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Abstract
of the Thesis of

Jolie Simon Lahoud for Master of Science
Major: Pure Mathematics

Title: Least Gradient Problem

For a given continuous function g defined on the boundary of Ω where Ω is a bounded
lipschitz domain in Rn satisfying some conditions, we consider proving the existence
of a function u in the space of BV (Ω) that is equal to g on the boundary in the
trace sense, and the total variation of its distributional derivative evaluated over
Ω is minimal among all such functions,in addition to proving uniqueness when u
belongs to BV (Ω) ∩ C(Ω).The exposition go deeply in the study of BV theory and
sets of finite perimeter.
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Notations

Cc(X) Space of continuous functions with compact support in X ⊂ Rn

C(X) Space of continuous functions in X ⊂ Rn

C0(X) Space of continuous functions f such that lim
|x|→∞

f(x) = 0
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Introduction

The least gradient problem is a problem of minimalization:

inf{|Du|(Ω) : u ∈ BV (Ω) ∩ C(Ω), u = g on ∂Ω}

where Ω is a bounded lipschitz domain in Rn, g : ∂Ω → R continuous. We aim to
establish both the existence and uniqueness of a solution to this problem. Addition-
ally, we consider the least gradient problem with a slightly relaxed condition:

inf{|Du|(Ω) : u ∈ BV (Ω), u = g on ∂Ω}

We will also demonstrate the existence of a solution for this problem. Here the
boundary condition is understood in the sense of trace theory in the space of func-
tions of bounded variation BV.

In this thesis, we prove the existence of a solution to this problem under certain
conditions on ∂Ω. Specifically, we require that ∂Ω has non-negative mean curvature
(in a weak sense) and is not locally area-minimizing. In two dimensions, these
conditions can be replaced with a requirement that the set is strictly convex. Our
approach in this thesis is inspired by the work of Sternberg, Williams, and Ziemer
in their paper [1] building upon the findings of Bombieri, De Giorgi, and Giusti in
[2], which demonstrated, among other things, that the superlevel sets of a function
of least gradient are area-minimizing. This result provides the major motivation
for the techniques employed. Indeed, this fact, along with the co-area formula,
suggests that the existence of a function of least gradient can be established by
actually constructing each of its superlevel sets in such a way that they reflect the
appropriate boundary condition and that they are area-minimizing.

The thesis is organized as follows. In chapter 1, we start by revisiting some basic
ideas in measure theory and introducing new ones.We define the space of bounded
variation functions BV, sets of finite perimeters and discuss the coarea formula, that
will help us in achieving the existence of a solution. Additionally, we introduce the
trace concept. These are essential concepts that provide the groundwork for our
study.

In chapter 2, we define the reduced boundary of a set of locally finite perimeter,
the set of points where the measure theoretical normal exists.

In Chapter 3, we outline fundamental properties of minimal surfaces, which will
serve as valuable tools in our work.

In Chapter 4, we introduce the Least Gradient Problem (LGP) on BV (Ω)∩C(Ω)
and lay out some preliminary ideas.

1



Finally, chapter 5 is devoted to the explicit construction of the solution to (4.22),
as well as the solution to (4.1) and its uniqueness.
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Chapter 1

Functions of bounded variation
and sets of finite perimeter

1.1 Measure theory

Definition 1.1.1. Let (X,A) be a measurable space,and let n ∈ N, n ≥ 1,we say
that µ : A → Rn is a measure if:

1. µ(∅) = 0,

2. (Countable Additivity) For a countable collection {An} of pairwise disjoint sets
in A, we have

µ

(
∞⋃
n=1

An

)
=

∞∑
n=1

µ(An).

If n=1, we say that µ is a real measure, if n > 1 we say that µ is a vector measure.

Definition 1.1.2. 1. A measure µ on X is regular if for each set A ⊂ X there
exists a µ-measurable set B such that A ⊂ B and µ(A) = µ(B).

2. A measure µ on Rn is called Borel if every Borel set is µ-measurable.

3. A measure µ on Rn is Borel regular if µ is Borel and for each set A ⊂ Rn

there exists a Borel set B such that A ⊂ B and µ(A) = µ(B).

4. A measure µ on Rn is a Radon measure if µ is Borel regular and µ(K) < ∞
for each compact set K ⊂ Rn.

5. A subset A ⊂ X is σ-finite with respect to µ if we can write A =
⋃

k≥1BK ,
where Bk is µ-measurable and µ(Bk) < ∞ for k = 1, 2 · · · . If X itself is
σ-finite we also say that µ is σ-finite.

Definition 1.1.3 (Total variation measure). If µ : A 7→ Rn is a measure, we define
its total variation |µ| for every measurable set E as follows:

|µ|(E) := sup

{
∞∑
h=1

|µ(Eh)| : Eh ∈ A pairwise disjoint, E = ∪∞
h=0Eh

}
.

3



Theorem 1.1.1. [3] Let µ be a measure on (X,A), then |µ| is a positive finite
measure.

Definition 1.1.4. (a) Let µ be a positive measure and ν be a real or vector measure
on the measure space (X,A).We say that ν is absolutely continuous with respect to
µ, and write ν << µ, if for every B ∈ A the following implication holds :

µ(B) = 0 =⇒ |ν|(B) = 0

(b) If µ, ν are positive measures, we say that they are mutually singular, and write
ν ⊥ µ, if there exists E ∈ A such that µ(E) = 0 and ν(X − E) = 0. In the case
where µ or ν are real or vector-valued, we say that they are mutually singular if |µ|
and |ν| are so.

Theorem 1.1.2 (Radon-Nikodym). Let µ be a positive measure and ν be a real or
vector measure on the space (X,A) and assume that µ is σ-finite.Then there is a
unique pair of Rm-valued measure νa, νs such that νa << µ, νs ⊥ µ and ν = νa+νs.
Moreover, there is a unique function f ∈ (L1(X,µ))n such that νa = fµ.
The function f is called the density of ν with respect to µ and is denoted by ν

µ
.

Since trivially each real or vector measure µ is absolutely continuous with respect
to |µ|, then we have the following decomposition that we won’t prove.

Corollary 1.1.1. [3][Polar decomposition] Let µ be a Rn-valued measure on the mea-
sure space (X,A), then there exists a unique Sm−1-valued function f ∈ (L1(X, |µ|))n
such that µ = f |µ|.

Proposition 1.1.1. Let X be a locally compact separable metric space and µ a finite
Rn-valued Radon measure on it.Then for every open set A ∈ X the following equality
holds:

|µ|(A) = sup

{
n∑

i=1

ˆ
X

uidµi : u ∈ Cc(A,Rn), ∥u∥∞ ≤ 1

}
Proof. By Corollary 1.1.1 there exist a unique Sm−1-valued function f ∈ (L1(X, |µ|))n
such that µ = f |µ| i.e µ = (µ1, µ2, · · · , µn) = (f1|µ|, · · · , fn|µ|). Now fix A ⊂ X
open,and let u = (u1, · · · , un) ∈ Cc(A,Rn) such that ∥u∥∞ ≤ 1

n∑
i=1

ˆ
A

ui dµi =
n∑

i=1

ˆ
A

uifi d|µ| =
ˆ
A

⟨u, f⟩ d|µ|

≤
ˆ
A

|u||f | d|µ| ≤ ∥u∥∞
ˆ
A

|f | d|µ|

≤ ∥u∥∞
ˆ
A

d|µ| ≤ ∥u∥∞|µ|(A)

Therefore sup
{∑n

i=1

´
X
ui dµi : u ∈ Cc(A,Rn), ∥u∥∞ ≤ 1

}
≤ |µ|(A). Now for the

other inequality, using the density of Cc(A,Rn) in (L1(A, |µ|))n there exist a sequence
(uh)h ⊂ Cc(A,Rn) that converges to f in (L1(A, |µ|))n. Moreover, by a truncation
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argument, we can assume that ∥uh∥∞ ≤ 1. Since uh = (uh,1, · · · , uh,n) converges to
f.1A in (L1(X, |µ|))n we obtain

lim
h→∞

n∑
i=1

ˆ
X

uh,idµi = lim
h→∞

ˆ
A

< uh, f > d|µ| =
ˆ
A

|f |2d|µ| = |µ|(A).

Hence equality holds.

Theorem 1.1.3 (Riesz). Let L : Cc(X,Rn) → R be a linear functional which
satisfies

sup{L(f) : f ∈ Cc(X,Rn), |f | ≤ 1} <∞

Then there is a unique Rn-valued Radon measure µ = (µ1, · · · , µn) on Rn such that

L(f) =
n∑

i=1

ˆ
Rn

f idµi ∀f ∈ Cc(X,Rn)

And,
∥L∥ = |µ|(X)

Definition 1.1.5 (Weak* convergence of measures). Let µ, (µh)h be Rn−valued
Radon measures on X. we say that (µh) locally weakly* converges to µ if

lim
h→∞

ˆ
X

fdµh =

ˆ
X

fdµ

for every f ∈ Cc(X).
If µ and µh are finite, we say that (µh) weakly* converges to µ if

lim
h→∞

ˆ
X

fdµh =

ˆ
X

fdµ

for every f ∈ C0(X).

Theorem 1.1.4 (Weak* Compactness). [3] If (µh) is a sequence of finite Radon
measures on the l.c.s metric space X with sup{|µh|(X) : h ∈ N} < ∞,then it has a
weakly* converging subsequence.

Proposition 1.1.2. [3] Let (µh) be a sequence of Radon measures on the l.c.s metric
space X locally weakly* converging to µ.Then

(a) If the measure µh are positive, then for every lower semi-continuous function
f : X → [0,∞]

lim inf
h→∞

ˆ
X

fdµh ≥
ˆ
X

fdµ

And for every upper semi-continuous function g : X → [0,∞) with compact
support

lim sup
h→∞

ˆ
X

gdµh ≤
ˆ
X

gdµ

5



(b) If |µh| locally weakly* converges to λ, then λ ≥ |µ|. Moreover if E is a relatively
compact µ-measurable set such that λ(∂E) = 0, then µh(E) → µ(E) as h →
∞. More generally ˆ

X

fdµ = lim
h→∞

ˆ
X

fdµh

for any bounded Borel function f : X → R with compact support such that the
set of its discontinuity points is λ-negligible.

Proposition 1.1.3. [3] Let (µh) be a sequence of positive Radon measures on X,
and assume the existence of a positive, finite Radon measure µ in X such that

lim
h→∞

µh(X) = µ(X) and lim inf
h→∞

µh(A) ≥ µ(A)

for every A ⊂ X open. Then

lim
h→∞

ˆ
X

fdµh =

ˆ
X

fdµ

f or any bounded continuous function f : X → R. In particular (µh) weakly*
converges to µ in X.

Notation. We denote the average of f over the set E with respect to µ by

 
E

fdµ =
1

µ(E)

ˆ
E

fdµ,

provided 0 < µ(E) <∞ and the integral on the right is defined.

Theorem 1.1.5 (Lebesgue-Besicovitch differentiation theorem). Let µ be a radon
measure on Rn and f ∈ L1

loc(Rn, µ).Then

lim
r→0

 
B(x,r)

fdµ = f(x)

for µ a.e x ∈ Rn.

1.2 Integration by parts

Let Ω be an open bounded subset of Rn with C1 boundary, we recall the Gauss-Green
Theorem.

Theorem 1.2.1 (Gauss-Green Theorem). Suppose f ∈ C1(Ω). Then

ˆ
Ω

fxi
dx =

ˆ
∂Ω

fνidS i = 1, · · · , n

with ν = (ν1, ν2, · · · , νn) outward pointing unit normal vector field.
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Theorem 1.2.2 (Integration by parts formula). If f, g ∈ C1(Ω),thenˆ
Ω

fgxi
dx = −

ˆ
Ω

gfxi
dx+

ˆ
∂Ω

fgνidS for i = 1, · · · , n

In fact from Gauss-Green theorem:ˆ
Ω

fgxi
dx+

ˆ
Ω

gfxi
dx =

ˆ
Ω

(gf)xi
dx

=

ˆ
∂Ω

fgνidS

1.3 Sobolev Spaces

1.3.1 Weak Derivative

Motivation: Let Ω open subset of Rn. Given a function f ∈ C1(Ω), then for all
φ ∈ C1

c (Ω), ˆ
Ω

fφxi
dx = −

ˆ
Ω

fxi
φdx

The problem is when f is not in C1(Ω), at least the right-hand side integral will
have no meaning hence we will define the weak derivative of f as follows

Definition 1.3.1. Given a real valued function f ∈ L1
loc(Ω) we say that g ∈ L1

loc(Ω)
is the weak ith-derivative of f ifˆ

Ω

fφxi
dx = −

ˆ
Ω

gφdx

for all φ ∈ C1
c (Ω).

Uniqueness. The weak ith-derivative of f , if it exists, is uniquely defined.

Proof. Assume g and g̃ are weak ith-derivatives of f satisfyingˆ
Ω

fφxi
dx = −

ˆ
Ω

gφdx = −
ˆ
Ω

g̃φdx

for all φ ∈ C1
c (Ω), then ˆ

Ω

(g − g̃)φdx = 0

for all φ ∈ C1
c (Ω).Therefore g − g̃ = 0 a.e.

Definition 1.3.2 (Higher order weak derivatives). Given a real valued function
f ∈ L1

loc(Ω), and a multi-index α, we say that g ∈ L1
loc(Ω) is the α

th weak derivative
of f if ˆ

Ω

fDαφdx = (−1)α
ˆ
Ω

gφdx for all φ ∈ C∞
c (Ω)

Write g = Dαf.
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Notice that the weak derivative coincide with the classical one if f ∈ C1(Ω),
however, a.e. existence of derivative does not imply existence of weak derivatives.

Example 1.3.1. Let Ω = (0, 1) ⊂ R and

f(x) =

{
0 if x ∈ (0, 1

2
]

1 if x ∈ (1
2
, 1)

Assume f has a weak derivative g, then

ˆ 1

0

fφ′dx = −
ˆ 1

0

gφdx

for all φ ∈ C1
c (Ω).

Case 1: φ is compactly supported in (0, 1
2
] we get

0 = −
ˆ 1

2

0

gφdx

Hence g = 0 a.e on (0, 1
2
].

Case 2: φ is compactly supported in (1
2
, 1) we get

φ(1−)− φ(
1

2
) =

ˆ 1

1
2

φ′dx = −
ˆ 1

1
2

gφdx

0 = −
ˆ 1

1
2

gφdx

Hence g = 0 a.e on (1
2
, 1).

Therefore g = 0 a.e on (0, 1) then
´ 1

0
fφ′ = 0 for all φ ∈ C1

c (Ω) thus f = 0 a.e,
contradiction.Thus f has no weak derivative.

Example 1.3.2. Let Ω = B(0, 1) ⊂ Rn and f(x) = 1
|x|α with fxi

= −α xi

|x|α+2 . f and

fxi
are in L1

loc(Ω) when α < n− 1 (in L1(Ω)).In fact,

ˆ
B(0,1)

|f |dx =

ˆ 1

0

ˆ
∂B(0,r)

|f |dSdr

=

ˆ 1

0

ˆ
∂B(0,r)

1

rα
dSdr

=

ˆ 1

0

1

rα
cnr

n−1dr

= cn

ˆ 1

0

1

rα+1−n
dr <∞
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and ˆ
B(0,1)

|fxi
(x)|dx =

ˆ 1

0

ˆ
∂B(0,r)

|fxi
|dSdr

≤ α

ˆ 1

0

ˆ
∂B(0,r)

1

rα+1
dSdr

≤ α

ˆ 1

0

1

rα+1
cnr

n−1dr

= Cn

ˆ 1

0

1

rα+2−n
dr <∞

Let φ ∈ C1
c (Ω) and fix ϵ > 0, using integration by partsˆ

Ω\B(0,ϵ)

fφxi
dx = −

ˆ
Ω\B(0,ϵ)

fxi
φdx+

ˆ
∂B(0,ϵ)

fφνidS

But

|
ˆ
∂B(0,ϵ)

fφνidS| ≤ ∥φ∥∞
ˆ
∂B(0,ϵ)

|f | |νi|dS

≤ ∥φ∥∞
ˆ
∂B(0,ϵ)

ϵ−αdS

≤ ∥φ∥∞ϵ−α

ˆ
∂B(0,ϵ)

dS

= cnϵ
−α+n−1 → 0 as ϵ→ 0

Therefore
´
Ω\B(0,ϵ)

fφxi
dx = −

´
Ω\B(0ϵ)

fxi
φdxˆ

Ω

fφxi
dx =

ˆ
Ω\B(0,ϵ)

fφxi
dx+

ˆ
B(0,ϵ)

fφxi
dx

= −
ˆ
Ω\B(0,ϵ)

fxi
φdx+

ˆ
B(0,ϵ)

fφxi
dx

But around 0,

|
ˆ
B(0,ϵ)

fφxi
dx| ≤

ˆ
B(0,ϵ)

|f | |φxi
| dx

≤ ∥φxi
∥∞

ˆ
B(0,ϵ)

|f | dx

= ∥φxi
∥∞

ˆ ϵ

0

ˆ
∂B(0,r)

1

rα
dSdr

≤Micnϵ
−α+n → 0 as ϵ→ 0

So
´
Ω
fφxi

dx = −
´
Ω\B(0,ϵ)

fxi
φdx. Now, let

gi(x) =

{
fxi

if x ̸= 0

0 if x = 0

Hence
´
Ω
fφxi

dx = −
´
Ω
giφdx.Therefore f has weak derivative g.

9



1.3.2 Weak Divergence and Weak Curl

Definition 1.3.3. Given f : Ω 7→ Rn in L1
loc(Ω,Rn), we say that g : Ω 7→ R ∈

L1
loc(Ω) is the weak divergence of f if

ˆ
Ω

f · ∇φdx = −
ˆ
Ω

gφdx

for all φ ∈ C1
c (Ω).Denote g = divf

Definition 1.3.4. Given f : Ω 7→ Rn in L1
loc(Ω,Rn),we say that g : Ω 7→ Rn in

L1
loc(Ω,Rn) is the weak curl of f if

ˆ
Ω

f · Curlφdx = −
ˆ
Ω

gφdx for all φ ∈ C1
c (Ω).

Denote g = curlf

Notice that if f ∈ C1(Ω) above equalities hold for the standard curl and diver-
gence by the Stokes’ theorem.

1.3.3 Sobolev Spaces

Definition 1.3.5. For 1 ≤ p ≤ ∞, we define W 1,p(Ω) as the set of functions
f ∈ Lp(Ω) that has weak ith derivative in Lp(Ω) for every i = 1, · · · , n.

Notation. For f ∈ W 1,p(Ω),let Df = (D1f,D2f, · · · , Dnf) with Dif the weak i−th
derivative of f .

We then define the W 1,p(Ω) norm:

∥f∥W 1,p(Ω) =
(
∥f∥pp +

n∑
i=1

∥Dif∥pp
) 1

p for 1 ≤ p <∞

∥f∥W 1,∞(Ω) = ∥f∥∞ +
n∑

i=1

∥Dif∥∞ for p = ∞

Proposition 1.3.1. [4]

1. ( W 1,p(Ω), ∥·∥W 1,p) is a Banach space ∀1 ≤ p ≤ ∞.

2. W 1,p(Ω) is separable ∀1 ≤ p <∞.

3. C∞(Ω) ∩W 1,p(Ω) is dense in W 1,p(Ω) for any 1 ≤ p <∞, with respect to the
norm of W 1,p(Ω).

Example 1.3.3. Let Ω = B(0, 1).We verify that if n > 1, the unbounded function
f = log log(1 + 1

|x|) belongs to W
1,n(Ω). Prove

(i) f ∈ Ln(Ω)

(ii) Df exists

10



(iii) Df ∈ Ln(Ω)

For (i)

ˆ
B(0,1)

|f |ndx ≤
ˆ
B(0,1)

log

(
1 +

1

|x|

)n

dx

≤
ˆ 1

0

ˆ
∂B(0,1)

log

(
2

r

)n

dSdr

=

ˆ 1

0

log

(
2

r

)n

cnr
n−1dr

= cn

ˆ 1

0

(log(2)− log(r))nrn−1dr

= cn

(
1

n
log(2)n −

ˆ 1

0

(log(2)− log(r))n−1 rn−1dr

)
(using integration by parts)

= cn

(
1

n
log(2)− log(2)n−1

n
− (

n− 1

n
)

ˆ 1

0

(log(2)− log(r))n−2rn−1dr

)
Proceeding in this fashion and after sufficiently many integration by parts we get
that this integral is equal to a constant +

´ 1

0
rn−1dr that is finite since n > 1.

(ii)

fxi
=

−xi
(|x|3 + |x|2)log(1 + 1

|x|)
(x ̸= 0)

Fix ϵ > 0,

ˆ
Ω

fφxi
dx =

ˆ
Ω\B(0,ϵ)

fφxi
dx+

ˆ
B(0,ϵ)

fφxi
dx ∀φ ∈ C1

c (Ω) (1)

By integration by parts we have ,

ˆ
Ω\B(0,ϵ)

fφxi
dx = −

ˆ
Ω\B(0,ϵ)

fxi
φdx+

ˆ
∂B(0,ϵ)

fφνidS (2)

But
ˆ
∂B(0,ϵ)

|fφνi|dS ≤ ∥φ∥∞
ˆ
∂B(0,ϵ)

∣∣∣∣log(log(1 + 1

|x|

))∣∣∣∣ .|νi|dS
≤ ∥φ∥∞

ˆ
∂B(0,ϵ)

log

(
log

(
2

ϵ

))
dS

≤ ∥φ∥∞log(
2

ϵ
)cnϵ

n−1 → 0 as ϵ→ 0

Now, ∣∣∣∣ˆ
B(0,ϵ)

fφxi
dx

∣∣∣∣ ≤ ∥φxi
∥∞

ˆ
B(0,ϵ)

|f |dx→ 0 as ϵ→ 0

11



Letting

Vi(x) :=

{
fxi

if x ̸= 0

0 if x = 0

we get
´
Ω
fφxi

dx = −
´
Ω
Viφdx. Hence Df exists and equal to V .

(iii) We have

Df =
1

|x|(1 + |x|)log(1 + 1
|x|)

with x ̸= 0 and since x ∈ B(0, 1) we get

|Df | ≤ 1

|x|log(1 + 1
|x|)

and notice that
1

log(1 + 1
|x|)

≤ 1

log( 1
|x|)

when x ∈ B(0, 1)

Now as (i)

ˆ
B(0,1)

|Df |ndx ≤
ˆ
B(0,1)

1

(|x|log( 1
|x|))

n
≤
ˆ 1

0

ˆ
∂B(0,1)

1

(r log(1
r
))n

dSdr ≤ cn

ˆ 1

0

1

r(log(1
r
))n

dr

that is finite since n > 1 by a simple change of variable.

1.4 Approximation by smooth functions, Mollification

Definition 1.4.1 (Convolution). The convolution of two functions f, g defined in
Rn is given by the expression:

f ∗ g(x) =
ˆ
Rn

f(y)g(x− y)dy

whenever this makes sense.It is a commutative and associative operation.

