 

engineers have been exploring various techniques and architectures to optimize and 

deploy deep learning models on edge devices efficiently. 

TinyML aims to bring the power of artificial intelligence to low-power, memory-

limited devices, enabling them to perform intelligent tasks locally without relying on 

cloud computing [3, 4]. This literature review provides an overview of the advancements 

in TinyML, including model quantization, hardware acceleration, and novel model 

architectures. It also highlights the challenges faced, such as balancing model size, 

accuracy, and energy efficiency, and the limited data and computation capabilities for 
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training models on resource-constrained devices. Furthermore, the review explores the 

potential applications of TinyML in industry, agriculture and environmental monitoring. 

Additionally, it mentions various TinyML frameworks and tools like TensorFlow Lite, 

ML Kit, Edge Impulse, uTensor, PyTorch Mobile, and Arm's CMSIS-NN library that aid 

in deploying and optimizing machine learning models for TinyML applications. 

 

2.1.1.1 Edge AI and TinyML Integration 

Edge AI refers to the paradigm of bringing artificial intelligence capabilities 

directly to edge devices, where data is generated, rather than relying on centralized cloud 

servers. TinyML plays a crucial role in enabling Edge AI by making it possible to run 

lightweight machine learning models on devices with limited computational resources. 

Existing studies [5] have explored different methodologies to integrate TinyML into 

mobile devices, including model quantization, network architecture pruning, and weight 

clustering, to ensure efficient model execution and minimal memory footprint. 

Additionally, custom hardware accelerators, such as Tensor Processing Units (TPUs) and 

Neural Processing Units (NPUs), have been investigated to further enhance inference 

speed on edge devices. 

 

2.1.1.2 Challenges and Opportunities in TinyML Deployment  

While TinyML brings promising opportunities for on-device AI, it also presents 

several challenges that researchers have been actively addressing [6]. One of the key 

challenges is striking a balance between model size, accuracy, and resource utilization. 

TinyML models must be compact enough to fit on resource-constrained devices while 

maintaining sufficient accuracy for real-world applications. Achieving this balance often 
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requires trade-offs in model complexity and the selection of appropriate model 

architectures. Moreover, handling the heterogeneity of edge devices and optimizing 

TinyML models for various hardware configurations pose additional challenges. 

On the other hand, TinyML presents numerous opportunities for diverse 

applications, ranging from real-time image and speech recognition to predictive 

maintenance and environmental monitoring. By enabling local inference and data 

processing, TinyML reduces the latency and privacy concerns associated with cloud-

based AI services.  

 

2.1.1.3 Real-time Inference on Resource-constrained Devices 

Real-time inference on resource-constrained devices is a critical requirement for 

many edge applications. Achieving low-latency inference while adhering to the 

limitations of memory, power, and computational resources poses a significant research 

challenge [7]. Studies have investigated techniques like model quantization, which 

reduces the precision of model parameters to 8-bit or even lower, resulting in faster 

computations. Additionally, advancements in hardware architectures, like Mobile AI 

accelerators and custom neural processing units, have been explored to enable efficient 

real-time inference. Researchers have also worked on developing efficient algorithms and 

optimizations that leverage the sparsity and redundancy present in neural network models 

to accelerate inference without compromising accuracy. 

 

2.1.2 State-of-the-Art TinyML Models for Image Classification 

TinyML research has witnessed significant advancements in developing state-of-

the-art models for image classification on resource-constrained devices. Here, we explore 
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two prominent TinyML models that have shown exceptional performance in image 

classification tasks: 

 

2.1.2.1 EfficientNet-Lite for Mobile Devices 

In May 2019, Google introduced a groundbreaking series of image classification 

models known as EfficientNet, which achieved unparalleled accuracy while using 

significantly fewer computations and parameters. EfficientNet-Lite is an efficient variant 

of the EfficientNet family, specifically designed for deployment on mobile devices [8]. 

This innovation had the potential to revolutionize applications on mobile and IoT devices 

where computational resources were limited. EfficientNet-Lite is specifically designed to 

run on TensorFlow Lite, catering to performance on mobile CPUs, GPUs, and EdgeTPUs. 

The EfficientNet-Lite series comprises five variants, offering options ranging from low 

latency and small model size (EfficientNet-Lite0) to high accuracy (EfficientNet-Lite4) 

presented in Figure 1. 

 

 

Figure 1: Model Size vs Accuracy of Different Pretrained Machine Learning Models 
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Even the largest variant, integer-only quantized EfficientNet-Lite4, achieves an 

impressive 80.4% ImageNet top-1 accuracy while maintaining real-time performance, 

running in just 30 milliseconds per image on a Pixel 4 CPU as shown in Figure 2. 

 

 

Figure 2: Latency vs Accuracy of Different Pretrained Machine Learning Models 

 

EfficientNet-Lite addresses key challenges inherent in edge devices, notably 

quantization and heterogeneous hardware. Given the limited floating-point support on 

many edge devices, quantization is a commonly employed technique, but it often requires 

complex quantization-aware training or results in diminished accuracy post-training. 

Google's solution to this challenge involves utilizing the TensorFlow Lite post-training 

quantization workflow, ensuring minimal accuracy loss while quantizing the model. 

Another hurdle, heterogeneous hardware, poses difficulties in running the same model on 

a variety of accelerators, such as mobile GPUs and EdgeTPUs, due to hardware 

specialization. To tackle this, Google adapted the original EfficientNets by removing 

certain elements, switching activations, and optimizing the model's architecture to better 

align with the capabilities of different accelerators. 
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The TensorFlow Model Optimization Toolkit played a pivotal role in enabling 

efficient post-training quantization, leading to a 4x reduction in model size and 2x 

enhancement in inference speed. One notable challenge encountered was the initial 

accuracy drop during post-training quantization. Google's team identified that this was 

linked to a wide quantized output range, prompting the replacement of swish activations 

with "restricted-ranged" activations (RELU6). This adjustment significantly improved 

accuracy, mitigating the accuracy loss incurred during quantization. Overall, the 

EfficientNet-Lite models extend the prowess of EfficientNet to edge devices, ushering in 

a new era of efficient and accurate image classification in resource-constrained 

environments. 

 

2.1.2.2 MobileNetV3: Squeeze-and-Excitation Networks for Mobile Vision 

MobileNetV3 is an evolution of the MobileNet family, incorporating novel 

architectural elements to improve accuracy and efficiency for mobile vision tasks [8, 9]. 

The model introduces Squeeze-and-Excitation (SE) blocks, which capture channel-wise 

dependencies and recalibrate feature maps adaptively. This allows MobileNetV3 to 

achieve higher accuracy with fewer parameters, making it well-suited for deployment on 

edge devices with limited resources.  

MobileNetV3 encompasses a range of innovative approaches, encompassing 

hardware-aware network architecture search (NAS), coupled with the inventive NetAdapt 

algorithm, to optimize network architecture based on specific mobile devices. It also 

devises enhanced versions of nonlinearities, such as ReLU and Swish, to maximize 

efficiency in mobile contexts. Its novel network design surpasses previous iterations of 

MobileNet models in terms of efficiency and demonstrates capacity for 8-bit quantization 
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with minimal accuracy loss.. Furthermore, MobileNetV3 introduced an advanced 

segmentation decoder, more efficient than its predecessors. And it the authors validate 

their techniques across diverse mobile tasks including image classification, object 

detection, and semantic segmentation, consistently demonstrating superior performance 

compared to existing methods. For instance, their MobileNetV3-Large model achieves a 

notable 77.1% accuracy on the ImageNet classification task, outperforming the prior 

state-of-the-art (MnasNet) by 0.8%, while also boasting significantly faster execution, 

clocking at 300 FPS on a Pixel 4 phone (20% faster than MnasNet). The study's 

innovative contributions significantly enhance both accuracy and efficiency in neural 

networks tailored for mobile applications, representing a significant advancement in 

mobile computer vision. In addition, MobileNetV3-Small attained 75.2% ImageNet 

accuracy (2.4% surpassing MobileNetV2), and achieving a 700 FPS on a Pixel 4 phone 

(50% faster than MobileNetV2). 

 

2.2 Federated Learning on Mobile Phones 

Federated learning is a decentralized machine learning approach that enables 

training models on mobile devices without sharing raw data with a central server. This 

section explores various aspects of federated learning on mobile phones. 

 

2.2.1 Federated Learning Architecture and Workflow 

Federated learning involves a unique architecture and workflow that distinguishes 

it from traditional centralized machine learning. The federated averaging algorithm and 

gradient descent are fundamental components of federated learning [10]. Federated 

averaging allows mobile devices (clients) to compute model updates locally and share 
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them securely with a central server. The server aggregates these updates to create a global 

model, which is then sent back to the clients for further iterations. Understanding the 

federated learning workflow is crucial for deploying pest image classification models on 

mobile devices. 

Federated learning is a methodology that entails training statistical models on 

remote devices or isolated data centers, such as mobile phones or hospital servers, while 

ensuring that the data remains localized [11]. This approach presents new and distinctive 

challenges due to the heterogeneous and potentially extensive nature of the networks 

involved. As a result, it necessitates a departure from conventional techniques used in 

large-scale machine learning, distributed optimization, and privacy-preserving data 

analysis. In this context, we delve into the distinctive features and difficulties associated 

with federated learning, providing an extensive overview of current approaches while 

also outlining various avenues for future research that hold relevance for diverse research 

communities. 

In the context of data distribution, "i.i.d." stands for "independent and identically 

distributed" [12]. In traditional machine learning settings, it is commonly assumed that 

data samples are independent of each other and are drawn from the same underlying 

distribution, making them identically distributed. 

However, in certain scenarios, such as federated learning or distributed 

environments, the data collected from different sources may not satisfy the i.i.d. 

assumption. This means that the data samples are not independent and may come from 

different distributions. In such cases, the data generated on each device or participant in 

the network may vary significantly, leading to statistical heterogeneity. 
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Dealing with non-i.i.d. data poses challenges in algorithm design and 

optimization, as conventional machine learning algorithms often rely on the i.i.d. 

assumption. Federated learning, which involves training models on decentralized devices 

with data that is non-i.i.d., requires specialized techniques to handle the inherent 

complexities arising from the distribution differences among the devices. These 

techniques aim to ensure convergence to a global model while accounting for the varying 

data distributions across the network. 

 

2.2.1.1 Federated Averaging and Gradient Descent 

Federated averaging and gradient descent are key optimization techniques in 

federated learning [10]. Federated averaging aims to balance model updates from 

different clients to create a consensus model. Gradient descent, on the other hand, 

facilitates model updates by iteratively minimizing the loss function based on the local 

data of each client. Researchers have explored various improvements to federated 

averaging and gradient descent algorithms, such as adaptive learning rates and weight 

clipping, to enhance the convergence speed and robustness of federated learning on 

mobile phones. 

 

2.2.1.2 Client-Server Communication in Federated Learning 

Efficient communication between clients and the central server is crucial in 

federated learning. However, mobile devices often operate in unreliable and bandwidth-

constrained networks [13]. Research has focused on developing communication-efficient 

protocols for federated learning, minimizing the transmission overhead while ensuring 

data privacy. Techniques such as quantization and compression of model updates, as well 
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as differential privacy mechanisms, have been explored to facilitate seamless client-

server communication. 

 

2.2.1.3 Federated Learning in Unreliable Mobile Networks 

Mobile devices can experience intermittent connectivity, making federated 

learning challenging in such scenarios. Researchers have proposed techniques to handle 

communication failures and latency issues in federated learning on mobile phones. For 

example, clients can store and buffer model updates during network disruptions, and the 

server can employ advanced synchronization methods to accommodate varying client 

participation rates. 

 

2.2.2 Privacy and Security in Federated Learning 

Preserving user privacy is a critical aspect of federated learning, especially when 

dealing with sensitive data on mobile devices. This subtopic explores various privacy and 

security mechanisms used in federated learning [14]: 

 

2.2.2.1 Differential Privacy for Privacy Preservation 

Differential privacy is a privacy-preserving technique that adds random noise to 

the model updates to prevent the identification of individual data samples. Implementing 

differential privacy in federated learning ensures that the contributions of individual 

clients remain confidential, safeguarding user data while maintaining model accuracy. 

 

2.2.2.2 Secure Aggregation Protocols 

Secure aggregation protocols are employed to protect model updates during 

aggregation at the central server. These protocols use cryptographic techniques, such as 
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homomorphic encryption and secure multi-party computation, to perform aggregation 

without revealing sensitive client information. 

 

2.2.2.3 Threats and Mitigation Strategies in Federated Learning 

Federated learning faces security threats, such as model poisoning attacks and 

data leakage. Researchers have explored mitigation strategies to counter these threats, 

including robust aggregation methods, model verification, and federated learning-specific 

adversarial training. 

