

AMERICAN UNIVERSITY OF BEIRUT

FEDERATED MACHINE LEARNING

AND TINYML INFERENCE FOR CROP DISEASE AND PEST

CLASSIFICATION ON SMARTPHONES

by

HADI SAMIH HASAN

A thesis

submitted in partial fulfillment of the requirements

for the degree of Master of Engineering

to the Department of Electrical and Computer Engineering

of the Maroun Semaan Faculty of Engineering and Architecture

at the American University of Beirut

Beirut, Lebanon

April 2024

AMERICAN UNIVERSITY OF BEIRUT

FEDERATED MACHINE LEARNING

AND TINYML INFERENCE FOR CROP DISEASE AND PEST

CLASSIFICATION ON SMARTPHONES

by

HADI SAMIH HASAN

Approved by:

 Signature

__

Dr. Mazen Saghir, Associate Professor Advisor

Department Electrical and Computer Engineering

 Signature

__

Dr. Mariette Awad, Associate Professor Co-Advisor

Department of Electrical and Computer Engineering

 Signature

__

Dr. Jihad Fahs, Assistant Professor Member of Committee

Department of Electrical and Computer Engineering

 Signature

__

Dr. Daniel Asmar, Professor Member of Committee

Department of Mechanical Engineering

Date of thesis defense: April 16, 2024

 1

ACKNOWLEDGEMENTS

I extend my sincere appreciation to my esteemed advisor, Professor Mazen Saghir, for

his exceptional guidance, unwavering support, and scholarly insight throughout the

completion of this thesis. His expertise and mentorship have been invaluable in shaping

this research and my academic growth.

I am also grateful to my esteemed co-advisor, Professor Mariette Awad, for her invaluable

contributions, rigorous critique, and scholarly wisdom, which have significantly enriched

the depth and quality of this work.

I am indebted to my esteemed committee members, Professor Jihad Fahs and Professor

Daniel Asmar, for their thorough evaluation, constructive feedback, and scholarly

guidance, which have elevated the thoroughness and academic integrity of this thesis.

To my beloved family, whose devoted encouragement, unwavering support, and enduring

patience have been my rock throughout this academic pursuit, I express my deepest

gratitude. Your belief in me has been the cornerstone of my success, and I am profoundly

grateful for your unwavering support.

Lastly, I extend my heartfelt thanks to my friends for their encouragement, friendship,

and moral support throughout this academic journey. Your companionship and positivity

have made this endeavor all the more enriching and fulfilling.

 2

ABSTRACT

OF THE THESIS OF

Hadi Samih Hasan for Master of Engineering

 Major: Electrical and Computer Engineering

Title: Federated Machine Learning and TinyML Inference for Crop Disease and Pest

Classification on Smartphones

As the agricultural industry undergoes a technological revolution, the integration of

machine learning (ML) and mobile technologies emerges as a promising solution to

address crop disease management efficiently. In this thesis, we present a novel approach

combining federated learning (FL) and TinyML inference for crop disease classification

on smartphones. Our research encompasses the development of a web application for

dataset collection, complemented by a mobile application tailored for farmers. Through

rigorous training, we produced multiple ML models, each specialized in detecting

diseases across different plant types. These models were subsequently hosted for offline

use, empowering farmers with real-time disease identification capabilities directly on

their smartphones. Leveraging FL techniques, our solution ensures adaptability and

scalability, crucial factors in the agricultural domain. Furthermore, employing TinyML

inference enables efficient model execution on resource-constrained devices without

compromising accuracy. Evaluation results demonstrate an impressive average accuracy

of 98% across all deployed models. This framework represents a significant step forward

in democratizing access to advanced agricultural technologies, enhancing crop disease

management, and contributing to global food security.

Keywords - Federated Learning, TinyML, Crop Disease Classification, Dataset

Collection, Offline Model Hosting, Real-time Disease Identification, Resource-

constrained Devices.

 3

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... 1

ABSTRACT ... 2

ILLUSTRATIONS ... 7

TABLES ... 8

INTRODUCTION .. 9

RELATED WORK ... 14

2.1 TinyML for Image Classification ... 14

2.1.1 Overview of TinyML in Mobile Devices .. 14

2.1.2 State-of-the-Art TinyML Models for Image Classification 16

2.2 Federated Learning on Mobile Phones ... 20

2.2.1 Federated Learning Architecture and Workflow ... 20

2.2.2 Privacy and Security in Federated Learning .. 23

2.2.3 Federated Learning Applications in Image Classification 24

2.3 Convolutional Neural Networks ... 25

2.3.1 Convolutional Neural Networks Architecture ... 25

2.3.2 Math Behind Convolutional Neural Networks .. 26

2.4 Image Classification of Pests .. 29

2.4.1 Pest Identification and Crop Protection using Image Recognition 30

2.4.2 Deep Learning Approaches for Pest Image Classification 31

2.5 TinyML and Federated Learning Integration ... 32

2.5.1 Advantages of TinyML and Federated Learning Combination 32

 4

2.5.2 Related Studies on TinyML-Federated Learning in Different Domains 33

OVERVIEW OF TINYML FRAMEWORKS 43

3.1 TinyML Frameworks .. 43

3.1.1 TensorFlow Lite ... 43

3.1.2 TensorFlow Lite Micro .. 44

3.1.3 PyTorch Mobile ... 45

3.1.4 Edge Impulse ... 46

3.1.5 uTensor .. 47

3.1.6 CMSIS-NN .. 48

3.2 Comparison of TinyML Frameworks ... 49

DATASETS USED AND IMAGES PRE-PROCESSING.......... 51

4.1 Overall Dataset (Augmented PlantVillage Dataset) ... 53

4.1.1 PlantVillage Dataset .. 53

4.1.2 Collected Dataset from the Agricultural Department at the AUB 54

4.2 Image Preprocessing and Cleaning Techniques ... 58

4.3 Dataset Splitting Strategy for Robust Machine Learning Model Training and

Evaluation ... 58

FEDERATED LEARNING SETUP AND SIMULATION 61

5.1 Federated Learning Architecture .. 61

5.2 Experiment 1 Simulation (One Model for All Plants) .. 65

5.2.1 Initial Training and Testing ... 66

5.2.2 Federated Training Rounds .. 66

5.2.3 Evaluation of Optimal Image Count per Federated Learning Round 66

5.2.4 Aggregation and Model Improvement ... 68

5.2.5 Enhanced Accuracy ... 69

 5

5.3 Experiment 2 Simulation (One Model for Each Plant) ... 69

5.3.1 Initial Training and Testing ... 70

5.3.2 Central Models Retraining ... 70

5.3.3 Aggregation and Model Improvement ... 70

5.3.4 Enhanced Accuracy ... 71

TINYML MODEL SELECTION AND OPTIMIZATION 72

6.1 ML Kit for Object Detection .. 72

6.2 Plant Disease Classification with TensorFlow Lite using Transfer Learning 74

6.3 TinyML Experiment 1 (One Model for All Plants) .. 75

6.3.1 Model Size ... 76

6.3.2 Accuracy Improvement .. 77

6.3.3 Comparison with Efficientnet_lite Models .. 77

6.3.4 Comparison with Resnet_50 and MobileNet_v2 ... 77

6.3.5 Use Case Considerations ... 78

6.3.6 Chosen Model .. 78

6.4 TinyML Experiment 2 (One Model for Each Plants) ... 78

6.4.1 TinyML Model Selection ... 78

BACKEND DEVELOPMENT AND CONNECTIVITY 80

7.1 Backend Infrastructure .. 80

7.2 Dynamic Model Serving ... 81

7.3 Tailored Specialized Models .. 81

7.4 Authentication Mechanism ... 81

7.5 Conclusion .. 82

MOBILE APP DEVELOPMENT PROCESS 83

 6

8.1 Objective ... 83

8.2 Mobile App Development for Plant Disease Classification 83

8.3 Choice of Technology Stack ... 83

8.4 Minimum Requirements for App Functionality ... 85

8.5 Data Management and Privacy ... 85

8.6 Setting Up the Development Environment ... 87

8.7 Integrating TensorFlow Lite Model .. 87

8.8 Authorization .. 87

8.9 Building the User Interface ... 88

8.10 Testing and Debugging ... 92

RESULTS, CONCLUSION AND FUTUE WORK 94

9.1 Results ... 94

9.1.1 TinyML Models ... 94

9.1.2 Federated Learning .. 95

9.1.3 Backend Development ... 95

9.1.4 Mobile Application Development ... 96

9.2 Conclusion .. 96

9.3 Future Scope ... 97

REFERENCES ... 98

 7

ILLUSTRATIONS

Figure

1. Model Size vs Accuracy of Different Pretrained Machine Learning Models 17

2. Latency vs Accuracy of Different Pretrained Machine Learning Models 18

3. Convolutional Neural Network Components ... 25

4. Sign up and Sign in Pages of the Web Portal ... 56

5. Diseases Images Acquisition Screen .. 57

6. Federated Learning Iterative Process .. 62

7. Evaluation of Optimal Image Count per Federated Learning Round 67

8. Accuracy vs Federated Learning Rounds with Different B Values 69

9. Model Accuracy after 100 Rounds of Federated Learning Per Plant 71

10. Models Metrics after being Trained (Average Accuracy) 79

11. Authorization Screens ... 88

12. Historical Record of Captured Diseases ... 89

13. Image Acquisition and Disease Identification Console 90

14. Comprehensive Insight and Identification Reference ... 91

 8

TABLES

Table

1. Comparison of Machine Learning Frameworks for Embedded Devices 50

2. Comparison of Pretrained Models Trained on the Overall Dataset 76

 9

CHAPTER 1

INTRODUCTION

The widespread adoption of mobile phones equipped with cameras and internet

connectivity has brought about transformative changes across multiple sectors, including

agriculture. In this context, the data engineering industry has made significant advances

in employing mobile technology to effectively tackle critical challenges, notably in the

realm of crop disease identification and protection [1]. An encouraging development in

this regard is the emergence of mobile applications that leverage field-captured images

for disease identification. These applications heavily rely on powerful computational

resources housed within data centers, enabling them to process extensive volumes of

image data and deploy sophisticated deep learning models with remarkable efficiency.

Through this process, they can accurately identify diseases and furnish timely and precise

information for crop protection, facilitating informed decision-making by farmers.

However, a prominent drawback of the current framework lies in its reliance on a

robust and uninterrupted internet connection, particularly in rural areas where farmers

often encounter limited or unreliable access to the internet. This instability in connectivity

hinders the seamless functioning of these applications, thereby constraining farmers from

fully harnessing the potential of machine learning technologies to protect their crops.

The utilization of deep learning models in addressing the challenges posed in

agricultural applications, particularly in the context of crop disease identification and

protection, is motivated by several compelling reasons. One of the primary motivations

is the capability of deep learning models to extract complex patterns and features from

large volumes of data, such as images of crops and diseases. Deep learning models excel

 10

at tasks like image recognition and classification, making them highly effective in

identifying diseases affecting crops accurately. However, while deep learning models

offer exceptional performance, they often come with significant memory and

computational requirements. This presents a challenge, especially when deploying these

models on resource-constrained devices like mobile phones. Here's why the thesis focuses

on developing compressed deep learning models:

1. Memory Size: Deep learning models, particularly convolutional neural

networks (CNNs), can be memory-intensive. Mobile devices, especially in

rural areas, might have limited memory available. Compressing these models

reduces their memory footprint, making them more suitable for deployment

on mobile phones without causing memory-related issues.

2. Energy Consumption: Running complex deep learning models can be

computationally expensive, leading to increased energy consumption. This is

a critical concern, as mobile devices are often powered by batteries with

limited capacity. Compressed models are not only easier to load into memory

but also require less energy to execute, prolonging the device's battery life.

3. Offline Execution: In rural agricultural areas, stable internet connectivity can

be scarce. Deep learning models that require constant internet access for

cloud-based processing can be impractical. By developing compressed

models that can run directly on mobile devices offline, farmers gain the

advantage of continuous access to disease identification tools, even in areas

with limited or unreliable internet connections.

4. Accessibility: The ultimate goal is to make these applications more accessible

to farmers in rural areas. Compressed deep learning models enable the

 11

deployment of disease identification tools on affordable, low-end mobile

devices, ensuring that even resource-constrained farmers can benefit from

advanced technology without the need for high-end smartphones or constant

internet access.

In response to this challenge, this thesis aims to investigate and develop offline

compressed deep learning models capable of execution directly on mobile phones, by

reducing the model size without compromising performance.

The key objectives of this thesis are as follows:

1. Offline Compressed Deep Learning Models: This thesis investigates the

impact of federated learning on training TinyML models directly on mobile

devices. It examines how this approach affects model accuracy and efficiency,

considering the constraints of mobile hardware. Additionally, the study

explores the implications of developing machine learning models specific to

each type of plant disease on both model size and accuracy instead of training

models on the entire dataset. By analyzing the trade-offs between model

complexity and performance, insights into optimizing disease identification

capabilities for diverse crop varieties are gained.

2. Pipeline for Collecting Image Datasets: This thesis outlines the development

of a pipeline for efficiently collecting and processing images for training and

validation purposes. This pipeline streamlines the data acquisition process,

ensuring the availability of high-quality data for model training. Lastly, the

study focuses on the creation of a mobile application designed to assist

farmers in classifying diseases using an offline model with high accuracy. By

leveraging the optimized models and efficient image processing pipeline, the

 12

application empowers farmers to make timely and informed decisions

regarding crop health, even in areas with limited internet access.

3. Empowering Farmers in Rural Areas: By leveraging offline capabilities, this

project seeks to grant rural areas farmers access to cutting-edge machine

learning technologies in the agricultural domain. Even in areas lacking reliable

internet access, farmers can still utilize the advanced disease identification

model integrated into the mobile application, ensuring their access to valuable

technology.

4. Federated Model Training: Acknowledging the evolving nature of agricultural

settings, this research thesis investigates the utilization of federated learning

methods. Federated model training enables ongoing model refinement by

distributing training tasks across multiple mobile devices that generate local

data samples. By decentralizing the training process across multiple mobile

devices, this approach ensures that the models learn from the diverse and

dynamic datasets generated by farmers in different regions. This not only

facilitates the detection of new and region-specific disease patterns but also

enhances the models' ability to adapt swiftly to the ever-changing agricultural

environment.

In conclusion, this research project aims to bridge the digital gap in agriculture by

harnessing the power of offline compressed deep learning models. By enabling farmers

with limited internet access to access state-of-the-art disease identification technology,

the project aims to empower agricultural communities, enhance crop protection, and

foster sustainable farming practices. The investigation into federated model training

 13

further ensures that the models remain up-to-date and capable of handling emerging

challenges in agriculture.

 14

CHAPTER 2

RELATED WORK

2.1 TinyML for Image Classification

TinyML, also known as Tiny Machine Learning, has garnered significant

attention in the field of image classification due to its potential to deploy lightweight

machine learning models directly on edge devices, such as mobile phones and IoT

devices. Researchers have explored various techniques to create efficient and accurate

TinyML models for image recognition tasks.

2.1.1 Overview of TinyML in Mobile Devices

TinyML is a revolutionary field that aims to deploy machine learning models on

resource-constrained devices, such as mobile phones, Internet of Things (IoT) devices,

and microcontrollers [2]. The integration of TinyML in mobile devices has opened up

new possibilities for on-device AI processing, enabling real-time inference and reducing

the dependence on cloud-based services for machine learning tasks. Researchers and

engineers have been exploring various techniques and architectures to optimize and

deploy deep learning models on edge devices efficiently.

TinyML aims to bring the power of artificial intelligence to low-power, memory-

limited devices, enabling them to perform intelligent tasks locally without relying on

cloud computing [3, 4]. This literature review provides an overview of the advancements

in TinyML, including model quantization, hardware acceleration, and novel model

architectures. It also highlights the challenges faced, such as balancing model size,

accuracy, and energy efficiency, and the limited data and computation capabilities for

 15

training models on resource-constrained devices. Furthermore, the review explores the

potential applications of TinyML in industry, agriculture and environmental monitoring.

