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Abstract
of the Thesis of

Ali Shawki Badereddine for Master of Science
Major: Computational Science

Title: Infering Underlying Networks from Time Series of Dynamical Systems and
Evaluating Global Balance

A complex system’s emerging behavior is a result of the interactions of its compo-
nents. A graph-theoretic representation of it is a network of interactions dictating
through differential equations the evolution of the state of the individual compo-
nents, represented by nodes. These networks can be signed, directed, and weighted.
Our first goal is to infer these networks of interactions from time series relying on
dynamical systems theory. Our second goal is to characterize these networks, and
for this purpose, we rely on multiscale definitions of the frustration indices. We
implement algorithms that compute the indices of frustration on multiple levels, ex-
plore and address some of the computational bottlenecks, and apply the algorithms
to the network inferred from the dynamics.
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Chapter 1

Introduction to Complex
Systems

1.1 Definition of a Complex System

When looking at an exact definition of a complex system, one thing that literature
agrees on is that there is no definition. For instance, Binder states that ”defining
complexity is frustrating” [1].
However, this does not mean that we do not have symptoms for those complex sys-
tems. That is, complexity scientists agree on some signs or indicators that when we
observe, there is a high chance that we are looking at a complex system.
For instance, following an example of how a big colony of ants arranges itself to form
collective intelligence that researchers do not fully understand, Mitchell defines com-
plex systems as ”an interdisciplinary field of research that seeks to explain how large
numbers of relatively simple entities organize themselves, without the benefit of any
central controller, into a collective whole that creates patterns, uses information,
and, in some cases, evolves and learns” [2].
A treatment of complex system that will prove to be interesting in our context is
one that has been followed by Bar-Yam as it follows the emergence of a macroscopic
behavior from a series of microscopic behaviors [3].
The provided insights on complex systems should be sufficient to offer a perspective
on how complex complex systems are. We might want to summarize complex sys-
tems , with some risk of generalization, by saying they are systems with emergent,
nonlinear and adaptable behaviors [1]–[4].

1.2 Networks and Interactions

In light of the definition of complex systems provided in the previous section, we can
see that interactions between multiple components are a major part of the definition.
Mitchell defines a network as a collection of nodes and links [2]. A network is a very
commonly used term in our digital age to reference the internet or social media
accounts, and it has developed to a verb whereby people ”network” as in they get
introduced to more people. However, in our context of complex systems, the nodes
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would represent the component (each node represents a component), and the links
represent the relations between those components.
In her discussion of network science, Mitchell emphasizes the importance of network
thinking as a fundamental approach to complexity science, specifically highlighting
the contributions of Barabási in Linked and Watts in Six Degrees. She argues
that network thinking prioritizes the analysis of relationships among interacting
components over the investigation of the components themselves, providing a more
holistic view of complex systems [2], [5]–[7].
Thus, we can see that when we have a system with interacting components, if we
find a correlation between those components that models the interaction, we can
model the system as a network and consequently be able to study the system. We
see in the next section multiple examples of systems that were studied as networks.

1.3 Complex Systems across Disciplines

In this section, we explore the different disciplines in which complex systems may
be observed. We look at examples from which we could extract useful knowledge by
studying those systems.

1.3.1 Social Science

The most natural types of networks to model is the social networks. Those networks
would include modeling sociological or political phenomena. The simplest social
network one can think about is the Instagram network which models the users as
the interacting components, and their means of interactions are the follows or blocks
[8].
On a higher level, one can model social interactions as networks like Sampson did
with monastery interactions [9], represented in subfigure 1.1a. Furthermore, Read
models cultural interactions between the highland tribes of New Guinea as networks
[10], represented in subfigure 1.1b.
Networks in social science have been taken to a level to analyze political systems
that involve elections. For example, the Wikipedia election dataset involves an
interaction between users that vote for other users on whether they approve or
disapprove each other as administrators for the page [11], represented in subfigure
1.1c.
Furthermore, Antal, Krapivsky and Redner model the dynamics of friendship and
enmity by introducing a marriage and divorce model of social tension to study the
evolution of balance in the network [13]. In this model, they consider 2 nodes,
one representing a husband and another representing a wife, and a third node would
represent a common friend between the two. If the husband and a wife get a divorce,
the common friend would have to choose a side to avoid the tension of the resulting
divorce.
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(a) Representation of
the interactions between
monks in Sampson’s net-
work

