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ABSTRACT
OF THE 'THESIS OF

Jolie Simon Lahoud for Master of Science
Major: Pure Mathematics

Title: Least Gradient Problem

For a given continuous function g defined on the boundary of €2 where €2 is a bounded
lipschitz domain in R" satisfying some conditions, we consider proving the existence
of a function u in the space of BV (Q2) that is equal to g on the boundary in the
trace sense, and the total variation of its distributional derivative evaluated over
() is minimal among all such functions,in addition to proving uniqueness when u

belongs to BV (£2) N C(2).The exposition go deeply in the study of BV theory and
sets of finite perimeter.
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INTRODUCTION

The least gradient problem is a problem of minimalization:

inf{|Du|(R2) : w € BV(Q)NC(2),u =g on 0}

where () is a bounded lipschitz domain in R", g : 92 — R continuous. We aim to
establish both the existence and uniqueness of a solution to this problem. Addition-
ally, we consider the least gradient problem with a slightly relaxed condition:

inf{|Du|(2) : u € BV(Q),u =g on 082}

We will also demonstrate the existence of a solution for this problem. Here the
boundary condition is understood in the sense of trace theory in the space of func-
tions of bounded variation BV.

In this thesis, we prove the existence of a solution to this problem under certain
conditions on 0f). Specifically, we require that 92 has non-negative mean curvature
(in a weak sense) and is not locally area-minimizing. In two dimensions, these
conditions can be replaced with a requirement that the set is strictly convex. Our
approach in this thesis is inspired by the work of Sternberg, Williams, and Ziemer
in their paper [1] building upon the findings of Bombieri, De Giorgi, and Giusti in
[2], which demonstrated, among other things, that the superlevel sets of a function
of least gradient are area-minimizing. This result provides the major motivation
for the techniques employed. Indeed, this fact, along with the co-area formula,
suggests that the existence of a function of least gradient can be established by
actually constructing each of its superlevel sets in such a way that they reflect the
appropriate boundary condition and that they are area-minimizing.

The thesis is organized as follows. In chapter 1, we start by revisiting some basic
ideas in measure theory and introducing new ones.We define the space of bounded
variation functions BV, sets of finite perimeters and discuss the coarea formula, that
will help us in achieving the existence of a solution. Additionally, we introduce the
trace concept. These are essential concepts that provide the groundwork for our
study.

In chapter 2, we define the reduced boundary of a set of locally finite perimeter,
the set of points where the measure theoretical normal exists.

In Chapter 3, we outline fundamental properties of minimal surfaces, which will
serve as valuable tools in our work.

In Chapter 4, we introduce the Least Gradient Problem (LGP) on BV (Q)NC(Q)
and lay out some preliminary ideas.



Finally, chapter 5 is devoted to the explicit construction of the solution to (4.22),
as well as the solution to (4.1) and its uniqueness.



CHAPTER 1

FUNCTIONS OF BOUNDED VARIATION
AND SETS OF FINITE PERIMETER

1.1 Measure theory

Definition 1.1.1. Let (X, .A) be a measurable space,and let n € N;n > 1,we say
that n: A — R" is a measure if:

1. pu(0) =0,

2. (Countable Additivity) For a countable collection { A, } of pairwise disjoint sets

in A, we have
K (U An) = ZH(AH)'
n=1 n=1

If n=1, we say that p is a real measure, if n > 1 we say that p is a vector measure.

Definition 1.1.2. 1. A measure p on X is reqular if for each set A C X there
exists a p-measurable set B such that A C B and p(A) = u(B).

2. A measure j1 on R"™ is called Borel if every Borel set is p-measurable.

3. A measure p on R™ is Borel reqular if y is Borel and for each set A C R"
there exists a Borel set B such that A C B and u(A) = u(B).

4. A measure ;o on R™ is a Radon measure if u is Borel reqular and p(K) < oo
for each compact set K C R".

5. A subset A C X is o-finite with respect to u if we can write A = UkZI By,
where By, is p-measurable and p(By) < oo for k = 1,2---. If X itself is
o-finite we also say that p is o-finite.

Definition 1.1.3 (Total variation measure). If pi: A — R" is a measure, we define
its total variation |p| for every measurable set E as follows:

|| (F) := sup {Z |L(En)| - By € Apairwise disjoint, E = U?f:OEh} :
h=1
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Theorem 1.1.1. [7] Let p be a measure on (X, A), then |u| is a positive finite
measure.

Definition 1.1.4. (a) Let p be a positive measure and v be a real or vector measure
on the measure space (X, A). We say that v is absolutely continuous with respect to
W, and write v << u, if for every B € A the following implication holds :

p(B) =0 = |v|(B) =0

(b) If u,v are positive measures, we say that they are mutually singular, and write
v L p, if there ezists E € A such that (E) = 0 and v(X — E) = 0. In the case
where j or v are real or vector-valued, we say that they are mutually singular if |u|
and |v| are so.

Theorem 1.1.2 (Radon-Nikodym). Let 1 be a positive measure and v be a real or
vector measure on the space (X, A) and assume that p is o-finite. Then there is a
unique pair of R™-valued measure v, v® such that v* << p,v* L p and v = v*+v°.
Moreover, there is a unique function f € (LY(X,u))" such that v* = fpu.

The function f is called the density of v with respect to p and is denoted by %

Since trivially each real or vector measure p is absolutely continuous with respect
to |ul|, then we have the following decomposition that we won’t prove.

Corollary 1.1.1. [9][Polar decomposition] Let i be a R™-valued measure on the mea-
sure space (X, A), then there exists a unique S™ *-valued function f € (L'(X, |u|))™
such that = f|pl.

Proposition 1.1.1. Let X be a locally compact separable metric space and p a finite
R"-valued Radon measure on it. Then for every open set A € X the following equality
holds:

|1|(A) = sup {2/ widp; :u € Co(A,R"), [Jullo < 1}
i=1 7YX

Proof. By Corollary 1.1.1 there exist a unique S™!-valued function f € (L' (X, |u|))"

such that 1 = fll ie g = (i, iz, jin) = (hlil, - fulal). Now fix A C X
open,and let u = (uy, -+, uy,) € C.(A,R™) such that ||ullo <1

;/AUidﬂz’:;/A:uifid‘,ul :/A<u,f> d| |
< [ lslalnl <l 171

< lulleo / dla] < ulloolil (A)

Therefore sup {37, [ widpi : u € Co(A,R"), [luljs < 1} < |pu[(A). Now for the
other inequality, using the density of C.(A, R™) in (L(A, |u|))™ there exist a sequence
(un)n C Ce(A,R™) that converges to f in (L'(A,|u|))". Moreover, by a truncation
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argument, we can assume that ||uy|le < 1. Since up = (up 1, -+, upy,) converges to
f1ain (LY(X,|u]))™ we obtain

n

' i = 1 _ 2701
i S [ = i [ < g > dlol = [ 1P = 1)

=1
Hence equality holds. O]

Theorem 1.1.3 (Riesz). Let L : C.(X,R") — R be a linear functional which
satisfies

sup{L(f) : f € C.(X,R"),|f| < 1} <
Then there is a unique R"-valued Radon measure 1 = (py,- - , i) on R™ such that
L(f)y=>_| fldu; VfeC(XR")
i=1 JR?

And,
IL]| = |l (X)

Definition 1.1.5 (Weak™® convergence of measures). Let p, (up)n be R"™—valued
Radon measures on X. we say that (uy) locally weakly® converges to u if

i [ fdn = [ fn
h—oo [x X
for every f € C.(X).

If w and py, are finite, we say that () weakly™ converges to p if

i [ fdn = [ fn
h—oo [x X
for every f € Co(X).

Theorem 1.1.4 (Weak* Compactness). [/ If (un) is a sequence of finite Radon
measures on the l.c.s metric space X with sup{|un|(X) : h € N} < oo,then it has a
weakly™ converging subsequence.

Proposition 1.1.2. [3] Let (up) be a sequence of Radon measures on the l.c.s metric
space X locally weakly® converging to u.Then

(a) If the measure uy, are positive, then for every lower semi-continuous function

f:X —10,00]
liminf/ fd,uhZ/ fdu
h—o0 X X

And for every upper semi-continuous function g : X — [0,00) with compact

support
limsup/ gduhﬁ/gd,u
h— 00 X X
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(b) If |un| locally weakly* converges to A, then X\ > |u|. Moreover if E is a relatively
compact p-measurable set such that N(OF) = 0, then pun(E) — p(E) as h —

oo. More generally
[ tau= i [ s
X h—oo [ x

for any bounded Borel function f : X — R with compact support such that the
set of its discontinuity points is \-negligible.

Proposition 1.1.3. [9] Let (up) be a sequence of positive Radon measures on X,
and assume the existence of a positive, finite Radon measure p in X such that

lim pp(X) = p(X) and liminf p,(A) > p(A)

h—o00 h—o0

for every A C X open. Then

ﬁm/MMZ/MM
h—o00 X X

f or any bounded continuous function f : X — R. In particular (u,) weakly™
converges to p in X.

Notation. We denote the average of f over the set E with respect to p by

][EfdMZ ﬁ/Efdu,

provided 0 < p(E) < oo and the integral on the right is defined.

Theorem 1.1.5 (Lebesgue-Besicovitch differentiation theorem). Let p be a radon
measure on R" and f € L} (R™, u). Then

loc

limf  fdu= f(x)

r—0 B(I,T’)

for p a.e x € R™.

1.2 Integration by parts

Let €2 be an open bounded subset of R with C'! boundary, we recall the Gauss-Green
Theorem.

Theorem 1.2.1 (Gauss-Green Theorem). Suppose f € C1(Q). Then

/fwidx: frds 1=1,---,n
Q o0

with v = (v', V%, -+ [ v™) outward pointing unit normal vector field.



Theorem 1.2.2 (Integration by parts formula). If f,g € C*(Q),then

Q Q oN

In fact from Gauss-Green theorem:

/Qfgxider/ngzidHTI/Q(gf)x,.d:v

= fgv'dS
o9

1.3 Sobolev Spaces

1.3.1 Weak Derivative
Motivation: Let Q open subset of R". Given a function f € C'(£2), then for all

p € Cl(Q),
/f@:ridx: _/fziQde
Q Q

The problem is when f is not in C'(Q2), at least the right-hand side integral will
have no meaning hence we will define the weak derivative of f as follows

Definition 1.3.1. Given a real valued function f € L,.(Q) we say that g € L},.(Q)
is the weak 1" -derivative of f if

/fsomde —/gsodx
Q Q

Uniqueness. The weak i*"-derivative of f, if it exists, is uniquely defined.

for all p € CL(Q).

Proof. Assume ¢ and § are weak i*"-derivatives of f satisfying

/f%drc: —/ggodx: —/ésodx
Q Q Q

for all ¢ € C}(Q), then
[ g ez =0
Q
for all p € C}(Q).Therefore g — g =0 a.e. O

Definition 1.3.2 (Higher order weak derivatives). Given a real valued function
f €L (Q), and a multi-index o, we say that g € L, (Q) is the o' weak derivative

loc

of [ if
/fDO‘god:c = (—1)a/g<pda: for all o€ CF(Q)
Q

Q

Write g = D f.



Notice that the weak derivative coincide with the classical one if f € C'(Q),
however, a.e. existence of derivative does not imply existence of weak derivatives.

Example 1.3.1. Let Q@ = (0,1) C R and

for all p € CL(Q).
Case 1: ¢ is compactly supported in (0, %] we get

1
2
0= —/ gpdz
0
Hence g =0 a.e on (0,1].
Case 2: ¢ is compactly supported in (%, 1) we get

o)~ o)) = [ ar = [ gous

3 =

1
0:—/ gpdx

2
Hence g =0 a.e on (3,1).
Therefore g = 0 a.e on (0,1) then fol f¢' =0 for all o € CHQ) thus f = 0 a.e,
contradiction. Thus f has no weak derivative.

Example 1.3.2. Let Q@ = B(0,1) C R" and f(x) = ﬁ with fo, = —aEs. [ and
fa, are in Li, (Q) when o <n—1 (in LY(Q)).In fact,

1
/ |f|dx:// \F|dSdr
B(0,1) o JoaB(o,r)
1 1
:// —dSdr
o JoaBos) T
11

= —acnrnfldr
0o T

L
:cn/o Ta+17nd7°<oo



and

1
/ fo(@)|dz = / / \fuldSdr
B(0,1) oB(0,r)
<a/ /aBOT TQHder
n 1
< a/o mcn dr

L |
= Cn/ —Qd'r’ < 00
0 roz-l— -n

Let o € CYQ) and fix € > 0, using integration by parts

[ tendo=— [ papdss [ pevas
O\B(0,¢) O\B(0,¢) 2B(0,¢)

[ revasi<liele [ Ifllds
0B(0,¢)

OB(0,¢)
< ol / o ds
9B(0,¢)

< ||so|!ooe‘a/ ds
0B(0,¢)

= e ™ S 0ase— 0

But

Therefore fQ\B(O&) fou,dr = — fQ\B(OE) fu,pdx

/fsozidl‘:/ fswxid$+/ J Pz, dr
Q Q\B(0,¢) B(0,¢)

—— [ fapdet [ s
Q\B(0,¢) B(0,€)
But around 0,

[ fends] < / || da
B(0,¢) B(0,¢)
N / flde
BOE
// —der
0B(0,r)

< Micpe ™™ 5 0ase— 0

8o [ fndr =~ fQ\B(O,e) fzpdx. Now, let
foo fx#0
gi(x) =

< ”SO:EZ

- H(pxz

0 ifzx=0
Hence fﬂ [z, de = — fQ gipdx. Therefore f has weak derivative g.

9



1.3.2 Weak Divergence and Weak Curl

Definition 1.3.3. Given f : Q — R" in L},
Li .(Q) is the weak divergence of f if

loc
/f-Vgpdx:—/ggodx
Q Q

for all ¢ € CH(Q).Denote g = divf

(Q,R™), we say that g : Q — R €

Definition 1.3.4. Given f : Q — R" in L},
L (2, R™) is the weak curl of f if

loc

(Q,R™),we say that g : Q — R™ in

/ [ Curlpdr = — / gedx for all ¢ € CH(Q).
Q Q

Denote g = curlf

Notice that if f € C'(Q2) above equalities hold for the standard curl and diver-
gence by the Stokes’ theorem.

1.3.3 Sobolev Spaces

Definition 1.3.5. For 1 < p < oo, we define WYP(Q) as the set of functions
f € LP(Q) that has weak ith derivative in LP(Q) for everyi=1,---  n.

Notation. For f € WYP(Q),let Df = (Dyf, Daof, -+, Dnf) with D, f the weak i—th
derivative of f.

We then define the W'?(Q) norm:

- 1
I lwroiy = (11" + D IDifIl") " for 1< p < oo
i=1

I lwie@) = I1flloe + D 1Dif lloe for p = oo
i=1

Proposition 1.3.1. [//

1. (WEP(Q), [|-|lw») is @ Banach space ¥1 < p < 0.

2. WP (Q) is separable V1 < p < cc.

3. C(Q) N WP(Q) is dense in WIP(Q) for any 1 < p < oo, with respect to the
norm of WHP(Q).

Example 1.3.3. Let Q = B(0,1). We verify that if n > 1, the unbounded function
f =loglog(1+ %) belongs to W™ (Q). Prove

|z

(i) feL™Q)
(ii) Df exists

10



(iii) Df € L)
For (i)

1 n
/ |f|"d:p</ log< ) dx
B(0,1) B(0,1) |z
/ / log ( ) dSdr
aB(0,1)
= / log (—) e, dr
0 /r‘

=c, (% log(2) — log(2)"™" _ <n — 1) /Ol(log(Q) - log(r))"Zr"Idr)

n n

Proceeding in this fashion and after sufficiently many integration by parts we get
that this integral is equal to a constant + fol r"~Ldr that is finite since n > 1.

(1i)
(o + [2PYlog(1 + 1)

foi = (z #0)

Fiz e >0,

/ foude = / foude + / fouds  VoeCNQ) (1)
9] Q\B(0,¢) B(0,¢)

By integration by parts we have ,

[ fedo== [ fagdsr [ faias )
O\B(0,e) O\B(0,¢) 9B(0,¢)

But
[ Apevtas <liol [ fow (1o (14 1) ) | vlas
0B(0,¢) 0B(0,¢)
<llele [ ton (1og( ))as
OB( De
< ngHoolog( Yene =0 ase—0
Now,
fow,dr| < |l@s, Oo/ |flde =0 ase—0
B(0,¢)

B(0,¢)

11



Letting

0 ifz=0

we get fQ [z, dr = — fQ Vipdx. Hence Df exists and equal to V.
(iii) We have

1

P = e+ TeDiog T + 2

with x # 0 and since x € B(0,1) we get

1
Dfl< ——M—
DIV S iog(i 1)

and notice that

< when z € B(0,1)
log(1 + m ‘) log(|1 )

z|

Now as (i)

1
1
Df”dxﬁ/ // derScn/ —dr
/B(O,l)l | B(0,1) (|37UOQ% dB(0,1) rlog )" 0 7”(509(%))"

that is finite since n > 1 by a simple change of variable.