 

2.2.3 Federated Learning Applications in Image Classification 

Federated learning has demonstrated its effectiveness across multiple fields, with 

image classification being no exception. Federated transfer learning facilitates the 

exchange of insights among clients while upholding data privacy standards. Recent 

studies [15] have explored federated transfer learning techniques in the realm of image 

classification, allowing models to harness knowledge from a diverse array of mobile 

devices. When considering the accuracy of the proposed solution in the context of the 

MNIST dataset [16], it's noteworthy that even when members consent to sharing only 

10% or 1% of their trained parameters at a time, the model achieves impressive accuracies 

of 99.14% and 98.71%, respectively. These are aligned with the performance of the 

centralized model, which attains an accuracy of 99.17% when trained on the entire dataset 

on a central server.  
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2.3 Convolutional Neural Networks 

Convolutional Neural Networks or CNNs constitute the fundamental architecture 

in our research. While various CNN variations exist, the algorithms and derivations 

across these variations are remarkably similar [17].  

 

2.3.1 Convolutional Neural Networks Architecture 

A typical CNN is composed of multiple layers, falling into three main types: 

Convolutional Layers, Max-Pooling Layers, and Fully-Connected Layers as shown in 

Figure 3. Convolutional layers consist of a rectangular grid of neurons that take inputs 

from a corresponding rectangular section of the previous layer using shared weights. 

Max-pooling layers subsample small rectangular blocks from the preceding convolutional 

layer, taking the maximum value within each block. Finally, fully-connected layers 

facilitate high-level reasoning in the CNN, connecting all neurons from the previous 

layer, regardless of their spatial arrangement. After several convolutional and max-

pooling layers, fully connected layers provide the core reasoning before any subsequent 

convolutional layers. 

 

 

 

Figure 3: Convolutional Neural Network Components 
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2.3.2 Math Behind Convolutional Neural Networks 

A typical CNN comprises several layers, falling into three distinct types: 

Convolutional Layers, Max-Pooling Layers, and Fully-Connected Layers. Convolutional 

layers consist of a rectangular grid of neurons, necessitating the previous layer to possess 

a similar rectangular grid structure. Each neuron within the convolutional layer receives 

inputs from a corresponding rectangular section of the previous layer, and the weights for 

this section remain uniform across all neurons in the convolutional layer. Consequently, 

the convolutional layer performs an image convolution operation on the previous layer, 

with the weights specifying the convolution filter. Furthermore, multiple grids may exist 

within each convolutional layer, with each grid receiving inputs from all grids in the 

preceding layer, potentially employing different filters. 

Following each convolutional layer, a pooling layer may be introduced, wherein 

small rectangular blocks are extracted from the convolutional layer, and subsampling 

produces a single output value for each block [18, 19]. Finally, after multiple 

convolutional and max-pooling layers, the neural network's high-level reasoning occurs 

through fully connected layers. These layers connect all neurons from the previous layer, 

whether they originate from fully connected, pooling, or convolutional layers, and they 

no longer possess spatial arrangements (visualized as one-dimensional). As a result, no 

convolutional layers can follow a fully connected layer. 

With the neural network's structure described, we proceed to analyze forward and 

backward propagation techniques to perform prediction and gradient computations in 

these neural networks. 

Forward propagation involves three types of layers as specified earlier. The 

propagation process differs depending on the layer under consideration. For the purpose 
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of this discussion, we shall focus on the convolutional layers and the max-pooling layers, 

leaving aside the fully connected networks. 

In Convolutional Layers, consider a square neuron layer of size 𝑁 × 𝑁 followed 

by the convolutional layer. When utilizing an 𝑚 × 𝑚 filter ω, the output of the 

convolutional layer will be of dimensions (𝑁 − 𝑚 + 1) × (𝑁 − 𝑚 + 1). To compute the 

pre-nonlinearity input for a particular unit 𝑥𝑖𝑗
ℓ  in our layer, we sum up the contributions 

from the previous layer cells, with each contribution weighted by the corresponding filter 

components as shown in equation 1. 

𝑥𝑖𝑗
ℓ = ∑  

𝑚−1

𝑎=0

∑  

𝑚−1

𝑏=0

𝜔𝑎𝑏𝑦(𝑖+𝑎)(𝑗+𝑏)
ℓ−1                                                                                                   (1) 

Then, the convolutional layer applies its nonlinearity presented in equation 2: 

𝑦𝑖𝑗
ℓ = 𝜎(𝑥𝑖𝑗

ℓ )                                                                                                                                   (2) 

Max-Pooling Layers are straightforward and do not involve learning. They take a 

𝑘 × 𝑘 region and produce a single output, which represents the maximum value within 

that region. If the input layer is 𝑁 × 𝑁, the max-pooling layer's output will be 
𝑁

𝑘
 × 

𝑁

𝑘
, as 

each 𝑘 × 𝑘 block is condensed into a single value using the max function. Backward 

Propagation involves deriving algorithms for the two layer types, the Convolutional 

Layers and the Max-Pooling Layers. For the Convolutional Layers, assume that we have 

an error function 𝐸 and we know the error values at our convolutional layer, the objective 

is to determine the error values at the layer before it and the gradient for each weight in 

the convolutional layer. 

To compute the error values for the previous layer, we need to find the partial 

derivative of E with respect to each neuron output (
∂𝐸

∂𝑦𝑖𝑗
ℓ ). Employing the chain rule, we 
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calculate the gradient component using equation 3 for each weight by summing the 

contributions from all expressions in which the variable occurs. 

∂𝐸

∂𝜔𝑎𝑏
= ∑  

𝑁−𝑚

𝑖=0

∑  

𝑁−𝑚

𝑗=0

∂𝐸

∂𝑥𝑖𝑗
ℓ

∂𝑥𝑖𝑗
ℓ

∂𝜔𝑎𝑏
= ∑  

𝑁−𝑚

𝑖=0

∑  

𝑁−𝑚

𝑗=0

∂𝐸

∂𝑥𝑖𝑗
ℓ

𝑦(𝑖+𝑎)(𝑗+𝑏)
ℓ−1                                                (3) 

To calculate the gradient and propagate errors in the convolutional layer, we sum 

over all occurrences of 𝑥𝑖𝑗
ℓ  in which 𝜔𝑎𝑏 is present, representing weight-sharing in the 

neural network. The relationship is deduced from the forward propagation equations 4 

and 5. 

∂𝑥𝑖𝑗
ℓ

∂𝜔𝑎𝑏
= 𝑦(𝑖+𝑎)(𝑗+𝑏)

ℓ−1                                                                                                                        (4) 

The computation of deltas (
∂𝐸

∂𝑥𝑖𝑗
ℓ ), often referred to as "deltas", is straightforward 

using the chain rule. Specifically,  

∂𝐸

∂𝑥𝑖𝑗
ℓ

=
∂𝐸

∂𝑦𝑖𝑗
ℓ

∂𝑦𝑖𝑗
ℓ

∂𝑥𝑖𝑗
ℓ

=
∂𝐸

∂𝑦𝑖𝑗
ℓ

∂

∂𝑥𝑖𝑗
ℓ

(𝜎(𝑥𝑖𝑗
ℓ )) =

∂𝐸

∂𝑦𝑖𝑗
ℓ

𝜎′(𝑥𝑖𝑗
ℓ )                                                        (5) 

By leveraging the known error at the current layer (
∂𝐸

∂𝑦𝑖𝑗
ℓ ), we easily calculate the 

deltas (
∂𝐸

∂𝑥𝑖𝑗
ℓ ) at the current layer using the derivative of the activation function, 𝜎′(𝑥). 

Having obtained the errors at the current layer, we possess the necessary components to 

compute the gradient concerning the weights used in this convolutional layer. 

Furthermore, to compute the weights for this convolutional layer, we need to 

propagate errors back to the previous layer. By using the chain rule once more, we derive 

∂𝐸

∂𝑦𝑖𝑗
ℓ−1 as a sum over a range of a and b as presented in equation 6. 

∂𝐸

∂𝑦𝑖𝑗
ℓ−1

= ∑  

𝑚−1

𝑎=0

∑  

𝑚−1

𝑏=0

∂𝐸

∂𝑥(𝑖−𝑎)(𝑗−𝑏)
ℓ

∂𝑥(𝑖−𝑎)(𝑗−𝑏)
ℓ

∂𝑦𝑖𝑗
ℓ−1

= ∑  

𝑚−1

𝑎=0

∑  

𝑚−1

𝑏=0

∂𝐸

∂𝑥(𝑖−𝑎)(𝑗−𝑏)
ℓ

𝜔𝑎𝑏                    (6) 
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The relationship 
∂𝑥(𝑖−𝑎)(𝑗−𝑏)

ℓ

∂𝑦𝑖𝑗
ℓ−1 =𝜔𝑎𝑏 is evident from the forward propagation 

equations. 

This error propagation process resembles a convolution, with the filter ω applied 

to the layer but with 𝑥(𝑖−𝑎)(𝑗−𝑏) instead of 𝑥(𝑖+𝑎)(𝑗+𝑏). To ensure this process is well-

defined for points at least m units away from the top and left edges, padding the top and 

left edges with zeros is necessary. Once implemented, this effectively performs a 

convolution using the ω filter flipped along both axes. 

On the other side, the Max-Pooling Layers do not engage in learning themselves. 

Instead, they reduce the problem's size by introducing sparseness. During forward 

propagation, 𝑘 × 𝑘 blocks are condensed into a single value. This resulting value obtains 

an error from backward propagation through the previous layer and is then sent back to 

its origin. Since the error only originates from one location within the 𝑘 × 𝑘 block, 

backpropagated errors from max-pooling layers are notably sparse. 

In conclusion, CNN offers a distinct approach to processing dimensioned and 

ordered data. Unlike fully connected layers, they enforce weight sharing translationally, 

acknowledging the relevance of data location in the input. This architectural modeling of 

the human visual cortex proves highly effective for tasks such as object recognition and 

image classification. 

 

2.4 Image Classification of Pests 

Image classification of pests using deep learning has emerged as a promising 

approach for automated pest detection and crop protection. This section explores various 

aspects of pest image classification: 
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2.4.1 Pest Identification and Crop Protection using Image Recognition 

Automated pest detection through image recognition holds great potential for 

enhancing crop protection and increasing agricultural productivity. This subtopic focuses 

on the applications and benefits of using image recognition to identify pests in agricultural 

fields [20]. 

 

2.4.1.1 Challenges in Pest Detection 

Pest detection poses several challenges, such as variations in pest appearance 

based on life stages, and diverse environmental conditions. Additionally, the presence of 

similar-looking pests and natural variations in plant features can lead to false positives or 

negatives in pest identification. Researchers have addressed these challenges by 

developing robust image processing techniques and leveraging advanced machine 

learning algorithms to improve the accuracy and reliability of pest detection systems. 

 

2.4.1.2 Plant Pest Recognition Datasets and Benchmarks 

The availability of high-quality datasets and benchmarks is crucial for training 

and evaluating pest recognition models [21]. Researchers have curated and shared 

datasets containing labeled images of various plant pests and diseases. These datasets 

serve as the foundation for developing and benchmarking state-of-the-art pest 

classification models.  

 

2.4.1.3 State-of-the-Art Pest Classification Techniques 

Advancements in deep learning techniques have led to state-of-the-art pest 

classification models [22]. Researchers have explored different neural network 

architectures, such as CNNs, to achieve high accuracy in pest identification. Additionally, 
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feature engineering and image augmentation techniques have been utilized to enhance 

model performance. State-of-the-art pest classification models have demonstrated 

significant improvements over traditional image recognition methods. 

 

2.4.2 Deep Learning Approaches for Pest Image Classification 

Deep learning approaches have shown remarkable success in pest image 

classification tasks. This subtopic focuses on various deep learning methodologies 

applied to pest recognition: 

 

2.4.2.1 CNN Architectures for Pest Recognition 

CNNs have emerged as the backbone of many pest recognition models due to their 

ability to automatically learn hierarchical features from images. Researchers have 

experimented with various CNN architectures, such as VGG, ResNet, and DenseNet, to 

identify the most suitable architecture for pest image classification. Transfer learning has 

also been employed, where pre-trained CNNs on large datasets are fine-tuned for specific 

pest identification tasks. 

 

2.4.2.2 Transfer Learning for Pest Image Classification 

Transfer learning allows leveraging knowledge from pre-trained models on large 

datasets to improve pest classification models [23]. Researchers have investigated the 

transferability of features learned from generic image recognition tasks to domain-

specific pest image classification. By fine-tuning pre-trained models, pest classification 

models can achieve better accuracy with limited labeled pest data. 
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2.4.2.3 Multi-scale Feature Learning for Pest Detection 

Pest images can exhibit variations in scale, making it challenging to detect pests 

of different sizes [24]. Researchers have explored multi-scale feature learning 

approaches, such as pyramid pooling and multi-scale CNN architectures, to ensure that 

pest detection models are capable of recognizing pests at various scales. 

 

2.5 TinyML and Federated Learning Integration 

The integration of TinyML and federated learning offers several advantages and 

opens up new possibilities for decentralized machine learning on edge devices. This 

section explores the benefits and related studies of this combination: 

 

2.5.1 Advantages of TinyML and Federated Learning Combination 

2.5.1.1 Edge Computing and Local Inference with TinyML 

The combination of TinyML and federated learning enables edge computing and 

local model inference on mobile devices [25]. TinyML models are lightweight and 

optimized for on-device execution, allowing real-time inference without relying on 

continuous cloud connectivity. Federated learning enhances this process by facilitating 

model training using the data stored locally on the device, eliminating the necessity to 

transmit raw data (images) to the cloud for central model updates. Instead, the model 

weights are shared, leading to updates in the central model. This edge computing 

paradigm reduces latency, conserves network bandwidth, and increases the central model 

accuracy and generalization. 