(b) Representation of the
interactions between high-
land tribes of New Guinea

(c) Representation of
the interactions in the
Wikipedia elections net-
work

Figure 1.1: The network representations of multiple social networks in which a green
link represents a positive interaction such as friendship while a red link portrays a
negative interaction such as enmity [12]

1.3.2 Finance

It is very interesting to look at financial examples from a complex system perspec-
tive. For example, the stock market has many stocks which can be the interacting
components of the system. The correlation between those stocks can exhibit be-
haviors on the level of the system. For instance, Ferreira et al. model the loss of
structural balance in stock markets by establishing a relationship between the cor-
relation between stock returns in several countries [14].

Figure 1.2: Representation of the interaction between stocks in the United states at
three different times of economic significance, where the colors of the lines represent
the strength of the correlation between the stocks ranging from dark red for most
negative to blue for most positive [14]

Another example from finance is the evaluation of financial portfolios. A financial
portfolio is a set of investments such as stocks, bonds and cash [15]. Those networks
have been modeled by Harary and Kabell in [16] to represent interactions between
financial assets based on their correlations.
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Figure 1.3: Representation of the interaction between financial assets in an Ultimate
Buy and Hold portfolio where positive (negative) correlations between the assets are
represented in green (red) [12]

1.3.3 International Relations

Politics can be viewed as a complex system, in which the interacting components
are the countries. For instance, Lai models the conflict in the Middle East as a
network of interactions between the Arabs and Israel [17]. Furthermore, Doreian
and Mvar use in [18] the Correlates of War dataset (CoW) available in [19] and
actively updated in [20] to analyze the balance among the countries.

Figure 1.4: Visualization of the Correlates of War Dataset by partitioning the net-
work into two teams [12]

Figure 1.4 demonstrates 2 groups of countries that are on opposite teams: team A
on the left and team B on the right. We also see that some countries are somewhat
in the center, which means that those countries do not have a clear stand.

1.3.4 Biology

Biology is a comprehensive field that involves multiple fields of study, and each of
those multiple fields has several instances in which we can appreciate a biological
network. As an example, we can model interactions between biological molecules
as a network. The biological molecules which would be represented by nodes in our
network can be genes, enzymes, proteins and etc... Their interactions denoted by
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links would be the activation or inhibition [21]. Oda et al. model the epidermal
growth factor receptor pathway as a network in [22] and the map of molecular
interaction of a macrophage as another network in [23]. Salgado et al. model the
gene regulatory network of Escherichia coli as a complex network in [24]. Figure 1.5
show the representations of those networks.

(a) Epidermal growth fac-
tor receptor pathway [22]

(b) Molecular interaction
map of a macrophage [23]

(c) The gene regulatory
network of the Escherichia
coli [24]

Figure 1.5: Examples of biological networks in which the nodes are the biological
molecules and their interactions are represented by the links in each of the repre-
sentations [12]

