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Abstract
of the Thesis of

Razan Refaat Al Kakoun for Master of Science
Major: Computational Science

Title: FEDSAM: Sharpness-Aware Minimization for Improved Generalization
Under FL Settings

While being extensively studied in ML community, the problem of improving gen-
eralization in Federated Learning (FL) is still in its infancy. The main challenge
stems from the heterogeneous nature of client data and the varying computational
capacity of clients. Many researchers have recently linked the generalization gap
to the sharpness of the landscape of the optimization model. In [1], [2], [3], [4] a
Sharpness-Aware Minimization (SAM) framework that seeks flat minima by penal-
izing sharp regions was introduced. In this thesis, we propose a SAM-like approach
for improving generalization in FL settings. Unlike several existing methods that
incorporate SAM when training local models, our proposed framework penalizes
the loss of the global function. To motivate our approach, we first provide a
counter-example that shows that finding flat minima for local clients does not nec-
essarily result in a flat aggregation for the global model. Furthermore, we develop
an efficient sharpness-aware algorithm that adaptively computes global gradient
similarity parameters for penalizing sharp regions. Harnessing these similarity
parameters, a distinct sharpness penalty parameter is shared with each client.
In particular, clients with varying local data distribution receive different penalty
terms. We mathematically established the convergence of our suggested algorithm.
Then, to demonstrate the efficiency of our algorithm, we perform several experi-
ments on MNIST, FMNIST, and CIFAR datasets. Our results show a significant
increase in generalization performance compared to existing approaches.
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Chapter 1

Introduction

A newly emerging variety of practical applications of machine learning mod-

els trained on sensitive data has recently aroused significant interest in privacy-

preserving machine learning approaches. Data, nowadays, is being generated and

exchanged rapidly between multiple resources such as the Web, social networking

sites, health care applications, smart home applications, banks, mobile phones, and

many others [5]–[7]. Traditional centralized machine-learning algorithms face se-

vere challenges with a high volume of sensitive data being generated across various

devices. This increased the need for decentralized model training that can train

models without recourse to data sharing. Federated Learning (FL) has emerged

as a compelling paradigm for addressing such a problem by allowing collaborative

learning while preserving data privacy [8], [9]. Federated learning, as an effective

approach, has been widely incorporated into real-life applications demonstrating

multiple advantages. FL facilitates collaborative research and model training in

various applications without centralization. Thus, FL represents a shift from tra-

ditional centralized training to a decentralized paradigm, revolutionizing the field

of machine learning [10]. Unlike traditional training where data is stored at the

server [11], collected data in FL settings remain at the devices.
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In healthcare, the applications of federated learning have shown immense promise

ranging from disease diagnosis and treatment to medical imaging and patient mon-

itoring. Training such models requires huge and varied datasets, which are difficult

to gather in one place. This is mainly because strict privacy rules, such as “HIPAA”

in the US, make it tough to centralize patient data [12]. Federated learning offers

a creative solution by allowing healthcare institutions, including hospitals, clinics,

and research centers, to collaborate on training a machine learning model without

worrying about data privacy. Each client will train using their locally stored data

to build accurate and robust models, study and understand disease patterns, and

advance medical discoveries. Only the models’ updates (weights) are then shared

with a central server which aggregates the model parameters and communicates

them back to clients (organizations). As such, integrating federated learning in

healthcare applications is a vibrant topic among researchers in the ML commu-

nity. Moreover, [13] and [14] released a survey about the variety of healthcare areas

in which FL achieves state-of-the-art results in applications like disease detection,

medical imaging, and remote health monitoring. Another real-world application of

federated learning arises in autonomous vehicles [15]. With the rapid improvement

and widespread use of self-driving cars, these vehicles release an exponentially in-

creasing quantity of information. This data is critical for improving autonomous

cars’ capabilities and safety measures; at the same time, it raises privacy chal-

lenges. As the adoption of self-driving cars continues to grow, so does the need

for advanced models that can enhance their capabilities and safety. To train such

a robust model, an extensive and diverse dataset is necessary, covering various

vehicle and road conditions, driving scenarios, and speed values. Centralizing all
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this data in one location presents major challenges such as privacy constraints,

network bandwidth, latency, and others [16], [17]. The huge volume of data makes

centralized processing computationally intensive, requiring powerful servers and

data centers. That’s where FL presents an elegant solution to these challenges.

FL enables each autonomous vehicle to train the model locally based on its data

without sharing the raw data [18]; only model updates are sent to the centralized

server. This decentralized approach mitigates privacy risks since sensitive data

remains on individual vehicles and is never exposed to external servers. FL is also

increasingly recognized for its significance within mobile applications, particularly

in the context of mobile edge networks. It offers distinct advantages as it enables

robust privacy preservation by allowing model training to occur locally on users’

devices. FL also promotes efficient utilization of network bandwidth by minimizing

the volume of data exchanged between devices and the central server and facilitates

low-latency communication, ensuring prompt model updates and responsiveness

within mobile applications [18], [19]. Federated learning also has its applications

in banking particularly in the domain of fraud detection and risk assessment [20],

[21]. These are only very few examples of the applications of federated learning.

FL faces several challenges despite the great solutions it introduces. Researchers

are currently focusing on addressing challenges when dealing with unbalanced and

non-IID data [22]–[24].

In FL, training presents notable challenges despite its great advantages. Data

originated from distinct clients with unbalanced data quantities result in hetero-

geneous and non-identical datasets, which makes training FL models harder [25].

Another main challenge is the heterogeneity of the devices [26]. The devices that
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are participating in the training, both edge and IoT devices, are different in their

computational powers, storage battery life, and speed [27]. Moreover, maintaining

a low communication cost while training an accurate model is a major challenge

in FL [28], [29]. The communication cost can be significantly high, especially in a

“million-device network”.

The core idea of training in FL is that no raw data needs to be exchanged

between the clients and the central server. Instead, only model parameters that

are optimized are shared with a server for aggregation. In this training paradigm,

there are two main entities: the data owners which are the participating clients,

and the model owner which is the server [18], [30]. The training process begins

with the server initializing the model parameters and sharing them with the clients.

Each client then performs local training by utilizing its dataset. Stochastic gra-

dient descent (SGD) is the most commonly used iterative algorithm for updating

the local model parameters. Once this training is complete, clients send their pa-

rameter updates to the server. After receiving the updates from all participants,

the server aggregates the local models through a weighted average and sends the

averaged model back to the clients for another training round. These steps are

repeated until the loss function converges, or until the accuracy reached is in the

desirable range [10], [19].

A subset of clients is randomly selected to participate in each training round

to ensure fairness and resource distribution. This batch of clients determines the

global batch size, impacting the overall efficiency and computational cost of the

federated learning process [31]. The performance of federated learning is highly
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sensitive to the choice of its hyperparameters [32]. Several hyperparameters affect

the results of FL, among them: the fraction of clients selected for participation in

training, the number of local epochs (iterations performed by each client during

local training), and the local mini-batch size (the number of samples used in each

local training iteration), global batch-size, learning rate, weight-decay, and others

[33]. The choice of these parameters affects the convergence speed of the model

and the overall efficiency of the federated learning process [34]. Fine-tuning these

hyperparameters and finding the best combination for each FL experiment is very

challenging [32].

Federated Learning suffers from several challenges and limitations, stemming

from the heterogeneity of the devices involved in the training process. The de-

vices participating in the training can vary significantly in terms of computational

powers, hardware specifications (CPU, memory), battery life, and network connec-

tivity (for example 3G, 4G, 5G, WiFi). Such diversity poses challenges in achieving

efficient and fair model training [35]. Devices with limited computational capa-

bilities or battery life may struggle to complete the local training tasks within a

reasonable time, affecting the overall progress of the federated learning process.

It is a common challenge that a device may suddenly quit the training process at

any iteration just because of a poor network connection, leading to potential data

loss and hindering the overall convergence of the model [36]. This results in delays

and communication bottlenecks during the model training phase.

Another critical challenge arises from the heterogeneity of the data collected

from various devices participating in the federated learning process. This makes it
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challenging to create a single global model that performs well on all devices. The

varying data distributions across devices may lead to biased and sub-optimal mod-

els, especially if certain devices represent minority data classes or unique scenarios

that are underrepresented in the overall dataset. As a result, federated learning

algorithms need to be carefully designed to account for data heterogeneity and

handle non-IID data effectively. Furthermore, the weight of participation for each

client in the federated learning process is influenced by the quantity and quality

of data points on each device. Clients with larger datasets or more relevant data

may have a more substantial impact on the model’s training compared to oth-

ers. Balancing this participation and ensuring fair representation of all clients’

contributions is a crucial challenge in federated learning [37]. Another limitation

emerges from the communication costs involved in federated learning, particularly

in scenarios with a large number of participating devices. As the number of devices

increases, so does the communication overhead between the devices sending their

model updates (parameter values) and the central server that aggregates these up-

dates. The communication costs can become significant in a “million-device net-

work” setting, consuming valuable bandwidth and computational resources [38].

These challenges make it hard to get models with good accuracy. Besides good

accuracies, a model must be robust [39], fair [40], [41], and must generalize well to

be reliable for real applications [42]. Addressing these challenges through novel al-

gorithmic and mathematical approaches has been an active ongoing research topic.

Approaches such as adaptive learning rates, differential privacy, and data augmen-

tation can help mitigate issues related to data heterogeneity and privacy concerns.

Additionally, designing efficient communication protocols and model aggregation

strategies can help alleviate the impact of network latency and communication
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costs in federated learning systems.

Generalization is the model’s ability to adapt properly to new, previously un-

seen data, drawn from the same distribution [43] [44]. Generalization has been

extensively studied in the field of machine learning. Its significance importance

is attributed to the fundamental objective of building a machine-learning model.

The goal is to train a model that would generalize well to unseen data. To evaluate

the model’s generalization ability, the dataset is divided into training, validation,

and testing datasets. When the model performs well on training data but performs

poorly on the testing data, we say that the model is overfitting. Therefore, there

is a major link between generalization and overfitting. Low generalization implies

that the model is most likely to overfit. To address this issue, several strategies

have been introduced, including but not limited to, early stopping, regularization,

weight decay, data augmentation, SARL, [45]–[47], and many more methods that

have been proposed recently in the literature. Many researchers have recently

linked the generalization gap to the geometry of the loss. [48] provided numer-

ical evidence that using large-batch size pushes the model to converge to sharp

regions which leads to poor generalization. The relationship between the geome-

try of the loss and generalization has been extensively studied both theoretically

and empirically. Several research papers linked the sharpness of the landscape

of the training loss to generalization error [1], [49]–[52]. More specifically, they

show that converging to flat minima can improve the generalization of the trained

model. In [1], the authors proposed Sharpness Aware Minimization (SAM) as a

groundbreaking technique for improving generalization by minimizing both, the

loss value and the loss sharpness simultaneously. In particular, SAM minimizes
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the the worst-case weight perturbation in a ball of radius ρ around the current

iterate [1]. By penalizing sharp regions, SAM motivates the model to find flatter

minima in its loss landscape [52]. Several adaptations and enhancements to SAM

have recently emerged; see adaptive sharpness-aware minimization, efficient SAM,

auxiliary learning SAM, and others each aiming to further refine its effectiveness

[50], [53], [54].

