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Abstract
of the Thesis of

Sasha Johnny Ghaya for Master of Science
Major: Computational Science

Title: Inventory System with Scheduled Demand and Distributed Supply

We consider a simple supply chain model constituted of a retailer facing end-
consumers’ demand while being supplied by a large number of suppliers. We model
the retailer as a single server queue while the independent suppliers are assumed to
form an infinite server system. Many applications can fit this setting. We focus in
this work on the case where the market demand is predictable (i.e., orders arriv-
ing following a deterministic sequence) while concentrating the uncertainty on the
supply side through the processing time of each “server”. In this setting, suppliers
decide first on their capacity level followed by the retailer who decides on the ade-
quate base-stock level. From a queueing perspective, suppliers can be represented
by a D/G/∞ queue. The retailer’s queue turns out to be an S/D/1 queue (the S
denotes a scheduled traffic as defined in Araman et al. (2021)), where the positive
perturbation is the supplier’s processing time. To analyze this system, we consider
first the centralized system as a benchmark where the retailer sets both the capacity
level as well as the base-stock level. For the decentralized setting, we consider two
cases. In the first one, all suppliers are under one supply function and decide their
capacity levels as one entity. In the more interesting case, we assume that suppliers
decide individually on their capacity. The objective function is the inventory cost
rate that suppliers and retailer are each minimizing. Even under exponential per-
turbations, the problem is intractable. We therefore suggest, through an asymptotic
analysis, a full characterization of the optimal centralized and Nash solutions under
a heavy traffic regime. Moreover, we perform a numerical analysis to validate these
approximations through a Monte Carlo simulation.
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Chapter 1

Introduction

The gig economy has emerged as a prominent force in today’s business landscape,
significantly impacting the way companies operate and the nature of employment.
By definition, the Gig economy is a labor market that relies heavily on freelancers
and independent workers to perform temporary tasks/ jobs and provide short-term
services rather than traditional full-time employment. Typically, workers and cus-
tomers are linked through an online or digital platform that would match the worker
to a task or a customer. These platforms employ millions of workers every year, and
it is expected that the economy reaches $873 billion by 2031. The gig economy offers
the workers flexibility in their schedules and allows them to select tasks that match
their interests and abilities. Moreover, it provides them with a source of income often
to complement their primary employment earnings. It encourages autonomy seek-
ing and offers a diverse work experience. On the other hand, it provides customers
with more customized services and innovative solutions, often at competitive prices.
Additionally, platform-based services gives customers easier access to services that
meet their demand.

Often such mode of employment is prevalent within the service sector, notably in
transportation. Uber and Lyft are prime examples of how businesses have leveraged
the gig economy in the context of hail-riding. These platforms connect users with
independent drivers who can provide on-demand transportation services and thus
offer several advantages, including ease of booking, cashless transactions, and reliable
service. Clearly, such crowdsourcing-like activities have extended to diverse other
fields including healthcare, design, professional services, and beyond.

In recent times, flexible employment strategies have also been implemented
within the manufacturing sector. Some companies, like SOKO and Bokksu, are
now establishing what is known as a distributed supply chain designed around nu-
merous small local suppliers (often specialized artisans) instead of relying on large
global manufacturing plants. SOKO, a Nairobi-based company connects businesses
directly with independent artisans and suppliers in emerging markets, allowing for
transparent and ethical sourcing of unique handmade products. These work oppor-
tunities not only empower local artisans but also provide businesses such as SOKO
with a diverse range of high-quality products produced locally. On the other hand,
Bokksu specializes in the distribution of Japanese snacks and treats. The platform
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partners with local snack makers in Japan and then delivers these curated snacks
directly to customers worldwide. This direct connection between independent snack
makers and consumers not only ensures the authenticity and quality of the products
but also promotes cultural exchange and appreciation. Both Soko and Bokksu ex-
emplify how the gig economy has facilitated direct connections between businesses
and independent suppliers, offering a range of benefits such as streamlined procure-
ment processes, access to unique goods, and the opportunity to support independent
artisans and local businesses.

In view of the above, our aim in this project is to analyze simple supply chains
that rely on distributed systems, understand the complexity induced by the large
number of players involved and finally contribute to how to make such systems more
efficient. For that, we consider a two-tier supply chain constituted of a make-to-stock
retailer and a distributed system of suppliers that we denote by the supply function.
The retailer faces a stream of orders from customers that need to be met from its
current inventory (stock). The retailer relies on the supply function to replenish
its inventory when needed. The latter through the large number of independent
and active suppliers offers a major flexibility to the retailer but induces also a great
uncertainty in the system. In our aim to understand these conflicting features and
their impact on the supply chain, we restrict the uncertainty in the system to the
supply side, specifically through the processing times of orders and focus on set-
tings where the demand stream is (quasi) deterministic. This latter assumption is
in line with a number of current applications specifically in the context of Gig econ-
omy. Indeed, recent years have seen a rise in companies with subscription models
or appointment-based systems. This type of models gives the company a higher
visibility on its upstream demand and allows them to reduce the unpredictability of
their orders’ arrivals.

Our objective is to understand the intricate relationship between a central re-
tailer and a distributed supply system. In this context, the research questions we
ask revolve around the operational and tactical considerations of both the retailer
and suppliers as independent cost minimizing entities. In particular, the retailer
is deciding on the replenishment quantity which is reduced to setting a base-stock
level. As for suppliers they face tactical decisions regarding the capacity level they
will be allocating to the retailer.

We adopt a queueing theoretic approach to model a competitive supply chain in
the presence of large number of suppliers. We rely on asymptotic approximations
governed by a heavy traffic regime that seems natural in the context of the gig econ-
omy. Our main contributions are manifold, of which the most important are: i) a
tailored queuing theoretic model for a supply chain with distributed system that is
amenable for (asymptotic) analysis in a game-theoretic context. Moreover, ii.) the
handling of the game theoretic dynamics using mean field games in the context of
competitive supply chains that involves a large number of players. Such approach
would allow firms to simplify very complex dynamics and obtain a full characteriza-
tion of the equilibrium, leading eventually to the design of mechanisms (contracts)
that allow to reach the first best solution. In addition, iii.) it is worth noting that
even the centralized case where one player is making all the decisions, the problem
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is quite complex given the infinite dimensional optimization problem involved. We
handle this issue by showing that the infinite number of decisions can be represented
at optimality by an empirical distribution which always be mapped to a uniform
distribution. Finally, iv.) many managerial insights can be obtained from our anal-
ysis regarding a relevant and contemporary filed that has been overlooked in the
literature. Before introducing the model in Chapter 3, Chapter 2 is devoted to the
literature review that positions the paper in the context of a large stream of pa-
pers on competitive supply chains but that lacks exhaustive coverage of distributed
systems. Our main results are obtained in Chapter 4. We start by analyzing a
centralized chain looking for the first-best solution. In the decentralized setting we
consider two cases. First, the case where the entire supply function is centralized
represented by one large entity. More importantly, we analyze next the case of a
fully decentralized system where each supplier is an independent entity. In these
two cases, we look for the Nash equilibrium and measure the inefficiency relatively
to the first-best solution. For the fully decentralized case, we reduce the dynamics
complexity through the use of mean field equilibrium. We show the existence of
such equilibrium and obtain a full characterization of the solution. In Chapter 5
we suggest a mechanism design through a class of contracts that if offered by the
retailer, would lead to a full coordination and efficiency of the supply chain. These
contracts not only achieve a first best solution, they do so by improving all the agents
performance. Finally, in Chapter 6 we consider Stackleberg’s games, where one of
the agents is a leader. This gives the leader an advantage as they optimize their
decision variables given the response function of the remaining agents. Finally, in
Chapter 7, we perform a numerical analysis through Monte Carlo simulation to ver-
ify our results. We should specify that the theoretical results obtained throughout
are coupled with a numerical analysis that allows us to either extract the relevant
managerial insights, verify optimal solutions or calculate numerically non-tractable
solutions.
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Chapter 2

Literature Review

Over the last few decades, supply chain management has been the center of extensive
research which came to complement and build upon a vast literature on logistics and
in particular on inventory management that date back to a paper published in 1913
by Ford Whitman Harris as reported by [1], followed by many influential work such
as the seminal paper of [2]. This literature views the problem from the perspective
of one firm, and focuses typically on obtaining optimal policies regarding inventory,
transportation, capacity, among many other logistical drivers. We refer to two
recent reviews by [3] and [4] on Capacity and Inventory Management for the first
and on different types of Capacity Management for the second. We also mention [5]
who analyze a setting of coordinated inventory and capacity management through
process simulation.

Supply chain management on the other hand is primarily interested in the inter-
action between multiple players who either belong to different supply chain stages
(supplier and retailer) or/and to the same stage (supplier and multiple retailers).
In this work we are interested in the concept of distributed supply where a retailer
relies on a very large number of small suppliers to produce its products and meet
market demand.

The literature on supply chain management has been tackling a number of prob-
lems stemmed from these multi-agents interactions and the inefficiencies they gen-
erate caused by a variety of issues such as (the lack of) information sharing (e.g.,
Bullwhip effect ([6]) or double marginalization effects and contract design (see, [7]).
We contribute to this literature by introducing a model for a distributed supply
system and aim at understanding its implications on the supply chain, in particular
on the retailer’s performance and on customers’ satisfaction. We are specifically in-
terested in analyzing the connection between a decentralized capacity decision from
the supply side and an inventory decision from the retail side.

A great majority of the supply chain management literature considers discrete
time settings such as one or two periods problems. We refer again to [7] for a
comprehensive review and mention couple of other papers that are connected to
our work and representatives of this literature. The work of [8] introduces a two-
stage supply chain where a supplier and a retailer choose each their base-stock
policies independently in the context of two different information tracking settings.
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A Nash equilibrium is obtained for each setting and the solutions are compared
to the centralized case. The results confirm that competition increases operational
inefficiency. Other papers like [9] and [10] model a more complex system involving
a single supplier and many retailers. Both papers prove the existence of a Nash
equilibrium that is shown to be different than the first best solution. We also
mention [11] who consider a supply chain constituted of a number of manufacturers
competing for one retailer’s business. Manufacturers start each by offering a contract
to the retailer and accordingly the retailer responds by setting the market prices
which would determine the demand function. Three different types of contracts
are considered which lead to different dynamics from the case of a simple one-
manufacturer and one-retailer supply chain.

There is a stream of supply chain papers that emphasize the time dynamics
through the use of continuous time models, often relying on queueing systems to
represent the various players involved. An early example is [12], who introduce a
customers’ balking model in the context of a toll company seeking to design regu-
lations that would allow it to maximize profit and improve service. A more recent
work is [13] who suggest an incentive-compatible priority pricing scheme that max-
imizes social welfare. The provider decides on the price followed by wait-sensitive
customers who decide to join the system or not and at what priority level. Among
those using queueing-based modeling, the closest paper to ours is [14] that models a
make-to-sock retailer facing a Poisson process demand function. Like us, the retailer
applies a base-stock policy and continuously replenishes its demand from a single
supplier however the latter is modeled as a single server queue. The paper obtains
a Nash equilibrium in the decentralised setting that is compared to the solution of
the centralised problem. The paper suggests a family of contracts based on transfer
payments that coordinates the system.

There are many differences between the current work and [14]. Structurally
speaking, we consider a distributed supply rather than a single supplier and account
for the processing time that occurs at the retailer level through an additional (sin-
gle server) queue. As opposed to the typical Poisson process demand used in such
models, we consider a deterministic demand in order to further highlight the suppli-
ers’ uncertainty. This assumption requires the use of a new set of queueing results
away from those of a standard M/M/1 model that is typically used in the literature
(e.g., [14]). The deterministic demand assumption can be suitable in many real-
world applications when a renewal or a Poisson process assumption might not at all
be adequate. For instance, many systems are increasingly requiring a pre-defined
schedule to receive orders (e.g., Amazon fulfillment center) and others rely highly
on appointments. As a result, the entire analysis in this work is different than that
of [14].

Another stream of recent literature that is relevant to ours is that concerned
with the operations of Gig economy and crowdsourcing. An illustration of it is
[15], where an on-demand platform is studied. In their platform, customers exhibit
sensitivity to delays and ’independent’ agents decide whether or not to participate
in the platform. Taylor’s analysis assumes that job allocation mechanism is a given
factor and primarily delves into the repercussions of customer delay sensitivity and
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worker independence on optimal prices and wages. Another relevant work is by
[16], where they model an online labor platform’s operations. The demand are the
customers that submit jobs to be fulfilled in a certain amount of time while the
supply is the workers in need of a job. They are connected through a platform that
assigns jobs to workers and charges them a certain price. They propose a pricing
and allocation policies that would maximize revenues and minimize unpredictability
in workers’ profits. They show the optimality of their policy through an asymptotic
analysis and examine its performance through a discrete event simulation. Similar
to ours, both these works model there platform through queueing models, but they
are both concerned about pricing and job allocation.