1.3.5 Physics

There are many applications for complex systems in physics, because physics has
many useful tools that can be used to analyze a system. A very famous example
from physics on modeling complex networks is the Ising Model. The Ising Model is
a ferromagnetic model that involves the alignment of magnetic material which can
either point ”up” or ”down” [25]. Thus, if we have multiple sites arranged like a
grid (check figure 1.6), and each site is inhabited by a certain spin, the interaction
between those sites is governed by a magnetic moment, and this would be called an
Ising spin glass [26]. In more simple terms, a site would be represented by a node
that can either be ”up” or ”down”, and the interaction between the neighboring
nodes would be represented by a link. From the Ising model, we can study how
local interactions give rise to long range correlations [27]. For instance, if all the
nodes were aligned in one direction across the grid, the whole grid would act as
one whole magnet. In fact, many physical and non physical systems can be framed
as an Ising model. As an example, Bartashevich models collective decision making
by means of an Ising Model in which ”for” and ”against” are the possible states
of a node, and the decision is the long range interaction [28]. To visualize the grid
as a network, and for even higher dimensions, we can represent the vertices of the
grid (i.e. the intersection of a vertical and a horizontal line) as the nodes and the
connecting lines as the links. Figure 1.7 shows the network representation of the
Ising model, whereby we look at the model from a network thinking perspective.
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Figure 1.6: 4x4 grid with arrows pointing up or down representing the state

(a) Network representation
of the Ising Model in 2D

(b) Network representation
of the Ising Model in 3D as
a cube

(c) Network representation
of the Ising Model in 4D as
a hypercube

Figure 1.7: Examples of representations of the Ising Model in multiple dimensions
as networks, whereby the color of the edges determines the alignment between two
neighboring nodes [12]

We focus on the interactions rather than the nodes themselves, such that if two
neighboring nodes have the same alignment, they would have a link that represents
a positive correlation and negative otherwise.
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Chapter 2

Graph Representations of
Networks

Motivation

In this chapter, we characterize networks using notions from graph theory. We then
define useful characteristics and storage representations of graphs and that will be
relevant throughout our work.

2.1 Definition of a Graph

The most basic definition of a graph given by West states that a graph, denoted as
G, is a triple consisting of a vertex set V (G), and edge set E(G) and a relation that
associates with each edge two vertices which would constitute its endpoints [29]. We
can represent a graph by points/circles (or any other geometrical shape) connected
by lines. Each vertex in the vertex set would be represented by some geometrical
shape, most commonly a point or a circle, and each two vertices which constitute
the endpoints of an edge would be connected with a line. Figure 2.1 represents 3
nodes and 3 vertices. The vertex set of this graph would be V (G) = {A,B,C},
while the edge set would be E(G) = {e1, e2, e3}. The relation between the vertex
and edge sets would be to say that e1 = AB, e2 = AC and e3 = BC, for which we
would say that A and B, A and C, and B and C are the endpoints of edges e1, e2
and e3 respectively.

A

B C

e1 e2

e3

Figure 2.1: A representation of a basic graph that has 3 vertices and 3 edges
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A

B C

e1 e2

e3 e4

Figure 2.2: A representation of a basic graph that has 3 vertices and 4 edges

2.1.1 Directions

In some cases, we might want the relation between the edges not to be symmetric.
That is, in figure 2.1, saying that A and B are the endpoints of the edge e1 makes
no distinction between whether A is linked to B or B is linked to A. This raises the
need to define a directed graph. A directed graph, also known as a digraph, G is a
triple consisting of a vertex set V (G), an edge set E(G), and a function assigning
each edge an ordered pair of vertices [29]. In this case, the endpoints of an edge
would be called a head or a source, and a tail or a destination. For a directed edge,
the edge would connect the source/head to the destination/tail. Figure 2.2 makes
it clear that A is linked to B but the opposite is not true. However, B and C are
linked to one another in both directions. This means that the vertex set is the same
for figures 2.1 and 2.2, however the edge set is not the same.

2.1.2 Signs and Weights

Sometimes we can associate values with each of the edges in the edge set E(G). We
define a function σ that maps edges to a value. If the values that σ maps the edge
to are {−1,+1}, then this would mean that the edge is associated with either a
positive or a negative sign, as represented in subfigure 2.3a [30]. If the function σ
maps the edges to any set of values which is a subset of R, then we say the edges
are associated with weights as shown in subfigure 2.3b [31].