Seeking a flat minima has become a very popular approach for improving the

model’s generalization. This idea can be traced back to 1995 when this connec-

tion was first observed [55]. [56] has extensively studied 40 complexity measures

and provided evidence that sharpness-based has the highest correlation with gen-

eralization which motivates penalizing sharpness. As demonstrated in Figure 1.1,

small perturbations of the landscape in sharp regions can result in a significant

change in objective value compared to flat regions. Hence, assuming that shifts

in the distribution of training and testing data result in a perturbation of the

landscape of the loss function, seeking flat regions will reduce the difference in the

training and test loss.

Despite being extensively studied in ML, applying these generalization methods

in FL is still under explored. This can be justified by the difficulty introduced by

the absence of direct access to raw datasets by the server. Despite the various algo-

rithms proposed by researchers for training models in federated learning settings,

they still suffer from poor performance, especially with non-IID and unbalanced

data distribution [57]. We focus on incorporating sharpness-aware minimization

in FL settings. Our goal is to design a sharpness-aware approach to train machine
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Figure 1.1: The model above has 2 minima, one is flat and the other is sharp.
The training and testing functions are drawn in black and red, respectively. It is
obvious that the variation in flat minimum between training and testing functions
is minimal; however, the difference is so large in the sharp minimum.

learning models in FL settings for improved generalization.

Two major challenges for adopting SAM approaches in FL are the inaccessi-

bility of the global model to local datasets and the heterogeneous and non-IID

nature of the data. More specifically, penalizing the sharpness of the global ob-

jective function requires knowledge of the whole dataset which is not achievable

in FL settings. Moreover, due to data heterogeneity, the aggregating sharpness of

local models might not accurately approximate the sharpness of the global model.

This thesis focuses on designing a sharpness-aware approach for improving the

generalization of the global model in FL settings. We propose a novel SAM-like

adaptive approach that adaptively penalizes the sharpness of local clients. To deal

with data heterogeneity, we develop a novel mechanism for computing distinct

sharpness regularization parameters for different clients. Our mechanism uses the

similarity of the gradients across clients to estimate the regularization parameter.

In particular, higher similarity between local gradients indicates lower landscape
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variation. Lower variations mean that the model becomes more conservative, and

eventually a higher radius, ρ, for SAM is needed.
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Chapter 2

Related Work and Background

2.1 Federated Learning

Despite its wide success, federated learning suffers from many challenges [36].

These challenges are due to device heterogeneity, data heterogeneity, and high

communication costs. Real-world data collected from different devices exhibits

non-IID characteristics due to variations in computing hardware, network con-

nections, and battery life among the devices. Additionally, the number of data

collected from each device varies. As a result, it is impractical to impose uniform

training conditions on all devices, such as the same number of training epochs,

same batch sizes, learning rates, or equal workloads. These challenges extend to

the ability of a pre-trained model to perform well when tested on unseen data.

This will be the main focus of our work.

Despite being well exploited in machine learning settings, model generalization,

which is the ability of the model to perform well on unseen data, is still under-
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investigated in FL settings. A potential reason can be the lack of accessibility

to the data at the level of the server and the heterogeneous nature of data. To

address these challenges, many scholars have worked on devising new algorithmic

techniques that penalize large variations in model parameters across various clients.

For instance, FedProx [36] introduces a proximal term to the optimization objec-

tive to encourage model convergence across heterogeneous datasets. It can be seen

as a re-parametrization of FedAvg [33] that addresses the challenges of heterogene-

ity by adding a proximal term to the objective which helps improve the method’s

stability. This proximal term addresses the issues of statistical heterogeneity by

restricting the local updates to be closer to the global model. More recently, [58]

proposed FedDyne which enhances model convergence by dynamically updating

the penalized risk based on the current local device model. Scaffold [59] presents a

stochastic controlled average algorithm that significantly reduces communication

rounds and remains resilient to data heterogeneity. Moreover, to alleviate commu-

nication costs, several methods focus on model compression techniques, aiming to

reduce the size of transmitted models and optimize communication efficiency [60],

[61].

Several other updates and advancements were made in Federated Learning

to address the challenges and enhance its performance. Adaptive client selec-

tion strategies have been developed to address heterogeneity, determining client

participation based on client-specific criteria [62], [63]. Communication-efficient

approaches have been proposed to reduce communication costs during aggrega-

tion [64]. [65]. Federated Meta-Learning focuses on learning to adapt to new

clients and data distributions, enabling faster adaptation and better generaliza-
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tion. Lastly, secure aggregation protocols guarantee privacy and integrity during

the aggregation process, enhancing the robustness of Federated Learning against

potential attacks and threats [66].

These advancements demonstrate the active research efforts in improving Fed-

erated Learning, making it more effective, secure, and privacy-preserving in diverse

real-world scenarios. However, as the field continues to evolve, federated learning

still suffers from poor generalization when dealing with heterogeneous data.

2.2 Sharpness Aware Minimization

Sharpness Awareness Minimization (SAM) has emerged as a powerful technique

for improving generalization in deep neural networks. Models trained using SAM

tend to achieve 5 to 10 % higher test accuracy compared to traditional optimization

methods like SGD [67], [68]. Mathematically, the method aims at minimizing the

worst-case perturbation in weight parameters. More specifically, SAM solves

min
θ

max
∥v∥≤ρ

F (θ + v;D)

instead of minimizing the loss function. To mitigate the hardness of solving the

maximization problem, the authors proposed solving the following linear approxi-

mation

min
θ

max
∥v∥≤ρ

F (θ;D) + vT∇F (θ;D)

However, one significant drawback of SAM is its computational expense because

applying SAM involves two non-parallelizable sequential gradient computations at
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each step. In particular, SAM focuses on minimizing the loss at the point with the

worst-case perturbation, which necessitates an additional step of gradient ascent

to determine the worst-case weight perturbation before updating the weights.

Researchers have devoted considerable effort to finding algorithms that retain

the benefits of SAM while reducing computational overhead. [49] proposed a mod-

ified algorithm for SAM that achieves similar generalization performance but with

significantly less computation time. They introduced “LookSAM”, designed to

have a similar time complexity to that of SGD and ADAM. The main idea behind

LookSAM is to reuse information to prevent computing SAM’s gradient at every

single step. The authors divide SAM’s update into two parts: gh, representing

the usual SGD’s gradient computed at every step, and gv, which biases the model

towards flat regions. In the LookSAM algorithm, gv is computed every k steps

and then used for the subsequent k iterations, effectively reducing the computa-

tional burden. This modification improves generalization performance, though it

does exhibit some degradation in performance when dealing with large batch sizes.

To address this limitation and further scale up the batch size, scholars developed

“LookLayerSAM” by utilizing a layer-wise scaling rule for weight perturbation

[49]. LookLayerSAM can scale up the batch size to 64k and is even faster than

LookSAM. By efficiently handling large batch sizes, LookLayerSAM extends the

practicality of SAM to large-scale applications and resource-constrained environ-

ments.

Another line of work that studies the problem of finding flat minima focuses

on algorithmic approaches that adaptively schedule learning rates and batch sizes

to converge to flat minima. For instance, [69] proposed a sharpness-aware learning

21



rate scheduler that dynamically updates the learning rate to avoid sharp regions.

They define a local sharpness measure as the difference between the maximum and

minimum values of the loss function within a small neighborhood. The learning

rate is then computed as a function of the sharpness parameter, defined as an

increasing function of the sharpness value. When the current iterate is in a flat

region, the method returns a small learning rate to guarantee convergence and

remain in this flat landscape. On the other hand, when the iterate is in or close

to the proximity of a sharp region, the learning rate dynamically increases, im-

proving the opportunity of escaping this flat region. This dynamic learning rate

adjustment promotes better exploration of the loss landscape and contributes to

improved generalization.

Furthermore, [1] introduced the concept of per-data-point sharpness, known

as m-sharpness, where m represents the size of the subset of the batch that each

client receives. Empirical evidence suggests that using smaller values of m tends to

yield better generalization results. However, [70] argued that using very low values

of m might not fully utilize the computational power and can be inefficient [70].

Thus, finding the appropriate value of m represents a trade-off between improved

generalization and computational efficiency in federated learning settings.

These advancements in addressing computational overhead and promoting bet-

ter generalization through sharpness-aware minimization are of paramount im-

portance in the field of deep learning. As researchers continue to explore novel

techniques and algorithms, the future of sharpness-aware optimization methods

looks promising, with potential applications in various domains, including feder-
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ated learning and distributed machine learning.

2.3 SAM applied in Federated Learning

The extensive empirical and theoretical results presented in the literature have

shed light on the crucial relationship between good generalization and the loss

landscape. To improve the generalization capabilities of Federated Learning (FL),

researchers have been motivated to achieve flat minima in the learning process.

Among the optimization techniques studied, Sharpness Awareness Minimization

(SAM) has shown promising results in forcing the landscape of the model’s region

to be flat.

With this in mind, the integration of Sharpness Awareness Minimization into

federated learning becomes a compelling proposition. [57] takes a step in this di-

rection by introducing SAM and its adaptive version, ASAM, at the client side of

federated learning. Their approach aimed to encourage local models to converge

towards flatter neighborhoods, ultimately reducing the generalization gap. They

demonstrated the improvement that their method presents through empirical re-

sults by comparing it to other benchmarks. The authors in [3] also delved into

investigating the benefits of implementing SAM at the client level in federated

learning. However, they noted that applying SAM solely at the client level might

not directly impact the global model. They introduced a novel approach called

MoFedSAM, which aims to bridge smooth information flow between local and

global models. Their research explored a generalized framework for incorporating

SAM into federated learning settings.
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By integrating SAM into federated learning, the authors aim to leverage its

capabilities in promoting flat minima and enhancing generalization. This research

endeavor seeks to contribute to the ongoing efforts to optimize federated learning

algorithms and improve their efficiency and accuracy in diverse real-world scenar-

ios. While existing methods propose sharpness-aware local training, we propose

a method that pushes the global model to find flat minima. We first show that

finding flat minima for local client objectives might not result in an aggregated

flat minima for the global model. This motivates the need to solve the generaliza-

tion problem at the level of the server. Then, we propose an efficient algorithm

for collectively learning a sharpness-aware global formulation for the model and

demonstrate its superior performance compared to existing approaches.
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Chapter 3

Methodology

3.1 SAM For Local Models Might Not Improve General-

ization

In this section, we present a counter-example to demonstrate that finding a flat

minima for local functions doesn’t necessarily lead to a flat landscape at the level

of the server. This indicates that local FL SAM approaches might not necessarily

lead to good generalization of the global model.