Another relevant stream of papers is the one concerned with stochastic games
involving a large number of interacting players. Some of them explore the “Mean-
Field equilibrium”, a distinctive form of Nash equilibrium where each player’s strat-
egy is influenced by the population’s behavior. [17] and [18] draw inspiration from
statistical physics and introduce Mean Field Games (MFG), where the key con-
cept is to utilize the mean field distribution associated with the limiting scenario of
infinite players. This simplifies the model and its analysis, as it replaces the inter-
action between all individuals with the interaction of one player and the mean field
distribution. One application of this equilibrium is [19] where they survey the liter-
ature and combine MFG with reinforcement learning. Another application is [20],
where the authors describe a system of repetitive ad-exchange auctions.The pub-
lisher maximize her pay-off and advertisers optimizes their bidding strategy. Their
main contribution is to provide a new notion (Fluid Mean Field Equilibrium) that
combines the standard Mean Field Equilibrium with Stochastic Fluid approxima-
tions. Some common factors between our and [20]’s work is the use of infinite queue
with general service time. The players (advertisers) are also involved in what we call
a vertical game as they compete to optimize their policies and thus increase their
profit through an auction. In contrast, our work contributes in making use of the
Mean Field equilibrium to allow suppliers competing to optimize their capacity and
thus minimize their costs.
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Chapter 3

The Model

3.1 Model set-up and Ingredients

Consider a distributed system made of a large number of suppliers working inde-
pendently of each other. This supply function is connected through a mobile tech-
nology to a retailer that typically owns the intellectual property (e.g., a jewellery
designer). Every season, the retailer introduces new designs and train the suppli-
ers - local artisans - on each one of them before the start of the season. Once the
season starts, the retailer receives orders continuously from direct customers and
fulfill them from its inventory. The retailer replenishes its inventory by transmitting
orders in a distributed manner to the suppliers through mobile technology. These
artisans/suppliers produce and deliver back the orders to the retailer who is usually
responsible for testing the units before making them available for sales. We disre-
gard in this model any defect rate. When backorders occur at times where there is
no current inventory to meet demand, all the players of the supply chain share the
costs. We denote by b the unit backorder cost and by α ∈ [0, 1] the share of the
retailer from the backorder cost (with 1−α being the share of the supply function).
The retailer also incurs a holding cost h per unit of inventory that is held. As for the
suppliers, each one of them needs to decide the capacity to allocate to the retailer
and for that they incur a capacity cost which often reflects the missed opportunity
of not allocating this capacity for other endeavors available.

The supply function is made of a large number of suppliers/artisans that are
independent who process and deliver orders as received from the retailer at their own
pace governed by the capacity allocated. It is therefore natural to view this supply
function as a multi-server queueing system. In that regard, we specifically consider
an infinite server queue given the very large number of artisans typically involved
in the distributed systems we are interested in. The queueing system faces an
input traffic corresponding to customers demand while the output process represent
finished goods meant to replenish the retailer’s inventory.

We assume in this work that end customers’ demand is constant and determin-
istic with a rate of arrivals denoted by λ. The demand is met from the retailer’s
inventory otherwise backlogged. The retailer follows a base-stock policy which is
parameterized by S, and replenish orders by relying on the network of suppliers.
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Each order received downstream is then automatically transmitted to an idle sup-
plier. Once processed, the order is submitted to the retailer who checks the quality
and makes it available for sales. We could view the retailer as a single server queue
with input traffic the departure process from the supply function. We will argue
later that under some assumptions this queue has no impact on the analysis and one
can drop it. The retailer can therefore be reduced to the platform that meets the
demand from its inventory while simultaneously ordering a replenishment for these
demanded units. The latter policy is a practical execution of an order-up-to policy.
We assume that supplier k has full control on the capacity µk to allocate to the order
received form the retailer. We denote by ξkn the processing time of order n if allocated
to supplier k with µk = 1/Eξk1 and assume that for any k, (ξkn : n ≥ 0, k ≥ 0) is an
independent sequence of random variables (rv’s) with known distribution governed
by µk. For most of our analysis we assume that ξk1 is exponentially distributed with
rate µk. In terms of notations, we drop the k from ξk1 for a generic supplier. We
also denote by EF the operator expected value with respect to a distribution F . We
drop usually F from the notation when it is clear with respect to which distribution
the operator is applied to.

As mentioned above, the problem we are facing is one of large number of artisans
and a retailer (supply chain agents) where each one of them independently makes an
operational decision. The retailer needs to decide on the base stock policy S, while
each supplier k decides on the capacity µk to allocate to the retailer. The resulting
performance of each agent obviously depends on its decision and all the other agents’
decisions. We suggest to structure and analyze this game theoretic setting following
“Mean Field Games(MFG)”. These types of games offer a mathematical frame-
work that lends itself for strategic interactions among a large number of agents. We
refer the reader to [19] for a survey on the different types of MGFs with specific
example for each type. In this work, we rely specifically on “static MFGs” where
agents, as opposed to dynamic games, take a single decision with no impact of time.
The agents will be looking for a “Mean Field Nash Equilibrium (MFNE)” where
the equilibrium represents a stable state, in the sense that no agent has an incentive
to unilaterally deviate from its position when all other agents are assumed to keep
theirs. In our model, the final values of µk’s define a distribution that we denote by
Γ which represents the population behaviour. The induced r.v. is denoted by µ̂. As
[19] describes, the MFNE is a pair of elements: the individual behaviour and the
population behaviour. In our case, these are µ∗

k and Γ∗.
Note that it is extremely hard for the retailer to track each supplier’s capacity

given their number and the complex setting they operate in. Moreover, the ca-
pacity of a supplier might change between one order and the other even though in
equilibrium the overall distribution remains the same. Finally, in many cases, the
platform announces the order and the order is allocated to the artisan who accepts
it first and hence the retailer cannot predict which supplier will do. For all these
different reasons, we assume throughout this analysis that the retailer doesn’t know
the supplier’s capacity when allocating an order, and hence from her perspective the
capacity allocated to an order is a random variable µ̂ (with µk being a realisation of
µ̂ for supplier k) which again its distribution is given by the equilibrium distribution,
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Γ that we denote the capacity distribution for the supply function. We also define
the quantity

ζ1 = EΓ[ξ1|µ̂],
which can be viewed from the retailer’s perspective as the random processing time.
The sequence (ζj : j ≥ 1) is also i.i.d. Note that even though the retailer doesn’t
know the specific capacity of each supplier at the time of allocation, she knows the
distribution Γ.

The state process depicting the dynamics of the system is the inventory level held
by the retailer at any time t. Given the order-up-to policy followed by the retailer,
the inventory level is equal to the base stock level S minus the number in system at
the supply function, Ns(t) and minus the number in system at the retailer’s single
server queue, Nr(t). Given Γ the capacity distribution for the supply function, the
number of units Ns(t) that are currently being produced by the supply function at
time t, can be viewed as the number in system of a D/G/∞ with processing times,
ζ and interarrival times, 1/λ. It is shown in [21] that such queueing system admits
a steady state distribution. The next lemma characterizes this distribution.

Lemma 1

Ns

d
=

∞∑
j=0

I (λξj + U > j) ,

where U is a uniform random variable.

This uniform random variable is introduced only for technical reasons in order to
guarantee the existence of a steady state. It will not play any role in our analysis.
We note from [21] that the quantity Ns is well defined for a large class of distributions
and for instance admits a finite first moment as long as ξ1 does. For more details
on the variable U or in general on this quantity, we refer to [21].

As for the number of units at the retailer at time t, Nr(t) represents the number in
system of an S/D/1 queue which is a single server queue where the processing times
are deterministic with service rate τ , and the arrival traffic is following a so-called
scheduled process. The latter is the traffic obtained from an initially deterministic
and constantly paced process that is perturbed at each point. Such process is exactly
the departure process from an infinite server queue with deterministic input like
the one associated with the large scale distributed system we are considering here.
Interestingly, for such S/D/1 queue with constant processing times we have that

Nr = ⌈W ρ
r (t)⌉,

where W ρ
r (t) is the workload which is the total work accumulated at time t that

hasn’t been processed yet, and ρ is the utilization of this queue. We refer to [21] for
more details on this type of traffic and corresponding queue.

3.2 Supply Chain Costs

All the players in the supply chain be it the suppliers or the retailer are interested in
minimizing their costs. We denote by ck the cost of maintaining a unit capacity for
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Figure 3.1: Queueing Model

supplier k. Each supplier knows its costs which can be viewed as an opportunity cost.
Each artisan’s conditions are different and the opportunities available are different
and the supplier is giving up on these when offered to work on an order from the
retailer. From the retailer’s perspective the supplier’s cost is a random variable ĉ

with some given distribution. Set µ = (µk : k ≥ 1) ∈ R∞
+ and let N

∆
= Nr + Ns.

The retailer incurs a holding cost on each unit in inventory and a backlog cost when
demand is not directly met. The backlog cost is shared between the retailer and the
supply function with α being the retailer’s share of the cost. The total inventory
cost rate is then given as follows:

TCr(S;µ) = hE[S −N ]+ + α bE[N − S]+ (3.1)

where h and b are respectively the marginal holding and backlog costs.
Accordingly, the retailer is then solving the following problem:

min
S

TCr(S;µ).

We move to discuss the supply function problem. Given a supply function ca-
pacity µ, the total cost rate of the supply function, TCs(µ;S) is given by:

TCs(µ;S) = (1− α) bE[N − S]+ + E[ĉµ̂]. (3.2)

In order to argue for the above cost, we start with an observation. Note that
the infinite server setting can be viewed as a system that guarantees to the retailer
at any time t, and without any delay, that a server is available to take an order.
Having that property in mind, we define the index k(t) of the idle server/artisan to
whom an order will be allocated to would an order be received at time t. WLOG,
we assume that k(t) remains constant between orders and changes value only once
an order is received. If the order is received at time t then it is allocated to k(t−)
and k(t) takes a new value which is the server’s index that the next order will be
allocated to.
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We can now write the long time average cost incurred by the supply function as
follows:

ΨT =
1

T

∫ T

0

(
(1− α)b

µ−1
k(t)

EΓ µ̂
−1 [N(t)− S]+ + ck(t)µk(t)

)
dt.

The first term in the integral is the supply function’s share of the backlog and
the second term is the cost incurred by the supply function at time t to insure that

a capacity µk is available to the retailer. Regarding the first term, the factor
µ−1
k

EΓ µ̂−1

represents a way to reward suppliers that select a larger capacity than the average
by incurring a smaller share of the backlog cost. Therefore, TCs(µ;S) is obtained
as the limit of ΨT as T → ∞.

Given an order-up-to policy S followed by the retailer, the previous long time
average cost formulation allows us also to identify the optimization problem that
each supplier is then solving which is:

min
µk

TCk
s (µ;S),

where

TCk
s (µ;S) = (1− α) b

µ−1
k

EΓ µ̂
−1 E[N − S]+ + ckµk. (3.3)

The expected value is with respect to all the uncertainties, i.e., the process, the
capacity level and the marginal capacity cost.

We could have considered the more general situation where supplier k sets a
randomized policy by deciding on a distribution πk from which a value µk is drawn
each time supplier k receives an order. However, the fixed value of µk is without
loss of generality.

3.3 Asymptotic Formulation: Set up

The supply chain optimization problem formulated in the previous section are in-
tractable. It involves infinite number of simultaneous non linear optimizations driven
by the heterogeneity of the suppliers reflected by their capacity cost ck which will
drive them to possibly select different capacity levels. Moreover, the main uncer-
tainty they generate is driven by the processing times ξ. We tackle this problem by
following an asymptotic analysis that will allow us to exploit a more manageable
structure through careful scaling of the different parameters and thus reducing the
complexity of the dynamics while retaining the essential characteristics and specif-
ically the right trade-offs of the original problem, leading to limiting results that
would naturally be good candidates for equilibrium approximations of the original
problem. A common scaling mode in the context of queueing theory is obtained by
driving the system into so-called heavy traffic or balanced loading. It’s worth not-
ing that multiple heavy traffic regimes may exist, each yielding different outcomes
depending on the specified conditions.
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In our context, a natural scaling is the one obtained by letting the demand
rate grows linearly in some parameter n: λn = nλ. We parameterize all the other
relevant quantities by n, in particular Sn, Nn and ĉn. Regarding the latter quantity,
we assume that

ĉn/
√
n⇒ ĉ,

as n → ∞, where ĉ is a random variable with known distribution. Our analysis
relies on the following Central-limit-theorem-like result for the number of items at
the supply function level. Recall that ζ = (ζi : i ≥ 1) which is the sequence of
expected value of the processing times at each supplier conditioned on the value of
the capacity selected by the supplier. It is practically, the service time sequence of
the infinite server queue that make-up the supply function.

Proposition 1 When n→ ∞,

Nn
s − nE [ζ1]√

n
⇒ Z ∼ N (0, σ2),

where σ2 =
∫∞
0
F (x)F̄ (x)dx with F̄ (x) = P(ζ1 > x)EΓP(ξ1 > x|µ̂).