A

B C

+ +

- -

(a) Signed graph

A

B C

2 3

−5 −4

(b) Weighted graph

Figure 2.3: A representation of a signed and a weighted graph

2.1.3 Degree

Consider a vertex v ∈ V (G) of a graph G. We define the degree of G, in case the graph
is undirected, denoted as d(v), as the number of edges for which v is an endpoint
[29]. For example, in figure 2.1, the degree would be d(A) = d(B) = d(C) = 2
because each of the vertices is an endpoint of two edges.
In case the graph is directed, we distinguish between the indegree and the outdegree
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of the vertex. The outdegree of the vertex v, denoted as d+(v) is the number of edges
for which v is the tail/destination, whereas the indegree of the vertex v, denoted
as d−(v) is the number of edges for which v is the head/source [29]. In figure 2.2,
d+(A) = 0, d−(A) = 2, d+(B) = 2, d−(B) = 1, d+(C) = 2, and d−(C) = 1.

2.1.4 Complete Graphs

A graph G is said to be complete if for any u, v ∈ V (G) there exists an edge e ∈ E(G)
such that u, v are its endpoints. For a directed graph, the edge must exist in both
directions [32].

A

B

CD

E

(a) Non-complete undirected graph

A

B

CD

E

(b) Complete undirected graph

A

B

CD

E

(c) Non-complete directed graph

A

B

CD

E

(d) Complete directed graph

Figure 2.4: Complete vs non-complete graphs for the cases of undirected and directed
graphs

In Figure 2.4, we see that the column on the left does not depict complete graphs,
because if we take nodes B and E, there is no edge between them, unlike the graphs
in the column on the right.

2.2 Graph Theoretic Formulation of Networks

Consider a signed and directed graph G = (V,E, σ) where V is the set of vertices. We
also consider that |V | = n and E is the set of edges such that |E| = m. Furthermore,
for e ∈ E, we have σ(e) = −1, 1 which maps an edge to a sign. It follows that the
set of positive edges is denoted by E+ and that of negative edges is denoted by E−,
such that E = E+ ∪ E−. Consequently, we denote by m+ the number of positive
edges |E+| and by m− the number of negative edges |E−|, such that m = m+ +m−.
In this formulation, each vertex in the graph represents an entity in the network, or a
variable in the dynamical system, and each edge between nodes A and B represents
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the interaction between A and B if it exists, and the sign of the edge represents
the nature of the interaction. In other words, referring to section 1.2, the nodes of
a network would be represented by vertices in a graph, and the links of a network
would be represented by its edges.
All the examples of networks in section 1.3 can be represented as graphs, where the
correlations between the entities of the network are represented by edges. However,
we will focus on social networks because we will exploit generalizable properties of
this type of networks.

2.2.1 Triads

We define a triad as a set of three vertices such that each of the nodes has at least one
directed edge between them [30]. To illustrate the definition, consider three nodes
A,B and C. For example, subfigure 2.5a is an example of a triad while subfigure

A

B C

(a) An example of a valid triad because
each two of the three nodes are con-
nected by at least one edge

A

B C

(b) An example of an incomplete triad
because A and C are not connected

Figure 2.5: Examples of one valid and one invalid triad in directed graphs

2.5b is not an example of a triad because it is missing a connection between A and
C.

2.2.2 Semicycles

Given a triad, if there are 3 edges incident on its nodes such that for every pair
of nodes, there is one edge, then those three edges form a semicycle [30]. Figure
2.6 demonstrates a triad that has 2 semicycles, and breaks it down to each of its
semicycles.
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A

B C

(a) A complete triad with two semi-cycles

A

B C

(b) First semi-cycle of the
triad in 2.6a

A

B C

(c) Second semi-cycle of
the triad in 2.6a

Figure 2.6: An example of a triad broken down to its semicycles

2.2.3 Transitive Semicycles

Define a binary relation R such that for 2 nodes A and B (third in the triad is
C), ARB ↔ (A,B) ∈ E [30]. A semicycle is said to be transitive if the relation is
transitive over the set of the semicycle’s edges. That is,

ARB&BRC → ARC (2.1)

This relation would translate to given a vertex in a semicycle, if we follow the
directed edges starting from this vertex, we would not reach to the same vertex
again. Figure 2.7 represents a triad with 8 semicycles. After breaking it down into
its semicycles, we see that only 6 out of the 8 semicyles are transitive, while the other
two are intransitive because they do not satisfy the relation in 2.1. For instance, if
we take the semicycle in subfigure 2.7b, if we start at vertex A, the outgoing edge
leads us to B, then the outgoing edge leads us to C, and from C, the edge leads us
to A again, which is the starting edge.