Definition 1.4.2. Let µ be an Rn-valued Radon measure in an open set Ω ⊂ Rn, if
f is a continuous function, we call the function

µ ∗ f(x) :=
ˆ
Ω

f(x− y)dµ(y)

the convolution between f and µ whenever this makes sense.

We will introduce functions that will build smooth approximations to given func-
tions in W 1,p(Ω).

Notation. Let Ω ⊂ Rn open subset, ϵ > 0.Write Ωϵ = {x ∈ Ω | dist(x, ∂Ω) > ϵ}.

12



Definition 1.4.3. (i) Define η ∈ C∞(Rn) by

η(x) :=

{
c exp( 1

|x|2−1
) if |x| < 1

0 if |x| ≥ 1

with c > 0 such that
´
Rn ηdx = 1. η is called the standard mollifier.

(ii) For each ϵ > 0, set

ηϵ(x) :=
1

ϵn
η(
x

ϵ
).

The functions ηϵ are C
∞ and satisfy

ˆ
Rn

ηϵdx = 1, Supp(ηϵ) ⊂ B(0, ϵ)

Definition 1.4.4. If f : Ω 7→ R in L1
loc(Ω), Define its mollification

f ϵ(x) = ηϵ ∗ f(x) =
ˆ
Ω

ηϵ(x− y)f(y)dy =

ˆ
B(0,ϵ)

ηϵ(y)f(x− y)dy for x ∈ Ωϵ

Proposition 1.4.1 (Properties of mollifiers). [4]

(i) f ϵ ∈ C∞(Ωϵ) for each ϵ > 0.

(ii) f ϵ → f a.e as ϵ→ 0.

(iii) If f ∈ C(Ω), then f ϵ → f uniformly on compact subsets of Ω.

(iv) If 1 ≤ p <∞, and f ∈ Lp
loc(Ω), then f ϵ → f in Lp

loc(Ω).

Proof. (i) Fix x ∈ Ωϵ, i = 1, · · · , n and h so small that x+ hei ∈ Ωϵ.Then

f ϵ(x+ hei)− f ϵ(x)

h
=

1

ϵn

ˆ
Ω

1

h

(
η

(
x+ hei − y

ϵ

)
− η

(
x− y

ϵ

))
f(y) dy

=
1

ϵn

ˆ
V

1

h

(
η

(
x+ hei − y

ϵ

)
− η

(
x− y

ϵ

))
f(y) dy

for some open set V ⊂⊂ Ω. As

1

h

(
η

(
x+ hei − y

ϵ

)
− η

(
x− y

ϵ

))
→ 1

ϵ

∂η

∂xi
(
x− y

ϵ
)

uniformly on V, ∂fϵ

∂xi
(x) exists and equals

ˆ
Ω

∂η

∂xi
(
x− y

ϵ
)f(y)dy.

Hence Df ϵ(x) exists and Df ϵ = Dηϵ ∗ f.

13



(ii) By the Lebesgue differentiation theorem we have

lim
r→0

ˆ
B(x,r)

|f(y)− f(x)|dy = 0

for a.e x ∈ Ω. Fix such x, then

|f ϵ(x)− f(x)| =
∣∣∣∣ˆ

B(x,ϵ)

ηϵ(x− y)[f(y)− f(x)]dy

∣∣∣∣
≤ 1

ϵn

ˆ
B(x,ϵ)

η

(
x− y

ϵ

)
|f(y)− f(x)|dy

≤ c

ˆ
B(x,ϵ)

|f(y)− f(x)|dy → 0 as ϵ→ 0

(iii) Assume now f ∈ C(Ω),and let V ⊂⊂ Ω, we choose V ⊂⊂ W ⊂⊂ Ω, note that
f is uniformly continuous on W .Therefore as in the proof of (ii) with uniform
convergence we get (iii).

(iv) Let 1 ≤ p < ∞ and f ∈ Lp
loc(Ω). Choose an open set V ⊂⊂ Ω and as above,

an open set W so that V ⊂⊂ W ⊂⊂ Ω.

Claim: For sufficiently small ϵ > 0, ∥f ϵ∥Lp(V ) ≤ ∥f∥Lp(W ) .

Proof of the claim: Let x ∈ V,

|f ϵ(x)| =
∣∣∣∣ˆ

B(x,ϵ)

ηϵ(x− y)f(y)dy

∣∣∣∣
≤
ˆ
B(x,ϵ)

η
1− 1

p
ϵ (x− y)η

1
p
ϵ (x− y)|f(y)|dy

≤
(ˆ

B(x,ϵ)

ηϵ(x− y)dy

)1− 1
p
(ˆ

B(x,ϵ)

ηϵ(x− y)|f(y)|pdy
) 1

p

Since
´
B(x,ϵ)

ηϵ(x− y)dy = 1, this inequality implies

ˆ
V

|f ϵ(x)|pdx ≤
ˆ
V

(ˆ
B(x,ϵ)

ηϵ(x− y)|f(y)|pdy
)
dx

≤
ˆ
W

|f(y)|p
(ˆ

B(x,ϵ)

ηϵ(x− y)dx

)
dy

=

ˆ
W

|f(y)|pdy

Now fix δ > 0,and choose g ∈ C(W ) so that

∥f − g∥Lp(W ) < δ

14



Then

∥f ϵ − f∥Lp(V ) ≤ ∥f ϵ − gϵ∥Lp(V ) + ∥gϵ − g∥Lp(V ) + ∥g − f∥Lp(V )

≤ 2∥f − g∥Lp(W ) + ∥gϵ − g∥Lp(V ) (By the claim)

≤ 2δ + ∥gϵ − g∥Lp(V )

Now from (iii) gϵ → g uniformly on V,and hence (iv) is proved.

Theorem 1.4.1 (Local approximation by smooth functions). Assume f ∈ W 1,p(Ω)
for some 1≤ p <∞, and set f ϵ = ηϵ ∗ f inΩϵ.Then

(i) f ϵ ∈ C∞(Ωϵ) for each ϵ > 0.

(ii) Df ϵ = ηϵ ∗Df = Dηϵ ∗ f in Ωϵ.

(iii) f ϵ → f in W 1,p
Loc(Ω) as ϵ→ 0.

Proof. As proved previously we have Df ϵ = Dηϵ ∗ f . So,

Df ϵ(x) = D

ˆ
Ω

ηϵ(x− y)f(y) dy =

ˆ
Ω

Dxηϵ(x− y)f(y) dy = −
ˆ
Ω

Dyηϵ(x− y)f(y) dy

For fixed x ∈ Ωϵ,the function η(x−·) : y 7→ ηϵ(x−y) belongs to C∞
c (Ω).Consequently

by the definition of the weak derivativeˆ
Ω

Dyηϵ(x− y)f(y)dy = −
ˆ
Ω

ηϵ(x− y)Df(y)dy

Thus Df ϵ(x) = ηϵ ∗Df(x).

Proposition 1.4.2. [4] Suppose Ω is connected and f ∈ W 1,p(Ω) satisfies Df = 0
a.e in Ω. Prove f is constant a.e in Ω.

Proof. We know that this result is true for C∞ functions. Let ϵ > 0 , Ωϵ as defined
above, and f ϵ = ηϵ ∗ f ∈ C∞(Ωϵ). Since Df = 0 a.e then Df ϵ = ηϵ ∗ Df = 0
a.e, hence f ϵ = a a.e on each connected component of Ωϵ .Now let x, y ∈ Ω, since
Ω open connected in Rn there exist γ : [0, 1] 7→ Ω a path connecting x to y. For
δ = minz∈γ dist(z, ∂Ω) and ϵ < δ the whole path lies in Ωϵ, hence x and y are in the
same connected component of Ωϵ, so f

ϵ(x) = f ϵ(y). Since f ϵ → f in W 1,p
Loc(Ω), then

f is constant a.e in Ω.

Theorem 1.4.2 (Global Approximation by smooth functions). [5] Assume Ω is
bounded, ∂Ω is lipschitz.Then if f ∈ W 1,p(Ω) for some 1 ≤ p < ∞, there exists a
sequence (fk)k≥1 ⊂ W 1,p(Ω) ∩ C∞(Ω) such that fk → f in W 1,p(Ω).

Theorem 1.4.3. Assume Ω is bounded, ∂Ω is lipschitz, 1 ≤ p < n. Suppose (fk)k≥1

sequence in W 1,p(Ω) such that

sup
k
∥fk∥W 1,p(Ω) <∞

Then there exist a subsequence (fkj)j and f ∈ W 1,p(Ω) such that fkj → f in Lq(Ω)
for each 1 ≤ q < p∗ = np

n−p
.
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Proof. Let’s try proving it only for p = q = 1,since we will later use the compactness
in W 1,1(Ω) to prove compactness in BV space.

1. Fix a bounded open set V such that Ω ⊂⊂ V and extend each fk to gk ∈
W 1,1(Rn), such that

(∗)

{
Suppgk ⊂ V

supk∥gk∥W 1,1(Rn) ≤ c supk∥fk∥W 1,1(Ω) <∞.

2. Let gϵk = ηϵ ∗ gk (the usual mollification ,WLOG supp(gϵk) ⊂ V )

3. Claim 1: ∥gϵk − gk∥L1(Rn) ≤ Cϵ uniformly in k.( Cϵ independent of k)

Proof of Claim 1. Assume gk is smooth,

|gϵk(x)− gk(x)| =
∣∣∣∣ˆ

Ω

ηϵ(x− y)gk(y)dy − gk(x)

∣∣∣∣
=

∣∣∣∣ˆ
B(0,ϵ)

1

ϵn
η(
y

ϵ
)gk(x− y)dy − gk(x)

∣∣∣∣
=

∣∣∣∣ˆ
B(0,1)

η(y)gk(x− ϵy)dy −
ˆ
B(0,1)

η(y)gk(x)dy

∣∣∣∣
≤
ˆ
B(0,1)

η(y) |gk(x− ϵy)− gk(x)| dy

= ϵ

ˆ
B(0,1)

η(y)

ˆ 1

0

|Dgk(x− ϵty)| dtdy

Thus,

∥gϵk − gk∥L1(Rn) =

ˆ
Rn

|gϵk − gk|dx

≤ ϵ

ˆ
B(0,1)

η(y)

ˆ 1

0

(ˆ
Rn

|Dgk(x− ϵty)|dx
)
dtdy

≤ ϵ

ˆ
B(0,1)

η(y)

ˆ 1

0

∥Dgk∥W 1,1(Rn)dtdy

≤ ϵ∥Dgk∥W 1,1(Rn)

≤ Cϵ by (*)

The general case follows by approximation.

4. Claim 2: For each ϵ > 0, the sequence (gϵk)k≥1 is bounded and equicontinuous
on Rn.

Proof of Claim 2.

|gϵk(x)| ≤
ˆ
B(x,ϵ)

ηϵ(x− y)|gk(y)|dy ≤ ∥ηϵ∥∞
ˆ
B(x,ϵ)

|gk(y)|dy ≤ c1
ϵn
(
∥gk∥L1(Rn)

)
≤ c

ϵn
,
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and

|Dgϵk(x)| ≤
ˆ
B(x,ϵ)

|Dηϵ(x− y)||gk(y)|dy ≤ c

ϵn+1

5. Claim 3: For each δ > 0 there exist a subsequence (fkj)j≥1
⊂ (fk)k such that

lim sup
i,j→∞

∥fki − fkj∥L1(Ω) ≤ δ.

Proof of claim 3. Recalling claim 1, we choose ϵ > 0, so small that

sup
k
∥gϵk − gk∥L1(Rn) ≤

δ

3

then by claim 2 and Arzela-Ascoli theorem on V , we find a subsequence (gϵkj)j≥1

which converges uniformly on Rn. Then

∥fki − fkj∥L1(Ω) ≤ ∥gki − gkj∥L1(Rn)

≤ ∥gkj − gϵkj∥L1(Rn) + ∥gϵkj − gϵki∥L1(Rn) + ∥gϵki − gki∥L1(Rn)

≤ 2δ

3
+ ∥gϵkj − gϵki∥L1(Rn)

≤ δ

for i, j large enough.

6. We conclude that there exist a Cauchy subsequence in L1(Ω) and hence a
convergence subsequence in L1(Ω).

1.5 Functions of bounded variation

Definition 1.5.1. Let f ∈ L1(Ω), we say f is a function of bounded variation if
the distributional derivative of f is representable by a finite Radon measure in Ω,i.e
if there exists a Radon measure,whose total variation is finite on Ω, denoted by
Df = (D1f,D2f, · · · , Dnf) such that

ˆ
Ω

fφxi
dx = −

ˆ
Ω

φdDif ∀φ ∈ C1
c (Ω) i = 1, · · · , n (1.1)

The vector space of all functions of bounded variations is denoted by BV (Ω).We also
denote BVloc(Ω) the space of function f ∈ L1

loc(Ω) that has locally bounded variation.
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Note that we can also writeˆ
Ω

fdivφ dx = −
n∑

i=1

ˆ
Ω

φidDif ∀φ ∈ C1
c (Ω,Rn). (1.2)

The Sobolev space W 1,1(Ω) is contained inBV (Ω).Indeed for any f ∈ W 1,1(Ω) the
distributional derivative is given by Dfdx, where Df is the weak derivative of f .But
the inclusion is strict, that is, there exist functions f in BV (Ω) such that their
weak derivative does not exist. For instance, the Heaviside function 1[0,∞) whose
distributional derivative is the Dirac measure δ0 has no weak derivative. In fact we
have ˆ

R
1[0,∞)φ

′(x)dx =

ˆ ∞

0

φ′(x)dx = −φ(0)

and
´
R φdδ0 = φ(0) for all φ ∈ C1

c (R). Therefore δ0 is the distributional derivative
of 1[0,∞).

Now assume 1[0,∞) has a weak derivative g ∈ L1(R).Let φ ∈ C1
c (R) such that

∥φ∥∞ ≤ 1, supported in (−1, 1) and φ(0) = 1.
For n ∈ N∗ and x ∈ R, we set φn(x) = φ(nx) then φn ∈ Cc(R) for all n.On the

other hand

|
ˆ
R
g(x)φn(x)dx| = |

ˆ 1
n

− 1
n

g(x)φn(x)dx|

≤
ˆ 1

n

− 1
n

|g(x)||φn(x)|dx

≤
ˆ 1

n

− 1
n

|g(x)|dx

But |g1(− 1
n
, 1
n
)| ≤ |g| and g1(− 1

n
, 1
n
) converges pointwise to 0. Therefore by dominated

convergence theorem we get a contradiction.

Definition 1.5.2. Let f ∈ L1
Loc(Ω). Define V (f,Ω), the variation of f in Ω, by

V (f,Ω) = sup

{ˆ
Ω

f divφdx

∣∣∣∣φ ∈ C1
c (Ω,Rn), ∥φ∥∞ ≤ 1

}
.

Proposition 1.5.1. Let f ∈ L1(Ω), then f ∈ BV (Ω) if and only if V (f,Ω) < ∞.
In addition, V (f,Ω) coincides with |Df |(Ω) for any f ∈ BV (Ω).

Proof. First assume f ∈ BV (Ω) hence there exists a finite radon measure Df =
(D1f, · · · , Dnf) such that

ˆ
Ω

fdiv(φ)dx = −
n∑

i=1

ˆ
Ω

φidDif ∀φ ∈ Cc(Ω,Rn).

By proposition, we have 1.1.1

|Df |(Ω) = sup

{
n∑

i=1

ˆ
X

φidDif : φ ∈ Cc(Ω,Rn), ∥φ∥∞ ≤ 1

}
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Therefore V (f,Ω) ≤ |Df |(Ω) < ∞.Conversely assume V (f,Ω) < ∞.Define L :
C1

c (Ω,Rn) → R by

L(φ) =

ˆ
Ω

fdiv(φ)dx

a continuous linear functional on C1
c (Ω,Rn).We have

V (f,Ω) = ∥L∥ = sup

{
|L(φ)|
∥φ∥∞

, ∥φ∥∞ ̸= 0

}
≥ |L(φ)|

∥φ∥∞

therefore
|L(φ)| ≤ V (f,Ω)∥φ∥∞ <∞ (∗).

For each φ ∈ Cc(Ω) choose φk ∈ C1
c (Ω,Rn) such that φk → φ uniformly on compact

subsets of Ω. Define L̃ : Cc(Ω,Rn) → R such that

L̃(φ) = lim
k→∞

L(φk)

According to (∗) L̃(φ) <∞ (the limit exist ) and it is independent of the choice of the

sequence (φk)k. Thus L uniquely extends to a linear functional L̃ that coincides with
L on C1

c (Ω,Rn) (This could be replaced by applying Hahn Banach theorem).Now

applying Riesz theorem 1.1.3 on L̃ we can find an Rn-valued finite radon measure µ
on Ω such that

ˆ
Ω

fdiv(φ)dx = L̃(φ) =
n∑

i=1

ˆ
Ω

φidµi for allφ ∈ Cc(Ω,Rn).

Also ∥L∥ = |µ|(Ω),hence Df = −µ and thus f ∈ BV (Ω). In addition,we’ve already
proven that V (f,Ω) ≤ |Df |(Ω) and now we have |Df |(Ω) = |µ|(Ω) = ∥L∥ ≤
V (f,Ω). Therefore |Df |(Ω) = V (f,Ω).

Proposition 1.5.2. Let f ∈ BVloc(Ω)

1. If η is the standard mollifier and Ωϵ = {x ∈ Ω, dist(x, ∂Ω) > ϵ}, then D(f ∗
ηϵ) = Df ∗ ηϵ on Ωϵ.

2. If Df = 0 then f is constant in any connected component of Ω.

Proof. 1. I need to prove that

ˆ
Ω

(f ∗ ηϵ)φxi
dx = −

ˆ
Ω

φ(Dif ∗ ηϵ)dx ∀φ ∈ C1
c (Ωϵ) ∀i = 1, · · · , n
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In fact,ˆ
Ω

(f ∗ ηϵ)φxi
dx =

ˆ
Ω

(ˆ
Ω

f(y)ηϵ(x− y)dy

)
φxi

dx

=

ˆ
Ω

(ˆ
Ω

φxi
(x)ηϵ(x− y)dx

)
f(y)dy (By Fubini)

=

ˆ
Ω

(φxi
∗ ηϵ)(y)f(y)dy

=

ˆ
Ω

(φ ∗ ηϵ)xi
(y)f(y)dy

= −
ˆ
Ω

(φ ∗ ηϵ)dDif

= −
ˆ
Ω

(Dif ∗ ηϵ)φdx

The last equality is true by Fubini theorem and by the symmetry of ηϵ:ˆ
Ω

(Dif ∗ ηϵ)φdx =

ˆ
Ω

(ˆ
Ω

ηϵ(x− y)dDif(y)

)
φ(x)dx

=

ˆ
Ω

(ˆ
Ω

ηϵ(x− y)φ(x)dx

)
dDif(y)

=

ˆ
Ω

φ ∗ ηϵdDif.

2. For ϵ > 0, f ϵ = ηϵ∗f ∈ C∞(Ωϵ)∩L1
loc(Ω). By (1), Df ϵ = Df ∗ηϵ henceDf ϵ = 0

on Ωϵ so by proposition 1.4.2 f ϵ = c a.e on every connected component of Ωϵ.
But f ϵ → f as ϵ→ 0 a.e in Ω. Therefore f = c in every connected component
of Ω.

1.5.1 Approximation by smooth functions

Theorem 1.5.1 (Lower semi-continuity of variation measure). Suppose fk ∈ BV (Ω) (k =
1, · · · ) and fk → f inL1

loc(Ω). Then

|Df |(Ω) ≤ lim inf
k→∞

|Dfk|(Ω)

Proof. Since fk ∈ BV (Ω) then V (fk,Ω) = |Dfk|(Ω). Let φ ∈ C1
c (Ω,Rn) such that ∥φ∥∞ ≤

1, thenˆ
Ω

fdiv(φ)dx = lim
k→∞

ˆ
Ω

fkdiv(φ)dx = lim inf
k→∞

ˆ
Ω

fkdiv(φ)dx ≤ lim inf
k→∞

V (fk,Ω) = lim inf
k→∞

|Dfk|(Ω)

Note that the first equality in this proof is true since

∥(fk − f)divφ∥1 ≤ ∥(fk − f)∥1∥divφ∥∞ → 0 as k → ∞
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Theorem 1.5.2 (Approximation by smooth functions). Assume f ∈ BV (Ω), then
there exist functions (fk)k≥1 ⊂ BV (Ω) ∩ C∞(Ω) such that

1. lim
k→∞

fk = f in L1(Ω)

2. lim
k→∞

|Dfk|(Ω) = |Df |(Ω)

The converse is also true, i.e if there exist functions (fk)k≥1 ⊂ C∞(Ω) such that

1. lim
k→∞

fk = f in L1(Ω)

2. L = lim
k→∞

´
Ω
|Dfk|dx <∞

Then f ∈ BV (Ω).

Proof. Fix ϵ > 0. Given m ∈ N, define the open sets

Ωk =

{
x ∈ Ω, dist(x, ∂Ω) >

1

m+ k

}
∩B(0, k +m)

note that Ωk is an increasing sequence.Choose m large enough that |Df |(Ω \Ω1) <
ϵ (∗) and set Ω0 = ∅. Now define Vk = Ωk+1 \Ωk−1. Notice that Vk is an open cover
of Ω, hence there exist (ξk)k a partition of unity such that

0 ≤ ξk ≤ 1

ξk ∈ C∞
c (Vk)∑

k≥1 ξk = 1 on Ω.

Fix the mollifier η, then for each k, select ϵk > 0 so small that

(∗∗)


Supp(ηϵk ∗ fξk) ⊂ Vk´
Ω
|ηϵk ∗ fξk − fξk|dx < ϵ

2k´
Ω
|ηϵk ∗ fDξk − fDξk|dx < ϵ

2k

Now define fϵ =
∑

k≥1 ηϵk ∗ fξk. We have fϵ ∈ C∞(Ω) because it is a locally finite
sum, i.e in some neighborhood of each point x ∈ Ω there are only finitely non zero
terms in the sum.