Lemma 2 Assume that all the processing times are exponentially distributed with
rate µk, ξk ∼ exp(µk), then

σ2(µ) = E[
1

µ̂′ ]− E[
1

µ̂+ µ̂′ ] = EΓ,ξ max{0, ξ − ξ′}.

Moreover, the following critical bound holds no matter the distribution Γ,

σ2(µ) ≥ 1

2EΓµ̂
. (3.4)

As for the number of items at the retailer’s, we base our analysis on recent
results of [21]. Under some minimal moments assumption on the perturbations ξ
(light tailed or at least not too heavy-tailed) [21] show that under heavy traffic,
ρ→ 1,

log log
(

1
1−ρ

)
log
(

1
1−ρ

) W ρ(∞) ⇒ 1

β
,

where β > 1. Given that Nr = ⌈W ρ
r (t)⌉ and by scaling ρ by n in our case, so that

ρn → 1 as n→ ∞, we obtain based on the results of [21] for an S/D/1, that

Nn
r√
n
→ 0 a.s.

as n→ ∞.
Based on the above result, we therefore have that Nn ≈ Nn

s for n large. For this
reason, we drop Nn

r from our analysis for rest of this work i.e., the number of items
in the system is equivalent to the number of items in the supply function.
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Chapter 4

Centralized And Decentralized
Solutions

4.1 Centralized Setting

We start our analysis by considering the centralized system, where the entire supply
chain (retailer and supply function) is governed by one decision maker, namely the
retailer. This vertically integrated view of the supply chain is interesting by itself but
more importantly establishes a benchmark for evaluating the efficiency of the fully
distributed system introduced in the previous chapter. In this scenario, a single
decision maker (namely the retailer) has full control over the entire supply chain
and would therefore simultaneously optimize for both the base-stock level and the
capacity of each supplier in the objective to minimize the total cost of the supply
chain.

Following the asymptotic formulation set-up discussed previously, we write the
scaled supply chain aggregate cost denoted by TCn(Sn,µ):

TCn(Sn,µ)√
n

=
1√
n
[TCn

r (S
n;µ) + TCn

s (µ;S
n)]

=
1√
n

[
hE[Sn −Nn]+ + bE[Nn − Sn]+ + E[ĉn µ̂]

]
. (4.1)

We start by showing that for any value of S and µ, the total cost can be asymptot-
ically well defined.

We denote by Sn a base-stock level for system n and define Sn
0 such that

Sn = nEζ +
√
nσ zn0

and impose that zn0 → z0.
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We write the total centralized cost as follows:

TCn(Sn;µ)√
n

=
1√
n

(
hE[Sn − nEζ − (Nn − nEζ)]+ + bE[Nn − nEζ − (Sn

c − nEζ)]+
)
+

1√
n
E[ĉn µ̂]

= hσ E[zn −Xn]+ + b σ E[Xn − zn0 ]
+ +

1√
n
E[ĉn µ̂]

⇒ T̃C(z0;µ)
∆
= hσ E[z0 − Z]+ + b σ E[Z − z0]

+ + E[ĉ µ̂]

as n→ ∞, where we set Xn = Nn−nE[ζ]
σ
√
n

and used Proposition 1 and the Continuous

Mapping Theorem, to reach the above (weak) limit.
The optimization problem that the centralized decision maker is facing is now

reduced at the limit to:

min
zc,µ

T̃C(zc,µ), (4.2)

We denote by S∗,n the optimal base-stock level for system n and define S∗,n
0 such

that
S∗,n = nEζ +

√
nS∗,n

0 .

Proposition 2 When n→ ∞, then

S∗,n
0 → S∗

0 = σ(µ) z0,

where σ is defined in Proposition 1, and z0 = Φ−1( b
b+h

), with Φ being the standard
normal cumulative distribution.

Proof: Recall that

TCn(Sn
0 ;µ)√
n

= hσ E[Sn
0 /σ −Xn]+ + b σ E[Xn − Sn

0 /σ]
+ + E[ĉn/

√
n µ̂].

With respect to the optimization in Sn
0 , this is a Newsvendor-like formulation

with a constant terms E[(ĉn/
√
n) µ̂] and σ, and hence the optimal centralized stock,

S∗,n
0 /σ = (Gn)−1 (z0) where G

n is the cumulative distribution of Xn/σ. Again, by
Proposition 1 and the Continuous Mapping Theorem, we have that Gn(·) → Φ(·)
which completes the proof.

The previous result shows that the optimal base-stock level i.e., the one that
minimizes the total supply chain cost is given by

S∗,n ≈ nEζ +
√
nS∗

0 .

Interestingly, in this two stage supply chain yet with this multi-layer set of suppliers,
we retrieve a Newsvendor-like solution for the retailer.

As for the suppliers’ capacity, we denote by µ∗ the optimal capacity in the
centralized case that minimizes the limiting total supply chain cost given in (4.2).
In order to simplify the analysis, we assume that the perturbation sequence ξ1 follows
an exponential distribution each with some rate µ (a realization of µ̂, i.e. depending

20



to which supplier the order is allocated). The problem remains complex given the
infinite dimensional nature of the optimization. The next result is fundamental in
solving this problem, as it allows one to reduce it to a two-dimensional optimization
problem. We do that, by first recognizing that any centralized solution (4.2), defines
an empirical distribution of µ̂ that we assume to admit at the limit a continuous
distribution, and then we show that the cost minimization is equivalent to the one
where the limiting distribution of µ̂ is reduced to a uniform distribution. It is worth
noting that the result is obtained with no restriction on the distribution of ĉ.

Proposition 3 Suppose ĉ is a random variable with some known distribution and
let µ∗ be the solution of (4.2). Then, there exist positive real numbers, a, b, with

a < b, as well as µ̃∗ ∼ U(a, b) such that T̃C(z0,µ
∗) = T̃C(z0, µ̃

∗).

Proof:
Recall from Chapter (3) that:

σ2(µ̃) = E[
1

µ̃
]− E[

1

µ̃+ µ̃′ ]

and let
r(µ̃) = E[ĉµ̃].

Suppose that the retailer identified the optimal capacity levels for each supplier, and
let µ∗ solution of TC(S,µ). Denote by σ∗2 and r∗ values of σ2 and r that correspond
to this optimal value. We would like to show next that we can still generate the same
values of σ∗2 and r∗ if we restrict the solution µ∗ to be generated from a uniform
distribution. Such claim would mean that it is enough for the retailer to set the
capacities of the retailer in a way that they generate a uniform distribution.

Suppose that ĉ is an r.v. with distribution Fc and WLOG assume that Eĉ = 1/2.
We can write ĉ = F−1

c (U) where U ∼ U(0, 1) and F−1
c is the inverse cumulative

distribution which is also an increasing function. Now, suppose that the optimal
equilibrium distribution Γ has been obtained which is basically the distribution of
µ̂. Knowing Γ fixes also the value of σ2 as well. As for r, given that the retailer is
minimizing Eĉµ̂, each supplier can be parameterized by a value of ĉ and the retailer
will be better off allocating larger values of ĉ to smaller values of µ̂. To do that,
we can write µ(U), as a decreasing linear function that assigns a value of µ to each
value of U . we write µ∗(U) = pU + q. Since U ∼ U(0, 1) and µ̂ ∼ U(a, b), then
µ∗(0) = b and µ∗(1) = a. Hence, we get that p = (a − b) and q = b. It must be
that µ∗(U) = b − (b − a)U . Now we write the system of equations that need to be
satisfied for such µ to be optimal,

r∗ = E[ĉµ] = EU [F
−1
c (U)µ(U)] =

∫ 1

0

F−1
c (t)µ(t)dt = bEĉ−(b−a)

∫ 1

0

tF−1
c (t) =

b

2
−(b−a)A,
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where A =
∫ 1

0
tF−1

c (t)dt > 0. Moreover, consider µ̃, µ̃′ ∼ U(a, b).

σ2(µ̃) = E[
1

µ̃
]− E[

1

µ̃+ µ̃′ ] =
1

b− a

∫ b

a

1

µ̃
dµ̃+

1

(b− a)2

∫ b

a

∫ b

a

1

µ̃+ µ̃′dµ̃dµ̃
′

=
ln(b)− ln(a)

b− a
− 1

(b− a)2

∫ b

a

ln(b+ µ̂′)− ln(a+ µ̂′)dµ̂′

=
ln(b)− ln(a)

b− a
− (2b ln(2b)− 2(a+ b) ln(a+ b) + 2a ln(2a))

(b− a)2

=
ln(b)− ln(a)

b− a
− 2

(b− a)2
(b ln(2b) + a ln(2a)− (a+ b) ln(a+ b))

=
(b− a)(ln(a)− ln(b))− 2b ln(2b)− 2a ln(2a) + 2(a+ b) ln(a+ b)

(b− a)2

=
−(a+ b)(ln(a) + ln(b))− 2(a+ b) ln(2) + 2(a+ b) ln(a+ b)

(b− a)2

=
−(a+ b) (ln(b) + ln(a) + 2 ln(2)− 2 ln(a+ b))

(b− a)2
.

We now need to show that the system{
−(a+b)(ln(b)+ln(a)+2 ln(2)−2 ln(a+b))

(b−a)2
= σ∗2,

b
2
− (b− a)A = r∗.

has a unique solution (a∗, b∗).

Using r∗ = b
2
− (b− a)A, we write

• a = r∗

A
− ( 1

2A
− 1)b,

• b− a = b
2A

− r∗

A
,

• a+ b = r∗

A
−
(

1
2A

− 2
)
b.

Given that a is strictly smaller than b, we should note that r∗ < b/2 is a necessary
condition. The equations above will then allow us to write σ∗2 as a function of b,
given by

σ2∗(b) =
−( r

∗

A
−
(

1
2A

− 2
)
b)
(
ln(b) + ln( r

∗

A
− ( 1

2A
− 1)b) + 2 ln(2)− 2 ln( r

∗

A
−
(

1
2A

− 2
)
b)
)

( b
2A

− r∗

A
)2

.

Solving for b, is equivalent to solving for the solution of the following equality

ln
4b
(
r∗

A
− b( 1

2A
− 1)

)(
r
A
− ( 1

2A
− 2)b

)2 =
−
(

b
2A

− r∗

A

)2
σ2∗

r∗

A
−
(

1
2A

− 2
)
b
. (4.3)
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For b < 2r, there is no solution as the condition would not be satisfied. As for
b = 2r, both the LHS and RHS are equal to 0. Their derivatives with respect to b
are respectfully given by

−2r∗(b− 2r∗)

b ((2A− 1)b+ 2r∗) ((4A− 1)b+ 2r∗)
and

− (b− 2r) ((4A− 1) b+ (8A+ 2) r)σ∗2

2A ((4A− 1) b+ 2r)2
.

We define the first one by f(b) and the second by g(b). Given that b > 2r∗ and A > 0,
then both the RHS and LHS have a negative derivative and thus are decreasing in
b. Moreover, we can easily check that for b = 2r∗

1−2A
,the LHS goes to −∞ while

the RHS goes to a constant. To show that (4.3) has a solution we need to look at
the derivatives and show that the RHS decreases faster. That is because both are
strictly decreasing but the LHS goes to −∞ at b = 2r∗

1−2A
while the RHS goes to a

real valued constant. We first note that both derivatives are equal to 0 at b = 2r∗.
Since both derivatives are equal to 0 at b = 2r∗, we let ϵ > 0 small enough and
compare the derivatives at b = 2r∗ + ϵ. Before comparing we compute f(2r∗ + ϵ)
and g(2r∗ + ϵ).

f(2r∗ + ϵ) =
−2r∗ϵ

b ((2A− 1)b+ 2r∗) ((4A− 1)b+ 2r∗)
.

Before proceeding, we look at the denominator and note that it is equal to

(2A− 1)(4A− 1)b3 + 2r∗(2A− 1)b2 + 2r∗(4A− 1)b2 + b(2r∗)2.

As b = 2r∗ + ϵ, we note that b3 will be equal to (2A − 1)(4A − 1)(2r∗)3 plus o(ϵ3)
with some constant as coefficient. Similarly for b2, we get o(ϵ)2 and for b with o(ϵ).
We disregard these terms as they are not relevant to our analysis. This is equivalent
to solving

−2r∗ϵ

(2A− 1)(4A− 1)(2r∗)3 + 2r∗(2A− 1)(2r∗)2 + 2r∗(4A− 1)(2r∗)2 + (2r∗)(2r∗)2

=
−ϵ

(2A− 1)(4A− 1)(2r∗)2 + 2r∗(2r∗) (4A− 1 + 2A− 1) + (2r∗)2

=
−ϵ

(2r∗)2 ((2A− 1)(4A− 1) + 6A− 2 + 1)
=

−ϵ
(2r∗)2 (8A2)

As for the other function we have

g(2r∗ + ϵ) =
−ϵ ((4A− 1)b+ 2(4A+ 1)r∗)σ∗2

2A ((4A− 1)b+ 2r∗)2

By doing the same for both the numerator and denominator, it becomes equivalent
to solving

−ϵ ((4A− 1)(2r∗) + (4A+ 1)(2r∗))σ∗2

2A ((4A− 1)(2r∗) + 2r∗)2

=
−ϵ ((2r∗)8A)σ∗2

2A ((2r∗)(4A))2
=

−ϵ σ∗2

8A2r∗
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For | −ϵ
(2r∗)2(8A2)

| < |−ϵ σ∗2

8A2r∗
| to hold, we need

σ2∗ >
1

4r∗
.