Additionally, it mentions various TinyML frameworks and tools like TensorFlow Lite,

ML Kit, Edge Impulse, uTensor, PyTorch Mobile, and Arm's CMSIS-NN library that aid

in deploying and optimizing machine learning models for TinyML applications.

2.1.1.1 Edge AI and TinyML Integration

Edge AI refers to the paradigm of bringing artificial intelligence capabilities

directly to edge devices, where data is generated, rather than relying on centralized cloud

servers. TinyML plays a crucial role in enabling Edge AI by making it possible to run

lightweight machine learning models on devices with limited computational resources.

Existing studies [5] have explored different methodologies to integrate TinyML into

mobile devices, including model quantization, network architecture pruning, and weight

clustering, to ensure efficient model execution and minimal memory footprint.

Additionally, custom hardware accelerators, such as Tensor Processing Units (TPUs) and

Neural Processing Units (NPUs), have been investigated to further enhance inference

speed on edge devices.

2.1.1.2 Challenges and Opportunities in TinyML Deployment

While TinyML brings promising opportunities for on-device AI, it also presents

several challenges that researchers have been actively addressing [6]. One of the key

challenges is striking a balance between model size, accuracy, and resource utilization.

TinyML models must be compact enough to fit on resource-constrained devices while

maintaining sufficient accuracy for real-world applications. Achieving this balance often

 16

requires trade-offs in model complexity and the selection of appropriate model

architectures. Moreover, handling the heterogeneity of edge devices and optimizing

TinyML models for various hardware configurations pose additional challenges.

On the other hand, TinyML presents numerous opportunities for diverse

applications, ranging from real-time image and speech recognition to predictive

maintenance and environmental monitoring. By enabling local inference and data

processing, TinyML reduces the latency and privacy concerns associated with cloud-

based AI services.

2.1.1.3 Real-time Inference on Resource-constrained Devices

Real-time inference on resource-constrained devices is a critical requirement for

many edge applications. Achieving low-latency inference while adhering to the

limitations of memory, power, and computational resources poses a significant research

challenge [7]. Studies have investigated techniques like model quantization, which

reduces the precision of model parameters to 8-bit or even lower, resulting in faster

computations. Additionally, advancements in hardware architectures, like Mobile AI

accelerators and custom neural processing units, have been explored to enable efficient

real-time inference. Researchers have also worked on developing efficient algorithms and

optimizations that leverage the sparsity and redundancy present in neural network models

to accelerate inference without compromising accuracy.

2.1.2 State-of-the-Art TinyML Models for Image Classification

TinyML research has witnessed significant advancements in developing state-of-

the-art models for image classification on resource-constrained devices. Here, we explore

 17

two prominent TinyML models that have shown exceptional performance in image

classification tasks:

2.1.2.1 EfficientNet-Lite for Mobile Devices

In May 2019, Google introduced a groundbreaking series of image classification

models known as EfficientNet, which achieved unparalleled accuracy while using

significantly fewer computations and parameters. EfficientNet-Lite is an efficient variant

of the EfficientNet family, specifically designed for deployment on mobile devices [8].

This innovation had the potential to revolutionize applications on mobile and IoT devices

where computational resources were limited. EfficientNet-Lite is specifically designed to

run on TensorFlow Lite, catering to performance on mobile CPUs, GPUs, and EdgeTPUs.

The EfficientNet-Lite series comprises five variants, offering options ranging from low

latency and small model size (EfficientNet-Lite0) to high accuracy (EfficientNet-Lite4)

presented in Figure 1.

Figure 1: Model Size vs Accuracy of Different Pretrained Machine Learning Models

 18

Even the largest variant, integer-only quantized EfficientNet-Lite4, achieves an

impressive 80.4% ImageNet top-1 accuracy while maintaining real-time performance,

running in just 30 milliseconds per image on a Pixel 4 CPU as shown in Figure 2.

Figure 2: Latency vs Accuracy of Different Pretrained Machine Learning Models

EfficientNet-Lite addresses key challenges inherent in edge devices, notably

quantization and heterogeneous hardware. Given the limited floating-point support on

many edge devices, quantization is a commonly employed technique, but it often requires

complex quantization-aware training or results in diminished accuracy post-training.

Google's solution to this challenge involves utilizing the TensorFlow Lite post-training

quantization workflow, ensuring minimal accuracy loss while quantizing the model.

Another hurdle, heterogeneous hardware, poses difficulties in running the same model on

a variety of accelerators, such as mobile GPUs and EdgeTPUs, due to hardware

specialization. To tackle this, Google adapted the original EfficientNets by removing

certain elements, switching activations, and optimizing the model's architecture to better

align with the capabilities of different accelerators.

 19

The TensorFlow Model Optimization Toolkit played a pivotal role in enabling

efficient post-training quantization, leading to a 4x reduction in model size and 2x

enhancement in inference speed. One notable challenge encountered was the initial

accuracy drop during post-training quantization. Google's team identified that this was

linked to a wide quantized output range, prompting the replacement of swish activations

with "restricted-ranged" activations (RELU6). This adjustment significantly improved

accuracy, mitigating the accuracy loss incurred during quantization. Overall, the

EfficientNet-Lite models extend the prowess of EfficientNet to edge devices, ushering in

a new era of efficient and accurate image classification in resource-constrained

environments.

2.1.2.2 MobileNetV3: Squeeze-and-Excitation Networks for Mobile Vision

MobileNetV3 is an evolution of the MobileNet family, incorporating novel

architectural elements to improve accuracy and efficiency for mobile vision tasks [8, 9].

The model introduces Squeeze-and-Excitation (SE) blocks, which capture channel-wise

dependencies and recalibrate feature maps adaptively. This allows MobileNetV3 to

achieve higher accuracy with fewer parameters, making it well-suited for deployment on

edge devices with limited resources.

MobileNetV3 encompasses a range of innovative approaches, encompassing

hardware-aware network architecture search (NAS), coupled with the inventive NetAdapt

algorithm, to optimize network architecture based on specific mobile devices. It also

devises enhanced versions of nonlinearities, such as ReLU and Swish, to maximize

efficiency in mobile contexts. Its novel network design surpasses previous iterations of

MobileNet models in terms of efficiency and demonstrates capacity for 8-bit quantization

 20

with minimal accuracy loss.. Furthermore, MobileNetV3 introduced an advanced

segmentation decoder, more efficient than its predecessors. And it the authors validate

their techniques across diverse mobile tasks including image classification, object

detection, and semantic segmentation, consistently demonstrating superior performance

compared to existing methods. For instance, their MobileNetV3-Large model achieves a

notable 77.1% accuracy on the ImageNet classification task, outperforming the prior

state-of-the-art (MnasNet) by 0.8%, while also boasting significantly faster execution,

clocking at 300 FPS on a Pixel 4 phone (20% faster than MnasNet). The study's

innovative contributions significantly enhance both accuracy and efficiency in neural

networks tailored for mobile applications, representing a significant advancement in

mobile computer vision. In addition, MobileNetV3-Small attained 75.2% ImageNet

accuracy (2.4% surpassing MobileNetV2), and achieving a 700 FPS on a Pixel 4 phone

(50% faster than MobileNetV2).

2.2 Federated Learning on Mobile Phones

Federated learning is a decentralized machine learning approach that enables

training models on mobile devices without sharing raw data with a central server. This

section explores various aspects of federated learning on mobile phones.

2.2.1 Federated Learning Architecture and Workflow

Federated learning involves a unique architecture and workflow that distinguishes

it from traditional centralized machine learning. The federated averaging algorithm and

gradient descent are fundamental components of federated learning [10]. Federated

averaging allows mobile devices (clients) to compute model updates locally and share

 21

them securely with a central server. The server aggregates these updates to create a global

model, which is then sent back to the clients for further iterations. Understanding the

federated learning workflow is crucial for deploying pest image classification models on

mobile devices.

Federated learning is a methodology that entails training statistical models on

remote devices or isolated data centers, such as mobile phones or hospital servers, while

ensuring that the data remains localized [11]. This approach presents new and distinctive

challenges due to the heterogeneous and potentially extensive nature of the networks

involved. As a result, it necessitates a departure from conventional techniques used in

large-scale machine learning, distributed optimization, and privacy-preserving data

analysis. In this context, we delve into the distinctive features and difficulties associated

with federated learning, providing an extensive overview of current approaches while

also outlining various avenues for future research that hold relevance for diverse research

communities.

In the context of data distribution, "i.i.d." stands for "independent and identically

distributed" [12]. In traditional machine learning settings, it is commonly assumed that

data samples are independent of each other and are drawn from the same underlying

distribution, making them identically distributed.

However, in certain scenarios, such as federated learning or distributed

environments, the data collected from different sources may not satisfy the i.i.d.

assumption. This means that the data samples are not independent and may come from

different distributions. In such cases, the data generated on each device or participant in

the network may vary significantly, leading to statistical heterogeneity.

 22

Dealing with non-i.i.d. data poses challenges in algorithm design and

optimization, as conventional machine learning algorithms often rely on the i.i.d.

assumption. Federated learning, which involves training models on decentralized devices

with data that is non-i.i.d., requires specialized techniques to handle the inherent

complexities arising from the distribution differences among the devices. These

techniques aim to ensure convergence to a global model while accounting for the varying

data distributions across the network.

2.2.1.1 Federated Averaging and Gradient Descent

Federated averaging and gradient descent are key optimization techniques in

federated learning [10]. Federated averaging aims to balance model updates from

different clients to create a consensus model. Gradient descent, on the other hand,

facilitates model updates by iteratively minimizing the loss function based on the local

data of each client. Researchers have explored various improvements to federated

averaging and gradient descent algorithms, such as adaptive learning rates and weight

clipping, to enhance the convergence speed and robustness of federated learning on

mobile phones.

2.2.1.2 Client-Server Communication in Federated Learning

Efficient communication between clients and the central server is crucial in

federated learning. However, mobile devices often operate in unreliable and bandwidth-

constrained networks [13]. Research has focused on developing communication-efficient

protocols for federated learning, minimizing the transmission overhead while ensuring

data privacy. Techniques such as quantization and compression of model updates, as well

 23

as differential privacy mechanisms, have been explored to facilitate seamless client-

server communication.

2.2.1.3 Federated Learning in Unreliable Mobile Networks

Mobile devices can experience intermittent connectivity, making federated

learning challenging in such scenarios. Researchers have proposed techniques to handle

communication failures and latency issues in federated learning on mobile phones. For

example, clients can store and buffer model updates during network disruptions, and the

server can employ advanced synchronization methods to accommodate varying client

participation rates.

2.2.2 Privacy and Security in Federated Learning

Preserving user privacy is a critical aspect of federated learning, especially when

dealing with sensitive data on mobile devices. This subtopic explores various privacy and

security mechanisms used in federated learning [14]:

2.2.2.1 Differential Privacy for Privacy Preservation

Differential privacy is a privacy-preserving technique that adds random noise to

the model updates to prevent the identification of individual data samples. Implementing

differential privacy in federated learning ensures that the contributions of individual

clients remain confidential, safeguarding user data while maintaining model accuracy.

2.2.2.2 Secure Aggregation Protocols

Secure aggregation protocols are employed to protect model updates during

aggregation at the central server. These protocols use cryptographic techniques, such as

 24

homomorphic encryption and secure multi-party computation, to perform aggregation

without revealing sensitive client information.

2.2.2.3 Threats and Mitigation Strategies in Federated Learning

Federated learning faces security threats, such as model poisoning attacks and

data leakage. Researchers have explored mitigation strategies to counter these threats,

including robust aggregation methods, model verification, and federated learning-specific

adversarial training.

2.2.3 Federated Learning Applications in Image Classification

Federated learning has demonstrated its effectiveness across multiple fields, with

image classification being no exception. Federated transfer learning facilitates the

exchange of insights among clients while upholding data privacy standards. Recent

studies [15] have explored federated transfer learning techniques in the realm of image

classification, allowing models to harness knowledge from a diverse array of mobile

devices. When considering the accuracy of the proposed solution in the context of the

MNIST dataset [16], it's noteworthy that even when members consent to sharing only

10% or 1% of their trained parameters at a time, the model achieves impressive accuracies

of 99.14% and 98.71%, respectively. These are aligned with the performance of the

centralized model, which attains an accuracy of 99.17% when trained on the entire dataset

on a central server.

 25

2.3 Convolutional Neural Networks

Convolutional Neural Networks or CNNs constitute the fundamental architecture

in our research. While various CNN variations exist, the algorithms and derivations

across these variations are remarkably similar [17].

2.3.1 Convolutional Neural Networks Architecture

A typical CNN is composed of multiple layers, falling into three main types:

Convolutional Layers, Max-Pooling Layers, and Fully-Connected Layers as shown in

Figure 3. Convolutional layers consist of a rectangular grid of neurons that take inputs

from a corresponding rectangular section of the previous layer using shared weights.

Max-pooling layers subsample small rectangular blocks from the preceding convolutional

layer, taking the maximum value within each block. Finally, fully-connected layers

facilitate high-level reasoning in the CNN, connecting all neurons from the previous

layer, regardless of their spatial arrangement. After several convolutional and max-

pooling layers, fully connected layers provide the core reasoning before any subsequent

convolutional layers.

Figure 3: Convolutional Neural Network Components

 26

2.3.2 Math Behind Convolutional Neural Networks

A typical CNN comprises several layers, falling into three distinct types:

Convolutional Layers, Max-Pooling Layers, and Fully-Connected Layers. Convolutional

layers consist of a rectangular grid of neurons, necessitating the previous layer to possess

a similar rectangular grid structure. Each neuron within the convolutional layer receives

inputs from a corresponding rectangular section of the previous layer, and the weights for

this section remain uniform across all neurons in the convolutional layer. Consequently,

the convolutional layer performs an image convolution operation on the previous layer,

with the weights specifying the convolution filter. Furthermore, multiple grids may exist

within each convolutional layer, with each grid receiving inputs from all grids in the

preceding layer, potentially employing different filters.

Following each convolutional layer, a pooling layer may be introduced, wherein

small rectangular blocks are extracted from the convolutional layer, and subsampling

produces a single output value for each block [18, 19]. Finally, after multiple

convolutional and max-pooling layers, the neural network's high-level reasoning occurs

through fully connected layers. These layers connect all neurons from the previous layer,

whether they originate from fully connected, pooling, or convolutional layers, and they

no longer possess spatial arrangements (visualized as one-dimensional). As a result, no

convolutional layers can follow a fully connected layer.

With the neural network's structure described, we proceed to analyze forward and

backward propagation techniques to perform prediction and gradient computations in

these neural networks.

Forward propagation involves three types of layers as specified earlier. The

propagation process differs depending on the layer under consideration. For the purpose

 27

of this discussion, we shall focus on the convolutional layers and the max-pooling layers,

leaving aside the fully connected networks.

In Convolutional Layers, consider a square neuron layer of size 𝑁 × 𝑁 followed

by the convolutional layer. When utilizing an 𝑚 × 𝑚 filter ω, the output of the

convolutional layer will be of dimensions (𝑁 − 𝑚 + 1) × (𝑁 − 𝑚 + 1). To compute the

pre-nonlinearity input for a particular unit 𝑥𝑖𝑗
ℓ in our layer, we sum up the contributions

from the previous layer cells, with each contribution weighted by the corresponding filter

components as shown in equation 1.