Also
∑

k≥1 ξk = 1 so f
∑

k≥1 ξk = f and therefore
∑

k≥1 fξk = f .Hence (∗∗)
implies:

∥fϵ − f∥1 =
ˆ
Ω

∣∣∣∣∣∑
k≥1

(ηϵk ∗ fξk)−
∑
i≥1

fξk

∣∣∣∣∣ dx
≤
ˆ
Ω

∑
k≥1

|ηϵk ∗ fξk − fξk|dx

=
∑
k≥1

ˆ
Ω

|(ηϵk ∗ fξk)− fξk|dx

≤ ϵ
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Therefore fϵ → f in L1(Ω) as ϵ→ 0.
It remains to show that |Dfϵ|(Ω) → |Df |(Ω) as ϵ → 0.From theorem 1.5.1 we

have |Df |(Ω) ≤ lim inf
ϵ→0

|Dfϵ|(Ω).For the reverse inequality , let φ ∈ C1
c (Ω,Rn), ∥φ∥∞ ≤

1,then

ˆ
Ω

fϵdivφ dx =

ˆ
Ω

∑
k≥1

(ηϵk ∗ fξk)divφ dx =
∑
k≥1

ˆ
Ω

n∑
i=1

(ηϵk ∗ fξk)φxi
dx

=
∑
k≥1

ˆ
Ω

n∑
i=1

(φ ∗ ηϵk)xi
fξkdx =

∑
k≥1

ˆ
Ω

div(φ ∗ ηϵk)fξkdx

=
∑
k≥1

ˆ
Ω

fdiv(ξk(φ ∗ ηϵk))dx−
∑
k≥1

ˆ
Ω

fDξk(φ ∗ ηϵk)dx

=
∑
k≥1

ˆ
Ω

fdiv(ξk(φ ∗ ηϵk))dx−
∑
k≥1

ˆ
Ω

φ((ηϵk ∗ (fDξk))− fDξk)dx

:= Iϵ1 + Iϵ2

Having that,by Fubini
ˆ
Ω

fDξk(ηϵk ∗ φ)dx =

ˆ
Ω

(fDξk ∗ ηϵk)φdx

and
∑

k≥1Dξk = 0 in Ω, so
∑

k≥1

´
Ω
fDξk = 0.

Now note that we have |ξk| ≤ 1 by definition, and |ηϵk ∗ φ| ≤ ∥ηϵk∥1∥φ∥∞ ≤ 1
therefore |ξk(ηϵk ∗ φ)| ≤ 1. By construction of the sets V ′

ks, each point of Ω belongs
to at most three of the sets Vk. So

|Iϵ1| =

∣∣∣∣∣
ˆ
Ω

fdiv(ξ1(ηϵ1 ∗ φ))dx+
∑
k≥2

ˆ
Ω

fdiv(ξk(ηϵk ∗ φ))dx

∣∣∣∣∣
≤ |Df |(Vk) +

∑
k≥2

|Df |(Vk)

≤ |Df |(Ω) +
∑
k≥2

|Df |(Vk)

≤ |Df |(Ω) + |Df |(Vkα1
) + |Df |(Vkα2

) + |Df |(Vkα3
)

≤ |Df |(Ω) + 3|Df |(Ω− Ω1)

≤ |Df |(Ω) + 3ϵ by (∗)

The above is true since each x belongs to at most 3 Vk’s and

Vkαi
⊂ Ω− Ω1 i = 1, 2, 3.

On the other hand, (∗∗) implies that |Iϵ2| < ϵ Therefore

ˆ
Ω

fϵdivφdx ≤ |Df |(Ω) + 4ϵ
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Hence |Dfϵ|(Ω) ≤ |Df |(Ω) + 4ϵ. We then get lim
ϵ→0

|Dfϵ|(Ω) = |Df |(Ω).
For the converse and since fk ∈ C∞(Ω),notice that by theorem 1.1.4 the finite

radon measure Dfkdλ, where Dfk is the gradient of fk, has a subsequence that
converges weakly* to some Rn-valued measure µ in Ω such that |µ|(Ω) ≤ L, i.e

lim
k→∞

ˆ
Ω

gDifkdx =

ˆ
Ω

gdµ ∀g ∈ C0(Ω)

Now by integration by parts for all φ ∈ C1
c (Ω),ˆ

Ω

fkφxi
dx = −

ˆ
Ω

Difkφdx

Let k → ∞ we get ˆ
Ω

fφxi
dx = −

ˆ
Ω

φdµ

Therefore f ∈ BV (Ω) and Df = µ.

Theorem 1.5.3. BV (Ω), endowed with the norm

∥f∥BV (Ω) := ∥f∥L1(Ω) + |Df |(Ω)

is a Banach space.

Proof. Clearly ∥−∥BV (Ω) is a norm.We only need to prove that this space is com-
plete.Suppose (fj)j ⊂ BV (Ω) is a Cauchy sequence, then by definition of the BV
norm,(fj)j is Cauchy in L1(Ω).By completeness of L1(Ω),there exist f ∈ L1(Ω) such
that fj → f in L1(Ω). Since (fj)j is Cauchy in BV (Ω), then ∥fj∥BV is bounded.
Thus |Dfj|(Ω) is bounded as j → ∞ and so by semi-continuity theorem 1.5.1

|Df |(Ω) ≤ lim inf
j→∞

|Dfj|(Ω) <∞

hence f ∈ BV (Ω).It remains only to show that fj → f in BV (Ω),or since we already
have convergence in L1(Ω), that |D(fj − f)|(Ω) →j→∞ 0. Suppose ϵ > 0,∃N > 0,
such that

∥fj − fk∥BV < ϵ ∀j, k ≥ N.

This implies that |D(fj − fk)|(Ω) < ϵ, ∀j, k ≥ N.Now fk → f in L1(Ω) and so
fj − fk → fj − f in L1(Ω). Thus again by semi-continuity

|D(fj − f)|(Ω) ≤ lim inf
k→∞

|D(fj − fk)|(Ω) < ϵ

for arbitrary ϵ > 0, therefore fj → f in BV (Ω).
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1.5.2 Compactness

Theorem 1.5.4. Let Ω ⊂ Rn, be open bounded with ∂Ω lipschitz. Assume (fk)k is
a sequence in BV (Ω) satisfying

sup
k

∥fk∥BV (Ω) <∞.

Then there exists a subsequence (fkj)j and a function f ∈ BV (Ω) such that

fkj → f inL1(Ω) as j → ∞.

Proof. For k = 1, 2, · · · there exist by the approximation theorem (gl)l ⊂ C∞(Ω) ∩
BV (Ω) such that gl →l→∞ fk in L1(Ω) and lim

l→∞
|Dgl|(Ω) = |Dfk|(Ω)

i.e (∗)

{ ´
Ω
|gk − fk|dx < 1

k

supk

´
Ω
|Dgk|dx <∞

.

Now since (gk) ⊂ W 1,1(Ω) and using compactness of W 1,1(Ω) 1.4.3, there exist
f ∈ L1(Ω) and a subsequence (gkj)j≥1 ∈ W 1,1(Ω) such that gkj → f in L1(Ω). But
then (∗) implies also that fkj → f in L1(Ω) because

´
Ω
|fkj − f | ≤

´
Ω
|fkj − gkj | +´

Ω
|gkj − f | → 0 and f ∈ BV (Ω) using lower semicontinuity theorem 1.5.1.

Definition 1.5.3 (Weak* convergence). Let f, fh ∈ BV (Ω).we say that (fh) weakly*
converges in BV (Ω) to f , if (fh) converges to f in L1(Ω) and (Dfh) weakly* con-
verges to Df in Ω, i.e

lim
h→∞

ˆ
Ω

φdDfh =

ˆ
Ω

φdDf ∀φ ∈ C0(Ω).

Proposition 1.5.3. Let (fh)h ⊂ BV (Ω). (fh) weakly* converges to f in BV (Ω) if
and only if (fh) is bounded in BV (Ω) and converges to f in L1(Ω)

Proof. Assume fh converges weakly* to f then we have converges in L1(Ω) and we
only need to prove boundedness in BV (Ω) i.e suph∈N∥fh∥BV (Ω) < ∞.(Dfh)h is a
sequence of finite radon measures, as a result of Riesz theorem we have there exist
a bounded linear functional on C0(Ω), LDfh such that

LDfh(φ) =

ˆ
Ω

φdDfh ∀φ ∈ C0(Ω).

Since
´
Ω
φdDfh →

´
Ω
φdDf then |LDfh(φ)| < ∞, by Banach-Steinhaus theo-

rem (uniform boundedness principle) we get ∥LDfh∥ < ∞. Therefore ∥LDfh∥ =
|Dfh|(Ω) <∞ and thus we conclude boundedness in BV (Ω).

Conversely assuming (fh)h bounded in BV (Ω) and converges to f in L1(Ω), to
prove weak* convergence in BV (Ω) we only need to prove thatDfh weakly* converge
to Df in Ω.

By weak* compactness 1.1.4, for any sequence (Dfh) we have a further subse-
quence that converge weakly* to µ, Dfhk

→w∗ µ with µ radon measure. We need
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to show that µ = Df and therefore we get Dfh →w∗ Df . Indeed since fh ∈ BV (Ω)
then ˆ

Ω

fhφxi
dx = −

ˆ
Ω

φdDifh ∀φ ∈ C1
c (Ω) i = 1, · · · , n.

In particular, ˆ
Ω

fhk
φxi

dx = −
ˆ
Ω

φdDifhk
.

Letting k → ∞, we get
´
Ω
fφxi

dx = −
´
Ω
φdµi for all φ ∈ C1

c (Ω). Hence µ =
Df .

Definition 1.5.4 (Strict convergence). Let f, (fh)h ∈ BV (Ω). We say that (fh)
strictly converges in BV (Ω) to f if (fh)h converges to f in L1(Ω) and the variations
|Dfh|(Ω) converge to |Df |(Ω) as h→ ∞.

For f, g ∈ BV (Ω) define the distance

d(f, g) =

ˆ
Ω

|f − g|dx+ ||Df |(Ω)− |Dg|(Ω)|.

It can be easily checked that d is a distance in BV (Ω) and it induces strict conver-
gence.

Remark 1.5.1. Strict convergence implies weak* convergence but the opposite im-
plication is not true in general.

Take for example fh(x) = sinhx
h

∈ BV (0, 2π).fh weakly* converges to 0 in
BV (0, 2π). In fact,

1. ˆ 2π

0

|fh| dx =

ˆ 2π

0

| sin(hx)|
h

dx ≤
ˆ 2π

0

1

h
dx =

2π

h
→ 0 as h→ ∞.

Hence fh converges to 0 in L1(0, 2π).

2.

∥fh∥BV =

ˆ 2π

0

|fh| dx+ |Dfh|(0, π) ≤
2π

h
+ 4 ≤ 2π + 4 ∀h ≥ 1.

And therefore boundedness.With

|Dfh|(0, 2π) =
ˆ 2π

0

|Dfh|dx =

ˆ 2π

0

| coshx|dx =

ˆ 2πh

0

| cosx|
h

dx = 4.

But we do not have strict convergence to 0 because |Df |(0, 2π) = 0 ̸= 4.

Proposition 1.5.4. [3] If (fh)h ⊂ BV (Ω) strictly converges to f , and f : Rn → R
is a continuous and positively 1-homogeneous function,we have

lim
h→∞

ˆ
Ω

φf

(
Dfh
|Dfh|

)
d|Dfh| =

ˆ
Ω

φf

(
Df

|Df |

)
d|Df |

for any bounded continuous function φ : Ω → R. As consequence, the measures

f
(

Dfh
|Dfh|

)
weakly* converge in Ω to f

(
Df
|Df |

)
, in particular |Dfh| → |Df | weakly *

in Ω.
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The proposition is a particular case of the following theorem.

Theorem 1.5.5 ((Reshetnyak continuity)). [3] Let Ω be an open subset of Rn and
µ, µh be Rn-valued finite Radon measures in Ω if |µh|(Ω) → |µ|(Ω) then

lim
h→∞

ˆ
Ω

f

(
x,

µh

|µh|
(x)

)
d|µh|(x) =

ˆ
Ω

f

(
x,

µ

|µ|
(x)

)
d|µ|(x)

for every continuous and bounded function f : Ω× Sn−1 → R.

1.6 Sets of finite perimeter

Definition 1.6.1. Let E a λ-measurable subset of Rn. For any open set Ω ⊂ Rn

the perimeter of E in Ω denoted by P (E,Ω), is the variation of 1E in Ω.

P (E,Ω) := V (1E,Ω) = sup

{ˆ
E

divφdx

∣∣∣∣φ ∈ C1
c (Ω,Rn), ∥φ∥∞ ≤ 1

}
.

We say E is of finite perimeter in Ω if P (E,Ω) <∞.

The class of sets of finite perimeter in Ω includes all the sets E, with C1 boundary
inside Ω such that Hn−1(Ω ∩ ∂E) < ∞. In fact, by the Gauss-Green theorem, for
these sets E we haveˆ

E

divφ dx = −
ˆ
Ω∩∂E

νE · φdHn−1 ∀φ ∈ C1
c (Ω,Rn)

where νE is the inner unit normal to E.Hence it turns out that

P (E,Ω) = Hn−1(Ω ∩ ∂E).

Notice that if |E ∩ Ω| is finite, then 1E ∈ L1(Ω) and we conclude that E has
finite perimeter in Ω if and only if 1E ∈ BV (Ω) and that P (E,Ω) = |D1E|(Ω)
the total variation in Ω of the distributional derivative of 1E. In general we can
always say that 1E ∈ BVloc(Ω) whenever E is a set of finite perimeter. Conversely
if 1E ∈ BVloc(Ω), then E has finite perimeter in any open set Ω′ ⊂⊂ Ω, in this case
we say that E is a set of locally finite perimeter in Ω.

Theorem 1.6.1. For any set E of finite perimeter in Ω, the distributional derivative
D1E is an Rn-valued finite radon measure in Ω.Moreover P (E,Ω) = |D1E|(Ω), and
a generalised Gauss-Green formula holds:

ˆ
E

divφdx = −
ˆ
Ω

φ · νEd|D1E| ∀φ ∈ C1
c (Ω,Rn)

where D1E = νE|D1E| the polar decomposition of D1E.
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Proof. We have E is of finite perimeter in Ω, so 1E ∈ BVloc(Ω) and hence the
distributional derivative of 1E is a radon measure in Ω.To show it is finite, it is
enough to prove sup{|D1E|(K), K ⊂ Ωcompact} <∞.Since

|D1E|(K) = P (E,K) ≤ P (E,Ω) ∀K ⊂⊂ Ω Open

Thus |D1E|(Ω) <∞, and we conclude that D1E is a finite Radon measure in Ω.

Definition 1.6.2 (Convergence in measure). 1. Let fh, f µ-measurable functions,
we say that fh converge to f in measure if

lim
h→∞

µ({x ∈ X, |fh(x)− f(x)| > ϵ}) = 0 ∀ϵ > 0

2. Let Eh, E measurable sets, we say that Eh converges to E in measure in Ω if

µ(Ω ∩ (Eh△E)) −→
h→∞

0

3. Local convergence in measure is the convergence in measure in any open set
A ⊂⊂ Ω.

Remark 1.6.1. Clearly, the convergence in measures of (Eh) (respectively local
convergence in measure) corresponds to convergence in L1(Ω) (L1

loc(Ω)) of the char-
acteristic functions 1Eh

to 1E.

Proposition 1.6.1 (Properties of perimeter). (a) The map E 7→ P (E,Ω) is lower
semi-continuous with respect to local convergence in measure in Ω.

(b) E → P (E,Ω) is local, P (E,Ω) = P (F,Ω) whenever |Ω ∩ (E△F )| = 0.

(c) P (E,Ω) = P (Rn \ E,Ω), and

P (E ∪ F,Ω) + P (E ∩ F,Ω) ≤ P (E,Ω) + P (F,Ω) (1.3)

Proof. We only need to prove (c) since all the above derive directly from the general
theory of BV functions.

For φ ∈ C1
c (Ω,Rn),

ˆ
Rn

divφ dx =

ˆ
Rn

φx1 + · · ·+ φxn dx =

ˆ
Rn−1

ˆ
R
φx1 + · · ·+ φxndx = 0.

So
´
E
divφdx+

´
Rn\E divφdx = 0 and hence

´
E
divφdx = −

´
Rn\E divφdx.Therefore

P (E,Ω) = P (Rn \ E,Ω).
Now for the equality (1.3), we have E,F sets of finite perimeters so 1E,1F ∈

BVloc(Ω) hence by theorem 1.5.2 there exist (uh)h, (vh)h ∈ C∞(Ω) such that uh →
1E, vh → 1F as h→ ∞ by a truncation argument 0 ≤ uh ≤ 1, 0 ≤ vh ≤ 1, and

lim
h→∞

ˆ
Ω

|Duh|dx = P (E,Ω),
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lim
h→∞

ˆ
Ω

|Dvh|dx = P (F,Ω).

Then uhvh → 1E∩F and uh + vh − uhvh → 1E∪F inL1
loc(Ω).By lower semi-continuity,

P (E∩F,Ω)+P (E∪F,Ω) ≤ lim inf

ˆ
Ω

|D(uhvh)|dx+lim inf

ˆ
Ω

|D(vh+uh−uhvh)|dx.

But notice that ˆ
Ω

|D(uhvh)|dx =

ˆ
Ω

|vhDuh + uhDvh|dx

≤
ˆ
Ω

|Duh||vh|+ |Dvh||uh|dx

and ˆ
Ω

|D(vh + uh − uhvh)|dx =

ˆ
Ω

|Dvh +Duh −Duh.vh −Dvh.uh)|dx

≤
ˆ
Ω

|Duh(1− vh)|+ |Dvh(1− uh)|dx

≤
ˆ
Ω

|Duh|(1− vh) + |Dvh|(1− uh)dx.

Adding the two inequalities, we get

P (E∩F,Ω)+P (E∪F,Ω) ≤ lim inf

ˆ
Ω

|Duh|dx+lim inf

ˆ
Ω

|Dvh|dx = P (E,Ω)+P (F,Ω)

1.6.1 Coarea formula in BV space

The coarea formula relates the variation of f and the perimeter of its superlevel set.
For f : Ω → R and t ∈ R, define the superlevel set Et = {x ∈ Ω, f(x) > t}.

Lemma 1.6.1. If f ∈ BV (Ω), the map t 7→ |D1Et |(Ω) = P (Et,Ω) is λ-measurable.

Proof. The mapping (x, t) → 1Et(x) is λ× λ-measurable,because Et = f−1((t,∞))
measurable set since f ∈ L1(Ω).Thus for each φ ∈ C1

c (Ω,Rn) the function t →´
Ω
1Etdivφdx =

´
Et
divφdx is λ-measurable, hence the sup function is λ-measurable

and therefore t→ P (Et,Ω) is λ-measurable

Theorem 1.6.2 (Coarea formula). Let f ∈ BV (Ω), then
(i) Et has finite perimeter for λ-a.e t ∈ R.

(ii) V (f,Ω) =
´∞
−∞ P (Et,Ω)dt =

´∞
−∞ P ({x ∈ Ω, f(x) > t},Ω)dt.

(iii) Conversely,if f ∈ L1(Ω), and
´∞
−∞ P (Et,Ω)dt <∞ then f ∈ BV (Ω)
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Proof. First I’ll prove (ii) then, (i) and (iii).
(ii) We present the plan of the proof: First I’ll show that for all φ ∈ C1

c (Ω,Rn) with ∥φ∥∞ ≤
1, ˆ

Ω

fdivφ dx =

ˆ ∞

−∞
P (Et,Ω) dt

for f ≥ 0, then f ≤ 0 and finally the general case f = f+ − f−. Then we’ll
get that V (f,Ω) ≤

´∞
−∞ P (Et,Ω)dt .Next, we prove that we have equality for f ∈

BV (Ω) ∩ C∞(Ω) and finally for f ∈ BV (Ω).
Take φ ∈ C1

c (Ω,Rn), ∥φ∥∞ ≤ 1.
Claim 1:

´
Ω
fdivφ dx =

´∞
−∞

´
Et
divφ dxdt

Proof of the claim. First suppose f ≥ 0, so

f(x) =

ˆ
R
1(0,f(x))(t) dt =

ˆ
R
1(0,∞)(t)1Et(x)dt =

ˆ ∞

0

1Et(x)dt a.e x ∈ Ω

Thus ˆ
Ω

fdivφdx =

ˆ
Ω

(ˆ ∞

0

1Et(x)dt
)
divφ(x)dx

=

ˆ ∞

0

( ˆ
Ω

1Et(x)divφ(x)dx
)
dt By fubini

=

ˆ ∞

0

( ˆ
Et

divφdx
)
dt

Similarly, if f ≤ 0,

f(x) =

ˆ
R
1(f(x),0)(t)dt =

ˆ
R
1(−∞,0)(t)(1Et − 1)(x)dt =

ˆ 0

−∞
(1Et(x)− 1)dt

Henceˆ
Ω

fdivφdx =

ˆ
Ω

(ˆ 0

−∞
1Et(x)− 1dt

)
divφ(x)dx =

ˆ 0

−∞

(ˆ
Ω

(1Et(x)− 1)divφ(x)dx

)
dt

=

ˆ 0

−∞

(ˆ
Et

divφdx

)
dt

For the general case write, f = f+ + (−f−).
ˆ
Ω

fdivφdx =

ˆ
Ω

(f+ + (−f)−)divφdx

=

ˆ ∞

0

(ˆ
Et

divφdx+

ˆ 0

−∞

ˆ
Et

divφdx

)
dt

=

ˆ ∞

−∞

ˆ
Et

divφdxdt
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Thus for f measurable we always have this inequality
ˆ
Ω

fdivφdx =

ˆ ∞

−∞

ˆ
Et

divφdxdt

≤
ˆ ∞

−∞
sup

{ˆ
Et

divφdx

∣∣∣∣φ ∈ C1
c (Ω,Rn), ∥φ∥∞ ≤ 1

}
dt

≤
ˆ ∞

−∞
P (Et,Ω)dt

Therefore

V (f,Ω) ≤
ˆ ∞

−∞
P (Et,Ω)dt (∗)

Claim 2: (ii) holds for f ∈ BV (Ω) ∩ C∞(Ω).

Proof of the claim. Define m(t) =
´
Ω\Et

|Df |dx =
´
{f≤t} |Df |dx. m is non decreas-

ing, so m′ exists λ− ae with
ˆ ∞

−∞
m′(t)dt ≤

ˆ
Ω

|Df |dx (∗∗).

Now if I show that m′(t) ≥ P (Et,Ω) integrating over R we get the other inequality.
To do so fix any −∞ < t <∞, r > 0 and define η : R → R by

η(s) =


0 s ≤ t
s−t
r

t ≤ s ≤ t+ r

1 s ≥ t+ r

Then

η′(s) =

{
1
r

t < s < t+ r

0 s < t or s > t+ r

Hence for all φ ∈ C1
c (Ω,Rn),(ηof)φ is compactly supported in Ω and thus

´
Ω
div((ηof)φ)dx =

0.This implies that

−
ˆ
Ω

η(f(x))div(φ)dx =

ˆ
Ω

η′(f(x))Df · φdx =
1

r

ˆ
Et\Et+r

Df · φdx (∗ ∗ ∗)

Now

m(t+ r)−m(t)

r
=

1

r

(ˆ
Ω\Et+r

|Df |dx−
ˆ
Ω\Et

|Df |dx
)

=
1

r

ˆ
Et\Et+r

|Df |dx

≥ 1

r

ˆ
Et\Et+r

Df.φdx

= −
ˆ
Ω

η(f(x))divφdx by (∗ ∗ ∗)
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For those t such thatm′(t) exists i.e λ−ae t, let r → 0,hencem′(t) ≥ −
´
Et
divφdx.Therefore

m′(t) ≥ P (Et,Ω).Thus ˆ ∞

−∞
m′(t)dt ≥

ˆ ∞

−∞
P (Et,Ω)dt

Now using (∗∗) we get

V (f,Ω) = |Df |(Ω) =
ˆ
Ω

|Df |dx ≥
ˆ ∞

−∞
m′(t)dt ≥

ˆ ∞

−∞
P (Et,Ω)dt

This estimate and (∗) gives that for f ∈ BV (Ω) ∩ C∞(Ω),

V (f,Ω) =

ˆ ∞

−∞
P (Et,Ω)dt

Claim3: (ii) holds for f ∈ BV (Ω)

Proof of the claim. By the approximation theorem, there exists {fk}k ⊂ C∞(Ω)
such that fk →

k→∞
f in L1(Ω) and |Df |(Ω) = lim

k→∞

´
Ω
|Dfk|dx = lim

k→∞
V (fk,Ω) <∞.