1.4 Approximation by smooth functions, Mollification

Definition 1.4.1 (Convolution). The convolution of two functions f,g defined in
R™ is given by the expression:

frglx)= . fW)g(x —y)dy

whenever this makes sense.It is a commutative and associative operation.

Definition 1.4.2. Let p be an R™-valued Radon measure in an open set  C R™, if
f 1s a continuous function, we call the function

o f( /fx— )dpu(y)

the convolution between f and p whenever this makes sense.

We will introduce functions that will build smooth approximations to given func-
tions in W1P(Q).

Notation. Let 2 C R™ open subset, € > 0. Write Q. = {x € Q | dist(x,00Q) > €}.

12



Definition 1.4.3. (i) Define n € C°(R") by

(2) = cexp(pp) if 2] <1
BV if lx] > 1

with ¢ > 0 such that fRn ndx = 1.n is called the standard mollifier.
(ii) For each € > 0, set

Ne(z) = Einn(g;

The functions n. are C* and satisfy

).

€

/ nedz =1, Supp(ne) C B(0, €)
Definition 1.4.4. If f : Q— R in L} (Q), Define its mollification

fe) = s s = |

Q

ne(r —y) f(y)dy = / Ny fx —y)dy  for v €Q

B(0,¢)
Proposition 1.4.1 (Properties of mollifiers). [/]
(1) fee C>(Q,) for each e > 0.
(ii)) f¢— f a.ease—0.
(i1i) If f € C(Q), then f¢ — f uniformly on compact subsets of ).
(iv) If 1 <p <oo,and f € LT (Q), then f— f in L} ().

loc loc
Proof. (i) Fixx € Q.,i=1,--- ,n and h so small that = + he; € {2..Then

fE(x+heli) —f@) _ Eln/Q% (n (—$+h:i_y> —1 <$Zy)) fly)dy
[ () o ()

for some open set V' CC €). As

1 r+he—y\ x—y 10n,z—y
E(n( € ) 77( € ))%eﬁxi( € )

uniformly on V, %(w) exists and equals

O (LY b (y)dy.

qQO0x; €

Hence D f¢(x) exists and D f¢ = Dn, * f.

13



(ii) By the Lebesgue differentiation theorem we have

lim [f(y) = f(x)ldy =0

r—0 B(CE,T)

for a.e x € ). Fix such x, then

|f(x) = f2)] =

lé@dfm‘ﬂﬁﬂw—f@mw

1 (x
< — n
€" B(x,e€)

gc/ f(y) — f(z)|[dy -0 as e€—0
B(z,e€)

- y) F(y) — F@)ldy

(iii) Assume now f € C'(2),and let V' CC Q, we choose V. CC W CC €, note that
f is uniformly continuous on W.Therefore as in the proof of (ii) with uniform
convergence we get (iii).

(iv) Let 1 <p < oo and f € L} (€2). Choose an open set V' CC Q and as above,
an open set W so that V. CcC W CC (L.

Claim: For sufficiently small € > 0, || f*|| .oy < || f|leowy -

Proof of the claim: Let x € V,

[f(2)| =

/ m(x—y)ﬂy)dy]
B(xz,e)
1—1 1
S/B(M)ne (z =y (v = y) | F()ldy
1-1 1
€ - d € - Pd
S(/B(wﬁé)n(x ) y) </B(Iﬁé)77(x y)|f(y)] y)
Since || Bla )776 x — y)dy = 1, this inequality implies
“(z)[Pdz < Pdy | d
[ /(/) o=l dy ) da
)P — y)dz | dy
< [ 11w |(/B(M) o =)o)
= [ 15wy
w

Now fix ¢ > 0,and choose g € C(W) so that
1 = glleoewy <0

14



Then

£ = fllerory < N F =g Neery + 19 = gllzeevy + lg = flleeev
<20f = gllerowy + |95 — 9llze(vy  (By the claim)
<26+ |lg° = gllze vy

Now from (iii) ¢¢ — ¢ uniformly on V,and hence (iv) is proved.
U

Theorem 1.4.1 (Local approximation by smooth functions). Assume f € W1P(Q)
for some 1< p < 0o, and set f¢ =mn. * finQ..Then

(1) fee C>(Q,) for each € > 0.
(i) Df¢ =nex Df = Dne* f in Q.
(iii) f€— f in W 2(Q) as e — 0.
Proof. As proved previously we have D f¢ = Dn,. * f. So,

Df(x) = D/Qne(x —y)f(y)dy = /QDwe(fc —y)fly)dy = — /Q Dyne(z —y) f(y) dy

For fixed = € €2, the function n(z—-) : y — n.(x—y) belongs to C°(2).Consequently
by the definition of the weak derivative

/Q Dy — ) f(y)dy — — / ne( — y)Df (y)dy

Thus Df(z) = n. * D f(z). O

Proposition 1.4.2. [/] Suppose € is connected and f € W'P(Q) satisfies Df =0
a.e in . Prove f is constant a.e in €.

Proof. We know that this result is true for C* functions. Let € > 0 , €. as defined
above, and f¢ = n.x f € C*(£,). Since Df = 0 a.e then Df¢ = n.x Df =0
a.e, hence f¢ = a a.e on each connected component of €2, .Now let x,y € €2, since
) open connected in R™ there exist v : [0,1] — € a path connecting x to y. For
§ = min,¢, dist(z,00) and € < 0 the whole path lies in Q,, hence x and y are in the
same connected component of €, so f¢(x) = f<(y). Since f¢ — f in W2 (), then
f is constant a.e in (). m

Theorem 1.4.2 (Global Approximation by smooth functions). [5] Assume € is
bounded, 02 1s lipschitz. Then if [ € WhP(Q) for some 1 < p < oo, there exists a
sequence (fr)r>1 C WHP(Q) N C=(Q) such that fi, — [ in WP(Q).

Theorem 1.4.3. Assume Q) is bounded, OS2 is lipschitz, 1 < p < n. Suppose ( fr)r>1
sequence in WP(Q) such that

SI;PkaHWlm(Q) < o0

Then there exist a subsequence (fy,); and f € WHP(Q) such that f, — f in L9(Q)

foreach1§q<p*:n%).
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Proof. Let’s try proving it only for p = ¢ = 1,since we will later use the compactness
in WH(Q) to prove compactness in BV space.

1. Fix a bounded open set V such that 2 CC V and extend each frptogy €
WH1(R™), such that

(+ Suppgr CV
supg |lgrllwii@ny < ¢ supy|| fellwrig) < oo.

2. Let g, = ne * gx (the usual mollification ,WLOG supp(g;) C V)
3. Claim 1: ||g; — gkllz1 )y < Ce uniformly in k.( C. independent of k)

Proof of Claim 1. Assume g is smooth,
\ﬁw—%@w:/mm—w<>@—%m
= / —~1) gk z —y)dy — g ()
B(0,e) €

= /B Y)gr(z — ey)dy — /B (O’l)n(y)gk(w)dy‘
A ) g6z — ey) — gul@)] dy

,1)

e/ /MD%@—awMMy
B

95— gl an) = /
]Rn
1
< 6/ n(y)/ (/ |Dg.(x — ety)]dx) dtdy
B(0,1) 0 n
1
<c [ o) [ 1Dglwsseodedy
B(0,1) 0

S EHng”Wl,l(Rn)
< Ce by (%)

IN
5

Thus,

|g gk\dl’

The general case follows by approximation. O]

4. Claim 2: For each € > 0, the sequence (g§,)r>1 is bounded and equicontinuous
on R”.

Proof of Claim 2.
c

en’

€ (&1
g5 (@)] < /( )ns(x—y)mk(y)ldy < IIUEIIDO/B( )ng(y)ldy < (Ilgkll 1 n)) <
B(x,e T,
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and

€ Cc
Do) < [ Dude = pllonwldy < 5
B(z,e) €

]

5. Claim 3: For each § > 0 there exist a subsequence (fy, )j>1 C (fx),, such that

tim supl| fi, — fi, |10 < 8

1,]—00
Proof of claim 3. Recalling claim 1, we choose € > 0, so small that

sup||gp, — gkl L1 @ny < 3
k

then by claim 2 and Arzela-Ascoli theorem on V, we find a subsequence ( i, )j=1
which converges uniformly on R”. Then

[ fr: = fe; Nz < gk — gk, [l @y

< llgr; — gk, llLreny + L9k, — gk 2@y + 119k, — gl 21w
26 . .
< 3 + gk, — 9, 1)
<9
for i, j large enough. m

6. We conclude that there exist a Cauchy subsequence in L'(2) and hence a
convergence subsequence in L(Q).

]

1.5 Functions of bounded variation

Definition 1.5.1. Let f € LY(Q), we say f is a function of bounded variation if
the distributional derivative of f is representable by a finite Radon measure in €),i.e
iof there exists a Radon measure,whose total variation is finite on (), denoted by

Df = (Dyf,Dof,---,D,f) such that

/ foz,dr = —/gpdDif Vi € CH(Q) i=1,---,n (1.1)
Q Q

The vector space of all functions of bounded variations is denoted by BV (Q2). We also
denote BV,.(Q) the space of function f € L}, (Q) that has locally bounded variation.

loc
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Note that we can also write
/ fdivpdr = — Z/ ©'dD; f Y € CHQ,R™). (1.2)
Q — Jo

The Sobolev space W1(Q)is contained in BV (Q).Indeed for any f € Wh1(Q) the
distributional derivative is given by D fdx, where D f is the weak derivative of f.But
the inclusion is strict, that is, there exist functions f in BV(2) such that their
weak derivative does not exist. For instance, the Heaviside function 1o whose
distributional derivative is the Dirac measure dy; has no weak derivative. In fact we
have

[ Tomp@ds = [~ ¢ @)te = 00

and [, ¢ddy = ¢(0) for all ¢ € C}(R). Therefore d is the distributional derivative
of 1[0700).

Now assume 1y has a weak derivative g € L'(R).Let ¢ € C}(R) such that
llolleo < 1, supported in (—1,1) and ¢(0) = 1.

For n € Nx and = € R, we set ¢,(z) = p(nz) then ¢, € C.(R) for all n.On the

other hand
[ o@ente mw|/ o)
< [ lgtaias

But [g1(_1 1)] <|g| and g1(_1 1) converges pointwise to 0. Therefore by dominated
convergence theorem we get a contradiction.

Definition 1.5.2. Let f € L},.(Q). Define V(f,Q), the variation of f in ), by

V(f,Q) :Sup{/ﬂfdivgodx

Proposition 1.5.1. Let f € LY(Q), then f € BV(Q) if and only if V(f,Q) < oo
In addition, V(f,Q) coincides with |Df|(Q2) for any f € BV ().

we@mﬁwwmms@.

Proof. First assume f € BV(Q) hence there exists a finite radon measure Df =
(D1f,--+, D,f) such that

/fdw Z/@de Ve C.(Q,RY).

By proposition, we have 1.1.1
[Df1(§2) = sup {Z/ P'dD;if 1 p € Co(QR"), ¢l < 1}
i=1 /X
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Therefore V(f,Q) < |Df|(Q) < oo.Conversely assume V(f,Q) < oo.Define L :
CH(Q,R") — R by

Le) = [ fdiv(e)ds
Q
a continuous linear functional on C}(Q2, R"™).We have

L)
1Plloo

|L(#)]
1el]oo

V(.9 = L] = sup{ el # o} >

therefore
L) <V, Q) plloc <00 (%)

For each ¢ € () choose ¢y, € C7(Q,R") such that ¢}, — ¢ uniformly on compact
subsets of Q. Define L : C.(©,R") — R such that

L) = lim Lig)

According to (%) L(p) < oo (the limit exist ) and it is independent of the choice of the

sequence (¢ ). Thus L uniquely extends to a linear functional L that coincides with
L on C}(Q,R") (This could be replaced by applying Hahn Banach theorem).Now

applying Riesz theorem 1.1.3 on L we can find an R™-valued finite radon measure p
on €2 such that

/ fdiv(p)dz = L(p) = Z/ ©'dp;  for allp € C.(Q,R™).
Q — Jo

Also ||L|| = |u|(2)hence Df = —p and thus f € BV(R2). In addition,we’ve already
proven that V(f,) < |Df|(©2) and now we have |Df|(Q2) = |u|(2) = ||L| <
V(f,Q). Therefore |Df|(Q2) = V(f, Q). O

Proposition 1.5.2. Let f € BV,.(2)

1. If n is the standard mollifier and Q. = {x € Q,dist(x,0) > €}, then D(f *
T/G) = Df*ne on Q.

2. If Df =0 then f is constant in any connected component of 2.

Proof. 1. I need to prove that

/ (f % 1) dz = — / o(Dif ¥n)de  VpeCNQ)  Vi=1,-.n
Q Q
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In fact,

[ enpndo= [ ( / f(y)ﬁe(a:—y)dy> ou dn

= [ ([ eutomte - nic) sy (y rudini
_ / (e % 1) () f () dy

_ /Q (% 1), () f () dy

= —/gl(w*ne)dDif

- /Q(Dif * 1) pd

The last equality is true by Fubini theorem and by the symmetry of 7,:

[0 nete= [ ( [t y)dDif(y)> ()
=/Q (/gzne(x—y)so(fﬁ)dﬂf) dD; f(y)

Q

2. Fore >0, f¢=nxf € C®(Q)NL;,(Q). By (1), Df¢ = Dfxn. hence Df¢ =0

on €2, so by proposition 1.4.2 f¢ = ¢ a.e on every connected component of €2,.
But f¢ — fase — 0 a.e in ). Therefore f = ¢ in every connected component
of Q.

m

1.5.1 Approximation by smooth functions

Theorem 1.5.1 (Lower semi-continuity of variation measure). Suppose f, € BV (Q) (k =
1,--+) and fy — finL} (Q). Then

loc
IDFI(9) < liminf | D fi|(5)
—00

Proof. Since fi, € BV(Q) then V(f3, Q) = |D fr|(2). Let p € C}(2,R™) such that ||¢|e <
1, then

/fdz'v(gp)dx = lim
QO k—o00

Note that the first equality in this proof is true since

I(fe = Pdivelly < [[(fe = Pllilldivelc = Oask — oo

frdiv(p)dzr = lim inf/ frdiv(p)dz < li]fn inf V(fy, Q) = li;n inf | D fi|(€2)
0 —00 —00

QO k—o0
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Theorem 1.5.2 (Approximation by smooth functions). Assume f € BV (Q)), then
there exist functions (fi)g>1 C BV (Q) N C>(Q) such that

1. lim fp = f in LY(Q)
k—o0
2. lim |Dfi[ () = [D ()
k—o0
The converse is also true, i.e if there exist functions (fi)r>1 C C*() such that
1. lim fi, = f in LY(Q)
k—oo
2. L= lim [,|Dfi|dx < co
k—o0
Then f € BV (Q).

Proof. Fix € > 0. Given m € N, define the open sets

Qk:{xEQ,dist(x,89)> ! k}ﬁB(O,k:—l—m)

note that 2, is an increasing sequence.Choose m large enough that |Df|(2\ ©;) <
e () and set Qg = (). Now define Vj, = Qp.1 \ Qx_1. Notice that V} is an open cover
of €2, hence there exist (&), a partition of unity such that

0<& <1
& € O (Vi)
2@1516:1 on 2.

Fix the mollifier n, then for each k, select ¢, > 0 so small that

Supp(ne,, * [&) C Vi
(k%) S Jo 1M * f& — [&lde < 5
Jo 1M, * D&, — fD&|dr < 5

Now define fo = >, e, * f&- We have f. € C°(Q) because it is a locally finite
sum, i.e in some neighborhood of each point x € () there are only finitely non zero
terms in the sum.

Also o1&k = 150 f3,5,& = f and therefore Y, o, f& = f.Hence (xx)

implies:
Hﬂ—ﬂh—/

> (e # fG) = > fé| dx

k>1 i>1
/ Z My * f& — f&k|dx
k>1

—Z/| New * fE) — [&kld
k>1

<e
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Therefore f. — f in L'(Q2) as e — 0.
It remains to show that |Df|(2) — |Df](Q) as ¢ — 0.From theorem 1.5.1 we
have |D f|(2) < lim ionf | D f.|(Q).For the reverse inequality , let ¢ € CH(Q,R"), ||¢o]le0 <
€E—

1,then

/Qfediv(p dx = /QZ(nek * ffk)dWSO dr = Z/Q;(ﬁsk * fgk’)@xzd$

k>1 k>1

= (¢ * Ny )a; fERAT = div(p * ¢, ) fErd
= fdiv(&r(@ * ne,))dx — D& * ne,,)dx
AL AL

=3 [ st en)e = 3 [ ol x (1D60) - 1DG)

k>1 k>1

=1+ I

Having that,by Fubini
AfD&@%*@@ﬁiAUD&*mew

and Y7, D& =01in Q, 50 >, [o fDE = 0.