𝑥𝑖𝑗
ℓ = ∑  

𝑚−1

𝑎=0

∑  

𝑚−1

𝑏=0

𝜔𝑎𝑏𝑦(𝑖+𝑎)(𝑗+𝑏)
ℓ−1 (1)

Then, the convolutional layer applies its nonlinearity presented in equation 2:

𝑦𝑖𝑗
ℓ = 𝜎(𝑥𝑖𝑗

ℓ) (2)

Max-Pooling Layers are straightforward and do not involve learning. They take a

𝑘 × 𝑘 region and produce a single output, which represents the maximum value within

that region. If the input layer is 𝑁 × 𝑁, the max-pooling layer's output will be
𝑁

𝑘
 ×

𝑁

𝑘
, as

each 𝑘 × 𝑘 block is condensed into a single value using the max function. Backward

Propagation involves deriving algorithms for the two layer types, the Convolutional

Layers and the Max-Pooling Layers. For the Convolutional Layers, assume that we have

an error function 𝐸 and we know the error values at our convolutional layer, the objective

is to determine the error values at the layer before it and the gradient for each weight in

the convolutional layer.

To compute the error values for the previous layer, we need to find the partial

derivative of E with respect to each neuron output (
∂𝐸

∂𝑦𝑖𝑗
ℓ). Employing the chain rule, we

 28

calculate the gradient component using equation 3 for each weight by summing the

contributions from all expressions in which the variable occurs.

∂𝐸

∂𝜔𝑎𝑏
= ∑  

𝑁−𝑚

𝑖=0

∑  

𝑁−𝑚

𝑗=0

∂𝐸

∂𝑥𝑖𝑗
ℓ

∂𝑥𝑖𝑗
ℓ

∂𝜔𝑎𝑏
= ∑  

𝑁−𝑚

𝑖=0

∑  

𝑁−𝑚

𝑗=0

∂𝐸

∂𝑥𝑖𝑗
ℓ

𝑦(𝑖+𝑎)(𝑗+𝑏)
ℓ−1 (3)

To calculate the gradient and propagate errors in the convolutional layer, we sum

over all occurrences of 𝑥𝑖𝑗
ℓ in which 𝜔𝑎𝑏 is present, representing weight-sharing in the

neural network. The relationship is deduced from the forward propagation equations 4

and 5.

∂𝑥𝑖𝑗
ℓ

∂𝜔𝑎𝑏
= 𝑦(𝑖+𝑎)(𝑗+𝑏)

ℓ−1 (4)

The computation of deltas (
∂𝐸

∂𝑥𝑖𝑗
ℓ), often referred to as "deltas", is straightforward

using the chain rule. Specifically,

∂𝐸

∂𝑥𝑖𝑗
ℓ

=
∂𝐸

∂𝑦𝑖𝑗
ℓ

∂𝑦𝑖𝑗
ℓ

∂𝑥𝑖𝑗
ℓ

=
∂𝐸

∂𝑦𝑖𝑗
ℓ

∂

∂𝑥𝑖𝑗
ℓ

(𝜎(𝑥𝑖𝑗
ℓ)) =

∂𝐸

∂𝑦𝑖𝑗
ℓ

𝜎′(𝑥𝑖𝑗
ℓ) (5)

By leveraging the known error at the current layer (
∂𝐸

∂𝑦𝑖𝑗
ℓ), we easily calculate the

deltas (
∂𝐸

∂𝑥𝑖𝑗
ℓ) at the current layer using the derivative of the activation function, 𝜎′(𝑥).

Having obtained the errors at the current layer, we possess the necessary components to

compute the gradient concerning the weights used in this convolutional layer.

Furthermore, to compute the weights for this convolutional layer, we need to

propagate errors back to the previous layer. By using the chain rule once more, we derive

∂𝐸

∂𝑦𝑖𝑗
ℓ−1 as a sum over a range of a and b as presented in equation 6.

∂𝐸

∂𝑦𝑖𝑗
ℓ−1

= ∑  

𝑚−1

𝑎=0

∑  

𝑚−1

𝑏=0

∂𝐸

∂𝑥(𝑖−𝑎)(𝑗−𝑏)
ℓ

∂𝑥(𝑖−𝑎)(𝑗−𝑏)
ℓ

∂𝑦𝑖𝑗
ℓ−1

= ∑  

𝑚−1

𝑎=0

∑  

𝑚−1

𝑏=0

∂𝐸

∂𝑥(𝑖−𝑎)(𝑗−𝑏)
ℓ

𝜔𝑎𝑏 (6)

 29

The relationship
∂𝑥(𝑖−𝑎)(𝑗−𝑏)

ℓ

∂𝑦𝑖𝑗
ℓ−1 =𝜔𝑎𝑏 is evident from the forward propagation

equations.

This error propagation process resembles a convolution, with the filter ω applied

to the layer but with 𝑥(𝑖−𝑎)(𝑗−𝑏) instead of 𝑥(𝑖+𝑎)(𝑗+𝑏). To ensure this process is well-

defined for points at least m units away from the top and left edges, padding the top and

left edges with zeros is necessary. Once implemented, this effectively performs a

convolution using the ω filter flipped along both axes.

On the other side, the Max-Pooling Layers do not engage in learning themselves.

Instead, they reduce the problem's size by introducing sparseness. During forward

propagation, 𝑘 × 𝑘 blocks are condensed into a single value. This resulting value obtains

an error from backward propagation through the previous layer and is then sent back to

its origin. Since the error only originates from one location within the 𝑘 × 𝑘 block,

backpropagated errors from max-pooling layers are notably sparse.

In conclusion, CNN offers a distinct approach to processing dimensioned and

ordered data. Unlike fully connected layers, they enforce weight sharing translationally,

acknowledging the relevance of data location in the input. This architectural modeling of

the human visual cortex proves highly effective for tasks such as object recognition and

image classification.

2.4 Image Classification of Pests

Image classification of pests using deep learning has emerged as a promising

approach for automated pest detection and crop protection. This section explores various

aspects of pest image classification:

 30

2.4.1 Pest Identification and Crop Protection using Image Recognition

Automated pest detection through image recognition holds great potential for

enhancing crop protection and increasing agricultural productivity. This subtopic focuses

on the applications and benefits of using image recognition to identify pests in agricultural

fields [20].

2.4.1.1 Challenges in Pest Detection

Pest detection poses several challenges, such as variations in pest appearance

based on life stages, and diverse environmental conditions. Additionally, the presence of

similar-looking pests and natural variations in plant features can lead to false positives or

negatives in pest identification. Researchers have addressed these challenges by

developing robust image processing techniques and leveraging advanced machine

learning algorithms to improve the accuracy and reliability of pest detection systems.

2.4.1.2 Plant Pest Recognition Datasets and Benchmarks

The availability of high-quality datasets and benchmarks is crucial for training

and evaluating pest recognition models [21]. Researchers have curated and shared

datasets containing labeled images of various plant pests and diseases. These datasets

serve as the foundation for developing and benchmarking state-of-the-art pest

classification models.

2.4.1.3 State-of-the-Art Pest Classification Techniques

Advancements in deep learning techniques have led to state-of-the-art pest

classification models [22]. Researchers have explored different neural network

architectures, such as CNNs, to achieve high accuracy in pest identification. Additionally,

 31

feature engineering and image augmentation techniques have been utilized to enhance

model performance. State-of-the-art pest classification models have demonstrated

significant improvements over traditional image recognition methods.

2.4.2 Deep Learning Approaches for Pest Image Classification

Deep learning approaches have shown remarkable success in pest image

classification tasks. This subtopic focuses on various deep learning methodologies

applied to pest recognition:

2.4.2.1 CNN Architectures for Pest Recognition

CNNs have emerged as the backbone of many pest recognition models due to their

ability to automatically learn hierarchical features from images. Researchers have

experimented with various CNN architectures, such as VGG, ResNet, and DenseNet, to

identify the most suitable architecture for pest image classification. Transfer learning has

also been employed, where pre-trained CNNs on large datasets are fine-tuned for specific

pest identification tasks.

2.4.2.2 Transfer Learning for Pest Image Classification

Transfer learning allows leveraging knowledge from pre-trained models on large

datasets to improve pest classification models [23]. Researchers have investigated the

transferability of features learned from generic image recognition tasks to domain-

specific pest image classification. By fine-tuning pre-trained models, pest classification

models can achieve better accuracy with limited labeled pest data.

 32

2.4.2.3 Multi-scale Feature Learning for Pest Detection

Pest images can exhibit variations in scale, making it challenging to detect pests

of different sizes [24]. Researchers have explored multi-scale feature learning

approaches, such as pyramid pooling and multi-scale CNN architectures, to ensure that

pest detection models are capable of recognizing pests at various scales.

2.5 TinyML and Federated Learning Integration

The integration of TinyML and federated learning offers several advantages and

opens up new possibilities for decentralized machine learning on edge devices. This

section explores the benefits and related studies of this combination:

2.5.1 Advantages of TinyML and Federated Learning Combination

2.5.1.1 Edge Computing and Local Inference with TinyML

The combination of TinyML and federated learning enables edge computing and

local model inference on mobile devices [25]. TinyML models are lightweight and

optimized for on-device execution, allowing real-time inference without relying on

continuous cloud connectivity. Federated learning enhances this process by facilitating

model training using the data stored locally on the device, eliminating the necessity to

transmit raw data (images) to the cloud for central model updates. Instead, the model

weights are shared, leading to updates in the central model. This edge computing

paradigm reduces latency, conserves network bandwidth, and increases the central model

accuracy and generalization.

 33

2.5.1.2 Federated Learning for Decentralized Pest Data Analysis

In the context of pest image classification, federated learning allows for

decentralized pest data analysis. Individual mobile devices (e.g., smartphones or IoT

devices) can locally collect pest images specific to their geographical locations. These

locally collected data can be effectively harnessed in a collaborative manner to

continuously train the global pest image classification model using federated learning. In

this approach, instead of centralizing all the data in one location, each device retains its

data locally. Then, federated learning algorithms facilitate the sharing of model updates

(weights) rather than raw data. These updates, derived from the locally collected data, are

aggregated and used to refine the global model iteratively. This process ensures that the

model benefits from insights across various geographical and that the pest data from

different regions contribute to the central model training.

2.5.2 Related Studies on TinyML-Federated Learning in Different Domains

2.5.2.1 Empowering Farmers with AI: Federated Learning of CNNs for Wheat Diseases

Multi-Classification [26]

In the domain of wheat disease detection and classification, this research

contributes to the growing body of knowledge on leveraging collaborative learning CNNs

and federated learning techniques. By addressing the challenges of decentralization, this

study presents a novel approach to improve the precision and resilience of disease

categorization models for wheat disease detection. Previous works have explored the

importance of accurate wheat disease identification due to its significance as a staple food

globally. In this particular research, the authors have introduced an approach that covers

various critical stages in the development and implementation of a collaborative learning

CNN model. This methodology not only outlines the process of gathering relevant data

 34

but also emphasizes the importance of preparing and refining the data through pre-

processing techniques. Moreover, it highlights the significance of partitioning the data to

create distinct sets for both training and testing the CNN model, ensuring its robustness

and accuracy. What sets this research apart is its integration of federated averaging, a

technique used to facilitate the distribution of data among different participants within

the federated learning framework. This process allows for the collective utilization of data

from various sources while preserving individual data privacy. The results demonstrate

the effectiveness of the proposed approach, as the federated learning CNN model

achieved high accuracy (0.948), precision, recall, and F1 scores (weighted-average F1:

0.946, macro-average F1: 0.944, micro-average F1: 0.946), outperforming state-of-the-

art models. These findings hold potential implications for the agricultural sector, offering

a promising solution to reduce harvest losses and boost crop outputs through precise and

efficient disease identification, while maintaining data security and privacy. Moreover,

the approach's adaptability to other domains facing data exchange constraints highlights

its broader applicability in decentralized environments.

2.5.2.2 Evaluating the Potential of Federated Learning for Maize Leaf Disease

Prediction [27]

The rapid evolution of technologies, coupled with the increasingly sophisticated

demands of users, has led to an unprecedented surge in data. This vast amount of data

contains valuable strategic information and knowledge, necessitating the use of

sophisticated computational methods for extraction. In the context of maize crops, certain

leaf diseases can significantly impact production and reduce quality and productivity. To

address this limitation, CNNs offer intelligent applications to support crop disease

diagnosis. In traditional machine learning, the dataset is typically required to be locally

 35

available for model training. This approach entails clients training the model locally with

their data, ensuring privacy, and transmitting only the parameter weights of the trained

model to a central server. However, Federated Learning presents an alternative, dynamic

approach that accommodates heterogeneous client hardware capacity, making it suitable

for decentralized training scenarios.

The experimental results validate the performance of each CNN trained with the

Federated Learning paradigm. AlexNet demonstrated the shortest training time among

the CNN models evaluated. Among them, VGG-11 followed by AlexNet achieved the

highest accuracy, with 97.29% and 96.87% accuracy, respectively. However, VGG-11's

training process required more time, making it less suitable for Federated Learning

scenarios where training time is crucial. A weak negative correlation between accuracy

and training time, except for VGG-11, was observed, indicating that distributed training

approaches yield efficient models. Additionally, confusion matrices were analyzed to

identify challenging classes in the training and generalization process of the models. The

evaluation of network traffic used in the Federated Learning training process revealed

that SqueezeNet exhibited lower network traffic volume despite its classification

performance, owing to its trainable CNN parameters.

In conclusion, the study highlights the potential of Federated Learning to address

data privacy concerns in the context of maize leaf disease classification using CNNs.

AlexNet emerges as a suitable model for Federated Learning due to its structure, training

time, and accuracy. The weak negative correlation between accuracy and training time

suggests that distributed training approaches are efficient. Moreover, the number of CNN

parameters significantly impacts the data exchanged during the Federated Learning

 36

training process. The results indicate that Federated Learning holds promise for

enhancing data privacy in heterogeneous domains.

2.5.2.3 Image-based crop disease detection with federated learning [28]

The field of crop disease detection and management can significantly benefit from

data science, offering decision tools to enhance productivity, reduce costs, and support

environmentally friendly crop treatment methods [29, 30]. Precision agriculture aims to

optimize crop yields while ensuring quality and environmental preservation, including

reducing pesticide impact. Modern technologies, such as artificial intelligence, big data,

image processing, and machine learning algorithms, have led to the development of

systems for automatic crop disease detection and management. Deep neural networks,

including CNNs, recurrent neural networks (RNNs), and Vision Transformers (ViTs)

with attention mechanisms, have demonstrated outstanding performance in crop anomaly

detection [31, 32, 33], providing promising opportunities for early detection and

diagnosis of crop abnormalities [34]. The objective of this study is to highlight the

strengths of federated learning in crop disease classification concerning user data security

and confidentiality of sensitive information.

The study adopts a federated learning framework, where multiple clients

contribute to training a robust global model that is shared while keeping data

decentralized [35]. It involves multi-stage process that encompasses several key phases

crucial for the successful implementation of the collaborative learning framework. The

initial phase involves the setup and configuration of the learning process, including the

establishment of communication channels and the initialization of the participating

devices. Subsequently, the process proceeds to the parameter transfer phase, where the

 37

local model parameters are shared and updated among the participating devices. The next

critical step is model aggregation, in which the combined knowledge from multiple

devices is integrated to create an improved global model. Following this, the updated

global model is transferred back to the local devices, ensuring that the collective insights

are shared and disseminated for further enhancement. Finally, the local evaluation phase

involves the assessment and validation of the updated model's performance on each

individual device, allowing for the refinement and optimization of the learning process.

These interconnected phases collectively form the foundation of the Federated Learning

approach, enabling the collaborative development and enhancement of machine learning

models across decentralized and privacy-sensitive environments.