Note also based on our discussion above µ̂∗ and ĉ are negatively correlated so that

r∗ ≤ EĉEµ̂ = µ̄/2.

We confirm the above condition in the case where ĉ ∼ U(0, 1). It is not hard to

show in this case that A = 1/3, which implies that f(b) = 18r∗(b−2r∗)
b(b2−36r∗)

and g(b) =
−9(b−2r∗)(b+14r∗)σ∗2

2(b+6r∗)2
. Then, by evaluating these functions at b = 2r∗ + ϵ, in absolute

value we get that |f(2r∗ + ϵ)| < |g(2r∗ + ϵ)| only if σ∗2 > 1
4r∗
. In conclusion, the

proof of the theorem is completed once we show that

σ∗2 >
1

4r∗
,

and a sufficient condition is that for any distribution of µ, we have that

σ2(µ) ≥ 1

2 µ̄
(4.4)

which is guaranteed by Lemma 2.
The result above characterizes the general solution for any distribution of ĉ. A

special case for the centralized solution would be if ĉ was assumed to be constant,
i.e. ĉ = c. The Corollary below characterizes its solution.

Corollary 1 If c is constant i.e. ĉ = c and the processing times are assumed to be
exponential, i.e, ξk ∼ exp(µk), then, for any supplier k, at the limit as n→ ∞,

µ∗ =
1

2

(
((b+ h)E[Z − z0]

+ + h z0)

c

)2/3

=
1

2

(
Ψ(z0)

c

)2/3

,

where Ψ is the optimal standardized cost with Ψ(z0) = hE[z0 − Z]+ + bE[Z − z0]
+.

Finally, the limiting total expected supply chain cost is given by:

T̃C
∞
(µ∗, z0) = Ψ(z0)σ(µ

∗) + cµ∗ =
3

2
Ψ(z0)

2/3 c1/3.

Proof: We give here a direct proof of the result.

Step 1. Obtain a lower bound for the total centralized cost. Define first the
function

Ψ(z) =
(
(h+ b)E[Z − z]+ + hz

)
.

Using the fact that E[X − z0] = E[X − z0]
+ − E[z0 − X]+, we rewrite the limit of

(4.1) as n→ ∞,

T̃C
∞
(µ)

∆
= σΨ(z0) + cµ̄. (4.5)
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By using a similar approach as in the proof of Lemma 2, we know that σ2(µ) ≥ EΓ
1
2µ̂
.

In fact we follow the same method but skip the use of the Jensen Inequality, we reach
our desired result. Applying this to equation (4.5) leads to the following inequality

T̃C(µ) ≥
(
EΓ

1

2µ̂

)1/2

Ψ(z0) + cEΓµ̂.

By Jensen’s inequality,
(
EΓ

1
2µ̂

)1/2
≥ EΓ

1
(2µ̂)1/2

. Then,

T̃C(µ) ≥ EΓ
1√
2µ̂

Ψ(z0) + cEΓµ̂ = EΓ

(
1√
2µ̂

Ψ(z0) + cµ̂

)
From the Mean Value Theorem, ∃µ0 such that EΓ

(
1
2µ̂
Ψ(z0) + cµ̂

)
= 1

2µ0
Ψ(z0)+cµ0.

Define the function g(µ0) = 1√
2µ0

Ψ(z0) + c µ0. It is easy to show that g is convex

as the second derivative, g′′(µ0) = 3Ψ(z0)

(2µ0)5/2
> 0. We solve for the FOC and ob-

tain that g′(µ0) =
−Ψ(z0)

(2µ0)3/2
+ c = 0. So that g admits a minimum g∗ = g(µ∗

0) with

µ∗
0 =

1
2

(
Ψ(z0)

c

)2/3
.

We conclude that
T̃C(µ) ≥ g∗.

Step 2. Show that the minimum of g is also a minimum of T̃C
∞
. In other words,

set µ∗
0 such that µk = µ∗

0 for all k and show that ˜TC∞(µ∗
0) = g∗.

First, note that for a constant r.v. X̂, E[ 1
X̂
] = 1

X
and E[ X̂

X̂+X̂
= 1

2X
. Hence, for

µ = µ∗
0,

σ =
1√
2µ∗

0

=

(
Ψ(z0)

c

)−1/3

.

Hence,

T̃C(µ∗
0) =

(
Ψ(z0)

c

)−1/3

Ψ(z0) + cµ∗
0 =

3

2
Ψ(z0)

2/3c1/3.

This is exactly equal to g∗. Since g∗ is a global minimum and ˜TC(µ∗
0) = g∗, then

µ∗
0 is a global minimum of T̃C

∞
(µ). Hence, ˜TC(µ) admits a global minimum at

µ∗ ∆
=

1

2

(
Ψ(z0)

c

)2/3

where Ψ(z0) = (b+ h)E[Z − z0]
+ + hz0.

4.1.1 Discussion and Numerical Results

Before moving on to the decentralized solutions, we discuss the variation of the
optimal solutions with respect to a change in the parameters; b, h and ĉ. We
introduce a lemma that will be used throughout this work.
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Lemma 3 A closed form for E[Z−z0]+ using the truncated expectation of a normal
random variable is given by

E[Z − z0]
+ =

(
−z0 +

φ(z0)

Φ̄(z0)

)
Φ̄(z0) = −z0Φ̄(z0) + φ(z0)

We note that this discussion is performed for ĉ = c. It’s clear that S∗
0,c increases

with the capacity cost c and therefore, the optimal base-stock level increases with c.

As for the holding and backlog costs, it is much harder to asses the trend of the base-
stock level with respect to these parameters since S∗

0 = z0 σ
∗ where both components

depend on h and b. For that we look at

∂S∗
0

∂h
= c1/3

(
− b

(b+ h)7/3φ(z0)4/3
− 1

3
z0
(φ(z0) + z0Φ(z0))

((b+ h)φ(z0))
4/3

)
,

and
∂S∗

0

∂b
= c1/3

(
h

(b+ h)7/3φ(z0)4/3
− 1

3
z0

(
φ(z0)− z0Φ̄(z0)

)
((b+ h)φ(z0))

4/3

)
.

We note that all elements are positive except for z0. For that we split the
problem into two cases, starting with the obvious ones: if z0 > 0 then it is clear
that

∂S∗
0

∂h
< 0. and if z0 < 0 then

∂S∗
0

∂b
> 0. As for the second case, and looking

at the derivative of with respect to h, if z0 < 0, then given that φ(x) = φ(−x)
we know that the first fraction is negative. For the second we use the fact that
Φ(−x) = Φ̄(x) to write φ(−z0) − z0Φ(−z0) = φ(z0) − z0Φ̄(z0). Through lemma 3,
E[Z − z0]

+ = φ(z0)− Φ̄(z0)z0 > 0. The denominator of both fractions are positive.
We need to show now that the first fraction dominate the second. One could look
at the limits of z0 and see that the first one will be larger but they need to account
for all cases.

Similarly for b, after following the same procedure and reaching similar conclu-
sions, we look for a numerical comparison. We note that what makes z0 negative or
positive is the ratio of b/(b + h). For z0 to be positive, we need Φ−1

(
b

b+h

)
> 0, i.e.

we need b/(b + h) > 1/2. This means that for b > h, then z0 > 0 and vice versa.
The graphs below show that S∗

0 is strictly decreasing in h and increasing in b as they
account for both cases of z0. Hence, the optimal base-stock level increases with the
backlog cost and decreases with the holding cost.
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Figure 4.1: Optimal safety-stock levels
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As for the optimal capacity level, it is also clear that it decreases with c. We also
note that µ∗ can be seen as a function of the limit of the optimal total centralized
cost. In fact, we re-write

µ∗ =
1

3

T̃C(z0,µ
∗)

c
.

It is interesting to see that µ∗ ∝ T̃C(z0,µ
∗) and that choosing a higher capacity

level will increase the total cost at a 3 c rate. To analyse the effect of h and b, we
first look at the derivative of ˜TC(z0,µ

∗) with respect to both parameters;

∂T̃C(z0,µ
∗)

∂h
=

(
c

(b+ h)φ(z0)

)1/3

(φ(z0) + z0Φ(z0)) ,

and
∂T̃C(z0,µ

∗)

∂h
=

(
c

(b+ h)φ(z0)

)1/3 (
φ(z0)− z0Φ̄(z0)

)
.

Using similar calculations and plotting as for S∗
0 , we conclude that ∂T̃C(z0,µ∗)

∂h
> 0

and ∂T̃C(z0,µ∗)
∂b

> 0 for both z0 ≤ 0 (h > b) and z0 ≥ 0 (h < b).

Figure 4.2: Optimal limiting centralized costs
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As expected, the limit of the total optimal centralized cost will increase with both
the holding and backlog costs. As a result, the optimal capacity level will increase
with h and b. It is also obvious that this limit will increase with the capacity cost.
Finally, it is natural to note that the backlog split α doesn’t affect the centralized
solution since the payments between agents do not affect the centralized cost.

4.2 Decentralized Setting

We consider two scenarios for the decentralized setting. The first one assumes that
the suppliers are centralized in the sense that there is one decision maker for the
supply function. The second scenario is the fully decentralized case where each
supplier selects independently his capacity. In both cases we proceed to find the
Nash equilibrium between the agents. In other words, the retailer will find his
optimal base-stock level, assuming that the suppliers (either as a supply function or
individually) will minimize their cost by finding their optimal capacity.

The scaled cost of the retailer is given by

TCn
r (S

n;µ)√
n

=
1√
n

(
hE[Sn −Nn]+ + α bE[Nn − Sn]+

)
as n→ ∞.

We undertake a similar asymptotic analysis as above and write the optimal base
stock level for system n, and define S0,d such that

Sn
d = nEζ +

√
nσznα,

and impose znα → zα.
Similarly to the centralized system, we use Proposition 1 and the continuous

Mapping theorem to write

TCn
r (S

n;µ)√
n

⇒ T̃Cr(z;µ)
∆
= hσE[zα − Z]+ + bσE[Z − zα]

+,

as n→ ∞ The optimization problem that the retailers solving is now reduced to

min
zα

T̃Cr(z;µ)

Proposition 4 When n→ ∞,

S∗,n
0,d → S∗

0,d = σ(µ) zα

where σ is defined in Proposition 1, and zα = Φ−1( α b
α b+h

), with Φ being the standard
normal cumulative distribution.

The proof follows similar steps than the one of Proposition 2 and will be skipped.
We note that σ is dependent on the optimal capacity levels of the suppliers that

will be found below. The previous result shows that the optimal base-stock level
i.e., the one that minimizes the total cost of the retailer is given by

S∗,n
d ≈ nE[ζ] +

√
nS∗

0,d.
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4.2.1 Centralized Suppliers

In this subsection we consider a retailer replenishing orders from one supply function
represented by a large number of suppliers, and parameterized by µ̄. The agents
will simultaneously find their optimal decision variables. Based on Proposition 4,
the optimal base-stock level of the retailer in a centralized supplier case is given by
S∗,n
cs ≈ nEζ +

√
nS∗

0,cs, where

S∗,n
0,cs → S∗

0,cs = σ(µ∗
cs) zα.

And where µ∗
cs is the optimal capacity that minimizes the limiting total cost of the

supply function. Again, for simplicity we assume that ξ1 follows an exponential
distribution with rate µcs.

The scaled cost of the supply function is given by

TCn
s (µ;S

n)√
n

=
1√
n

[
(1− α) bE[Nn − Sn]+ + E[ĉn µ̂]

]
⇒ T̃Cs

∞
(µ; zα)

∆
= (1− α) bE[Z − zα]

+ + E[ĉµ̂] (4.6)

The optimization problem of the supply function is then reduced to

min
µ

T̃Cs(µ; zα)

Proposition 5 Given that ĉ is a random variable with some known distribution,

let µ∗
c be the solution of T̃Cs

∞
(µ; zα). Then, there exist a, b and µ̃∗

cs ∼ U(a, b) such
that T̃Cs

∞
(µ∗

cs; zα) = T̃Cs

∞
(µ̃∗

cs; zα).

We note that the proof of this proposition follows from the proof of the centralized
solution, as their cost functions are quite similar with only the coefficient of the
truncated expected value being different.

Corollary 2 If c is constant, i.e. ĉ = c and the processing times are assumed to be
exponential, i.e. ξk ∼ exp(µk), then for any supplier k, at the limit as n→ ∞,

µ∗
cs =

1

2

(
(1− α)bE[Z − zα]

+

c

)2/3

=
1

2

(χα

c

)2/3
.

Finally, the limiting total expected supply chain cost is given by:

T̃Cd

∞
(µ∗

cs, zα) = Ψ(zα)
2/3c1/3

((
Ψ(zα)

χα

)1/3

+
1

2

(
χα

Ψ(zα)

)2/3
)
.