Now note that we have || < 1 by definition, and |1, * ¢| < [|7¢]l1]|¢llec < 1
therefore |£(n, * ¢)| < 1. By construction of the sets V}/s, each point of Q belongs
to at most three of the sets Vj. So

1] = /Q Fdiv(& (1 * 9))dz + 3 /ﬂ Fdiv(€(ne, * 0))dz

k>2

<|Df|(Vi) + Y IDFI(Vi)

k>2

<[DFIQ)+ D IDFI(Vi)

k>2

< DY) + [Df[(Via,) + D f1(Viay) + 1D f(Viay)
< [DfI(Q2) + 3[DfI(€2 = )

< |DfI(S2) + 3€ by (x)

The above is true since each x belongs to at most 3 V;’s and

Vi, CQ—Q1 i=1,2,3.

[e3

On the other hand, (x*) implies that |I§| < € Therefore
/ fedivpdr < |Df|(2) + 4e
0
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Hence |D.|(2) < [DFI(Q) +4e. We then get lim [Df(2) = [DFI(Q).

For the converse and since fr € C°°(2),notice that by theorem 1.1.4 the finite
radon measure D frd\, where D f; is the gradient of f;, has a subsequence that
converges weakly* to some R™-valued measure p in Q such that |u|(Q) < L, i.e

lim | ¢D;frdr = / gd Vg € Co(Q2)
Q Q

k—o0

Now by integration by parts for all ¢ € C!(Q),

/ foudr = / D frpda
Q (9]

/f%dfvz—/sodu
Q Q

Therefore f € BV (Q2) and Df = p. O

Let £k — oo we get

Theorem 1.5.3. BV (), endowed with the norm

1 fllBviey = I fllzr @) + [DfI(Q)

1s a Banach space.

Proof. Clearly ||—| pv(a) is a norm.We only need to prove that this space is com-
plete.Suppose (f;); C BV(Q) is a Cauchy sequence, then by definition of the BV
norm,(f;); is Cauchy in L'(Q2).By completeness of L'(Q),there exist f € L'(Q) such
that f; — fin L'(Q). Since (f;); is Cauchy in BV (), then ||f;||pv is bounded.
Thus |Df;|(€2) is bounded as j — oo and so by semi-continuity theorem 1.5.1

[DFI(Q) < liminf [D;|(€) < oo

hence f € BV (2).It remains only to show that f; — f in BV (Q),or since we already
have convergence in L'(Q), that [D(f; — f)|(2) =5 0. Suppose € > 0,3IN > 0,
such that

1fj = fellsv <€ Vi k> N.

This implies that |D(f; — fi)|() < € Vj,k > N.Now fr — f in L'(Q) and so
fi — fx — f; — f in L'(Q). Thus again by semi-continuity

ID(f; ~ D) < liminf [D(f; ~ f)I(Q) < e

for arbitrary € > 0, therefore f; — f in BV (Q). O
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1.5.2 Compactness

Theorem 1.5.4. Let 2 C R", be open bounded with OS lipschitz. Assume (fi)g is
a sequence in BV (Q2) satisfying

sup | fell BV < oo

Then there exists a subsequence (fx;); and a function f € BV () such that
fi; = finL'(Q) as j — oo.

Proof. For k =1,2,--- there exist by the approximation theorem (g;); C C*(2) N
BV (Q) such that g; = .o fr in L}(Q2) and llim |Dgi|(Q) = | D fi|(22)
—00

i.e(* fQ ‘gk—fk‘dx<% )
supy, [, | Dgx|dz < oo

Now since (gr) € W'(Q) and using compactness of Wh1(Q) 1.4.3, there exist
f € L'(Q) and a subsequence (gi,);>1 € WH(Q) such that g,, — f in L'(Q). But
then (x) implies also that fi, — f in L'(Q) because [, |fe, — f| < [ [fe, — g1, +
Jolgr, — fl = 0 and f € BV(Q) using lower semicontinuity theorem 1.5.1. O

Definition 1.5.3 (Weak™ convergence). Let f, f, € BV (Q2).we say that (fy,) weakly™*
converges in BV (Q) to f, if (fn) converges to f in LY(Q) and (D f,) weakly* con-
verges to Df in €, i.e

h—o00

lim [ @dDf, = / wdD f Vo € Co(R).
Q Q

Proposition 1.5.3. Let (fn), C BV (Q). (fn) weakly* converges to f in BV (Q) if
and only if (fy) is bounded in BV (Q) and converges to f in L*()

Proof. Assume f;, converges weakly* to f then we have converges in L'(€2) and we
only need to prove boundedness in BV (Q) i.e sup,ey|lfrllvio) < 0o.(Dfa)n is a
sequence of finite radon measures, as a result of Riesz theorem we have there exist
a bounded linear functional on Cy(€2), Lpy, such that

Lpy, (¢) = /Q @dDf, Vo € Co(Q).

Since [, @dDf, — [,pdDf then |Lpy, (¢)] < oo, by Banach-Steinhaus theo-
rem (uniform boundedness principle) we get ||Lpy,|| < oco. Therefore ||Lpy, | =
|D f,|(£2) < oo and thus we conclude boundedness in BV (2).

Conversely assuming (f3,), bounded in BV (Q) and converges to f in L*(Q), to
prove weak* convergence in BV (€2) we only need to prove that D f;, weakly™* converge
to Df in €.

By weak™ compactness 1.1.4, for any sequence (D f;) we have a further subse-
quence that converge weakly™ to u, D f,, —"* p with p radon measure. We need
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to show that p = D f and therefore we get D f, —** Df. Indeed since f;, € BV (Q)
then

/ Jrpz,dz = _/ ©dD; fr YVpoec CHQ)i=1,---,n.
Q Q

In particular,

Q Q

Letting k& — oo, we get [, fondr = — [, odu; for all ¢ € CH(Q). Hence p =
Df. 0

Definition 1.5.4 (Strict convergence). Let f,(fn)n € BV (Q). We say that (fp)
strictly converges in BV (Q) to f if (fu)n converges to f in L'(Q) and the variations
|D fr|(2) converge to |[Df|(2) as h — oo.

For f,g € BV(Q) define the distance

dlt.9)= [ If = alde +1DF1(9) = D).
It can be easily checked that d is a distance in BV (2) and it induces strict conver-
gence.

Remark 1.5.1. Strict convergence implies weak™ convergence but the opposite im-
plication is not true in general.

Take for example fr(x) = % € BV(0,2n).fn weakly® converges to 0 in
BV(0,27). In fact,

1.

2 27 : h, 27r1 2
/ ]fh|da::/ Mdmﬁ/ —dx:—w—>0 as h — oo.
B B h o h h

Hence f, converges to 0 in L'(0,2m).

21 2
Hfhusvzf fuldz +1DFI0m) < 2 44 <om b4 Yh>1
0

And therefore boundedness. With
2m 2m 27h
|Dfn](0,27) = / |D fr|dx = / |coshx]da::/ |co_hsa:|dx:4.
0 0 0

But we do not have strict convergence to 0 because |Df|(0,27) = 0 # 4.

Proposition 1.5.4. [3] If (fn)n C BV(Q) strictly converges to f, and f : R* — R
is a continuous and positively 1-homogeneous function,we have

: D _ Df
i ot () 4ol = [ (i57) a0

for any bounded continuous function ¢ :  — R. As consequence, the measures
f ( Dfy ) weakly™ converge in Q to f <|D—f>, in particular |D f| — |Df| weakly *

|D fnl Df|
in €.



The proposition is a particular case of the following theorem.

Theorem 1.5.5 ((Reshetnyak continuity)). /9] Let 2 be an open subset of R™ and
iy i, be R™-valued finite Radon measures in 0 if |, |(2) — |p|(2) then

tin [ 7 (2.0 ) dhalta) = [ 7 (L4 0) dinle)

for every continuous and bounded function f:€Q x S™71 — R.

1.6 Sets of finite perimeter

Definition 1.6.1. Let E a A-measurable subset of R™. For any open set ) C R”
the perimeter of E in Q denoted by P(E,(Y), is the variation of 1g in Q.

P(E,Q):=V(lg,Q) =sup {/ divpdz
E

¢e@mﬁwwmms§.

We say E is of finite perimeter in Q if P(E,Q) < co.

The class of sets of finite perimeter in ) includes all the sets E, with C! boundary
inside € such that H"1(2 N OF) < co. In fact, by the Gauss-Green theorem, for
these sets ¥ we have

/ divpdr = —/ vg - pdH" ! Yo € CHQ,R™)

E QNOE

where vy is the inner unit normal to £ .Hence it turns out that
P(E,Q) =H"(QNOE).

Notice that if |E N Q| is finite, then 1z € L'(Q) and we conclude that E has
finite perimeter in Q if and only if 1 € BV(Q) and that P(E,Q) = |D1g|(Q2)
the total variation in €2 of the distributional derivative of 1x. In general we can
always say that 1g € BV,.(£2) whenever E is a set of finite perimeter. Conversely
if 1p € BV,(Q2), then E has finite perimeter in any open set ' CC €2, in this case
we say that E is a set of locally finite perimeter in Q.

Theorem 1.6.1. For any set E of finite perimeter in §2, the distributional derivative
D1g is an R™-valued finite radon measure in Q. Moreover P(E,Q) = |D1g|(f2), and
a generalised Gauss-Green formula holds:

/ divpdr = — / ¢ - vpd|Dlg| Vo € CL(Q,R™)
E Q

where D1 g = vg|D1g| the polar decomposition of D1g.
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Proof. We have E is of finite perimeter in €2, so 1p € BV,.(2) and hence the
distributional derivative of 1g is a radon measure in €2.To show it is finite, it is
enough to prove sup{|D1g|(K), K C Qcompact} < oo.Since

|D1g|(K)=P(E,K) < P(E,Q) VK cC Q Open
Thus |D1g|(2) < oo, and we conclude that D1 is a finite Radon measure in 2. [

Definition 1.6.2 (Convergence in measure). 1. Let fy,, f p-measurable functions,
we say that f, converge to f in measure if

Jim p({z € X, [fu(x) = f(2)] > €}) =0 Ve>0

2. Let By, E measurable sets, we say that E) converges to E in measure in Q) if

wW(QN (EyAE)) — 0

h—o0

3. Local convergence in measure is the convergence in measure in any open Set
Acc.

Remark 1.6.1. Clearly, the convergence in measures of (Ej) (respectively local
convergence in measure) corresponds to convergence in L*(Q) (Li,.()) of the char-
acteristic functions 1g, to 1g.

Proposition 1.6.1 (Properties of perimeter). (a) The map E — P(FE,Q) is lower
semi-continuous with respect to local convergence in measure in €.

(b) E— P(E,Q) is local, P(E,Q) = P(F,Q) whenever |QQN (EAF)| = 0.
(¢) P(E,Q)=PR"\ E,Q), and

P(EUF, Q)+ P(ENF,Q) < P(E,Q) + P(F,Q) (1.3)

Proof. We only need to prove (c) since all the above derive directly from the general
theory of BV functions.
For p € C}(Q,R™),

/ diU(pd!E:/ 90$1+"'+§Ozndx:/ /§0$1+"'+90zndx:0‘
n n Rn—1 JR

So [, divedx + fR"\E divepdr = 0 and hence [, divpdr = — fR"\E divpdz. Therefore
P(E, Q) =P[R\ E,Q).

Now for the equality (1.3), we have E. F sets of finite perimeters so 1g, 1p €
BVe(2) hence by theorem 1.5.2 there exist (up)n, (vp)n € C*°(2) such that u, —
1g, vy = 1p as h — oo by a truncation argument 0 < up, < 1,0 < v, <1, and

lim / |Duy,|dz = P(E,Q),
Q

h— 00
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lim / |Duy|dz = P(F, ).
Q

h—o00

1

Then upvy, = 1pap and uy + vy, —upvy, — Lpupin Ly,

(Q2).By lower semi-continuity,
P(ENF,Q)+P(EUF,Q) < liminf/Q |D(uhvh)|dx—i—1iminf/Q | D(vp,+up —upvp)|de.
But notice that
/Q|D(uhvh)|dx = /Q |op, Duy, + up Doy, |dx
g/Q]Duthh| | Doy [up|da:
and
/Q |D (v, + up, — upvp)|de = /Q |Dvy, + Duy, — Duyp,.vp, — Dop.uy,)|dz
< /Q | Dup (1 — vp)| + |Dop(1 — up)|de
< /Q | Dun|(1 = o) + | Don|(1 — wy)da.
Adding the two inequalities, we get
P(ENF,Q)+P(EUF,Q) < liminf/ ]Duh|da:+liminf/ |Dup|dx = P(E,Q)+P(F,Q)
Q Q
[

1.6.1 Coarea formula in BV space

The coarea formula relates the variation of f and the perimeter of its superlevel set.
For f:Q — R and t € R, define the superlevel set E; = {z € Q, f(x) > t}.

Lemma 1.6.1. If f € BV(Q), the map t — |D1g,|(Q) = P(Ey, Q) is A\-measurable.

Proof. The mapping (z,t) — 1g,(x) is A x A-measurable,because E; = f~1((t,00))
measurable set since f € L'(Q).Thus for each ¢ € C!(Q2,R") the function ¢t —
Jo L, divpdr = [, divpdzr is A-measurable, hence the sup function is A-measurable
and therefore t — P(E;, ) is A-measurable O

Theorem 1.6.2 (Coarea formula). Let f € BV (Q), then
(i) E; has finite perimeter for A-a.e t € R.

(ii) V(f,Q) = [* P(E,Q)dt = [ P({z € Q, f(z) > t},Q)dt.

(iii) Conversely,if f € L*(), and [*°_ P(E,,Q)dt < oo then f € BV()
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Proof. First I'll prove (i) then, (i) and (7).
(1) We present the plan of the proof: First I'll show that for all ¢ € C}(2, R") with [|p]|ec <
L

/fdivgoda::/ P(E, Q) dt
(9] —

o0

for f > 0, then f < 0 and finally the general case f = f* — f~. Then we’ll
get that V(f,Q) < ffooo P(E;,Q)dt .Next, we prove that we have equality for f €
BV (Q)NC*>*(Q) and finally for f € BV(Q).

Take ¢ € CHQ,R™), [l¢]leo < 1.

Claim 1: [, fdivpdr = [7_ [, dive dxdt

Proof of the claim. First suppose f > 0, so

f(x):/RIL(Of () dt = /Rl(o’“mh*( )t /OOOILEt(x)dt ez eQ

Thus

/Q fdivpdr = /Q ( /0 h 1g, (z)dt)dive(z)dx
_ /O Y /Q Ly, (2)divp(a)de)dt By fubini

:/ (/ divgpd@dt
0 By

Similarly, if f <0,

£@) = [ 1o ®dt = [ 1can®s D@ = [ () -1

/ Ooo (/ Le,(z) - 1)diw(w)daz) dt
/(; (/ dwgpda:> dt

Hence

/Q fdivpdr = /Q ( / (; Ig,(x) — 1dt) divp(x

For the general case write, f = f* 4+ (—f7).

/ fdivodr = /(f+ + (= f)")divedz
Q Q

—/ </ dwgodx—i—/ / dwgpda:) dt
Et Et
/ / divipdxdt
Ey
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Thus for f measurable we always have this inequality

/fdivgpda::/ / divpdzdt
Q —oo J Ey
§/ sup{/ div o dx
—00 o

< / P(E,, Q)dt

[e.9]

o€ CHAR, o]l < 1} it

Therefore -

V(f.Q) < / P(E,Q)dt (%)

—00

Claim 2: (i7) holds for f € BV (Q2) N C>(2).

Proof of the claim. Define m(t) = fQ\Et |D f|dx = f{f<t} |D fldz. m is non decreas-
ing, so m’ exists A — ae with

/_Oo m’(t)dtg/Q|Df|dx (58).