Define Ek
t = {x ∈ Ω fk(x) > t}, noticeˆ +∞

−∞
|1Ek

t
(x)− 1Et(x)|dt =

ˆ +∞

−∞

∣∣1(min{f(x),fk(x)},max{f(x),fk(x)})(t)
∣∣dt

=

ˆ max{f(x),fk(x)}

min{f(x),fk(x)}
dt = |fk(x)− f(x)|

Consequently,ˆ
Ω

|fk(x)−f(x)|dx =

ˆ
Ω

ˆ +∞

−∞
|1Ek

t
(x)−1Et(x)|dxdt =

ˆ +∞

−∞

ˆ
Ω

|1Ek
t
(x)−1Et(x)|dtdx

Since fk → f in L1(Ω) then
´ +∞
−∞

´
Ω
|1Ek

t
(x)−1Et(x)|dtdx <∞. Hence there exists

a subsequence which upon re-indexing by k, satisfies 1Ek
t

→ 1Et in L
1(Ω) for λ

almost every t. Then by lower semi-continuity theorem

P (Et,Ω) ≤ lim inf
k→∞

P (Ek
t ,Ω)

Thus Fatou’s lemma impliesˆ +∞

−∞
P (Et,Ω)dt ≤

ˆ +∞

−∞
lim inf
k→∞

P (Ek
t ,Ω)dt

≤ lim inf
k→∞

ˆ +∞

−∞
P (Ek

t ,Ω)dt

= lim inf
k→∞

V (fk,Ω) (By Claim 2)

= lim
k→∞

V (fk,Ω)

= |Df |(Ω)
= V (f,Ω)
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For (i) since
´
R P (Et,Ω)dt < ∞ hence P (Et,Ω) < ∞ a.e. And for (iii) if f ∈

L1(Ω) by (∗)V (f,Ω) ≤
´ +∞
−∞ P (Et,Ω)dt <∞, then f ∈ BV (Ω).

1.6.2 Trace for BV functions

Theorem 1.6.3. [5] Let Ω open bounded with ∂Ω lipschitz. There exists a bounded
linear mapping T : BV (Ω) → L1(∂Ω,Hn−1) such thatˆ

Ω

fdivφdx = −
ˆ
Ω

φ · dDf +

ˆ
∂Ω

(φ · ν)TfdHn−1 (∗)

for all f ∈ BV (Ω) and φ ∈ C1(Rn,Rn).

Proof. Given x ∈ Rn, write x = (x1, · · · , xn) = (x′, xn) same for y = (y′, yn).
First assume f ∈ BV (Ω) ∩ C∞(Ω). Pick x ∈ ∂Ω,choose r, h > 0 and a lipschitz

function γ : Rn−1 → R. Define

C = C(x, r, h) = {y ∈ Rn | |y′ − x′| < r, |yn − xn| < h}

and Ω ∩ C = {y | |y′ − x′| < r, γ(y′) < yn < xn + h}. If 0 < ϵ < h
2
, set

Cδ,ϵ = {y ∈ C | γ(y′) + δ < yn < γ(y′) + ϵ} for 0 ≤ δ < ϵ <
h

2

and define Cϵ = C0,ϵ, write C
ϵ = C ∩ Ω \ Cϵ.

For y ∈ ∂Ω ∩ C, we define fϵ(y) = f(y′, γ(y′) + ϵ), then

|fδ(y)− fϵ(y)| = |f(y′, γ(y′) + δ)− f(y′, γ(y′) + ϵ)|

=

∣∣∣∣ˆ ϵ

δ

∂f

∂xn
(y′, γ(y′) + t)dt

∣∣∣∣
≤
ˆ ϵ

δ

∣∣∣∣ ∂f∂xn (y′, γ(y′) + t)

∣∣∣∣ dt
≤
ˆ ϵ

δ

|Df(y′, γ(y′) + t)|dt.

Consequently,ˆ
∂Ω∩C

|fδ(y)− fϵ(y)|dHn−1 ≤
ˆ
∂Ω∩C

ˆ ϵ

δ

|Df(y′, γ(y′) + t)|dtdHn−1 ≤ c|Df |(Cδ,ϵ).

Therefore (fϵ)ϵ>0 is Cauchy in L1(∂Ω ∩ C,Hn−1) thus Tf = lim
ϵ→0

fϵ exists in this

space. Furthermore, our passing to limits as δ → 0 we getˆ
∂Ω∩C

|Tf − fϵ|dHn−1 ≤ c|Df |(Cϵ ∩ Ω) ≤ c|Df |(Cϵ ∩ Ω) (∗∗)

Next fix φ ∈ C1
c (C,Rn), then by integration by partsˆ

Cϵ

fdivφ dy = −
ˆ
Cϵ

φ ·Dfdy +
ˆ
∂Cϵ

fφ · νdHn−1

= −
ˆ
Cϵ

φ ·Dfdy +
ˆ
∂Ω∩C

fϵφϵ · νdHn−1 (By change of variable)
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Let ϵ→ 0, to find

ˆ
Ω∩C

fdivφ dy = −
ˆ
Ω∩C

φ ·Dfdy +
ˆ
∂Ω∩C

Tfφ · ν dHn−1(∗ ∗ ∗)

Since ∂Ω is compact, we can cover ∂Ω with finitely many cylinders Ci = C(xi, ri, hi), i =
1, · · · , n for which assertions analogous to (∗∗) and (∗ ∗ ∗) hold.Hence there exist
(ξk)k a partition of unity such that

0 ≤ ξk ≤ 1

ξk ∈ C∞
c (Ck)∑

k≥1 ξk = 1 on C

φξk ∈ C∞
c (Ck,Rn) with φ ∈ C1

c (C,Rn), then apply above on φξk we getˆ
Ω∩Ck

fdiv(φξk)dy = −
ˆ
Ω∩Ck

φξk ·Dfdy +
ˆ
∂Ω∩Ck

Tfφξk · νdHn−1

ˆ
Ω∩Ck

fφ·∇(ξk)dy+

ˆ
Ω∩Ck

fξkdiv(φ)dy = −
ˆ
Ω∩Ck

φξk·Dfdy+
ˆ
∂Ω∩Ck

Tfφξk·νdHn−1

Summing over k and having that
∑
ξk = 1 then

∑
∇ξk = ∇

∑
ξk = 0, we get

0 +

ˆ
Ω

fdiv(φ)dy = −
ˆ
Ω

φ ·Dfdy +
ˆ
∂Ω

Tfφ · νdHn−1

hence formula (∗) is established.
Now assume that f ∈ BV (Ω) , choose fk ∈ BV (Ω) ∩ C∞(Ω) (k = 1, · · · ) such

that
fk → f inL1(Ω) and |Dfk|(Ω) → |Df |(Ω).

In addition, form [5], we have µk converges to µ weakly, where µk and µ are defined
as follows: for B ⊂ R,

µk(B) =

ˆ
B∩Ω

Dfkdx and µ(B) =

ˆ
B∩Ω

dDf

Claim: (Tfk)k≥1 is a Cauchy sequence in L1(∂Ω,Hn−1).

Proof of Claim. As previously, choose a cylinder C, fix ϵ > 0, y ∈ ∂Ω∩C, and define

f ϵ
k(y) =

1

ϵ

ˆ ϵ

0

fk(y
′, γ(y′) + t)dt =

1

ϵ

ˆ ϵ

0

(fk)t(y)dt.

Then (**) impliesˆ
∂Ω∩C

|Tfk − f ϵ
k|dHn−1 =

ˆ
∂Ω∩C

∣∣∣∣1ϵ
ˆ ϵ

0

Tfkdt−
1

ϵ

ˆ ϵ

0

(fk)tdt

∣∣∣∣ dHn−1

≤ 1

ϵ

ˆ ϵ

0

ˆ
∂Ω∩C

|Tfk − (fk)t| dHn−1dt

≤ 1

ϵ

ˆ ϵ

0

c|Dfk|(Cϵ ∩ Ω)dt

= c|Dfk|(Cϵ ∩ Ω).
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We haveˆ
∂Ω∩C

|Tfk−Tfl|dHn−1 ≤
ˆ
∂Ω∩C

|Tfk−f ϵ
k|dHn−1+

ˆ
∂Ω∩C

|Tfl−f ϵ
l |dHn−1+

ˆ
∂Ω∩C

|f ϵ
k−f ϵ

l |dHn−1.

However,
ˆ
∂Ω∩C

|f ϵ
k − f ϵ

l |dHn−1 ≤
ˆ
∂Ω∩C

1

ϵ

ˆ ϵ

0

|(fk)t − (f ϵ
l )t|dHn−1dt =

1

ϵ

ˆ
Cϵ

|fk − fl|dy

hence,
ˆ
∂Ω∩C

|Tfk − Tfl|dHn−1 ≤ c(|Dfk|+ |Dfl|)(Cϵ ∩ Ω) +
1

ϵ

ˆ
Cϵ

|fk − fl|dy.

Thus

lim sup
k,l→∞

ˆ
∂Ω∩C

|Tfk − Tfl|dHn−1 ≤ 2c|Df |(Cϵ ∩ Ω)

this is true because fk → f inL1(Ω),|Dfk|(Cϵ ∩ Ω) → |Df |(Cϵ ∩ Ω). And since the
quantity on the right-hand side goes to zero as ϵ→ 0, the claim is proved.

In view of the claim we may define Tf = lim
k→∞

Tfk. Finally, (∗) holds for each fk
and thus holds in the limit for f .

Note that the definition of Tf does not depend on the choice of the sequence. In
fact letting (fk) and (gk) two approximating sequences i.e fk → f in L1(Ω), |Dfk|(Ω) →
|Df |(Ω) and gk → g in L1(Ω), |Dgk|(Ω) → |Dg|(Ω),

∥Tfk − Tgk∥1 = ∥T (fk − gk)∥1 (By linearity of T )

≤ c∥fk − gk∥BV ( As T is bounded)

= c(|D(fk − gk)|(Ω) + ∥fk − gk∥1)
= c(|Dfk −Dgk|(Ω) + ∥fk − gk∥1)
≤ c(|Dfk −Df |(Ω) + |Dgk −Df |(Ω) + ∥fk − gk∥1 + ∥gk − f∥1) →k→∞ 0

Remark 1.6.2. The trace function is not injective.Let f ∈ BV (Ω)∩C∞
c (Ω), f |∂Ω =

0 but f |∂Ω = Tf = 0 hence kerT ̸= 0 therefore by linearity of T it is not injective.

Theorem 1.6.4. [5] Assume Ω is bounded open, ∂Ω lipschitz. Suppose also f ∈
BV (Ω), then for Hn−1-a.e x ∈ ∂Ω,

lim
r→0

 
B(x,r)∩Ω

|f − Tf(x)|dy = 0

and so

Tf(x) = lim
r→0

 
B(x,r)∩Ω

fdy
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Remark 1.6.3. In particular,if f ∈ BV (Ω) ∩ C(Ω) then Tf = f |∂Ω Hn−1 − a.e.

Proof. 1. Claim:For Hn−1 − ae x ∈ ∂Ω, lim
r→0

|Df |(B(x,r)∩Ω)
rn−1 = 0.

Proof of Claim. Fix γ, δ > ϵ ≥ 0, and let

Aγ =

{
x ∈ ∂Ω

∣∣∣∣ lim sup
r→0

|Df |(B(x, r) ∩ Ω)

rn−1
> γ

}
then for each x ∈ Aγ,∃ 0 < r < ϵ such that

|Df |(B(x, r) ∩ Ω)

rn−1
≥ γ (∗)

Using Vitali’s covering theorem (conditions are satisfied since |Df | is a finite
radon measure and r < ϵ), there exists a countable collection of disjoint balls
{B(xi, ri)}i∈N satisfying (*) such that Aγ ⊂

⋃∞
i=1B(xi, 5ri), then

Hn−1
10δ (Aγ) ≤

∑
i≥1

Hn−1
10δ (B(xi, 5ri)) ≤

∑
i≥1

Hn−1(B(xi, 5ri))

≤
∑
i≥1

α(n−1)(5ri)
n−1

≤
∑
i≥1

α(n−1)5
n−1 |Df |(B(xi, ri) ∩ Ω)

γ
by (*)

=
c

γ

∑
i≥1

|Df |(B(xi, ri) ∩ Ω)

=
c

γ
|Df |

(⋃
i≥1

B(xi, ri) ∩ Ω

)
≤ c

γ
|Df |(Ωϵ)

where Ωϵ = {x ∈ Ω | dist(x, ∂Ω) < ϵ}, take ϵ → 0 to find Hn−1
10δ (Aγ) =

0 for all δ > 0. Therefore Hn−1(Aγ) = 0 and the claim is proved.

2. Now to prove our theorem, fix a point x ∈ ∂Ω such that

lim
r→0

|Df |(B(x, r) ∩ Ω)

rn−1
= 0( By the claim )

and

lim
r→0

ˆ
B(x,r)∩∂Ω

|Tf(z)− Tf(x)|dHn−1(z) = 0.

The above is true by the Lebesgue Besicovitch differentiation theorem 1.1.5,
since Tf ∈ L1(∂Ω,Hn−1) from the definition of trace.
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Let h = h(r) = 2rmax(1, 4Lip(γ)) and consider the cylinders C(r) = C(x, r, h),
observe that for sufficiently small r and as in theorem 1.6.5, (the cylinders C(r)
work in place of the cylinders C in the previous proof). Thus estimates similar
to those developed in that proof show thatˆ

∂Ω∩C(r)

|Tf − fϵ|dHn−1 ≤ c|Df |(C(r) ∩ Ω),

where

fϵ(y) = f(y′, γ(y′) + ϵ) y ∈ C(r) ∩ ∂Ω, 0 < ϵ <
h(r)

2
.

Consequently,we estimateˆ
B(x,r)∩Ω

|Tf(y′, γ(y′))− f(y)|dy ≤ Cr|Df |(C(r) ∩ Ω)

Hence we compute, 
B(x,r)∩Ω

|f(y)− Tf(x)|dy ≤
 
B(x,r)∩Ω

|Tf(y)− Tf(x)|dy +
 
B(x,r)∩Ω

|Tf(y)− f(y)|dy

≤ c

rn

ˆ
B(x,r)∩Ω

|Tf(y)− Tf(x)|dy + c

rn

ˆ
B(x,r)∩Ω

|Tf(y)− f(y)|dy

=
c

rn

ˆ r

0

ˆ
B(x,r)∩∂Ω

|Tf(y)− Tf(x)|dHn−1dt

+
c

rn

ˆ
B(x,r)∩Ω

|Tf(y′, γ(y′))− f(y)|dy

≤ c

rn−1

ˆ
C(r)∩∂Ω

|Tf(y)− Tf(x)|dHn−1 +
c

rn−1
|Df |(B(x, r) ∩ Ω)

≤ o(1) +
c

rn−1
|Df |(B(x, r) ∩ Ω)

≤ o(1) as r → 0

Thus,∣∣∣∣∣Tf(x)−
 
B(x,r)∩Ω

fdy

∣∣∣∣∣ =
∣∣∣∣∣
 
B(x,r)∩Ω

f(y)− f(y) + Tf(x)dy −
 
B(x,r)∩Ω

fdy

∣∣∣∣∣
≤

∣∣∣∣∣
 
B(x,r)∩Ω

|f − Tf(x)|dy +
 
B(x,r)∩Ω

f(y)dy −
 
B(x,r)∩Ω

f(y)dy

∣∣∣∣∣→ 0

Therefore, Tf(x) = lim
r→0

ffl
B(x,r)∩Ω fdy.

1.6.3 Extension

Theorem 1.6.5. Ω open bounded with ∂Ω lipschitz. Let f1 ∈ BV (Ω), f2 ∈ BV (Rn \
Ω). Define

f =

{
f1(x) x ∈ Ω

f2(x) x ∈ Rn \ Ω
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then
f ∈ BV (Rn)

and

|Df |(Rn) = |Df1|(Ω) + |Df2|(Rn \ Ω) +
ˆ
∂Ω

|Tf1 − Tf2|dHn−1

Proof. First we prove that f ∈ BV (Rn) i.e V (f,Rn) < ∞ so it is enough to show´
Rn fdivφdx <∞ forall φ ∈ C1

c (Rn,Rn) such that ∥φ∥∞ ≤ 1.

1. Let φ ∈ C1
c (Rn,Rn) with ∥φ∥∞ ≤ 1, then

ˆ
Rn

fdivφdx =

ˆ
Ω

f1divφdx +

ˆ
Rn\Ω

f2divφdx

= −
ˆ
Ω

φ · dDf1 +

ˆ
∂Ω

φ · νTf1dH
n−1 −

ˆ
Rn\Ω

φ · dDf2 +

ˆ
∂(Rn\Ω)

φ · (−ν)Tf2dH
n−1

≤

∣∣∣∣∣−
ˆ
Ω

φ · dDf1 −
ˆ
Rn\Ω

φ · dDf2 +

ˆ
∂Ω

(φ · ν)(Tf1 − Tf2)dH
n−1

∣∣∣∣∣
≤

ˆ
Ω

|φ|d|Df1| +
ˆ
Rn\Ω

|φ|d|Df2| +
ˆ
∂Ω

|φ · ν||Tf1 − Tf2|dH
n−1

≤ |Df1|(Ω) + |Df2|(R
n \ ∂Ω) +

ˆ
∂Ω

|Tf1 − Tf2|dH
n−1

< ∞ (Since f1, f2 ∈ BV and by boundedness of T )

Thus f ∈ BV (Rn), and

|Df |(Rn) ≤ |Df1|(Ω) + |Df2|(Rn \ ∂Ω) +
ˆ
∂Ω

|Tf1 − Tf2|dHn−1

2. We next show equality.

For all φ ∈ C1
c (Rn,Rn),
ˆ
Rn

div(fφ)dx =

ˆ
Rn

fdiv(φ)dx+

ˆ
Rn

φ ·Dfdx

since φ is compactly supported, we get

0 =

ˆ
Rn

fdiv(φ)dx+

ˆ
Rn

φ · dDf.

Hence as in 1

−
ˆ
Rn

φ · dDf =

ˆ
Rn

fdiv(φ)dx

= −
ˆ
Ω

φ · dDf1 −
ˆ
Rn\Ω

φ · dDf2 +
ˆ
∂Ω

(φ · ν)(Tf1 − Tf2)dHn−1.

But

−
ˆ
Rn

φ · dDf = −
ˆ
Ω

φ · dDf −
ˆ
∂Ω

φ · dDf −
ˆ
Rn\Ω

φ · dDf (∗)

= −
ˆ
Ω

φ · dDf1 −
ˆ
∂Ω

φ · dDf −
ˆ
Rn\Ω

φ · dDf2
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With Df =

{
Df1 onΩ

Df2 onRn \ Ω
Consequently, (*) implies

−
ˆ
∂Ω

φ · dDf =

ˆ
∂Ω

(φ · ν)(Tf1 − Tf2)dHn−1

Since this is true for any φ, it follows immediately that dDf = (Tf1 −
Tf2)νdHn−1 and hence |Df |(∂Ω) =

´
∂Ω
(Tf1 − Tf2)dHn−1

1.6.4 Isoperimteric inequalities, Sobolev’s and Poincaré’s inequalities
for BV

We now develop some inequalities relating the Lebesgue measure of a set to its
perimeter that will be useful in the definition of the measure-theoretic boundary
and its properties. We will need the following Sobolev inequalities from [5]

Theorem 1.6.6 ( Sobolev’s and Poincaré’s inequalities for BV). (i) There exists
a constant C1 such that

∥f∥
L

n
n−1 (Rn)

≤ C1|Df |(Rn)

for all f ∈ BV (Rn).

(ii) There exists a constant C2 such that

∥f − (f)x,r∥L n
n−1 (B(x,r))

≤ C1|Df |(B(x, r))

for all B(x, r) ⊂ Rn, f ∈ BVloc(Rn), where (f)x,r =
ffl
B(x,r)

fdy .

(iii) For each 0 < α ≤ 1, there exists a constant C3(α) such that

∥f∥
L

n
n−1 (B(x,r))

≤ C3(α)|Df |(B(x, r))

for all B(x, r) ⊂ Rn and all f ∈ BVloc(Rn) satisfying

|B(x, r) ∩ {f = 0}|
|B(x, r)|

≥ α.

Theorem 1.6.7 (Isoperimteric inequalities). Let E be a bounded set of finite perime-
ter in Rn.Then

(i) |E|1− 1
n ≤ C1|D1E|(Rn).

(ii) For each ball B(x, r) ⊂ Rn,

min{|B(x, r) ∩ E|, |B(x, r) \ E|}1−
1
n ≤ 2C2|D1E|(B(x, r)).
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Proof. (i) Let f = 1E ∈ BV (Rn) in assertion (i) of theorem 1.6.6 ,then

∥1E∥L n
n−1 (Rn)

≤ C1|D1E|(Rn).

(ii) Let f = 1B(x,r)∩E so fx,r =
|B(x,r)∩E|
|B(x,r)| .Thus

ˆ
B(x,r)

|f − fx,r|
n

n−1dy =

ˆ
B(x,r)

∣∣∣∣1B(x,r)∩E|B(x, r)| − |B(x, r) ∩ E|
|B(x, r)|

∣∣∣∣ n
n−1

dy

=

ˆ
B(x,r)∩E

∣∣∣∣ |B(x, r)| − |B(x, r) ∩ E|
|B(x, r)|

∣∣∣∣ n
n−1

dy +

ˆ
B(x,r)∩Ec

∣∣∣∣ |B(x, r) ∩ E|
|B(x, r)|

∣∣∣∣ n
n−1

dy

=
|B(x, r) ∩ Ec|

|B(x, r)|

n
n−1

|B(x, r) ∩ E|+ |B(x, r) ∩ E|
|B(x, r)|

n
n−1

|B(x, r) ∩ Ec|.