After applying data augmentation techniques to enhance images, the proposed

models achieve 92.24% and 91.28% accuracy for rice disease detection and classification,

respectively. When testing on various plant leaf datasets, the proposed model outperforms

pre-trained models like VGG-16, VGG-19, InceptionV3, ResNet50, and DenseNet201,

achieving higher accuracy of 99.39%, 99.66%, and 76.59% for maize, potato and tomato,

cassava leaves, and rice datasets, respectively, with reduced parameter numbers. The

DenseNet121, VGG16, and MobileNetV2 models show improving performance with

increasing rounds, while ViT B16 and ViT B32 also demonstrate enhanced performance

with more rounds, though requiring longer computational time. InceptionV3 performs

comparatively worse but peaks on the Grape dataset.

In conclusion, using machine learning technologies, particularly CNNs and

Vision Transformers, for crop disease classification is a developing field. The

performance of Federated Learning trained models is influenced by the number of clients.

The performance of Federated Learning trained models is notably impacted by the

 38

number of participating clients within the network. As the number of clients increases,

the complexity of the collaborative learning process intensifies, posing challenges such

as communication overhead, increased model aggregation time, and potential issues

related to data heterogeneity. With a larger number of clients, the aggregation of diverse

and distributed data becomes more sophisticated, potentially leading to difficulties in

achieving model convergence and performance consistency across the network.

Moreover, an elevated client count can introduce variability in terms of data distribution

and characteristics, potentially affecting the overall model's generalization capability and

predictive accuracy. Consequently, maintaining a balance between the number of

participating clients and the efficient coordination of model aggregation and updates

becomes crucial for achieving optimal performance and scalability in Federated Learning

setups. Furthermore, ResNet50 and MobileNetV2 have demonstrated greater robustness

and suitability for Federated Learning scenarios. The number of communication rounds

impacts the performance of deep architectures, and ResNet50 strikes a good balance

between performance, computational cost, and complexity. While ViT B16 and ViT B32

offer better performance than some CNNs, they require more computational time, making

them less suitable for Federated Learning scenarios. The performance of deep models

varies with each dataset, depending on the data quality and the number of classes in each

dataset.

2.5.2.4 Multiple Diseases and Pests Detection Based on Federated Learning and

Improved Faster R-CNN [36]

In this context, Federated Learning is proposed as an efficient approach for

improving model convergence speed and communication efficiency in orchard-related

image data with no privacy protection requirements. This article presents an improved

 39

Faster R-CNN model for detecting orchard diseases and pests based on Federated

Learning. The application scenario involves multiple orchard farms collaborating with an

AI company to develop a model capable of detecting various pests and diseases.

However, the orchards have unbalanced and insufficient data for different pest categories,

and Federated Learning is utilized to address this issue. The optimized FedAvg algorithm

accelerates model training and enhances communication efficiency.

The Federated Learning algorithm offers the advantage of avoiding the uploading

of large amounts of data, as frequent communication and unstable networks can

significantly impact communication efficiency. Each participant uploads model

parameters to the federated server for aggregation. The global model parameters for each

round are obtained using a formula involving the total amount of data for all local devices

and the data amount for each local device [N and nk respectively].

The proposed improvement to FedAvg involves adding a restriction term to

ensure local models do not deviate too much from the global model, promoting

convergence. A fixed training period with global updates helps in selecting optimal

parameters for convergence speed and communication cost. The Federated Learning

process involves distributing model parameters, local training, uploading model

parameters, and aggregation and update of the federated server model.

To enhance the accuracy and efficiency of orchard pest and disease detection, the

article improves the network architecture of the original algorithm model and combines

it with a sample expansion method. The sample expansion method plays a crucial role in

augmenting the dataset by generating supplementary image samples. This technique

involves the application of various image manipulation methods to diversify the existing

data. Brightening involves adjusting the pixel values to enhance the overall brightness of

 40

the image, thereby expanding the spectrum of lighting conditions represented in the

dataset. Noise addition introduces controlled variations in pixel values, simulating real-

world imperfections and enhancing the model's robustness against noise. Mirroring or

flipping horizontally and vertically aids in creating mirrored versions of the original

images, contributing to a more comprehensive representation of diverse orientations and

perspectives. Scaling allows for the transformation of the image size, enabling the model

to learn from images with varying scales and dimensions. Lastly, random rotation

involves rotating the image at random angles, promoting the model's ability to recognize

objects from multiple viewpoints and angles. Collectively, these techniques aim to enrich

the dataset, improve model generalization, and enhance the model's capacity to

effectively handle diverse real-world scenarios. Moreover, the improved model

incorporates a multi-pest detection model based on the Faster R-CNN framework. Instead

of using VGG-16, the ResNet-101 structure is employed in the basic network for better

detection accuracy, particularly for small target diseases.

Online Hard Example Mining (OHEM) is used to improve the accuracy of target

detection based on deep convolution neural networks. It focuses on handling difficulty

cases that may lead to inaccurate predictions by the network. By adjusting the threshold

of negative samples and the proportion of positive and negative samples, the network can

better adapt to training.

Soft Non-Maximum Suppression (Soft NM) is used to address the problem of

partial occlusion of targets in the region proposal network (RPN). It ensures that

important features are not overlooked due to the large field of perception in deep

convolution feature maps.

 41

The data processing phase involves sample expansion and dataset segmentation.

The sample expansion method is employed to improve the generalization ability of the

pest and disease detection model. The expanded dataset is divided into training,

verification, and test sets.

The experiments were conducted using the deep learning open-source frameworks

TensorFlow and Keras in the Python language. The improved Faster R-CNN model

achieved an average accuracy of 90.27% on multiple pest detection, with a detection time

of only 0.05 seconds per image. After employing federated learning, the model's mean

average precision (mAP) reached 89.34%, and the training speed was improved by 59%.

In conclusion, the article proposes an improved Faster R-CNN method for

detecting multiple pests in orchards based on Federated Learning. The incorporation of

multiscale feature map fusion and OHEM enhances detection accuracy for different pest

sizes. The application of ResNet-101 in the basic network further improves the accuracy

of detecting subtle disease points, and the results demonstrate the effectiveness of the

proposed method in improving pest and disease detection in orchards.

2.5.2.5 Convolutional Neural Network Applied to Plant Leaf Disease Classification [37]

This literature review explores the application of Deep Learning (DL) methods,

specifically CNNs, in plant disease classification. Previous studies have used CNNs to

classify plant diseases based on features like texture, type, and color of plant leaf images.

This article covers the main works of the study, which include reviewing CNN networks

for plant leaf disease classification, summarizing DL principles, discussing problems and

solutions in CNN-based plant disease classification, and exploring future directions.

 42

DL is a branch of machine learning used for image classification, object detection,

and natural language processing. Popular CNN-based classification models include

AlexNet, VGGNet, GoogLeNet, ResNet, MobileNet, and EfficientNet.

Data preparation and preprocessing involve dividing datasets into training,

validation, and test sets. A suitable DL model architecture is essential for accurate

classification results, and different hyperparameters are set for training and evaluation.

The performance of the model is evaluated using metrics like accuracy, precision, recall,

and F1 score.

Inference refers to the DL model's capability to apply its learning to new data, and

deployment involves deploying the trained model for practical use, such as mobile

applications for plant disease identification.

The review highlights various problems and solutions in plant disease

classification. Insufficient datasets with limited size and diversity hinder classification

accuracy, and solutions like data augmentation and few-shot learning are proposed.

Nonideal robustness occurs when the model fails to perform well in practical conditions,

and increasing dataset diversity and model robustness can address this issue. Symptom

variations due to plant characteristics and environmental factors challenge disease

recognition, and enriching dataset diversity is suggested. Image background complexity

may affect classification, and leaf segmentation techniques are proposed to handle this.

 43

CHAPTER 3

OVERVIEW OF TINYML FRAMEWORKS

3.1 TinyML Frameworks

TinyML frameworks play a crucial role in enabling machine learning models to

run efficiently on resource-constrained devices. This section provides an overview of

some popular TinyML frameworks specifically designed for image classification tasks.

3.1.1 TensorFlow Lite

TensorFlow Lite is a specialized version of the popular machine learning

framework, TensorFlow, designed specifically to meet the demands of mobile and edge

devices with limited computational resources [38, 39]. Its primary focus is on enabling

efficient execution of machine learning models on devices like smartphones, tablets, IoT

devices, and other edge devices. By catering to these resource-constrained environments,

TensorFlow Lite allows AI applications to be run directly on the device, eliminating the

need for constant connectivity to cloud servers.

One of the key strengths of TensorFlow Lite lies in its support for various neural

network architectures. It can handle a wide range of model types, including feedforward

neural networks, CNNs, RNNs, and transformer-based models, making it versatile for

various use cases. This flexibility allows developers to choose the most suitable

architecture for their specific application, whether it's image classification, natural

language processing, object detection, or other tasks.

To ensure optimal performance on low-power devices, TensorFlow Lite offers

several tools and techniques for model optimization. Model conversion is an essential

 44

step where TensorFlow models are transformed into a format that can be efficiently

executed on mobile and edge devices. This conversion process often involves

quantization, which reduces the precision of model weights, thereby reducing memory

and computational requirements without significantly impacting accuracy. Quantized

models are especially well-suited for edge devices with limited memory and processing

capabilities.

Inference optimization is another critical aspect of TensorFlow Lite. During

inference, the model processes input data to generate predictions. TensorFlow Lite

employs a variety of techniques to accelerate inference, such as hardware acceleration

using specialized co-processors or neural processing units (NPUs) available on some

devices. These hardware accelerators are designed to speed up matrix computations

commonly used in neural networks, resulting in faster and more power-efficient

inferencing.

TensorFlow Lite's lightweight nature and efficiency make it a popular choice for

developers working on mobile and edge AI applications. It empowers a wide range of

real-time, on-device AI tasks, from image recognition and voice processing to

personalized recommendations and natural language understanding.

3.1.2 TensorFlow Lite Micro

TensorFlow Lite for Microcontrollers (TFLite Micro) is a specialized version of

TensorFlow Lite designed specifically for microcontrollers and other devices with very

limited computational resources [40]. It is designed to be as small and efficient as

possible, while still providing the flexibility and power of TensorFlow Lite.

 45

TFLite Micro supports a wide range of neural network architectures, including

feedforward neural networks, CNNs, and RNNs. It also supports quantization, which can

significantly reduce the size and complexity of a model without significantly impacting

accuracy.

TFLite Micro is tailored with a range of features optimized for microcontrollers,

addressing their unique requirements. Notably, it offers a remarkably low memory

footprint, allowing TFLite Micro models to occupy just a few kilobytes. This attribute is

particularly advantageous for microcontrollers with severe resource constraints.

Moreover, the framework emphasizes energy efficiency, ensuring that TFLite Micro

models are exceptionally power-frugal. This attribute renders them exceptionally well-

suited for devices reliant on battery power. Additionally, TFLite Micro extends support

for hardware acceleration on select microcontrollers, further boosting overall

performance.

The user-friendly nature, efficiency, and comprehensive support of TFLite Micro

for various neural network architectures establish it as an invaluable asset in the realm of

edge computing. This tool finds its applicability across diverse domains, including IoT

devices, as TFLite Micro facilitates the creation of intelligent devices capable of data

aggregation, predictive insights, and independent decision-making, all without

necessitating a constant cloud connection.

3.1.3 PyTorch Mobile

PyTorch Mobile serves as an extension of the PyTorch deep learning library,

bringing the power of machine learning directly to mobile devices. By enabling the

deployment of machine learning models without the necessity of continuous cloud

 46

connectivity, it effectively addresses the limitations posed by restricted internet access.

This empowers mobile devices to perform complex computational tasks independently,

opening a world of possibilities for real-time, on-device machine learning applications

[41]. Moreover, PyTorch Mobile facilitates the execution of neural networks on devices

with limited computational resources. By optimizing the inference process, it enhances

the speed of decision-making and conserves energy, contributing to improved battery life

and overall device performance. The straightforward conversion of models and the

support for quantization techniques further simplify the integration of AI functionalities

into various mobile applications. This seamless integration facilitates the development of

intelligent features, including accurate image classification, natural language processing,

and responsive speech recognition, enabling users to interact with their devices in more

intuitive and efficient ways. Moreover, by prioritizing on-device inference, PyTorch

Mobile reduces reliance on external cloud services, thereby offering offline use of the

machine learning models.

3.1.4 Edge Impulse

Edge Impulse is a platform designed to simplify the process of developing and

deploying machine learning models on edge devices [42]. As a user-friendly and cloud-

based solution, it enables developers to harness the power of machine learning for their

edge devices without the need for extensive expertise in AI or data science.

Edge Impulse has a vast library of pre-trained models. These pre-built models

cover a wide range of applications, from image and sound classification to anomaly

detection and predictive maintenance. Additionally, Edge Impulse allows users to train

custom machine learning models using their own data. This data can be easily uploaded

 47

and processed through a web interface, eliminating the need for complex local

installations or infrastructure. Furthermore, Edge Impulse offers seamless integration

with various popular development boards and microcontrollers, streamlining the

deployment process. This integration enables prototyping and real-world testing of

machine learning models on edge devices, facilitating a smooth transition from

development to deployment.

3.1.5 uTensor

uTensor is a specialized open-source deep learning framework tailored explicitly

for resource-constrained devices, with a primary focus on microcontrollers [43]. The

framework's main objective is to address the unique challenges posed by these devices,

such as limited memory and processing capabilities, and to enable the deployment of

machine learning models on IoT devices and other edge devices with constrained

resources.

One of the key strengths of uTensor lies in its ability to optimize memory usage

and computational efficiency. Microcontrollers often have strict limitations on available

RAM and flash memory, making it crucial to develop models that are efficient in terms

of memory footprint. uTensor employs various techniques, such as model quantization

and compression, to reduce the memory requirements of machine learning models

without significantly sacrificing accuracy. This optimization process ensures that models

can be easily deployed and run on microcontrollers with limited resources.

Moreover, uTensor's focus on computational efficiency ensures that the execution

of machine learning models on microcontrollers is both fast and energy-efficient. This is

particularly important for battery-powered IoT devices, where energy consumption must

 48

be minimized to extend the device's operational life. uTensor opens new possibilities for

deploying machine learning capabilities in edge devices that were previously considered

as not suitable for resource-limited devices. For example, uTensor can be utilized in

sensor nodes to perform data preprocessing and filtering, enabling smarter and more

localized decision-making at the edge. It can also be applied to applications such as

gesture recognition, voice detection, and environmental monitoring in resource-

constrained environments.

3.1.6 CMSIS-NN

CMSIS-NN, which stands for Cortex Microcontroller Software Interface

Standard - Neural Network kernels, is a specialized collection of neural network kernels

that have been accurately optimized for ARM Cortex-M processors [44]. This standard

is developed and maintained by ARM, a semiconductor and software design company,

with a focus on providing efficient and high-performance solutions for running neural

networks on microcontrollers.

The primary objective of CMSIS-NN is to facilitate the deployment of TinyML

models on ARM-based microcontrollers that typically have limited computational power

and memory resources. By offering a collection of low-level functions, CMSIS-NN

allows developers to efficiently implement the building blocks of neural networks on

ARM Cortex-M processors. These kernels are optimized to take full advantage of the

specific features and capabilities of these microcontrollers, enabling faster and more

power-efficient execution of machine learning operations.

The optimized kernels provided by CMSIS-NN cover essential operations

commonly found in neural networks, such as convolution, pooling, fully connected

 49

layers, and activation functions. These operations are crucial for tasks like image

recognition, sound processing, and sensor data analysis – all of which can be performed

on microcontrollers using TinyML techniques.

The efficiency of CMSIS-NN is of great importance for TinyML applications, as

it ensures that machine learning models can run in real-time and consume minimal

resources. This is particularly significant for edge devices in IoT applications or wearable

devices, where power consumption and processing speed are critical considerations.

By standardizing these optimized neural network kernels, CMSIS-NN facilitates

the development of TinyML applications on a wide range of ARM Cortex-M processors

from various vendors. It provides a consistent and reliable platform for deploying

machine learning models across different microcontroller architectures, fostering

interoperability and ease of development for AI-driven embedded systems.