 



 

 33 

2.5.1.2 Federated Learning for Decentralized Pest Data Analysis 

In the context of pest image classification, federated learning allows for 

decentralized pest data analysis. Individual mobile devices (e.g., smartphones or IoT 

devices) can locally collect pest images specific to their geographical locations. These 

locally collected data can be effectively harnessed in a collaborative manner to 

continuously train the global pest image classification model using federated learning. In 

this approach, instead of centralizing all the data in one location, each device retains its 

data locally. Then, federated learning algorithms facilitate the sharing of model updates 

(weights) rather than raw data. These updates, derived from the locally collected data, are 

aggregated and used to refine the global model iteratively. This process ensures that the 

model benefits from insights across various geographical and that the pest data from 

different regions contribute to the central model training. 

 

2.5.2 Related Studies on TinyML-Federated Learning in Different Domains 

2.5.2.1 Empowering Farmers with AI: Federated Learning of CNNs for Wheat Diseases 

Multi-Classification [26] 

In the domain of wheat disease detection and classification, this research 

contributes to the growing body of knowledge on leveraging collaborative learning CNNs 

and federated learning techniques. By addressing the challenges of decentralization, this 

study presents a novel approach to improve the precision and resilience of disease 

categorization models for wheat disease detection. Previous works have explored the 

importance of accurate wheat disease identification due to its significance as a staple food 

globally. In this particular research, the authors have introduced an approach that covers 

various critical stages in the development and implementation of a collaborative learning 

CNN model. This methodology not only outlines the process of gathering relevant data 
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but also emphasizes the importance of preparing and refining the data through pre-

processing techniques. Moreover, it highlights the significance of partitioning the data to 

create distinct sets for both training and testing the CNN model, ensuring its robustness 

and accuracy. What sets this research apart is its integration of federated averaging, a 

technique used to facilitate the distribution of data among different participants within 

the federated learning framework. This process allows for the collective utilization of data 

from various sources while preserving individual data privacy. The results demonstrate 

the effectiveness of the proposed approach, as the federated learning CNN model 

achieved high accuracy (0.948), precision, recall, and F1 scores (weighted-average F1: 

0.946, macro-average F1: 0.944, micro-average F1: 0.946), outperforming state-of-the-

art models. These findings hold potential implications for the agricultural sector, offering 

a promising solution to reduce harvest losses and boost crop outputs through precise and 

efficient disease identification, while maintaining data security and privacy. Moreover, 

the approach's adaptability to other domains facing data exchange constraints highlights 

its broader applicability in decentralized environments. 

 

2.5.2.2 Evaluating the Potential of Federated Learning for Maize Leaf Disease 

Prediction [27] 

The rapid evolution of technologies, coupled with the increasingly sophisticated 

demands of users, has led to an unprecedented surge in data. This vast amount of data 

contains valuable strategic information and knowledge, necessitating the use of 

sophisticated computational methods for extraction. In the context of maize crops, certain 

leaf diseases can significantly impact production and reduce quality and productivity. To 

address this limitation, CNNs offer intelligent applications to support crop disease 

diagnosis. In traditional machine learning, the dataset is typically required to be locally 
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available for model training. This approach entails clients training the model locally with 

their data, ensuring privacy, and transmitting only the parameter weights of the trained 

model to a central server. However, Federated Learning presents an alternative, dynamic 

approach that accommodates heterogeneous client hardware capacity, making it suitable 

for decentralized training scenarios. 

The experimental results validate the performance of each CNN trained with the 

Federated Learning paradigm. AlexNet demonstrated the shortest training time among 

the CNN models evaluated. Among them, VGG-11 followed by AlexNet achieved the 

highest accuracy, with 97.29% and 96.87% accuracy, respectively. However, VGG-11's 

training process required more time, making it less suitable for Federated Learning 

scenarios where training time is crucial. A weak negative correlation between accuracy 

and training time, except for VGG-11, was observed, indicating that distributed training 

approaches yield efficient models. Additionally, confusion matrices were analyzed to 

identify challenging classes in the training and generalization process of the models. The 

evaluation of network traffic used in the Federated Learning training process revealed 

that SqueezeNet exhibited lower network traffic volume despite its classification 

performance, owing to its trainable CNN parameters. 

In conclusion, the study highlights the potential of Federated Learning to address 

data privacy concerns in the context of maize leaf disease classification using CNNs. 

AlexNet emerges as a suitable model for Federated Learning due to its structure, training 

time, and accuracy. The weak negative correlation between accuracy and training time 

suggests that distributed training approaches are efficient. Moreover, the number of CNN 

parameters significantly impacts the data exchanged during the Federated Learning 
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training process. The results indicate that Federated Learning holds promise for 

enhancing data privacy in heterogeneous domains.  

 

2.5.2.3 Image-based crop disease detection with federated learning [28] 

The field of crop disease detection and management can significantly benefit from 

data science, offering decision tools to enhance productivity, reduce costs, and support 

environmentally friendly crop treatment methods [29, 30]. Precision agriculture aims to 

optimize crop yields while ensuring quality and environmental preservation, including 

reducing pesticide impact. Modern technologies, such as artificial intelligence, big data, 

image processing, and machine learning algorithms, have led to the development of 

systems for automatic crop disease detection and management. Deep neural networks, 

including CNNs, recurrent neural networks (RNNs), and Vision Transformers (ViTs) 

with attention mechanisms, have demonstrated outstanding performance in crop anomaly 

detection [31, 32, 33], providing promising opportunities for early detection and 

diagnosis of crop abnormalities [34]. The objective of this study is to highlight the 

strengths of federated learning in crop disease classification concerning user data security 

and confidentiality of sensitive information. 

The study adopts a federated learning framework, where multiple clients 

contribute to training a robust global model that is shared while keeping data 

decentralized [35]. It involves multi-stage process that encompasses several key phases 

crucial for the successful implementation of the collaborative learning framework. The 

initial phase involves the setup and configuration of the learning process, including the 

establishment of communication channels and the initialization of the participating 

devices. Subsequently, the process proceeds to the parameter transfer phase, where the 
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local model parameters are shared and updated among the participating devices. The next 

critical step is model aggregation, in which the combined knowledge from multiple 

devices is integrated to create an improved global model. Following this, the updated 

global model is transferred back to the local devices, ensuring that the collective insights 

are shared and disseminated for further enhancement. Finally, the local evaluation phase 

involves the assessment and validation of the updated model's performance on each 

individual device, allowing for the refinement and optimization of the learning process. 

These interconnected phases collectively form the foundation of the Federated Learning 

approach, enabling the collaborative development and enhancement of machine learning 

models across decentralized and privacy-sensitive environments. 

After applying data augmentation techniques to enhance images, the proposed 

models achieve 92.24% and 91.28% accuracy for rice disease detection and classification, 

respectively. When testing on various plant leaf datasets, the proposed model outperforms 

pre-trained models like VGG-16, VGG-19, InceptionV3, ResNet50, and DenseNet201, 

achieving higher accuracy of 99.39%, 99.66%, and 76.59% for maize, potato and tomato, 

cassava leaves, and rice datasets, respectively, with reduced parameter numbers. The 

DenseNet121, VGG16, and MobileNetV2 models show improving performance with 

increasing rounds, while ViT B16 and ViT B32 also demonstrate enhanced performance 

with more rounds, though requiring longer computational time. InceptionV3 performs 

comparatively worse but peaks on the Grape dataset. 

In conclusion, using machine learning technologies, particularly CNNs and 

Vision Transformers, for crop disease classification is a developing field. The 

performance of Federated Learning trained models is influenced by the number of clients. 

The performance of Federated Learning trained models is notably impacted by the 
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number of participating clients within the network. As the number of clients increases, 

the complexity of the collaborative learning process intensifies, posing challenges such 

as communication overhead, increased model aggregation time, and potential issues 

related to data heterogeneity. With a larger number of clients, the aggregation of diverse 

and distributed data becomes more sophisticated, potentially leading to difficulties in 

achieving model convergence and performance consistency across the network. 

Moreover, an elevated client count can introduce variability in terms of data distribution 

and characteristics, potentially affecting the overall model's generalization capability and 

predictive accuracy. Consequently, maintaining a balance between the number of 

participating clients and the efficient coordination of model aggregation and updates 

becomes crucial for achieving optimal performance and scalability in Federated Learning 

setups. Furthermore, ResNet50 and MobileNetV2 have demonstrated greater robustness 

and suitability for Federated Learning scenarios. The number of communication rounds 

impacts the performance of deep architectures, and ResNet50 strikes a good balance 

between performance, computational cost, and complexity. While ViT B16 and ViT B32 

offer better performance than some CNNs, they require more computational time, making 

them less suitable for Federated Learning scenarios. The performance of deep models 

varies with each dataset, depending on the data quality and the number of classes in each 

dataset. 

 

2.5.2.4 Multiple Diseases and Pests Detection Based on Federated Learning and 

Improved Faster R-CNN [36] 

In this context, Federated Learning is proposed as an efficient approach for 

improving model convergence speed and communication efficiency in orchard-related 

image data with no privacy protection requirements. This article presents an improved 



 

 39 

Faster R-CNN model for detecting orchard diseases and pests based on Federated 

Learning. The application scenario involves multiple orchard farms collaborating with an 

AI company to develop a model capable of detecting various pests and diseases. 

However, the orchards have unbalanced and insufficient data for different pest categories, 

and Federated Learning is utilized to address this issue. The optimized FedAvg algorithm 

accelerates model training and enhances communication efficiency. 

The Federated Learning algorithm offers the advantage of avoiding the uploading 

of large amounts of data, as frequent communication and unstable networks can 

significantly impact communication efficiency. Each participant uploads model 

parameters to the federated server for aggregation. The global model parameters for each 

round are obtained using a formula involving the total amount of data for all local devices 

and the data amount for each local device [N and nk respectively]. 

The proposed improvement to FedAvg involves adding a restriction term to 

ensure local models do not deviate too much from the global model, promoting 

convergence. A fixed training period with global updates helps in selecting optimal 

parameters for convergence speed and communication cost. The Federated Learning 

process involves distributing model parameters, local training, uploading model 

parameters, and aggregation and update of the federated server model. 

To enhance the accuracy and efficiency of orchard pest and disease detection, the 

article improves the network architecture of the original algorithm model and combines 

it with a sample expansion method. The sample expansion method plays a crucial role in 

augmenting the dataset by generating supplementary image samples. This technique 

involves the application of various image manipulation methods to diversify the existing 

data. Brightening involves adjusting the pixel values to enhance the overall brightness of 
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the image, thereby expanding the spectrum of lighting conditions represented in the 

dataset. Noise addition introduces controlled variations in pixel values, simulating real-

world imperfections and enhancing the model's robustness against noise. Mirroring or 

flipping horizontally and vertically aids in creating mirrored versions of the original 

images, contributing to a more comprehensive representation of diverse orientations and 

perspectives. Scaling allows for the transformation of the image size, enabling the model 

to learn from images with varying scales and dimensions. Lastly, random rotation 

involves rotating the image at random angles, promoting the model's ability to recognize 

objects from multiple viewpoints and angles. Collectively, these techniques aim to enrich 

the dataset, improve model generalization, and enhance the model's capacity to 

effectively handle diverse real-world scenarios. Moreover, the improved model 

incorporates a multi-pest detection model based on the Faster R-CNN framework. Instead 

of using VGG-16, the ResNet-101 structure is employed in the basic network for better 

detection accuracy, particularly for small target diseases. 

Online Hard Example Mining (OHEM) is used to improve the accuracy of target 

detection based on deep convolution neural networks. It focuses on handling difficulty 

cases that may lead to inaccurate predictions by the network. By adjusting the threshold 

of negative samples and the proportion of positive and negative samples, the network can 

better adapt to training. 

Soft Non-Maximum Suppression (Soft NM) is used to address the problem of 

partial occlusion of targets in the region proposal network (RPN). It ensures that 

important features are not overlooked due to the large field of perception in deep 

convolution feature maps. 
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The data processing phase involves sample expansion and dataset segmentation. 

The sample expansion method is employed to improve the generalization ability of the 

pest and disease detection model. The expanded dataset is divided into training, 

verification, and test sets. 

The experiments were conducted using the deep learning open-source frameworks 

TensorFlow and Keras in the Python language. The improved Faster R-CNN model 

achieved an average accuracy of 90.27% on multiple pest detection, with a detection time 

of only 0.05 seconds per image. After employing federated learning, the model's mean 

average precision (mAP) reached 89.34%, and the training speed was improved by 59%. 

In conclusion, the article proposes an improved Faster R-CNN method for 

detecting multiple pests in orchards based on Federated Learning. The incorporation of 

multiscale feature map fusion and OHEM enhances detection accuracy for different pest 

sizes. The application of ResNet-101 in the basic network further improves the accuracy 

of detecting subtle disease points, and the results demonstrate the effectiveness of the 

proposed method in improving pest and disease detection in orchards. 