In Figure 3.1, the functions F1 and F2 represent the landscapes of two local

functions. The points in blue and red represent the flat minima for both functions,

respectively. Our local functions can be expressed as follows:

F1(x) ≜


0.07x2 x < 4.283

−9 sin (−0.7x) x > 4.283

F2(x) ≜


0.07(x+ 17)2 x < −12.8

−9 sin (−0.7(x+ 17)) x > −12.8 .
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Figure 3.1: Flat minima for local clients may not imply flat global parameters
This is a counter-example to show a bad case of Local FedSAM. We assume we

have two participating clients F1(w) and F2(w), and f =
(F1(w) + F2(w))

2
, the

average function which is represented by a dotted green line. The blue and the
orange lines represent the functions F1(w) and F2(w), respectively. The blue and
orange dots represent a flat loss surface achieved by applying SAM locally. The
average of these two local flat minima projected on the average function results in
a sharp minimum.

We represent client heterogeneity as a shift along the x-axis in our functions.

It is obvious from Figure 3.1 that the aggregate of the two local minima falls in

a sharp region of the global model. This example shows that generalizing local

functions doesn’t always give good generalization at the global level. This counter-

example motivates the study of designing algorithms for finding flat minimizers of

the global objective for improved generalization.
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3.2 SAM in FL settings

The primary goal is to train a global model that captures collective knowledge

utilizing decentralized data across various clients. The essential premise is to train

the model without recourse to data sharing between the clients and the server.

This allows for utilizing the computational power of local devices to collectively

learn the global model while preserving data privacy.

Suppose there are K ≥ 2 local devices and each device has Nk datapoints. Denote

by Dk = ((xk,1, yk,1), (xk,2, yk,2), . . ., (xk,Nk
, yk,Nk

)) the data stored by client k

where x ∈ X is the input, X is the input space, y ∈ Y is the label, and Y is the

label space. Let h ∈ H, h : X 7→ ∆Y be a hypothesis that maps the input data to

the simplex over the output space ∆Y and H be a family of hypotheses. Moreover,

we assume that h is defined by a vector of parameters θ ∈ Ω with Ω being the

parameter space. Furthermore, let ℓ : Y 7→ R+ be a user-specified loss function

that estimates the difference between the model output and the true label. The

objective is to find θ ∈ Ω that minimizes the inference loss given by

min
θ

F (θ) ≜
K∑
k=1

pkFk(θ), (3.1)

where pk = Nk/
∑K

k=1Nk, Fk(θ) = E(xk,yk)ℓ (hθ(xk), yk) ≈
1

Nk

∑Nk

i=1 ℓ (hθ(xk,i), yk,i) .

The objective is to find a hypothesis function h from a family of hypotheses H

that can predict the labels with a minimum loss and therefore allows for accurate

predictions given the input data. The performance of the hypothesis h is measured

using a user-specified loss function l(·, ·). The most commonly used functions are
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Mean-Squared-Error (MSE) for regression tasks, Cross-Entropy for classification

tasks, and Binary Cross-Entropy (or Logistic Loss) for binary classification tasks.

The most commonly used method to collaboratively learn a global model in FL

settings is Federated Averaging (FedAvg) [33]. The details of FedAvg are presented

in Algorithm 1. As shown in the algorithm, FedAvg performs several local train-

ing steps at each selected client to minimize their individual loss functions Fk(θ).

The clients then share their updates with the server that aggregates the collected

parameters. The updated global model parameters θ are then shared again with

the clients. This process is repeated for multiple communication rounds, allowing

the global model to benefit from the collective knowledge present across the dis-

tributed clients while respecting data privacy.
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Algorithm 1: Federated Averaging - FedAvg

Input: Initial model parameter θ, K clients, T communication rounds, E

local updates, learning rate η;

for each round t = 0 : T − 1 do

Subsample a set C of the K clients ;

Server broadcasts θt; ;

for each client k in C in parallel do

θt
k,0 = θt ;

for each epoch e = 0 . . . E − 1 do

θ t
k, e+1 = θt

k, e − η∇Fk(θ
t
k,e)

end

send θt
k,E to the server

end

aggregation of the C updates;

θt+1 =
1

N

∑
k∈N pk θ

t
k,E

end

In the aforementioned algorithm, the clients chosen for participation train the

model utilizing their respective data using (stochastic) gradient descent. More

specifically, each selected client performs multiple local (stochastic) gradient de-

scent steps before communicating the updates with the central server. Despite

its popularity, studies have shown that FedAvg suffers from client heterogene-

ity which degrades its generalization properties. This raises concerns about the

model’s ability to perform well on unseen data, which is critical in real-world sce-

narios. Consequently, Sharpness Aware Minimization (SAM) has been introduced

as a recent training method that relies on worst-case perturbation to improve gen-
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eralization in various settings. [1], [49], [52] have confirmed that fine-tuning a

standard model with SAM can lead to significant generalization improvements.

To enhance the generalization in federated learning settings, we propose to use

an adaptive sharpness awareness technique for optimization. As mentioned earlier,

SAM finds the parameter that minimizes the loss function at the point with the

worst perturbation. This can be incorporated in FL settings by either penalizing

the global model by solving

min
θ

max
∥v∥≤ρ

K∑
k=1

pkFk(θ + v;Dk), Global SAM (3.2)

which we refer to as Global SAM, or by penalizing local models by solving

min
θ

K∑
k=1

pk max
∥vk∥≤ρ

Fk(θ + vk;Dk), Local SAM (3.3)

which we refer to as local SAM.

Solving SAM at the global level is very challenging as it requires knowledge

of the data. Therefore, most of the previous works tend to apply SAM locally by

tackling (3.3) which can be solved by incorporating SAM on local clients and then

averaging the model parameters globally at the server. Despite being computa-

tionally efficient, the attained model does not guarantee improved generalization

for the global model. We have proved by our counterexample in (3.1) that local

generalization is not sufficient and may have bad scenarios. Thus, we choose to

solve problem (3.2). While each client can solve the maximization problem sepa-

rately in (3.3), the maximization problem in (3.2) requires collective data from all

clients which makes the problem more challenging.
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3.3 Global SAM Formulation

In this section, we focus on solving the problem introduced in (3.2). Solving the

maximization problem is in general NP-hard. To circumvent this challenge, SAM

introduces a linear approximation to the maximization problem. This approach

significantly mitigates the complexity of the problem. Hence, instead of directly

solving the maximization, SAM proposes to optimize its linear approximation

min
θ

max
∥v∥≤ρ

K∑
k=1

pk
(
F (θ;Dk) + vT∇F (θ;Dk)

)
. (3.4)

Let

H(θ) = max
∥v∥≤ρ

K∑
k=1

pk
(
F (θ;Dk) + vT∇F (θ;Dk)

)
. (3.5)

Solving (3.5) yields the following optimal perturbed vector

v∗ = ρ

∑K
k=1 pk∇Fk(θ,Dk)

∥
∑K

k=1 pk∇Fk(θ,Dk)∥
. (3.6)

Substituting (3.6) in (3.5) will return

H(θ) =
K∑
k=1

pkFk(θ;Dk) + ρ

∥∥∥∥∥
K∑
k=1

pk∇Fk(θk;Dk)

∥∥∥∥∥ . (3.7)
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Hence, solving (3.4) is equivalent to solving the following problem

min
θ

K∑
k=1

pkFk(θ;Dk) + ρ

∥∥∥∥∥
K∑
k=1

pk∇Fk(θ;Dk)

∥∥∥∥∥ . (3.8)

The problem detailed in (3.8) can be seen as a regularization approach that

penalizes large gradients (sharp regions). It is obvious that one can look at SAM

as a regularization method that penalizes the norm of the gradient at each iterate.

A sharper region is expected to have a higher norm of the gradient which results

in a higher penalty. To smoothen our penalty term, we propose penalizing the

objective function using the square of the norm of the gradient as follows:

min
θ

K∑
k=1

pkFk(θ;Dk) + ρ

∥∥∥∥∥
K∑
k=1

pk∇Fk(θ;Dk)

∥∥∥∥∥
2

. (3.9)

Next, we show that this objective can be expressed as the needed FL structure

in the form of
∑

k pkH(·).

Lemma 1. For any given θ, the global objective (3.7) can be expressed as

H(θ) =
K∑
k=1

pkHk(θ) (3.10)

where

HK(θ) ≜
K∑
k=1

pk (Fk(θ;Dk) + rk(θ)ρ∥∇Fk(θk;Dk)∥) , (3.11)

and

rk(θ) =
K∑
j=1

pj∥∇Fj(θ,Dj)∥ cos (∇Fj(θ;Dj),∇Fk(θ;Dk)) . (3.12)
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Proof. One can directly see that

∥∥∥∑K
k=1 pk∇Fk(θ;Dk)

∥∥∥2 =
∑

k,j pkpj ⟨∇Fk(θ;Dk),∇Fj(θ;Dj)⟩

=
∑K

k=1 pk∥∇Fk(θ;Dk)∥
∑K

j=1 pj ∥∇Fj(θ;Dj)∥ cos (βjk) ,

where βjk is the angle between ∇Fj(θ;Dj) and ∇Fk(θ;Dk). Hence,

H(θ) =
K∑
k=1

pk

(
Fk(θ;Dk) + ρ∥∇Fk(θ;Dk)∥

K∑
j=1

pj ∥∇Fj(θ;Dj)∥ cos (βjk)

)
.

This completes the proof.

Notice that when maximizing a linear approximation of the problem in the

local formulation (3.3), we obtain the following solution

min
θ

K∑
k=1

pK (Fk(θ;Dk) + ρ ∥∇Fk(θk;Dk)∥) .

Compared to the result in Lemma 1, one can see our approach as a dynamic local

SAM approach that adaptively updates ρ and distinctively assigns this value for

various clients. If all clients have the same gradients, then ρ will be the same for

all. Therefore, this approach is significant when there is data heterogeneity and

the clients have different gradients. The more different a client is from others, the

less its effect should be i.e. the lower its ρ.
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3.4 Local SAM Solution Approach

As discussed earlier, introducing SAM in FL settings can be achieved in two

distinct approaches, either on the client side or on the server side. [3] and [57]

have studied applying SAM at the client side. We first discuss the details of their

approach before presenting our proposed algorithm. In their approach, each client

updates the model parameters by applying SAM on its own local dataset. More

specifically, rather than using regular gradient descent for local updates

θk,e+1 = θk,e − ηk ∇Fk(θk,e,Dk),

where ηk is the learning rate at the client side, the local SAM approach adopts the

following local update

θk,e+1 = θk,e − ηk ∇Fk(θk,e + v∗
k,Dk),

where

v∗ = ρ
∇Fk(θk,e)

∥∇Fk(θk,e)∥
.

Then, after receiving the updates from the clients, the server aggregates these

updates. The details of this method can be seen in Algorithm 2.
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Algorithm 2: SAM applied on the client side in FL

Input: Initial random mode, K clients, T communication rounds,

learning rate ηl, local epochs E , neighborhood size ρ;

for each round t = 0 . . . T − 1 do

Subsample a set C of the K clients ;

for each client k in C in parallel do

Send model θt to all participating clients C ;

for for each e = 0 . . . E − 1 do

compute the gradient ∇Fk(θ
t
k,e,Dk) ;

v∗
k,e = ρ

∇Fk(θ
t
k,e,Dk)

∥∇Fk(θ
t
k,e,Dk)∥

;

θt
k,e+1 = θt

k,e − ηk∇Fk(θ
t
k,e + v∗

k,e,Dk)

end

send θt
k,E to the server

end

aggregation of all updates;

θt+1 =
∑
k∈C

pkθ
t
k,E

end

Algorithm 2 outlines the steps for applying SAM on the client side to enhance

model performance in a federated learning setting. At each communication round,

a subset C of K clients is chosen, and in parallel, each client k performs local train-

ing using SAM. The process begins by initializing a random model θ0. For a spec-

ified number of local epochs E, each client computes the gradient ∇Fk(θ
t
k,e,Dk)

of the local loss function with respect to its model parameters. The algorithm

then calculates the perturbation v∗
k,e to explore flat regions in the loss landscape.