3.2 Comparison of TinyML Frameworks

The advancements in model compression, hardware acceleration, and specialized

architectures have shown great potential in making TinyML a practical reality. However,

addressing the associated challenges and open research questions will be critical to

unlocking its full potential and ensuring its seamless integration into various industries.

As the field continues to grow, TinyML has the potential to revolutionize the way we

interact with edge devices and shape the future of AI at the edge and play a pivotal role

in enabling efficient machine learning on resource-limited devices. Table is a concise

table of comparison of popular TinyML frameworks.

 50

Table 1: Comparison of Machine Learning Frameworks for Embedded Devices

Federated

Learning

Support

Target Platforms
Model

Size
Latency

Ease of

Use

Community

Support
Cost

TensorFlow

Lite
Yes

Android, iOS,

Raspberry Pi,

Arduino, etc.

Up to

50 MB

Up to 100

ms

Easy to

use

Large

community

(over 1 million

users)

Free

TensorFlow

Lite Micro

No (Need

to be built

from

scratch)

Microcontrollers

with limited

memory

Up to

10 KB

Up to 5

ms

Easy to

use

Small

community

(around

10,000 users)

Free

PyTorch

Mobile

No (Need

to be built

from

scratch)

Mobile devices
Up to

50 MB

Up to 100

ms

More

difficult

to use

Small

community

(around

100,000 users)

Free

Edge

Impulse
No

Microcontrollers,

embedded devices

Up to

10 MB

Up to 100

ms

Easy to

use

Small

community

(around

10,000 users)

Free

for

basic

uTensor No
Cortex-M

microcontrollers

Up to

100 KB

Up to 10

ms

Easy to

use

Small

community

(around

10,000 users)

Free

CMSIS-NN No
Cortex-M

microcontrollers

Up to 1

MB

Up to 20

ms

Easy to

use

Small

community

(around

10,000 users)

Free

 51

CHAPTER 4

DATASETS USED AND IMAGES PRE-PROCESSING

In this chapter, we delve into the crucial aspects of the datasets used in our

machine learning experiments and the preprocessing techniques applied to the images. A

high-quality dataset is fundamental for training accurate and robust machine learning

models. Therefore, we carefully selected the PlantVillage dataset [46], a well-established

and diverse collection of plant images that encompasses healthy plants and various

diseases affecting different plant species. To this dataset, we appended another dataset

we gathered through a website we constructed, which contains images of healthy and

infected cucumber plant images with their infection type and severity.

To ensure the overall dataset is in the optimal form for model training, we perform

essential preprocessing and cleaning steps on the images. This includes resizing the

images to a consistent resolution, applying data augmentation techniques, and addressing

noise and artifacts that might affect the model's performance. Additionally, the dataset is

strategically split into training, validation, and testing subsets to evaluate the model's

accuracy on unseen data.

To calculate the accuracy of our model, we have employed the confusion matrix

that furnishes a comprehensive assessment of the model's performance, yielding five

pivotal metrics for evaluating its validity. These metrics are essential in gauging the

model's accuracy and efficiency in classification tasks. Firstly, Accuracy quantifies the

proportion of correctly classified instances out of all instances, expressed as the sum of

true positives (TP) and true negatives (TN) divided by the total number of instances, as

shown in Equation (7).

 52

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (7)

Misclassification, conversely, measures the proportion of incorrectly classified

instances relative to all instances, calculated as the sum of false positives (FP) and false

negatives (FN) divided by the total number of instances, as delineated in Equation (8).

𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =
(𝐹𝑃 + 𝐹𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (8)

Moreover, Precision, also known as Positive Predictive Value, assesses the

accuracy of positive predictions relative to all positive predictions made by the model,

formulated as TP divided by the sum of TP and FP, as depicted in Equation (9).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (9)

In addition, Sensitivity, often referred to as Recall, evaluates the model's

capability to correctly identify positive instances from all actual positive instances,

calculated as TP divided by the sum of TP and FN, as illustrated in Equation (10).

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (10)

Lastly, Specificity gauges the model's ability to correctly identify negative

instances from all actual negative instances, expressed as TN divided by the sum of TN

and FP, as denoted in Equation (11).

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (11)

 These equations collectively provide indispensable insights into the model's

performance across various dimensions of classification, enabling a thorough assessment

of its efficacy in real-world scenarios.

The following sections provide a comprehensive overview of the PlantVillage

dataset, the dataset that we collected, and the preprocessing techniques applied to the

 53

images, and the rationale behind the dataset split. A robust and well-prepared dataset

serves as the foundation for our machine learning endeavors, ultimately contributing to

the development of an accurate and reliable plant disease detection system.

4.1 Overall Dataset (Augmented PlantVillage Dataset)

The overall dataset we've curated and named Augmented PlantVillage dataset is

a combination of the widely recognized PlantVillage dataset and our own gathered

collection of healthy and infected cucumber plants, resulting in a well-rounded resource.

This combination will serve as the cornerstone for training our predictive model,

harnessing the collective knowledge within both datasets to create a robust and adaptable

tool. This overall dataset promises to enhance the accuracy and effectiveness of our

model's predictions, empowering us to tackle more diseases in a more comprehensive

way and offer valuable insights to aid in agricultural management decisions.

4.1.1 PlantVillage Dataset

In this section, we present a comprehensive and crucial overview of the

PlantVillage dataset, which assumes a central role as the primary dataset in our machine

learning experiments. With the pressing need to increase food production by an estimated

70% by 2050 to feed a projected population of over 9 billion people, addressing yield

losses caused by infectious diseases becomes paramount [46]. Currently, infectious

diseases reduce potential yields by an alarming average of 40%, with some farmers in the

developing world experiencing devastating yield losses as high as 100%.

The PlantVillage dataset is thoughtfully structured to provide a comprehensive

and organized repository of invaluable agricultural information. It encompasses a diverse

 54

collection of over 50,000 images of 38 different classes, carefully curated to include both

healthy and diseased leaves from various crop plants. Each image within the dataset is

enriched with careful annotations, detailing essential information such as the specific

plant species and the type of disease depicted. This structured labeling ensures the

dataset's reliability and utility for machine learning endeavors. This detailed labeling

ensures the accuracy and reliability of our model's training, empowering it to learn

distinct patterns and features associated with different plant diseases. In addition, the

PlantVillage dataset encompasses a diverse array of crops and associated diseases,

providing valuable insights for the identification and management of various agricultural

challenges. Among the crops included are apple, blueberry, cherry, corn, grape, orange,

peach, pepper, potato, tomato, raspberry, soybean, squash, and strawberry. The dataset

also covers an extensive range of diseases, such as Bacterial spot, Early blight, Late

blight, Black rot, Cercospora leaf spot, Gray leaf spot, Leaf mold, Powdery mildew, and

Septoria leaf spot.

4.1.2 Collected Dataset from the Agricultural Department at the AUB

The PlantVillage dataset, although comprehensive, notably lacks information on

cucumber plant diseases. Recognizing this gap, we have taken the initiative to develop a

dedicated web portal. This platform aims to bridge the information void by facilitating

the collection of data specifically related to cucumber healthy and infected plants. By

focusing on this critical area of agricultural concern, we are prepared to compile a

comprehensive dataset that will significantly assist in combating cucumber diseases and

enhancing crop disease management strategies in the region.

 55

We developed a comprehensive web portal using the ReactJS library for the

frontend and the .NET framework for the backend, aimed at addressing the escalating

cucumber disease infestation prevalent across Lebanon. The platform serves as a valuable

tool for gathering images of cucumber healthy and infected plants. Through this web

portal, users can conveniently indicate the severity level of the infestation and record the

precise count of pests present on each leaf. This dataset of images and corresponding data

points are stored within our databases.

The web portal is crafted to serve as an exclusive hub for authorized users. The

portal is accessible solely through a secure sign-in and sign-up process, seamlessly

integrated using the Identity Framework. This guarantees that only authorized individuals

can access and add images to the database.

Our web portal is hosted on Microsoft Azure platform, ensuring a seamless user

experience. Hosting a web portal on Microsoft Azure offers several practical advantages.

Azure's scalable infrastructure efficiently manages varying levels of traffic, ensuring

quick access even during peak usage. The platform's reliable services and robust

infrastructure minimize downtime, establishing a stable environment for users. Moreover,

Azure's comprehensive security features, including data encryption and identity

management, contribute to the protection of user information. In addition, integration

with Microsoft services simplifies authentication processes. Furthermore, the platform's

support and community contribute to efficient issue resolution and continuous

improvement. You can have a preview of the user-friendly sign-in and sign-up interfaces

in Figure 4, showcasing the simplicity of the authentication process.

 56

Figure 4: Sign up and Sign in Pages of the Web Portal

The image-capturing feature serves as the main component of the portal, enabling

users to capture images of various plant diseases swiftly and conveniently. Moreover, this

feature allows users to annotate these images accurately by selecting predefined options

from intuitive dropdown menus. The illustration in Figure 5 provides a visual

representation of this process, underlining the emphasis we've placed on creating a user-

friendly and accessible interface. By simplifying the data collection process through

intuitive design and efficient functionality, we aim to enhance the overall user experience

and facilitate a more streamlined approach to data management within the platform.

 57

Figure 5: Diseases Images Acquisition Screen

Our collaboration with the Agricultural Department at the American University

of Beirut (AUB) yielded a comprehensive set of healthy and infected cucumber plant

images. This collaboration provided us with an extensive dataset of approximately 1700

images of cucumber plants categorized into five classes, including healthy specimens,

cucumbers affected by whiteflies with varying degrees of severity, and cucumbers

affected by spider mites with varying degrees of severity. The dataset, categorized based

on infection severity and corresponding quantity, supplements the PlantVillage dataset,

enhancing the Augmented PlantVillage dataset’s diversity and predictive capabilities.

The integration of this diverse dataset enlarged the dataset and significantly enhanced the

model's predictive capabilities.

 58

4.2 Image Preprocessing and Cleaning Techniques

Data preprocessing is a crucial step in every machine learning pipeline, aimed at

preparing the dataset for model training. This section discusses the various preprocessing

and cleaning techniques applied to the overall dataset.

The preprocessing phase involves a series of essential steps aimed at optimizing

the dataset for effective model training. One of these crucial steps involves resizing all

images to a standardized resolution, ensuring uniformity across all samples. This measure

is particularly vital for seamless neural network training, as these networks necessitate

images of identical dimensions as inputs. Moreover, we implement various data

augmentation techniques, such as rotation, flipping, and adjustments in brightness, to

artificially expand the dataset. These techniques serve the purpose of enhancing the

dataset's diversity, thereby strengthening the model's resilience and improving its ability

to generalize patterns effectively. In addition, to address noise and artifacts present in

some images, we perform cleaning operations like denoising and removing irrelevant

background information. Noise reduction enhances the clarity of the images, making it

easier for the model to learn relevant features. Removing irrelevant background

information also enhances the model's ability to focus on the plant regions, increasing the

overall accuracy of disease detection.

4.3 Dataset Splitting Strategy for Robust Machine Learning Model Training and

Evaluation

In the first experiment conducted for training the TinyML models described in

chapter 6. We partitioned the Augmented PlantVillage dataset into three distinct subsets:

the training set (80%), the validation set (10%), and the testing set (10%). This division

 59

adhered to standard machine learning practices and facilitated comprehensive model

evaluation.

The training set constituted the largest portion of the dataset and was utilized to

train the machine learning models. It comprised labeled images representing both healthy

and infected plants, enabling the models to learn intricate patterns and features associated

with each class.

Throughout the training process, the validation set played a pivotal role in fine-

tuning the models and preventing overfitting. Serving as an unseen dataset during

training, it enabled us to assess the models' performance on new data and make necessary

adjustments to optimize their effectiveness.

Finally, the testing set served as an independent dataset to evaluate the final

performance of the trained models. It consisted of images that were not used during the

training or validation phases, providing an unbiased measure of the models'

generalization capability. The accuracy achieved on the testing set reflected the true

effectiveness of the models in real-world scenarios.

In the second experiment, we followed a similar protocol to the first experiment,

but with a focus on developing machine learning models tailored to each type of plant

disease. The Augmented Plant Village dataset was initially divided into separate subsets

associated with each plant type including corn, grape, peach, strawberry, tomato, potato,

cherry, bell pepper, apple, and cucumber crops. This preprocessing step ensured that each

subset contained healthy and infected images specific to a particular plant, facilitating

targeted model training and evaluation.

Subsequently, each subset was further split into three subsets: the training set

(80%), the validation set (10%), and the testing set (10%). This division maintained

 60

consistency with standard machine learning practices and ensured the availability of

sufficient data for training, validation, and testing purposes.

The training set comprised the largest portion of each subset and was used to train

the machine learning models with labeled images, enabling pattern learning. In addition,

the validation set aided in fine-tuning and preventing overfitting. Hyperparameter tuning

was based on insights from its evaluation. Finally, the testing set served as an independent

dataset to assess the models' real-world effectiveness, reflecting their true generalization

capability.

 61

CHAPTER 5

FEDERATED LEARNING SETUP AND SIMULATION

Within this chapter, we will elaborate on the setup and simulation particulars of

our federated learning approach. This distributed machine learning technique facilitates

the training of these models by each model users across multiple nodes or devices without

the need for centralized data storage. Our primary goal is to leverage federated learning

to develop robust models for the classification of plant diseases. To enable this, we have

employed the comprehensive dataset introduced in the previous chapter, encompassing

images that represent various plant diseases as well as healthy plant samples.

5.1 Federated Learning Architecture

Federated Learning is an innovative architecture that revolutionizes the way

machine learning models are trained. Unlike traditional centralized approaches, where

data is collected and stored in a central server, Federated Learning enables training

models directly on decentralized devices. This architecture allows devices such as

smartphones, IoT devices, and edge servers to collaboratively learn from their local data

while keeping it securely stored and private. By aggregating model updates instead of

raw data, Federated Learning preserves privacy, reduces communication costs, and

enables efficient distributed learning. Federated Learning architecture presented in Figure

6 represents a powerful paradigm shift in the machine learning landscape, fostering

collaboration, privacy, and scalability in model training.

 62

Figure 6: Federated Learning Iterative Process [35]

To simulate federated learning, we deployed our architecture in a controlled

environment. We set up a network of virtual clients, each emulating a mobile device with

limited computational resources. During each round of federated learning, clients perform

local model training on their respective data partitions. In addition, we outline the

simulation setup for our federated learning experiment, using the TensorFlow Federated

(TFF) API. The purpose of TFF is to facilitate federated learning, enabling users to

 63

seamlessly integrate their own TensorFlow models into the process. Throughout this

section, we will describe the key steps of our simulation and highlight the important

components that contribute to its success.

1. Environment Setup: To ensure the proper execution of our federated learning

simulation, we first set up the required environment by installing essential

packages such as "tensorflow-federated".

2. Data Preparation: The overall dataset reflects the features of real-world federated

data, where each client holds a distinct subset of data, resulting in non-identically

distributed data (non-i.i.d.) behavior. To prepare the input data for training, we

execute data pre-processing tasks, which encompass image flattening, shuffling,

batching, and image augmentation as previously outlined.

3. Model Construction: For this simulation, we utilized a comprehensive neural

network architecture implemented via Keras. The model incorporates multiple

layers, including an input layer, multiple hidden layers, and an output layer with

a softmax function, specifically tailored to effectively accommodate the

necessities of federated learning protocols.

4. Federated Proximal Algorithm: Our federated learning approach hinges on the

Federated Proximal (FedProx) algorithm. This algorithm aggregates model

updates from participating clients during each round of training as presented in

equation 12.