The proof of this corollary follows directly from the proof of Corollary 1. It is
sufficient to replace Ψ(z0) with χα in the limiting cost to reach the optimal capacity
of the supply chain.

29



4.2.2 Decentralized Suppliers

We finally tackle the most relevant case in our analysis of distributed system namely
where each supplier, characterized by a capacity cost ck (drawn from ĉ, a random
variable with some known distribution) decides the capacity level µk that minimizes
the individual cost TCk

s . In this context we proceed to find a Nash equilibrium
for all agents. In a such a setting, the retailer chooses the base-stock level S that
minimizes TCr while accounting for the suppliers choice of capacity levels µ̂ and vice
versa. Similarly to the subsection above, the optimal base-stock level of the retailer
in a centralized supplier case, is given by S∗,n

ds ≈ nEζ +
√
nS∗

0,ds, where

S∗,n
0,ds → S∗

0,ds = σ(µ∗
ds) zα.

And where µ∗
ds is the vector of optimal capacities µ∗

k that minimizes the limiting
total cost of each supplier. The scaled cost of supplier k is given by

TCk,n
s (µn

k ;S
n|Γ)√

n
=

1√
n

(
(1− α) bE[N − S]+

(
1/µk

EΓ1/µ̂

)
+ cnk µk

)
⇒ T̃Cs

k
(µk; zα|Γ)

∆
= (1− α) bE[Z − zα]

+

(
1/µk

EΓ1/µ̂

)
+ ckµk (4.7)

as n→ ∞. The optimization problem of the supplier k is then reduced to

min
µk

T̃Cs

k
(µk; zα|Γ)

As we have described in Chapter 3, we will be obtaining an approximation of
this equilibrium through a Mean Field Nash Equilibrium approach applied to the
limiting system (as we scale in n). The limiting mean field assumption allows to
fix the distribution of the population (given the large number of players) i.e. of
µ̂ whereby at equilibrium the solution µk of each supplier given the population
distribution is aligned with that population distribution. Fixing the population
distribution implies that the expected value over it will remain fixed. As such, given
Γ, σ and Eµ−1 are fixed as the supplier is solving for the optimal µ∗

k. Applying this,
we look for the optimal capacity level of each supplier:

Proposition 6 If ξ1 ∼ exp(µ), then

µ∗
k =

√
χα

(
E[ν̂1/2]− E[ν̂−1/2 + ν̂ ′−1/2]−1

)1/3(
E
√
ν̂
)2/3 1

√
ck

with ν̂ = ĉ/χα where χα is the optimal decentralized standardized cost, such that
χα = (1− α)bE[Z − zα]

+.

The limiting cost o fthe total supply chain is given by

T̃Cd(zα,µ
∗
ds) = Ψ(zα)σ(µ

∗
ds) + E[ĉµ̂∗

ds] = Ψ(zα)σ(µ
∗
ds) +

√
χα

√
σ(µ∗

ds)

Eµ∗,−1
ds

E
√
ĉ.

Where Eµ−1 = (E
√
ν̂)2

σ
and σ(µ∗

ds) =
(
E[ν̂1/2](E[ν̂1/2]− E[ν̂−1/2 + ν̂ ′−1/2]−1)

)1/3
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Proof: We first look at the limit of equation (4.7),

T̃Cs

k
(µk)

∆
= χα

µ−1
k

EΓµ̂
−1σ + ckµk.

By taking solving the First Order Condition we get that

µ̂ =

√
χασ/EΓµ̂

−1

ĉ
.

Set ν̂ = ĉ/χα. Then, by inverting and taking the average on both ends we conclude
that

Eµ−1 =
(E

√
ν̂)2

σ
. (4.8)

Hence,

µ̂ =
σ√

ν̂ E
√
ν̂
. (4.9)

We write µ̂+ µ̂′ = σ
E
√
ν̂
(ν̂−1/2 + ν̂ ′−1/2), so that

σ2 = E[
1

µ̂
]− E[

1

µ̂+ µ̂′ ] =
E
√
ν̂

σ
(E[ν̂1/2]− E[ν̂−1/2 + ν̂ ′−1/2]−1),

equivalently:

σ =
(
E[ν̂1/2](E[ν̂1/2]− E[ν̂−1/2 + ν̂ ′−1/2]−1)

)1/3
. (4.10)

By putting together equations (4.9) and (4.10), we obtain the unique equilibrium
distribution Γ∗ of µ̂∗.

Corollary 3 If c is constant i.e. ĉ = c and the processing times are assumed to be
exponential, i.e, ξk ∼ exp(µk), then, for any supplier k, at the limit as n→ ∞,

µ∗
k =

1

21/3

(
(1− α)bE[Z − zα]

+

c

)2/3

=
1

21/3

(χα

c

)2/3
.

Finally, the total supply chain cost is given by:

T̃Cs

k
(µ∗

ds;S
∗
ds) = Ψ(zα)σ(µ

∗
k) + cµ∗

k = Ψ(zα)
1

21/3

(χα

c

)−1/3

+
c

21/3

(χα

c

)2/3
=
c1/3Ψ(zα)

2/3

21/3

((
Ψ(zα)

χα

)1/3

+

(
χα

Ψ(zα)

)2/3
)
.

4.3 Comparison of Solutions

In this section, we compare our optimal solutions and optimal limiting total supply
chain costs. The following table 4.1 gives a brief summary of the optimal capacity
level and base-stock level as well as the optimal total costs achieved in the three
frameworks mentioned. We also mention that we are comparing the solutions where
ĉ = c.
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Centralized system Centralized suppliers Decentralized suppliers

Capacity (µ∗) 1
2

(
Ψ(z0)

c

)2/3
1
2

(
χα

c

)2/3 1
21/3

(
χα

c

)2/3
Safety-stock (S0∗) z0

(
Ψ(z0)

c

)−1/3

zα
(
χα

c

)−1/3
zα

1
21/3

(
χα

c

)−1/3

T̃C(S∗, µ∗) 3
2
Ψ(z0)

2/3c1/3 Ψ(zα)
2/3c1/3

((
Ψ(zα)
χα

)1/3
+ 1

2

(
χα

Ψ(zα)

)2/3)
1

21/3
Ψ(zα)

2/3c1/3
((

Ψ(zα)
χα

)1/3
+
(

χα

Ψ(zα)

)2/3)

Table 4.1: Comparison of Decision Variables and Total Costs

4.3.1 Optimal Capacity Level

Moving on to the capacity level chosen by the suppliers, it is easy to see that it is
sufficient to compare ψ1 andχα. This is not trivial as their ratio is highly dependent
on α. For that we first look into χα and show that it is in fact a decreasing function
in α. The derivative of χα is

∂χα

∂α
=

∂

∂α
(1− α)bE[Z − zα]

+ = −bE[Z − zα]
+ + (1− α)b

∂E[Z − zα]
+

∂α
= −

(
bE[Z − zα]

+ + (α)bz′αΦ̄(zα)
)

where z′α = ∂zα
∂α

= bh
(αb+h)2φ(zα)

> 0 Hence, as the derivative of χα is always negative,
we now know that it is decreasing in α. Moreover, we note that as α → 0 and
α → 1, zα → −∞ and zα → z0 respectively. Then, we conclude that χα is a
decreasing function going from +∞ to 0 with respect to 0 ≤ α ≤ 1.

Moving on, Ψ(z0) is a positive function that is independent of α. It then must
intersect χα at a point for some αd ∈ [0, 1]. This point is the solution to

Ψ(z0) = χα =⇒ (h+ b)φ(z0)

b
= (1− α)

(
−zα

h

αb+ h
+ φ(zα)

)
It is hard to find α∗ that solves this equation as it is mathematically intractable.
We will resort to some computational method to learn more about the value of α∗

but before that, we compare the centralized capacity with the two decentralized
capacities. As χα is strictly decreasing in α and since Ψ(z0) is independent of it, we
can easily see that Ψ(z0) < χα when α < α∗ and Ψ(z0) > χα when α > α∗.
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Figure 4.3: The Optimal Centralized and Decentralized Suppliers’ Production Ca-
pacity µ∗

cs and µ
∗
ds as a Function of the Retailer’s Backorder Share α —The Central-

ized Solution is µ∗
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It is clear that both capacities intersect the optimal capacity at some α. These
plots also verify our result; for α < α∗, µ∗ < µ∗ and α > α∗, µ∗ > µ∗ for both
capacities. For h = 7, b = 10 and c = 3, we get αd = 0.22 and αds = 0.4242.

As for σ, we know that for µ constant, σ = 1√
2µ
. Then, σ is a decreasing function

is µ. We showed that both µ∗ are decreasing functions in α. Hence, σ is an increasing
function in α starting from 0 and going to +∞. Then, we will get Ψ(z0) > χα when
α < α∗ and Ψ(z0) < χα when α > α∗. We also plot σ(µ∗

cs) and σ(µ
∗
ds) versus σ(µ

∗
c)

and check the values of α∗.

Figure 4.4: The Function σ Evaluated at Optimal Centralized and Decentralized
Suppliers’ Production Capacity µ∗

cs and µ
∗
ds as a Function of the Retailer’s Backorder

Share α —The Centralized Solution is σ∗.
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Again, it is clear that both σ’s intersect the optimal one at some α. These plots
also verify our result; for α < α∗, σ(µ∗) > σ(µ∗

d) and α > α∗, σ(µ∗) < σ(µ∗
d) for both

capacities (µ∗
d is the optimal capacity for either ones of the decentralized solutions).
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For h = 7, b = 10 and c = 3, we get αd = 0.22 and αds = 0.4242. It is interesting to
see that the α∗ for the µ∗s and σ∗ are the same in each framework.

4.3.2 Optimal Base-Stock Level

In this case we compare the safety stock S∗
0 in both the centralized and decentralized

suppliers with respect to the centralized solution. We remind that in both cases,
this quantity is of the form S∗

0,d = zασ(µ
∗
d) where zα is an increasing function in α

while we showed that σ is a decreasing function in α. Again we let µ∗
d be the optimal

capacity level for either one of the decentralized cases. Another thing to consider is
that zα can take both positive and negative value. The derivative of S0 with respect
to α is given by

∂zα
∂α

σ(µ∗
d) + zα

∂σ(µ∗
d)

∂α
.

We know that the derivative of zα > 0 since it’s an increasing function and σ(µ∗
d)

is positive by definition. The derivative of σ(µ∗
d) is negative as we showed earlier

that σ(µ∗
d) is a decreasing function. Then, for the derivative to be positive we need

zα < 0. This is true only when α b < h. When α b > h, it is unclear whether the
first term is larger then the second or not. For that we plot S∗

0,d vs α and see it’s
trend. We also compare it with S∗

0 and check the α∗ at which they intersect.

Figure 4.5: The Optimal Centralized and Decentralized Retailer’s Base-Stock level
S∗
0,cs and S

∗
0,ds when h > αb as a Function of the Retailer’s Backorder Share α—The

Centralized Solution is S∗
0 .
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This verifies that when h > αb, S∗
0 is decreasing in both cases. These plots

show the intersection between both decentralized cases and the centralized solution.
Specifically, when αb < h : S∗

0 < S∗
0,d for α < α∗ and S∗

0 > S∗
0,d for α > α∗. As

for the values of α∗, we get that αd = 0.2111 and αds = 0.4450. These values are
obtained for b = 10 and h = 14 with c = 3. We change the values of b and h so that

34



the condition α b < h is valid. Despite this change, the values of the α∗s are very
close to the respective ones in the capacity and σ plots.

As for the second case, the plots are as follows.

Figure 4.6: The Optimal Centralized and Decentralized Retailer’s Base-Stock level
S∗
0,cs and S

∗
0,ds when αb > h as a Function of the Retailer’s Backorder Share α—The

Centralized Solution is S∗
0 .
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It turns out that the derivative of S∗
0 is positive and this means that

∂zα
∂α

σ(µ∗
d) > zα

∂σ(µ∗
d)

∂α
.

Moreover, When αb > h : S∗
0 > S∗

0,d for α < α∗ and S∗
0 < S∗

0,d for α > α∗. As
for the α∗, for the same parameters used for the capacity, we get αd = 0.22 and
αds = 0.4242 which, again, are equal to the previous ones.

4.3.3 Optimal Total System Limiting Costs

Finally, we look at the total costs. Specifically, we need to show that TC is strictly
smaller than the decentralized costs. We start with the centralized suppliers’ case.
We need to show

3

2
Ψ(z0)

2/3c1/3 < Ψ2/3(zα)c
1/3

((
Ψ(zα)

χα

)1/3

+
1

2

(
χα

Ψ(zα)

)2/3
)
.

It is clear that this is equivalent to that

3

2

(
Ψ(z0)

Ψ(zα)

)2/3

<
2Ψ(zα) + χα

2χ
1/3
α Ψ(zα)2/3

⇐⇒ 3Ψ2/3(z0)χ
1/3
α < 2Ψ(zα) + χα.
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In order to do so, we use the Geometric Mean Inequality (GMI). We remind that
the GMI implies that for ai ≥ 0, 1

n

∑n
i=1 ai ≥

√
a1 a2 ..., an. For n = 3, let a1 = a2 =

Psi(z0) and a3 = χα. Then by the GMI we have

1

3
(2Ψ(z0) + χα) ≥ (Ψ2(z0)χα)

1/3.