2.3 Representations of Graphs

In this section, we explore various representations of graphs that can make the
storage of those graphs suitable for computational purposes. For demonstration
purposes, consider the graph in figure 2.8, which we will use to represent in each of
the representations we present in this section. In this sample graph, we have:

• Vertex Set V = {A,B,C,D,E}, and n = 5

• Positive Edge Set E+ = {AB,BC,CB,CD,DE}, and m+ = 5

• Negative Edge Set E− = {AE,EC,BD}, and m− = 3

• Edge set has size m = m+ + m− = 8
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A

B C

(a) A triad with eight semicycles

Break down of the triad into its semicycles

A

B C

(b) Not a transitive
semicycle

A

B C

(c) Not a transitive
semicycle

A

B C

(d) A transitive semi-
cycle

A

B C

(e) A transitive semi-
cycle

A

B C

(f) A transitive semi-
cycle

A

B C

(g) A transitive semi-
cycle

A

B C

(h) A transitive semi-
cycle

A

B C

(i) A transitive semi-
cycle

Figure 2.7: Detailed breakdown of a triad into its constituent semi-cycles, and clas-
sifying them as transitive or intransitive

2.3.1 Matrix Representation

A graph can be represented using an adjacency matrix A, such that A is an n× n
matrix where each row corresponds to a node i and each column corresponds to a
node j. The element of the matrix that falls on entry Aij represents the edge (i, j)
connecting node i to node j [16]. There are three possible values for Aij.

Aij =


0, if (i, j) /∈ E

+1, if (i, j) ∈ E+

−1, if (i, j) ∈ E−
(2.2)

A

B

CD

E

Figure 2.8: A sample directed graph to be represented in multiple representations.
Green edges are positive while red edges are negative.
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Those values apply to unweighted graphs only. In the case of weighted graphs, Aij

can take any value in R that represents that sign and weight of the given edge.
The graph in figure 2.8 graph would have the following adjacency matrix A

A =



A B C D E

A 0 1 0 0 −1
B 0 0 1 −1 0
C 0 1 0 1 0
D 0 0 0 0 1
E 0 0 −1 0 0

 (2.3)

2.3.2 Coordinate Format (COO)

The coordinate format (COO) format is widely used for representing sparse matrices
because of its simplicity and direct approach. In COO, we store the adjacency matrix
of a graph in three arrays, which represent the non-zero elements of the matrix:

• Row Indices: This array stores the indices corresponding to the rows of each
non-zero element in the matrix. For graphs, these indices represent the nodes
that act as the source of an edge.

• Column Indices: Similar to Row Indices, this array stores the indices corre-
sponding to the columns of each non-zero element. For graphs, these represent
the destination nodes for each edge.

• Values: This array stores the actual non-zero values found at the correspond-
ing row and column indices. This straightforward representation makes it easy
to iterate over non-zero elements, which is advantageous in many numerical
and graph algorithms.

The COO format is particularly beneficial for applications where the matrix needs to
be built incrementally since it allows the easy addition of non-zero entries without
reorganizing the entire data structure. However, it is less efficient for operations
that require frequent row or column slicing compared to CSR or CSC formats [33].

The representation of the adjacency matrix given in (2.3) in COO format is
shown in table (2.1).