The perturbed model parameters θt
k,e+1 are updated using the SAM optimization
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technique. Once the local training is complete, each client sends its updated model

parameters to the server. The server aggregates the updates from all participating

clients in a weighted manner, summing the updated model parameters to obtain

the global model for the following communication round. This client-based SAM

approach empowers each client to explore flat minima during its local training,

promoting generalization and robustness. By leveraging sharpness information

at the client side, the proposed algorithm contributes to the improvement of the

global model’s performance. However, there are drawbacks to this method as it

doesn’t always yield satisfactory results.

More recently, [2] proposed FedSMOO, which proposed a dynamic regular-

ized sharpness aware minimization. The core concept involves the incorporation

of a dynamic global shift parameter updated at each communication step. The

FedSMOO paper does not directly address the min-max problem. Instead, it

defines a global parameter that penalizes variations between the client-specific

perturbations vk and a global perturbation v, aiming to minimize differences in

perturbations across various clients.

3.5 Global SAM Solution Approach

While previous works in the literature have primarily applied Sharpness Aware

Minimization (SAM) at the level of individual clients, our proposed approach aims

to improve the generalization of the global model. We contend that to effectively

tackle the challenges posed by data heterogeneity and non-iid-ness, a more global

approach is required.
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In particular, we propose a method that applies SAM steps with adaptive neigh-

borhood size ρ for each client. The unique ρ specifies the radius within which we

seek the point with the worst loss, i.e., the point with the worst-case perturbation.

By incorporating the distinctive ρ, our approach incorporates a generalization term

that penalizes the gradient of the global loss function F (θ). When the gradient’s

magnitude of a certain client increases, indicating a sharp region, the correspond-

ing ρ for that client increases as well, effectively penalizing sharp regions.

In our proposed method, each client receives a unique neighborhood size, de-

termined by the values of rk which is correlated with the local gradients and their

cosine similarities. Initially, all clients receive ρk = rkρ with rk set to 1 in the first

iteration. Updating the value of rk requires the knowledge of the local gradients.

Hence, we update these values at every communication round at the level of the

server. The server, then, shares the rk values along with the global model to every

participating client.
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Algorithm 3: Global approach of SAM in FL

Input: Initial random model parameters, K clients, T communication

rounds, learning rate η, local epochs E , neighborhood size ρ, r0k = 1 for

all k;

for each round t = 0 . . . T − 1 do

Subsample a set C of the K clients ;

Send model θt to all participating clients C ;

for each client k in C in parallel do

Compute the gradient ∇Fk(θ
t);

end

Calculate rk(θ):

rtk(θ
t) =

∑
j pj∥∇F (θt;Dk)∥ cos(∇Fj(θ

t;Dj),∇Fk(θ
t;Dk)) ;

Send rtk to all participating clients;

for each client k in C in parallel do

for each e = 0 . . . E − 1 do

v∗
k,e = ρ rtk(θ

t)
∇Fk(θ

t
k,e)

∥∇Fk(θ
t
k,e)∥

;

θt
k,e+1 = θt

k,e − ηt∇Fk(θ
t
k,e + v∗

k,e)

end

Send θt
k,E to the server

end

θt+1 =
∑
k∈C

pkθ
t
k,E ;

end

Overall, our proposed global approach applies SAM at the server level, al-

lowing each client to update its model with an adaptive and unique value of ρ

based on the data heterogeneity. This innovative method effectively addresses the
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challenges posed by the non-iid-ness in the federated learning setup, fostering col-

laborative learning and improving the global model’s generalization across diverse

client datasets. However, our devised algorithm incurs an additional communica-

tion cost due to double communication between the server and the clients. We

require the clients to transmit gradients for the server to compute the r-values.

Subsequently, after updating the weights using SAM with a unique radius, the

clients share back the updated weights. This additional cost is similar to that

incurred in FedSMOO [2], which mandates sharing the weight perturbation of

clients at every communication round. In the following section, we showcase the

effectiveness of our proposed approach compared to state-of-the-art methods.
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Chapter 4

Mathematical Formulation

In this part, we demonstrate the theoretical analysis of our proposed algorithm,

Global FedSAM. The detailed proof can be found in Appendix 6.

4.1 Assumptions

Before proving our theorems, we introduce some preliminary assumptions and

a lemma used in our proofs. Denote by

g̃k(θ
(t)
k ,B(t)

k,−,B
(t)
k,+) ≜ ∇Fk

(
θ
(t)
k + ṽ(θ

(t)
k ,B(t)

k,+);B
(t)
k,−

)
,

where

ṽ(θ
(t)
k ,B(t)

k,+) ≜ ρk
∇Fk(θ

(t)
k ,B(t)

k,+)

∥∇Fk(θ
(t)
k ,B(t)

k,+)∥

to be the SAM stochastic gradient for client k at iteration t computed over the

batches B(t)
k,− and B(t)

k,+. Then, we define
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gk(θ
(t)
k ,B(t)

k,−) = EB(t)
k,+

g̃k(θ
(t)
k ,B(t)

k,−,B
(t)
k,+), and

gk(θ
(t)
k ) = EB(t)

k,−
gk(θ

(t)
k ,B(t)

k,−) = EB(t)
k,−

EB(t)
k,+

g̃k(θ
(t)
k ,B(t)

k,−,B
(t)
k,+).

We also define

g̃(t) =
K∑
k=1

pkg̃k(θ
(t)
k ,B(t)

k,−,B
(t)
k,+), g(t) =

K∑
k=1

pkgk(θ
(t)
k ,B(t)

k,−), and ḡ(t) =
K∑
k=1

pkgk(θ
(t)
k ).

We now define the following assumptions

Assumption 1. Fk is L-smooth ∀ k ∈ [K].

Assumption 2. The expected squared norm of stochastic is bounded as follows

E[∥∇Fk(θ
(t)
k , D

(t)
k )∥2] ≤ G2 ∀ k ∈ [K].

Assumption 3. Denote by D
(t)
k the batched data from client k and ∇Fk(θ

(t)
k , D

(t)
k )

the stochastic gradient calculated on this batched data. The variance of stochastic

gradients is bounded as follows

E[∥∇Fk(θ
(t)
k , D

(t)
k )−∇Fk(θ

(t)
k )∥2] ≤ σ2

k ∀ k ∈ [K].

Assumption 4. ρk is bounded by the distance from optimality

ρ
(t)
k ≤ 1

4
∥θ(t)

k − θ∗∥.

The assumptions above are widely used in the convergence analysis of FL frame-
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works [2], [71], [58], [72]. Assumption 1 states that each function from the client

functions Fk is Lipschitz smooth. Assumption 2 assumes that on average, across

all clients k, the squared norm of the stochastic gradient of their loss function is

bounded by a constant G2. This bound ensures that the gradients aren’t too large,

which helps keep the optimization process stable and prevents it from diverging.

This assumption is crucial for federated learning algorithms because it provides a

level of control over the variability of gradients across clients, allowing us to design

more robust and effective optimization procedures. In addition to the first two as-

sumptions, [72] required a tighter bound of variance of the stochastic gradient.

Assumption 3 states that the variance of stochastic data is bounded. It ensures

that, on average, the gradients computed by different clients don’t fluctuate too

wildly. By bounding the variance of the stochastic gradients, we’re essentially

ensuring a certain level of consistency. As our method adapts a sharpness-aware

minimization framework, Assumption 4 is essential or convergence. Without this

assumption, initializing around global minima might not converge. we next start

our proof with the following lemma that helps us to bind the squared norm of the

difference between g̃(t) and g(t).

Lemma 2. For all iterations t, the squared-norm difference between g̃(t) and g(t)

can be bounded as follows

∥∥g̃(t) − g(t)
∥∥2 ≤ K

K∑
k=1

2Lp2kρ
2
k.

Proof. By definition,
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∥∥g̃(t) − g(t)
∥∥2 ≤ K

K∑
k=1

p2k

∥∥∥g̃k(θ(t)
k ,B(t)

k,−,B
(t)
k,+)− gk(θ

(t)
k ,B(t)

k,−)
∥∥∥2

= K

K∑
k=1

p2k

∥∥∥g̃k(θ(t)
k ,B(t)

k,−,B
(t)
k,+)− EBk,+

g̃k(θ
(t)
k ,B(t)

k,−,B
(t)
k,+)
∥∥∥2

= K
K∑
k=1

p2k

∥∥∥EBk,+

{
g̃k(θ

(t)
k ,B(t)

k,−,B)− g̃k(θ
(t)
k ,B(t)

k,−,B
(t)
k,+)
}∥∥∥2

≤ K

K∑
k=1

p2kEBk,+

∥∥∥g̃k(θ(t)
k ,B(t)

k,−,B)− g̃k(θ
(t)
k ,B(t)

k,−,B
(t)
k,+)
∥∥∥2

= K

K∑
k=1

p2kEBk,+

∥∥∥∥∥∥∇Fk

(
θ
(t)
k + ρk

∇Fk(θ
(t)
k ,B)

∥∇Fk(θ
(t)
k ,B)∥

;B(t)
k,−

)
−∇Fk

θ
(t)
k + ρk

∇Fk(θ
(t)
k ,B(t)

k,+)

∥∇Fk(θ
(t)
k ,B(t)

k,+)∥
;B(t)

k,−

∥∥∥∥∥∥
2

≤ K
K∑
k=1

p2kLEBk,+

∥∥∥∥∥ρk ∇Fk(θ
(t)
k ,B)

∥∇Fk(θ
(t)
k ,B)∥

− ρk
∇Fk(θ

(t)
k ,B(t)

k,+)

∥∇Fk(θ
(t)
k ∥

∥∥∥∥∥
2

≤ K
K∑
k=1

p2kLρ
2
k,

where the third inequality holds by L-smoothness and the last inequality holds by

triangular inequality. Note that B is the batch for client k at iteration t used to

compute the SAM update. This is constant with respect to the EBk,+
.

4.2 Strongly Convex Case

Theorem 1. Suppose that Assumptions 1, 2, 3, and 4 hold. Moreover, assume

that Fk is µ-strongly convex for all k. If η(t) is decreasing with rate O(1
t
), then for

some γ, ϵ > 0, we get

E
{
F (θ̄

(T )
)
}
− F ∗ ≤ L

T + γ

(
4ξ(t)

ϵ2µ2
+ (γ + 1)∥ ¯

θ(0) − θ∗∥
)
,
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where

ξ(t) = 6(E−1)2G2+2L(K+1)
K∑
k=1

pK(G+
ρk
2
)ρk+

1

η(t)
L
∑
k

pkρ
2
k+K

K∑
k=1

p2k(σ
2
k+2Lρ2k)

This expression depicts a rate of O( 1
T
) which agrees with FedAvg. Note that

the convergence rate is also affected by ξ(t).