If |B(x, r) ∩ E| ≤ |B(x, r) ∩ Ec|, then(ˆ
B(x,r)

|f − fx,r|
n

n−1dy

)1− 1
n

≥
∣∣∣∣ |B(x, r) ∩ Ec|

|B(x, r)|

∣∣∣∣ |B(x, r) ∩ E|1−
1
n

≥ 1

2
min{|B(x, r) ∩ E|, |B(x, r)− E|}1−

1
n .

The other case is similar.
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Chapter 2

Reduced boundary

2.1 Reduced Boundary

Let E be a set of finite perimeter, denote νE, the measurable function such that
D1E = −νE|D1E|.

Definition 2.1.1. Let x ∈ Rn. We say that x ∈ ∂∗E, the reduced boundary of E, if

(i) |D1E|(B(x, r)) = P (E,B(x, r)) > 0 ∀r > 0

(ii) lim
r→0

ffl
B(x,r)

νEd|D1E| = νE(x)

(iii) |νE(x)| = 1

Remark 2.1.1. According to Lebesgue-Besicovitch differentiation theorem1.1.5,|D1E|(Rn−
∂∗E) = 0.

Lemma 2.1.1. Let φ ∈ C1
c (Rn,Rn), then for each x ∈ Rn,

ˆ
E∩B(x,r)

divφdy =

ˆ
B(x,r)

φ · νEd|D1E|+
ˆ
E∩∂B(x,r)

φ · νdHn−1 for λ− ae r > 0

with ν the outward unit normal to ∂B(x, r).

Proof. Assume h : Rn → R smooth, then

ˆ
E

div(φh)dy =

ˆ
E

hdivφdy +

ˆ
E

Dh · φdy

ˆ
E

div(φh) dy =

ˆ
Rn

1Ediv(φh) dy

= −
ˆ
Rn

φh · dD1E

=

ˆ
Rn

(φh) · νE d|D1E|
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We get ˆ
Rn

hφ · νE d|D1E| =
ˆ
E

hdivφ dy +

ˆ
E

Dh · φdy (∗)

Let

gϵ(s) :=


1 0 ≤ s ≤ r
r−s+ϵ

ϵ
r ≤ s ≤ r + ϵ

0 s ≥ r + ϵ

and notice

g′ϵ(s) =

{
0 0 ≤ s < r or s > r + ϵ
−1
ϵ

r < s < r + ϵ
.

Now let hϵ(y) := gϵ(|y − x|),

Dhϵ(y) =

{
0 |y − x| < r or |y − x| > r + ϵ
−1
ϵ

y−x
|y−x| r < |y − x| < r + ϵ

By approximation, (*) holds for hϵ (with a partition of unity for the smoothness)

ˆ
Rn

hϵφ · νEd|D1E| =
ˆ
E

hϵdivφdy +

ˆ
E

Dhϵ · φdy

=

ˆ
E

hϵdivφdy −
1

ϵ

ˆ
E∩{y:r<|y−x|<r+ϵ}

φ · y − x

|y − x|
dy

Let ϵ→ 0,

ˆ
B(x,r)

1φ · νEd|D1E| =
ˆ
E∩B(x,r)

divφdy −
ˆ
E∩∂B(x,r)

φ · νdHn−1 λ− ae r > 0.

Lemma 2.1.2. There exist positive constants A1, A2, · · · , A5 depending only on n,
such that for each x ∈ ∂∗E,

1. lim inf
r→0

|B(x,r)∩E|
rn

> A1 > 0

2. lim inf
r→0

|B(x,r)∩Ec|
rn

> A2 > 0

3. lim inf
r→0

|D1E |(B(x,r))
rn−1 > A3 > 0

4. lim sup
r→0

|D1E |(B(x,r))
rn−1 ≤ A4

5. lim sup
r→0

|D1E∩B(x,r))|(Rn)

rn−1 ≤ A5

Proof.
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Step 1: Fix x ∈ ∂∗E. According to lemma 2.1.1 , for λ − a.e r > 0, and for every
φ ∈ C1

c (Rn,Rn) such that ∥φ∥∞ ≤ 1,∣∣∣∣ˆ
B(x,r)∩E

divφ dy

∣∣∣∣ ≤ ∣∣∣∣ˆ
B(x,r)

φ · νEd|D1E|
∣∣∣∣+ ∣∣∣∣ˆ

E∩∂B(x,r)

φ · ν dHn−1

∣∣∣∣
≤
ˆ
B(x,r)

|φ|d|D1E|+Hn−1(E ∩ ∂B(x, r))

≤
ˆ
B(x,r)

d|D1E|+Hn−1(E ∩ ∂B(x, r))

= |D1E|(B(x, r)) +Hn−1(E ∩ ∂B(x, r))

Hence,

|D1E∩B(x,r)|(Rn) ≤ |D1E|(B(x, r)) +Hn−1(E ∩ ∂B(x, r)) (∗)

On the other hand, choose φ ∈ C1
c (Rn,Rn) such that φ = νE(x) on B(x, r).

From the proof of lemma 2.1.1 we get
ˆ
B(x,r)

νE(x)·νEd|D1E| =
ˆ
E∩B(x,r)

div(νE(x)) dy−
ˆ
E∩∂B(x,r)

νE(x)·νdHn−1 (∗∗)

Note that div(νE(x))dy = 0.

Since x ∈ ∂∗E,

lim
r→0

νE(x) ·
 
B(x,r)

νEd|D1E| = |νE(x)|2 = 1

Thus for λ− a.e and sufficiently small r > 0, say 0 < r < r0 = r0(x), we have

νE(x) ·
´
B(x,r)

νEd|D1E|
|D1E|(B(x, r))

≥ 1

2
.

Hence (∗∗) implies

1

2
|D1E|(B(x, r)) ≤ Hn−1(E ∩ ∂B(x, r)) (∗ ∗ ∗)

This and (∗) give

|D1E∩B(x,r)|(Rn) ≤ 3Hn−1(E ∩ ∂B(x, r)) (∗ ∗ ∗∗)

for a.e 0 < r < r0.

Step 2: Write g(r) = |B(x, r) ∩ E| then g(r) =
´ r

0
Hn−1(∂B(x, s) ∩ E)ds. It is abso-

lutely continuous, and g′(r) = Hn−1(∂B(x, r) ∩ E) for a.e r > 0. Using the
isoperimetric inequality 1.6.7 and (∗ ∗ ∗∗), we compute

g(r)1−
1
n = |B(x, r) ∩ E|1−

1
n ≤ c1|D1(B(x,r)∩E)|(Rn) ≤ C1g

′(r)
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for a.e r ∈ (0, r0) Thus

1

C1

≤ g(r)
1
n
−1g′(r) = n(g

1
n (r))′

implying that

(g
1
n (r))′ ≥ 1

C1n

Hence g
1
n (r) ≥ r

C1n
and g(r) ≥ rn

(C1n)n
for 0 < r < r0 .Therefore

g(r)

rn
=

|B(x, r) ∩ E|
rn

≥ 1

(C1n)n

for r sufficiently small. This proves (1).

Step 3: Since for all φ ∈ C1
c (Rn,Rn)

ˆ
E

divφ dx+

ˆ
Rn\E

divφ dx =

ˆ
Rn

divφ dx = 0

it follows that |D1E| = |D1Rn\E| with νE = −νRn\E then statement (2) follows
from (1), by taking g(r) = |B(x, r) ∩ Ec|.

Step 4: According to the relative isoperimetric inequality 1.6.7,

cmin

{
|B(x, r) ∩ E|

rn
,
|B(x, r) ∩ Ec|

rn

}1− 1
n

≤ |D1E|(B(x, r))

rn−1
.

Hence (3) follows from (1) and (2).

Step 5: By (∗ ∗ ∗),

|D1E|(B(x, r)) ≤ 2Hn−1(E ∩ ∂B(x, r)) ≤ Crn−1 (0 < r < r0)

this is (4).

Step 6: Statement (5) is a consequence of (∗) and (4).

2.1.1 Blow up

Definition 2.1.2. For each x ∈ ∂∗E, define the hyperplane

H(x) = {y ∈ Rn | νE(x) · (y − x) = 0}

and the half spaces

H+ = {y ∈ Rn | νE(x) · (y − x) ≥ 0}.

H−(x) = {y ∈ Rn | νE(x) · (y − x) ≤ 0}
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Notation. Fix x ∈ ∂∗E, r > 0, and set

Er = {y ∈ Rn | r(y − x) + x ∈ E}.

Remark 2.1.2. Observe y ∈ E ∩ B(x, r) if and only if gr(y) ∈ Er ∩ B(x, 1) where
gr(y) = (y−x

r
) + x.

Theorem 2.1.1 (Blow up of reduced boundary). Assume x ∈ ∂∗E. Then

1Er → 1H−(x) inL1
loc(Rn) as r → 0

Thus for small enough r > 0, E ∩B(x, r) approximately equals the half ball H−(x)∩
B(x, r).

Proof. 1. First of all we may assume
x = 0, ν(0) = en = (0, · · · , 0, 1)
H(0) = {y ∈ Rn, yn = 0}
H+(0) = {y ∈ Rn, yn ≥ 0}
H−(0) = {y ∈ Rn, yn ≤ 0}

2. Choose any sequence rk → 0. It will be enough to show that there exists a
subsequence (sj)j ⊂ (rk)k for which 1Esj

→ 1H−(0) in L
1
Loc(Rn).

3. Fix L > 0, and let Dr = Er ∩ B(0, L), gr(y) = y
r
. Then for any φ ∈

C1
c (Rn,Rn), ∥φ∥∞ ≤ 1. We have

ˆ
Dr

divφ, dz =
1

rn−1

ˆ
E∩B(0,rL)

div(φ ◦ gr)dy

=
1

rn−1

ˆ
Rn

(φ ◦ gr) · νE∩B(0,rL)d|D1E∩B(0,rL)|

≤
∣∣∣∣ 1

rn−1

ˆ
Rn

(φ ◦ gr) · νE∩B(0,rL)d|D1E∩B(0,rL)|
∣∣∣∣

≤
|D1E∩B(0,rL)|(Rn)

rn−1

≤ c <∞

for all r ∈ (0, 1], according to lemma 2.1.2 (5).

Consequently,
|D1Dr |(Rn) ≤ c <∞ (0 < r ≤ 1)

and furthermore,

∥1Dr∥L1(Rn) =

ˆ
Rn

1Drdx = |Dr| ≤ |B(0, L)| <∞
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Hence ∥1Dr∥BV (Rn) = ∥1Dr∥L1(Rn) + |D1Dr |(Rn) <∞, for all 0 < r ≤ 1. So by
the compactness theorem 1.5.4 there exists a subsequence (sj)j≥1 ⊂ (rk)k≥1

and a function f ∈ BVloc(Rn) such that, writing Ej = Esj , we have

1Ej
→ f in L1

loc(Rn)

we may also assume 1Ej
→ f λ-a.e. Hence f(x) ∈ {0, 1} for λ−ae x and so

f = 1F λ− a.e

where F ⊂ Rn has locally finite perimeter. Hence if φ ∈ C1
c (Rn,Rn),

ˆ
F

divφ dy =

ˆ
Rn

φ · νFd|D1F | (∗)

for some |D1F |-measurable function νF , with |νF | = 1 |D1F |−ae.

We must prove F = H−(0).

4. Claim 1: νF = en = νE(0) |D1F |−ae.

Proof of claim 1: Let us write νj = νEj
then if φ ∈ C1

c (Rn,Rn),

ˆ
Rn

φ · νjd|D1Ej
| =

ˆ
Ej

divφ dy (j = 1, 2 · · · .).

Since 1Ej
→ 1F inL1

loc, we see from the above and (∗) that
ˆ
Rn

φ · νjd|D1Ej
| −→
j→∞

ˆ
Rn

φ · νFd|D1F |

Thus νj|D1Ej
| → νF |D1F | weakly in the sense of Radon measures.Consequently,by

1.1.2 for each L > 0, for which |D1F |(∂B(0, L)) = 0, hence for all but at most
countably many L > 0 we have

ˆ
B(0,L)

νjd|D1Ej
| −→
j→∞

ˆ
B(0,L)

νFd|D1F | (∗∗)

On the other hand, for all φ as above

ˆ
Rn

φ · νjd|D1Ej
| =

ˆ
Rn

1Ej
divφ dx

=

ˆ
Ej

divφ dx

=
1

sn−1
j

ˆ
E

div(φ ◦ gsj)dy

=
1

sn−1
j

ˆ
Rn

(φ ◦ gsj) · νEd|D1E|
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ˆ
B(0,L)

φ · νjd|D1Ej
| =

ˆ
B(0,L)∩Ej

divφ dx

=
1

sn−1
j

ˆ
B(0,sjL)∩E

div(φ ◦ gsj)dy

=
1

sn−1
j

ˆ
B(0,sjL)

(φ ◦ gsj) · νEd|D1E|

Whence

(∗ ∗ ∗)

 |D1Ej
|(B(0, L)) = 1

sn−1
j

|D1E|(B(0, sjL))´
B(0,L)

νjd|D1Ej
| = 1

sn−1
j

´
B(0,sjL)

νEd|D1E|

Therefore

lim
j→∞

 
B(0,L)

νjd|D1Ej
| = lim

j→∞

 
B(0,sjL)

νEd|D1E| (by (***))

= νE(0) = en since 0 ∈ ∂∗E.

If |D1E|(∂B(0, L)) = 0, by lower semi-continuity theorem 1.5.1

|D1F |(B(0, L)) ≤ lim inf
j→∞

|D1Ej
|(B(0, L))

= lim inf
j→∞

ˆ
B(0,L)

νjd|D1Ej
|

= lim
j→∞

ˆ
B(0,L)

en · νjd|D1Ej
|

=

ˆ
B(0,L)

en · νFd|D1F | by (∗∗)

Since |νF | = 1, |D1F |−a.e, the above inequality forces νF = en, |D1F | − a.e.
In fact, having

´
B(0,L)

d|D1F | ≤
´
B(0,L)

en · νFd|D1F |, we get

ˆ
B(0,L)

(1− en · νF )d|D1F | ≤ 0

and en ·νF ≤ |en|·|νF | = 1 so (1−en ·νF ) ≥ 0, hence
´
B(0,L)

(1−en ·νF )d|D1F | =
0, and therefore 1− en · νF = 0 a.e thus en = νF a.e.

It also follows from the above inequality that

|D1F |(B(0, L)) = lim
j→∞

|D1Ej
|(B(0, L))

whenever |D1F |(∂B(0, L)) = 0.

5. Claim 2: F is a half space.
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Proof of claim 2: By claim 1, for all φ ∈ C1
c (Rn,Rn),

´
F
divφ dz =

´
Rn φ ·

end|D1F |. Fix ϵ > 0, and let f ϵ = ηϵ ∗ 1F ∈ C∞(Rn), where ηϵ is the usual
mollifier. So ˆ

Rn

f ϵdivφ dz =

ˆ
Rn

ˆ
Rn

ηϵ(x− z)1F (x)divφ(z) dxdz

=

ˆ
F

ˆ
Rn

ηϵ(x− z)divφ(z) dzdx

=

ˆ
F

ηϵ ∗ divφdx

=

ˆ
F

div(ηϵ ∗ φ)dz

=

ˆ
Rn

(
ηϵ ∗ φ

)
· end|D1F |.

But Df ϵ = ηϵ ∗D1F , and f
ϵ ∈ C∞(Rn) hence

ˆ
Rn

f ϵdivφ dz = −
ˆ
Rn

φdDf ϵ = −
ˆ
Rn

φ · ∇f ϵdz.

Thus
∂f ϵ

∂zi
= 0 (i = 1, · · · , n− 1),

∂f ϵ

∂zn
≤ 0.

As fϵ → 1F λ−a.e when ϵ → 0, we conclude that up to set of measure zero
F = {y ∈ Rn | yn ≤ γ} for some γ ∈ R .

6. Claim 3: F = H−(0)

Proof of Claim 3: We must show γ = 0. Assume γ > 0. Since 1Ej
→ 1F in

L1
loc(Rn), we have B(0, γ) = B(0, γ) ∩ F .

α(n)γn = |B(0, γ)| = |B(0, γ) ∩ F | = lim
j→∞

|B(0, γ) ∩ Ej| = lim
j→∞

|B(0, γsj) ∩ E|
snj

Thus

lim
j→∞

|B(0, γsj) ∩ E|
snjα(n)γ

n
= 1.

But we know that

|B(0, γsj) ∩ E|
snjα(n)γ

n
+

|B(0, γsj) ∩ Ec|
snjα(n)γ

n
= 1

Contradiction to lemma 2.1.2 (2). Similarly , the case γ < 0, leads to contra-
diction to lemma 2.1.2(1).
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The following result describes the local behaviour of E around a point in ∂E.

Corollary 2.1.1. [4] Assume x ∈ ∂∗E. Then
(i)

lim
r→0

|B(x, r) ∩ E ∩H+(x)|
rn

= 0

lim
r→0

|(B(x, r)− E) ∩H−(x)|
rn

= 0

(ii)

lim
r→0

|D1E|(B(x, r))

α(n− 1)rn−1
= 1

Definition 2.1.3. A unit vector νE(x) for which (i) holds is called the measure
theoretic unit outer normal to E at x.

2.1.2 Structure theorem for sets of finite perimeter

Lemma 2.1.3. [4] There exists a constant C,depending only on n, such that

Hn−1(B) ≤ C|D1E|(B)

for all B ⊂ ∂∗E.

Lemma 2.1.4 (Whitney’s extension theorem). [4] Let C be a closed set and assume
f : C → R, d : C → R continuous functions,and for each compact set K ⊂ C,

ρk(δ) = sup

{
f(y)− f(x)− d(x) · (y − x)

|y − x|

∣∣∣∣ 0 < |x− y| ≤ δ, x, y ∈ K

}
→ 0

as δ → 0.
Then there exists a function f : Rn → R such that

1. f ∈ C1.

2. f = f,Df = d on C.

Theorem 2.1.2 (Structure theorem for sets of finite perimeter). Assume E has
locally finite perimeter in Rn. Then
(i)

∂∗E =
∞⋃
k=1

Kk ∪N

where |D1E|(N) = 0 and Kk are compact subsets of C1−hypersurfaces Sk .

(ii) νE|Sk
is normal to Sk (k = 1, · · · .).

(iii) |D1E| = Hn−1|∂∗E
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Proof. For each x ∈ ∂∗E, we have according to corollary 2.1.1, lim
r→0

|B(x,r)∩E∩H+(x)|
rn

= 0

lim
r→0

|(B(x,r)−E)∩H−(x)|
rn

= 0
(∗)

Using Egoroff’s Theorem, we see that there exist |D1E|−measurable sets Fn such
that

|D1E|(∂∗E \ Fn) <
1

n
.

Hence |D1E|
(
∂∗E \

⋃∞
i=1 Fi

)
= 0. Therefore we can find a sequence of disjoint

|D1E|−measurable sets {Fi}∞i=1 ⊂ ∂∗E such that{
|D1E|

(
∂∗E \

⋃∞
i=1 Fi

)
= 0, |D1E|(Fi) <∞, and

The convergence in (2.1.2) is uniform for x ∈ Fi, (i = 1, · · · )

Then by Lusin’s Theorem, for each i there exist disjoint compact sets {Ej
i }∞j=1 ⊂ Fi

such that {
|D1E|

(
Fi \

⋃∞
i=1E

j
i

)
= 0,

νE|Ej
i
is continuous.

Re-index the sets {Ej
i }∞i,j and call them {Kk}∞k=1.Then letting

N = ∂∗E \
⋃
k≥1

Kk,

we have

|D1E|

(
∂∗E \

∞⋃
k=1

Kk

)
= |D1E|

((
∂∗E \

∞⋃
i=1

Fi

)
∪

(
∞⋃
i=1

Fi \
∞⋃
k=1

Kk

))

≤ |D1E|

(
∂∗E \

∞⋃
i=1

Fi

)
+

∞∑
i=1

|D1E|

(
Fi \

∞⋃
k=1

Kk

)
= 0.

Then,
∂∗E =

⋃∞
k=1Kk ∪N, |D1E|(N) = 0,

the convergence in (2.1.2) is uniform on Kk, (since Kk ⊂ Fi), and

νE|Kk
is continuous (k = 1, 2 · · · )

(∗∗)

Now define for δ > 0,

ρk(δ) = sup

{
|νE(x) · (y − x)|

|y − x|
: 0 < |x− y| ≤ δ, x, y ∈ Kk

}
Claim 3: For each k = 1, 2 · · · , ρk(δ) → 0 as δ → 0.
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Proof of claim 3: We may assume k=1. Fix 0 < ϵ < 1. By (∗) and (∗∗) there exist
0 < δ < 1 such that if z ∈ K1 and r < 2δ, then{

|B(x, r) ∩ E ∩H+(z)| < ϵn

2n+2α(n)r
n

|B(x, r) ∩ E ∩H−(z)| > α(n)
(
1
2
− ϵn

2n+2

)
rn

(∗ ∗ ∗)

To prove Claim 3, we shall prove that: for every x, y ∈ K1, such that |x− y| < δ, we

have |νE .(y−x)
|y−x| | < ϵ, hence we get sup |νE .(y−x)

|y−x| | < ϵ. Since this is true for arbitrary

epsilon we get that ρk(δ) → 0 as δ → 0.
Assume now x, y ∈ K1, 0 < |x− y| ≤ δ.
Case 1. νE(x) · (y − x) > ϵ|y − x|. Since ϵ < 1,

B(y, ϵ|x− y|) ⊂ H+(x) ∩B(x, 2|x− y|) (∗ ∗ ∗∗)

To see this observe that if z ∈ B(y, ϵ|x − y|), then z = y + w, where |w| ≤ |x− y|,
whence

νE(x) · (z − x) = νE(x) · (y − x) + νE(x) · w > ϵ|x− y| − |w| ≥ 0

with −|w| ≤ νE · w ≤ |w|. Therefore z ∈ H+(x) and |z − x| ≤ |y − x| + |w| ≤
|y− x|+ ϵ|x− y| < 2|x− y|. On the other hand, (∗ ∗ ∗) with z = x and r = 2|x− y|
implies,

|E ∩B(x, 2|x− y|) ∩H+(x)| < ϵn

2n+2
α(n)(2|x− y|)n

=
ϵnα(n)

4
|x− y|n

and (∗ ∗ ∗) with z = y implies,

|E ∩B(y, ϵ|x− y|)| ≥ |E ∩B(y, ϵ|x− y|) ∩H−(y))

≥ ϵn|x− y|nα(n)
2

(
1− ϵn

2n+1

)
>
ϵnα(n)

4
|x− y|n

However, by applying λ|E to both sides of (∗ ∗ ∗∗) we get a contradiction.
Case 2. νE(x) · (y − x) ≤ −ϵ|y − x|.
This similarly leads to a contradiction.