𝑚𝑖𝑛
𝑤

 𝑓(𝑤) ≈
1

𝐾
∑  

𝐾

𝑘=1

𝑝𝑘𝐹𝑘(𝑤) (12)

this ensures the convergence of the global model. FedProx is a collaborative

learning approach across distributed devices. FedProx involves performing a

 64

specified number of epochs of Stochastic Gradient Descent (SGD) on each of the

K devices involved in the federated learning process. On each device, local

surrogate functions (Fk) are employed to compute model updates. To ensure

consistent learning across all participating devices, we enforced the use of

uniform learning rates and a consistent number of local epochs. Additionally,

model updates from a subset of devices are averaged during each round,

contributing to the collaborative refinement of the global model. This approach

not only facilitates the convergence of the model but also mitigates the challenges

associated with training on non-identically distributed data across decentralized

devices.

In addition, to address the challenge of varying local updates and accommodate

statistical heterogeneity, we implemented a technique known as B-Bounded

Dissimilarity. Denoted in equation 13 as

𝑚𝑖𝑛
𝑤

 ℎ𝑘(𝑤; 𝑤𝑡) ≈ 𝐹𝑘(𝑤) +
𝜇

2
∥∥𝑤 − 𝑤𝑡∥∥

2
 (13)

this method guides local updates to be closer to the initial global model. By

enforcing a bounded dissimilarity constraint, denoted as B, we mitigate the

divergence of local updates, promoting convergence towards a consistent global

model across decentralized devices. This approach not only facilitates

collaboration among distributed participants but also enhances the stability and

efficiency of the federated learning process.

5. Federated Training Rounds: In the simulation, we run 100 rounds of federated

training. At the end of each round, the global model is updated based on

contributions from individual clients' local models. Throughout the training

process, we closely monitor crucial training metrics, including loss and accuracy.

 65

Loss refers to the measure of error between the predicted outcome and the actual

target, helping us assess the model's precision in making predictions. On the other

hand, accuracy signifies the model's ability to provide correct predictions in

relation to the total number of predictions made, allowing us to gauge the overall

effectiveness and reliability of the model. By closely monitoring these crucial

metrics, we ensure a comprehensive evaluation of the model's performance and

make informed decisions to enhance its training accuracy.

6. Model Evaluation on Federated Data: Lastly, we evaluate the trained model on

federated data using TFF's "build_fed_eval" function. This evaluation process

provides valuable metrics, such as loss and accuracy as discussed earlier, enabling

us to assess the model's performance in a federated setting.

In conclusion, the insights gained from this simulation encompass a deeper

understanding of managing diverse and non-identically distributed data in a federated

learning setting. Additionally, the evaluation of models within the context of federated

learning provides valuable knowledge about the intricacies of model performance and

adaptability in decentralized environments.

5.2 Experiment 1 Simulation (One Model for All Plants)

This section presents the setup and methodology of our federated learning

experiment, focusing on the development of robust models for plant disease classification

through distributed machine learning techniques. Our simulation replicates the federated

learning framework in a controlled environment, showcasing its effectiveness in training

global models across distributed data sources.

 66

5.2.1 Initial Training and Testing

Initially, the model was trained using 50% of the entire dataset containing all plant

disease classes. Specifically, 40% of the data was distributed across 8 clients (5% each),

simulating diverse data sources. To mimic real-world scenarios and enhance robustness,

an additional set of noise images was added to each client dataset. The remaining 10% of

the data was reserved for testing and reporting the final accuracy of the model. Achieving

a testing accuracy of 92.77%, this phase established a baseline for assessing

improvements in federated learning.

5.2.2 Federated Training Rounds

We conducted 100 rounds of federated training, closely monitoring key training

metrics such as loss and accuracy to monitor model performance. Following data

distribution among clients, federated learning commenced. Central models were

initialized with parameters derived from initial training, while clients executed local

training iterations, updating model weights based on their respective dataset

characteristics.

5.2.3 Evaluation of Optimal Image Count per Federated Learning Round

In order to enhance the efficiency and convergence speed of federated learning,

we conducted a series of experiments to determine the optimal number of images to be

used prior to commencing each federated training round. Our investigation involved

distributing the available images among 8 clients in a random manner, with varying

participation rates in each round. The objective was to find a balance between minimizing

communication rounds and achieving the shortest convergence time.

 67

The experiments were conducted on the Augmented PlantVillage dataset. And

through extensive analysis and evaluation, we observed that employing 800 images

achieved a remarkable tradeoff between the least communication rounds required and the

shortest convergence time as presented in Figure 7. This finding demonstrates the

significance of carefully selecting the appropriate image count in federated learning

scenarios.

Figure 7: Evaluation of Optimal Image Count per Federated Learning Round

By utilizing 800 images, we were able to strike an optimal balance that reduced

the overall communication overhead while simultaneously accelerating the convergence

process. This optimal tradeoff allows for efficient utilization of computational resources

and ensures that federated learning can be effectively deployed in real-world applications.

The choice of 8 clients in our federated learning model is derived from the dataset

size and the operational constraints imposed by the requirement to distribute a minimum

of 800 images per federated round to each client. This criterion ensures that each client

receives a substantial and representative subset of the data for training, promoting model

 68

generalization and robustness. Given the dataset's characteristics and the need to balance

computational efficiency with data diversity, the number 8 emerged as the optimal choice

to meet these requirements. By distributing the dataset across multiple clients in this

manner, we can effectively leverage the collective intelligence of diverse data sources

while accommodating practical considerations such as communication overhead and

resource utilization. Therefore, the selection of 8 as the number of clients is informed by

the dataset size and the need to ensure adequate data distribution for successful federated

learning.

Finally, the significance of this finding lies in its potential to enhance the

scalability and efficiency of federated learning systems. By reducing the number of

communication rounds required for convergence, computational resources can be utilized

more effectively, leading to improved training efficiency and reduced training time.

5.2.4 Aggregation and Model Improvement

In our study, we employed the FedProx optimization function to enhance the

performance of federated learning models. FedProx integrates proximal terms into the

optimization process to mitigate the impact of divergent client updates, thereby

promoting convergence. To evaluate the effectiveness of FedProx, we configured

different B thresholds and conducted experiments to assess their impact on model

convergence. Specifically, we varied the B thresholds to examine weight differences of

5%, 10%, 20%, and 30%. Subsequently, we plotted a graph illustrating the testing

accuracy corresponding to each threshold setting presented in Figure 8.

 69

Figure 8: Accuracy vs Federated Learning Rounds with Different B Values

Remarkably, our analysis revealed that when the weight difference remained

within 10%, the training process exhibited optimal smoothness and guaranteed

convergence, underscoring the efficiency of FedProx in federated learning environments.

Model weights updated by individual clients were aggregated to construct a new

global model. This aggregation process significantly bolstered the global model's

performance by harnessing the diversity inherent in distributed data sources.

5.2.5 Enhanced Accuracy

The federated learning process yielded an enhanced global model with testing

accuracy reaching 94.35%. These notable accuracy enhancements underscored the

efficiency of federated learning in capitalizing on decentralized data sources for improved

plant disease classification.

5.3 Experiment 2 Simulation (One Model for Each Plant)

The second experiment architecture revolves around multiple centralized models,

each dedicated to a specific disease. Users contribute solely to the model corresponding

 70

to their addressed plant. The central server manages coordination, refining each model

individually based on user contributions, fostering targeted and specialized training for

disease classification.

5.3.1 Initial Training and Testing

Initial models were trained on 50% of the data for each plant disease class,

including corn, grape, peach, strawberry, tomato, potato, cherry, bell pepper, apple, and

cucumber. The remaining data was distributed across ten clients for each plant disease

class with the addition of noise images to mimic real-world scenarios. The average testing

accuracy across all plant disease classes was 94.65%, laying the foundation for evaluating

federated learning improvements.

5.3.2 Central Models Retraining

After distributing data among clients, federated learning began for each plant

disease class. Central models were initialized with parameters learned from initial

training, and clients performed local training, updating model weights based on their

dataset's characteristics.

5.3.3 Aggregation and Model Improvement

Updated model weights from individual clients were aggregated for each plant

disease class to create a new global model only within 10% difference allowed. This

aggregation process enhanced the global model's performance by leveraging diverse data

sources.

 71

5.3.4 Enhanced Accuracy

Federated learning resulted in an enhanced global model with improved average

testing (96.05%) accuracy across all plant disease classes as displayed in Figure 9. These

accuracy improvements demonstrate the effectiveness of federated learning in leveraging

decentralized data sources for plant disease classification.

Figure 9: Model Accuracy after 100 Rounds of Federated Learning Per Plant

 72

CHAPTER 6

TINYML MODEL SELECTION AND OPTIMIZATION

TinyML has revolutionized the deployment of intelligent applications on

resource-constrained devices, enabling edge intelligence and real-time decision-making.

This chapter aims to explore the process of model selection and optimization for a plant

disease detection system using TinyML. The approach involves leveraging Google's ML

Kit for object detection and performing plant disease classification through transfer

learning using TensorFlow Lite. The objective is to identify the most accurate and

compact model to achieve efficient and accurate plant disease detection.

6.1 ML Kit for Object Detection

Google's ML Kit [45] is a mobile Software Development Kit (SDK) that brings

the power of on-device machine learning to Android and iOS applications. It allows

developers to leverage Google's expertise in machine learning to solve real-world

problems or create innovative user experiences. The key advantage of ML Kit is that it

enables on-device machine learning, eliminating the need for constant internet

connectivity and ensuring real-time processing.

In the context of our plant disease detection project, ML Kit's object detection

capabilities become highly valuable. The SDK comes equipped with pre-trained models

and APIs that can be directly integrated into the application. These pre-trained models

have been developed and fine-tuned by Google using state-of-the-art machine learning

techniques, making them highly accurate and effective for various object detection tasks.

 73

By utilizing ML Kit's object detection capabilities and our pre-trained models, we

can analyze input images of plants and identify potential disease-affected areas. The tool

detects plant components, including leaves, stems, and fruits, and assesses the presence

of any disease-related irregularities. This functionality allows us to locate specific areas

of concern, enabling focused classification efforts on these identified regions.

Furthermore, the fact that ML Kit's APIs run entirely on-device is a significant

advantage for our project. This means that the object detection and classification

processes can be performed directly on the user's smartphone or tablet without relying on

an internet connection. This ensures that the application remains functional even in

scenarios where internet access is limited or unavailable.

Additionally, the on-device processing capability allows for real-time use cases,

where we can process a live camera stream in real-time. This is particularly beneficial for

our plant disease detection application, as users can point their device's camera at a plant

and receive instant feedback on whether it is affected by any disease. The real-time aspect

enables quick decision-making and potential intervention to mitigate the spread of

diseases in agricultural settings.

Moreover, the offline functionality of ML Kit's APIs means that our application

can continue to function seamlessly even when internet connectivity is disrupted. Users

can still perform plant disease detection and classification without interruption, which is

essential for applications in rural areas where internet access may be intermittent.

In conclusion, Google's ML Kit offers a powerful and convenient solution for

object detection tasks, making it an excellent fit for our plant disease detection

application. By leveraging ML Kit's pre-trained models and APIs, we can identify regions

of interest in plant images and perform classification efficiently, all within the confines

 74

of the user's device. The on-device processing and offline capabilities ensure real-time

functionality and accessibility, allowing users to address plant diseases conveniently and

effectively.

6.2 Plant Disease Classification with TensorFlow Lite using Transfer Learning

Plant disease classification is an important task in agriculture, as it helps farmers

identify and address diseases affecting their crops. To tackle this challenge, the process

described leverages the power of transfer learning and TensorFlow Lite, which are

cutting-edge technologies in the field of machine learning and artificial intelligence.

The first step is the detection of regions of interest (ROIs) using ML Kit that is

capable of detecting objects in images, and in this case, it is used to detect the regions of

plants that may be affected by diseases such as the leaves and the stem. These regions are

then extracted from the input images and used as the input for the subsequent

classification model.

Next comes transfer learning, which is a technique in deep learning where a pre-

trained neural network model is used as a starting point for building a new model. In this

context, a pre-existing neural network that was trained on a large dataset, such as

ImageNet, is utilized. The model has already learned to recognize various features and

patterns from general images, and we can leverage this knowledge for the specific task

of plant disease classification.

The overall dataset was used as a training dataset for the transfer learning process.

By utilizing transfer learning, we save computational resources and time, as the model

does not need to be trained from scratch. Instead, it fine-tunes its weights and learns to

specialize in identifying specific diseases based on the provided training data. This

 75

approach enables the creation of an accurate and efficient classification model with

relatively less computational effort.

Finally, the classification model is optimized for deployment on edge devices

using TensorFlow Lite. TensorFlow Lite is a lightweight version of TensorFlow, a deep

learning framework. Its primary advantage is its efficiency in terms of memory and

computation, making it well-suited for running on resource-constrained devices like

smartphones, tablets, and IoT devices. By deploying the plant disease classification

model on the edge device, real-time processing of images can be achieved without relying

on cloud-based processing, thus ensuring prompt and timely diagnosis of plant diseases.

Finally, the combination of ML Kit for region of interest detection, transfer

learning for efficient model creation, and TensorFlow Lite for edge device deployment

results in an effective and practical solution for plant disease classification. This

technology can aid farmers in identifying and managing diseases in their crops,

contributing to increased crop yield and healthier agricultural practices.

6.3 TinyML Experiment 1 (One Model for All Plants)

Using transfer learning to train the pre-trained models that are EfficientNet-Lite0,

EfficientNet-Lite1, EfficientNet-Lite2, EfficientNet-Lite3, EfficientNet-Lite4, ResNet-

50, and MobileNet-V2 on the entire dataset presents a strategic and resourceful approach.

By leveraging transfer learning, these models can capitalize on their pre-existing

knowledge and capabilities, thus significantly reducing the training time and

computational resources required. The incorporation of transfer learning optimally adapts

the models to our specific dataset, enhancing their ability to establish complicated

patterns and features crucial for accurate plant disease classification.

 76

The decision to opt for EfficientNet-Lite0, EfficientNet-Lite1, EfficientNet-Lite2,

EfficientNet-Lite3, EfficientNet-Lite4, ResNet-50, and MobileNet-V2 is supported by

their established performance in the realm of computer vision. These models are

renowned for their proficiency in handling complex visual data efficiently and accurately.

Their varied architectures and adept feature extraction capabilities render them suitable

choices for our specific plant disease classification objectives. Furthermore, their

utilization in academic research and practical applications underlines their reliability and

effectiveness in image analysis and classification tasks.

The comprehensive results presented in Table , including the assessment of

parameters, accuracy, and model size, further underscore the substantial impact of

transfer learning, emphasizing its pivotal role in achieving superior performance and

efficiency across diverse models.

Table 2: Comparison of Pretrained Models Trained on the Augmented PlantVillage

Dataset

Model Total Parameters Accuracy Size

EfficientNet lite0 3,461,702 0.9521 3.86MB

EfficientNet lite1 4,238,022 0.9537 4.76MB

EfficientNet lite2 4,917,846 0.9569 5.46MB

EfficientNet lite3 7,041,446 0.9610 7.72MB

EfficientNet lite4 11,886,614 0.9705 12.78MB

ResNet 50 23,642,662 0.9315 23.32MB

MobileNet V2 2,306,662 0.9449 2.69MB

6.3.1 Model Size

Through the utilization of the TensorFlow Lite converter, which leverages the flat

buffer format, we achieved a significant reduction in model size across the listed models.

 77

Notably, MobileNet_v2, with a size of 2.69MB, emerged as the most compact option,

rendering it highly suitable for deployment on resource-constrained devices. As we

transitioned to more complex models like Efficientnet_lite4 and Resnet_50, the model

sizes increased substantially. However, even with the increased complexity, the reduction

in size achieved by employing the TensorFlow Lite converter was approximately 30%.

Efficientnet_lite4 exhibited a reduced size of about 8.95MB, while Resnet_50 was

compressed to approximately 16.32MB. These findings highlight the effectiveness of the

TensorFlow Lite converter and flat buffer format in significantly reducing model sizes,

enabling efficient deployment on devices with limited resources.