 

2.5.2.5 Convolutional Neural Network Applied to Plant Leaf Disease Classification [37] 

This literature review explores the application of Deep Learning (DL) methods, 

specifically CNNs, in plant disease classification. Previous studies have used CNNs to 

classify plant diseases based on features like texture, type, and color of plant leaf images. 

This article covers the main works of the study, which include reviewing CNN networks 

for plant leaf disease classification, summarizing DL principles, discussing problems and 

solutions in CNN-based plant disease classification, and exploring future directions. 
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DL is a branch of machine learning used for image classification, object detection, 

and natural language processing. Popular CNN-based classification models include 

AlexNet, VGGNet, GoogLeNet, ResNet, MobileNet, and EfficientNet. 

Data preparation and preprocessing involve dividing datasets into training, 

validation, and test sets. A suitable DL model architecture is essential for accurate 

classification results, and different hyperparameters are set for training and evaluation. 

The performance of the model is evaluated using metrics like accuracy, precision, recall, 

and F1 score. 

Inference refers to the DL model's capability to apply its learning to new data, and 

deployment involves deploying the trained model for practical use, such as mobile 

applications for plant disease identification. 

The review highlights various problems and solutions in plant disease 

classification. Insufficient datasets with limited size and diversity hinder classification 

accuracy, and solutions like data augmentation and few-shot learning are proposed. 

Nonideal robustness occurs when the model fails to perform well in practical conditions, 

and increasing dataset diversity and model robustness can address this issue. Symptom 

variations due to plant characteristics and environmental factors challenge disease 

recognition, and enriching dataset diversity is suggested. Image background complexity 

may affect classification, and leaf segmentation techniques are proposed to handle this. 
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CHAPTER 3 

OVERVIEW OF TINYML FRAMEWORKS 
 

3.1 TinyML Frameworks  

TinyML frameworks play a crucial role in enabling machine learning models to 

run efficiently on resource-constrained devices. This section provides an overview of 

some popular TinyML frameworks specifically designed for image classification tasks. 

 

3.1.1 TensorFlow Lite 

TensorFlow Lite is a specialized version of the popular machine learning 

framework, TensorFlow, designed specifically to meet the demands of mobile and edge 

devices with limited computational resources [38, 39]. Its primary focus is on enabling 

efficient execution of machine learning models on devices like smartphones, tablets, IoT 

devices, and other edge devices. By catering to these resource-constrained environments, 

TensorFlow Lite allows AI applications to be run directly on the device, eliminating the 

need for constant connectivity to cloud servers. 

One of the key strengths of TensorFlow Lite lies in its support for various neural 

network architectures. It can handle a wide range of model types, including feedforward 

neural networks, CNNs, RNNs, and transformer-based models, making it versatile for 

various use cases. This flexibility allows developers to choose the most suitable 

architecture for their specific application, whether it's image classification, natural 

language processing, object detection, or other tasks. 

To ensure optimal performance on low-power devices, TensorFlow Lite offers 

several tools and techniques for model optimization. Model conversion is an essential 
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step where TensorFlow models are transformed into a format that can be efficiently 

executed on mobile and edge devices. This conversion process often involves 

quantization, which reduces the precision of model weights, thereby reducing memory 

and computational requirements without significantly impacting accuracy. Quantized 

models are especially well-suited for edge devices with limited memory and processing 

capabilities. 

Inference optimization is another critical aspect of TensorFlow Lite. During 

inference, the model processes input data to generate predictions. TensorFlow Lite 

employs a variety of techniques to accelerate inference, such as hardware acceleration 

using specialized co-processors or neural processing units (NPUs) available on some 

devices. These hardware accelerators are designed to speed up matrix computations 

commonly used in neural networks, resulting in faster and more power-efficient 

inferencing. 

TensorFlow Lite's lightweight nature and efficiency make it a popular choice for 

developers working on mobile and edge AI applications. It empowers a wide range of 

real-time, on-device AI tasks, from image recognition and voice processing to 

personalized recommendations and natural language understanding.  

 

3.1.2 TensorFlow Lite Micro 

TensorFlow Lite for Microcontrollers (TFLite Micro) is a specialized version of 

TensorFlow Lite designed specifically for microcontrollers and other devices with very 

limited computational resources [40]. It is designed to be as small and efficient as 

possible, while still providing the flexibility and power of TensorFlow Lite. 
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TFLite Micro supports a wide range of neural network architectures, including 

feedforward neural networks, CNNs, and RNNs. It also supports quantization, which can 

significantly reduce the size and complexity of a model without significantly impacting 

accuracy. 

TFLite Micro is tailored with a range of features optimized for microcontrollers, 

addressing their unique requirements. Notably, it offers a remarkably low memory 

footprint, allowing TFLite Micro models to occupy just a few kilobytes. This attribute is 

particularly advantageous for microcontrollers with severe resource constraints. 

Moreover, the framework emphasizes energy efficiency, ensuring that TFLite Micro 

models are exceptionally power-frugal. This attribute renders them exceptionally well-

suited for devices reliant on battery power. Additionally, TFLite Micro extends support 

for hardware acceleration on select microcontrollers, further boosting overall 

performance.  

The user-friendly nature, efficiency, and comprehensive support of TFLite Micro 

for various neural network architectures establish it as an invaluable asset in the realm of 

edge computing. This tool finds its applicability across diverse domains, including IoT 

devices, as TFLite Micro facilitates the creation of intelligent devices capable of data 

aggregation, predictive insights, and independent decision-making, all without 

necessitating a constant cloud connection.  

 

3.1.3 PyTorch Mobile 

PyTorch Mobile serves as an extension of the PyTorch deep learning library, 

bringing the power of machine learning directly to mobile devices. By enabling the 

deployment of machine learning models without the necessity of continuous cloud 
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connectivity, it effectively addresses the limitations posed by restricted internet access. 

This empowers mobile devices to perform complex computational tasks independently, 

opening a world of possibilities for real-time, on-device machine learning applications 

[41]. Moreover, PyTorch Mobile facilitates the execution of neural networks on devices 

with limited computational resources. By optimizing the inference process, it enhances 

the speed of decision-making and conserves energy, contributing to improved battery life 

and overall device performance. The straightforward conversion of models and the 

support for quantization techniques further simplify the integration of AI functionalities 

into various mobile applications. This seamless integration facilitates the development of 

intelligent features, including accurate image classification, natural language processing, 

and responsive speech recognition, enabling users to interact with their devices in more 

intuitive and efficient ways. Moreover, by prioritizing on-device inference, PyTorch 

Mobile reduces reliance on external cloud services, thereby offering offline use of the 

machine learning models.  

 

3.1.4 Edge Impulse 

Edge Impulse is a platform designed to simplify the process of developing and 

deploying machine learning models on edge devices [42]. As a user-friendly and cloud-

based solution, it enables developers to harness the power of machine learning for their 

edge devices without the need for extensive expertise in AI or data science. 

Edge Impulse has a vast library of pre-trained models. These pre-built models 

cover a wide range of applications, from image and sound classification to anomaly 

detection and predictive maintenance. Additionally, Edge Impulse allows users to train 

custom machine learning models using their own data. This data can be easily uploaded 
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and processed through a web interface, eliminating the need for complex local 

installations or infrastructure. Furthermore, Edge Impulse offers seamless integration 

with various popular development boards and microcontrollers, streamlining the 

deployment process. This integration enables prototyping and real-world testing of 

machine learning models on edge devices, facilitating a smooth transition from 

development to deployment. 

 

3.1.5 uTensor 

uTensor is a specialized open-source deep learning framework tailored explicitly 

for resource-constrained devices, with a primary focus on microcontrollers [43]. The 

framework's main objective is to address the unique challenges posed by these devices, 

such as limited memory and processing capabilities, and to enable the deployment of 

machine learning models on IoT devices and other edge devices with constrained 

resources. 

One of the key strengths of uTensor lies in its ability to optimize memory usage 

and computational efficiency. Microcontrollers often have strict limitations on available 

RAM and flash memory, making it crucial to develop models that are efficient in terms 

of memory footprint. uTensor employs various techniques, such as model quantization 

and compression, to reduce the memory requirements of machine learning models 

without significantly sacrificing accuracy. This optimization process ensures that models 

can be easily deployed and run on microcontrollers with limited resources. 

Moreover, uTensor's focus on computational efficiency ensures that the execution 

of machine learning models on microcontrollers is both fast and energy-efficient. This is 

particularly important for battery-powered IoT devices, where energy consumption must 



 

 48 

be minimized to extend the device's operational life. uTensor opens new possibilities for 

deploying machine learning capabilities in edge devices that were previously considered 

as not suitable for resource-limited devices. For example, uTensor can be utilized in 

sensor nodes to perform data preprocessing and filtering, enabling smarter and more 

localized decision-making at the edge. It can also be applied to applications such as 

gesture recognition, voice detection, and environmental monitoring in resource-

constrained environments. 

 

3.1.6 CMSIS-NN 

CMSIS-NN, which stands for Cortex Microcontroller Software Interface 

Standard - Neural Network kernels, is a specialized collection of neural network kernels 

that have been accurately optimized for ARM Cortex-M processors [44]. This standard 

is developed and maintained by ARM, a semiconductor and software design company, 

with a focus on providing efficient and high-performance solutions for running neural 

networks on microcontrollers. 

The primary objective of CMSIS-NN is to facilitate the deployment of TinyML 

models on ARM-based microcontrollers that typically have limited computational power 

and memory resources. By offering a collection of low-level functions, CMSIS-NN 

allows developers to efficiently implement the building blocks of neural networks on 

ARM Cortex-M processors. These kernels are optimized to take full advantage of the 

specific features and capabilities of these microcontrollers, enabling faster and more 

power-efficient execution of machine learning operations. 

The optimized kernels provided by CMSIS-NN cover essential operations 

commonly found in neural networks, such as convolution, pooling, fully connected 
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layers, and activation functions. These operations are crucial for tasks like image 

recognition, sound processing, and sensor data analysis – all of which can be performed 

on microcontrollers using TinyML techniques. 

The efficiency of CMSIS-NN is of great importance for TinyML applications, as 

it ensures that machine learning models can run in real-time and consume minimal 

resources. This is particularly significant for edge devices in IoT applications or wearable 

devices, where power consumption and processing speed are critical considerations. 

By standardizing these optimized neural network kernels, CMSIS-NN facilitates 

the development of TinyML applications on a wide range of ARM Cortex-M processors 

from various vendors. It provides a consistent and reliable platform for deploying 

machine learning models across different microcontroller architectures, fostering 

interoperability and ease of development for AI-driven embedded systems. 

 

3.2 Comparison of TinyML Frameworks 

The advancements in model compression, hardware acceleration, and specialized 

architectures have shown great potential in making TinyML a practical reality. However, 

addressing the associated challenges and open research questions will be critical to 

unlocking its full potential and ensuring its seamless integration into various industries. 

As the field continues to grow, TinyML has the potential to revolutionize the way we 

interact with edge devices and shape the future of AI at the edge and play a pivotal role 

in enabling efficient machine learning on resource-limited devices. Table  is a concise 

table of comparison of popular TinyML frameworks. 
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Table 1: Comparison of Machine Learning Frameworks for Embedded Devices 

  

 

Federated 

Learning 

Support 

Target Platforms 
Model 

Size 
Latency 

Ease of 

Use 

Community 

Support 
Cost 

TensorFlow 

Lite 
Yes 

Android, iOS, 

Raspberry Pi, 

Arduino, etc. 

Up to 

50 MB 

Up to 100 

ms 

Easy to 

use 

Large 

community 

(over 1 million 

users) 

Free 

TensorFlow 

Lite Micro 

No (Need 

to be built 

from 

scratch) 

Microcontrollers 

with limited 

memory 

Up to 

10 KB 

Up to 5 

ms 

Easy to 

use 

Small 

community 

(around 

10,000 users) 

Free 

PyTorch 

Mobile 

No (Need 

to be built 

from 

scratch) 

Mobile devices 
Up to 

50 MB 

Up to 100 

ms 

More 

difficult 

to use 

Small 

community 

(around 

100,000 users) 

Free 

Edge 

Impulse 
No 

Microcontrollers, 

embedded devices 

Up to 

10 MB 

Up to 100 

ms 

Easy to 

use 

Small 

community 

(around 

10,000 users) 

Free 

for 

basic 

uTensor No 
Cortex-M 

microcontrollers 

Up to 

100 KB 

Up to 10 

ms 

Easy to 

use 

Small 

community 

(around 

10,000 users) 

Free 

CMSIS-NN No 
Cortex-M 

microcontrollers 

Up to 1 

MB 

Up to 20 

ms 

Easy to 

use 

Small 

community 

(around 

10,000 users) 

Free 
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CHAPTER 4 

DATASETS USED AND IMAGES PRE-PROCESSING 
 

In this chapter, we delve into the crucial aspects of the datasets used in our 

machine learning experiments and the preprocessing techniques applied to the images. A 

high-quality dataset is fundamental for training accurate and robust machine learning 

models. Therefore, we carefully selected the PlantVillage dataset [46], a well-established 

and diverse collection of plant images that encompasses healthy plants and various 

diseases affecting different plant species. To this dataset, we appended another dataset 

we gathered through a website we constructed, which contains images of healthy and 

infected cucumber plant images with their infection type and severity. 