Row Indices 0 0 1 1 2 2 3 4
Column Indices 1 4 2 3 1 3 4 2

Values 1 -1 1 -1 1 1 1 -1

Table 2.1: COO representation of the adjacency matrix given in (2.3)
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2.3.3 Compressed Sparse Row Format (CSR)

This format is commonly used to store sparse matrices efficiently. In the Compressed
Sparse Row (CSR) format, we store the adjacency matrix of a graph using three
arrays that capture the structure and values of the nonzero elements:

• Row Pointers: An array where the ith entry denotes the index in the Values
array where the ith row starts. The size of this array is one more than the
number of rows in the matrix, with the last element storing the total number of
nonzero elements, providing a quick way to determine the number of elements
in any row.

• Column Indices: Corresponds to the column indices of the elements in the
Values array. For graphs, this would represent the nodes that act as the
destination for an edge originating from the node represented by the row.

• Values: Stores the nonzero values of the adjacency matrix in the order they
appear in the matrix, row-wise.

CSR is particularly useful for matrix-vector multiplications and is better suited than
COO for row-oriented operations. This format allows efficient access to rows, which
is beneficial for algorithms that primarily require row-wise traversal of the matrix
[33].

The representation of the adjacency matrix given in (2.3) in CSR format is
presented in table (2.2).

Row Pointers 0 2 4 6 7 8
Column Indices 1 4 2 3 1 3 4 2

Values 1 -1 1 -1 1 1 1 -1

Table 2.2: CSR representation of the adjacency matrix given in (2.3)

2.3.4 Compressed Sparse Column Format (CSC)

This format is commonly used to store sparse matrices efficiently, particularly well-
suited for column-wise operations. In the Compressed Sparse Column (CSC) format,
we store the adjacency matrix of a graph using three arrays that capture the struc-
ture and values of the nonzero elements:

• Column Pointers: An array where the ith entry denotes the index in the
Values array where the ith column starts. This array is one entry longer than
the number of columns, with the last element indicating the total number of
nonzero elements, facilitating quick determination of the number of elements
in any column.

• Row Indices: Corresponds to the row indices for the elements in the Values
array. For graphs, this would represent the nodes that are the origin of an
edge directed towards the node represented by the column.
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• Values: Stores the nonzero values of the adjacency matrix as they appear in
the matrix, column-wise.

CSC is particularly useful for matrix operations that require efficient access to
columns, such as certain types of matrix factorizations and solving systems of linear
equations where column pivoting is necessary [33].

The representation of the adjacency matrix given in (2.3) in CSC format is
presented in table (2.3).

Column Pointers 0 0 2 4 6 8
Row Indices 0 2 1 4 1 2 0 3

Values 1 1 1 -1 -1 1 -1 1

Table 2.3: CSC representation of the adjacency matrix given in (2.3)

2.3.5 Hybrid Formats

Hybrid COO-CSR Format

The Hybrid COO-CSR format combines the strengths of the coordinate format
(COO) and Compressed Sparse Row (CSR) formats to offer more flexibility and
efficiency in certain sparse matrix operations. This hybrid format can leverage the
benefits of both the simplicity of the COO format and the row-access efficiency of
the CSR’s row-access format:

• Row Indices (COO component): Similar to the pure COO format, the
hybrid format maintains an array of row indices that store the positions of non-
zero elements row-wise. This component is particularly useful for incremental
matrix building and easy iteration over non-zero elements.

• Column Indices and Values (CSR component): From the CSR format,
the hybrid method adopts the approach of storing column indices and corre-
sponding values together, segmented by rows. This allows for quick access and
operations specific to rows of the matrix.

• Row Pointers (CSR component): This array is retained from CSR, indi-
cating the start of each row’s data in the Column Indices and Values arrays. It
enhances the ability to jump quickly to specific rows, thus facilitating efficient
row-based processing.

This hybrid approach is beneficial in scenarios where both row-wise and element-
wise access are frequently required, combining the quick insertions and flexibility of
COO with the structured and efficient row access of CSR. It is particularly effective
in iterative algorithms that need to modify matrix structure or values dynamically
during computation.