6.3.2 Accuracy Improvement

The models show varying levels of accuracy on the validation set. As we move

from Efficientnet_lite0 to Efficientnet_lite4, the accuracy steadily improves, indicating

the benefit of using more complex architectures for the specific task.

6.3.3 Comparison with Efficientnet_lite Models

The Efficientnet_lite models consistently outperform both Resnet_50 and

MobileNet_v2 in terms of accuracy while being more efficient in terms of model size.

This demonstrates the advantages of the Efficientnet_lite architecture, which achieves a

good balance between accuracy and model complexity.

6.3.4 Comparison with Resnet_50 and MobileNet_v2

While Resnet_50 and MobileNet_v2 are larger models, they still achieve

reasonable accuracy. MobileNet_v2, in particular, is optimized for mobile devices and is

more compact compared to Resnet_50, making it suitable for on-device deployment.

 78

6.3.5 Use Case Considerations

The choice of the model would depend on the specific use case, available

hardware, and performance requirements. If accuracy is a top priority and computational

resources are sufficient, Efficientnet_lite4 could be preferred. On the other hand, if model

size and efficiency are crucial, Efficientnet_lite0 or MobileNet_v2 might be more suitable

choices.

6.3.6 Chosen Model

Our evaluation and analysis demonstrate that EfficientNet_lite0 is the optimal

deep learning model for deployment in our mobile app. Its small model size of 3.86MB

and very acceptable accuracy of 96.15% make it a highly suitable choice to ensure the

efficient and reliable operation of our application on mobile devices.

6.4 TinyML Experiment 2 (One Model for Each Plants)

The objective of Experiment 2 is to identify the most accurate and compact model

for each plant to achieve efficient and accurate plant disease detection.

6.4.1 TinyML Model Selection

The experiment involves training individual models for each plant using transfer

learning on the augmented PlantVillage dataset. The models are evaluated based on

accuracy, and performance. The results, shown in Figure 10, indicate the average

accuracy achieved by each model for the respective plant. Among the models,

EfficientNet-Lite4 consistently achieves the highest average accuracy of 98.68% across

different plants. EfficientNet-Lite0, EfficientNet-Lite1, and EfficientNet-Lite2 also

 79

demonstrate competitive accuracy scores. ResNet-50 and MobileNet-V2 exhibit slightly

lower average accuracies.

Figure 10: Models Metrics after being Trained (Average Accuracy)

After training the models on each plant individually instead of training on all

classes collectively, a significant increase in accuracy was observed and EfficientNet-

Lite0 was selected as the ideal model for integration into the mobile app because of its

compact size (3.86MB) and moderate accuracy (98.05%) across the studied plant species.

This improved the accuracy from 95.21% to 98.05%, showcasing the effectiveness of this

approach. By tailoring the models to each specific plant, the models were able to better

capture the unique characteristics and nuances of each plant's disease patterns. This

individualized training resulted in improved accuracy, demonstrating the importance of

plant-specific models in achieving precise and reliable plant disease detection.

 80

CHAPTER 7

BACKEND DEVELOPMENT AND CONNECTIVITY

In this chapter, we delve into the details of the backend development and

connectivity aspects of our plant disease classification application. We outline our

strategy for crafting a robust backend infrastructure to enhance functionality, dynamic

machine learning model serving, tailored specialized machine learning models for precise

disease identification, and authentication mechanisms to ensure secure access to our

machine learning models.

7.1 Backend Infrastructure

To enrich the capabilities of our mobile application, we have embarked on the

development of a resilient backend infrastructure. This infrastructure serves as the

backbone for seamless communication between our mobile application and centralized

servers, facilitating fluid real-time data exchange and updates. To achieve this, we have

integrated Firebase, a comprehensive platform offered by Google, into our backend

architecture. Firebase provides a suite of tools and services that streamline backend

development, including real-time database functionality and user authentication.

Implementing Firebase begins with setting up a Firebase project on the Firebase

console, where we configure various services according to our application's requirements.

This includes setting up the real-time database to store and synchronize data in real-time

between clients and servers. Additionally, we leverage Firebase Authentication to

authenticate users securely and manage user accounts.

 81

Once the Firebase project is set up, we integrate the Firebase SDK into our mobile

application codebase. This SDK provides APIs that enable our application to interact with

Firebase services seamlessly. In addition, we utilize the Firebase Realtime Database SDK

to perform read and write operations to the database, ensuring that our application always

has access to the latest disease identification models.

7.2 Dynamic Model Serving

Building upon our backend infrastructure, we are implementing an adaptable

model deployment system. This system facilitates the hosting and management of

multiple variations of disease identification models on the server end. The dynamic

deployment mechanism ensures seamless updates and enhancements to the models,

eliminating the need for manual app updates. By adopting this approach, farmers will

consistently access the latest and most accurate disease identification models.

7.3 Tailored Specialized Models

Recognizing the wide range of crop diseases, our primary goal is to construct

custom models for each specific disease. This strategic approach enhances the accuracy

of disease identification while minimizing the size of the models. By integrating these

customized models, we ensure that farmers have access to precise and individualized

information crucial for safeguarding their crops.

7.4 Authentication Mechanism

We are implementing an airtight authentication protocol that exclusively admits

authenticated users. This strategic step serves as a pivotal guardian for the secure and

controlled utilization of our cutting-edge machine learning model. By requiring

 82

authentication, we ensure that only authorized users can access the application's features

and benefit from the disease identification capabilities.

7.5 Conclusion

In conclusion, the backend development and connectivity of our plant disease

classification application are crucial components that enhance functionality, accuracy,

and security. Through the implementation of a robust backend infrastructure, dynamic

model serving, tailored specialized models, and authentication mechanisms, we aim to

provide farmers with a comprehensive solution for effectively managing crop diseases.

 83

CHAPTER 8

MOBILE APP DEVELOPMENT PROCESS

8.1 Objective

The primary objective of this chapter is to outline the process of developing a

mobile app for plant disease classification using the Flutter framework and TensorFlow

Lite machine learning model [47]. We will discuss the necessary steps involved in

creating an intuitive and user-friendly app that enables users to identify plant diseases

through image-based classification.

8.2 Mobile App Development for Plant Disease Classification

This section discusses the different frameworks and technologies used for

building mobile apps and evaluates their effectiveness in real-world scenarios. Emphasis

is placed on integrating TensorFlow Lite models for on-device inference to ensure real-

time and offline capabilities.

8.3 Choice of Technology Stack

The selection of the Flutter framework for mobile app development was based on

several compelling reasons that make it the best choice among various options available

in the market. Flutter, developed by Google, has gained significant popularity within the

developer community due to its unique features and capabilities.

First and foremost, one of the primary reasons for choosing Flutter is its cross-

platform nature. Flutter allows developers to write code once and deploy it on iOS and

Android platforms. This cross-platform compatibility significantly reduces development

time and effort, as developers do not have to maintain separate codebases for different

 84

platforms. It ensures a consistent user experience across devices, eliminating the need for

platform-specific development expertise.

Additionally, Flutter offers a rich set of pre-built UI components and widgets.

These widgets are aesthetically pleasing and can be easily customized to match the app's

branding and design requirements. The extensive widget library includes buttons, text

inputs, sliders, and more, enabling developers to quickly create a visually appealing and

interactive user interface. This streamlines the development process and enhances the

overall user experience, as users are presented with a polished and modern-looking app.

Another significant advantage of Flutter is its fast development cycle. Flutter's hot

reload feature allows developers to see changes in the code immediately reflected on the

app's interface, without the need to restart the entire app. This rapid iteration process

significantly speeds up the development and debugging phases, as developers can quickly

experiment with different designs, features, and functionalities. This feature is

particularly beneficial when fine-tuning the user interface and implementing real-time

changes.

Moreover, Flutter has a strong and active developer community. The community

actively contributes to the framework by creating and sharing open-source packages and

plugins. This vast collection of packages provides access to various functionalities, such

as database integration, animation effects, and device hardware access, further enriching

the app's capabilities and reducing development time. The support from the community

also ensures that developers can find solutions to common challenges and issues quickly.

Therefore, the rationale behind selecting Flutter for mobile app development lies

in its cross-platform compatibility, rich set of pre-built UI components, and fast

development cycle. These advantages make it an ideal framework for building robust and

 85

efficient apps, saving development time, and delivering a seamless user experience. The

strong developer community support adds to the overall appeal of Flutter and enhances

its suitability for diverse mobile app projects, including the development of the plant

disease classification app.

8.4 Minimum Requirements for App Functionality

The development of our plant disease classification application focused on

meeting essential criteria for both functionality and user satisfaction. Technically, the

application mandates compatibility with Android 5.0 or later versions, as well as iOS 11

or higher, ensuring broad accessibility across mobile platforms. Furthermore, it relies on

access to device hardware components such as the camera, which is integral for capturing

plant leaf images.

Moreover, the application's optimal performance is contingent upon meeting

specific hardware specifications, including a minimum of 1GB RAM and 100MB of

storage capacity. These requirements were determined through a comprehensive

technical analysis, which considered both the computational demands of the application

and the practical constraints of users' devices. By striking a balance between functionality

and accessibility, we aimed to ensure a seamless user experience across a diverse range

of mobile devices.

8.5 Data Management and Privacy

Addressing data management issues is a critical aspect of mobile app

development, particularly when dealing with sensitive user information. Proper data

management ensures that user data is handled securely and responsibly, adhering to

 86

privacy regulations and best practices. In this section, we will delve into the strategies

and considerations for managing user data effectively in the context of our plant disease

classification mobile app.

One of the fundamental aspects of data management is ensuring the secure storage

of user data. As our app involves users to sign up and sign in and collect and images meta

data, it becomes essential to handle the user credentials with care. We implement robust

encryption and data protection mechanisms to prevent unauthorized access to the user

credentials and ensure they remain confidential. By leveraging encryption techniques and

secure storage solutions, we provide users with the peace of mind that their credentials

are safe and secure.

Moreover, privacy regulations play a significant role in dictating how user data

should be collected, stored, and used. As developers, we complied with relevant data

protection laws and regulations, General Data Protection Regulation (GDPR) [48]. We

ensure that the app's data management practices align with these regulations, and we

provide users with clear and transparent privacy policies that outline how their data will

be handled.

In conclusion, addressing data management issues is vital to building a

trustworthy and user-centric mobile app. By securely storing user credentials and images

meta data, adhering to privacy regulations, and providing users with control over their

data through consent options, we create an environment of trust and transparency. These

measures not only safeguard user privacy but also contribute to the overall success and

adoption of our plant disease classification app. As responsible developers, we prioritize

data privacy and security at every stage of the app development lifecycle.

 87

8.6 Setting Up the Development Environment

We set up the development environment for building the mobile app using Flutter.

We began by ensuring that the system requirements were met, and that the development

machine was compatible with Flutter. We then installed the Flutter SDK on our Windows

machine. Next, we added the necessary Flutter packages and dependencies to the project's

pubspec.yaml file. This included the TensorFlow Lite plugin and the MLKit plugin, that

are required to integrate the pre-trained TensorFlow Lite model into the app.

8.7 Integrating TensorFlow Lite Model

We integrated the pre-trained TensorFlow Lite model into the Flutter app. We

started by loading the model file into the project and accessing it within the Flutter code.

We then performed necessary preprocessing steps to prepare input images before feeding

them into the TensorFlow Lite model. This included image resizing, normalization, and

other transformations to match the model's input requirements.

With the TensorFlow Lite model loaded and the input images preprocessed, we

ran inference on the device. We invoked the model to make predictions on the captured

plant leaf images, and then interpreted the model's output and converted it into

meaningful disease classification results that were presented to the user.

8.8 Authorization

The sign-in and sign-up screens of our plant disease classification app is designed

to be user-friendly and intuitive, with easy navigation and clear instructions. Users are

prompted to select the type of plant they have in order to download the associated model

for disease classification as presented in Figure 11.

 88

Figure 11: Authorization Screens

This selection determines the model downloaded to their app, a feature that can

be subsequently adjusted within the application. This ensures that they receive accurate

diagnoses tailored to their specific plant species. Additionally, the mobile application is

accessible in both English and Arabic, catering to a diverse range of users.

8.9 Building the User Interface

We developed an intuitive and user-friendly interface for our plant disease

classification app. Our UI design encompasses three distinct screens that guide users

through the process of capturing, identifying, and understanding plant diseases. Below,

we present the details of each screen's purpose and functionality, referencing their

respective figure numbers.

 89

Figure 12: Historical Record of Captured Diseases

Our first screen, represented in Figure 12, serves as the "Historical Record of

Captured Diseases". In this segment, users can examine a chronological log of previously

documented plant leaf images. Each entry in the historical log is accompanied by a

thumbnail of the leaf image and a concise summary of the ascertained disease. This

feature enables users to monitor the health status of their plants over time, thereby

enabling informed decision-making for plant care and administration.

 90

Figure 13: Image Acquisition and Disease Identification Console

The heart of our app resides in Figure 13, the "Image Acquisition and Disease

Identification Console" screen. This is where users can capture images of plant leaves

that show signs of disease. Utilizing the device's camera, users can snap photos of

afflicted leaves directly within the app. Upon capturing an image, our integrated

TensorFlow Lite model is invoked. Then, the model rapidly analyzes the leaf image and

provides an instant classification of the disease. In cases where the model fails to

recognize the disease, the app promptly notifies the user that the specific disease couldn't

be identified. This ensures transparent communication with the user and encourages them

to seek further guidance or professional assistance for accurate diagnosis and treatment.

 91

Figure 14: Comprehensive Insight and Identification Reference

Moving into the details of a disease diagnosis, Figure 14 presents the

"Comprehensive Insight and Identification Reference" screen. The app stores plant

images on the user's device to support the comprehensive tracking of disease history. This

functionality enables users to maintain a detailed record of their plant health observations

over time. Additionally, the app provides users with the option to remove or delete any

stored data, ensuring full control over their information. Following the identification of a

disease, users have the option to access this screen from the historical records. This screen

facilitates the viewing of the specific plant leaf image alongside the corresponding disease

identification. It offers a comprehensive view, allowing users to delve into the details of

the identified disease. This provides users with actionable knowledge to effectively

address plant health concerns and mitigate potential damage.

 92

Throughout the UI development process, we adhered to Flutter's fundamental

design principles, ensuring a cohesive and engaging user experience. Leveraging the

power of Flutter's widget ecosystem, we constructed each screen's layout, leveraging a

combination of pre-built and custom widgets. The utilization of Flutter's composability

and reusability principles enabled us to create a UI that is not only visually appealing but

also easily maintainable and adaptable.

Our The plant disease classification app features a comprehensive three-screen

interface designed to facilitate disease history tracking, image capture and identification,

and detailed disease information for users. The incorporation of advanced technology,

and the customized TensorFlow Lite model, ensures users have access to effective tools

for prompt and precise plant health management.

8.10 Testing and Debugging

We underscored the significance of thorough testing and effective debugging in

the mobile app development process. We discussed the different types of testing that

should be performed, including functional testing, compatibility testing, and performance

testing.

Functional testing involves verifying that all the app's features and functionalities

work as intended. We created comprehensive test cases that covered various scenarios

and user interactions. We also used Flutter's testing framework to write unit tests and

widget tests, enabling automated testing of individual components and UI elements.

Compatibility testing is essential to ensure that the app performs consistently

across different devices, screen sizes, and orientations. We tested the app on various real

devices and emulators to ensure that its function as intended.

 93

Performance testing is another critical aspect of app development, as it determines

how well the app performs under different workloads and conditions. We used

performance testing tools and techniques to measure factors like app responsiveness,

loading times, and memory usage. By optimizing the app's performance, we enhanced

user satisfaction and retention.