To ensure the overall dataset is in the optimal form for model training, we perform 

essential preprocessing and cleaning steps on the images. This includes resizing the 

images to a consistent resolution, applying data augmentation techniques, and addressing 

noise and artifacts that might affect the model's performance. Additionally, the dataset is 

strategically split into training, validation, and testing subsets to evaluate the model's 

accuracy on unseen data. 

To calculate the accuracy of our model, we have employed the confusion matrix 

that furnishes a comprehensive assessment of the model's performance, yielding five 

pivotal metrics for evaluating its validity. These metrics are essential in gauging the 

model's accuracy and efficiency in classification tasks. Firstly, Accuracy quantifies the 

proportion of correctly classified instances out of all instances, expressed as the sum of 

true positives (TP) and true negatives (TN) divided by the total number of instances, as 

shown in Equation (7).  
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 +  𝑇𝑁)

(𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)
                                                                             (7) 

Misclassification, conversely, measures the proportion of incorrectly classified 

instances relative to all instances, calculated as the sum of false positives (FP) and false 

negatives (FN) divided by the total number of instances, as delineated in Equation (8).  

𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =  
(𝐹𝑃 +  𝐹𝑁)

(𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)
                                                            (8) 

Moreover, Precision, also known as Positive Predictive Value, assesses the 

accuracy of positive predictions relative to all positive predictions made by the model, 

formulated as TP divided by the sum of TP and FP, as depicted in Equation (9).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
                                                                                                         (9) 

In addition, Sensitivity, often referred to as Recall, evaluates the model's 

capability to correctly identify positive instances from all actual positive instances, 

calculated as TP divided by the sum of TP and FN, as illustrated in Equation (10).  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
                                                                                                     (10) 

Lastly, Specificity gauges the model's ability to correctly identify negative 

instances from all actual negative instances, expressed as TN divided by the sum of TN 

and FP, as denoted in Equation (11). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁 

𝑇𝑁 + 𝐹𝑃
                                                                                                         (11) 

 These equations collectively provide indispensable insights into the model's 

performance across various dimensions of classification, enabling a thorough assessment 

of its efficacy in real-world scenarios. 

The following sections provide a comprehensive overview of the PlantVillage 

dataset, the dataset that we collected, and the preprocessing techniques applied to the 
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images, and the rationale behind the dataset split. A robust and well-prepared dataset 

serves as the foundation for our machine learning endeavors, ultimately contributing to 

the development of an accurate and reliable plant disease detection system. 

 

4.1 Overall Dataset (Augmented PlantVillage Dataset) 

The overall dataset we've curated and named Augmented PlantVillage dataset is 

a combination of the widely recognized PlantVillage dataset and our own gathered 

collection of healthy and infected cucumber plants, resulting in a well-rounded resource. 

This combination will serve as the cornerstone for training our predictive model, 

harnessing the collective knowledge within both datasets to create a robust and adaptable 

tool. This overall dataset promises to enhance the accuracy and effectiveness of our 

model's predictions, empowering us to tackle more diseases in a more comprehensive 

way and offer valuable insights to aid in agricultural management decisions. 

 

4.1.1 PlantVillage Dataset 

In this section, we present a comprehensive and crucial overview of the 

PlantVillage dataset, which assumes a central role as the primary dataset in our machine 

learning experiments. With the pressing need to increase food production by an estimated 

70% by 2050 to feed a projected population of over 9 billion people, addressing yield 

losses caused by infectious diseases becomes paramount [46]. Currently, infectious 

diseases reduce potential yields by an alarming average of 40%, with some farmers in the 

developing world experiencing devastating yield losses as high as 100%. 

The PlantVillage dataset is thoughtfully structured to provide a comprehensive 

and organized repository of invaluable agricultural information. It encompasses a diverse 
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collection of over 50,000 images of 38 different classes, carefully curated to include both 

healthy and diseased leaves from various crop plants. Each image within the dataset is 

enriched with careful annotations, detailing essential information such as the specific 

plant species and the type of disease depicted. This structured labeling ensures the 

dataset's reliability and utility for machine learning endeavors. This detailed labeling 

ensures the accuracy and reliability of our model's training, empowering it to learn 

distinct patterns and features associated with different plant diseases. In addition, the 

PlantVillage dataset encompasses a diverse array of crops and associated diseases, 

providing valuable insights for the identification and management of various agricultural 

challenges. Among the crops included are apple, blueberry, cherry, corn, grape, orange, 

peach, pepper, potato, tomato, raspberry, soybean, squash, and strawberry. The dataset 

also covers an extensive range of diseases, such as Bacterial spot, Early blight, Late 

blight, Black rot, Cercospora leaf spot, Gray leaf spot, Leaf mold, Powdery mildew, and 

Septoria leaf spot. 

 

4.1.2 Collected Dataset from the Agricultural Department at the AUB 

The PlantVillage dataset, although comprehensive, notably lacks information on 

cucumber plant diseases. Recognizing this gap, we have taken the initiative to develop a 

dedicated web portal. This platform aims to bridge the information void by facilitating 

the collection of data specifically related to cucumber healthy and infected plants. By 

focusing on this critical area of agricultural concern, we are prepared to compile a 

comprehensive dataset that will significantly assist in combating cucumber diseases and 

enhancing crop disease management strategies in the region. 
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We developed a comprehensive web portal using the ReactJS library for the 

frontend and the .NET framework for the backend, aimed at addressing the escalating 

cucumber disease infestation prevalent across Lebanon. The platform serves as a valuable 

tool for gathering images of cucumber healthy and infected plants. Through this web 

portal, users can conveniently indicate the severity level of the infestation and record the 

precise count of pests present on each leaf. This dataset of images and corresponding data 

points are stored within our databases. 

The web portal is crafted to serve as an exclusive hub for authorized users. The 

portal is accessible solely through a secure sign-in and sign-up process, seamlessly 

integrated using the Identity Framework. This guarantees that only authorized individuals 

can access and add images to the database. 

Our web portal is hosted on Microsoft Azure platform, ensuring a seamless user 

experience. Hosting a web portal on Microsoft Azure offers several practical advantages. 

Azure's scalable infrastructure efficiently manages varying levels of traffic, ensuring 

quick access even during peak usage. The platform's reliable services and robust 

infrastructure minimize downtime, establishing a stable environment for users. Moreover, 

Azure's comprehensive security features, including data encryption and identity 

management, contribute to the protection of user information. In addition, integration 

with Microsoft services simplifies authentication processes. Furthermore, the platform's 

support and community contribute to efficient issue resolution and continuous 

improvement. You can have a preview of the user-friendly sign-in and sign-up interfaces 

in Figure 4, showcasing the simplicity of the authentication process. 
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Figure 4: Sign up and Sign in Pages of the Web Portal 

 

The image-capturing feature serves as the main component of the portal, enabling 

users to capture images of various plant diseases swiftly and conveniently. Moreover, this 

feature allows users to annotate these images accurately by selecting predefined options 

from intuitive dropdown menus. The illustration in Figure 5 provides a visual 

representation of this process, underlining the emphasis we've placed on creating a user-

friendly and accessible interface. By simplifying the data collection process through 

intuitive design and efficient functionality, we aim to enhance the overall user experience 

and facilitate a more streamlined approach to data management within the platform. 
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Figure 5: Diseases Images Acquisition Screen 

 

Our collaboration with the Agricultural Department at the American University 

of Beirut (AUB) yielded a comprehensive set of healthy and infected cucumber plant 

images. This collaboration provided us with an extensive dataset of approximately 1700 

images of cucumber plants categorized into five classes, including healthy specimens, 

cucumbers affected by whiteflies with varying degrees of severity, and cucumbers 

affected by spider mites with varying degrees of severity. The dataset, categorized based 

on infection severity and corresponding quantity, supplements the PlantVillage dataset, 

enhancing the Augmented PlantVillage dataset’s diversity and predictive capabilities. 

The integration of this diverse dataset enlarged the dataset and significantly enhanced the 

model's predictive capabilities.  
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4.2 Image Preprocessing and Cleaning Techniques 

Data preprocessing is a crucial step in every machine learning pipeline, aimed at 

preparing the dataset for model training. This section discusses the various preprocessing 

and cleaning techniques applied to the overall dataset. 

The preprocessing phase involves a series of essential steps aimed at optimizing 

the dataset for effective model training. One of these crucial steps involves resizing all 

images to a standardized resolution, ensuring uniformity across all samples. This measure 

is particularly vital for seamless neural network training, as these networks necessitate 

images of identical dimensions as inputs. Moreover, we implement various data 

augmentation techniques, such as rotation, flipping, and adjustments in brightness, to 

artificially expand the dataset. These techniques serve the purpose of enhancing the 

dataset's diversity, thereby strengthening the model's resilience and improving its ability 

to generalize patterns effectively. In addition, to address noise and artifacts present in 

some images, we perform cleaning operations like denoising and removing irrelevant 

background information. Noise reduction enhances the clarity of the images, making it 

easier for the model to learn relevant features. Removing irrelevant background 

information also enhances the model's ability to focus on the plant regions, increasing the 

overall accuracy of disease detection. 

 

4.3 Dataset Splitting Strategy for Robust Machine Learning Model Training and 

Evaluation 

In the first experiment conducted for training the TinyML models described in 

chapter 6. We partitioned the Augmented PlantVillage dataset into three distinct subsets: 

the training set (80%), the validation set (10%), and the testing set (10%). This division 
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adhered to standard machine learning practices and facilitated comprehensive model 

evaluation. 

The training set constituted the largest portion of the dataset and was utilized to 

train the machine learning models. It comprised labeled images representing both healthy 

and infected plants, enabling the models to learn intricate patterns and features associated 

with each class. 

Throughout the training process, the validation set played a pivotal role in fine-

tuning the models and preventing overfitting. Serving as an unseen dataset during 

training, it enabled us to assess the models' performance on new data and make necessary 

adjustments to optimize their effectiveness. 

Finally, the testing set served as an independent dataset to evaluate the final 

performance of the trained models. It consisted of images that were not used during the 

training or validation phases, providing an unbiased measure of the models' 

generalization capability. The accuracy achieved on the testing set reflected the true 

effectiveness of the models in real-world scenarios. 

In the second experiment, we followed a similar protocol to the first experiment, 

but with a focus on developing machine learning models tailored to each type of plant 

disease. The Augmented Plant Village dataset was initially divided into separate subsets 

associated with each plant type including corn, grape, peach, strawberry, tomato, potato, 

cherry, bell pepper, apple, and cucumber crops. This preprocessing step ensured that each 

subset contained healthy and infected images specific to a particular plant, facilitating 

targeted model training and evaluation. 

Subsequently, each subset was further split into three subsets: the training set 

(80%), the validation set (10%), and the testing set (10%). This division maintained 



 

 60 

consistency with standard machine learning practices and ensured the availability of 

sufficient data for training, validation, and testing purposes. 

The training set comprised the largest portion of each subset and was used to train 

the machine learning models with labeled images, enabling pattern learning. In addition, 

the validation set aided in fine-tuning and preventing overfitting. Hyperparameter tuning 

was based on insights from its evaluation. Finally, the testing set served as an independent 

dataset to assess the models' real-world effectiveness, reflecting their true generalization 

capability. 
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CHAPTER 5 

FEDERATED LEARNING SETUP AND SIMULATION  
 

Within this chapter, we will elaborate on the setup and simulation particulars of 

our federated learning approach. This distributed machine learning technique facilitates 

the training of these models by each model users across multiple nodes or devices without 

the need for centralized data storage. Our primary goal is to leverage federated learning 

to develop robust models for the classification of plant diseases. To enable this, we have 

employed the comprehensive dataset introduced in the previous chapter, encompassing 

images that represent various plant diseases as well as healthy plant samples. 

 

5.1 Federated Learning Architecture  

Federated Learning is an innovative architecture that revolutionizes the way 

machine learning models are trained. Unlike traditional centralized approaches, where 

data is collected and stored in a central server, Federated Learning enables training 

models directly on decentralized devices. This architecture allows devices such as 

smartphones, IoT devices, and edge servers to collaboratively learn from their local data 

while keeping it securely stored and private. By aggregating model updates instead of 

raw data, Federated Learning preserves privacy, reduces communication costs, and 

enables efficient distributed learning. Federated Learning architecture presented in Figure 

6 represents a powerful paradigm shift in the machine learning landscape, fostering 

collaboration, privacy, and scalability in model training. 
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Figure 6: Federated Learning Iterative Process [35] 

 

To simulate federated learning, we deployed our architecture in a controlled 

environment. We set up a network of virtual clients, each emulating a mobile device with 

limited computational resources. During each round of federated learning, clients perform 

local model training on their respective data partitions. In addition, we outline the 

simulation setup for our federated learning experiment, using the TensorFlow Federated 

(TFF) API. The purpose of TFF is to facilitate federated learning, enabling users to 
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seamlessly integrate their own TensorFlow models into the process. Throughout this 

section, we will describe the key steps of our simulation and highlight the important 

components that contribute to its success. 