The representation of the adjacency matrix given in (2.3) using a hybrid COO-
CSR format can be illustrated as follows (this table would be conceptual since hybrid
formatting would depend on implementation specifics):
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Row Pointers 0 2 4 6 7 8
Row Indices 0 0 1 1 2 2 3 4

Column Indices 1 4 2 3 1 3 4 2
Values 1 -1 1 -1 1 1 1 -1

Table 2.4: Conceptual illustration of the hybrid COO-CSR representation of the
adjacency matrix given in (2.3)

Hybrid COO-CSC Format

The Hybrid COO-CSC format merges the advantages of the coordinate format
(COO) and Compressed Sparse Column (CSC) formats to provide a versatile frame-
work for handling sparse matrices. This format is particularly useful in scenarios
where both flexibility in building the matrix and efficiency in column-based opera-
tions are required:

• Column Indices (COO component): In this hybrid format, we maintain
a list of column indices similar to the COO format. This aspect helps in
dynamically building the matrix and efficiently iterating over elements based
on their column positioning.

• Row Indices and Values (CSC component): Drawing from the CSC for-
mat, row indices and their corresponding values are stored together, allowing
for quick access and manipulation of data organized by columns.

• Column Pointers (CSC component): From the CSC, this format retains
the column pointers array that indicates the start of each column in the Row
Indices and Values arrays. This structure ensures efficient access and opera-
tions on columns, facilitating algorithms that require frequent column traversal
and manipulation.

This hybrid setup is ideal for applications involving matrix transformations, fast
column accesses, and algorithms requiring rapid modifications and queries based
on columnar data. It combines the ease of element insertion from COO with the
structured access provided by CSC.

The representation of the adjacency matrix given in (2.3) using a hybrid COO-
CSC format can be conceptually illustrated as follows (note that the actual table
format would depend on specific implementation details):

Column Pointers 0 0 2 4 6 8
Row Indices 0 2 1 4 1 2 0 3

Column Indices 1 1 2 2 3 3 4 4
Values 1 1 1 -1 -1 1 -1 1

Table 2.5: Conceptual illustration of the hybrid COO-CSC representation of the
adjacency matrix given in (2.3)
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2.3.6 Modeling a Social Network

In a social network, an individual A is represented by a vertex in G. If individual A
knows another individual B, then there exists a directed edge eA→B that connects A
to B. An edge eB→A would connect B to A in the opposite direction only if B knows
A. If B is a friend of A, then σ(eA→B) = +1. The sign of this edge σ(eB→A) = −1
in case B is an enemy of A.
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Chapter 3

Multiscale Measures of Global
Balance in Signed Directed

Graphs

Motivation

In this chapter, we explore and define measures of balance on multiple scales that
we will use to characterize our complex networks. We also introduce the algorithms
that are used to compute those measures and comment on possible limitations.

3.1 Definition of Balance on the Microscale

To define balance on the microscale, we set criteria from social theory that deem a
semicycle as balanced or not:

• The friend of my friend is my friend

• The enemy of my enemy is my friend

To formulate the above using graph theoretic formulations, consider a signed and
directed graph G = (V,E, σ). Assigning a positive sign to an edge that corresponds
to friendship, and a negative sign to an edge that corresponds to enmity, we realize
that we need the product of the edges in a transitive semicycle to be positive. It is
notable that the definition based on social theory explains the intuition behind the
need for transitive semicycles. As such, if we have 3 positive edges or if we have two
negative edges and one positive edge in a transitive semicycle, then the transitive
semicycle is balanced. The transitive semicycle is said to be negative otherwise.
To place the definition above in a mathematical framework, Balance theory suggests
that a transitive semicycle < Vi, Vj, Vk > is balanced if∏

i,j;i ̸=j

σij > 0
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On the scale of the whole network, we require all transitive semicycles to be balanced
so that the network is globally balanced.
We thus define the microscale index of frustration of a graph G, if T+ is the number
of balanced transitive semicycles and T− is the number of unbalanced transitive
semicycles as

T (G) =
T+

T+ + T−

We note that the graph would be globally balanced if T (G) = 1, and unbalanced
otherwise.
It is worth noting that negative edges are the source of frustration in a graph. For
example, if ∀e ∈ E, σ(e) = +1, i.e. all the edges of the graph G are positive, then
the product of all edges of all transitive semicycles have a positive sign, which means
that all the transitive semicycles are balanced. However, it is only when a graph has
negative edges that it would have a tendency for imbalance as it would introduce
the possibility of imbalanced transitive semicycles.