[e.9]

Now if I show that m/(t) > P(E;, Q) integrating over R we get the other inequality.
To do so fix any —oo < t < 0o, > 0 and define n: R — R by

0 s<t
n(s)=9=t t<s<t+r
1 s>t+r

Then

, Lot<s<t+r
n'(s) =
0 s<tors>t+r

Hence for all ¢ € C1(Q,R™),(nof)ep is compactly supported in Q and thus [, div((nof)p)dz =
0.This implies that

_ / 0 (2))div(e)dz = / 7 (f@)Df - pde = - / L Dfets ()

Q T
Now
— 1
m(t+r) m(t):_</ ]Df]dx—/ ]Df]da:)
r r ON\E1r Q\E;

1

— [ Drlas

r E\Ei+r

1
> —/ Df.pdx
r E\Et4r

= — /Q n(f(z))diveds by (s * x)

30



For those t such that m/(t) exists i.e A—aet, let r — 0,hence m/(t) > — [}, divpdz. Therefore
m/(t) > P(E;, Q). Thus

/ Tt > / " P(B, Q)

—00 —00

Now using (x*) we get

[e.9]

V) =051 = [ DAl = [ o= [ pE.o
This estimate and (x) gives that for f € BV (Q2) N C>(Q),
vire) = [ P

(e}

Claim3: (i7) holds for f € BV (Q)
Proof of the claim. By the approximation theorem, there exists {fi}r C C™(f)
such that fy — fin L'(Q) and |Df|(Q) = lim [, |D fildz = lim V(f, Q) < co.
k—o00 k—o00 k—o0
Define EF = {x € Q fi(z) > t}, notice

+00 +oo
/ 1 () — Lg,(z)|dt = / | L min{£(@). i (o)} mae (£ (@) i (o)) ()|

max{f(z),fx(z)}

:/ dt = |fe(z) — f(2)]

min{f(z),fx ()}
Consequently,

/Q|fk($)—f(x)|dx:/Q/_:O|]lEf(a:)—llEt(x)]dxdt:/_:O/QHLE?(x)—]lEt(Jc)\dtdx

Since fy — f in L'(Q) then [T [ [1gx(7) — Lg, (2)|dtdr < oo. Hence there exists
a subsequence which upon re-indexing by k, satisfies 1px — 1, in L'(Q2) for A
almost every t. Then by lower semi-continuity theorem

P(E;, Q) < lim inf P(EF, Q)
—00

Thus Fatou’s lemma implies

+o0 +o00
/ P(Et,Q)dtg/ liminf P(EF, Q)dt

0 N

+0o0
< lim inf / P(EF,Q)dt
k—o0 oo

= liginf V(fr, Q) (By Claim 2)
_ IDri@)
= V()
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For (i) since [, P(E,,Q)dt < oo hence P(E;,Q) < oo a.e. And for (iii) if f €
LY(Q) by (x)V(f,Q) < [T P(E,,Q)dt < oo, then f € BV(Q). O
1.6.2 Trace for BV functions

Theorem 1.6.3. [5] Let Q open bounded with 092 lipschitz. There exists a bounded
linear mapping T : BV (Q) — LY(02, H"™1) such that

) — . . n—1 %
/Qfdwcpdx— /Qgp de+/aQ(g0 V)T fdH (%)
for all f € BV(Q) and p € C*(R™,R").

Proof. Given z € R", write x = (z1,--- ,z,) = (', x,) same for y = (v, y,).
First assume f € BV (2) N C*>®(Q). Pick « € 09Q,choose r,h > 0 and a lipschitz
function « : R"! — R. Define

C=C(z,r,h)={yeR"| |y —2'| <r, |yn —xn| < h}

and QNC ={y ||y — 2| <rvW) < yn <z, + h}. If0<e<%,set
h
Cse={yeC|vy)+0<yn <) +e} for0§6<e<§

and define C, = Cy, write C°=CNQ\ C..
For y € 00N C, we define f.(y) = f(v/,v(y') + €), then

| fs() — fe)| = 1f (v (@) +0) = f(y', v () + o)
[ L+ oa
o n

</Eﬁ
_5a$

< / DA A ) + 1)de.

(1) + t)\ i

Consequently,

/ | fs(y) = fe(y)|dH" " < / / Dy, y(y) +t)|dtdH" " < c|Df[(Cs.).
oNC oNC J 6

Therefore (f.)e=o is Cauchy in L'(0Q N C,H"!) thus Tf = lim fc exists in this
e
space. Furthermore, our passing to limits as 6 — 0 we get

[ i - gl <dpfICn9) < dDAT D) (k)
aanC
Next fix ¢ € C!(C,R™), then by integration by parts

fdz'vgpdy:—/ w-Dfdy+ fo-vdH"!

Ce € oCe

= / - Dfdy+ / fepe - vdH" (By change of variable)
e o0nC
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Let € — 0, to find

fdz'vgody——/ g0~Dfdy—i—/ Tfo-vdH"  (x**)

onc onc oonC

Since 052 is compact, we can cover Jf2 with finitely many cylinders C; = C(x;, i, h;), @ =
1,---,n for which assertions analogous to (#*) and (* * %) hold.Hence there exist

(&) a partition of unity such that
0<& <1
&k € C(Cy)
Zk21 & =1 onC
& € C(Cy, R™) with ¢ € C(C,R™), then apply above on @&, we get

| taitesyty =~ [ pe-Dfdy+ [ Trog van
QNCl QNCl oNNCy,

/ ForV (€0 dy+ / ferdiv(g)dy = — / oD fdy+ / Tfotevdin
QNCy, QNCy, QNCy,

80NCy,
Summing over k and having that > & =1 then > V& =V > & =0, we get

O—I—/fdiv(go)dy:—/gp-Dfdy+/ Tfo-vdH™*
Q Q o0

hence formula (x) is established.
Now assume that f € BV(Q) , choose fr € BV(Q)NC>(Q)(k =1,---) such
that
fe = fin LY(Q) and |D fi(Q) — [Df|().

In addition, form [5], we have py, converges to u weakly, where py, and p are defined
as follows: for B C R,
u(B) = [ Dfdr and w(5)= [ ans
BNQ BNQ

Claim: (T fx)g>1 is a Cauchy sequence in L'(92, H"1).
Proof of Claim. As previously, choose a cylinder C fix e > 0,y € 0QNC, and define

fily) = %/0 fe(y' () +t)dt = ! / (fi)e(y)dt.

e Jo
Then (**) implies

[ gane = [
oanc oanc

1 €
< —/ / T fre — (fr)e| dH™tdt
€ Jo Joonc

< %/ c| D fi|(Cc N Q)dt
0

= c|Dfi|(CcN Q).

1 [ 1 [
_/ Tfkdt——/ (fk)tdt‘d’;’-l,"_l
0 € Jo

€
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We have
/ T ThldH™ < / T fom feldH "+ / T i feldH "+ / o flarn .
ooNC onNC ooNC ooNC

However,

[ = saret < [ 2 G Godane = [ 15 silay
a0NC oonc € Jo € Je.

hence,

/ T fr. — T fildH" " < c(|D fr| + |Dfi)(Cen Q) + / | fe — fildy.
20nC

Thus

limsup/ Tf. — ThHlAH"™ < 2¢|Df|(C N Q)
onNcC

k,l—o0

this is true because fy — fin LY(Q),|Df|(C. N Q) — |Df|(C. N Q). And since the
quantity on the right-hand side goes to zero as e — 0, the claim is proved. [

In view of the claim we may define T'f = klim T fx. Finally, (%) holds for each fj
—00

and thus holds in the limit for f.

Note that the definition of T'f does not depend on the choice of the sequence. In
fact letting (f3) and (gx) two approximating sequencesi.e fr, — f in L'(Q), |D fx|(Q) —
[Df[(©2) and gx — g in L}(Q), |Dge[(2) — [Dg| (),

1T fr = Tgrlli = IT(fx — g)llx (By linearity of T')
< || fx — gkllBv ( As T is bounded)
= c(|D(fx — g)|(2) + [ fx — gll1)
= c(|D fi = Dgi(€) + | f& — grll1)
< c(|Dfy — DfIQ) + [Dge — DFIE) + [ fro — grlli + llgr — fll1) —k—00 O

]

Remark 1.6.2. The trace function is not injective.Let f € BV (Q)NC(), floa =
0 but flog =T f =0 hence kerT' # 0 therefore by linearity of T it is not injective.

Theorem 1.6.4. [5] Assume ) is bounded open, OS) lipschitz. Suppose also f €
BV (), then for H" '-a.e x € 99,

lim f=Tf(x)|dy=0
r—0 B(z,r)NQ | ( )|

and so

Tf(x)=lim fdy

r—0 B(z,r)NQ
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Remark 1.6.3. In particular,if f € BV(Q) NC(Q) then Tf = flag H" ' — a.e.

Proof. 1. Claim:For H"™! — aex € 99, lim PAGENM _ g,
r—

Proof of Claim. Fix 7,0 > € > 0, and let
Df|(B BEY)
|Df[(B(z,r) ) > }

lim sup

r—0 Tn_l

A,y:{xeﬁQ

then for each x € A,,30 < r < € such that

DABENN)

Using Vitali’s covering theorem (conditions are satisfied since |Df| is a finite
radon measure and r < ¢€), there exists a countable collection of disjoint balls
{B(z;,7;) }ien satistying (*) such that A, C |J;2, B(x;, 5r;), then

105 ) < ZHloé (s, bri)) < Z%R_I(B(xm 5r;))

i>1 i>1
< Z@(n—l)(wi)"fl
i>1
D B Ti, T NneQ
< Za(n—1)5n71| f|( ( ) ) by (*)
i>1 v
= - Z |Df| xm Tz )
v 1>1
_ “ipy] (U Bla ) 1 Q)
v i>1
< S|Dfle)
e

where Q¢ = {z € Q | dist(z,00Q) < €}, take ¢ — 0 to find H};'(A,) =
0 for all 6 > 0. Therefore H"*(A,) = 0 and the claim is proved. O

2. Now to prove our theorem, fix a point x € 02 such that

|DfI(B(z,r) N )

71«5% o = 0( By the claim )
and
lim ITf(2) —Tf(z)|dH" ' (2) = 0.

r—0 B(z,r)Nox

The above is true by the Lebesgue Besicovitch differentiation theorem 1.1.5,
since T'f € LY(02, H"™1) from the definition of trace.
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Let h = h(r) = 2r max(1,4Lip(y)) and consider the cylinders C(r) = C(z,r, h),
observe that for sufficiently small r and as in theorem 1.6.5, (the cylinders C(r)
work in place of the cylinders C' in the previous proof). Thus estimates similar
to those developed in that proof show that

/ Tf — fJaH™ < | DFI(C(r) N Q),
a0NC(r)

where

f) = f/ 7)) +e) yeC(r)noN,0<e< @

Consequently,we estimate
[ TR - fwldy < CripFICr) )
B(z,r)NQ
Hence we compute,

Fo A -Ti@lay<f T - TH@ldy {75 - fwldy
B(z,r)NQ B(m,'r)ﬂQ B(z,r)NQ
<[ T - Th@ldy / T F) = S )l

/ / Ty f<w>|cm”—1dt
B(xrﬁdQ

+ 7 T, vW)) = fy)ldy
r B(z,r)NQ

c 1 c
< 7 [ ) =TI 4 DS (3G r) 1)

o(1) + ——[Df|(B(z,r) N Q)

IN

IN

o(1) asr — 0

Thus,

Tf(x) - ]é(z,r)ﬂﬁ fdy -

<

f F0) — F(y) + T (x)dy — f fdy
B(z,r)NQ B(z,r)NQ

fooV-Ti@lytf  fedy-f Sy
B(z,r)NQ B(z,r)NQ B(z,r)NQ

Therefore, T f(x) = }g}% fB(xJ.)mQ fdy.

-0

]

1.6.3 FExtension

Theorem 1.6.5. 2 open bounded with OS2 lipschitz. Let fi € BV (S2), fo € BV(R"\
). Define

7o filz) ze€Q B
fo(z) ze€eR"\Q
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then _
f € BV(R")

and
IDFI(R") = [Dfil(Q) + D/ (R™\ Q) + /8Q T fi = T foldH"™
Proof. First we prove that f € BV(R") i.e V(f,R") < o0 so it is enough to show
Jan fdivepdr < oo forall ¢ € CH(R™,R"™)such that |[¢[le < 1.
1. Let p € CHR",R™) with |||/ < 1, then
/R'ﬂ Fdivpdr = /Q fidivedr + /R" @ fodiveda

—[e-appi+ [ eovrpan = [ geanfot [ o (o) faan” !
JQ JoaQ F Rn\SZ g B(Rn\ﬂ)

' n—1
< ‘7/992 pf = [ erapa [T = Thaan

< [reldipnil+ [ _ielaiDpal+ [ levlITh - Tralant
Q R™?\Q an

< IDAI(Q) + |Dfal (R™ \ B9) +/8Q ITf1 — TfaldH™ !

< oo (Since f1, fo € BV and by boundedness of T')

Thus f € BV(R"), and

IDTI(R") < [DAIQ) + [Dfl (R \ 39 + / T~ Tl

2. We next show equality.
For all ¢ € C}(R",R"),

/ div(fo)dr = fdiv(p)dx +/ ¢ - Dfdx

n

Rn
since ¢ is compactly supported, we get
0= fdiv(go)dx+/ w-dDf.
]Rn n
Hence as in 1

— / ¢-dDf = | fdiv(p)dx

R

:—/@'del—/ SO'de2+/ (o - V) (Tf —Tfr)dH" .
Q R\Q

o0

But

[ eeivf== [ o-apf- [ o-apf- [ ped0f
n Q 0N

R™\Q

Z—/so-del—/ ¢-dDf— [ @-dDfs
Q 89 R™\Q
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‘th D? Df1 on )
Dfs onR"\Q

Consequently, (*) implies

~ [ eedDf = [ (o n)(@h - TR
o0 o9
Since this is true for any ¢, it follows immediately that dDf = (T'f; —
T f>)vdH" ! and hence |Df|(9Q) = [, (Tfi — T fo)dH" !

]

1.6.4 Isoperimteric inequalities, Sobolev’s and Poincaré’s inequalities
for BV

We now develop some inequalities relating the Lebesgue measure of a set to its
perimeter that will be useful in the definition of the measure-theoretic boundary
and its properties. We will need the following Sobolev inequalities from [5]

Theorem 1.6.6 ( Sobolev’s and Poincaré’s inequalities for BV). (i) There ezists
a constant Cy such that

11l gy < C1IDFI(RY)

for all f € BV(R").
(11) There exists a constant Cy such that
17 = Derlly e ey < CHDII(BCa, 1)
for all B(x,r) CR™ f € BV,.(R™), where ( = fB (=) fdy
(111) For each 0 < a < 1, there exists a constant 03( ) such that
11 oy < Cal@)|DSI(Bzr)
for all B(x,r) CR™ and all f € BV,.(R™) satisfying

B, r) N {f =0}
B "

Theorem 1.6.7 (Isoperimteric inequalities). Let E be a bounded set of finite perime-
ter in R™. Then

(i) |EI'""% < C1|D1g|(R").
(ii) For each ball B(z,r) C R",

min{|B(z,r) N E|,|B(x,r) \ E\}k% < 20,|D1g|(B(z,1)).
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Proof. (i) Let f =1 € BV(R") in assertion (i) of theorem 1.6.6 ,then

1| < 1| D1g|(R™).

L7-T (R")

(ii) Let f = 1@rne SO for = % Thus

dy

. 15@rne| B, r)| — |B(z,r) N E||"T
[ flay = [ |RRens 2 dy
B(z,r) B(z,r) | (.T,T’)|
/ |B(a,r)| —|Bla,r) N E||*T +/ |B(z,r) NE||7T
pr— y e ——
B(z,r)NE |B(ZL‘, T)| B(z,r)NE* |B($a ’l“)|
|B(z,r) N E°| 71 |B(z,7) N E| "1
=2 20 B, )N E|+ 2 | B(a, 1) N E.
|B(z,7)] |B(z,7)|
If |B(z,r) N E| < |B(z,r)N E|, then
n \B x,r) N E L1
|f—fx,r|n—1dy) =0 2 B, )N BV
</B(:r,r) |B x T)‘
1
> 5 min{| B(z,r) N El,| B(x,r) - B[} .
The other case is similar.
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CHAPTER 2

REDUCED BOUNDARY

2.1 Reduced Boundary

Let E be a set of finite perimeter, denote vg, the measurable function such that

Definition 2.1.1. Let x € R". We say that x € 0*E, the reduced boundary of E, if
(i) |D1g|(B(z,r)) = P(E,B(z,7)) >0 ¥r >0
(i17) |vp(x) =1

Remark 2.1.1. According to Lebesgue-Besicovitch differentiation theoreml1.1.5,| D1 g|(R™—
O*E)=0

Lemma 2.1.1. Let p € CH(R™ R"™), then for each x € R™,

/ dz’wpdy:/ ¢ - vpd|D1g| —i—/ 0 -vdH"' for A —aer >0
ENB(z,r) B(z,r) ENoB(z,r)

with v the outward unit normal to 0B(x,r).