By cross multiplying we get

3Ψ2/3(z0)χ
1/3
α ≤ 2Ψ(z0) + χα.

One important element of the GMI is that the equality holds only when ai = aj for
i ̸= j. Hence,

3Ψ2/3(z0)χ
1/3
α < 2Ψ(z0) + χα.

Then we know that the total centralized limiting cost is smaller than the centralized
suppliers’ one.

Figure 4.7: The Optimal Centralized Suppliers’ Total Cost T̃Cd

∗
as a Function of

the Retailer’s Backorder Share α —The Optimal Centralized System Cost is T̃C
∗
.
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The plot above validates our result. In addition to showing that the central-
ized cost is always smaller than the centralized suppliers, it also confirm that they
never intersect, hence showing that the centralized solution is the most efficient (as
expected). As for the decentralized suppliers, we need to show that

3

2
Ψ(z0)

2/3c1/3 <
c1/3Ψ(zα)

2/3

21/3

((
Ψ(zα)

χα

)1/3

+

(
χα

Ψ(zα)

)2/3
)
.
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This is equivalent to

3Ψ(z0)
2/3χ1/3

α < 22/3(Ψ(zα) + χα).

It does seem that this inequality holds as it is close to the one we proved previously,
but as we can’t assess whether 22/3(Ψ(zα) + χα) < 2Ψ(zα) + χα and we cant apply
GMI here, instead we shift our analysis to a numerical one and plot both costs with
respect to α.

Figure 4.8: The Optimal Decentralized Suppliers’ Total Cost T̃C
∗
ds as a Function of

the Retailer’s Backorder Share α —The Optimal Centralized System Cost is T̃C
∗
.
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In this case, the decentralized limiting cost is closer to the the centralized cost
than the centralized suppliers’ one, however it is still clear that the strict inequality
holds. This shows that the centralized solution is better than both decentralized
ones.

During our analysis of above we established that it is not clear which of the
decentralized costs is smaller. We look at both curves with respect to α and compare
them. We keep our benchmark for reference.
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Figure 4.9: The Optimal Centralized and Decentralized Limiting Costs as a Function

of the Retailer’s Backorder Share α —The Centralized Solution is T̃C
∗
.
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We can see that for α < α∗ the centralized suppliers’ solution give a lower cost
than the decentralized suppliers’ solution. However, the costs are extremely close
to each other. This α∗ = 0.2170 for the same parameters used in this analysis. On
the other hand, for α > 0.2170, there is higher difference between the two costs. It
is then more beneficial for the suppliers to act independently, as their decentralized
cost is smaller than the centralized one and even when it is higher there isn’t much
difference.
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Chapter 5

Contracts

A supply chain is a multi-agent problem. As long as the information is symmetric
among the various agents, a decentralized system is at best as efficient as the cen-
tralized one, the same way a local optimization is at best as effective as a global
optimization. The distributed supply chain we are analyzing in this work is no ex-
ception. We have showed in Section 4.3 that the decentralized system is strictly
inefficient relatively to the centralized one. This was also the case for the fully de-
centralized case compared to a decentralized supply chain but with a centralized
supply function. These inefficiencies are also lost opportunities, possibly for all the
players, to improve their utility function (here cost functions). To remedy this, deci-
sion makers have to carefully design mechanisms or contracts between these various
players with the objective to reduce partially or fully these inefficiencies by eventu-
ally creating the right incentives for the players to select an optimal global solution
known as the first-best solution.

We introduce in this section the notion of coordinating contract that specifies
linear transfer payments between the supply chain players. We design these in a way
that even though the retailer and suppliers would be individually selecting what is
in their best interest, they end up due generating together the globally optimal
cost. Contracts are a fundamental area in supply chain management literature as
they govern the interactions between the various entities in the chain. Assuming
simple cost functions that govern the interaction between these players is known
to generate inefficiencies (e.g, the double marginalization effect). The literature is
extremely rich and broad around this topic. We refer the reader to the review of
[22] who also shares an overview of different contract types in the multi-echelon
inventory context.

5.1 Contract structure

We focus specifically on the design and implementation of contracts with linear
transfer payments in the context of distributed system. Linear transfer payments
refer to direct monetary transfers between the retailer and suppliers based typically
on predetermined criteria, such as order quantities, delivery schedules, or product
quality. Unlike more complex incentive structures, linear transfer payments offer
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simplicity and transparency, making them particularly attractive for managing re-
lationships in supply chains with multiple suppliers.

The transfer payments depend on both the order-up-to policy and the capacity
levels selected respectively by the retailer and the suppliers. The cost functions of
the retailer and the supply function are modified by this transfer payment τ(z,µ)
as follows:

T̂Cr(z;µ) = T̃Cr(z;µ) + τ(z,µ)

and
T̂Cs(µ; z) = T̃Cs(µ; z)− τ(z,µ)

For such mechanism to generate the centralized solution, it must be that the
final decisions of z and µ in this context are such as:

T̂Cr(z;µ) + T̂Cs(µ; z) = T̃C(z0,µ
∗).

Now, one way to achieve this (if at all possible) is by splitting T̃C(z0,µ
∗) between

the retailer’s and the supply function’s costs. We denote by γ the splitting factor
so that T̂Cr(z;µ) = γ T̃C(z0,µ

∗) and T̂Cs(µ; z) = (1− γ) T̃C(z0,µ
∗). By doing so,

we can easily show that that the transfer payment τ needs to be equal to

τ(z,µ) = γT̃Cr(z;µ)− (1− γ)T̃Cs(µ; z). (5.1)

Note that in this transfer of payment, the retailer is making a payment to the supply
function and the supply function is making another payment to the retailer and τ
is the net value paid (or received depending on the sign) by the retailer.

Obviously, by injecting this specific transfer payment in the expected total cost
rate of the retailer and respectively, the supplier, we get that:

T̂Cr(z;µ) = T̂Cr(z;µ)− γT̂Cr(z;µ) + (1− γ)T̂Cs(µ; z) = (1− γ) T̃C(z,µ).

Similarly,
T̂Cs(µ; z) = γ T̃C(z,µ).

The existence of a unique Nash equilibrium as discussed previously, guarantees that
such transfer payments insures that the retailer and the suppliers select the optimal
global solution. However, for players to accept such mechanism design, they need
to have the incentive to do so, i.e. are better off with this mechanism than without
it. Basically:

T̃Cr(z
∗
d;µ

∗
d) ≥ (1− γ)T̃C(z0,µ

∗),

and
T̃Cs(µ

∗
d; z

∗
d) ≥ γT̃C(z0,µ

∗),

where µ∗
d is the optimal decentralized capacity in either the centralized or decen-

tralized suppliers’ case. The problem is then reduced to showing the existence of
such factor γ ∈ (0, 1).

From the previous chapter, we already know the values of all the quantities in the
previous inequalities except for γ. The previous inequalities are therefore equivalent
to having

¯
γ ≤ γ ≤ γ̄,
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where

¯
γ = 1− T̃Cr(zα;µ

∗
d)

T̃C(z0,µ∗)
and γ̄ =

T̃Cs(µ
∗
d; zα)

T̃C(z0,µ∗)
.

In conclusion, the existence of a τ(z, µ) that insures full coordination of the
supply chain through a linear transfer payment, is equivalent to finding γ ∈ [

¯
γ, γ̄]∩

[0, 1].

5.2 Decentralized suppliers

We remind that for c constant, the optimal limiting cost of the decentralized sup-
pliers

• T̃Cr(zα;µ
∗
ds) = Ψ(zα)

(
c
χα

)1/3
,

• T̃Cs(µ
∗
ds; zα) = 22/3χ

2/3
α c1/3.

And the optimal centralized limiting cost is given by

• T̃C(z0,µ
∗) = 3

2
Ψ(z0)

2/3 c1/3.

We remind that our goal is to show the existent (or lack thereof) of γ. Given that
γ is such that γ ∈ [

¯
γ, γ̄] ∩ [0, 1]. For that we look at the boundaries, specifically we

look at the limit of these boundaries. Before we proceed, we introduce a Lemma
that will be used throughout our analysis

Lemma 4
φ(x) ∼ x Φ̄(x) when x→ +∞

and
φ(x) ∼ −xΦ(x) when x→ −∞.

to simplify our work, we also use the Lemma 3 and he optimal solutions to write

E[Z − z0]
+ =

(
−z0 +

φ(z0)

1− Φ(z0)

)
(1− Φ(z0))

=

(
−z0 +

φ(z0)

1− b
b+h

)
(1− b

b+ h
)

= −z0
(

h

h+ b

)
+ φ(z0),
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and

E[Z − zα]
+ =

(
−zα +

φ(zα)

1− Φ(zα)

)
(1− Φ(zα))

=

(
−zα +

φ(zα)

1− αb
αb+h

)
(1− αb

αb+ h
)

= −zα
(

h

h+ αb

)
+ φ(zα).

For simplicity, let Ψα = Ψ(zα) and Ψ = Ψ(z0). Given the optimal limiting cost,
¯
γ

and γ̄ are of the form

¯
γ = 1− 22/3

3

Ψα

χ
1/3
α Ψ2/3

and γ̄ =
25/3

3

(χα

Ψ

)2/3
.

Note that both
¯
γ and γ̄ are dependent on α, h and b. We look into the limits

with respect to α and h (the limits for b and h are equivalent so we only look at the
limits as h→ 0).

Starting off our analysis, we look at the limits of the components of
¯
γ and γ̄,

mainly χα, Ψα and Ψ. The last element is independent of α, so we will study its
limits when we move on to h→ 0. We also re-write

Ψα = (αb+ h)E[Z − zα]
+ + hzα = αbE[Z − zα]

+ + h (max(Z − zα, 0) + zα)

= αbE[Z − zα]
+ + hEmax(Z, zα).

Limit as α → 0
Starting with α → 0, we look at the limit if the basic elements. Since

α b

α b+ h
→ 0,

then zα → −∞ as it’s the inverse cdf of a normal random variable. The, the limits
of Φ̄(zα) and φ(zα) are 1 and 0 respectively. Additionally, since zα → −∞, then

Emax(Z, zα) → EZ → 0.

The last limit is because Z ∼ N (0, σ2).
Given these limits, we can now find the limit of Ψα. Using the form of E[Z−zα]+

we wrote above, we now have

Ψα = α bE[Z − zα]
+ = α b (zα Φ̄(zα) + φ(zα)).

We reduce our problem by letting α → h
b
Φ(zα). That is because

α b

α b+ h
= Φ(zα) ⇐⇒ α =

h

b

Φ(zα)

Φ̄(zα)
→ h

b
Φ(zα).
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The limit is due to the fact that Φ̄(zα) → 1.
Then,

Ψα → h

b
Φ(zα) b(−zαΦ̄(zα) + φ(zα)) → −zα hΦ(zα).

We now use Lemma 4 for zα → −∞ to write

−zαΦ(zα) → φ(zα).

Hence,
Ψα → hφ(zα).

Then, we conclude that for α → 0,

Ψα → 0.

We follow a similar procedure for χα. Given that

χα = (1− α) bE[Z − zα]
+,

we first note that it is obvious that (1 − α) b → b when α → 0. We know that
zα → −∞, φ(zα) → 0 and Φ̄(zα) → 1. Then,

E[Z − zα]
+ = −zα Φ̄(zα) + φ(zα) → +∞.

Hence, we conclude that as α → 0,

χα → +∞.

Now that we have all the components, we look at the limits of
¯
γ and γ̄.

Since, Ψα → 0 and χα → +∞ then, Ψα

χ
1/3
α

→ 0. Finally, and with the fact Ψ is

independent of α, we conclude that

¯
γ = 1− 22/3

3

Ψα

χ
1/3
α Ψ2/3

→ 1 and γ̄ =
25/3

3

(χα

Ψ

)2/3
→ +∞.

Limit as α → 1

For α → 1, α b
α,b+h

→ b
b+h

. Then, zα → z0. This means that for such limit of
α,

Ψα → Ψ.

Then,
Ψα

Ψ2/3
→ Ψ1/3.
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Given that zα → z0, we now also know that

E[Z − zα]
+ → E[Z − z0]

+.

Since χα = (1− α) bE[Z − Zα]
+, then χα → 0. Finally, we conclude that as α → 1,

¯
γ = 1− 22/3

3

Ψα

χ
1/3
α Ψ2/3

→ −∞ and γ̄ =
25/3

3

(χα

Ψ

)2/3
→ 0.