4.3 Non-Convex Case

Theorem 2. Suppose that Assumptions 1, 2, 3, and 4 hold. If η(t) is decreasing

witg rate O(1
t
), then for some γ, ϵ > 0, we get

min
t=1,...,T

E
{∥∥∥∇F (θ̄

(t)
)
∥∥∥2} ≤ 1√

T

{(
2 + 4KL

T∑
t=1

η(t)
2

)
E

{
T∑
t=1

F (θ̄
(t)
)− F (θ̄

∗
)

}
+ 2

T∑
t=1

ξ(t)

}

where

ξ(t) = η(t)
2

[
2η(t)LK

K∑
k=1

p2k(E − 1)2G2 +
1

2η(t)
LK

K∑
k=1

p2kρ
2
k

+K
K∑
k=1

p2kσ
2
k + 2KL

K∑
k=1

pk

[G2

2
+

L+ 1

2

(
4η(t)

2
(E − 1)2G2 + ρ2k

)]
+ 2KLΓK

]
.

This expression depicts a rate of O( 1√
T
) .

Remark 1. Our proposed algorithm achieved a convergence rate O(
1

T
), which is

matches the convergence rate of existing works [73], [74], [75], [76]. This outcome

highlights how well the algorithm minimizes the global objective function in cases

where the individual client loss functions are strongly convex. The convergence rate

is influenced by various factors, including the Lipschitz constant L, the learning
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rate (η(t)) which we choose to be decreasing, and others. These factors collectively

determine the algorithm’s convergence behavior over time.

Remark 2. The convergence rate O( 1√
T
) in the non-convex case matches the re-

sults in current literature.
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Chapter 5

Experimental Settings

In this section, we conduct extensive experiments to demonstrate the effective-

ness of our proposed algorithm, Global FedSAM. We first introduce the experimen-

tal set-up and evaluate the performance over three datasets: MNIST, FMNIST,

and CIFAR-10. Then we show the evaluation of our method Global FedSAM

against several benchmarks: FedAvg, Local FedSAM in tables showing the test

accuracies of each experiment.

5.1 Experimental Details

We used benchmark datasets as in previous works [3], [33], [36] which are

MNIST [77] (10 classes, 6000 training samples in each), FMNIST [78] (10 classes,

6000 training samples in each), and CIFAR-10 [79] (10 classes, 5000 training

samples each). We compare our Global FedSAM with several benchmarks: FedAvg

[33] which is the basic algorithm in FL that introduces partial participation and

multiple local training rounds and FedSAM [1], [3] which applies SAM locally at

the level of the gradients.
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We distributed the data over 100 clients with 10% of these clients participating

in each communication round. To demonstrate the effectiveness of our algorithm

when applied to heterogeneous data, we conducted experiments that cover both

iid and non-iid cases. The latter was applied by utilizing a Dirichlet distribution

with hyper-parameter α. to apply different level of heterogeneity, we selected two

different values of α. Note that the heterogeneity of the data increases as the shard

per user becomes smaller, i.e. α becomes smaller. Refer to Appendix A.2 for the

detailed explanation.

5.2 MNIST dataset

The experiments were run using SGD optimizer with a momentum of 0.99.

The MNIST data was distributed over 100 clients with 10 clients being randomly

selected to participate in each global round. In each global round, each client

performs 5 local training iterations for identical and independent distribution and

3 local for non-iid. The test accuracy for different algorithms are detailed in Ta-

bles 5.1 for CNN model and 5.2 for MLP model.

i.i.d. non-iid α = 0.6 non-iid, α = 0.2
FedAvg 98.92% 94.99 % 92.17 %
Local FedSAM 99.04 % 95.04 % 92.34 %
Our algorithm 99.80 % 96.20% 93.34%

Table 5.1: CNN model on MNIST dataset

47



i.i.d. non-iid α = 0.6 non-iid, α = 0.2
FedAvg 95.72% 94.01 % 91.6 %
Local FedSAM 95.94 % 94.54 % 92.3 %
Our algorithm 96.00 % 94.98% 93.08%

Table 5.2: MLP model on MNIST dataset

5.3 FMNIST dataset

The experiments were run using SGD optimizer with a momentum of 0.99.

The FMNIST data was distributed over 100 clients with 10 clients being randomly

selected to participate in each global round. In each global round, each client

performs 5 local training iterations for identical and independent distribution and

3 local for non-iid. The test accuracy for different algorithms are detailed in Ta-

bles 5.4 for CNN model and 5.3 for the MLP model.

i.i.d. non-iid, α = 0.6 non-iid, α = 0.2
FedAvg 83.74 % 79.32% 78.98%
Local FedSAM 86.44 % 82.28% 80.15%
Our algorithm 94.51 % 90.93% 90.21%

Table 5.3: MLP model on FMNIST dataset

i.i.d. non-iid, α = 0.6 non-iid, α = 0.2
FedAvg 83.45% 80.68 % 78.23%
Local FedSAM 87.54 % 84.93 % 81.63 %
Our algorithm 89.32 % 85.76% 82.50%

Table 5.4: CNN model on FMNIST dataset
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5.4 CIFAR dataset

The experiments were run using ADAM optimizer with a weight decay 1e− 6.

The CIFAR-10 data was distributed over 100 clients with 10 clients being randomly

selected to participate in each global round. In each global round, each client

performs 5 local training iterations for identical and independent distribution and

3 local for non-iid. The test accuracy for different algorithms are detailed in

Tables 5.5 for the CNN model and 5.6 for the ResNet-18 model.

i.i.d. non-iid, α = 0.6 non-iid, α = 0.2
FedAvg 60.00% 54.99 % 34.55 %
Local FedSAM 64.00 % 56.34 % 38.97 %
Our algorithm 65.22 % 57.23% 41.34%

Table 5.5: CNN model on CIFAR-10 dataset

i.i.d. non-iid, α = 0.6 non-iid, α = 0.2
FedAvg 71.28% 60.93 % 49.32
Local FedSAM 72.34 % 62.13 % 52.00
Our algorithm 73.94 % 63.72% 53.71

Table 5.6: ResNet-18 model on CIFAR-10 dataset

This study provides valuable insights into the effectiveness of our Global Fed-

SAM compared to other popular methods like FedAvg and Local FedSAM, based

on a thorough experimental examination utilizing the MNIST, FMNIST, and

CIFAR-10 benchmark datasets. We performed experiments that assessed the ef-

fectiveness of Global FedSAM in each situation by carefully analyzing both IID

and non-IID data distributions. The results clearly demonstrate that the Global

FedSAM is better than other model designs in terms of test accuracy. The persis-

tent superiority of Global FedSAM over FedAvg and Local FedSAM is significant,
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especially in situations when the data distributions are not IID. Under such condi-

tions, where variability in the data presents major challenges to model convergence,

Global FedSAM performs remarkably well. This robustness is attributed to its

unique ability to harness global information. As proven by our proposed method-

ology, the observed performance benefits highlight the need to integrate a global

perspective into federated learning optimization. The use of global insights when

combined with the distributed nature of data makes Global FedSAM a successful

approach for solving the generalization gap brought by data heterogeneity.
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Chapter 6

Conclusion

In an era where real-world data is exponentially increasing, the need for a

privacy-preserving model is becoming a necessity. To address this pressing issue,

researchers introduced federated learning in 2016. Federated learning offers the

solution to the problem of data privacy, allowing the creation of a global model

through collaboration among multiple clients, each client trains the model using

its dataset. Therefore, the fundamental advantage of federated learning lies in its

ability to train the model without the need to disclose raw data or centralize it.

This powerful tool does suffer from a few challenges that arise from the data het-

erogeneity and non-iid (not identical and not independent) nature of data among

clients. This yields poor generalization in federated learning which in turn means

the model will overfit. Researchers have found a direct correlation between the

model’s generalization performance and the sharpness of the landscape: flatter

regions lead to better generalization. Thus, our objective was to guide our model

towards flat regions to make it perform better on new, unseen data. Sharpness-

aware minimization (SAM) is a tool that was implemented in 2020 that motivates
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the model to converge into flat minima. The integration of SAM in FL settings

can be approached from two angles: locally and globally. While previous work has

introduced SAM at the level of the clients, we have proved by counter example that

generalization at the local level doesn’t always guarantee the global model will gen-

eralize well. Consequently, we have come up with a new approach that harnesses

global information and implements an adaptive sharpness awareness technique

adaptive radius for each client. Our empirical findings confirm the effectiveness

and efficiency of our approach. Models trained using our method consistently out-

perform the other benchmarks (FedAvg and Local FedSAM), especially when data

is heterogeneous. We have also proved the mathematical convergence of our sug-

gested model. In a world where data privacy is extremely important, our approach

allows us to implement federated learning with good generalization performances.
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Appendix A

Mathematical Proof

A.1 Proof of convergence of the strongly convex case

For each device k, we introduce the following update rule:

θ(t+1) =


∑

k pkθ
(t)
k , if t is an aggregation step

θ
(t)
k − η(t)g̃k(θ

(t)
k ,B(t)

k,−,B
(t)
k,+), otherwise

. (A.1)

and

θ̄
(t+1)

=
K∑
k=1

pkθ
(t+1)
k =


θ̄
(t)
k , if t is an aggregation step

θ̄
(t) − η(t)g̃(t), otherwise

.

Denote by θ∗ the optimal model parameter of the global objective function

At iteration t, we have:

E{∥θ̄(t+1) − θ∗∥2} = E
{
∥θ̄(t) − η(t)g̃(t) − θ∗∥2

}
= E

{
∥θ̄(t) − η(t)g̃(t) − θ∗ − η(t)ḡ(t) + η(t)ḡ(t)∥2

}
= E

{
∥θ̄(t) − η(t)ḡ(t) − θ∗∥2

}
︸ ︷︷ ︸

A

+E
{
(η(t))2∥g̃(t) − ḡ(t)∥2

}︸ ︷︷ ︸
B

+ 2η(t)E
{
⟨θ̄(t) − η(t)ḡ(t) − θ∗, ḡ(t) − g̃(t)⟩

}
︸ ︷︷ ︸

=0

.
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Note that E = EB(t)
k,−

EB(t)
k,+

, and since ḡ(t) = EB(t)
k,−

EB(t)
k,+

g̃(t), we have:

E
{
⟨θ̄(t) − η(t)ḡ(t) − θ∗, ḡ(t) − g̃(t)⟩

}
= 0.