Now we apply Whitney’s extension theorem 2.1.4 with f = 0, d = νE on Kk, to
get fk : Rn → R such that {

fk = 0 on Kk

Dfk = d = νE on Kk

Let Sk = {x ∈ Rn | fk = 0 & |Dfk| > 1
2
} k = 1, 2, · · · , that is the pre-image

of 0 where 0 is a regular point. So by the implicit function theorem Sk is a C1
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(n− 1)-dimensional sub-manifold of Rn. Hence νE|Sk
= Dfk|Sk

exists and is normal
since Kk ⊂ Sk.This proves (i) and (ii).

To prove (iii) choose a Borel set B ⊂ ∂∗E and prove |D1E|(B) = Hn−1(B).
According to the previous lemma 2.1.3,

Hn−1(B ∩N) ≤ C|D1E|(B ∩N) = 0.

Thus we may as well assume B ⊂ ∪∞
k=1Kk, and in fact B ⊂ K1 (since Ki’s are

disjoint). We have just proved that there exist a C1−hypersurface K1 ⊂ S1. Let

ν = Hn−1|S1 .

Since S1 is C1, by corollary 2.1.1

lim
r→0

ν(B(x, r))

α(n− 1)rn−1
= lim

r→0

Hn−1(B(x, r) ∩ S1)

Hn−1(B(x, r)
= lim

r→0

Hn−1(B(x, r) ∩ S1)

α(n− 1)rn−1
= 1 (x ∈ B).

Thus corollary 2.1.1 (ii) implies that

lim
r→0

ν(B(x, r))

α(n− 1)rn−1
= lim

r→0

|D1E|(B(x, r))

α(n− 1)rn−1

then

lim
r→0

ν(B(x, r))

|D1E|(B(x, r))
= 1 (x ∈ B).

Also, we have that ν << |D1E|. In fact let A ⊂ ∂∗E, |D1E|(A) = 0, from Lemma
2.1.3

Hn−1(A) ≤ c|D1E|(A) = 0

but ν(A) = Hn−1(A∩ S1) ≤ Hn−1(A) therefore ν(A) = 0. Hence since ν and |D1E|
are Radon measures, with ν << |D1E| [4, Theorem 2, section 1.6.2] implies

ν(B) = Hn−1(B ∩ S1) =

ˆ
B

νEdD1E =

ˆ
E

d|D1E|

= Hn−1(B) =

ˆ
B

d|D1E| = |D1E|(B).

Remark 2.1.3. If ∂E is C1 then ∂∗E = ∂E and ν(x) the unit normal vector to ∂E
at x coincides with the measure theoretic normal νE(x).

2.2 The measure theoretic boundary

Definition 2.2.1. We define the measure theoretic boundary of E, ∂ME, as

∂ME =

{
x : 0 < lim sup

r→0

|E ∩B(x, r)|
|B(x, r)|

}
∩
{
x : lim inf

r→0

|E ∩B(x, r)|
|B(x, r)|

< 1

}
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Remark 2.2.1. ∂ME = Rn−(E0∪E1) with E1 and E0 are respectively the measure
theoretic interior and exterior. ∂ME is the set of points where the density is neither
0 nor 1.

Lemma 2.2.1. (i) ∂∗E ⊂ ∂ME.

(ii) Hn−1(∂ME \ ∂∗E) = 0.

Proof. (i) Follows from lemma 2.1.2. Let x ∈ ∂∗E,

0 < A1 < lim inf
r→0

|E ∩B(x, r)|
rn

≤ lim sup
r→0

|E ∩B(x, r)|
|B(x, r)|

and

lim inf
r→0

|E ∩B(x, r)|
|B(x, r)|

= 1− lim inf
r→0

|Ec ∩B(x, r)|
|B(x, r)|

But lim inf
r→0

|Ec∩B(x,r)|
|B(x,r)| > 0, then lim inf

r→0

|E∩B(x,r)|
|B(x,r)| < 1. Therefore x ∈ ∂ME.

(ii) Since the mapping

r 7→ |B(x, r) ∩ E|
rn

is continuous, if x ∈ ∂ME, there exists 0 < α < 1 and rj → 0 such that

lim
j→∞

|B(x, rj) ∩ E|
α(n)rnj

= α,

but we have

|B(x, rj)| = |B(x, rj) ∩ Ec|+ |B(x, rj) ∩ E| = α(n)rnj

then we get

|B(x, rj) ∩ Ec|
α(n)rnj

=
α(n)rnj − |B(x, rj) ∩ E|

α(n)rnj
= 1− αj

Therefore,

min{|B(x, rj) ∩ E|, |B(x, rj) ∩ Ec|} = min{αj, 1− αj}α(n)rnj

By the relative Isoperimetric inequality1.6.7,

min{|B(x, rj) ∩ E|, |B(x, rj) ∩ Ec|}
n−1
n = (min{αj, 1− αj}α(n))

n−1
n rn−1

j

≤ 2c2|D1E|(U(x, rj))

Therefore,
(min{αj, 1− αj}α(n))

n−1
n

2c2
≤ |D1E|(U(x, rj))

rn−1
j
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Hence

lim sup
r→0

(min{αj, 1− αj}α(n))
n−1
n

2c2
≤ lim sup

r→0

|D1E|(U(x, rj))
rn−1
j

.

By definition of measure theoretic boundary we get

lim sup
r→0

(min{αj, 1− αj}α(n))
n−1
n

2c2
> 0

and therefore

lim sup
r→0

|D1E|(B(x, r)

rn−1
> 0.

Now to proveHn−1(∂ME\∂∗E) = 0, we have x ∈ ∂ME and lim sup
r→0

|D1E |(B(x,r)
rn−1 >

0. Fix δ > 0, let

F =

{
B(x, r)

∣∣∣∣x ∈ ∂ME \ ∂∗E,B(x, r) ⊂ Rn \ ∂∗E, r < δ

10
& |D1E|(B(x, r)) > c rn−1

}
.

By Vitali’s covering theorem, there exist a countable disjoint family of balls
in F such that ∂ME \ ∂∗E ⊂

⋃
i≥1B(xi, 5ri). Therefore,

Hn−1
10δ (∂ME \ ∂∗E) ≤ c

∑
i≥1

α(n− 1)(5ri)
n−1

≤ C
∑
i≥1

(ri)
n−1

≤ c′
∑
i≥1

|D1E|(B(xi, ri))

= c′|D1E|(
⋃
i≥1

B(xi, ri))

≤ c′|D1E|(Rn \ ∂∗E)
= 0

let δ → 0, we get Hn−1(∂ME \ ∂∗E) = 0.

Proposition 2.2.1. Let E be a set of finite perimeter,

|D1E|(Ω) = P (E,Ω) = Hn−1(Ω ∩ ∂ME) = Hn−1(Ω ∩ ∂∗E)

Proof. Since ∂∗E ⊂ ∂ME then Hn−1(Ω ∩ ∂∗E) ≤ Hn−1(Ω ∩ ∂ME). I need to prove
that Hn−1(Ω ∩ ∂ME) ≤ Hn−1(Ω ∩ ∂∗E). By Lemma 2.2.1 Hn−1(∂ME ∩ (∂∗E)c) =
Hn−1(∂ME \ ∂∗E) = 0. Hence

Hn−1(Ω ∩ ∂ME) ≤ Hn−1(Ω ∩ ∂ME ∩ ∂∗E) +Hn−1(Ω ∩ ∂ME ∩ (∂∗E)c)

≤ Hn−1(Ω ∩ ∂∗E) +Hn−1(∂ME ∩ (∂∗E)c)

≤ Hn−1(Ω ∩ ∂∗E)

Thus Hn−1(Ω∩∂∗E) = Hn−1(Ω∩∂ME). By the structure theorem 2.1.2, P (E,Ω) =
Hn−1(Ω ∩ ∂∗E). Therefore we get the equality.
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Theorem 2.2.1 (Generalized Gauss-Green Theorem). Let E ⊂ Rn have locally
finite perimeter. Then

(i) Hn−1(∂ME ∩K) <∞ for each compact set K ⊂ Rn.

(ii) For Hn−1-a.e x ∈ ∂ME,there is a unique measure theoretic unit outer normal
νE(x), such that

ˆ
E

divφ dx =

ˆ
∂ME

φ · νEdHn−1 (∗)

for all φ ∈ C1
c (Rn,Rn).

Proof. We know that
ˆ
E

divφ dx =

ˆ
Rn

φ · νEd|D1E|

=

ˆ
∂∗E

φ · νEd|D1E|+
ˆ
Rn\∂∗E

φ · νEd|D1E|

But |D1E|(Rn \ ∂∗E) = 0, and |D1E| = Hn−1|∂ME = Hn−1|∂∗E. Henceˆ
E

divφdx =

ˆ
∂∗E

φ · νEd|D1E| =
ˆ
∂∗E

φ · νEdHn−1 =

ˆ
∂ME

φ · νEdHn−1

Proposition 2.2.2. E is of finite perimeter if and only if Hn−1(∂ME) <∞.

Proof. If E is of finite perimeter then P (E,Rn) = Hn−1(∂ME)) < ∞. Conversely,
assume Hn−1(∂ME) <∞. Let φ ∈ C1

c (Rn) such that ∥φ∥∞ < 1, by the generalised
Gauss-Green theorem ∣∣∣∣ˆ

E

divφdx

∣∣∣∣ = ∣∣∣∣ˆ
∂ME

φ · νEdHn−1

∣∣∣∣
≤
ˆ
∂ME

|φ · νE|dHn−1

≤ Hn−1(∂ME) <∞.

Therefore E is of finite perimeter.

Remark 2.2.2. The equality P (E,Ω) = Hn−1(Ω∩∂ME) = Hn−1(Ω∩∂∗E) whenever
P (E,Ω) < ∞, implies that sets of finite perimeter are defined only up to sets of
measure zero. In other words, each set determines an equivalence class of sets of
finite perimeter. In order to avoid this ambiguity, whenever a set of finite perimeter
E is considered, we shall always employ the measure theoretic closure as the set to
represent E. Thus with this convention, we have

x ∈ E if and only if lim sup
r→0

|E ∩B(x, r)|
|B(x, r)|

> 0 (2.1)
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Proposition 2.2.3.
∂∗E = ∂E

with the convention: x ∈ E if and only if lim sup
r→0

|E∩B(x,r)|
|B(x,r)| > 0.

Proof. To prove that ∂∗E dense in ∂E, I need to show that ∀x ∈ ∂E,∀r >
0, B(x, r) ∩ ∂∗E ̸= ϕ.

Claim : For any ball B, if B ∩ ∂∗E = ∅, then B ∩ ∂E = ∅.
Hence by this claim, for x ∈ ∂E,∀r > 0, B(x, r)∩∂E ̸= ∅,we get B(x, r)∩∂∗E ̸=

∅. Therefore ∂∗E = ∂E.

Proof of claim : Let B be an open a ball such that B ∩ ∂∗E = ∅ (∂∗E ⊂ Bc). We
have

P (E,B) = |D1E|(B) = Hn−1(B ∩ ∂∗E) = Hn−1(∅) = 0.

Therefore |D1E|(B) =
´
B
d|D1E| = 0. Hence

|D1E| = 0 a.e on B

and D1E = νE|D1E| = 0 a.e on B. Since B is connected we get 1E = cst a.e on B
( 0 or 1),hence E ⊂ B or E ⊂ Bc.Using the convention we get

∂ME ⊂ E

so ∂∗E ⊂ ∂ME ⊂ E. But ∂∗E ⊂ Bc, then E cannot be included in B for otherwise
∂∗E ⊂ B. Hence E ⊂ Bc and E∩B = ϕ, therefore E ⊂ Bc = Bc. But ∂E ⊂ E ⊂ Bc,
thus ∂E ∩B = ∅ and claim is proved.
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Chapter 3

Minimal Surfaces

3.1 Minimal surfaces

Minimal surfaces are surfaces in space which locally minimize the area, in the sense
that any small enough piece of the surface has the smallest area among all surfaces
with the same boundary.In this chapter, we will outline certain characteristics of
minimal surfaces, crucial for proving the existence of a solution to the Least Gradient
Problem in chapter 4.These characteristics will be listed without proof, serving as
foundational knowledge for our later analyses.

Definition 3.1.1. A surface M is said to be a minimal surface, if at each point,its
mean curvature H is zero.

If we have a surface that is obtained as the graph of a function z = f(x, y), take
a parametrization x(u, v) = (u, v, f(u, v)) we get

H =
(1 + f 2

v )fuu + (1 + f 2
u)fvv − 2fufvfuv

2(1 + f 2
u + f 2

v )
3
2

By this formula we get the following proposition.

Proposition 3.1.1. [6] M⊂ R3 is minimal if and only if

(1 + f 2
v )fuu + (1 + f 2

u)fvv − 2fufvfuv = 0

This is called the minimal surface equation.
Its divergence form is given by

div(
∇u√

1 + |∇u|2
) = 0

Example 3.1.1 (Examples of minimal surfaces in R3). [6]

1. (Catenoid) A catenoid is a surface of revolution generated by a catenary y(x) =
cosh(x) and parameterized by x(u, v) = (u, cosh(u)cos(v), cosh(u)sin(v)). It
has a mean curvature H = 0.

56



2. (Helicoid) The mean curvature for the helicoid parameterized by x(u, v) =
(vcos(u), vsin(u), u) is also 0

Proposition 3.1.2. Minimal surfaces in R2 are straight lines.

Proof. Clearly from definition 3.1.1 straight lines are minimal surfaces in R2.
Conversely, let C be a minimal surface in R2 i.e a curve with endpoints A(x1, y1)

and B(x2, y2), we want to prove that C is a straight line. The curve C can be
parameterized by γ(t) = (x(t), y(t)) with x(0) = x1, y(0) = y1, x(1) = x2, y(1) = y2.

L(C) =

ˆ 1

0

∥γ′∥ dt

=

ˆ 1

0

√
x′(t)2 + y′(t)2 dt

=

ˆ 1

0

|x′(t) + iy′(t)| dt

≥
∣∣∣∣ˆ 1

0

x′(t) + iy′(t) dt

∣∣∣∣
= |x(1)− x(0) + i(y(1)− y(0))|
= |x2 − x1 + i(y2 − y1)|
=
√

(x2 − x1)2 + (y2 − y1)2

But the length of a straight line with endpointsA andB is
√
(x2 − x1)2 + (y2 − y1)2,

therefore C is a straight line.

Definition 3.1.2. We say that u ∈ C1(Ω) is a weak supersolution (subsolution) of
the minimal surface equation in Ω ifˆ

Ω

∇u · ∇φ√
1 + |∇u|2

dx ≥ 0 (≤) whenever φ ∈ C1
c (Ω), φ ≥ 0.

The strong form is called the minimal surfaces equation

−div

(
∇u(x)√

1 + |∇u(x)|2

)
= 0 ∀x ∈ Ω

Lemma 3.1.1. [7] Suppose W is an open subset of Rn−1. If v1, v2 ∈ C1
c (W ) are

respectively weak super and subsolution of the minimal surface equation in W and if
v1(x

′
0) = v2(x

′
0) for some x′0 ∈ W while v1(x

′) ≥ v2(x
′) for all x′ ∈ W , then

v1(x
′) = v2(x

′)

for all x’ in some closed ball contained in W centered at x′0.

Definition 3.1.3. Let E be a set of locally finite perimeter, U bounded, open set.
Let

ψ(E,U) = |D1E|(U)− inf{|D1F |(U), E∆F ⊂⊂ U}
= P (E,U)− inf{P (F,U), E∆F ⊂⊂ U}

where E∆F denotes the symmetric difference of E and F .
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Definition 3.1.4. We say that ∂E is area-minimizing in U if ψ(E,U) = 0 and
locally area-minimizing if ψ(E,U) = 0 whenever U is bounded.

Theorem 3.1.1. [6] If M is area-minimizing, then M is a minimal surface.

Definition 3.1.5. Let U ⊂ Rn, we say that a function u ∈ BVloc(Ω) has least
gradient with respect to U if for every v ∈ BVloc(U) with compact support K ⊂ U

ˆ
K

|Du| ≤
ˆ
K

|D(u+ v)|

If U = Rn we say that u is of least gradient.
Equivalently, we say that u is of least gradient if u is a solution of

inf{|Du|(Ω) : u ∈ BV (Ω) ∩ C(Ω), u = g on ∂Ω}

The following theorem, established by Bombieri, De Giorgi, and Giusti in [2],lays
the foundation for proving the existence and uniqueness of the solution to the least
gradient problem.

Theorem 3.1.2. [2] If u is of least gradient then ∂{u ≥ t} is area-minimizing for
each t.

3.2 Regularity of Minimal surfaces and tangent cones

Theorem 3.2.1. [8] If n ≥ 2, Ω is an open set in Rn, and ∂E is area-minimizing
in Ω, then Ω ∩ ∂∗E is an analytic hypersurface , while the singular set of E in Ω,
σ(E; Ω) = Ω ∩ (∂E − ∂∗E) ,satisfies the following properties:

1. if 2 ≤ n ≤ 7, then σ(E; Ω) is empty;

2. if n = 8, then σ(E; Ω) has no accumulation points in Ω;

3. if n ≥ 9, then Hs(σ(E; Ω)) = 0 for every s > n− 8.

We’ve proved in theorem 2.1.1 that for 0 ∈ ∂∗E ⊂ ∂E and for each sequence
(ri)i≥1 with ri → 0, there exist a sequence such that 1Eri

→ 1C in L1
loc(Rn) where C

is a set of locally finite perimeter. Now assuming that ∂E is area-minimizing further
properties are added to C.

Theorem 3.2.2. [9] Suppose E is a minimal set such that 0 ∈ ∂E.For t > 0, let
Et = {x ∈ Rn : tx ∈ E}. Then for every sequence (tj)j tending to zero there exists
a subsequence (sj)j such that Esj converges locally in Rn to a set C. Moreover C is
a minimal cone. The cone C is called a tangent cone to E at 0.

Proposition 3.2.1. [9] If E is regular at 0, then C must be a half space. In fact the
converse is also true: If C is a half space then ∂E is regular in a neighbourhood of
0. That is there exists r > 0 such that B(0, r) ∩ ∂E is a real analytic hypersurface.

58



Thus the set E can only have singularities if there exist minimal cones in Rn

which have singularities.

Proposition 3.2.2. [9] Minimal cones with singularities at 0 cannot exist in Rn

with n ≤ 7 hence the regularity of minimal surfaces in Rn, n ≤ 7.

This result is the best possible since the cone

S = {x ∈ R8;x21 + x22 + x23 + x24 < x25 + x26 + x27 + x28}

is a singular minimal cone in R8 as proved in [2].

Theorem 3.2.3. [1] Let E1 ⊂ E2 and suppose ∂E1 and ∂E2 are area-minimizing
in an open set U ⊂ Rn. Further, suppose x ∈ (∂E1) ∩ (∂E2) ∩ U then ∂E1 and ∂E2

agree in some neighborhood of x.

This Theorem is trivial in 2 dimensions, where minimal surfaces are straight
lines.
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Chapter 4

Least Gradient Problem

4.1 Introduction

Let Ω be a bounded lipschitz domain in Rn and g : ∂Ω → R continuous function.
We consider the following variational problem

inf{|Du|(Ω) : u ∈ BV (Ω) ∩ C(Ω), u = g on ∂Ω} (4.1)

We will prove that a solution to this problem exists provided that ∂Ω satisfies the
following conditions:

1. For every x ∈ ∂Ω, there exists ϵ0 > 0 such that for every set of finite perimeter
A ⊂⊂ B(x, ϵ0)

P (Ω,Rn) ≤ P (Ω ∪ A,Rn) (4.2)

2. For every x ∈ ∂Ω, and every ϵ > 0, there exists a set of finite perimeter
A ⊂⊂ B(x, ϵ) such that

P (Ω, B(x, ϵ)) > P (Ω \ A,B(x, ϵ)) (4.3)

The first condition states that ∂Ω has non-negative mean curvature in the weak
sense, while the second states that ∂Ω is not locally area-minimizing with respect to
interior variations.Also if ∂Ω is smooth, then both conditions together are equivalent
to the condition that the mean curvature of ∂Ω is positive on a dense set.

4.2 Preliminaries

Let
[a, b] = {∩I; I an interval containing g(∂Ω)}

Proposition 4.2.1. [9] The boundary data g, admits a continuous extension

G ∈ BV (Rn \ Ω) ∩ C(Rn \ Ω)

and we can require that SuppG ⊂ B(0, R) where R is chosen such that Ω ⊂⊂
B(0, R).
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Proof. Let R > 0 such that Ω ⊂⊂ B(0, R) and denote Ω̃ = B(0, R) \ Ω.There exist

u ∈ C∞(Ω̃) such that 
∆u = 0

u|∂Ω̃ =

{
g ∂Ω

0 ∂B(0, R)

.

let

G =

{
u Ω̃ = B(0, R) \ Ω
0 Otherwise

Hence G ∈ C(Rn \ Ω) and from gradient estimate on harmonic functions [10, In-
equality 2.31]

|DG| ≤ n

dist(y, ∂Ω̃)
sup
Ω̃

|G| <∞

Therefore ˆ
Rn\Ω

|DG| =
ˆ
Ω̃

|DG| <∞

We have

G ∈ BV (Rn \ Ω) ∩ C(Rn \ Ω) with G = g on ∂Ω (4.4)

For each t ∈ [a, b], let
Lt = (Rn \ Ω) ∩ {x : G(x) ≥ t} (4.5)

Note that by the Coarea formula

P (Lt,Rn \ Ω) <∞.

Let
T = [a, b] ∩ {t : P (Lt,Rn \ Ω) <∞}. (4.6)

Proposition 4.2.2. Hn−1(∂MLt) = P (Lt,Rn \ Ω) +Hn−1(∂MLt ∩ ∂Ω) <∞

Proof. Using Proposition 2.2.1 and the fact that Hn−1(∂Ω) < ∞ with Ω being
bounded,

Hn−1(∂MLt) = Hn−1(∂MLt ∩ ∂Ω) +Hn−1(∂MLt ∩ Ω) +Hn−1(∂MLt ∩ (Rn \ Ω))
= Hn−1(∂MLt ∩ ∂Ω) +Hn−1(∂MLt ∩ Ω) + P (Lt,Rn \ Ω).

But Hn−1(∂MLt ∩ Ω) = 0 given that Lt ⊂ Rn \ Ω. Therefore

Hn−1(∂MLt) = Hn−1(∂MLt ∩ ∂Ω) + P (Lt,Rn \ Ω) <∞.
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Theorem 4.2.1. For each t ∈ T , there exists a solution for the following problems:

min{P (E,Rn) : E \ Ω = Lt \ Ω} (4.7)

max{|E|, E is a solution of (4.7)} (4.8)

Proof. Denote m = inf{P (E,Rn) : E \ Ω = Lt \ Ω}. By definition of the inf there
exists a sequence (Ek)k, such that Ek \ Ω = Lt \ Ω for all k, and

lim
k→∞

P (Ek,Rn) = m.