1. Environment Setup: To ensure the proper execution of our federated learning 

simulation, we first set up the required environment by installing essential 

packages such as "tensorflow-federated". 

2. Data Preparation: The overall dataset reflects the features of real-world federated 

data, where each client holds a distinct subset of data, resulting in non-identically 

distributed data (non-i.i.d.) behavior. To prepare the input data for training, we 

execute data pre-processing tasks, which encompass image flattening, shuffling, 

batching, and image augmentation as previously outlined. 

3. Model Construction: For this simulation, we utilized a comprehensive neural 

network architecture implemented via Keras. The model incorporates multiple 

layers, including an input layer, multiple hidden layers, and an output layer with 

a softmax function, specifically tailored to effectively accommodate the 

necessities of federated learning protocols. 

4. Federated Proximal Algorithm: Our federated learning approach hinges on the 

Federated Proximal (FedProx) algorithm. This algorithm aggregates model 

updates from participating clients during each round of training as presented in 

equation 12. 

𝑚𝑖𝑛
𝑤

 𝑓(𝑤) ≈  
1

𝐾
∑  

𝐾

𝑘=1

𝑝𝑘𝐹𝑘(𝑤)                                                                                    (12) 

this ensures the convergence of the global model. FedProx is a collaborative 

learning approach across distributed devices. FedProx involves performing a 
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specified number of epochs of Stochastic Gradient Descent (SGD) on each of the 

K devices involved in the federated learning process. On each device, local 

surrogate functions (Fk) are employed to compute model updates. To ensure 

consistent learning across all participating devices, we enforced the use of 

uniform learning rates and a consistent number of local epochs. Additionally, 

model updates from a subset of devices are averaged during each round, 

contributing to the collaborative refinement of the global model. This approach 

not only facilitates the convergence of the model but also mitigates the challenges 

associated with training on non-identically distributed data across decentralized 

devices. 

In addition, to address the challenge of varying local updates and accommodate 

statistical heterogeneity, we implemented a technique known as B-Bounded 

Dissimilarity. Denoted in equation 13 as  

𝑚𝑖𝑛  
𝑤

 ℎ𝑘(𝑤; 𝑤𝑡) ≈ 𝐹𝑘(𝑤) +
𝜇

2
∥∥𝑤 − 𝑤𝑡∥∥

2
                                                              (13) 

this method guides local updates to be closer to the initial global model. By 

enforcing a bounded dissimilarity constraint, denoted as B, we mitigate the 

divergence of local updates, promoting convergence towards a consistent global 

model across decentralized devices. This approach not only facilitates 

collaboration among distributed participants but also enhances the stability and 

efficiency of the federated learning process. 

5. Federated Training Rounds: In the simulation, we run 100 rounds of federated 

training. At the end of each round, the global model is updated based on 

contributions from individual clients' local models. Throughout the training 

process, we closely monitor crucial training metrics, including loss and accuracy. 
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Loss refers to the measure of error between the predicted outcome and the actual 

target, helping us assess the model's precision in making predictions. On the other 

hand, accuracy signifies the model's ability to provide correct predictions in 

relation to the total number of predictions made, allowing us to gauge the overall 

effectiveness and reliability of the model. By closely monitoring these crucial 

metrics, we ensure a comprehensive evaluation of the model's performance and 

make informed decisions to enhance its training accuracy. 

6. Model Evaluation on Federated Data: Lastly, we evaluate the trained model on 

federated data using TFF's "build_fed_eval" function. This evaluation process 

provides valuable metrics, such as loss and accuracy as discussed earlier, enabling 

us to assess the model's performance in a federated setting. 

In conclusion, the insights gained from this simulation encompass a deeper 

understanding of managing diverse and non-identically distributed data in a federated 

learning setting. Additionally, the evaluation of models within the context of federated 

learning provides valuable knowledge about the intricacies of model performance and 

adaptability in decentralized environments. 

 

5.2 Experiment 1 Simulation (One Model for All Plants) 

This section presents the setup and methodology of our federated learning 

experiment, focusing on the development of robust models for plant disease classification 

through distributed machine learning techniques. Our simulation replicates the federated 

learning framework in a controlled environment, showcasing its effectiveness in training 

global models across distributed data sources. 
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5.2.1 Initial Training and Testing 

Initially, the model was trained using 50% of the entire dataset containing all plant 

disease classes. Specifically, 40% of the data was distributed across 8 clients (5% each), 

simulating diverse data sources. To mimic real-world scenarios and enhance robustness, 

an additional set of noise images was added to each client dataset. The remaining 10% of 

the data was reserved for testing and reporting the final accuracy of the model. Achieving 

a testing accuracy of 92.77%, this phase established a baseline for assessing 

improvements in federated learning. 

 

5.2.2 Federated Training Rounds 

We conducted 100 rounds of federated training, closely monitoring key training 

metrics such as loss and accuracy to monitor model performance. Following data 

distribution among clients, federated learning commenced. Central models were 

initialized with parameters derived from initial training, while clients executed local 

training iterations, updating model weights based on their respective dataset 

characteristics. 

 

5.2.3 Evaluation of Optimal Image Count per Federated Learning Round 

In order to enhance the efficiency and convergence speed of federated learning, 

we conducted a series of experiments to determine the optimal number of images to be 

used prior to commencing each federated training round. Our investigation involved 

distributing the available images among 8 clients in a random manner, with varying 

participation rates in each round. The objective was to find a balance between minimizing 

communication rounds and achieving the shortest convergence time. 
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The experiments were conducted on the Augmented PlantVillage dataset. And 

through extensive analysis and evaluation, we observed that employing 800 images 

achieved a remarkable tradeoff between the least communication rounds required and the 

shortest convergence time as presented in Figure 7. This finding demonstrates the 

significance of carefully selecting the appropriate image count in federated learning 

scenarios. 

 

 

Figure 7: Evaluation of Optimal Image Count per Federated Learning Round 

 

By utilizing 800 images, we were able to strike an optimal balance that reduced 

the overall communication overhead while simultaneously accelerating the convergence 

process. This optimal tradeoff allows for efficient utilization of computational resources 

and ensures that federated learning can be effectively deployed in real-world applications. 

The choice of 8 clients in our federated learning model is derived from the dataset 

size and the operational constraints imposed by the requirement to distribute a minimum 

of 800 images per federated round to each client. This criterion ensures that each client 

receives a substantial and representative subset of the data for training, promoting model 
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generalization and robustness. Given the dataset's characteristics and the need to balance 

computational efficiency with data diversity, the number 8 emerged as the optimal choice 

to meet these requirements. By distributing the dataset across multiple clients in this 

manner, we can effectively leverage the collective intelligence of diverse data sources 

while accommodating practical considerations such as communication overhead and 

resource utilization. Therefore, the selection of 8 as the number of clients is informed by 

the dataset size and the need to ensure adequate data distribution for successful federated 

learning. 

Finally, the significance of this finding lies in its potential to enhance the 

scalability and efficiency of federated learning systems. By reducing the number of 

communication rounds required for convergence, computational resources can be utilized 

more effectively, leading to improved training efficiency and reduced training time. 

 

5.2.4 Aggregation and Model Improvement 

In our study, we employed the FedProx optimization function to enhance the 

performance of federated learning models. FedProx integrates proximal terms into the 

optimization process to mitigate the impact of divergent client updates, thereby 

promoting convergence. To evaluate the effectiveness of FedProx, we configured 

different B thresholds and conducted experiments to assess their impact on model 

convergence. Specifically, we varied the B thresholds to examine weight differences of 

5%, 10%, 20%, and 30%. Subsequently, we plotted a graph illustrating the testing 

accuracy corresponding to each threshold setting presented in Figure 8. 
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Figure 8: Accuracy vs Federated Learning Rounds with Different B Values 

 

Remarkably, our analysis revealed that when the weight difference remained 

within 10%, the training process exhibited optimal smoothness and guaranteed 

convergence, underscoring the efficiency of FedProx in federated learning environments. 

Model weights updated by individual clients were aggregated to construct a new 

global model. This aggregation process significantly bolstered the global model's 

performance by harnessing the diversity inherent in distributed data sources. 

 

5.2.5 Enhanced Accuracy 

The federated learning process yielded an enhanced global model with testing 

accuracy reaching 94.35%. These notable accuracy enhancements underscored the 

efficiency of federated learning in capitalizing on decentralized data sources for improved 

plant disease classification. 

 

5.3 Experiment 2 Simulation (One Model for Each Plant) 

The second experiment architecture revolves around multiple centralized models, 

each dedicated to a specific disease. Users contribute solely to the model corresponding 
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to their addressed plant. The central server manages coordination, refining each model 

individually based on user contributions, fostering targeted and specialized training for 

disease classification. 

 

5.3.1 Initial Training and Testing 

Initial models were trained on 50% of the data for each plant disease class, 

including corn, grape, peach, strawberry, tomato, potato, cherry, bell pepper, apple, and 

cucumber. The remaining data was distributed across ten clients for each plant disease 

class with the addition of noise images to mimic real-world scenarios. The average testing 

accuracy across all plant disease classes was 94.65%, laying the foundation for evaluating 

federated learning improvements. 

 

5.3.2 Central Models Retraining 

After distributing data among clients, federated learning began for each plant 

disease class. Central models were initialized with parameters learned from initial 

training, and clients performed local training, updating model weights based on their 

dataset's characteristics. 

 

5.3.3 Aggregation and Model Improvement 

Updated model weights from individual clients were aggregated for each plant 

disease class to create a new global model only within 10% difference allowed. This 

aggregation process enhanced the global model's performance by leveraging diverse data 

sources. 
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5.3.4 Enhanced Accuracy 

Federated learning resulted in an enhanced global model with improved average 

testing (96.05%) accuracy across all plant disease classes as displayed in Figure 9. These 

accuracy improvements demonstrate the effectiveness of federated learning in leveraging 

decentralized data sources for plant disease classification. 

 

 

Figure 9: Model Accuracy after 100 Rounds of Federated Learning Per Plant 
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CHAPTER 6 

TINYML MODEL SELECTION AND OPTIMIZATION 
 

TinyML has revolutionized the deployment of intelligent applications on 

resource-constrained devices, enabling edge intelligence and real-time decision-making. 

This chapter aims to explore the process of model selection and optimization for a plant 

disease detection system using TinyML. The approach involves leveraging Google's ML 

Kit for object detection and performing plant disease classification through transfer 

learning using TensorFlow Lite. The objective is to identify the most accurate and 

compact model to achieve efficient and accurate plant disease detection. 

 

6.1 ML Kit for Object Detection 

Google's ML Kit [45] is a mobile Software Development Kit (SDK) that brings 

the power of on-device machine learning to Android and iOS applications. It allows 

developers to leverage Google's expertise in machine learning to solve real-world 

problems or create innovative user experiences. The key advantage of ML Kit is that it 

enables on-device machine learning, eliminating the need for constant internet 

connectivity and ensuring real-time processing. 

In the context of our plant disease detection project, ML Kit's object detection 

capabilities become highly valuable. The SDK comes equipped with pre-trained models 

and APIs that can be directly integrated into the application. These pre-trained models 

have been developed and fine-tuned by Google using state-of-the-art machine learning 

techniques, making them highly accurate and effective for various object detection tasks. 
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By utilizing ML Kit's object detection capabilities and our pre-trained models, we 

can analyze input images of plants and identify potential disease-affected areas. The tool 

detects plant components, including leaves, stems, and fruits, and assesses the presence 

of any disease-related irregularities. This functionality allows us to locate specific areas 

of concern, enabling focused classification efforts on these identified regions. 

Furthermore, the fact that ML Kit's APIs run entirely on-device is a significant 

advantage for our project. This means that the object detection and classification 

processes can be performed directly on the user's smartphone or tablet without relying on 

an internet connection. This ensures that the application remains functional even in 

scenarios where internet access is limited or unavailable. 

Additionally, the on-device processing capability allows for real-time use cases, 

where we can process a live camera stream in real-time. This is particularly beneficial for 

our plant disease detection application, as users can point their device's camera at a plant 

and receive instant feedback on whether it is affected by any disease. The real-time aspect 

enables quick decision-making and potential intervention to mitigate the spread of 

diseases in agricultural settings. 

Moreover, the offline functionality of ML Kit's APIs means that our application 

can continue to function seamlessly even when internet connectivity is disrupted. Users 

can still perform plant disease detection and classification without interruption, which is 

essential for applications in rural areas where internet access may be intermittent. 

In conclusion, Google's ML Kit offers a powerful and convenient solution for 

object detection tasks, making it an excellent fit for our plant disease detection 

application. By leveraging ML Kit's pre-trained models and APIs, we can identify regions 

of interest in plant images and perform classification efficiently, all within the confines 
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of the user's device. The on-device processing and offline capabilities ensure real-time 

functionality and accessibility, allowing users to address plant diseases conveniently and 

effectively. 