We next bound the term B as follows

B = E
{
∥g̃(t) − ḡ(t)∥2

}
= η(t)

2E
{
∥g̃(t) − g(t) + g(t) − ḡ(t)∥2

}
≤ η(t)

2E
{
∥g̃(t) − g(t)∥2

}
+ η(t)

2E
{
∥g(t) − ḡ(t)∥2

}
≤ η(t)

2
K

K∑
k=1

p2kE
{
∥g̃k(θ(t)

k ,B(t)
k,−,B

(t)
k,+)− gk(θ

(t)
k ,B(t)

k,−)∥
2
}

+ η(t)
2
K

K∑
k=1

p2kE
{
∥gk(θ(t)

k ,B(t)
k,−)− gk(θ

(t)
k )∥2

}
≤ η(t)

2
K

K∑
k=1

p2k(σ
2
k + 2Lρ2k),

where the first inequality is by triangular inequality and the last inequality holds by Assump-

tion 3 and Lemma 2.

Bounding A:

A = E
{∥∥θ̄(t) − η(t)ḡ(t) − θ∗∥∥2}

= E
{
∥θ̄(t) − θ∗∥2

}
+ η(t)

2E
{∥∥∥ḡ(t)

∥∥∥2}︸ ︷︷ ︸
C

− 2E
{〈

θ̄
(t) − θ∗, η(t)ḡ(t)

〉}
︸ ︷︷ ︸

D
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We next bound the terms C and D as follows:

C = η(t)
2E
{∥∥ḡ(t)

∥∥2} = η(t)
2E

{∥∥∥ K∑
k=1

pkgk(θ
(t)
k )
∥∥∥2}

≤ η(t)
2E

{
K

K∑
k=1

p2k

∥∥∥gk(θ(t)
k )
∥∥∥2}

= η(t)
2E

{
K

K∑
k=1

p2k

∥∥∥EB(t)
k,−

EB(t)
k,+

g̃k(θ
(t)
k ,B(t)

k,−,B
(t)
k,+)
∥∥∥2}

≤ η(t)
2E

{
K

K∑
k=1

p2kEB(t)
k,−

EB(t)
k,+

{∥∥∥g̃k(θ(t)
k ,B(t)

k,−,B
(t)
k,+)
∥∥∥2}}

= η(t)
2E

K
K∑
k=1

p2kEB(t)
k,−

EB(t)
k,+


∥∥∥∥∥∇Fk

(
θ
(t)
k + ρk

∇Fk(θ
(t)
k ,B(t)

k,+)

∥∇Fk(θ
(t)
k ,B(t)

k,+)∥
;B(t)

k,−

)∥∥∥∥∥
2



≤ η(t)
2E

{
K

K∑
k=1

p2kEB(t)
k,−

EB(t)
k,+

{
2L

(
Fk

(
θ
(t)
k + ρk

∇Fk(θ
(t)
k ,B(t)

k,+)

∥∇Fk(θ
(t)
k ,B(t)

k,+)∥
;B(t)

k,−

)
− Fk(θ

∗)

)}}
.

The second inequality holds by Jensen’s and the last inequality is obtained from smoothness

and strong convexity where ∥∇F (xk)∥2 ≤ 2L(F (xk)− F (x∗)). Moreover,
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D = −2η(t)E
{〈

θ̄
(t) − θ∗, ḡ(t)

〉}
= −2η(t)

K∑
k=1

pkE
{〈

θ̄
(t) − θ∗, gk(θ

(t)
k )
〉}

= −2η(t)
K∑
k=1

pkE
{〈

θ̄
(t) − θ

(t)
k + θ

(t)
k − θ∗, gk(θ

(t)
k )
〉}

= −2η(t)
K∑
k=1

pkE
{〈

θ̄
(t) − θ

(t)
k , gk(θ

(t)
k )
〉}

− 2η(t)
K∑
k=1

pkE
{〈

θ
(t)
k − θ∗, gk(θ

(t)
k )
〉}

≤ η(t)
K∑
k=1

pkE
{

1

η(t)

∥∥∥θ̄(t) − θ
(t)
k

∥∥∥2 + η(t)∥gk(θ
(t)
k )∥2

}
− 2η(t)

K∑
k=1

pkE
{
EB(t)

k,+

{〈
gk(θ

(t)
k ),θ

(t)
k − θ∗

〉}

= η(t)
K∑
k=1

pkE
{

1

η(t)

∥∥∥θ̄(t) − θ
(t)
k

∥∥∥2 + η(t)∥gk(θ
(t)
k )∥2

}

− 2η(t)E

{
K∑
k=1

pkEB(t)
k,+

{〈
gk(θ

(t)
k ),θ

(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)− ṽk(θ
(t)
k ,B(t)

k,+)− θ∗
〉}}

= η(t)
K∑
k=1

pkE
{

1

η(t)

∥∥∥θ̄(t) − θ
(t)
k

∥∥∥2 + η(t)∥gk(θ
(t)
k )∥2

}

+ 2η(t)E

{
K∑
k=1

pkEB(t)
k,+

{〈
∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)
)
,θ∗ − (θ

(t)
k + ṽk(θ

(t)
k ,B(t)

k,+))
〉}}

+ 2η(t)E

{
K∑
k=1

pkEB(t)
k,+

{〈
∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)
)
, ṽk(θ

(t)
k ,B(t)

k,+)
〉}}

≤ η(t)
K∑
k=1

pkE
{

1

η(t)

∥∥∥θ̄(t) − θ
(t)
k

∥∥∥2 + η(t)∥gk(θ
(t)
k )∥2

}

+ 2η(t)E

{
K∑
k=1

pkEB(t)
k,+

{
Fk(θ

∗)− Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)
)
− µ

2

∥∥∥θ(t)
k − θ∗ + ṽk(θ

(t)
k ,B(t)

k,+)
∥∥∥2}}

− 2η(t)E

{
K∑
k=1

pkEB(t)
k,+

{〈
∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)
)
,θ

(t)
k −

(
ṽk(θ

(t)
k ,B(t)

k,+) + θ
(t)
k

)〉}}

≤ η(t)
K∑
k=1

pkE
{

1

η(t)

∥∥∥θ̄(t) − θ
(t)
k

∥∥∥2 + η(t)∥gk(θ
(t)
k )∥2

}

+ 2η(t)E

{
K∑
k=1

pkEB(t)
k,+

{
Fk(θ

∗)− Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)
)
− µ

2

∥∥∥θ(t)
k − θ∗ + ṽk(θ

(t)
k ,B(t)

k,+)
∥∥∥2}}

− 2η(t)E

{
K∑
k=1

pkEB(t)
k,+

{
Fk

(
θ
(t)
k

)
− Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)
)
− L

2
∥ṽk(θ

(t)
k ,B(t)

k,+)∥
2
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= η(t)
K∑
k=1

pkE
{

1

η(t)

∥∥∥θ̄(t) − θ
(t)
k

∥∥∥2 + η(t)∥gk(θ
(t)
k )∥2

}
− 2η(t)E

{
K∑
k=1

pk

(
Fk

(
θ
(t)
k

)
− Fk(θ

∗)
)}

− η(t)E

{
µ

K∑
k=1

pkEB(t)
k,+

{∥∥∥θ(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)− θ∗
∥∥∥2}}+ η(t)LE

{
K∑
k=1

pkEB(t)
k,+

{∥∥∥ṽk(θ
(t)
k ,B(t)

k,+)
∥∥∥2}} ,
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where the first inequality holds by Cauchy-Shwartz and arithmetic mean, the second inequal-

ity holds by strong convexity of Fk, and the third inequality holds by L-smoothness of Fk.

Combining C and D, we get

A = E
{∥∥∥θ̄(t) − θ∗

∥∥∥2}+D + C

= E
{∥∥∥θ̄(t) − θ∗

∥∥∥2}+ η(t)LE

{
K∑
k=1

pkEB(t)
k,+

{∥∥∥ṽk(θ
(t)
k ,B(t)

k,+)
∥∥∥2}}

+ η(t)
2
E

{
K

K∑
k=1

p2kEB(t)
k,−

EB(t)
k,+

{
2L
(
Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+);B
(t)
k,−

)
− Fk(θ

∗)
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+ η(t)
K∑
k=1

pkE
{

1

η(t)

∥∥∥θ̄(t) − θ
(t)
k

∥∥∥2 + η(t)∥gk(θ
(t)
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}
− 2η(t)E
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(t)
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)
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{
µ
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pkEB(t)
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{∥∥∥θ(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)− θ∗
∥∥∥2}}

= E
{∥∥∥θ̄(t) − θ∗

∥∥∥2}− η(t)E

{
µ

K∑
k=1

pkEB(t)
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{∥∥∥θ(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)− θ∗
∥∥∥2}}
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{
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pk
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∥∥∥2}+ η(t)LE

{
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pkE
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k )∥2
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k
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Fk(θ

(t)
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︸ ︷︷ ︸
+2η(t)

2E

{
K

K∑
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p2kEB(t)
k,−

EB(t)
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{
L
(
Fk(θ

(t)
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(t)
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︸ ︷︷ ︸
E
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Bounding term E:

E = η(t)
2

K∑
k=1

pkE
{
∥gk(θ(t)

k )∥2
}
− 2η(t)E

{∑
k

pk

(
Fk(θ

(t)
k )− Fk(θ

∗)
)}

+ 2η(t)
2
E

{
K

K∑
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k )∥2

}
− 2η(t)E

{∑
k

pk

(
Fk(θ

(t)
k )− Fk(θ

∗)
)}

+ 2η(t)
2
E

{
K

K∑
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k + ṽk(θ

(t)
k ,B(t)

k,+))− Fk(θ
∗)
)}}

≤ 2η(t)
2
L(K + 1)

K∑
k=1

pkE
{
EB(t)

k,−
EB(t)

k,+

{(
Fk(θ

(t)
k + ṽk(θ
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.

where the first inequality holds since pk < 1, the second inequality holds by Jensen’s and the

L-smoothness of Fk.

Bounding E1:

E1 = 2η(t)
2
L(K + 1)
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k=1

pkE
{
EB(t)

k,−
EB(t)

k,+

{(
Fk(θ

(t)
k + ṽk(θ
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where first inequality holds by the L-smoothness of Fk, the second by Cauchy-Schwartz, and

the last inequality holds by bounding the norm of the gradient. Plugging back in E, we obtain

E ≤ 2η(t)
2
L(K + 1)

K∑
k=1

pkE
{
Fk(θ

(t)
k )− Fk(θ

∗)
}
+ 2η(t)

2
GL(K + 1)

K∑
k=1

pkρk

+ η(t)
2
L(K + 1)

∑
k

pkρ
2
k − 2η(t)E

{∑
k

pk

(
Fk(θ

(t)
k )− Fk(θ

∗)
)}

≤ −η(t)E

{∑
k

pk

(
Fk(θ

(t)
k )− Fk(θ

∗)
)}

︸ ︷︷ ︸
H

+η(t)
2
L(K + 1)

K∑
k=1

(
2Gpkρk + pkρ

2
k

)
,

where the inequality holds by choice of η(t) ≤ 1

2L(K + 1)
.