Limit as h→ 0
As for the limit as h → 0, α b

α b+h
→ 1. Then, zα → +∞. For such limit of zα,

we get φ(zα) → 0 and Φ̄(zα) → 0. Given that χα = (1 − α)bE[Z − zα]
+, Ψα =

(b + h)E[Z − zα]
+ + zαφ(zα) and Ψ = Ψα=1 with E[Z − zα]

+ = −zαΦ̄(zα) + φ(zα),
we know that we can not find a limit for

¯
γ and γ̄ through a similar procedure used

for the limits of α. Then, we do the following;

Define H(z) = E[Z − z]+ = −z Φ̄(z) + φ(z), with H ′(z) = −Φ̄(z). We are
interested in the ratio:

r(h) =
H(zα)

H(z0)
as h→ 0.

We recall the following

• zα = Φ−1( α b
α b+h

) = Φ−1 (1− h/(α b) + o(h))

• Φ(zα) = 1− h/(αb) + o(h)

• z′α = −α b
(α b+h)2

1
φ(zα)

where z′α is the derivative with respect to h.

• H ′(zα) = −z′α Φ̄(zα)

• ∂
∂h
φ(zα) = −z′α zα φ(zα)

We that H(z) ∼ φ(z)/z2 as z → ∞ by using l’Hopital’s rule.

Proof: From Lemma 4, we know that φ(z) = zΦ̄(z) + o(zΦ̄(z)). Therefore,

H(z) = φ(z)− zΦ̄(z) = o(zΦ̄(z)).

We move now to show that H(z)z2/φ(z) → 1 as z → +∞.

Using l’Hospital rule, H(z)z2/φ(z) has the same limit as:

2z H(z)− z2Φ̄(z)

−zφ(z)
=

2H(z)− zΦ̄(z)

−φ(z)
=
o(zΦ̄(z)) + zΦ̄(z)

φ(z)
→ 1,

as z → ∞. The last limit is again obtained using Lemma 4.
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From l’Hospital’s rule we know that r(h) has the same limit as

z′α Φ̄(zα)

z′1 Φ̄(z1)
=
z′α h/(αb)

z′1 h/b

=
1

α

z′α
z′1

=
1

α

αbφ(z1)

(αb+ h)2
(b+ h)2

b φ(zα)
=

(b+ h)2

(αb+ h)2
φ(z1)

φ(zα)
.

Applying again l’Hospital rule, we conclude that r(h) has the same limit as h → 0
as

1

α2

−z′1 z1 φ(z1)
−z′α zα φ(zα)

=
1

α2

1/b

1/αb

z1
zα

=
1

α

z1
zα
.

Denote by l the limit of any sub-sequence (in h) of z1/zα as h → 0. If l ∈ [0, 1),
then recall that zα (and z1) converge to infinity as h→ 0.

Observe that

φ(z1)/φ(zα) = exp((z2α − z21)/2)

= exp((zα − z1)(zα + z1)/2)

≥ exp((zα − z1)zα)

= exp((1− z1/zα)z
2
α) → ∞

as h→ 0.

This contradicts that r(h) → l/α. A similar argument holds if l > 1. We con-
clude that z1/zα → 1 as h→ 0 and hence φ(z1)/φ(zα) must converge to α as h→ 0.
Recall that Ψα = (αb+ h)H(zα) + h zα and χα = (1− α)bH(zα). We conclude that(

Ψα

χα

)1/3(
Ψα

Ψ1

)2/3

=

(
(αb+ h)H(zα) + h zα

(1− α)bH(zα)

)1/3(
(αb+ h)H(zα) + h zα
(b+ h)H(z1) + h z1

)2/3

=

(
(αb+ h)H(zα) + αbφ(zα) + o(φ(zα))

(1− α)bH(zα)

)1/3(
(αb+ h)H(zα) + αbφ(zα) + o(φ(zα))

(b+ h)H(z1) + αbφ(zα) + o(φ(zα))

)2/3

.

The last equality results from the facts that αbΦ̄(zα) = h + o(h) and Lemma 4.
Recall that H(z) = o(φ(z)) as z → ∞, from which we conclude that the first term
in the product following 2/3 is equivalent to(

αb

1− α
+

α

1− α

φ(zα)

H(zα)

)1/3

→ +∞.

As for the second term, it is equivalent to(
αH(zα) + αφ(zα)

H(z1) + φ(z1)

)2/3

∼
(
αφ(zα)

φ(z1)

)2/3

→ 1.
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Then the limits of
¯
γ and γ̄ as h→ 0 are

¯
γ → −∞ and γ̄ → 0.

We summarize the limits in the following proposition

Proposition 7 The limits of
¯
γ and γ̄ are given by

• As α → 0,

¯
γ → 1 and γ̄ → +∞

• As α → 1,

¯
γ → −∞ and γ̄ → 0.

• As h→ 0,

¯
γ → −∞ and γ̄ → 0.

We mentioned previously that for use to have a valid contract, we need to show the
existence of γ. Given the limits in the above proposition, and the fact that γ needs
to be in (0, 1), then we use the following proposition to show that we can always
find a γ that satisfies the necessary conditions.

Proposition 8 The existence of γ is guaranteed as h→ 0 and α → {0, 1}:

• For 0 < α < 1 small enough,

0 < γ < 1 < γ̄.

• For 0 < α < 1 large enough,

0 < γ < 0 < γ̄ < 1.

• For h > 0 small enough,
0 < γ < 0 < γ̄ < 1.

Note that this also satisfies the fact that
¯
γ needs to be smaller then γ̄. We verify

our results by numerically plotting
¯
γ and γ̄ with respect to α.
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Figure 5.1: Decentralized Suppliers’ γ’s
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5.3 Centralized Suppliers

Given the optimal limiting costs,

¯
γ = 1− 2

3

Ψα

χ
1/3
α Ψ2/3

and γ̄ =
(χα

Ψ

)2/3
.

It is clear that this boundaries are of the same form as the ones in the decen-
tralized suppliers’ case with a slight different being the coefficient. Since the limits
of the ratios Ψα

χ
1/3
α Ψ2/3

and χα

Ψ
are go to either 0 or +∞, then the limits will not be

affected by these coefficients. Hence, all the results around showing the existence of
γ still hold. We briefly summarise them in the following proposition.

Proposition 9 The existence of γ is guaranteed as h→ 0 and α → {0, 1}:

• For 0 < α < 1 small enough,

0 < γ < 1 < γ̄.

• For 0 < α < 1 large enough,

0 < γ < 0 < γ̄ < 1.
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• For h > 0 small enough,
0 < γ < 0 < γ̄ < 1.

Again, we numerically verify then results with the plot below.

Figure 5.2: Centralized suppliers γ’s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-8

-6

-4

-2

0

2

4

48



Chapter 6

The Stackelberg Games

In the previous chapters, our analysis revolved around the Nash equilibrium frame-
work, where the agents simultaneously optimized their decision variables, thus min-
imizing their respective costs. Consequently, we now wish to change the system’s
dynamics by introducing a hierarchical structure with a designated leader (either
the retailer or the supply function) in what is know as the Stackelberg games. Unlike
the Nash equilibrium, where the agents act independently, the leader in the Stack-
elberg games has the advantage of making their decision first, with full knowledge
of the followers’ response. Followers would then adjust their decision accordingly.
This creates an asymmetry in the decision-making process where the leader’s strat-
egy has an influence on the overall outcome of the game. This framework allows
us to explore the leader’s impact over the followers, potentially leading to different
outcomes than situations where all agents share the same power. We then compare
these outcomes and see if one framework offers an advantage.

6.1 Suppliers’ Stackelberg Game

When the Suppliers are the leaders they choose their individual capacity levels µ∗,n
k

to optimize TCk,n
s given the retailer’s best response S∗,n that minimized TCn

r .

Proposition 10 When n→ +∞, and if ξ1 ∼ exp(µ), for any supplier k,

S∗,n
0,sl → S∗

0,sl = σ(µ)zα

where zα = Φ−1
(

αb
αb+h

)
, and

µ∗
k,sl =

(
E[ν̂1/2]− E[ν̂−1/2 + ν̂ ′−1/2]−1

)1/3
√
νk

(
E
√
ν̂
)2/3

with ν̂ = ĉ/χα where χα is the optimal decentralized standardized cost, such that
χα = (1− α)bE[Z − zα]

+.

Proof: Since this is the suppliers’ game, then the supply function will optimize
their capacity based on the decision of the retailer. Hence, we start by finding the
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optimal base stock level that minimizes the retailer’s cost. Similarly to Chapter 4,
we write the retailer’s cost as follows:

TCn
r (S

n;µn)√
n

=
1√
n

(
hE[Sn

d − nEζ − (Nn − nEζ)]+ + bE[Nn − nEζ − (Sn
d − nEζ)]+

)
= hσ E[Sn

0,d/σ −Xn]+ + b σ E[Xn − Sn
0,d/σ]

+

where we set Xn = Nn−nE[ζ]
σ
√
n

. This is a newsvendor-like formulation with a constant

term σ, and hence the optimal centralized stock, S∗,n
0,stack/σ = (Gn)−1 (zα) where G

n

is the cumulative distribution of Xn/σ. By Proposition 1 we have that Gn(·) → Φ(·)
which completes the first part of the proof. As for the capacity level, each suppliers
we be minimizing the limiting cost equal to

χα
µ−1
k

EΓµ̂−1
σ(µ) + ckµk.

This has the exact same form as the limiting cost minimized by the decentralized
suppliers. Hence, the proof follows form Chapter4 and concluding the second part
of the proof.

We note that this is exactly equal to the decentralized suppliers’ solution derived
in Chapter 4.

6.2 Retailer’s Stackelberg’s Game

In this second case, we look at the game where the retailer chooses his S∗,n to
minimize TCn

r given the optimal µ∗
k chosen by each supplier. This case is much less

tractable than the other game.

Proposition 11 if ξ1 ∼ exp(µ), for any supplier k, then,

µ∗
k,rl =

(
E[ν̂1/2]− E[ν̂−1/2 + ν̂ ′−1/2]−1

)1/3
√
νk

(
E
√
ν̂
)2/3

with ν̂ = ĉ/χ(z) where χ(z) is the optimal decentralized standardized cost, such that
χ(z) = (1− α)bE[Z − z]+.

As for the optimal base-stock level, the limiting cost of the retailer is now given by

T̃Cr,rl =
ψ(z)

χ(z)1/3

(
(E

√
ĉ)2 − E

√
ĉE

√
ĉĉ′√

ĉ+
√
ĉ′

)1/3

=
Ψ(z)

χ(z)1/3
C.

One would typically look at the first order condition, in a similar fashion as we
solved the Suppliers’ games. The F.O.C is given by

∂T̃Cr,rl

∂z
=

(
−Φ̄(z)(b+ h) + h+

1

3

Ψ(z)

χ(z)
(1− α) bΦ̄(z)

)
C

χ(z)
.
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We need to find the vale of z that makes the F.O.C equal to 0. However, this
problem is mathematically intractable and we cannot find a closed form for z. As
such we shift our attention to a numerical approach. Our goal is to simulate the
limiting cos of the retailer for a set of z and find the optimal one that minimized
the cost. For that, we use the following approach:

• Generate a vector of z from −∞ to ∞, with small increments

• Define the limiting cost as a function of z and find its respective value for the
vector of z

• Find the minimum value of the cost and its respective z.

We note that we have 4 parameters, α, b, h and ĉ. As this is a decentralized frame-
work, we fix b, h and ĉ and find the optimal z for different values of α. We should
first note that we take ĉ, ĉ′ ∼ Unif(0, 1), and find the respective value of C. For
b = 10 and h = 7, the table below shows some of the values of z with respect to the
parameters. We notice that both zα and zstack are increasing functions in α. We

α 0 0.1 0.5 0.7 0.99 1
zstack −∞ −1.4056 −0.5701 −0.3839 −0.1910 −∞
zα −∞ −1.1503 −0.2104 0 0.2168 0.2230

Table 6.1: Optimal base-stock levels

also note that for α = 1, zstack jumps to −∞ will zα is positive.
We now compare the total limiting costs between the retailer and the suppliers’

games. Note that by comparing these two limiting costs, we would also be comparing
the Stackelberg solutions to the decentralized solution as we already established
that when the suppliers’ are the leaders the solution is equivalent to that of the
decentralized suppliers.

We use the numerical solution we found to compute the limiting total cost of the
supply chain and compare it to the total limiting decentralized suppliers’ cost of the
supply chain. We also compare them with our benchmark (centralized solution).
Again, we compare them with respect to α.
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Figure 6.1: Stackelberg Total costs comparison

There are three things to note. First, the benchmark is the lowest cost for all
values of α. This is expected, as the centralized solution is always the best. Second,
we note that the total cost in the Retailer’s game is higher then the one in the
Suppliers’ game (and decentralized suppliers TC∗

d) up to a certain value of α that
we will call αs. After this αs, the total cost of the retailer’s game will be lower than
the other one, however the difference is smaller than the difference forα < αs. Also
note that as we approach α = 1, the costs get closer to each other. Third, we use
our numerical results to see the value of αs. For the values of b, h and distribution
of ĉ chosen above, we have αs = 0.77.
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Chapter 7

Numerical Analysis

In this section we discuss the numerical analysis we undertook. Throughout this
thesis, we used both theoretical and numerical methods to solve our problems. We
also used graphs to visually confirm any theoretical solution. However, in this
chapter we will mainly rely on Monte Carlo simulation to validate our Central Limit
Theorem-like result

7.1 Ns and Central Limit Theorem

We remind that what we need to validate is that in fact,

Nn
s − nE[ξ1]√

n
⇒ Z ∼ N (0, σ2).