Proof. Assume h : R" — R smooth, then

/div(goh)dy:/hdz’vtpdy—i—/Dh-gpdy
E E E

/ div(ph) dy = / L pdiv(ph) dy
E n

- / (oh) - vpd| Dl g|

40



We get
/ hgp-yEd\D]lE|:/hdivgpdy—l—/Dh-gpdy (%)
R™ E E

Let
1 0<s<r
ge(s) := =t r<s<r+e
0 s>r+e
and notice

, 0 0<s<rors>r+e
9(s) =14 _, :
- r<s<r+e

—ly-s r<ly—zx|<r+e

€ |y—zl

{0 ly—z|<rorly—z|>r+e

By approximation, (*) holds for h. (with a partition of unity for the smoothness)

/ hep - vpd|Dlg| = / hedivgpdy+/ Dh, - pdy
n E E

1 —
:/hedivgody— —/ - y— dy
E € JEn{y:r<|y—z|<r+e} |y - 1’|

Let € — 0,
/ lo - vpd|Dlg| = / divpdy — / 0-vdH"' X —aer > 0.
B(z,r) ENB(z,r) ENdB(z,r)
m
Lemma 2.1.2. There exist positive constants Ay, As, -+ |, A5 depending only on n,

such that for each v € O*F,

1. limjnf PEDEE > 4y >0
2. lim inf PEEREL > 45 > 0
3. limjnf PREIEE > Ay > 0
4. limsSlp m%ﬂ < Ay
r—
5. limsup mmiﬁw < As
r—0
Proof.
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Step 1: Fix x € 0*F. According to lemma 2.1.1 , for A — a.er > 0, and for every
¢ € CHR™ R") such that ||l <1,

/ divp dy’ < / ¢ - vgd|D1g| / - vdH"
B(z,r)NE B(z,r) ENdB(z,r)

< / (o|d[DlLg| + M~ (E N 0B(x, )
B(z,r)

+

S/B d|Dlg|+H""YENJIB(x,r))
= |D§f;|)(B(ZU,T)) +H"YENIB(x,r))
Hence,
|D1ensen|(R") < [D1p|(B(z, 7)) + H*H(ENOB(x,r)) (¥)

On the other hand, choose ¢ € C}(R", R") such that ¢ = vg(z) on B(z,r).
From the proof of lemma 2.1.1 we get

/ Vo) vd| D1 | = / div(vs(x)) dy— / vi(x) vdHP L ()
B(z,r) ENB(z,r)

ENdB(z,r)

Note that div(vg(z))dy = 0.
Since x € 0*F,

lim vg(x) f ved|Dlg| = |vp(z)® =1
B(z,r)

r—0

Thus for A — a.e and sufficiently small r > 0, say 0 < r < rg = ro(z), we have

VE(.%') . fB(x,r) l/EdlDI]_E|
| D1g|(B(x, 7))

1
> —.
-2
Hence (%) implies
1
§|D1E|(B($,T)) <H"YENOB(z,7)) (% % %)
This and (x) give
| D1 gapn|(R™) < 3SH"YEN OB(x,7)) (% * *x)

fora.e 0 <r <rg.

Step 2: Write g(r) = |B(x,r) N E| then g(r) = [ H" " (0B(z,s) N E)ds. 1t is abso-
lutely continuous, and ¢'(r) = H" ' (0B(x,r) N E) for a.e r > 0. Using the
isoperimetric inequality 1.6.7 and (x * %x), we compute

g(r)'=n = [B(z,r) N E|""* < 1] D1(p(enm|(R") < Cig'(r)
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for a.e 1 € (0,79) Thus

1 1_ 1
o < o)) = (gt ()
1
implying that
10y 1
n >
G0 > o
Hence g (r) > o and g(r) > # for 0 < r < ry .Therefore

g(r) |B(z,r)NE| S 1

rn rn — (Cin)n

for r sufficiently small. This proves (1).
Step 3: Since for all p € C}H(R",R")

/ divp dx + / divpdr = / divpdr =0
E R\ E n

it follows that |D1g| = |D1gm g| with vg = —vge\ g then statement (2) follows
from (1), by taking g(r) = |B(x,r) N E°|.

Step 4: According to the relative isoperimetric inequality 1.6.7,

cmin {10 1B BV D1l

rm rm rn-t
Hence (3) follows from (1) and (2).
Step 5: By ( x %),
|D1g|(B(x,r)) < 2H" H(ENdB(x,7)) < Cr*™t (0 <r <o)
this is (4).

Step 6: Statement (5) is a consequence of (x) and (4).

2.1.1 Blow up
Definition 2.1.2. For each x € 0*E, define the hyperplane

H(x) ={y e R" | vp(x) - (y — ) = 0}
and the half spaces
H™ ={y eR" | vp(x) - (y — ) > 0}.
H™(x) ={y e R" [vp(x) - (y —x) < 0}
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Notation. Fiz x € 0*E,r > 0, and set
E.={yeR"|r(y—xz)+z € E}.

Remark 2.1.2. Observe y € EN B(x,r) if and only if g,(y) € E,. N B(x,1) where
g9:(y) = (55) + .

Theorem 2.1.1 (Blow up of reduced boundary). Assume z € 0*E. Then

lg, = 1y ink;

loc

(R™) as r—0

Thus for small enough r > 0, EN B(x,r) approzimately equals the half ball H~ (x) N
B(z, 7).

Proof. 1. First of all we may assume

=0, v(0)=e,=(0,---,0,1)
(0) = {y € Ry, = 0}

T(0) ={y eR",y, > 0}

~(0) ={yeR",y, <0}

eSS

2. Choose any sequence 1, — 0. It will be enough to show that there exists a
subsequence (s;); C (ry)x for which 1, — Lp-(g) in L, (R").

3. Fix L > 0, and let D, = E, N B(0,L),g-(y) = % Then for any ¢ €
CHR™,R"), |[|¢]leo < 1. We have

1
/ divep,dz = — / div(p o g,)dy
D» " JEnB(OrL)

1
= /R (¢ o gr) - VEnBO,r)d| D1EnBOrL)]

1
< 1 / (@0 gr) - VEnB0,1)d| D1EABOsL)]
Rn
< 1PLenson)|(R")

Tn—l
<c< o

for all r € (0, 1], according to lemma 2.1.2 (5).

Consequently,
|D1p,|(R") <c<oo (0<7r<1)

and furthermore,

HHDTHLl(Rn) _/ ﬂprdl' - ’Dr‘ S ‘B(O,L)‘ < o0
Rn
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Hence H]lDrHBV(R") = H]lDrHLl(R") + |D1DT‘<RTL> < 00, forall 0 <r < 1. So by
the compactness theorem 1.5.4 there exists a subsequence (s;)j>1 C (T%)k>1
and a function f € BV,.(R") such that, writing £; = E,,, we have

]]-Ej — f n Llloc(Rn)
we may also assume 1z, — f A-a.e. Hence f(x) € {0,1} for A—ae x and so
f=1r A—a.e

where F' C R" has locally finite perimeter. Hence if ¢ € C}(R", R"),

[ divody= [ peveapiel (0
F n

for some | D1 g|-measurable function vp, with |vg| = 1|D1p|—ae.
We must prove F' = H~(0).
. Claim 1: vp = ¢, = vg(0) |Dlp|—aec.

Proof of claim 1: Let us write v; = vg, then if ¢ € CH{R",R"),
/ ¢ - v;d| Dl —/ divedy (j=1,2---.).
n E]

Since 1p, — 1pin Lj,,, we see from the above and () that

locy

n J—=0 Jrn

Thus v;| D1 g,| — vp|D1p| weakly in the sense of Radon measures. Consequently,by
1.1.2 for each L > 0, for which |D1x|(0B(0, L)) = 0, hence for all but at most
countably many L > 0 we have

/ vid|Dlg,| — vpd|D1p| (%)
B(0,L) i JB(0,L)

On the other hand, for all ¢ as above

/gp-l/jd|DllEj|—/ Lg,dive dz

:/ dive dx

]

1
E

]

1

o 1/ QOOgS VEd‘D1E|
J n
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/ ¢ - v;jd|Dlg,| = / dive dx
B(O,L) B(0,L)NE;

1 .
= a1 / dZ’U(gOOgS].)dy
S B(0,5;L)NE
1
= o1 / (pogs,) - ved/ Dlg|
Sj B(O’SjL)
Whence
(04 |D1g,|(B(0, L)) = 5| D1g|(B(0,5,L))
* ok % i
fB(O,L) vid|D1g,| = 3?%1 fB(O,st) vpd|D1g|
Therefore
lim v;d|Dlg,| = lim ved|D1g| (by (***))
J=% JB(0,L) 77 J B(0,s; L)

= vg(0) = e, since 0 € O*E.
If |D1g|(0B(0, L)) = 0, by lower semi-continuity theorem 1.5.1

\D1|(B(0, L)) < liminf | D1, |(B(0, L))
j—00

= lim inf v;d|Dlg,|
J7% JB(0,L)
= lim en - vjd|Dlg,|
7= JB(0,L)

:/ en - Vpd|D1p| by (%)
B(0,L)

Since |vg| = 1, |D1g|—a.e, the above inequality forces vp = e,, |D1p| — a.e.
In fact, having fB(O L) d|D1p| < fB(o Ly€n” vrd|D1Fg|, we get

/ (1—e,-vp)d|Dlp| <0
B(O,L)

and e, -vp < |eg||vr| = 1o (1—e,-vr) > 0, hence fB(o L)(l—en~VF)d|D]lF] =
0, and therefore 1 — e, - vp = Oa.e thus e,, = vra.e.

It also follows from the above inequality that

IDLFI(B(O, 1)) = im D1 |(B(0, 1)
whenever |D1p|(0B(0,L)) = 0. O

5. Claim 2: F' is a half space.
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Proof of claim 2: By claim 1, for all ¢ € CHR",R"), [ divpdz = [, ¢ -
e,d|D1p|. Fix € > 0, and let f¢ = n. x 1r € C*°(R"™), where 7, is the usual
mollifier. So

fedivpdz = / / Ne(x — 2)1p(z)dive(z) dedz
Rn n n

_ /F / e = 2)divg(z) dade

= / Ne * divipdx
F

:/div(ne*gp)dz
F
:/ (e % @) - end|D1p|.

But Df¢=n.* Dlp, and f© € C*°(R") hence

fedivpdz = —/ wdD f¢ = —/ p-Vfdz.
RTL n n

Thus ofe ofe
=00=1,---,n—1 <0.
8zi (Z ’ ! >’ 8zn -
As f. — 1p A—a.e when € — 0, we conclude that up to set of measure zero
F={yeR"|y, <~} for someyeR. O

. Claim 3: F'= H~(0)

Proof of Claim 3: We must show v = 0. Assume v > 0. Since 1p, — 1p in
L} .(R™), we have B(0,7) = B(0,7) N F.

loc

B(0.~vs;) N E

a(n)y" = |B(0,7)] = |B(0,7) N F| = lim |B(0,7) N E;| = lim |B( ”VSnJ) |
Jj—00 J—00 S

J

L 1BO,ys) N E|

1.
imeo  sta(n)ym

But we know that
BO.5) N E| | B(0.95,) 0 E

—1
sja(n)y sia(n)y"

Contradiction to lemma 2.1.2 (2). Similarly , the case v < 0, leads to contra-
diction to lemma 2.1.2(1). O

]
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The following result describes the local behaviour of E around a point in OF.

Corollary 2.1.1. [/] Assume x € O*E. Then

(i)
|B(z,7) N ENH"(z)]

lim =0
r—0 rn
Bl -~ B0 H@)
r—0 rn

(i)
i [DL2l(B(z.1)

=1
r—0 a(n—1)rm—

Definition 2.1.3. A wunit vector vg(x) for which (i) holds is called the measure
theoretic unit outer normal to E at x.

2.1.2 Structure theorem for sets of finite perimeter

Lemma 2.1.3. [/] There exists a constant C,depending only on n, such that
H"H(B) < C|D1g|(B)

for all B C O*E.

Lemma 2.1.4 (Whitney’s extension theorem). [/] Let C be a closed set and assume
f:C =R, d:C — R continuous functions,and for each compact set K C C,

fly) = f(z) —d(z) - (y — z)
ly — x|

pk(é):sup{ 0<|m—y|§5,x,y€K}—>0

as o — 0. _
Then there exists a function f :R™ — R such that
1. fecCm
2. f=fDf =don C.

Theorem 2.1.2 (Structure theorem for sets of finite perimeter). Assume E has
locally finite perimeter in R™. Then

(i) N
FE = U K,UN
k=1

where |D1g|(N) = 0 and K}, are compact subsets of C'—hypersurfaces Sy, .
(i1) vgls, is normal to Si (k=1,---.).

(iii) |Dlg| = H" ook
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Proof. For each x € 0*E, we have according to corollary 2.1.1,

hII(l) |B(x,r)ﬁrEnﬂH+(r)| -0

r— B %
lim (@en-mom-@y %)
r—0 r

Using Egoroff’s Theorem, we see that there exist |D1g|—measurable sets F), such
that

ID1y|(0"E\ F,) < %

Hence [D1g|(0*E \ U;2, F;) = 0. Therefore we can find a sequence of disjoint
| D1 g|—measurable sets {F;}3°, C 0*FE such that

|D1g|(0"E\ U, F;) = 0,|D1g|(F;) < oo, and
The convergence in (2.1.2) is uniform for x € F;, (i =1,---)

Then by Lusin’s Theorem, for each 7 there exist disjoint compact sets {Ef 12, CF
such that '

|DLe| (F:\ U, EY) =0,

VE| g is continuous.
Re-index the sets { £} and call them {K}}2° . Then letting

%,J

N=0E\|J Kk,

k>1

we have

D1y <a*E\ 0 Kk) D1, ((a*E\[jE> ' ([j o K>)
< |D1g) (8*E \ DF) + i |D1y| (F \ G Kk)

= 0.
Then,

O*E =, Ky UN, |D1g|(N) =0,
the convergence in (2.1.2) is uniform on Ky, (since Ky C Fj), and  (*x)

vE|K,is continuous (k= 1,2---)

Now define for § > 0,

pr(6) = sup { |VE(9|C; —(%ﬂ_ 2)l 0<|z—y| <4, x,y€ Kk}

Claim 3: For each k =1,2---, pi(d) > 0as d — 0.
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Proof of claim 3: We may assume k=1. Fix 0 < € < 1. By () and (x%) there exist
0 < 0 < 1 such that if z € K; and r < 20, then

{ |B(z,7) NENH(2)] < g5ma(n)r” (4 % %)

|B(z,r)NENH ()| > a(n) (i — 35)rm

To prove Claim 3, we shall prove that: for every x,y € Kj, such that |z —y| < 9, we
have \%| < ¢, hence we get sup |%| < e. Since this is true for arbitrary
epsilon we get that pg(d) — 0 as 6 — 0.

Assume now z,y € K1,0 < |z —y| <.

Case 1. vg(z) - (y — ) > €|y — x|. Since € < 1,

B(y,elx —y|) € HY(z) N B(x, 2|z — y)) (% % k)

To see this observe that if z € B(y, e|x — y|), then z = y + w, where |w| < |z — y|,
whence

vep(r)- (2 =) = ve(z) - (y —2) +ve(r) -w > ez —y[ = |w] =0

with —|w| < vg - w < |w|. Therefore z € H"(x) and |z — z| < |y — z| + |w| <
ly — x| + €|]x — y| < 2|z — y|. On the other hand, (* * %) with z = x and r = 2|z — y|
implies,

€" "
a2l — )

€"a(n)

=—7 lt-y

BN Bla,2le — yl) N H* ()] <

|TL
and (* % x) with z = y implies,

|EN By, elz —y|)| > |[EN By, elr —y|) N H (y))

- "z — y|["a(n) "

= 2 ( o 2n+1)

€"a(n)
4

|z —y|"

However, by applying A|g to both sides of (x * #x) we get a contradiction.
Case 2. vp(z) - (y — ) < —€ly — x|.
This similarly leads to a contradiction. O

Now we apply Whitney’s extension theorem 2.1.4 with f =0, d = vg on Ky, to
get fr : R — R such that

f =0 on K
Dﬁ:d:VE on Kj,

Let Sy, ={z € R" | f =0 & |Dfi| > %}k = 1,2,---, that is the pre-image
of 0 where 0 is a regular point. So by the implicit function theorem Sj is a C*
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(n — 1)-dimensional sub-manifold of R™. Hence vg|s, = D fis, exists and is normal
since K C Si.This proves (i) and (ii).

To prove (iii) choose a Borel set B C 9*E and prove |D1g|(B) = H" (B).
According to the previous lemma 2.1.3,

H* Y (BN N) < C|Dlg|(BNN) = 0.

Thus we may as well assume B C U2, Ky, and in fact B C K (since K;’s are
disjoint). We have just proved that there exist a C''—hypersurface K; C Sy. Let

U= anl‘sl‘

Since S; is C*, by corollary 2.1.1

. v(B(z,1)) . H"YB(z,r)NS) . H"YB(z,r)NS)
Ry a(n — 1)rn=1 "0 H 1 (B(x,r) ro0 a(n — 1)rn=1 (z € B)
Thus corollary 2.1.1 (¢7) implies that

v(Bx,r)) _ . |DLgl(B(z,r))

lim — A1)
r50 an—1Drm=t  r=0 aln—1)rm!

then B
(Bl
r=0 |D1g|(B(z,7))

Also, we have that v << |D1g|. In fact let A C 9*E, |D1g|(A) = 0, from Lemma

2.1.3

=1 (x € B).

H" Y (A) < ¢[D1|(A) =0

but v(A) = H" (AN S;) < H"(A) therefore v(A) = 0. Hence since v and |D1g|
are Radon measures, with v << |D1g| [1, Theorem 2, section 1.6.2] implies

B E
= H"'(B) = / d|D1g| = |D1g|(B).
B

Remark 2.1.3. IfOF is C* then 0*E = OF and v(z) the unit normal vector to OF
at x coincides with the measure theoretic normal vg(x).