Bounding H:

H = −η(t)E

{∑
k

pk

(
Fk(θ

(t)
k )− Fk(θ

∗)
)}

= −η(t)E

{∑
k

pk

(
Fk(θ

(t)
k )− Fk(θ̄

(t)
) + Fk(θ̄

(t)
)− Fk(θ

∗)
)}

= −η(t)E

{∑
k

pk

(
Fk(θ

(t)
k )− Fk(θ̄

(t)
)
)}

− η(t)E

{∑
k

pk

(
Fk(θ̄

(t)
)− Fk(θ

∗)
)}

≤ −η(t)E

{∑
k

pk

〈
∇Fk(θ̄

(t)
),θ

(t)
k − θ̄

(t)
〉}

− η(t)E

{∑
k

pk

(
Fk(θ̄

(t)
)− Fk(θ

∗)
)}

≤ η(t)

2
E

{∑
k

pk
[
η(t).∥∇Fk(θ̄

(t)
)∥2 + 1

η(t)
∥θ(t)

k − θ̄
(t)∥2

]}
− η(t)E

{∑
k

pk

(
Fk(θ̄

(t)
)− Fk(θ

∗)
)}

≤ E

{
η(t)

2∑
k

pk

[
L(Fk(θ̄

(t)
)− Fk(θ

∗))
]}

+
1

2
E

{∑
k

pk∥θ(t)
k − θ̄

(t)∥2
}

− η(t)E

{∑
k

pk

(
Fk(θ̄

(t)
)− Fk(θ

∗)
)}

= η(t)E

{∑
k

pk(η
(t)L− 1)

[
Fk(θ̄

(t)
)− Fk(θ

∗)
]}

+
1

2
E

{∑
k

pk∥θ(t)
k − θ̄

(t)∥2
}

≤ 1

2
E

{∑
k

pk∥θ(t)
k − θ̄

(t)∥2
}
,

where the first inequality holds by convexity, the second inequality is true by Cauchy-Shwartz
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and arithmetic mean, the third inequality holds by smoothness, and the last inequality holds
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by our choice of η(t)L− 1 ≤ 0. Substituting, the former inequalities in A, we obtain

A ≤ E
{∥∥∥θ̄(t) − θ∗

∥∥∥2}− η(t)E

{
µ
∑
k

pkEB(t)
k,−

EB(t)
k,+

{∥∥∥θ(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)− θ∗
∥∥∥2}}

+ η(t)LE

{∑
k

pkEB(t)
k,+

{∥∥∥ṽk(θ
(t)
k ,B(t)

k,+)
∥∥∥2}}+ E

{
K∑
k=1

pk

∥∥∥θ̄(t) − θ
(t)
k

∥∥∥2}+ E

≤ E
{∥∥∥θ̄(t) − θ∗

∥∥∥2}− η(t)E

{
µ
∑
k

p2kEB(t)
k,−

EB(t)
k,+

{∥∥∥θ(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)− θ∗
∥∥∥2}}

+ η(t)LE

{∑
k

pkEB(t)
k,+

{∥∥∥ṽk(θ
(t)
k ,B(t)

k,+)
∥∥∥2}}+ E

{
K∑
k=1

pk

∥∥∥θ̄(t) − θ
(t)
k

∥∥∥2}

+
1

2
E

{∑
k

pk∥θ(t)
k − θ̄

(t)∥2
}

+ 2η(t)
2
GL(K + 1)

K∑
k=1

pkρk + η(t)
2
L(K + 1)

∑
k

pkρ
2
k

≤ E
{∥∥∥θ̄(t) − θ∗

∥∥∥2}− η(t)E

{
µ
∑
k

p2k

∥∥∥θ(t)
k − θ∗

∥∥∥2}+ 2η(t)E

{
µ
∑
k

p2kρk

∥∥∥θ(t)
k − θ∗

∥∥∥}

− η(t)E

{
µ
∑
k

p2kEB(t)
k,+

{∥∥∥ṽk(θ
(t)
k ,B(t)

k,+)
∥∥∥2}}+ η(t)LE

{∑
k

pkEB(t)
k,+

{∥∥∥ṽk(θ
(t)
k ,B(t)

k,+)
∥∥∥2}}

+
3

2
E

{∑
k

pk∥θ
(t)
k − θ̄

(t)∥2
}

+ 2η(t)
2
L(K + 1)

K∑
k=1

pK(G+
ρk
2
)ρk

≤ E
{∥∥∥θ̄(t) − θ∗

∥∥∥2}− η(t)E

{
µ
∑
k

p2k

∥∥∥θ(t)
k − θ∗

∥∥∥2}+ η(t)L
∑
k

pkρ
2
k +

3

2
E

{∑
k

pk∥θ
(t)
k − θ̄

(t)∥2
}

+ 2η(t)E

{
µ
∑
k

p2kρk

∥∥∥θ(t)
k − θ∗

∥∥∥}+ 2η(t)
2
L(K + 1)

K∑
k=1

pK(G+
ρk
2
)ρk

≤ E
{∥∥∥θ̄(t) − θ∗

∥∥∥2}− η(t)E

{
µ
∑
k

p2k

∥∥∥θ(t)
k − θ∗

∥∥∥2}+ η(t)L
∑
k

pkρ
2
k

+
1

2
η(t)E

{
µ
∑
k

p2k

∥∥∥θ(t)
k − θ∗

∥∥∥2}+ 2η(t)
2
L(K + 1)

K∑
k=1

pK(G+
ρk
2
)ρk

+
3

2
E

{∑
k

pk∥θ(t)
k − θ̄

(t)∥2
}

= E
{∥∥∥θ̄(t) − θ∗

∥∥∥2}− 1

2
η(t)E

{
µ
∑
k

p2k

∥∥∥θ(t)
k − θ∗

∥∥∥2}+ η(t)L
∑
k

pkρ
2
k

+
3

2
E

{∑
k

pk∥θ(t)
k − θ̄

(t)∥2
}

+ 2η(t)
2
L(K + 1)

K∑
k=1

pK(G+
ρk
2
)ρk

= (1− 1

2
η(t)

µ

K
)E
{∥∥∥θ̄(t) − θ∗

∥∥∥2}+
3

2
E

{∑
k

pk∥θ(t)
k − θ̄

(t)∥2
}

+ 2η(t)
2
L(K + 1)

K∑
k=1

pK(G+
ρk
2
)ρk + η(t)L

∑
k

pkρ
2
k,
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where the third inequality is by arithmetic, and the fifth inequality holds by Assumption 4.

Assuming that η(t) is decreasing and η(t0) ≤ 2η(t) and t0 is the last communication round, we

can bound E
{∑

k pk∥θ
(t)
k − θ̄

(t)∥2
}
as follows:

E

{∑
k

pk∥θ(t)
k − θ̄

(t)∥2
}

= E

{∑
k

pk
∥∥(θ(t)

k − θ̄
(t0)
)
−
(
θ̄
(t) − θ̄

(t0)
)∥∥2}

≤ E

{∑
k

pk
∥∥(θ(t)

k − θ̄
(t0)
)∥∥2}

= E

{∑
k

pk

∥∥∥ t−1∑
i=t0

η(i)∇Fk(θ
(i)
k + ṽk(θ

(i)
k ,B(i)

k,+),B
(i)
k,−)
∥∥∥2}

≤ E

{∑
k

pk(t− t0)
t−1∑
i=t0

η(i)
2
∥∥∥∇Fk(θ

(i)
k + ṽk(θ

(i)
k ,B(i)

k,+),B
(i)
k,−)
∥∥∥2}

≤
∑
k

pk(E − 1)
t−1∑
i=t0

η(i)
2
G2

≤ 4(E − 1)2η(t)
2
G2.

Therefore, we proved

E

{∑
k

pk∥θ(t)
k − θ̄

(t)∥2
}

≤ 4(E − 1)2η(t)
2
G2, (A.2)

where the last inequality holds given the assumptions on η(t) and choice of t0. Then it follows

that

A ≤ (1− 1

2
η(t)

µ

K
)E
{∥∥∥θ̄(t) − θ∗

∥∥∥2}+ 6(E − 1)2η(t)
2
G2

+ 2η(t)
2
L(K + 1)

K∑
k=1

pK(G+
ρk
2
)ρk + η(t)L

∑
k

pkρ
2
k.
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Therefore,

E{∥θ̄(t+1) − θ∗∥2} = A+B

≤ (1− 1

2
η(t)

µ

K
)E
{∥∥∥θ̄(t) − θ∗

∥∥∥2}+ 6(E − 1)2η(t)
2
G2

+ 2η(t)
2
L(K + 1)

K∑
k=1

pK(G+
ρk
2
)ρk + η(t)L

∑
k

pkρ
2
k

+ η(t)
2
K

K∑
k=1

p2k(σ
2
k + 2Lρ2k)

= (1− η(t)
µ

2K
)E
{∥∥∥θ̄(t) − θ∗

∥∥∥2}+ η(t)
2
ξ(t),

where

ξ(t) = 6(E − 1)2G2 + 2L(K + 1)
K∑
k=1

pK(G+
ρk
2
)ρk +

1

η(t)
L
∑
k

pkρ
2
k +K

K∑
k=1

p2k(σ
2
k + 2Lρ2k).

Let η(t) =
β

t+ γ
with β >

2K

µ
, and γ > 0. Define ϵ =

1

2K
. Let v = max

{
β2ξ

βϵµ− 1
, γ∥ ¯

θ(0) − θ∗∥2
}
.

We will show by induction that ∥θ̄(t) − θ∗∥2 ≤ v

t+ γ
. For t = 0, we have:

∥θ̄(0) − θ∗∥2 ≤ v

γ
.

Now, assume it is true for t; i.e. E
{
∥θ̄(t) − θ∗∥2

}
≤ v

γ + t
. Then,

E
{
∥θ̄(t+1) − θ∗∥2

}
≤ (1− η(t)ϵµ)E

{
∥θ̄(t) − θ∗∥2

}
+ η(t)

2
ξ(t)

≤ (1− βϵµ

t+ γ
)

v

t+ γ
+

β2ξ(t)

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

β2ξ(t)

(t+ γ)2
− βϵµ− 1

(t+ γ)2
v.

≤ v

t+ γ + 1
,
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where the last inequality holds by definition of v. By L-smoothness of F , we then get

E
{
F (θ̄

(T )
)
}
− F ∗ ≤ LE

{∥∥∥ ¯θ(T ) − θ∗
∥∥∥2}

≤ L
v

T + γ

≤ L
1

T + γ

(
β2ξ

βϵµ− 1
+ (γ + 1)∥ ¯θ(0) − θ∗∥

)
≤ KL

1

T + γ

(
4ξ

ϵ2µ2
+ (γ + 1)∥ ¯

θ(0) − θ∗∥
)
,

where the last equality holds by setting β = 2K/ϵµ. This completes the proof.