Recall that Ω ⊂⊂ B(0, R), and G = 0 in Rn \B(0, R). We have

∥1Ek
∥BV (B(0,R)) = ∥1Ek

∥L1(B(0,R)) + |D1Ek
|(B(0, R))

but ∥1Ek
∥L1(B(0,R)) is finite and |D1Ek

|(B(0, R)) is bounded since |D1Ek
|(B(0, R)) ≤

P (Ek,Rn) and P (Ek,Rn) is bounded from the fact that it is convergent,we get
sup∥1Ek

∥BV (B(0,R)) <∞.By the compactness theorem 1.5.4 there exist a subsequence
(1Ekj

) ⊂ BV (B(0, R)) such that

1Ekj
→

j→∞
1E in L1(B(0, R))

with E ⊂ Rn such that E \ Ω = Lt \ Ω. By the lower semi-continuity theorem 1.5.1

|D1E|(B(0, R)) ≤ lim inf
j→∞

|D1Ekj
|(B(0, R)).

We get P (E,B(0, R)) ≤ lim inf
j→∞

P (Ekj , B(0, R)) ≤ lim inf
j→∞

P (Ekj ,Rn), but

P (E,Rn) = |D1E|(Rn)

= |D1E|(B(0, R)) + |D1E|(Rn \B(0, R))

=

ˆ
B(0,R)

d|D1E|+
ˆ
Rn\B(0,R)

νEdD1E.

1E is constant outside the ball since G = 0 and E \ Ω = Lt \ Ω,therefore

P (E,B(0, R)) = P (E,Rn).

Thus P (E,Rn) ≤ lim inf P (Ekj ,Rn) = m, hence P (E,Rn) = m.
To prove (4.8), denote M = sup{|E| : E solution of (4.7)}, by definition of the

sup there exists a sequence (Ek)k such that

|Ek| →M.

Again there exist a subsequence (1Ekj
) ⊂ BV (B(0, R)) such that

1Ekj
→ 1E in L1(B(0, R)).
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with E solution to (4.7). Notice that

∥1Ekj
− 1E∥L1(Rn) =

ˆ
Rn

|1Ekj
− 1E|dλ =

ˆ
(Ekj

\E)∪(E\Ekj
)

1dλ = |Ekj∆E|,

and

|Ekj∆E| = |(Ekj \ E) ∪ (E \ Ekj)| ≥ |Ekj \ E| = |Ekj | − |Ekj ∩ E| ≥ |Ekj | − |E|.

We then get
M ≥ |E| ≥ |Ekj | − ∥1Ekj

− 1E∥L1(Rn).

With the right-hand-side term converging toM as j tends to infinity,we get |E| =M
and the max exists.

This maximum is unique. In fact, assume E1, E2 solution maximizers of (4.8).
We notice that

(E1 ∪ E2) \ Ω = (E1 \ Ω) ∪ (E2 \ Ω) = Lt \ Ω

and
(E1 ∩ E2) \ Ω = (E1 \ Ω) ∩ (E2 \ Ω) = Lt \ Ω.

Hence E1 ∪ E2, and E1 ∩ E2 are competitors of (4.7), thus

P (E1,Rn) ≤ P (E1 ∪ E2,Rn) and P (E1,Rn) ≤ P (E1 ∩ E2,Rn)

P (E2,Rn) ≤ P (E1 ∪ E2,Rn) and P (E2,Rn) ≤ P (E1 ∩ E2,Rn).

However by (1.3),

P (E1 ∪ E2,Rn) + P (E1 ∩ E2,Rn) ≤ P (E1,Rn) + P (E2,Rn)

then E1 ∪ E2 and E1 ∩ E2 are minimizes of (4.7). Therefore

|E1| ≥ |E1 ∪ E2| = |E1|+ |E2 \ E1|

and
|E2| ≥ |E1 ∪ E2| = |E2|+ |E1 \ E2|

which implies that |E1∆E2| = 0, completing the proof of uniqueness.

Notation. For every t ∈ T , we denote by Et the unique solution to (4.8).

4.3 Properties of the set Et

We have Ω a Lipschitz domain, then for each x0 ∈ ∂Ω, ∂Ω can be represented
locally as the graph of a non-negative lipschitz function h, defined on some ball
B′(x0, r) ⊂ Rn−1, where x′0 ∈ Rn−1, that is

{(x′, h(x′)) : x′ ∈ B′(x′0, r)} ⊂ ∂Ω.
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Notation. B′(x′0, r) and x′ denote elements in Rn−1 and thus they will be distin-
guished from their n-dimensional counterparts B(x0, r) and x. We assume our con-
figuration is oriented in such a way that

{(x′, x′′) : 0 < x′′ < h(x′)} ⊂ Ω

Proposition 4.3.1. [3] If Ω is a lipschitz domain, then Ω is a set of finite perimeter
and

P (Ω, U) = Hn−1(∂∗Ω ∩ U) = Hn−1(∂Ω),

whenever U ⊂ Rn is an open set.

Lemma 4.3.1. If Ω is a lipschitz domain, with non-negative mean curvature in the
sense of (4.2), then the function h, whose graph represents ∂Ω locally, is a weak
supersolution of the minimal surface equation. That is , for r sufficiently small

ˆ
B′(x′

0,r)

∇h · ∇φ√
1 + |∇h|2

dx′ ≥ 0 whenever φ ∈ C1
c (B

′(x′0, r)), φ ≥ 0.

Proof. For t ≥ 0, and φ ∈ C1
c (B

′(x′0, r)), φ ≥ 0, let

f(t) =

ˆ
B′(x′

0,r)

√
1 + |∇h|2 + 2t∇h · ∇φ+ t2|∇φ|2dx′

=

ˆ
B′(x′

0,r)

√
1 + |∇h+ t∇φ|2dx′,

and
A = {(x′, x′′), h(x′) ≤ x′′ ≤ h(x′) + tφ(x′), x′ ∈ B′(x′0, r)}.

Assuming that r has been chosen sufficiently small so that A is of finite perimeter
and A ⊂⊂ B(x0, r) with x0 = (x′0, x

′′
0), condition (4.2) can be invoked, we have

P (Ω) ≤ P (A ∪ Ω), and hence

0 ≤ P (A ∪ Ω)− P (Ω) = Hn−1(∂(A ∪ Ω))−Hn−1(∂Ω) = f(t)− f(0)

Therefore f has a minimum at t = 0, then f ′(0) ≥ 0, but

f ′(t) =

ˆ
B′(x′

0,r)

(√
1 + |∇h|2 + 2t∇h · ∇φ+ t2|∇φ|2

)′
dx′

=

ˆ
B′(x′

0,r)

∇h · ∇φ+ t|∇φ|2√
1 + |∇h|2 + 2t∇h · ∇φ+ t2|∇φ|2

dx′

and

f ′(0) =

ˆ
B′(x′

0,r)

∇h · ∇φ√
1 + |∇h|2

≥ 0

Lemma 4.3.2. For almost all t ∈ [a, b], ∂Et ∩ ∂Ω ⊂ g−1(t).
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Proof. We Show first that ∂Et is locally area-minimizing in a neighborhood of each
point x0 ∈ (∂Et ∩ ∂Ω) \ g−1(t). Since x0 /∈ g−1(t) so either g(x0) < t or g(x0) > t.

First assume g(x0) < t. Since x0 ∈ ∂Ω, and we have G = g on ∂Ω, then G(x0) =
g(x0) < t with G continuous on Rn \Ω, thus there exists ϵ > 0, such that B(x0, ϵ)∩
Lt = ∅. We will assume that ϵ < ϵ0, where ϵ0 appears in condition (4.2), we
proceed by taking a variation F satisfying F∆Et ⊂⊂ B(x0, ϵ). We have for every
A ⊂⊂ B(x0, ϵ0),

P (A ∩ Ω,Rn) + P (A ∪ Ω,Rn) ≤ P (A,Rn) + P (Ω,Rn) by (1.3)

≤ P (A,Rn) + P (A ∪ Ω,Rn) by (4.2)

Hence
P (A ∩ Ω,Rn) ≤ P (A,Rn). (4.9)

Define F ′ = (F \B(x0, ϵ))∪ (F ∩Ω). Since Et∆F ⊂⊂ B(x0, ϵ) then Et \Ω and F \Ω
coincides outside the ball and so

F ′ \ Ω = (F \B(x0, ϵ)) \ Ω
= (F \ Ω) \B(x0, ϵ)

= (Et \ Ω) \B(x0, ϵ)

= (Lt \ Ω) \B(x0, ϵ) (Et solution to (4.8))

= Lt \ Ω (Lt ∩B(x0, ϵ) = ∅)
Thus F ′ is admissible in (4.7) and therefore

P (Et,Rn) ≤ P (F ′,Rn)

It remains to show P (F ′,Rn) ≤ P (F,Rn). First observe that F ′ ∩ B(x0, ϵ) = F ∩
B(x0, ϵ) ∩ Ω. In fact,

F ′ ∩B(x0, ϵ) = (F ∩Bc(x0, ϵ)) ∪ (F ∩ Ω)) ∩B(x0, ϵ)

= F ∩ Ω ∩B(x0, ϵ).

Moreover since F ′ ⊂ F , then

F ′∆F = F \ F ′ = F ∩ (F \B(x0, ϵ))
c ∩ (F ∩ Ω)c

= F ∩B(x0, ϵ) ∩ Ω
c

= (F \ Ω) ∩B(x0, ϵ)

= (((F \ Et) ∪ Et) \ Ω) ∩B(x0, ϵ)

= ((F \ Et) \ Ω) ∪ (Et ∩ Ω
c ∩B(x0, ϵ)

⊂ F∆Et ⊂⊂ B(x0, ϵ)

We used above the facts that F∆Et ⊂⊂ B(x0, ϵ) and (Et \Ω)∩B(x0, ϵ) = ∅. Hence,
P (F,Rn)− P (F ′,Rn) = P (F,B(x0, ϵ))− P (F ′, B(x0, ϵ))

= P (F ∩B(x0, ϵ), B(x0, ϵ))− P (F ∩B(x0, ϵ) ∩ Ω, B(x0, ϵ))

= P (F ∩B(x0, ϵ), B(x0, ϵ))− P (F ∩B(x0, ϵ) ∩ Ω, B(x0, ϵ))

= P (F ∩B(x0, ϵ),Rn)− P (F ∩B(x0, ϵ) ∩ Ω,Rn)
(4.10)
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The above inequality with A = F∩B(x0, ϵ) in (4.9) we get P (F,Rn)−P (F ′,Rn) ≥ 0.
This implies that P (Et,Rn) ≤ P (F,Rn) or equivalently P (Et, B(x0, ϵ)) ≤ P (F,B(x0, ϵ))
when g(x0) < t.

Now for the case g(x0) > t. Since G(x0) = g(x0) > t, the continuity of G in Ωc

implies that as above there exists ϵ > 0 such that B(x0, ϵ) ⊂ {x : G(x) ≥ t}, i.e
B(x0, ϵ) ∩ (Rn \ Ω) ⊂ Lt, implying that B(x0, ϵ) \ Ω ⊂ Lt provided ϵ is sufficiently
small and ϵ < ϵ0. Let F be a variation such that F∆Et ⊂⊂ B(x0, ϵ), and define
F ′ = F ∪ (B(x0, ϵ) \ Ω), then

F ′ \ Ω = (F \ Ω) ∪ (B(x0, ϵ) \ Ω)
= ((F \B(x0, ϵ)) \ Ω) ∪ (B(x0, ϵ) \ Ω)
= ((Et \B(x0, ϵ)) \ Ω) ∪ (B(x0, ϵ) \ Ω)
= (Lt \B(x0, ϵ) \ Ω) ∪ (B(x0, ϵ) \ Ω) but B(x0, ϵ) \ Ω ⊂ Lt

= (Lt \B(x0, ϵ) \ Ω) ∪ (Lt \ Ω ∩B(x0, ϵ))

= Lt \ Ω

Thus, since F ′ is a competitor for (4.7), it follows that P (Et,Rn) ≤ P (F ′,Rn). Then
it remains to show

P (F ′,Rn) ≤ P (F,Rn). (4.11)

For this, note that Et∆F ⊂⊂ B(x0, ϵ) and B(x0, ϵ) \Ω = B(x0, ϵ)∩Lt ⊂ Et implies
(F ′)c ∩B(x0, ϵ) = F c ∩B(x0, ϵ) ∩ Ω and (F ′)c∆F c ⊂⊂ B(x0, ϵ). In fact,

(F )c∆(F ′)c = (F )c \ (F ′)c = F c ∩ F ′ = F c ∩ (B(x0, ϵ) \ Ω)

But we have B(x0, ϵ) \ Ω ⊂ Et, therefore

(F )c∆(F ′)c ⊂ F c ∩ Et ⊂ F∆Et ⊂⊂ B(x0, ϵ).

Since
P (F,Rn)− P (F ′,Rn) = P (F c,Rn)− P ((F ′)c,Rn)

then (4.11) follows from (4.10) with F and F ′ replaced by F c and (F ′)c.
We have thus demonstrated that ∂Et is area-minimizing in B(x0, ϵ). We will

show that this leads to a contradiction.
Assume first g(x0) < t, so that G < t on (Rn \Ω)∩B(x0, ϵ) provided ϵ has been

chose sufficiently small. Consequently, since for g(x0) < t we have B(x0, ϵ)∩Lt = ∅,
so that (Et \ Ω) ∩B(x0, ϵ) = (Lt \ Ω) ∩B(x0, ϵ) = ∅.With

Et ∩B(x0, ϵ) = (Et ∩ Ω ∩B(x0, ϵ)) ∪ ((Et \ Ω) ∩B(x0, ϵ)

we get
Et ∩B(x0, ϵ) ⊂ Ω ∩B(x0, ϵ) (4.12)

Recall that Ω is a lipschitz domain, we can represent its boundary locally by a
lipschitz function h.Thus with x0 ∈ ∂Et ∩ ∂Ω \ g−1(t), we express ∂Ω locally about
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x0 as {(x′, h(x′));x′ ∈ B′(x′0, ϵ
′)} where x0 = (x′0, x

′′
0) and x′′0 = h(x′0) > 0. For

simplicity of notation take x′0 = 0. The number ϵ′ is chosen so that ϵ′ < ϵ and that

{(x′, h(x′)) : |x′| ≤ ϵ′} ⊂ B(x0, ϵ) (4.13)

We define the half-infinite cylinder above B′(0, ϵ′) as C = B′(0, ϵ′)× [0,∞), we may
assume

Ω ∩ C = {(x′, x′′); |x′| < ϵ, 0 ≤ x′′ < h(x′)}

Now consider the solution of the minimal surface equation on B′(0, ϵ′) relative to
the boundary data f = h|∂B′(0,ϵ′). Thus we let v be the unique solution of

div

(
∇v√

1 + |∇v|2

)
= 0 on B′(0, ϵ′)

v = f on ∂B′(0, ϵ′)

By lemma 4.3.1, we have that h is a weak super-solution of the minimal surface
equation, and by [10, Theorem 10.7] we have that h ≥ v on B′(0, ϵ′). In fact, h > v
on B′(0, ϵ′), because the set {h = v} is obviously closed in B′(0, ϵ′) and it is also
open in B′(0, ϵ′), because of lemma 3.1.1. Hence if {h = v} is not empty, then h = v
in B′(0, ϵ′), but this would contradict (4.3) because with v being a solution to the
minimal surface equation we get

{(x′, h(x′), x′ ∈ B′(0, ϵ′)} = {(x′, v(x′)), x′ ∈ B′(0, ϵ′)}

hence for any A ⊂⊂ B(0, ϵ), P (Ω, B(x, ϵ)) ≤ P (Ω\A,B(x, ϵ)). Therefore {h = v} =
∅ in B′(0, ϵ′). Consequently with δ = h(0)− v(0), we have δ > 0.

Now consider a 1-parameter family of graphs, vτ (x
′) = v(x′) + τ and let

τ ∗ = max{τ : there exists x′ ∈ B′(0, ϵ′) such that (x′, vτ (x
′)) ∈ ∂Et ∩ Ω}.

Note that,τ ∗ ≥ δ since x0 = (0, h(0)) ∈ ∂Et ∩ Ω and h(0) = v(0) + δ. Let

Vτ∗ = {(x′, x′′) : |x′| < ϵ′, x′′ ≤ v(x′) + τ ∗}.

In view of our choice of ϵ′, observe that

Et ∩ {x : |x′| < ϵ′} ⊂ Vτ∗ .

Observe also that if a point (x′, vτ∗(x
′)) is an element of ∂Et ∩ Ω, then |x′| < ϵ′, for

otherwise i.e if |x′| = ϵ′, we would have that h(x′) = v(x′) but vτ∗(x
′) = v(x′)+ τ ∗ ≤

h(x′) = v(x′) which would imply that τ ∗ ≤ 0 contradicting that τ ∗ ≥ δ > 0. Thus
the set ∂[Et ∩ {x : |x′| < ϵ′}] ∩ {(x′, vτ∗(x′)) : |x′| < ϵ′} is non-empty and according
to Theorem 3.2.3, with v solution to the minimal surface equation, it is open as well
as closed in the connected set {(x′, vτ∗(x′)) : |x′| < ϵ′}. This implies that

{(x′, vτ∗(x′) : |x′| < ϵ′} ⊂ ∂[Et ∩ {x : |x′| < ϵ′}]. (4.14)
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Since τ ∗ ≥ δ > 0, it follows that vτ∗(x
′) = v(x′) + τ ∗ > v(x′) = h(x′) whenever

|x′| = ϵ′ having that v = h on ∂B′(0, ϵ′). Consequently, using the continuity of vτ∗ ,
the graph {(x′, vτ∗(x′)) : |x′| < ϵ′} contains points in Rn\Ω, say (y′, vτ∗(y

′)), |y′| < ϵ′,
as well as points in Ω∩B(x0, ϵ) say (z′, vτ∗(z

′)), |z′| < ϵ′. The point (y′, vτ∗(y
′)), |y′| <

ϵ′ could possibly be an element of Rn \ B(x0, ϵ). Consider the line segment L, in
B′(x0, ϵ

′) that joins y′ and z′. Let a′ be that point on L closest to y′ with the property
that (a′, vτ∗(a

′)) ∈ ∂Ω. Then all points a on L that are closer to y′ than a′ and that
are sufficiently near a′ have the property that (a, vτ∗(a)) ∈ (Rn \Ω)∩B(x0, ϵ). Here
we have used (4.13) and continuity of vτ∗ . Then (a, vτ∗(a)) ∈ {(x′, vτ∗(x′)) : |x′| <
ϵ′} ⊂ ∂[Et ∩ {x : |x′| < ϵ′}]. Therefore

Et ∩B(x0, ϵ) ∩ Rn \ Ω ̸= ∅

contradicting (4.12). This contradiction was due to the assumption that g(x0) < t
and the fact that ∂Et is area-minimizing in B(x0, ϵ). Similarly for the case g(x0) > t.
Finally we get ∂Et ∩ ∂Ω ⊂ g−1(t).

We’ve shown that for almost all t ∈ [a, b], ∂Et ∩ ∂Ω ⊂ g−1(t). We want to
ultimately identify Et∩Ω as the set {u ≥ t} (up to a set of measure zero) for almost
all t. We will need the following Lemma.

Lemma 4.3.3. If s, t ∈ T = [a, b] ∩ {t : P (Lt,Rn \ Ω) < ∞} with s < t, then
Et ⊂⊂ Es.

Proof. We first show Et ⊂ Es.
Note that, with s < t we have Lt ⊂ Ls.Then

(Es ∩ Et) \ Ω = (Es \ Ω) ∩ (Et \ Ω) = (Ls \ Ω) ∩ (Lt \ Ω) = (Lt \ Ω)

thus Es ∩ Et is a competitor with Et in (4.7). Also,

(Es ∪ Et) \ Ω = (Es \ Ω) ∪ (Et \ Ω) = (Ls \ Ω) ∪ (Lt \ Ω) = (Ls \ Ω)

Es ∪ Et is a competitor with Es in (4.7). Thus

P (Es ∩ Et,Rn) ≥ P (Et,Rn) and P (Es ∪ Et,Rn) ≥ P (Es,Rn).

As
P (Es ∩ Et,Rn) + P (Es ∪ Et,Rn) ≤ P (Es,Rn) + P (Et,Rn)

we get P (Es∪Et,Rn) ≤ P (Es,Rn), and hence P (Es∪Et,Rn) = P (Es,Rn). Similarly
P (Es ∩ Et,Rn) = P (Et,Rn). But we have Es ⊂ Es ∪ Et, then |Es| ≤ |Es ∪ Et|. Es

solution to (4.8) thus |Es| ≥ |Es ∪ Et| and therefore |Es ∪ Et| = |Es|. Now,

|Es ∪ Et| = |Es ∪ (Et \ Es)| = |Es|+ |Et \ Es| = |Es ∪ Et|+ |Et \ Es|

Hence |Et \ Es| = 0. Using the convention (2.1) , we can now prove that Et ⊂ Es.
Let x ∈ Et, then

lim sup
r→0

|Et ∩B(x, r)|
|B(x, r)|

> 0.
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On my way to prove that lim sup
r→0

|Es∩B(x,r)|
|B(x,r)| > 0,knowing that

lim sup
r→0

|Es ∩B(x, r)|
|B(x, r)|

≥ lim sup
r→0

|Es ∩ Et ∩B(x, r)|
|B(x, r)|

.

Et = (Et \ Es) ∪ (Et ∩ Es), then

Et ∩B(x, r) = ((Et \ Es) ∩B(x, r)) ∪ (Et ∩ Es ∩B(x, r)),

and we have |Et \ Es| = 0, hence |(Et \ Es) ∩B(x, r)| = 0. Therefore

lim sup
r→0

|Es ∩B(x, r)|
|B(x, r)|

≥ lim sup
r→0

|Es ∩ Et ∩B(x, r)|
|B(x, r)|

= lim sup
r→0

|Et ∩B(x, r)|
|B(x, r)|

> 0.

Thus x ∈ Es and Et ⊂ Es. It remains to show that this containment is in fact
compact, i.e that Et ⊂ int(Es). Et ⊂ Es, then int(Et) ⊂ int(Es), hence to prove
that Et ⊂ int(Es), we only need to prove ∂Et ⊂ int(Es) i.e prove ∂Et ∩ ∂Es = ∅.
First outside Ω, we have

Et \ Ω = Lt \ Ω ⊂⊂ Ls \ Ω

This is due to the fact that Lt ⊂⊂ Ls since s < t. In Ω, we show that ∂Et∩∂Es∩Ω =
∅. We have ∂Et ∩ ∂Es ∩ ∂Ω = ∅, in fact by Lemma 4.3.2, we have

∂Et ∩ ∂Ω ⊂ g−1(t) = {x : g(x) = t}

and
∂Es ∩ ∂Ω ⊂ g−1(s) = {x : g(x) = s}.