[]

2.2 The measure theoretic boundary

Definition 2.2.1. We define the measure theoretic boundary of £, Oy E, as

) |EﬂB(m,r)|} { . . |JENB(x,r) }
oyE=<2z:0<limsup——>N<z: liminf ——* < 1
M { rﬁop ‘B(LC,T)l r—0 |B(l’,7")‘
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Remark 2.2.1. 9y E = R"— (E°UE") with E' and E° are respectively the measure
theoretic interior and exterior. Oy FE is the set of points where the density is neither
0 nor 1.

Lemma 2.2.1. (i) 0*E C Oy FE.
(ii) H" (O E\ O*F) = 0.

Proof. (i) Follows from lemma 2.1.2. Let z € 0*E,

ENB ENB
0 " o0 |B(z,7)|
and I e
fiming O B@ Ly [EO0 Bl )]

S |E°NB(z,r)| A |ENB(z,r)|
But llgl}(%lf Bl 0, then 1117;r1_>131f BT < 1. Therefore z € Oy E.

Since the mapping
| Bz, ) N E]
,,an
is continuous, if z € Oy E, there exists 0 < aw < 1 and r; — 0 such that

T

lim |
j=ooa(n)r}

B(z,r;) N E| B

«,

but we have

|B(z,rj)| = |B(z,r;) N E°|+ |B(z,r;) N E| = oz(n)r;-‘

then we get

|B(z,r;) N E°| _ a(n)r} —[B(x,r;) N E]| 1w
a(n)r} !

a(n)r;?

Therefore,
min{|B(z,r;) 0 EL,|B(z,r;) N EJ} = minfag, 1 - a;}a(n)r

By the relative Isoperimetric inequality1.6.7,

n—1

min{|B(w,75) 0 B, | Bz, 15) 0 B = (minfog, 1 - agha(n) 5 vy~
< QCQ‘DﬂE’(U(:Ea 7“3'))
Therefore,

—1

(minfa;, 1 — a;}a(n) = < |D1g|(U(x,1;))

n—
2C2 Tj
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Hence
1

i 1 — s = D1 .
lim sup (mm{am O‘J}O‘(n)) < lim sup ‘ E’(K(x’ TJ))'

r—0 2¢9 r—0 r;

By definition of measure theoretic boundary we get

n—1

(min{ay, 1 — aj}a(n)) =

lim sup >0
r—0 2¢9
and therefore DL.I(B
lim sup w > 0.
r—0 ree

Now to prove H" 1 (y E\O* E) = 0, we have o € 0y F and lim sup [222LE&r)
r—0
0. Fix § > 0, let

F= {B(m,r)

By Vitali’s covering theorem, there exist a countable disjoint family of balls
in I such that Oy E'\ 0°E C U5, B(wi,5r3). Therefore,

Moy (OuE\O"E) < ¢ a(n—1)(5r)""
i>1
< CZ(Tinyl
i>1
<> |DLg|(B(wi,1:))
i>1
= J|D1gl(| B(xi, 1))
i>1
< ¢|D1g|(R"\ 0*E)
=0

let 6 — 0, we get H" (O E \ 0*E) =0

Proposition 2.2.1. Let E be a set of finite perimeter,
|D1g|(Q) = P(E,Q) =H" ' (QNOyE) =H"(QNIE)
Proof. Since *E C Oy E then H" 1 (QNI*E) < H" 1 (2N Oy E). T need to prove
that H" 1 (QNoyE) < H" QN O*E). By Lemma 2.2.1 H* (0 E N (0*E)°) =
H" 1Oy E \ 0*FE) = 0. Hence
H N QNOE) <H" Y QNOuENIE)+H" QN OyE N (0*E)°)

<H"HQANOE) +H" (0 E N (0" E)°)

<H" 1 QNOE)
Thus " H(QNI*E) = H" 1 (QNOyE). By the structure theorem 2.1.2, P(E,Q)) =
H" (N O*E). Therefore we get the equality. O
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Theorem 2.2.1 (Generalized Gauss-Green Theorem). Let £ C R™ have locally
finite perimeter. Then

(i) H" 1Oy ENK) < oo for each compact set K C R".

(ii) For H" '-a.e x € Oy E,there is a unique measure theoretic unit outer normal
ve(zx), such that

/ divp dx = / @ - vpdH" ! (%)
E OmE

for all ¢ € CL(R™,R").
Proof. We know that

/divgodq,':/ ¢ - vgd|D1g|
E n

_ / o vpd|Dlg| + / o vpd|Dlg|
OB R7\O*E

But |[D1g|(R™\ 9*F) =0, and |D1g| = H" s,z = H" *|9-5. Hence

/ divepdr = / - vgpd|Dlg| = / @ vgdH" ! = / @ - vpdH™!
E O*E oO*FE oumE

Proposition 2.2.2. E is of finite perimeter if and only if H" 1 (Oy E) < co.

Proof. If E is of finite perimeter then P(E,R™) = H"1(0yE)) < oo. Conversely,
assume H" 1Oy E) < co. Let p € CHR™) such that ||¢|l« < 1, by the generalised
Gauss-Green theorem
/ divepdx
E

/ - vpdH"!
o FE

< / | - vg|dH™!
OME

< ”H”_l(aME) < Q.
Therefore E is of finite perimeter. ]

Remark 2.2.2. The equality P(E,Q) = H" 1 (QNIy E) = H 1 (QNO*E) whenever
P(E,Q) < oo, implies that sets of finite perimeter are defined only up to sets of
measure zero. In other words, each set determines an equivalence class of sets of
finite perimeter. In order to avoid this ambiguity, whenever a set of finite perimeter
E is considered, we shall always employ the measure theoretic closure as the set to
represent /. Thus with this convention, we have

ENB
¢ € Eif and only if limsup =2

nst Blw.r)] >0 (2.1)
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Proposition 2.2.3.

O*FE =0F
with the convention: x € E if and only if lim sup ‘Ef;ﬁ(f”)?' > 0.
r—0 ’

Proof. To prove that 0*E dense in OF, I need to show that Vx € OF,Vr >
0, B(z,r)NO*E # ¢.

Claim : For any ball B, if BN 0*E = (), then BN OE = (.

Hence by this claim, for x € OF,Vr > 0, B(x,r)NOE # (,we get B(z,r)NO*E #
(). Therefore O*E = OF.

Proof of claim : Let B be an open a ball such that BN9*E =0 (0*E C B°). We
have
P(E,B) = |D1g|(B) =H" Y (BNJ*E) =H""'() = 0.

Therefore |D1g|(B) = [, d|D1g| = 0. Hence
|D1g| =0 a.con B

and D1 = vg|D1g| =0 a.e on B. Since B is connected we get 1p = cst a.e on B
(0 or 1)hence E C B or E C B®.Using the convention we get

aMECE

so 0"E C Oy E C E. But 0"FE C B°, then E cannot be included in B for otherwise
0*FE C B.Hence E C B°and ENB = ¢, therefore E C B¢ = B°. But OF C E C B¢,
thus OF N B = () and claim is proved. H

]
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CHAPTER 3

MINIMAL SURFACES

3.1 Minimal surfaces

Minimal surfaces are surfaces in space which locally minimize the area, in the sense
that any small enough piece of the surface has the smallest area among all surfaces
with the same boundary.In this chapter, we will outline certain characteristics of
minimal surfaces, crucial for proving the existence of a solution to the Least Gradient
Problem in chapter 4. These characteristics will be listed without proof, serving as
foundational knowledge for our later analyses.

Definition 3.1.1. A surface M is said to be a minimal surface, if at each point,its
mean curvature H is zero.

If we have a surface that is obtained as the graph of a function z = f(z,y), take
a parametrization z(u,v) = (u, v, f(u,v)) we get

(L+ [ fuu+ L+ £2) foo — 2futfo fuo
2(1+ f2 + f2):

H =

By this formula we get the following proposition.

Proposition 3.1.1. [6] MC R3? is minimal if and only if

L+ f2) fuw + (L4 £ foo — 2fufofuw =0

This is called the minimal surface equation.
Its divergence form is given by

Vu

V1+|Vu|?

Example 3.1.1 (Examples of minimal surfaces in R3). [0/

div( )=0

1. (Catenoid) A catenoid is a surface of revolution generated by a catenary y(x) =
cosh(z) and parameterized by x(u,v) = (u, cosh(u)cos(v), cosh(u)sin(v)). It
has a mean curvature H = 0.
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2. (Helicoid) The mean curvature for the helicoid parameterized by x(u,v) =
(vcos(u), vsin(u),u) is also 0

Proposition 3.1.2. Minimal surfaces in R? are straight lines.

Proof. Clearly from definition 3.1.1 straight lines are minimal surfaces in R2.
Conversely, let C' be a minimal surface in R? i.e a curve with endpoints A(z1,y;)
and B(za,y2), we want to prove that C' is a straight line. The curve C can be

parameterized by (t) = (z(t),y(t)) with z(0) = z1,y(0) = y1,2(1) = x93, y(1) = yo.

= [z(1) — 2(0) +i(y(1) — y(0))]
= |zy — 21+ i(y2 — y1)]
= V(w2 — 21)> + (y2 — 11)?

But the length of a straight line with endpoints A and Bis v/(z2 — 21)2 + (y2 — y1)?,
therefore C' is a straight line. O

Definition 3.1.2. We say that u € C'(Q) is a weak supersolution (subsolution) of
the minimal surface equation in € if

Vu-Vo

————dx >0
oIt IVapP

The strong form is called the minimal surfaces equation

v ( vu(z) ) =0 Vo € )
1+ |Vu(x)|?

Lemma 3.1.1. [7] Suppose W is an open subset of R""'. If vi,v9 € CHW) are
respectively weak super and subsolution of the minimal surface equation in W and if
v1(zg) = va(axy) for some xf, € W while vi(x') > vo(2’) for all 2’ € W, then

(<) whenever ¢ € CHQ), o > 0.

v (') = va(2f)
for all x” in some closed ball contained in W centered at x).

Definition 3.1.3. Let E be a set of locally finite perimeter, U bounded, open set.
Let

W(E,U) = |D1g|(U) — inf{|D1p|(U), EAF CC U}
= P(E,U) —inf{P(F,U),EAF CcC U}
where EAF denotes the symmetric difference of E and F'.

57



Definition 3.1.4. We say that OF is area-minimizing in U if Y(E,U) = 0 and
locally area-minimizing if w(E,U) = 0 whenever U is bounded.

Theorem 3.1.1. [0] If M is area-minimizing, then M is a minimal surface.

Definition 3.1.5. Let U C R", we say that a function u € BV,.(2) has least
gradient with respect to U if for every v € BV,(U) with compact support K C U

/K\Duyg/K|D(u+v)|

If U = R"™ we say that u s of least gradient.
Equivalently, we say that u is of least gradient if u is a solution of

inf{|Du|() :u € BV(Q)NC(Q),u=g on 00}

The following theorem, established by Bombieri, De Giorgi, and Giusti in [2],lays
the foundation for proving the existence and uniqueness of the solution to the least
gradient problem.

Theorem 3.1.2. [2] If u is of least gradient then O{u > t} is area-minimizing for
each t.

3.2 Regularity of Minimal surfaces and tangent cones

Theorem 3.2.1. [5] If n > 2, Q is an open set in R", and OF is area-minimizing
in Q, then QN O*E is an analytic hypersurface , while the singular set of E in €,
o(E;Q) =QnN(0F — 0*F) ,satisfies the following properties:

1. if2<n <7, then o(E; Q) is empty;
2. if n =8, then o(E; ) has no accumulation points in §2;
3. ifn>9, then H*(o(E;Q)) =0 for every s >n — 8.

We've proved in theorem 2.1.1 that for 0 € 0*E C OF and for each sequence
(ri)i=1 with r; — 0, there exist a sequence such that 1p, — 1¢ in Lj,.(R") where C
is a set of locally finite perimeter. Now assuming that OF is area-minimizing further

properties are added to C.

Theorem 3.2.2. [0] Suppose E is a minimal set such that 0 € OE.Fort > 0, let
Ey={z € R": tx € E}. Then for every sequence (t;), tending to zero there exists
a subsequence (Sj)j such that E,, converges locally in R"™ to a set C. Moreover C is
a mainimal cone. The cone C' is called a tangent cone to E at 0.

Proposition 3.2.1. [9] If E is reqular at 0, then C' must be a half space. In fact the
converse is also true: If C is a half space then OF is reqular in a neighbourhood of
0. That is there ezists v > 0 such that B(0,7) N OE is a real analytic hypersurface.
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Thus the set E can only have singularities if there exist minimal cones in R”
which have singularities.

Proposition 3.2.2. [0/ Minimal cones with singularities at 0 cannot exist in R"
with n < 7 hence the reqularity of minimal surfaces in R™, n < 7.

This result is the best possible since the cone
S={reR%ua]+a5+a5+a] <ai+axf+x>+a3}
is a singular minimal cone in R® as proved in [2].

Theorem 3.2.3. [/] Let £y C Ey and suppose OF, and OFE, are area-minimizing
in an open set U C R™. Further, suppose x € (0E1) N (0Ey) N U then OF, and OF,
agree in some neighborhood of x.

This Theorem is trivial in 2 dimensions, where minimal surfaces are straight
lines.
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CHAPTER 4

LEAST GRADIENT PROBLEM

4.1 Introduction

Let €2 be a bounded lipschitz domain in R"™ and ¢ : 92 — R continuous function.
We consider the following variational problem

inf{|Du|(Q2) : w € BV(Q)NC(N),u =g on 0N} (4.1)

We will prove that a solution to this problem exists provided that 02 satisfies the
following conditions:

1. For every x € 0, there exists ¢y > 0 such that for every set of finite perimeter
A CC B(z, &)
P(Q,R") < P(QUA,R") (4.2)

2. For every = € 0L, and every ¢ > 0, there exists a set of finite perimeter
A CC B(x,¢€) such that

P(Q, B(z,€)) > P(Q\ A, B(z,¢)) (4.3)

The first condition states that 02 has non-negative mean curvature in the weak
sense, while the second states that 0f2 is not locally area-minimizing with respect to
interior variations.Also if 0€) is smooth, then both conditions together are equivalent
to the condition that the mean curvature of 0f2 is positive on a dense set.

4.2 Preliminaries

Let
[a,b] = {NI; I an interval containing g(02)}

Proposition 4.2.1. [9] The boundary data g, admits a continuous extension
G € BV(R"\Q)NCR"\ Q)

and we can require that Supp G C B(0, R) where R is chosen such that Q CC
B(0, R).
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Proof. Let R > 0 such that Q cC B(0, R) and denote © = B(0, R) \ 2. There exist

u € C*(Q) such that

Au =0
s = g 00 .
1 0 0B(0,R)
let _ _
G- u Q=DB(0,R)\Q
B 0 Otherwise
Hence G € C(R™\ 2) and from gradient estimate on harmonic functions [10, In-

equality 2.31]

DG < — " sup|G| <
dist(y,08) @

Therefore
/ DG = /~|DG| < o
R7\Q Q
m
We have
GeBVR"\Q)NCMR"\ Q) with G=g on 09N (4.4)
For each t € [a, b], let
L= R"\Q)n{z:Gx) >t} (4.5)
Note that by the Coarea formula
P(L;,R™\ Q) < oo.
Let _
T =a,b]N{t: P(L;,R"\ Q) < o0}. (4.6)

Proposition 4.2.2. H" 1 (0yL;) = P(Ly, R\ Q) + H" 1 (0y L N ON) < 00

Proof. Using Proposition 2.2.1 and the fact that H" 1(0Q) < oo with Q being
bounded,

H' " (O L) = M (On Ly N OQ) + H 1 (On Ly Q) + H (0L, N (R )
= " (On L, N Q) + H Oy L N Q) + P(L, R™\ Q).

But H" (0L N Q) = 0 given that £, C R™\ Q. Therefore

H Oy Le) = H' 1 (Onr L N OQ) + P(Ly, R™\ Q) < oo.
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Theorem 4.2.1. For each t € T, there exists a solution for the following problems:
min{ P(E,R"): E\ Q = L, \ Q} (4.7)
max{|E|, E is a solution of (4.7)} (4.8)

Proof. Denote m = inf{P(E,R") : £ \g =L \_ﬁ} By definition of the inf there
exists a sequence (Ey)y, such that Ey \ Q = £, \ Q for all &, and

hm P(E,,R") =
Recall that Q@ CC B(0, R), and G =0 in R™ \ B(0, R). We have

I1e,lBvBO.R) = 1B L (BOR) + | PLE|(B(0, R))

but ||1g, || £1(B0,r)) is finite and | D1, |(B(0, R)) is bounded since |D1g, |(B(0, R)) <
P(Ey,R") and P(FEg,R™) is bounded from the fact that it is convergent,we get

sup||Lg, || Bv(B(o,r)) < 00.By the compactness theorem 1.5.4 there exist a subsequence
(]1Ekj) C BV(B(O R)) such that

lp, — 1g in LY(B(0,R))

kj j—o0

with E C R™ such that £\ Q = £, \ Q. By the lower semi-continuity theorem 1.5.1

|D1g|(B(0,R)) < liminf |D1g, |(B(0, R)).
J—00 J

We get P(E, B(0, R)) < liminf P(Ey,, B(0, R)) < liminf P(Ey,, R"), but

]*)OO j*)OO

P(E,R") = [D1g|(R")
= [D1g|(B(0, R)) + [D1g|(R"\ B(0, R))

B(0,R) R™"\B(0,R)

1z is constant outside the ball since G = 0 and E \ Q = L, \ Q,therefore
P(E,B(0,R)) = P(E,R").