 

6.2 Plant Disease Classification with TensorFlow Lite using Transfer Learning  

Plant disease classification is an important task in agriculture, as it helps farmers 

identify and address diseases affecting their crops. To tackle this challenge, the process 

described leverages the power of transfer learning and TensorFlow Lite, which are 

cutting-edge technologies in the field of machine learning and artificial intelligence. 

The first step is the detection of regions of interest (ROIs) using ML Kit that is 

capable of detecting objects in images, and in this case, it is used to detect the regions of 

plants that may be affected by diseases such as the leaves and the stem. These regions are 

then extracted from the input images and used as the input for the subsequent 

classification model. 

Next comes transfer learning, which is a technique in deep learning where a pre-

trained neural network model is used as a starting point for building a new model. In this 

context, a pre-existing neural network that was trained on a large dataset, such as 

ImageNet, is utilized. The model has already learned to recognize various features and 

patterns from general images, and we can leverage this knowledge for the specific task 

of plant disease classification. 

The overall dataset was used as a training dataset for the transfer learning process. 

By utilizing transfer learning, we save computational resources and time, as the model 

does not need to be trained from scratch. Instead, it fine-tunes its weights and learns to 

specialize in identifying specific diseases based on the provided training data. This 
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approach enables the creation of an accurate and efficient classification model with 

relatively less computational effort. 

Finally, the classification model is optimized for deployment on edge devices 

using TensorFlow Lite. TensorFlow Lite is a lightweight version of TensorFlow, a deep 

learning framework. Its primary advantage is its efficiency in terms of memory and 

computation, making it well-suited for running on resource-constrained devices like 

smartphones, tablets, and IoT devices. By deploying the plant disease classification 

model on the edge device, real-time processing of images can be achieved without relying 

on cloud-based processing, thus ensuring prompt and timely diagnosis of plant diseases. 

Finally, the combination of ML Kit for region of interest detection, transfer 

learning for efficient model creation, and TensorFlow Lite for edge device deployment 

results in an effective and practical solution for plant disease classification. This 

technology can aid farmers in identifying and managing diseases in their crops, 

contributing to increased crop yield and healthier agricultural practices. 

 

6.3 TinyML Experiment 1 (One Model for All Plants) 

Using transfer learning to train the pre-trained models that are EfficientNet-Lite0, 

EfficientNet-Lite1, EfficientNet-Lite2, EfficientNet-Lite3, EfficientNet-Lite4, ResNet-

50, and MobileNet-V2 on the entire dataset presents a strategic and resourceful approach. 

By leveraging transfer learning, these models can capitalize on their pre-existing 

knowledge and capabilities, thus significantly reducing the training time and 

computational resources required. The incorporation of transfer learning optimally adapts 

the models to our specific dataset, enhancing their ability to establish complicated 

patterns and features crucial for accurate plant disease classification.  
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The decision to opt for EfficientNet-Lite0, EfficientNet-Lite1, EfficientNet-Lite2, 

EfficientNet-Lite3, EfficientNet-Lite4, ResNet-50, and MobileNet-V2 is supported by 

their established performance in the realm of computer vision. These models are 

renowned for their proficiency in handling complex visual data efficiently and accurately. 

Their varied architectures and adept feature extraction capabilities render them suitable 

choices for our specific plant disease classification objectives. Furthermore, their 

utilization in academic research and practical applications underlines their reliability and 

effectiveness in image analysis and classification tasks. 

The comprehensive results presented in Table , including the assessment of 

parameters, accuracy, and model size, further underscore the substantial impact of 

transfer learning, emphasizing its pivotal role in achieving superior performance and 

efficiency across diverse models. 

 

Table 2: Comparison of Pretrained Models Trained on the Augmented PlantVillage 

Dataset 

Model Total Parameters Accuracy Size 

EfficientNet lite0 3,461,702 0.9521 3.86MB 

EfficientNet lite1 4,238,022 0.9537 4.76MB 

EfficientNet lite2 4,917,846 0.9569 5.46MB 

EfficientNet lite3 7,041,446 0.9610 7.72MB 

EfficientNet lite4 11,886,614 0.9705 12.78MB 

ResNet 50 23,642,662 0.9315 23.32MB 

MobileNet V2 2,306,662 0.9449 2.69MB 

 

6.3.1 Model Size 

Through the utilization of the TensorFlow Lite converter, which leverages the flat 

buffer format, we achieved a significant reduction in model size across the listed models. 
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Notably, MobileNet_v2, with a size of 2.69MB, emerged as the most compact option, 

rendering it highly suitable for deployment on resource-constrained devices. As we 

transitioned to more complex models like Efficientnet_lite4 and Resnet_50, the model 

sizes increased substantially. However, even with the increased complexity, the reduction 

in size achieved by employing the TensorFlow Lite converter was approximately 30%. 

Efficientnet_lite4 exhibited a reduced size of about 8.95MB, while Resnet_50 was 

compressed to approximately 16.32MB. These findings highlight the effectiveness of the 

TensorFlow Lite converter and flat buffer format in significantly reducing model sizes, 

enabling efficient deployment on devices with limited resources. 

 

6.3.2 Accuracy Improvement 

The models show varying levels of accuracy on the validation set. As we move 

from Efficientnet_lite0 to Efficientnet_lite4, the accuracy steadily improves, indicating 

the benefit of using more complex architectures for the specific task. 

 

6.3.3 Comparison with Efficientnet_lite Models 

The Efficientnet_lite models consistently outperform both Resnet_50 and 

MobileNet_v2 in terms of accuracy while being more efficient in terms of model size. 

This demonstrates the advantages of the Efficientnet_lite architecture, which achieves a 

good balance between accuracy and model complexity. 

 

6.3.4 Comparison with Resnet_50 and MobileNet_v2 

While Resnet_50 and MobileNet_v2 are larger models, they still achieve 

reasonable accuracy. MobileNet_v2, in particular, is optimized for mobile devices and is 

more compact compared to Resnet_50, making it suitable for on-device deployment. 
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6.3.5 Use Case Considerations 

The choice of the model would depend on the specific use case, available 

hardware, and performance requirements. If accuracy is a top priority and computational 

resources are sufficient, Efficientnet_lite4 could be preferred. On the other hand, if model 

size and efficiency are crucial, Efficientnet_lite0 or MobileNet_v2 might be more suitable 

choices. 

 

6.3.6 Chosen Model 

Our evaluation and analysis demonstrate that EfficientNet_lite0 is the optimal 

deep learning model for deployment in our mobile app. Its small model size of 3.86MB 

and very acceptable accuracy of 96.15% make it a highly suitable choice to ensure the 

efficient and reliable operation of our application on mobile devices. 

 

6.4 TinyML Experiment 2 (One Model for Each Plants) 

The objective of Experiment 2 is to identify the most accurate and compact model 

for each plant to achieve efficient and accurate plant disease detection. 

 

6.4.1 TinyML Model Selection 

The experiment involves training individual models for each plant using transfer 

learning on the augmented PlantVillage dataset. The models are evaluated based on 

accuracy, and performance. The results, shown in Figure 10, indicate the average 

accuracy achieved by each model for the respective plant. Among the models, 

EfficientNet-Lite4 consistently achieves the highest average accuracy of 98.68% across 

different plants. EfficientNet-Lite0, EfficientNet-Lite1, and EfficientNet-Lite2 also 
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demonstrate competitive accuracy scores. ResNet-50 and MobileNet-V2 exhibit slightly 

lower average accuracies.  

 

 

Figure 10: Models Metrics after being Trained (Average Accuracy) 

 

 

After training the models on each plant individually instead of training on all 

classes collectively, a significant increase in accuracy was observed and EfficientNet-

Lite0 was selected as the ideal model for integration into the mobile app because of its 

compact size (3.86MB) and moderate accuracy (98.05%) across the studied plant species. 

This improved the accuracy from 95.21% to 98.05%, showcasing the effectiveness of this 

approach. By tailoring the models to each specific plant, the models were able to better 

capture the unique characteristics and nuances of each plant's disease patterns. This 

individualized training resulted in improved accuracy, demonstrating the importance of 

plant-specific models in achieving precise and reliable plant disease detection. 
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CHAPTER 7 

BACKEND DEVELOPMENT AND CONNECTIVITY 
 

In this chapter, we delve into the details of the backend development and 

connectivity aspects of our plant disease classification application. We outline our 

strategy for crafting a robust backend infrastructure to enhance functionality, dynamic 

machine learning model serving, tailored specialized machine learning models for precise 

disease identification, and authentication mechanisms to ensure secure access to our 

machine learning models. 

 

7.1 Backend Infrastructure 

To enrich the capabilities of our mobile application, we have embarked on the 

development of a resilient backend infrastructure. This infrastructure serves as the 

backbone for seamless communication between our mobile application and centralized 

servers, facilitating fluid real-time data exchange and updates. To achieve this, we have 

integrated Firebase, a comprehensive platform offered by Google, into our backend 

architecture. Firebase provides a suite of tools and services that streamline backend 

development, including real-time database functionality and user authentication.  

Implementing Firebase begins with setting up a Firebase project on the Firebase 

console, where we configure various services according to our application's requirements. 

This includes setting up the real-time database to store and synchronize data in real-time 

between clients and servers. Additionally, we leverage Firebase Authentication to 

authenticate users securely and manage user accounts. 
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Once the Firebase project is set up, we integrate the Firebase SDK into our mobile 

application codebase. This SDK provides APIs that enable our application to interact with 

Firebase services seamlessly. In addition, we utilize the Firebase Realtime Database SDK 

to perform read and write operations to the database, ensuring that our application always 

has access to the latest disease identification models. 

 

7.2 Dynamic Model Serving 

Building upon our backend infrastructure, we are implementing an adaptable 

model deployment system. This system facilitates the hosting and management of 

multiple variations of disease identification models on the server end. The dynamic 

deployment mechanism ensures seamless updates and enhancements to the models, 

eliminating the need for manual app updates. By adopting this approach, farmers will 

consistently access the latest and most accurate disease identification models. 

 

7.3 Tailored Specialized Models 

Recognizing the wide range of crop diseases, our primary goal is to construct 

custom models for each specific disease. This strategic approach enhances the accuracy 

of disease identification while minimizing the size of the models. By integrating these 

customized models, we ensure that farmers have access to precise and individualized 

information crucial for safeguarding their crops. 

 

7.4 Authentication Mechanism 

We are implementing an airtight authentication protocol that exclusively admits 

authenticated users. This strategic step serves as a pivotal guardian for the secure and 

controlled utilization of our cutting-edge machine learning model. By requiring 
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authentication, we ensure that only authorized users can access the application's features 

and benefit from the disease identification capabilities. 

 

7.5 Conclusion 

In conclusion, the backend development and connectivity of our plant disease 

classification application are crucial components that enhance functionality, accuracy, 

and security. Through the implementation of a robust backend infrastructure, dynamic 

model serving, tailored specialized models, and authentication mechanisms, we aim to 

provide farmers with a comprehensive solution for effectively managing crop diseases. 
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CHAPTER 8 

MOBILE APP DEVELOPMENT PROCESS 
 

8.1 Objective 

The primary objective of this chapter is to outline the process of developing a 

mobile app for plant disease classification using the Flutter framework and TensorFlow 

Lite machine learning model [47]. We will discuss the necessary steps involved in 

creating an intuitive and user-friendly app that enables users to identify plant diseases 

through image-based classification. 

 

8.2 Mobile App Development for Plant Disease Classification  

This section discusses the different frameworks and technologies used for 

building mobile apps and evaluates their effectiveness in real-world scenarios. Emphasis 

is placed on integrating TensorFlow Lite models for on-device inference to ensure real-

time and offline capabilities. 

 

8.3 Choice of Technology Stack  

The selection of the Flutter framework for mobile app development was based on 

several compelling reasons that make it the best choice among various options available 

in the market. Flutter, developed by Google, has gained significant popularity within the 

developer community due to its unique features and capabilities. 

First and foremost, one of the primary reasons for choosing Flutter is its cross-

platform nature. Flutter allows developers to write code once and deploy it on iOS and 

Android platforms. This cross-platform compatibility significantly reduces development 

time and effort, as developers do not have to maintain separate codebases for different 
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platforms. It ensures a consistent user experience across devices, eliminating the need for 

platform-specific development expertise. 

Additionally, Flutter offers a rich set of pre-built UI components and widgets. 

These widgets are aesthetically pleasing and can be easily customized to match the app's 

branding and design requirements. The extensive widget library includes buttons, text 

inputs, sliders, and more, enabling developers to quickly create a visually appealing and 

interactive user interface. This streamlines the development process and enhances the 

overall user experience, as users are presented with a polished and modern-looking app. 

Another significant advantage of Flutter is its fast development cycle. Flutter's hot 

reload feature allows developers to see changes in the code immediately reflected on the 

app's interface, without the need to restart the entire app. This rapid iteration process 

significantly speeds up the development and debugging phases, as developers can quickly 

experiment with different designs, features, and functionalities. This feature is 

particularly beneficial when fine-tuning the user interface and implementing real-time 

changes. 