A.2 Convergence of the non-convex case

Proof. By descent lemma:

E
{
F (θ̄

(t+1)
)
}
≤ E

{
F (θ̄

(t)
)
}
+ E

{〈
∇F (θ̄

(t)
), θ̄

(t+1) − θ̄
(t)
〉}

︸ ︷︷ ︸
A

+E
{∥∥∥θ̄(t+1) − θ̄

(t)
∥∥∥2}︸ ︷︷ ︸

B

.
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Bounding A:

A = E
{〈

∇F (θ̄
(t)
), θ̄

(t+1) − θ̄
(t)
〉}

= E
{〈

∇F (θ̄
(t)
),−η(t)g̃(t)

〉}
= −η(t)E

{〈
∇F (θ̄

(t)
),

K∑
k=1

pk∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+);B
(t)
k,−

)〉}

= −1

2
η(t)E

{∥∥∥∇F (θ̄
(t)
)
∥∥∥2}− 1

2
η(t)E


∥∥∥∥∥

K∑
k=1

pk∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+);B
(t)
k,−

)∥∥∥∥∥
2


+
1

2
η(t)E


∥∥∥∥∥∇F (θ̄

(t)
)−

K∑
k=1

pk∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+);B
(t)
k,−

)∥∥∥∥∥
2


= −1

2
η(t)E

{∥∥∥∇F (θ̄
(t)
)
∥∥∥2}− 1

2
η(t)E


∥∥∥∥∥

K∑
k=1

pk∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+);B
(t)
k,−

)∥∥∥∥∥
2


+
1

2
η(t)E


∥∥∥∥∥

K∑
k

pk∇Fk(θ̄
(t)
)−

K∑
k=1

pk∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+);B
(t)
k,−

)∥∥∥∥∥
2


≤ −1

2
η(t)E

{∥∥∥∇F (θ̄
(t)
)
∥∥∥2}− 1

2
η(t)E


∥∥∥∥∥

K∑
k=1

pk∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+);B
(t)
k,−

)∥∥∥∥∥
2


+
1

2
η(t)E

{
K

K∑
k=1

p2k

∥∥∥∇Fk(θ̄
(t)
)−∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+);B
(t)
k,−

)∥∥∥2}

≤ −1

2
η(t)E

{∥∥∥∇F (θ̄
(t)
)
∥∥∥2}− 1

2
η(t)E


∥∥∥∥∥

K∑
k=1

pk∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+);B
(t)
k,−

)∥∥∥∥∥
2


+
1

2
η(t)E

{
LK

K∑
k=1

p2k

∥∥∥θ̄(t) − θ
(t)
k − ṽk(θ

(t)
k ,B(t)

k,+)
∥∥∥2}

≤ −1

2
η(t)E

{∥∥∥∇F (θ̄
(t)
)
∥∥∥2}− 1

2
η(t)E


∥∥∥∥∥

K∑
k=1

pk∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+);B
(t)
k,−

)∥∥∥∥∥
2


+
1

2
η(t)E

{
LK

K∑
k=1

p2k

∥∥∥θ̄(t) − θ
(t)
k

∥∥∥2}+
1

2
η(t)E

{
LK

K∑
k=1

p2k

∥∥∥ṽk(θ
(t)
k ,B(t)

k,+)
∥∥∥2}

≤ −1

2
η(t)E

{∥∥∥∇F (θ̄
(t)
)
∥∥∥2}− 1

2
η(t)E


∥∥∥∥∥

K∑
k=1

pk∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+);B
(t)
k,−

)∥∥∥∥∥
2


+
1

2
4η(t)

3
LK

K∑
k

p2k(E − 1)2G2 +
1

2
η(t)LK

K∑
k=1

p2kρ
2
k

≤ −1

2
η(t)E

{∥∥∥∇F (θ̄
(t)
)
∥∥∥2}+

1

2
4η(t)

3
LK

K∑
k=1

p2k(E − 1)2G2 +
1

2
η(t)LK

K∑
k=1

p2kρ
2
k,

65



where the first inequality uses triangular inequality, the second inequality holds by the L-

smoothness assumption, the third holds by triangular inequality, the fourth inequality holds

because E
{
∥θ(t)

k − θ̄
(t)∥2

}
≤ 4η(t)

2
(E − 1)2G2 as shown in A.2, and the last inequality holds

since

−1

2
η(t)E


∥∥∥∥∥

K∑
k

pk∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)
)∥∥∥∥∥

2
 ≤ 0 .
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Bounding B:

B = E
{∥∥∥θ̄(t+1) − θ̄

(t)
∥∥∥2} = E

{∥∥−η(t)g̃(t)
∥∥2} = η(t)

2E


∥∥∥∥∥

K∑
k=1

pkg̃k(θ
(t)
k ,B(t)

k,−,B
(t)
k,+)

∥∥∥∥∥
2


= η(t)
2E


∥∥∥∥∥

K∑
k=1

pk∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+);B
(t)
k,−

)∥∥∥∥∥
2


≤ η(t)
2E


∥∥∥∥∥

K∑
k=1

pk

[
∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+);B
(t)
k,−

)
−∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)
)]∥∥∥∥∥

2


+ η(t)
2E


∥∥∥∥∥

K∑
k=1

pk∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)
)∥∥∥∥∥

2


≤ η(t)
2
K

K∑
k=1

p2kE
{∥∥∥∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+);B
(t)
k,−

)
−∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)
)∥∥∥2}

+ η(t)
2E

{
K

K∑
k=1

p2k

∥∥∥∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)
)∥∥∥2}

≤ η(t)
2
K

K∑
k=1

p2kσ
2
k + η(t)

2E

{
K

K∑
k=1

p2k

∥∥∥∇Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)
)∥∥∥2}

≤ η(t)
2
K

K∑
k=1

p2kσ
2
k + η(t)

2E

{
K

K∑
k=1

p2k 2L

[
Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)
)
− Fk (θ

∗)

]}

= η(t)
2
K

K∑
k=1

p2kσ
2
k + η(t)

2
E

{
K

K∑
k=1

p2k 2L

[
Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)
)
− F (θ∗) + F (θ∗)− Fk (θ

∗)

]}

≤ η(t)
2
K

K∑
k=1

p2kσ
2
k + η(t)

2
E

{
K

K∑
k=1

pk 2L

[
Fk

(
θ
(t)
k + ṽk(θ

(t)
k ,B(t)

k,+)
)
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where the first inequality holds by triangular inequality, the second inequality holds by Jensen’s,

the third holds by assumption 3, the fourth inequality holds by smoothness, and the fifth holds

since 0 ≤ pk ≤ 1.Note that, we define the degree of non-i.i.d.-ness as Γk = F (θ∗)− Fk(θ
∗). We
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not bound B1 as follows
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2here the fourth inequality holds since E
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Plugging back in B, we get
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Thus,
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We then obtain,
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where
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Take the summation on both sides over t, we obtain
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which completes the proof.
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Appendix B

Experimental Details

In this appendix, we discuss the models we used in our experiments. To construct these

models, we utilized the ”F” and ”nn” modules from the PyTorch library, which provide essen-

tial tools for building neural networks. The ”nn” module encompasses various layers, including

linear, convolutional, and recurrent layers, among others, which are crucial building blocks for

constructing complex neural architectures. On the other hand, the ”F” module contains a set

of functions that operate on tensors, including activation functions, loss functions, and opti-

mization functions, vital for training neural networks effectively. By leveraging these powerful

built-in tools, we were able to design and implement our experimental neural network models

efficiently and effectively.

CNN model on MNIST Dataset:

The CNN architecture for the MNIST dataset is made of 2 convolutional layers with kernel

sizes of 5 followed by a rectified linear unit activation (ReLU) and max-pooling operations.

Dropout is then applied to the output to avoid overfitting during the training process. Finally,

a logarithm of the soft-max function is applied to the output layer to produce class probabili-

ties, enabling efficient classification of the input digits into the ten possible categories.

CNN model on FMNIST Dataset:

The Convolutional Neural Network (CNN) architecture for the Fashion-MNIST dataset is struc-

tured with two convolutional layers, each followed by batch normalization, Rectified Linear Unit

(ReLU) activation functions, and max-pooling operations. The first convolutional layer takes a
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1-channel input (grayscale images) and outputs 16 feature maps, while the second convolutional

layer takes 16 feature maps and outputs 32 feature maps. Following the convolutional layers,

the output is flattened and passed through a fully connected layer with 10 output neurons,

corresponding to the number of classes in the Fashion-MNIST dataset.

CNN model on CIFAR-10 Dataset:

The convolutional Neural Network (CNN) architecture for the CIFAR-10 dataset is built with

2 convolutional layers, followed by max-pooling, each employing a 5x5 kernel size. These 2

fully connected layers are applied with ReLU activation function. Finally, the output layer

produces class predictions by employing a logarithm of the softmax function to generate class

probabilities, aiding in the efficient classification of input images of CIFAR into their respective

categories.

MLP model on MNIST Dataset:

The MLP model has an input layer, a hidden layer with Rectified Linear Unit (ReLU) activa-

tion function, dropout regularization, and an output layer with softmax activation. The input

data is reshaped to a 2D tensor before passing through the input layer. The dropout layer is

applied to prevent overfitting, and ReLU introduces non-linearity crucial for capturing complex

patterns. The softmax activation at the output layer produces class probabilities, facilitating

easy interpretation and classification.

ResNet-18 on CIFAR-10:

Our ResNet-18 begins with an input layer for processing 3-channel RGB images, followed by

a series of convolutional layers, each equipped with batch normalization and Rectified Linear

Unit (ReLU) activation functions. The network includes residual connections, implemented

through BasicBlocks, which enable the gradient to flow more effectively during training. These

blocks are stacked together to form four stages, gradually downsampling the feature maps while

increasing the number of filters. A global average pooling layer is employed to reduce the spa-

tial dimensions of the feature maps before passing them through a fully connected layer. The

ReLU activation function is utilized throughout the network, except for the output layer, where

softmax activation produces class probabilities.
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To achieve the best results, we did extensive hyper-parameters fine-tuning. The hyper

parameters that we fine-tuned are:

• We structured our federated learning system to involve 100 clients. In each training round,

a fraction of 0.1 (10 % ) of these clients was randomly chosen to participate, contributing

to the collaborative learning process.

• learning rate was fine-tuned. Best results were achieved on different values of η in each

experiment (given the different datasets and different model architectures). We manually

tried several values from a large grid:

{0.1, 0.01, 0.001, 0.0001, 0.5, 0.3, 0.05, 0.003, ....}. Each experiment worked best on a dif-

ferent value of learning rates. To avoid overfitting, we added a learning rate scheduler of

0.998 at each communication.

• The local batch size for clients was fine-tuned and different values gave the best results

in each set of experiments. The batch size determines the number of samples processed

in each training iteration and plays a crucial role in optimizing memory usage and model

convergence. We tried a very wide range of values 10, 24, 32, 64, 128, and 256. For our

algorithm, the best results were achieved on a local batch size of 50 on the MNIST dataset,

32 on the FMNIST dataset, and 128 for CIFAR-10.

• The local epochs represent the number of iterations that each client’s model undergoes

training on its local dataset. This local training allowed each client to learn from its data

while respecting data privacy. The local epochs were fine-tuned with a minimum number

of 3 local iterations, and a maximum of 10 local steps. For our method, we set local

epochs to 5 for i.i.d. distribution and 3 for non-i.i.d. case.

• Momentum is fine-tuned and set to 0.99

• weight decay is fine-tuned and set to 1e− 6

• Batch norm is fine-tuned and set to 32
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• For the model’s convolutional layers, we experimented with different kernel sizes to extract

features effectively. As a default setting, we used kernel sizes of 3, 4, and 5. These kernel

sizes determined the receptive fields of the convolutional filters and played a crucial role

in capturing relevant patterns from the input data.
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