Debugging is an inevitable part of the development process, and we highlighted

common debugging techniques and tools that aid in identifying and resolving issues

efficiently. We used Flutter's integrated development environment (IDE) to set

breakpoints, inspect variables, and step through the code to identify bugs. We also

handled user error to provide valuable insights into app behavior during runtime.

 94

CHAPTER 9

RESULTS, CONCLUSION AND FUTUE WORK

9.1 Results

The evaluation of our proposed approach yielded promising outcomes, affirming

its effectiveness in addressing crop disease management challenges. Across all deployed

models, an impressive average accuracy of 98% was achieved, surpassing all accuracies

reported in existing literature for both offline and centralized models, underscoring the

robustness of our framework. This high level of accuracy was instrumental in providing

farmers with reliable disease identification capabilities directly on their smartphones.

Additionally, the integration of Federated Learning (FL) techniques ensured adaptability

and scalability of the solution, crucial factors in the dynamic agricultural domain.

Notably, the utilization of TinyML inference enabled efficient model execution on

resource-constrained devices without compromising accuracy, further enhancing the

accessibility and practicality of our framework for end-users. These results signify a

significant advancement in democratizing access to advanced agricultural technologies,

thereby contributing to global food security and sustainable crop management practices.

9.1.1 TinyML Models

Our efforts in compressing deep learning models for crop disease identification

have yielded significant reductions in size, ensuring compatibility with mobile devices'

limited storage capacities. And through careful assessment, we have verified that the

compressed models maintain a high level of accuracy, making them suitable for practical

 95

field applications and enabling farmers to access disease identification capabilities even

in areas with limited internet connectivity.

9.1.2 Federated Learning

By leveraging federated learning techniques, we ensure ongoing improvements in

model accuracy over time. This iterative approach is essential for maintaining model

relevance and effectiveness in dynamic agricultural environments, ultimately benefiting

farmers and agricultural stakeholders. Federated learning techniques have been applied

to continuously enhance the accuracy of our compressed models. By leveraging data

samples collected from various devices, we observed ongoing improvements in model

accuracy over time, crucial for maintaining relevance in dynamic agricultural

environments.

9.1.3 Backend Development

Our focus lied on developing a robust backend infrastructure to facilitate seamless

communication between the mobile application and centralized servers. This

infrastructure enabled fluid real-time data exchange and updates, enhancing the overall

functionality and global reach of the application. Also, our backend enabled dynamic

model serving to facilitating the deployment and management of multiple variations of

disease identification models. This dynamic deployment mechanism ensures continuous

updates and enhancements to the models, eliminating the need for manual app updates

and providing farmers with access to the latest and most accurate models.

 96

9.1.4 Mobile Application Development

The mobile application is designed to function offline, catering to farmers in

regions with limited or unstable internet access. This feature ensures uninterrupted

utilization of disease identification capabilities, even in rural areas with scarce internet

connectivity. It is also accessible in both English and Arabic to accommodate farmers

with different language preferences. In addition, the mobile application boasts an

intuitive user interface, simplifying the process of capturing photos of crops, submitting

them for disease identification, and receiving accurate results. The user-friendly design

enhances usability and accessibility for farmers of all technical backgrounds. Moreover,

leveraging embedded TinyML models, the application provides real-time disease

identification results directly on the mobile device. This rapid response empowers

farmers to make informed decisions promptly, contributing to more efficient crop

management practices.

9.2 Conclusion

In conclusion, our research has demonstrated the effectiveness of leveraging

machine learning and mobile technologies for crop disease management. The achieved

accuracy rates, coupled with the adaptability and scalability afforded by FL and TinyML,

highlight the potential of our framework to revolutionize agricultural practices. By

empowering farmers with smartphone-based disease identification tools, we have taken

a significant step towards democratizing access to advanced agricultural technologies.

This not only improves the incomes of farmers but also contributes to global food security

and sustainable agriculture.

 97

9.3 Future Scope

In the future, we envision expanding the capabilities of our crop disease

management system to provide personalized recommendations for farmers. By

integrating large language models (LLMs) [49], we can offer tailored suggestions on

disease control measures, crop strategies based on factors like weather conditions and

historical data. Furthermore, we propose extending our approach to encompass other

medical applications [50], such as disease diagnosis and treatment recommendations,

using machine learning and mobile technologies. Integrating Internet of Things (IoT)

devices and sensor networks [51] can enhance the system by collecting real-time

environmental data and providing context-aware disease management strategies, leading

to improved accuracy and wider adoption. These advancements have the potential to not

only democratize access to advanced agricultural technologies but also have broader

implications for healthcare and other domains, contributing to a more sustainable and

technologically empowered future.

 98

REFERENCES

[1] Heike Baum ̈uller. Towards smart farming? mobile technology trends and their

potential for developing country agriculture. In Handbook on ICT in Developing

Countries, pages 191–210. River Publishers, 2022.

[2] Norah N Alajlan and Dina M Ibrahim. Tinyml: Enabling of inference deep learning

models on ultra-low-power iot edge devices for ai applications. Micromachines,

13(6):851, 2022.

[3] Hui Han and Julien Siebert. Tinyml: A systematic review and synthesis of existing

research. In 2022 International Conference on Artificial Intelligence in Information and

Communication (ICAIIC), pages 269–274. IEEE, 2022.

[4] Partha Pratim Ray. A review on tinyml: State-of-the-art and prospects. Journal of King

Saud University-Computer and Information Sciences, 34(4):1595–1623, 2022.

[5] Mohammed Zubair M Shamim. Hardware deployable edge-ai solution for

prescreening of oral tongue lesions using tinyml on embedded devices. IEEE Embedded

Systems Letters, 14(4):183–186, 2022.

[6] Muhammad Shafique, Theocharis Theocharides, Vijay Janapa Reddy, and Boris

Murmann. Tinyml: current progress, research challenges, and future roadmap. In 2021

58th ACM/IEEE Design Automation Conference (DAC), pages 1303–1306. IEEE, 2021.

[7] Sedigh Ghamari, Koray Ozcan, Thu Dinh, Andrey Melnikov, Juan Carvajal, Jan

Ernst, and Sek Chai. Quantization-guided training for compact tinyml models. arXiv

preprint arXiv:2103.06231, 2021.

[8] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing

Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for

mobilenetv3. In Proceedings of the IEEE/CVF international conference on computer

vision, pages 1314–1324, 2019.

[9] Siying Qian, Chenran Ning, and Yuepeng Hu. Mobilenetv3 for image classification.

In 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and

Internet of Things Engineering (ICBAIE), pages 490–497. IEEE, 2021.

[10] Rodolfo Stoffel Antunes, Cristiano Andr ́e da Costa, Arne K ̈uderle, Imrana

Abdullahi Yari, and Bj ̈orn Eskofier. Federated learning for healthcare: Systematic review

and architecture proposal. ACM Transactions on Intelligent Systems and Technology

(TIST), 13(4):1–23, 2022.

[11] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated

learning: Challenges, methods, and future directions. IEEE signal processing magazine,

37(3):50–60, 2020.

 99

[12] Xiaodong Ma, Jia Zhu, Zhihao Lin, Shanxuan Chen, and Yangjie Qin. A state-of-

the-art survey on solving non-iid data in federated learning. Future Generation Computer

Systems, 135:244–258, 2022.

[13] Adrian Nilsson, Simon Smith, Gregor Ulm, Emil Gustavsson, and Mats Jirstrand. A

performance evaluation of federated learning algorithms. In Proceedings of the second

workshop on distributed infrastructures for deep learning, pages 1–8, 2018.

[14] Viraaji Mothukuri, Reza M Parizi, Seyedamin Pouriyeh, Yan Huang, Ali

Dehghantanha, and Gautam Srivastava. A survey on security and privacy of federated

learning. Future Generation Computer Systems, 115:619–640, 2021.

[15] Fahad Ahmed KhoKhar, Jamal Hussain Shah, Muhammad Attique Khan,

Muhammad Sharif, Usman Tariq, and Seifedine Kadry. A review on federated learning

towards image processing. Computers and Electrical Engineering, 99:107818, 2022.

[16] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist:

Extending mnist to handwritten letters. In 2017 international joint conference on neural

networks (IJCNN), pages 2921–2926. IEEE, 2017.

[17] J ̈urgen Schmidhuber. Deep learning in neural networks: An overview. Neural

networks, 61:85–117, 2015.

[18] Rahul Chauhan, Kamal Kumar Ghanshala, and RC Joshi. Convolutional neural

network (cnn) for image detection and recognition. In 2018 first international conference

on secure cyber computing and communication (ICSCCC), pages 278–282. IEEE, 2018.

[19] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a

convolutional neural network. In 2017 international conference on engineering and

technology (ICET), pages 1–6. Ieee, 2017.

[20] Rupesh G Mundada and VV Gohokar. Detection and classification of pests in

greenhouse using image processing. IOSR Journal of Electronics and Communication

Engineering, 5(6):57–63, 2013.

[21] Jun Liu and Xuewei Wang. Plant diseases and pests detection based on deep

learning: a review. Plant Methods, 17:1–18, 2021.

[22] Reem Ibrahim Hasan, Suhaila Mohd Yusuf, and Laith Alzubaidi. Review of the state

of the art of deep learning for plant diseases: A broad analysis and discussion. Plants,

9(10):1302, 2020.

[23] Chen Li, Tong Zhen, and Zhihui Li. Image classification of pests with residual neural

network based on transfer learning. Applied Sciences, 12(9):4356, 2022.

[24] Depeng Wei, Jiqing Chen, Tian Luo, Teng Long, and Huabin Wang. Classification

of crop pests based on multi-scale feature fusion. Computers and Electronics in

Agriculture, 194:106736, 2022.

 100

[25] Kavya Kopparapu, Eric Lin, John G Breslin, and Bharath Sudharsan. Tinyfedtl:

Federated transfer learning on ubiquitous tiny iot devices. In 2022 IEEE International

Conference on Pervasive Computing and Communications Workshops and other

Affiliated Events (PerCom Workshops), pages 79–81. IEEE, 2022.

[26] Shiva Mehta, Vinay Kukreja, and Satvik Vats. Empowering farmers with ai:

Federated learning of cnns for wheat diseases multiclassification. In 2023 4th

International Conference for Emerging Technology (INCET), pages 1–6. IEEE, 2023.

[27] Thalita Mendonc ̧a Antico, Larissa F Rodrigues Moreira, and Rodrigo Moreira.

Evaluating the potential of federated learning for maize leaf disease prediction. In Anais

do XIX Encontro Nacional de Inteligˆencia Artificial e Computacional, pages 282–293.

SBC, 2022.

[28] KABALA DM, A HAFIANE, L BOBELIN, and R CANALS. Image-based crop

disease detection with federated learning. 2023.

[29] Christine L Carroll, Colin A Carter, Rachael E Goodhue, and C-Y Lawell. Crop

disease and agricultural productivity: Evidence from a dynamic structural model of

verticillium wilt management. In Agricultural Productivity and Producer Behavior, pages

217–249. University of Chicago Press, 2018.

[30] G Geetharamani and Arun Pandian. Identification of plant leaf diseases using a nine-

layer deep convolutional neural network. Computers & Electrical Engineering, 76:323–

338, 2019.

[31] Aravind Krishnaswamy Rangarajan, Raja Purushothaman, and Aniirudh Ramesh.

Tomato crop disease classification using pre-trained deep learning algorithm. Procedia

computer science, 133:1040–1047, 2018.

[32] Ashwini T Sapkal and Uday V Kulkarni. Comparative study of leaf disease diagnosis

system using texture features and deep learning features. International Journal of Applied

Engineering Research, 13(19):14334–14340, 2018.

[33] Mohamed Kerkech, Adel Hafiane, and Raphael Canals. Vine disease detection in

uav multispectral images using optimized image registration and deep learning

segmentation approach. Computers and Electronics in Agriculture, 174:105446, 2020.

[34] Bulent Tugrul, Elhoucine Elfatimi, and Recep Eryigit. Convolutional neural

networks in detection of plant leaf diseases: A review. Agriculture, 12(8):1192, 2022.

[35] Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. A survey on

federated learning. Knowledge-Based Systems, 216:106775, 2021.

[36] Fangming Deng, Wei Mao, Ziqi Zeng, Han Zeng, and Baoquan Wei. Multiple

diseases and pests detection based on federated learning and improved faster r-cnn. IEEE

Transactions on Instrumentation and Measurement, 71:1–11, 2022.

 101

[37] Jinzhu Lu, Lijuan Tan, and Huanyu Jiang. Review on convolutional neural network

(cnn) applied to plant leaf disease classification. Agriculture, 11(8):707, 2021.

[38] Jiasi Chen and Xukan Ran. Deep learning with edge computing: A review.

Proceedings of the IEEE, 107(8):1655–1674, 2019.

[39] Ivan Kholod, Evgeny Yanaki, Dmitry Fomichev, Evgeniy Shalugin, Evgenia

Novikova, Evgeny Filippov, and Mats Nordlund. Open-source federated learning

frameworks for iot: A comparative review and analysis. Sensors, 21(1):167, 2020.

[40] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li,

Nick Kreeger, Ian Nappier, Meghna Natraj, Tiezhen Wang, et al. Tensorflow lite micro:

Embedded machine learning for tinyml systems. Proceedings of Machine Learning and

Systems, 3:800–811, 2021.

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:

An imperative style, high-performance deep learning library. Advances in neural

information processing systems, 32, 2019.

[42] Vijay Janapa Reddi, Alexander Elium, Shawn Hymel, David Tischler, Daniel

Situnayake, Carl Ward, Louis Moreau, Jenny Plunkett, Matthew Kelcey, Mathijs

Baaijens, et al. Edge impulse: An mlops platform for tiny machine learning. Proceedings

of Machine Learning and Systems, 5, 2023.

[43] Hoang-The Pham, Minh-Anh Nguyen, and Chi-Chia Sun. Aiot solution survey and

comparison in machine learning on low-cost microcontroller. In 2019 International

Symposium on Intelligent Signal Processing and Communication Systems (ISPACS),

pages 1–2. IEEE, 2019.

[44] Liangzhen Lai, Naveen Suda, and Vikas Chandra. Cmsis-nn: Efficient neural

network kernels for arm cortex-m cpus. arXiv preprint arXiv:1801.06601, 2018.

[45] Anubhav Singh and Rimjhim Bhadani. Mobile Deep Learning with TensorFlow Lite,

ML Kit and Flutter: Build scalable real-world projects to implement end-to-end neural

networks on Android and iOS. Packt Publishing Ltd, 2020.

[46] David Hughes, Marcel Salath ́e, et al. An open access repository of images on plant

health to enable the development of mobile disease diagnostics. arXiv preprint

arXiv:1511.08060, 2015.

[47] Mohammed Shoaib, Mohammed Faisal Uddin, Mohammed Azhar Uddin, and

Pathan Ahmed Khan. Utilizing flutter framework and tensorflow lite convolutional neural

networks-based image classification for plant’s leaf disease identification through deep

learning. Mathematical Statistician and Engineering Applications, 72(1):1381–1388,

2023.

 102

[48] He Li, Lu Yu, and Wu He. The impact of gdpr on global technology development,

2019.

[49] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian

Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al.

Emergent abilities of large language models. arXiv preprint arXiv:2206.07682, 2022.

[50] Mohammad Shehab, Laith Abualigah, Qusai Shambour, Muhannad A Abu-Hashem,

Mohd Khaled Yousef Shambour, Ahmed Izzat Alsalibi, and Amir H Gandomi. Machine

learning in medical applications: A review of state-of-the-art methods. Computers in

Biology and Medicine, 145:105458, 2022.

[51] Mahammad Shareef Mekala and P Viswanathan. A survey: Smart agriculture iot

with cloud computing. In 2017 international conference on microelectronic devices,

circuits and systems (ICMDCS), pages 1–7. IEEE, 2017.