Since s < t, g−1(t) ∩ g−1(s) = ∅, therefore ∂Et ∩ ∂Es ∩ ∂Ω = ∅. Finally,assume by
contradiction that S = ∂Et ∩ ∂Es ∩ Ω ̸= ∅. Since Et ⊂ Es, and ∂Es, ∂Et are area
minimizing in Ω then by 3.2.3 we get that S is open relative to ∂Es and clearly S is
closed relative to ∂Es thus S is both open and closed relative to ∂Es and therefore
S is equal to a connected component of ∂Es that do not intersect ∂Ω , now by [1]
and [7, theorem 4.4 part 2, 3, 4] we get a contradiction.Therefore ∂Et∩∂Es∩Ω = ∅
and we conclude that Et ⊂⊂ Es.

4.4 Construction of the solution

In this Chapter, we will construct the solution u of the Least gradient problem (4.1).
For this purpose define the set

At = Et ∩ Ω

Proposition 4.4.1. For t ∈ T ,

{g > t} ⊂ (Et)
i ∩ ∂Ω ⊂ At ∩ ∂Ω (4.15)

{g > t} ⊂ At ∩ ∂Ω ⊂ Et ∩ ∂Ω ⊂ {g ≥ t} (4.16)
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Proof. 1. For the first inclusion. Let x0 ∈ {g > t} i.e g(x0) > t. Similarly to the
proof of lemma 4.3.2, there exist ϵ > 0 such that G(x) > t, ∀x ∈ B(x0, ϵ) and
we get

B(x0, ϵ) \ Ω ⊂ Et ⊂ Et.

Hence x0 ∈ Et.But since ∂Et ∩ ∂Ω ⊂ g−1(t) then x0 /∈ ∂Et and thus x0 ∈
(Et)

i ∩ ∂Ω.
For the second inclusion, let x ∈ (Et)

i ∩ ∂Ω, then ∀r > 0, B(x, r) ∩ Et ̸= ∅.
x ∈ ∂Ω then B(x, r)∩Ω ̸= ∅, therefore B(x, r)∩Et∩Ω ̸= ∅. This implies that
x ∈ Et ∩ Ω and hence

x ∈ Et ∩ Ω ∩ ∂Ω = At ∩ ∂Ω.

2. From (4.15) we get

{g > t} ⊂ At ∩ ∂Ω = At ∩ ∂Ω.

Also we know At = Et ∩ Ω ⊂ Et ∩ Ω, then

At ∩ ∂Ω ⊂ Et ∩ Ω ∩ ∂Ω = Et ∩ ∂Ω.

Now for the last inclusion of (4.16) write Et ∩ ∂Ω as ((Et)
i ∪ ∂Et) ∩ ∂Ω but

from lemma 4.3.2 ∂Et ∩ ∂Ω ⊂ {g = t} ⊂ {g ≥ t}, then it is enough to prove
(Et)

i∩∂Ω ⊂ {g ≥ t}. Assume x ∈ (Et)
i∩∂Ω, then ∃r > 0 such that B(x, r) ⊂

Et. In addition we have

G(y) ≥ t ∀y ∈ Lt \ Ω

and Lt \ Ω = Et \ Ω. Hence G(y) ≥ t,∀y ∈ (Et \ Ω) ∪ (Lt ∩ ∂Ω). Finally
by continuity of G, with B(x, r) ⊂ Et we get that G(x) = g(x) ≥ t, and the
inclusion is proven.

Note that by lemma 4.3.3 and (4.16)

At ⊂⊂ As

relative to the topology on Ω whenever s, t ∈ T with s < t.
Now we define our candidate solution

u(x) = sup{t ∈ T | x ∈ At}. (4.17)

Theorem 4.4.1. The function u defined by (4.17) satisfies the following:

1. u = g on ∂Ω

2. u is continuous on Ω

3. At ⊂ {u ≥ t} for all t ∈ T and |{u ≥ t} \ At| = 0 for almost all t ∈ T
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Proof. 1. Let x0 ∈ ∂Ω and suppose g(x0) = t.

If s < t, from (4.15) we have {g > s} ⊂ (Es)
i ∩ ∂Ω hence with g(x0) > s we

get x0 ∈ (Es)
i ∩ ∂Ω, consequently x0 ∈ As ∩ ∂Ω and thus x0 ∈ As for all s ∈ T

such that s < t. By definition of u(x), we have u(x0) ≥ s for all s ∈ T, s < t.
By letting s→ t we get u(x0) ≥ t.

To show that u(x0) = t, suppose by contradiction that u(x0) = τ > t, hence
sup{t ∈ T, x0 ∈ At} = τ and this implies that for all ϵ > 0 there exists
r ∈ {t ∈ T, x0 ∈ At} such that r > τ − ϵ.For a convenient ϵ, rϵ ∈ (t, τ) ∩ T
and x0 ∈ Ar. But by (4.16) Ar ∩ ∂Ω ⊂ {g ≥ r} which is a contradiction since
g(x0) = t < r. Therefore u = g on ∂Ω.

2. First we will prove

(i){u ≥ t} =
⋂

s∈T,s<t

As (ii){u > t} =
⋃

s∈T,s>t

As

(i)

x ∈
⋂

s∈T,s<t

As =⇒ x ∈ As, s ∈ T, s < t

=⇒ sup{t ∈ T, x ∈ At} ≥ t

Hence
⋂

s∈T,s<tAs ⊂ {u ≥ t}.
Conversely, for x ∈ {u ≥ t}

u(x) ≥ t =⇒ u(x) > s∀s < t

=⇒ ∃s < s′ ≤ t such that x ∈ As′

=⇒ As′ ⊂ As

=⇒ x ∈ As ∀s < t

=⇒ x ∈
⋂

s∈T,s<t

As

(ii)

u(x) > t =⇒ sup{t ∈ T, x ∈ At} > t

=⇒ ∃t0 ∈ T, x ∈ At0such that t0 > t

=⇒ x ∈
⋃

s∈T,s>t

As

Conversely,if x ∈ As0 for some s0 > t then u(x) ≥ s0 > t and hence
x ∈ {u > t}.

The set {u ≥ t} is closed since it is an arbitrary union of closed sets, and
{u > t} is open relative to Ω. To prove this let x0 ∈

⋃
s∈T,s>tAs, then there

exists s0 > t such that x0 ∈ As0 , take α such that t < α < s0 (such α exists
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since dist(∂As0 , ∂At) > 0), then As0 ⊂⊂ Aα hence there exist an open set U
such that As0 ⊂ U ⊂ Aα. Therefore U ⊂

⋃
s∈T,s>tAs and x0 ∈ As0 ⊂ U . Thus

{u > t} =
⋃

s∈T,s>tAs is open relative to Ω. With {u ≥ t} closed and {u > t}
open we get u continuous on Ω.

3. Clearly by definition of u being the supremum we get

At ⊂ {u ≥ t} for all t ∈ T.

But {u ≥ t} \ At ⊂ u−1(t). In fact, let x such that u(x) ≥ t and x /∈ At,
assume that u(x) > t then there exist s0 ∈ T such that x ∈ As0 and s0 > t,
but this implies that As0 ⊂ At, hence x ∈ At which is a contradiction, therefore
u(x) = t.Now since |u−1({t})| = 0 we get |{u ≥ t} \ At| = 0 for almost all
t ∈ T .

Theorem 4.4.2. If Ω is a bounded lipschitz domain that satisfies (4.2) and (4.3),
then the function u defined by (4.17) is a solution to (4.1).

Proof. Let v ∈ BV (Ω) ∩ C(Ω), v = g on ∂Ω, be a competitor in (4.1).Recall the
extension G ∈ BV (Rn \ Ω) of g. Now define an extension v ∈ BV (Rn) ∩ C(Rn) of
v by v = G in Rn \ Ω.

Let Ft = {v ≥ t}. It is sufficient to show that

P (Et,Ω) ≤ P (Ft,Ω) (4.18)

for almost every t ∈ T , because then v ∈ BV (Ω) and the coarea formula 1.6.2 would
imply that

ˆ +∞

−∞
P (Et,Ω)dt ≤

ˆ +∞

−∞
P (Ft,Ω)dt = |Dv|(Ω) <∞.

Hence u ∈ BV (Ω), furthermore |Du|(Ω) ≤ |Dv|(Ω).
We know that Et is a solution of (4.7) while Ft \Ω = Lt \Ω almost everywhere,

hence
P (Et,Rn) ≤ P (Ft,Rn). (4.19)

Next note that

P (Et,Rn) = Hn−1(Rn ∩ ∂∗Et)

= Hn−1(∂∗Et ∩ ∂Ω) +Hn−1(∂∗Et ∩ Ω) +Hn−1(∂∗Et ∩ Ω
c
)

= Hn−1(∂∗Et ∩ ∂Ω) + P (Et,Ω) +Hn−1(∂∗Lt \ Ω)
≥ Hn−1(∂∗Lt \ Ω) + P (Et,Ω).

(4.20)

Observe also that

P (Ft,Rn) = Hn−1(∂∗Ft \ Ω) +Hn−1(∂∗Ft ∩ Ω) +Hn−1(∂∗Ft ∩ ∂Ω).

72



We claim that Hn−1(∂∗Ft ∩ ∂Ω) = 0 for almost all t.By this claim

P (Ft,Rn) = Hn−1(∂∗Lt \ Ω) +Hn−1(∂∗Ft ∩ Ω)

= Hn−1(∂∗Lt \ Ω) + P (Ft,Ω).
(4.21)

By (4.19) and (4.20) we get

Hn−1(∂∗Lt \ Ω) + P (Et,Ω) ≤ Hn−1(∂∗Lt \ Ω) + P (Ft,Ω).

Therefore
P (Et,Ω) ≤ P (Ft,Ω)

and (4.18) established.

Proof of the claim: Hn−1(∂∗Ft ∩ ∂Ω) = 0 for almost all t.
Since v ∈ C(Rn), we have

∂∗Ft ⊂ ∂Ft ⊂ v−1(t)

but Hn−1(v−1(t)∩∂Ω) = 0 for all but countably many t, since Hn−1(∂Ω) <∞.Thus
Hn−1(∂∗Ft ∩ ∂Ω) = 0 for all but countably many t.

Theorem 4.4.3. If Ω is bounded lipschitz domain that satisfies (4.2) and (4.3),then
the function u defined by (4.17) is a solution to

inf{|Dv|(Ω) : v ∈ BV (Ω), v = g on ∂Ω}, (4.22)

where g : ∂Ω → R is continuous. Here v = g on ∂Ω is understood in the sense of
trace theory in BV.

Proof. Since

{|Dv|(Ω) : v ∈ BV (Ω)∩C(Ω), v = g on ∂Ω} ⊂ {|Dv|(Ω) : v ∈ BV (Ω), v = g on ∂Ω}

the inf in (4.22) is less or equal to the inf in (4.1). We need to prove that they are
equal.

We will proceed as in theorem 4.4.2. Let v ∈ BV (Ω) and v its extension as
defined in the previous proof. Note that since g is continuous on ∂Ω and G ∈
C(Rn \ Ω) then v ∈ BV (Rn) ∩ C(Rn \ Ω). We only need to prove

P (Et,Ω) ≤ P (Ft,Ω)

for almost every t ∈ T where Ft = {v ≥ t}.As in the proof of the previous theorem
we have

P (Et,Rn) ≤ P (Ft,Rn) and P (Et,Rn) ≥ Hn−1(∂∗Lt \ Ω) + P (Et,Ω).
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We need to show that P (Ft,Rn) = Hn−1(∂∗Lt\Ω)+P (Ft,Ω) i.eHn−1(∂∗Ft∩∂Ω) = 0.
We have that g is the trace in ∂Ω of v ∈ BV (Ω). By theorem 1.6.4

lim
r→0

 
B(x,r)∩Ω

|v(y)− g(x)|dy = 0 for Hn−1−almost all x ∈ ∂Ω. (4.23)

On my way to prove that ∂∗Ft ∩ ∂Ω ⊂ g−1(t). For this, consider x ∈ ∂∗Ft ∩ ∂Ω
that satisfies (4.23), for such an x observe that g(x) = t. Indeed, if g(x) < t, say
g(x) = t− ϵ then

0 = lim
r→0

1

|B(x, r) ∩ Ω|

ˆ
B(x,r)∩Ω

|v(y)− g(x)|dy

= lim
r→0

1

|B(x, r) ∩ Ω|

(ˆ
B(x,r)∩Ω∩{v<t}

|v(y)− g(x)|dy +
ˆ
B(x,r)∩Ω∩{v≥t}

|v(y)− g(x)|dy
)

≥ lim sup
r→0

1

|B(x, r) ∩ Ω|

(ˆ
B(x,r)∩Ω∩{v≥t}

|v(y)− g(x)|dy
)

≥ lim sup
r→0

ϵ|B(x, r) ∩ Ω ∩ {v ≥ t}|
|B(x, r) ∩ Ω|

Therefore

lim sup
r→0

|B(x, r) ∩ Ω ∩ {v ≥ t}|
|B(x, r) ∩ Ω|

= 0

Using also the fact that g is the trace of v ∈ BV (Rn \ Ω) we employ a similar
argument and get

lim sup
r→0

|B(x, r) ∩ (Rn \ Ω) ∩ {v ≥ t}|
|B(x, r) ∩ (Rn \ Ω)|

= 0.

Now,

lim sup
r→0

|B(x, r) ∩ {v ≥ t}|
|B(x, r)|

= lim sup
r→0

|B(x, r) ∩ Ω ∩ {v ≥ t}|+ |B(x, r) ∩ (Rn \ Ω) ∩ {v ≥ t}|
|B(x, r) ∩ Ω|+ |B(x, r) ∩ (Rn \ Ω)|

= lim sup
r→0

( |B(x, r) ∩ (Rn \ Ω) ∩ {v ≥ t}|
|B(x, r) ∩ Ω|+ |B(x, r) ∩ (Rn \ Ω)|

+
|B(x, r) ∩ Ω ∩ {v ≥ t}|

|B(x, r) ∩ Ω|+ |B(x, r) ∩ (Rn \ Ω)|

)
≤ lim sup

r→0

( |B(x, r) ∩ (Rn \ Ω) ∩ {v ≥ t}|
|B(x, r) ∩ (Rn \ Ω)|

+
|B(x, r) ∩ Ω ∩ {v ≥ t}|

|B(x, r) ∩ Ω|

)
= 0.

Hence we conclude that

lim sup
r→0

|B(x, r) ∩ {v ≥ t}|
|B(x, r)|

= 0.
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This implies that x /∈ ∂MFt and since ∂∗Ft ⊂ ∂MFt we get x /∈ ∂∗Ft which is a
contradiction. We do the same if g(x) > t ( take g(x) = ϵ+ t). Hence g(x) = t thus
∂∗Ft ∩ ∂Ω ⊂ g−1(t) and therefore Hn−1(∂∗Ft ∩ ∂Ω) ≤ Hn−1(g−1(t)) = 0 for all but
countably many t. Thus

P (Ft,Rn) = Hn−1(∂∗Lt \ Ω) + P (Ft,Ω)

And as in the previous theorem we get that u is a solution.

4.5 Uniqueness

Theorem 4.5.1. Let Ω ⊂ Rn be a bounded lipschitz domain satisfying (4.2) and
(4.3). Suppose u1, u2 ∈ C(Ω) ∩ BV (Ω) are minimizers of (4.1) with boundary data
g1 and g2, respectively. If g1 ≥ g2 on ∂Ω, then u1 ≥ u2 in Ω.

Proof. Suppose there exist x0 ∈ Ω such that u1(x0) < u2(x0). Choose real numbers
s and t such that u1(x0) < s < t < u2(x0).

Let A = Ω ∩ {u1 ≥ s} and B = Ω ∩ {u2 ≥ t}. In view of theorem 4.4.3, we have

|Dui|(Ω) = inf{|Dv|(Ω) : v ∈ BV (Ω), v = gi on ∂Ω}.

Consequently, by theorem 3.1.2 we conclude that ∂A and ∂B are area-minimizing
relative to Ω.
We will now proceed to show that ∂A = ∂(A∪B) by establishing that ∂A∩∂(A∪B)
is both open and closed relative to both ∂A and ∂(A ∪B). Then this will lead to a
contradiction.

First note that
B \ A ⊂⊂ Ω. (4.24)

To prove this we will use the continuity of u2 − u1 and the compactness of ∂Ω: The
continuity of u2−u1 implies that {x : (u2−u2)(x) ≥ t−s} = (u2−u1)−1([t−s,∞))
is closed. Now clearly, B \ A ⊂ {x : (u2 − u2)(x) ≥ t− s}.Therefore

B \ A ⊂ {x : (u2 − u2)(x) ≥ t− s} = {x : (u2 − u2)(x) ≥ t− s}.

We still need to prove that {x : (u2 − u2)(x) ≥ t − s} ∩ ∂Ω = ∅. Assume not,then
there exist x0 ∈ ∂Ω ∩ {x : (u2 − u2)(x) ≥ t − s}, but on ∂Ω we have u2 = g2 and
u1 = g1 with g1 ≥ g2 hence (u2−u1)(x0) ≤ 0 and 0 < t−s ≤ (u2−u1)(x0) ≤ 0,which
is a contradiction. Thus

B \ A ⊂ {x : (u2 − u2)(x) ≥ t− s} ⊂⊂ Ω

and B \ A ⊂⊂ Ω. Form this inclusion it follows that

(1) P (A,Ω) ≤ P (A ∪B,Ω) and (2) P (B,Ω) ≤ P (A ∩B,Ω),

In fact to prove (1), notice that ∂A is area-minimizing then by definition P (A,Ω) ≤
P (F,Ω) for all F where A∆F ⊂⊂ Ω. Take F = A ∪B,

A∆F = (A ∪ (A ∪B)) \ (A ∩ (A ∪B)) = (A ∪B) \ A = B \ A ⊂⊂ Ω.
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Therefore P (A,Ω) ≤ P (A ∪ B,Ω). Same for (2), with ∂B area minimizing and
F = A ∩B. Now invoking (1.3), we get

P (A,Ω) = P (A ∪B,Ω) and P (B,Ω) = P (A ∩B,Ω).

Therefore A ∪B and A ∩B are area-minimizing relative to Ω. Clearly ∂A ∩ ∂(A ∪
B) is closed relative to ∂A and ∂(A ∪ B). From theorem 3.2.3 and (4.24) , with
∂A, ∂(A ∪ B) both area-minimizing and A ⊂ A ∪ B we get that ∂A ∩ ∂(A ∪ B) is
open relative to ∂A and ∂(A ∪B).

Before proceeding, we employ the following elementary topological observation:
If X and Y are sets such that X ∩ Y is open and closed relative to both X and Y
then any component of either X or Y that intersects X ∩ Y is necessarily contained
in X ∩ Y . Consequently, each component of X is either contained in Y or disjoint
from Y . Similarly, each component of Y is either contained in X or is disjoint form
X.

Thus with X = ∂A and Y = ∂(A ∪ B) we may conclude that ∂A ⊂ ∂(A ∪ B)
because any component of ∂A disjoint from ∂(A∪B) would be contained in Ω, which
is an impossibility.In fact, assume that there exist C ⊂ ∂A such that C∩∂(A∪B) = ∅
and C ⊂ Ω.

Claim:∂A ∩ ∂Ω ∩ (∂(A ∪B))c = ∅.

Proof of the claim: Let x ∈ ∂A ∩ ∂Ω, then u1(x) = g1(x) = s ≥ u2(x) = g2(x).Let
ϵ > 0 and take Nϵ(x), since x ∈ ∂A then Nϵ(x)∩A ̸= ∅ therefore Nϵ(x)∩(A∪B) ̸= ∅
and also Nϵ(x) ∩ Ac ̸= ∅. We can also see that ∂A ∩ ∂Ω ⊂ Bc implying that
Nϵ(x)∩Bc ̸= ∅, hence Nϵ(x)∩ (A∪B)c ̸= ∅, thus x ∈ ∂(A∪B) therefore ∂A∩∂Ω ⊂
∂(A ∪B) and thus ∂A ∩ ∂Ω ∩ (∂(A ∪B))c = ∅.

Now by this claim and as in the proof of Lemma 4.3.3,we get that ∂A ∩ (∂(A ∪
B))c ∩ Ω = ∅ which is a contradiction with our assumption.Therefore we get that
∂A ⊂ ∂(A ∪B).

This same argument can be applied with X = ∂(A ∪ B) and Y = ∂A and
conclude that ∂(A ∪B) ⊂ ∂A hence ∂A = ∂(A ∪B).

We will finally show that this leads to a contradiction. Let S = Bi \ A then
Bi \ A ⊂ B \ A ⊂⊂ Ω so S = Bi \ A ⊂⊂ Ω and ∂S ⊂ ∂A ∪ ∂B. However, it is
not possible that ∂S ⊂ ∂A.Assume by contradiction that ∂S ⊂ ∂A,then ∂S is area-
minimizing with S ⊂⊂ Ω but this is impossible because we get ∂S ∩ ∂A ∩ ∂Ω = ∅
since S ⊂⊂ Ω. Hence as above we get ∂S ∩ ∂A ∩ Ω = ∅ but ∂S ⊂ ∂A, hence
∂S ∩ ∂A ∩ Ω = ∂S ∩ Ω = ∅ but this is not true since S ⊂⊂ Ω.

Thus there is x∗ ∈ ∂S ∩ (∂B \ ∂A) and an open set U containing x∗ such that
U∩A = ∅ this implies that (A∪B)∩U = B∩U and therefore ∂(A∪B)∩U = ∂B∩U
and since x∗ ∈ ∂B ∩ U, we get x∗ ∈ ∂(A ∪B) ∩ U and therefore x∗ ∈ ∂(A ∪B) but
x∗ /∈ ∂A which contradicts that ∂(A ∪ B) = ∂A.Finally, we conclude that u1 ≥ u2
in Ω.

Corollary 4.5.1. Let Ω ⊂ Rn be a bounded lipschitz domain satisfying (4.2) and
(4.3). If u1, u2 ∈ C(Ω)∩BV (Ω) are solutions to (4.1) relative to their own boundary
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data, then
sup
Ω

|u1 − u2| = sup
∂Ω

|u1 − u2|

In particular, the solution to (4.1) is unique.

Proof. Let u∗ = u1+sup∂Ω |u1−u2|. u∗ has least gradient and u∗ ≥ u2 on ∂Ω hence
by theorem 4.5.1 we get u∗ ≥ u2 on Ω, that is u1 ≥ u2 − sup∂Ω |u1 − u2|.

Reversing the roles u1 and u2 we get u2 ≥ u1 − sup∂Ω |u1 − u2|, then |u1 − u2| ≤
sup∂Ω |u1 − u2| on Ω. Thus supΩ |u1 − u2| ≤ sup∂Ω |u1 − u2| but sup∂Ω |u1 − u2| ≤
supΩ |u1 − u2| and therefore

sup
Ω

|u1 − u2| = sup
∂Ω

|u1 − u2|.

In particular,with same boundary value we get that the solution to (4.1) is unique,

sup
Ω

|u1 − u2| = 0.

Therefore u1 = u2 on Ω.
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