The first thing to do is to start by simulating Nn
s . Recall that

Nn
s

d
=

∞∑
j=0

I(nξj + U > j).

One way to generate it as follows:

• Generate an arrival vector j that starts at 0 and grows very large, with 1/n
increments.

• Generate a perturbation matrix ξ, with N rows and T rows, where N is the
number of simulations and T is the length of the time vector j.

• Generate a vector U from a uniform distribution between 0 and 1. We remind
that this is only used for technical reasons (to guarantee the existence of a
steady state).

However, this method is quite heavy as generating a time vector that takes t to ∞
while making n → ∞ will result in a very large j vector and even larger matrix ξ.
To remediate this issue, we note that one can write Nn

s in a different way. Starting
with the inside of the sum, one can write

I(nξj > j − U) = {1 for j < ξj + U}.
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This is exactly equal to ⌊nξj + U⌋. Since

⌊nξj + U⌋
n

a.s.→ ξj.

Then,
E[⌊nξ1 + U⌋] + 1

n
→ Eξ1. (7.1)

We use the same steps described above while dropping the vector j and thus making
ξ a vector and not a matrix. After generating the necessary variables, we proceed by
calculating (7.1). We note that the expected value is over the number of simulations.
For stability, one could make ξ an N × T matrix by where T does not grow large.
We take µ = [1.2, 3.4], for T = 50, N = 350 and a vector n = [1, 5, 10, 200, 1000], we
show the convergence of ENn

s

n
to Eξ1 = µ as n increases in the following tables.

n = 1 n = 5 n = 10 n = 200 n = 1000
2.2083 1.3881 1.3047 1.2194 1.2042

Table 7.1: Convergence for µ = 1.2

n = 1 n = 5 n = 10 n = 200 n = 1000
4.3663 3.5651 3.4748 3.4112 3.4049

Table 7.2: Convergence for µ = 3.4

n = 1 n = 5 n = 10 n = 200 n = 1000
8.2427 7.5250 7.3635 7.3214 7.3016

Table 7.3: Convergence for µ = 7.3
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Appendix A

Proofs

This section will discuss the proofs of some results.

Lemma 3.1. Proof:

Nn
s =

t∑
j=−∞

I (j/n+ ξj > t)

d
=

0∑
j=−∞

I (j/n+ ξj > 0)

=
∞∑
j=0

I (−j/n+ ξ−j > 0)

d
=

∞∑
j=0

I (nξj > j) .

Proposition 1. Proof:
To show this, we use the moment generating function of Ns and compare it with

the one for a Normal Random Variable. We start with

logE
[
Nn

s − nEξ1√
n

]
= logE

[
exp

(
θ
Nn

s√
n

)
exp

(
θ
−nEξ1√

n

)]
= log

[
exp(−θ

√
nE ξ1)E

(
exp θ

Nn
s√
n

)]
= log

[
exp(−θ

√
nEξ1)

]
+ log

[
E exp

(
θ
Nn

s√
n

)]
= −θ

√
nEξ1 + log

∞∏
j=0

E exp

(
θ√
n
Inj

)
Where Inj = I (nξj > j). We note that one can write

E
(
exp

(
θ√
n
Inj

))
=

(
exp(

θ√
n
− 1)P(nξ1 > j) + 1

)
=

(
exp(

θ√
n
− 1)F̄ (j/n) + 1

)
.
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This is done by noting that this is the moment generating function of an exponential
random variable. Going back to our problem,

−θ
√
nEξ1 + log

∞∏
j=0

E exp

(
θ√
n
Inj

)
= −θ

√
nEξ1 + log

∞∏
j=0

(
exp(

θ√
n
− 1)F̄ (j/n) + 1

)

= −θ
√
nEξ1 +

∞∑
j=0

log

(
exp(

θ√
n
− 1)F̄ (j/n) + 1

)

Using Taylor Series approximation, we write

exp(
θ√
n
)− 1 ≈ θ2

2n
+

θ√
n
+ o(1/n).

Then,

−θ
√
nEξ1+

∞∑
j=0

log

(
exp(

θ√
n
− 1)F̄ (j/n) + 1

)

= −θ
√
nEξ1 +

∞∑
j=0

log

(
θ2

2n
F̄ (j/n) +

θ√
n
F̄ (j/n) + 1 + o(1/n)

)
.

Again, using Taylor Approximation,

log(x+ 1) ≈ x− x2

2
+ o(x2).

We get,

−θ
√
nEξ1 +

∞∑
j=0

log

(
θ2

2n
F̄ (j/n) +

θ√
n
F̄ (j/n) + 1 + o(1/n)

)

= −θ
√
nEξ1 +

∞∑
j=0

θ2

2n
F̄ (j/n) +

θ√
n
F̄ (j/n)− 1

2

(
θ2

2n
F̄ (j/n) +

θ√
n
F̄ (j/n)

)2

+ o(1/n)

= −θ
√
nEξ1 +

∞∑
j=0

θ2

2n
F̄ (j/n) +

θ√
n
F̄ (j/n)

− 1

2

(
θ4

4n2
F̄ 2(j/n) +

θ2

n
F̄ 2(j/n) +

θ3

n
√
n
F̄ 2(j/n)

)
+ o(1/n)

After some calculations, we can write the sum as

∞∑
j=0

θ√
n
F̄ (j/n) +

∞∑
j=0

θ2

2n

(
F̄ (j/n)− F̄ 2(j/n) + o(1/n)F̄ 2(j/n)

)
.
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Note that
∑∞

j=0
θ√
n
F̄ (j/n) = θ

√
nEξ1. This true through Riemann approxima-

tion, that changes the sum into integration;

∞∑
j=0

F̄ 2(j/n) ≈
∫ ∞

1

F̄ 2(x)dx = E[ξ1]+.

Since ξ > 0, then this is equal to Eξ1. Then, our problem is reduced to

∞∑
j=0

θ2

2n

(
F̄ (j/n)− F̄ 2(j/n) + o(1/n)F̄ 2(j/n)

)
=
θ2

2n

(
F̄ 2(j/n)F 2(j/n)

)
+o(1/n)F̄ 2(j/n)

Using Riemann approximation a second time, we get

θ2

2n

(
F̄ 2(j/n)F 2(j/n)

)
+ o(1/n)F̄ 2(j/n) =

θ2

2

∫ ∞

0

F̄ 2(x)F 2(x)dx.

Now that we have established the moment generating function of our problem, we
note that for a normal random variable w e have

Mz(θ) = exp(µθ + σ2 θ
2

2
).

Hence,

logMz(θ) = µθ + σ2 θ
2

2
.

By comparison, we note that they are equal for µ = 0 and σ2 =
∫∞
0
F̄ 2(x)F (x)dx.

Lemma 2 Proof:
Part 1.
By integration by part we have

σ2(µ) = EΓ

∫ ∞

0

∫ x

0

F (t)dt f(x|µ̂)dx

= E
∫ ξ(µ̂)

0

(1− EΓP(ξ1 > x|µ̂′))dx

= Eξ(µ̂)− E
∫ ξ(µ̂)

0

EΓ[e
−µ̂′ x|µ̂′] dx

= E[µ̂−1]− E
[
µ̂′−1

(1− e−µ̂′ξ(µ̂))
]

= E
[
µ̂′−1

e−µ̂′ξ((µ̂)
]
= EΓ[µ̂

′−1 Eξ(µ̂)e
−µ̂′ξ|µ̂] =

= EΓ[µ̂
′−1 µ̂

µ̂+ µ̂′ ] = E[
1

µ̂′ ]− E[
1

µ̂+ µ̂′ ].

Recall that Eξ = 1/µ̂ (one realization of µ̂) and the minimum of two exponential
r.v. has a rate equal to the sum of the rates of each exponential. Therefore, we can
write

EΓ[
1

µ̂′ ]− EΓ[
1

µ̂+ µ̂′ ] = EΓ[Eξ − Emin(ξ, ξ′) = Emax(0, ξ − ξ′),
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where the latter expected value is on both following Γ and the distributions of the
ξ’s.
Part 2. We start by writing

σ2 = E
[
1

µ̂
− 1

µ̂+ µ̂′

]
= E

[
µ̂′

µ̂(µ̂+ µ̂′)

]
= E

[
1

µ̂

]
E
[

µ̂′

µ̂+ µ̂′

]
+ Cov

(
1

µ̂
,

µ̂′

µ̂+ µ̂′

)
≥ 1

2 µ̄
.

The last inequality is due to three interesting facts. First, Jensen’s inequality shows

that E
[
1
µ̂

]
≥ 1/µ̄. Secondly, for any two r.v.’s X and Y that are i.i.d. we can show

that

E
[

X

X + Y

]
=

1

2
.

Indeed,

1 = E
[
X + Y

X + Y

]
= E

[
X

X + Y

]
+ E

[
Y

X + Y

]
= 2E

[
X

X + Y

]
.

The last equality is obtained by symmetry. Finally, we show that if f and g are both
monotone decreasing or increasing then f(X) and g(X) are positively correlated for
any r.v. X. Indeed, let Y and X i.i.d. We have that

(f(X)− f(Y ))(g(X)− g(Y )) ≥ 0.

Taking expected values, we have that

0 ≤ Ef(X)g(X)− Ef(X)g(Y )− Ef(Y )g(X) + Ef(Y )g(Y )

= Ef(X)g(X)− Ef(X)Eg(X)− Ef(Y )Eg(Y ) + Ef(Y ) g(Y )

= 2Ef(X)g(X)− 2Ef(X)Eg(X),

which shows that f(X) and g(X) are positively correlated. Given that µ̂ and µ̂′

are independent, we condition on µ̂′ and conclude that 1/µ̂ and µ̂′

µ̂+µ̂′ are positively
correlated which shows that

Cov
(
1

µ̂
,

µ̂′

µ̂+ µ̂′

)
≥ 0.

Lemma 3 Proof:

E[Z − z0]
+ = E[X]+ = E[X|X > 0]P(X > 0)

=

(
µX + σX

φ(α)

1− Φ(α)

)
P(Z > z0)

=

(
−z0 +

φ(z0)

1− Φ(z0)

)
(1− Φ(z0))
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where α = a−µX

σX
= 0−(−z0)

1
= z0

Lemma 4 Proof: For x→ ±∞, xΦ̄(x)/φ(x) has the same limit as

(xΦ̄(x))′

φ(x)′
=

Φ̄(x)− xφ(x)

φ(x)′
=

Φ̄(x)− xφ(x)

xφ(x)
=

Φ̄(x)

−xφ(x)
+ 1

Using l’Hopital’s rule since this is a 0/0 limit, this equation has the same limit as

−φ(x)
−φ(x)− xφ(x)′

=
φ(x)

φ(x) + x2φ(x)
=

1

1 + x2
→ 1.

Hence, φ(x) ∼ x Φ̄(x) when x→ +∞ and φ(x) ∼ −xΦ(x) when x→ −∞.
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[18] M. Huang, R. P. Malhamé, and P. E. Caines, “Large population stochastic
dynamic games: Closed-loop mckean-vlasov systems and the nash certainty
equivalence principle,” Communications in Information & Systems, vol. 6,
no. 3, pp. 221–252, 2006.

[19] M. Laurière, S. Perrin, M. Geist, and O. Pietquin, “Learning mean field games:
A survey,” arXiv preprint arXiv:2205.12944, 2022.

[20] S. R. Balseiro, O. Besbes, and G. Y. Weintraub, “Repeated auctions with
budgets in ad exchanges: Approximations and design,” Management Science,
vol. 61, no. 4, pp. 864–884, 2015.

[21] V. F. Araman, H. Chen, P. W. Glynn, and L. Xia, “On a single server queue fed
by scheduled traffic with pareto perturbations,” Queueing Systems, vol. 100,
no. 1-2, pp. 61–91, 2022.

[22] G. P. Cachon, “Competitive supply chain inventory management,” in Quan-
titative models for supply chain management, Springer, 1999, pp. 111–146.

61


	ACKNOWLEDGEMENTS
	ABSTRACT
	Introduction
	Literature Review
	The Model
	Model set-up and Ingredients
	Supply Chain Costs
	Asymptotic Formulation: Set up

	Centralized And Decentralized Solutions
	Centralized Setting
	Discussion and Numerical Results

	Decentralized Setting
	Centralized Suppliers
	Decentralized Suppliers

	Comparison of Solutions
	Optimal Capacity Level
	Optimal Base-Stock Level
	Optimal Total System Limiting Costs


	Contracts
	Contract structure
	Decentralized suppliers
	Centralized Suppliers

	The Stackelberg Games
	Suppliers' Stackelberg Game
	Retailer's Stackelberg's Game

	Numerical Analysis
	Ns and Central Limit Theorem

	Proofs
	Bibliography