Moreover, Flutter has a strong and active developer community. The community 

actively contributes to the framework by creating and sharing open-source packages and 

plugins. This vast collection of packages provides access to various functionalities, such 

as database integration, animation effects, and device hardware access, further enriching 

the app's capabilities and reducing development time. The support from the community 

also ensures that developers can find solutions to common challenges and issues quickly. 

Therefore, the rationale behind selecting Flutter for mobile app development lies 

in its cross-platform compatibility, rich set of pre-built UI components, and fast 

development cycle. These advantages make it an ideal framework for building robust and 
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efficient apps, saving development time, and delivering a seamless user experience. The 

strong developer community support adds to the overall appeal of Flutter and enhances 

its suitability for diverse mobile app projects, including the development of the plant 

disease classification app. 

 

8.4 Minimum Requirements for App Functionality 

The development of our plant disease classification application focused on 

meeting essential criteria for both functionality and user satisfaction. Technically, the 

application mandates compatibility with Android 5.0 or later versions, as well as iOS 11 

or higher, ensuring broad accessibility across mobile platforms. Furthermore, it relies on 

access to device hardware components such as the camera, which is integral for capturing 

plant leaf images. 

Moreover, the application's optimal performance is contingent upon meeting 

specific hardware specifications, including a minimum of 1GB RAM and 100MB of 

storage capacity. These requirements were determined through a comprehensive 

technical analysis, which considered both the computational demands of the application 

and the practical constraints of users' devices. By striking a balance between functionality 

and accessibility, we aimed to ensure a seamless user experience across a diverse range 

of mobile devices. 

 

8.5 Data Management and Privacy 

Addressing data management issues is a critical aspect of mobile app 

development, particularly when dealing with sensitive user information. Proper data 

management ensures that user data is handled securely and responsibly, adhering to 
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privacy regulations and best practices. In this section, we will delve into the strategies 

and considerations for managing user data effectively in the context of our plant disease 

classification mobile app. 

One of the fundamental aspects of data management is ensuring the secure storage 

of user data. As our app involves users to sign up and sign in and collect and images meta 

data, it becomes essential to handle the user credentials with care. We implement robust 

encryption and data protection mechanisms to prevent unauthorized access to the user 

credentials and ensure they remain confidential. By leveraging encryption techniques and 

secure storage solutions, we provide users with the peace of mind that their credentials 

are safe and secure. 

Moreover, privacy regulations play a significant role in dictating how user data 

should be collected, stored, and used. As developers, we complied with relevant data 

protection laws and regulations, General Data Protection Regulation (GDPR) [48]. We 

ensure that the app's data management practices align with these regulations, and we 

provide users with clear and transparent privacy policies that outline how their data will 

be handled. 

In conclusion, addressing data management issues is vital to building a 

trustworthy and user-centric mobile app. By securely storing user credentials and images 

meta data, adhering to privacy regulations, and providing users with control over their 

data through consent options, we create an environment of trust and transparency. These 

measures not only safeguard user privacy but also contribute to the overall success and 

adoption of our plant disease classification app. As responsible developers, we prioritize 

data privacy and security at every stage of the app development lifecycle. 
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8.6 Setting Up the Development Environment 

We set up the development environment for building the mobile app using Flutter. 

We began by ensuring that the system requirements were met, and that the development 

machine was compatible with Flutter. We then installed the Flutter SDK on our Windows 

machine. Next, we added the necessary Flutter packages and dependencies to the project's 

pubspec.yaml file. This included the TensorFlow Lite plugin and the MLKit plugin, that 

are required to integrate the pre-trained TensorFlow Lite model into the app. 

 

8.7 Integrating TensorFlow Lite Model 

We integrated the pre-trained TensorFlow Lite model into the Flutter app. We 

started by loading the model file into the project and accessing it within the Flutter code. 

We then performed necessary preprocessing steps to prepare input images before feeding 

them into the TensorFlow Lite model. This included image resizing, normalization, and 

other transformations to match the model's input requirements. 

With the TensorFlow Lite model loaded and the input images preprocessed, we 

ran inference on the device. We invoked the model to make predictions on the captured 

plant leaf images, and then interpreted the model's output and converted it into 

meaningful disease classification results that were presented to the user. 

 

8.8 Authorization 

The sign-in and sign-up screens of our plant disease classification app is designed 

to be user-friendly and intuitive, with easy navigation and clear instructions. Users are 

prompted to select the type of plant they have in order to download the associated model 

for disease classification as presented in Figure 11. 
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Figure 11: Authorization Screens 

 

 

This selection determines the model downloaded to their app, a feature that can 

be subsequently adjusted within the application. This ensures that they receive accurate 

diagnoses tailored to their specific plant species. Additionally, the mobile application is 

accessible in both English and Arabic, catering to a diverse range of users. 

 

8.9 Building the User Interface 

We developed an intuitive and user-friendly interface for our plant disease 

classification app. Our UI design encompasses three distinct screens that guide users 

through the process of capturing, identifying, and understanding plant diseases. Below, 

we present the details of each screen's purpose and functionality, referencing their 

respective figure numbers. 
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Figure 12: Historical Record of Captured Diseases 

 

Our first screen, represented in Figure 12, serves as the "Historical Record of 

Captured Diseases". In this segment, users can examine a chronological log of previously 

documented plant leaf images. Each entry in the historical log is accompanied by a 

thumbnail of the leaf image and a concise summary of the ascertained disease. This 

feature enables users to monitor the health status of their plants over time, thereby 

enabling informed decision-making for plant care and administration. 
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Figure 13: Image Acquisition and Disease Identification Console 

 

The heart of our app resides in Figure 13, the "Image Acquisition and Disease 

Identification Console" screen. This is where users can capture images of plant leaves 

that show signs of disease. Utilizing the device's camera, users can snap photos of 

afflicted leaves directly within the app. Upon capturing an image, our integrated 

TensorFlow Lite model is invoked. Then, the model rapidly analyzes the leaf image and 

provides an instant classification of the disease. In cases where the model fails to 

recognize the disease, the app promptly notifies the user that the specific disease couldn't 

be identified. This ensures transparent communication with the user and encourages them 

to seek further guidance or professional assistance for accurate diagnosis and treatment. 
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Figure 14: Comprehensive Insight and Identification Reference 

 

Moving into the details of a disease diagnosis, Figure 14 presents the 

"Comprehensive Insight and Identification Reference" screen. The app stores plant 

images on the user's device to support the comprehensive tracking of disease history. This 

functionality enables users to maintain a detailed record of their plant health observations 

over time. Additionally, the app provides users with the option to remove or delete any 

stored data, ensuring full control over their information. Following the identification of a 

disease, users have the option to access this screen from the historical records. This screen 

facilitates the viewing of the specific plant leaf image alongside the corresponding disease 

identification. It offers a comprehensive view, allowing users to delve into the details of 

the identified disease. This provides users with actionable knowledge to effectively 

address plant health concerns and mitigate potential damage. 
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Throughout the UI development process, we adhered to Flutter's fundamental 

design principles, ensuring a cohesive and engaging user experience. Leveraging the 

power of Flutter's widget ecosystem, we constructed each screen's layout, leveraging a 

combination of pre-built and custom widgets. The utilization of Flutter's composability 

and reusability principles enabled us to create a UI that is not only visually appealing but 

also easily maintainable and adaptable. 

Our The plant disease classification app features a comprehensive three-screen 

interface designed to facilitate disease history tracking, image capture and identification, 

and detailed disease information for users. The incorporation of advanced technology, 

and the customized TensorFlow Lite model, ensures users have access to effective tools 

for prompt and precise plant health management. 

 

8.10 Testing and Debugging 

We underscored the significance of thorough testing and effective debugging in 

the mobile app development process. We discussed the different types of testing that 

should be performed, including functional testing, compatibility testing, and performance 

testing. 

Functional testing involves verifying that all the app's features and functionalities 

work as intended. We created comprehensive test cases that covered various scenarios 

and user interactions. We also used Flutter's testing framework to write unit tests and 

widget tests, enabling automated testing of individual components and UI elements. 

Compatibility testing is essential to ensure that the app performs consistently 

across different devices, screen sizes, and orientations. We tested the app on various real 

devices and emulators to ensure that its function as intended.  
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Performance testing is another critical aspect of app development, as it determines 

how well the app performs under different workloads and conditions. We used 

performance testing tools and techniques to measure factors like app responsiveness, 

loading times, and memory usage. By optimizing the app's performance, we enhanced 

user satisfaction and retention. 

Debugging is an inevitable part of the development process, and we highlighted 

common debugging techniques and tools that aid in identifying and resolving issues 

efficiently. We used Flutter's integrated development environment (IDE) to set 

breakpoints, inspect variables, and step through the code to identify bugs. We also 

handled user error to provide valuable insights into app behavior during runtime. 
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CHAPTER 9 

RESULTS, CONCLUSION AND FUTUE WORK 
 

9.1 Results 

The evaluation of our proposed approach yielded promising outcomes, affirming 

its effectiveness in addressing crop disease management challenges. Across all deployed 

models, an impressive average accuracy of 98% was achieved, surpassing all accuracies 

reported in existing literature for both offline and centralized models, underscoring the 

robustness of our framework. This high level of accuracy was instrumental in providing 

farmers with reliable disease identification capabilities directly on their smartphones. 

Additionally, the integration of Federated Learning (FL) techniques ensured adaptability 

and scalability of the solution, crucial factors in the dynamic agricultural domain. 

Notably, the utilization of TinyML inference enabled efficient model execution on 

resource-constrained devices without compromising accuracy, further enhancing the 

accessibility and practicality of our framework for end-users. These results signify a 

significant advancement in democratizing access to advanced agricultural technologies, 

thereby contributing to global food security and sustainable crop management practices. 

 

9.1.1 TinyML Models 

Our efforts in compressing deep learning models for crop disease identification 

have yielded significant reductions in size, ensuring compatibility with mobile devices' 

limited storage capacities. And through careful assessment, we have verified that the 

compressed models maintain a high level of accuracy, making them suitable for practical 
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field applications and enabling farmers to access disease identification capabilities even 

in areas with limited internet connectivity. 

 

9.1.2 Federated Learning 

By leveraging federated learning techniques, we ensure ongoing improvements in 

model accuracy over time. This iterative approach is essential for maintaining model 

relevance and effectiveness in dynamic agricultural environments, ultimately benefiting 

farmers and agricultural stakeholders. Federated learning techniques have been applied 

to continuously enhance the accuracy of our compressed models. By leveraging data 

samples collected from various devices, we observed ongoing improvements in model 

accuracy over time, crucial for maintaining relevance in dynamic agricultural 

environments. 

 

9.1.3 Backend Development 

Our focus lied on developing a robust backend infrastructure to facilitate seamless 

communication between the mobile application and centralized servers. This 

infrastructure enabled fluid real-time data exchange and updates, enhancing the overall 

functionality and global reach of the application. Also, our backend enabled dynamic 

model serving to facilitating the deployment and management of multiple variations of 

disease identification models. This dynamic deployment mechanism ensures continuous 

updates and enhancements to the models, eliminating the need for manual app updates 

and providing farmers with access to the latest and most accurate models. 
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9.1.4 Mobile Application Development 

The mobile application is designed to function offline, catering to farmers in 

regions with limited or unstable internet access. This feature ensures uninterrupted 

utilization of disease identification capabilities, even in rural areas with scarce internet 

connectivity. It is also accessible in both English and Arabic to accommodate farmers 

with different language preferences.  In addition, the mobile application boasts an 

intuitive user interface, simplifying the process of capturing photos of crops, submitting 

them for disease identification, and receiving accurate results. The user-friendly design 

enhances usability and accessibility for farmers of all technical backgrounds. Moreover, 

leveraging embedded TinyML models, the application provides real-time disease 

identification results directly on the mobile device. This rapid response empowers 

farmers to make informed decisions promptly, contributing to more efficient crop 

management practices. 

 

9.2 Conclusion 

In conclusion, our research has demonstrated the effectiveness of leveraging 

machine learning and mobile technologies for crop disease management. The achieved 

accuracy rates, coupled with the adaptability and scalability afforded by FL and TinyML, 

highlight the potential of our framework to revolutionize agricultural practices. By 

empowering farmers with smartphone-based disease identification tools, we have taken 

a significant step towards democratizing access to advanced agricultural technologies. 

This not only improves the incomes of farmers but also contributes to global food security 

and sustainable agriculture.  
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9.3 Future Scope 

In the future, we envision expanding the capabilities of our crop disease 

management system to provide personalized recommendations for farmers. By 

integrating large language models (LLMs) [49], we can offer tailored suggestions on 

disease control measures, crop strategies based on factors like weather conditions and 

historical data. Furthermore, we propose extending our approach to encompass other 

medical applications [50], such as disease diagnosis and treatment recommendations, 

using machine learning and mobile technologies. Integrating Internet of Things (IoT) 

devices and sensor networks [51] can enhance the system by collecting real-time 

environmental data and providing context-aware disease management strategies, leading 

to improved accuracy and wider adoption. These advancements have the potential to not 

only democratize access to advanced agricultural technologies but also have broader 

implications for healthcare and other domains, contributing to a more sustainable and 

technologically empowered future.  
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