Thus P(E£,R") < liminf P(Ej;,R") = m, hence P(E,R") = m.
To prove (4.8), denote M = sup{|E| : E solution of (4.7)}, by definition of the
sup there exists a sequence (Fy), such that

Again there exist a subsequence (1 Ekj) C BV(B(0, R)) such that

lp, — 1g in L*(B(0,R)).

kj
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with E solution to (4.7). Notice that

115, ~ Lol = | |1g, - Leldh = 1) = | B, AE,
Rn

/(Ekj\E)U(E\Ekj)
and
B, AB| = (B, \ B)U (B )| > B, \ E| = |Biy| — | By, N E| > |By| - |E|

We then get
M > |E| > |By| - |15, — Lol

With the right-hand-side term converging to M as j tends to infinity,we get |E| = M
and the max exists.

This maximum is unique. In fact, assume Ej, Fy solution maximizers of (4.8).
We notice that

(BEyUBE)\Q= (B, \QU(E\Q) =L, \Q

and
(BExNEy)\ Q= (B \Q)N(E,\Q) =L\ Q.

Hence Ey U Es, and Ey N Ey are competitors of (4.7), thus
P(El,Rn) S P(E1 U EQ,R”) and P(El,Rn) S P(El N EQ,R”)

P(EQ,R”) § P(El U E27Rn) and P(EQ,R”) S P(El N EQ,R”).
However by (1.3),

P(E, U Es,R™) + P(Ey N Es, R") < P(Ey,R") + P(Es, R")
then F1 U FEy and E; N Ey are minimizes of (4.7). Therefore
|Er| > |Eq U Es| = |Eq| + [Eo \ B

and
|Es| > |Ey U By| = |Es| + |Ey \ By

which implies that |E;AE;| = 0, completing the proof of uniqueness. ]

Notation. For every t € T, we denote by FE; the unique solution to (4.8).

4.3 Properties of the set L

We have ) a Lipschitz domain, then for each zy € 02,02 can be represented
locally as the graph of a non-negative lipschitz function h, defined on some ball
B'(zg,7) C R"! where z{, € R"!, that is

{(«',h(z") : 2" € B'(x,7)} C ON.
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Notation. B'(zf,r) and x' denote elements in R"™' and thus they will be distin-
guished from their n-dimensional counterparts B(zo,r) and x. We assume our con-
figuration is oriented in such a way that

{(/;2"): 0 < 2" < h(z')} CQ

Proposition 4.3.1. [9] IfQ is a lipschitz domain, then ) is a set of finite perimeter
and
P(Q,U) =H"19*QNU) = H"1(09),

whenever U C R™ is an open set.

Lemma 4.3.1. If Q) is a lipschitz domain, with non-negative mean curvature in the
sense of (4.2), then the function h, whose graph represents OS2 locally, is a weak
supersolution of the minimal surface equation. That is , for r sufficiently small

Vh-V
/ VY g/ >0 whenever ¢ € CHB'(x},7)),¢ > 0.
B’ (x(,r)

vV 1+ |Vh|?

Proof. For t >0, and ¢ € C}(B'(z,7)),¢ > 0, let

() :/ I+ VAR 4 26Vh - Vo 1 PV oPda’
B (xy,r)

:/ V1+|Vh+tVp|2de,
B (x,r)
and
A={(z,2"),h(z") < 2" < h(a') +to(x), 2" € B'(xg,7)}.

Assuming that r has been chosen sufficiently small so that A is of finite perimeter
and A CC B(wg,r) with o = (x(, (), condition (4.2) can be invoked, we have
P(Q) < P(AUQ), and hence

0< P(AUQ) — P(Q) = H™ H(AUQ)) — H1(Q) = f(t) — F(0)

Therefore f has a minimum at ¢ = 0, then f’(0) > 0, but

I :/ (VITIVRE £ 20Vh - Vo + B[V l) do’
B! (xg,r)

_/ Vh-Ve+ Vel o
B(ahr) /14 [Vh]2+2tVh -V + 12|V

and
Vh- -V

O . (5.
v Bi(apr) /14 VA2

Lemma 4.3.2. For almost all t € [a,b],0E, N0 C g~ '(¢).
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Proof. We Show first that OF; is locally area-minimizing in a neighborhood of each
point g € (OE, NON) \ g~ (t). Since xg ¢ g~ '(t) so either g(zy) < t or g(zg) > t.
First assume g(z¢) < t. Since zy € 012, and we have G = g on 05, then G(z() =
g(xg) < t with G continuous on R" \ €, thus there exists € > 0, such that B(zg,€) N
L; = 0. We will assume that € < ¢, where €y appears in condition (4.2), we
proceed by taking a variation F satisfying FAE, CC B(xg,€). We have for every

A CC Bz, &),
P(ANQ,R") + P(AUQ,R") < P(A,R") + P(Q,R") by (1.3)
< P(AR")+ P(AUQ,R") by (4.2)

Hence
P(ANQ,R") < P(AR"). (4.9)

Define F' = (F\ B(x,€))U(FNQ). Since E,AF CC B(xo,¢) then E,\ Q and F\Q
coincides outside the ball and so

F'\ Q= (F\ B(xo,¢)) \ Q
= (F\Q)\ Bz, ¢)
= (E:\ Q) \ B(zo, ¢)
= (L \ Q) \ B(zg,€) (F; solution to (4.8))
=L\Q (LN B(xg,€) =0)
Thus F” is admissible in (4.7) and therefore
P(E,,R") < P(F',R")
It remains to show P(F',R") < P(F,R"). First observe that F’ N B(z,¢) = F'N
B(zg,¢) NS In fact,
F' N B(wg,€) = (F N B(z0,€)) U(FNQ)N B(xg,€)
= FNQNB(xg,€).
Moreover since £’ C F, then
F'AF =F\F' =FN(F\ B(zg,e€) N(FNQ°
= F N B(xg,e) NQ°
= (F\ Q)N B(x,¢)
= ((F"\ Ey) U EY) \ﬁ) N B(zo, €)
= (F\ E)\ Q) U (B, N Q"N B(xo, )
C FAE, CC B(xo,¢)
We used above the facts that FAE; CC B(xg,¢) and (E;\ Q)N B(wg,¢) = 0. Hence,
P(F,R") — P(F',R™) = P(F, B(zo,€)) — P(F', B(xo,¢))
= P(F N B(zg,€), B(wo,€)) — P(F N B(xo,€) N, B(xg,€))
= P(F N B(xg,€), B(xg,€)) — P(F N B(xg,€) NS, B(xo,€))
= P(

F N B(xg,€),R") — P(F N B(xg,¢) NQ,R")
(4.10)
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The above inequality with A = FNB(xo,€) in (4.9) we get P(F,R")—P(F’,R") > 0.
This implies that P(Fy, R") < P(F,R") or equivalently P(E;, B(zg,€)) < (F B(xo,€))
when g(zg) < t.

Now for the case g(zg) > t. Since G(x¢) = g(z¢) > t, the continuity of G in Q¢
implies that as above there exists € > 0 such that B(xg,e) C {z : G(x) > t}, i.e
B(zg,e) N (R™\ Q) C Ly, implying that B(xg,€) \ Q C L; provided e is sufficiently
small and € < €. Let F' be a variation such that FAE, CC B(xo,€), and define
F' = FU(B(z¢,¢) \ Q), then

F'\Q=(F\Q)U(B(zg€) \ Q)
= ((F\ B(xo,€)) \ Q) U (B(wo,¢) \ Q)
= ((E:\ B(xo,€)) \ Q) U (B(o,¢) \ )
= (L, \ B(zg,€) \ Q) U (B(zg,¢) \ Q) but B(xg,e)\ Q C L,
= (L¢\ B(wo,€) \ Q) U (L \ QN B(xo, €))
=L\ Q

Thus, since F” is a competitor for (4.7), it follows that P(E;, R™) < P(F',R"™). Then
it remains to show

P(F',R") < P(F,R"). (4.11)
For this, note that EtAF CC B(zo, €) and B(zg,€) \ Q = B(wg,€) N L; C E; implies
(F")° N B(zg,€) = F°N B(xg,e) N Q and (F')°AF° CC B(xg,¢€). In fact,

(F)A(F) = (F)°\ (F')" = FC N F' = F° N (B(xo,€) \ Q)
But we have B(xo,¢) \ Q C E, therefore
(F)CA(F/)C Cc F°n Et - FAEt CcC B(IE07€).
Since
P(F,R") — P(F',R") = P(F*,R") — P((F")*,R")

then (4.11) follows from (4.10) with F' and F" replaced by F*° and (F").

We have thus demonstrated that JF; is area-minimizing in B(zg,€). We will
show that this leads to a contradiction.

Assume first g(z) < t, so that G < t on (R"\ Q) N B(xy, €) provided € has been

chose sufficiently small. Consequently, since for g(zo) <t we have B(zg,€) N L, = 0,
so that (E; \ Q) N B(xg,€) = (£, \ Q) N B(xg,€) = 0.With

E;N B(xg,¢) = (B, N QN B(xg,¢)) U (B \ Q) N B(xg, €)

we get _
EtﬂB<LIZ’0,E) - QQB(JI(),G) (412)

Recall that €2 is a lipschitz domain, we can represent its boundary locally by a
lipschitz function h.Thus with 2o € dE, NON\ g~ 1(t), we express I locally about
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xg as {(a',h(z")); 2" € B'(z},€)} where g = (x5, z)) and xj = h(zy) > 0. For
simplicity of notation take z{, = 0. The number € is chosen so that € < e and that

{(2',h(z") : |2'| < €} C B(xg,€) (4.13)

We define the half-infinite cylinder above B'(0,¢€') as C' = B'(0,¢€') x [0, 00), we may
assume
QNC ={(2,2");]2'| <e0<2" <h(a')}

Now consider the solution of the minimal surface equation on B’(0,¢€’) relative to
the boundary data f = hlgp(o,). Thus we let v be the unique solution of

div SR 0 on B'(0,€)
V1+|Vo]?
v=f on 9B'(0,¢)

By lemma 4.3.1, we have that h is a weak super-solution of the minimal surface

equation, and by [10, Theorem 10.7] we have that h > v on B'(0,¢'). In fact, h > v
on B'(0,€¢), because the set {h = v} is obviously closed in B’(0,¢€') and it is also
open in B’(0,€'), because of lemma 3.1.1. Hence if {h = v} is not empty, then h = v
in B'(0,€), but this would contradict (4.3) because with v being a solution to the
minimal surface equation we get

{(«',h(z"), 2" € B'(0,¢)} ={(2',v(z")), 2" € B'(0,€)}

hence for any A CC B(0,¢€), P(2, B(z,¢)) < P(Q\ A, B(z,¢)). Therefore {h = v} =
) in B'(0,¢€). Consequently with § = h(0) — v(0), we have § > 0.
Now consider a 1-parameter family of graphs, v,(2’) = v(2’) + 7 and let

7 = max{7 : there exists 2’ € B/(0,¢) such that (2',v,(z')) € 0E, N Q}.
Note that,7* > d since 2o = (0, h(0)) € 0FE, N Q and h(0) = v(0) + 5. Let
Ve ={(2',2") : |2'] < €,2" <w(2')+ 7"}
In view of our choice of ¢/, observe that
E;n{x: |2 <€} C V.

Observe also that if a point (2/,v,-(2')) is an element of AE, N Q, then |2/| < €, for
otherwise i.e if |2/| = ¢, we would have that h(z") = v(z’) but v« (") = v(z') +7* <
h(z") = v(2") which would imply that 7* < 0 contradicting that 7* > § > 0. Thus
the set J[E, N {z : |2'| < €} N{(x,v(2)) : |2'| < €'} is non-empty and according
to Theorem 3.2.3, with v solution to the minimal surface equation, it is open as well

as closed in the connected set {(z’, v,+(2")) : |2'| < €'}. This implies that

{(@" v (2') 2! < €} C OB, N{ax: |2'| < €. (4.14)
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Since 7% > ¢ > 0, it follows that v« (2') = v(z') + 7 > v(2') = h(2’) whenever
|2'| = € having that v = h on 9B’(0,¢’). Consequently, using the continuity of v,«,
the graph {(z’, v, (2')) : |2’| < €'} contains points in R”\Q, say (y/, v (), || < €,
as well as points in QN B (zg, €) say (', v+ (2')), || < €. The point (3, v+ (i), |y| <
¢’ could possibly be an element of R™ \ B(zg,€). Consider the line segment L, in
B'(x0, €) that joins ¢’ and 2’. Let o’ be that point on L closest to ¢’ with the property
that (a',v,+(a’)) € 0Q. Then all points a on L that are closer to 3’ than ' and that
are sufficiently near a’ have the property that (a,v,-(a)) € (R*\ Q) N B(xo, €). Here
we have used (4.13) and continuity of v.«. Then (a,v;+(a)) € {(2/,v+(2)) : |2/ <
€} COE,N{x: |2'| < €}]. Therefore

E, N B(xg,e) "R\ Q # ()

contradicting (4.12). This contradiction was due to the assumption that g(zg) < t
and the fact that OF) is area-minimizing in B(x, €). Similarly for the case g(zo) > t.
Finally we get 0E; N 0Q C g 1(¢). O

We've shown that for almost all ¢ € [a,0],0F; N 02 C g '(t). We want to
ultimately identify £, N as the set {u > t} (up to a set of measure zero) for almost
all t. We will need the following Lemma.

Lemma 4.3.3. If s,t € T = [a,b] N {t : P(L;,R"\ Q) < oo} with s < t, then
E, CC E,.

Proof. We first show E; C Ei.
Note that, with s < ¢t we have £; C L,.Then

(B, ENT = (BAD) N (EAD) = (£\0) 1 (£\T) = (£ 7)
thus E, N E; is a competitor with E; in (4.7). Also,

(E,UE)\T = (B,\ D) U (B D) = (£,\ D) U (£\ D) = (£,\9)
E, U E, is a competitor with E, in (4.7). Thus

P(E,NE,R") > P(E,R") and P(E,UE,R") > P(E, R").

As
P(EsNELRY) 4+ P(E;U ELR™) < P(Eg,R") + P(Ey, ]R")

we get P(E;UE, R") < P(E,,R"), and hence P(E;UE;, R") = P(E,, R™). Similarly
P(E,N E,,R") = P(E,,R"). But we have E, C E, U E,, then |E,| < |E, U E,|. E,
solution to (4.8) thus |Es| > |Es U Ey| and therefore |Es U Ey| = |Es|. Now,

|Es U Ey| = |Es U (B \ E)| = [Bs| + | B0\ B = [Es U Ey| + | B\ B

Hence |E; \ Es| = 0. Using the convention (2.1) , we can now prove that E;, C E.
Let x € E;, then
: |Et n B(.l’, 7”)|
lim sup —————

> 0.
o [B(x, )]
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|EsNB(z,r

On my way to prove that lim sup S 0,knowing that

oo 1B

, |E,0 B(x,r)| _ .. |Es N Ey N B(z,7)|
limsup ——>2" > limsu

ol Bmr)] T ot [B(x,r)]

Ey = (Ey\ E;) U (Ey N E), then
E;N B(z,r) = ((E:\ Es) N B(z,r)) U (E:N EgN Bz, 1)),
and we have |E; \ Es| = 0, hence |(E; \ Es) N B(z,7)| = 0. Therefore

, |Es N B(x,7)] Sl |Es N Ey N Bz, )| I |E; N B(x,r)|
msup —mm 11m Ssu = 1msup —7—
ol B T et Bl oo B, )]

Thus x € E, and E; C E,. It remains to show that this containment is in fact
compact, i.e that £y C int(Es). E; C FEj, then int(E;) C int(FEs), hence to prove
that E; C int(E;), we only need to prove dF; C int(FE,) i.e prove 0F; N IEs = .

First outside €2, we have

> 0.

This is due to the fact that £; CC L, since s < t. In Q, we show that 0E,NIE,NQ =
(. We have OE, N OE, N0 = (), in fact by Lemma 4.3.2, we have

OB, NN C g '(t) ={z: g(zx) =t}

and
OE,NoN C g ' (s) = {x: g(x) = s}.

Since s < t,g71(t) N g~1(s) = 0, therefore OE; N OE, N 9 = . Finally,assume by
contradiction that S = 0F; N 0E, NQ # (). Since E;, C E,, and 0F,, OF; are area
minimizing in 2 then by 3.2.3 we get that S is open relative to 0F, and clearly S is
closed relative to OF, thus S is both open and closed relative to 0F, and therefore
S is equal to a connected component of F, that do not intersect 92 , now by [!]
and [7, theorem 4.4 part 2, 3, 4] we get a contradiction. Therefore 0F; NIFE;NQ = ()
and we conclude that E, CC FE,.

O

4.4 Construction of the solution

In this Chapter, we will construct the solution u of the Least gradient problem (4.1).
For this purpose define the set

A=ENQ
Proposition 4.4.1. Fort €T,
{g>t} C(E)'NdQC A NN (4.15)
{g>t}cANIACENINC {g>t} (4.16)
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Proof. 1. For the first inclusion. Let xy € {g > t} i.e g(x0) > ¢. Similarly to the
proof of lemma 4.3.2, there exist € > 0 such that G(z) > ¢, Va € B(xg,¢) and
we get

B(z0,€) \Q C E; C E,.

Hence 2y € E;.But since dE; N 9 C g~'(t) then 2o ¢ OF; and thus zy €
(Ey)" N oN.

For the second inclusion, let z € (FE;)" N dQ, then Vr > 0, B(x,r) N E; # 0.
x € 0 then B(x,r)NQ # ), therefore B(z,r)NE,NQ # (). This implies that
rz € B, NQ and hence

re E,NQNIN = A, NoKL.

2. From (4.15) we get

Also we know A, = E,NQ C E, NQ, then
A,NONC E,NQNIN = E, N oK.

Now for the last inclusion of (4.16) write B, N 9Q as ((E;)' U dE;) N dQ but
from lemma 4.3.2 0E, N 0Q C {g =t} C {g > t}, then it is enough to prove
(E)'NoQ C {g > t}. Assume x € (E;)'NOQ, then Ir > 0 such that B(z,r) C
E,;. In addition we have

and £; \ Q = E; \ Q. Hence G(y) > t,Vy € (E;\ Q) U (L, N9N). Finally
by continuity of G, with B(x,r) C E; we get that G(z) = g(z) > t, and the
inclusion is proven.

O
Note that by lemma 4.3.3 and (4.16)
Ay CC A,
relative to the topology on 2 whenever s,t € T with s < .
Now we define our candidate solution
u(z) =sup{t € T | z € A;}. (4.17)

Theorem 4.4.1. The function u defined by (4.17) satisfies the following:
1. w=g on 0N}
2. u is continuous on

3. Ay C{u>t} forallt €T and [{u >t} \ Ay =0 for almost allt € T
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Proof. 1. Let zq € 92 and suppose g(xg) =

t.
If s < t, from (4.15) we have {g > s} C (E,)" N 90N hence with g(x) > s we
get zo € (F,)'NOQ, consequently xp € A,NIN and thus zg € A, for all s € T
such that s < t. By definition of u(z), we have u(xg) > s for all s € T, s < t.
By letting s — t we get u(xg) > t.

To show that u(xy) = ¢, suppose by contradiction that u(xy) = 7 > ¢, hence
sup{t € T,zo € A;} = 7 and this implies that for all ¢ > 0 there exists
r e {teT z € A} such that r > 7 — e.For a convenient €, r. € (t,7)NT
and xo € A,. But by (4.16) A, N 02 C {g > r} which is a contradiction since
g(xg) =t < r. Therefore u = g on Of.

2. First we will prove

({u>ty= (] A ({u>t}= ] A

seT,s<t seT, s>t

= ﬂ A, = z€ A, seT, s<t
seT,s<t

— sup{te T,z € A;} >t

Hence (\,ep o As C {u > t}.
Conversely, for = € {u >t}

u(z) >t = u(x) >sVs <t

ds < s’ <t such that z € Ay
Ay C A,

r € A Vs <t

A

u(x) >t = sup{t €T,z € A} >t
= dtp € T,z € Aysuch that to >t
= ze |J A

seT s>t

Conversely,if z € A, for some sy > t then u(x) > sy > t and hence
xr € {u>t}.

The set {u > t} is closed since it is an arbitrary union of closed sets, and
{u > t} is open relative to 2. To prove this let zy € |J o7 o, As, then there
exists so > t such that zg € As,, take a such that ¢t < a < sy (such « exists
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since dist(0As,,0A;) > 0), then Ay, CC A, hence there exist an open set U
such that A,, C U C A,. Therefore U C UseT’sN As and zg € A, C U. Thus

{u >t} = U,er oo As is open relative to Q. With {u >t} closed and {u > t}

open we get u continuous on 2.

3. Clearly by definition of u being the supremum we get
A;C{u>t} forallteTl.

But {u > t} \ Ay C u!(¢). In fact, let = such that u(x) > t and = ¢ A,
assume that u(xz) > t then there exist so € T such that x € A, and so > t,
but this implies that A, C Ay, hence x € A; which is a contradiction, therefore
u(x) = t.Now since |[u™t({t})| = 0 we get [{u > ¢} \ A;] = 0 for almost all
tel.

[

Theorem 4.4.2. If Q is a bounded lipschitz domain that satisfies (4.2) and (4.3),
then the function u defined by (4.17) is a solution to (4.1).

Proof. Let v € BV(Q) N C(Q),v = g on J, be a competitor in (4.1).Recall the
extension G € BV (R" \ Q) of g. Now define an extension v € BV (R") N C(R") of
vby =G in R"\ Q.

Let F; = {v > t}. Tt is sufficient to show that

P(E,, Q) < P(F,,Q) (4.18)

for almost every t € T, because then v € BV (2) and the coarea formula 1.6.2 would
imply that

+o0 +oo
/ P(Et,Q)dtg/ P(F,Q)dt = | Dv|(Q) < so.

(e 9] —00

Hence u € BV (), furthermore |Du|(€2) < [Dv|(£2). B
We know that E; is a solution of (4.7) while F; \ Q = £, \ © almost everywhere,

hence
P(E,R") < P(F,,R"). (4.19)

Next note that
P(E,R") = H"{(R" NI Ey)
= H"H BN Q)+ H OB N Q)+ H T BN D)
= H"H(O"E, N 0Q) + P(E, Q) + H" (9L, \ Q)
> Hn_l(a*ﬁt \ﬁ) + P(E;, Q).

(4.20)

Observe also that

P(F,R") =H" Y F\ Q) +H"(*F,NQ) +H" (0" F,NON).
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We claim that H" 1 (0*F, N 9Q) = 0 for almost all ¢.By this claim

P(F,,R") = H" 10" L, \ Q) + H"Y(0"F, N Q)

. _ (4.21)
— HY L\ Q) + P(F, Q).

By (4.19) and (4.20) we get

H" O L\ Q)+ P(E,Q) <H" NI L, \ Q) + P(F,Q).

Therefore
P(E;, Q) < P(F,,9Q)

and (4.18) established.

Proof of the claim: H™ *(9*F, N 9N) = 0 for almost all t.
Since v € C'(R™), we have

0'F, C OF, C 7 \(t)

but H* (v~ (t) NON) = 0 for all but countably many t, since H"~1(99Q) < co.Thus
HHO*F, N9 = 0 for all but countably many t. O

]

Theorem 4.4.3. If Q is bounded lipschitz domain that satisfies (4.2) and (4.3),then
the function u defined by (4.17) is a solution to

inf{|Dv|(Q) : v € BV (2),v = g on 00}, (4.22)

where g : Q) — R is continuous. Here v = g on 0¥ is understood in the sense of
trace theory in BV.

Proof. Since
{|Dv|(Q) : v € BV(Q)NC(Q),v = g on 9N} C {|Dv|[(Q) : v € BV(Q),v = g on 9N}

the inf in (4.22) is less or equal to the inf in (4.1). We need to prove that they are
equal.

We will proceed as in theorem 4.4.2. Let v € BV(2) and 7 its extension as
defined in the previous proof. Note that since g is continuous on 02 and G €
C(R™\ Q) then v € BV(R™) N C(R™\ Q). We only need to prove

P(E:, Q) < P(F, Q)

for almost every ¢ € T where F; = {v > t}.As in the proof of the previous theorem
we have

P(E;,R") < P(F;,R") and P(E;,R") > H" 10" L; \ Q) + P(E;, Q).
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We need to show that P(Fy, R") = H" (9" L,\Q)+P(F;, Q) i.e H* 19" F,noQ) = 0.
We have that g is the trace in 9Q of © € BV (Q2). By theorem 1.6.4

lim [w(y) — g(z)|dy =0 for H" '—almost all = € IS. (4.23)

r—0 B(z,r)NQ

On my way to prove that 0*F; N 9Q C ¢g~'(t). For this, consider z € 9*F; N 99
that satisfies (4.23), for such an x observe that g(x) = ¢. Indeed, if g(z) < ¢, say
g(x) =t — € then

= lim d
0= lim |BM ml/“ ~ g(a)ldy

=lim ———— / v(y) — g(x dy+/ v(y) — g(x dy)
=0 | B(x, r)ﬂQI < xr)mm{a<t}| )~ ()] B(:c,r)ﬂQﬂ{EZt}| v) = 9=

1
> lim sup r=————s ( / w(y) — g(l’)ldy>
r—0 | B(x, 1) N Q| \ /g rnonzse

, €|B(z,r)NQN{v >t}
>1
= ST BNl

Therefore

v >
lim sup |B(z,7)NQN{v >t}
r—0 |B(J}77’)QQ|
Using also the fact that g is the trace of ¥ € BV(R™ \ Q) we employ a similar
argument and get

=0

[B(z,r) N (R"\ @) N {v > t}]

lim su =0.
r—>0p |B(x,r) N (R \ Q)
Now,
B o> B QN{v > B R™\ Q T >
limsup‘ (:l:,?“)ﬁ{v_t}|:hmsup‘ (z,r) NQN{v >t} +[Bz,r) N ([R"\ Q) N{v >t}

r—0 | B(z, )] r—0 |B(z,r) N Q|+ [B(z,r) N (R™\ Q)]
( |B(z,r) N (R™\ Q) N{v >t}
[B(z,) N Q| + |B(z,7) N (R"\ Q)]
B(z,r) N QN {5 > t)] )
i Bz, )N(R*"\Q)Nn{v >t
Shrffélp< B(z,r) N R\ Q)|
]B(x r)ﬂQﬂ{v>t}|)

= lim sup
r—0

|B(z,7) N Q|
=0.
Hence we conclude that
: |B(x,r) N {v > t}]
lim su =0.
ol [Ba,r)]
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This implies that x ¢ Oy F; and since 0*F, C Oy Fy we get x ¢ O*F, which is a
contradiction. We do the same if g(z) > t ( take g(x) = e+ t). Hence g(x) = ¢ thus
0*F, N0 C g~*(t) and therefore H" 1 (9*F, N 9Q) < H™ *(g~'(¢)) = 0 for all but
countably many t. Thus

P(F,R") = H'=1 (0" £\ Q) + P(F, Q)

And as in the previous theorem we get that u is a solution. O]

4.5 Uniqueness

Theorem 4.5.1. Let Q@ C R"™ be a bounded lipschitz domain satisfying (4.2) and

(4.3). Suppose uy,us € C(2) N BV (Q) are minimizers of (4.1) with boundary data

g1 and go, respectively. If g1 > g2 on 052, then uy > uy in €.

Proof. Suppose there exist zo € Q such that u;(z) < uz(xg). Choose real numbers
s and t such that u;(zo) < s <t < uy(xo).
Let A=QnN{u; > s} and B = QN {uy > t}. In view of theorem 4.4.3, we have

| Du;|(Q) = inf{|Dv|(2) : v € BV(Q),v = g; on 0Q}.

Consequently, by theorem 3.1.2 we conclude that A and 0B are area-minimizing
relative to 2.
We will now proceed to show that 0A = 0(AU B) by establishing that 0ANJ(AUB)
is both open and closed relative to both 0A and 0(A U B). Then this will lead to a
contradiction.
First note that
B\ Accq. (4.24)

To prove this we will use the continuity of us — u; and the compactness of 9€2: The
continuity of uy —uy implies that {z : (uy —us)(x) >t —s} = (ug —uy) ([t — s, 00))
is closed. Now clearly, B\ A C {z: (ug — ug)(x) >t — s}.Therefore

B\NACH{x: (ug —ug)(z) >t —s}={x: (ug —uz)(x) >t —s}.

We still need to prove that {z : (ug — ug)(x) >t — s} NIQ = . Assume not,then
there exist zp € 0Q N {x : (ug — u2)(z) > t — s}, but on I we have uy = g and
uy = g1 with g1 > go hence (ug—uq)(z9) < 0and 0 < t—s < (uz—uy)(z) < 0,which
is a contradiction. Thus

B\ AC{x: (ug —u)(x) >t—s} CCQ
and B\ A CC Q. Form this inclusion it follows that
(1) P(A,Q) <P(AUB,Q)and (2) P(B,Q2) < P(ANB,Q),

In fact to prove (1), notice that A is area-minimizing then by definition P(A, Q) <
P(F,Q) for all F where AAF CC Q. Take F' = AU B,

AAF = (AU(AUB))\ (AN(AUB)) = (AUB)\ A= B\ AccQ.
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Therefore P(A,Q) < P(AU B,Q). Same for (2), with 0B area minimizing and
F = AN B. Now invoking (1.3), we get

P(A,Q) = P(AUB,Q) and P(B,Q) = P(AN B, Q).

Therefore AU B and AN B are area-minimizing relative to €. Clearly AN J(A U
B) is closed relative to 0A and 0(A U B). From theorem 3.2.3 and (4.24) , with
0A,0(A U B) both area-minimizing and A C AU B we get that 0AN (AU B) is
open relative to A and 0(A U B).

Before proceeding, we employ the following elementary topological observation:
If X and Y are sets such that X NY is open and closed relative to both X and Y
then any component of either X or Y that intersects X NY is necessarily contained
in X NY. Consequently, each component of X is either contained in Y or disjoint
from Y. Similarly, each component of Y is either contained in X or is disjoint form
X.

Thus with X = 0A and Y = 0(A U B) we may conclude that 0A C 9(A U B)
because any component of 0A disjoint from 0(AUB) would be contained in €2, which
is an impossibility.In fact, assume that there exist C' C 9A such that CNI(AUB) = ()
and C' C (.

Claim:0A NI N (9(AU B))® = 0.

Proof of the claim: Let v € 0A N 0N, then ui(z) = g1(x) = s > uz(z) = go(x).Let
e > 0 and take N (z), since x € OA then N (x)NA # () therefore N (z)N(AUB) # ()
and also N.(z) N A¢ # (). We can also see that 9A N 9 C B¢ implying that
N(x)N B # 0, hence N.(x) N (AUB)° # 0, thus = € 9(AU B) therefore 0AN N C
O(A U B) and thus 0AN 9NN (0(AU B))° = 0. O

Now by this claim and as in the proof of Lemma 4.3.3,we get that A N (9(A U
B)) N Q = 0 which is a contradiction with our assumption.Therefore we get that
0A C O(AUB).

This same argument can be applied with X = (AU B) and Y = 0A and
conclude that 9(AU B) C 0A hence 0A = 0(AU B).

We will finally show that this leads to a contradiction. Let S = B*\ A then
B'\NACB\ACCQsoS =B \AcCcQanddS C JAUIB. However, it is
not possible that 35S C 0A.Assume by contradiction that 0S5 C dA,then 05 is area-
minimizing with S CC Q but this is impossible because we get 9S NOA NI = ()
since S CC . Hence as above we get SN IANQ = 0 but 9S C JA, hence
IS NOANQ =0SNQ =0 but this is not true since S CC €.

Thus there is z* € 9S N (9B \ 0A) and an open set U containing x* such that
UNA = () this implies that (AUB)NU = BNU and therefore 9(AUB)NU = 0BNU
and since z* € 0B N U, we get * € I(AU B)NU and therefore 2* € 0(AU B) but
x* ¢ 0A which contradicts that (A U B) = 0A.Finally, we conclude that u; > uy
in Q. Ol
Corollary 4.5.1. Let Q@ C R™ be a bounded lipschitz domain satisfying (4.2) and

(4.3). If uy,ug € C(Q)NBV () are solutions to (4.1) relative to their own boundary

76



data, then
SUp [uy — us| = sup [u; — uy
Q o0

In particular, the solution to (4.1) is unique.

Proof. Let u* = uj +supyq |u1 — uz|. u* has least gradient and u* > us on 9€2 hence
by theorem 4.5.1 we get u* > uy on €2, that is uy > up — supyq |us — ual.

Reversing the roles u; and up we get ug > uj — supyg |u; — us|, then |u; — ug| <
SUpq [u1 — ug| on Q. Thus supg |u; — ug| < supyq [u1 — us| but supyg [ur — us| <
supg |us — ug| and therefore

Sup |u1 — us| = sup |uy — us|.
Q Gle}

In particular,with same boundary value we get that the solution to (4.1) is unique,

sup |u; — us| = 0.
Q

Therefore 1y, = uy on €.
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