3.1.1 Significance of 3-cycles

It is known that in a network of any type, it is likely that interactions may occur
beyond the dyadic or triadic level. In social networks, we might have interactions
between four individuals or even more. As such, the question that arises is, why
do we limit our microscale index of frustration to transitive semicycles of length 3
instead of transitive semicycles of any length? In other words, it might be the case
that all transitive semicycles of length 3 are balanced, while cycles of length 4 are
imbalanced, and thus while the microscale index of frustration indicates a value of 1
as in the network is globally balanced, the index does not reflect reality given that
frustration exists in cycles of longer lengths. It is worth noting that literature has
recently started exploring balance in a directed graph, and as such the notion of
transitive semicycle is not clear for cycles of longer lengths for directed graphs.
To make the discussion more meaningful, we first start by generalizing the definition
of balance for cycles of any length. A cycle is said to be balanced if the product of
the signs of its edges is positive, and imbalanced otherwise. For a cycle of length k,
denote the total number of cycles of length k by Ok. Denote the number of balanced
cycles of length k by O+

k and the number of imbalanced cycles of length k by O−
k .

This being said, Ok = O+
k + O−

k .
The first measure of balance that emerges as a result of this definition [34] is

D(G) =

∑n
i=3O

+
k∑n

i=3 Ok

(3.1)

in which we measure balance as the fraction of balanced cycles of any length to that
of the total number of cycles of any length.
Another definition that can arise, is

Dk(G) =
O+

k

Ok

(3.2)
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which is an evaluation of balance based on the fraction of the balanced cycles of
length k to the total number of cycles of the same length. A special instance of
Dk(G) is

D3(G) =
O+

3

O3

=
T+

T+ + T− = T (G)

which is our original definition of the microscale index of frustration.
However, in a complete graph, if every 3-cycle is balanced then the graph is globally
balanced. Similarly, if there exists a cycle of any length that is imbalanced in
a complete graph, then there exists a 3-cycle that is imbalanced [35], [36]. This
results in making it sufficient to study T (G) only when the graph is complete. In
the context of our problem, the networks we infer will always complete.

3.2 Definition of Balance on the Macroscale

We are interested in characterizing balance by looking at the network as a whole
instead of a group of triads. As such, we seek a measure of how far a graph is from
global balance. For this purpose, we define the macroscale index of frustration as
the minimum number of edges that we need to remove from the set of edges of a
graph to render a graph balanced. Denote by ED the set of edges of the minimum
size that we delete from E. Define L(G) = |ED|. Then, the macroscale index of
frustration is obtained by a normalization [30] of L(G) as

F (G) = 1− 2L(G)

m
(3.3)

We see that when L(G) = 0, F (G) = 1 which means that the graph is fully balanced.
In other words, we do not have to delete any edge from the set of edges E of G to
obtain balance.
Since negative edges are the source of frustration in a graph, we can say that remov-
ing all negative edges from a graph would result in a globally balanced graph. In
other words, taking E− as our set of deleted edges is a feasible solution. However,
given that we might find a deletion set of a smaller size that achieves global balance,
we cannot always take ED = E−. However, we can set an upper bound to L(G) as
the number of negative edges in the graph

L(G) ≤ m− (3.4)

Nevertheless, Aref and Wilson argue that the normalization given by equation 3.3
is arbitrary [34] and thus provide other alternatives for this normalization. An
alternative we discuss is based on the upper bound of L(G) given in 3.4, in which we
compute a macroscale index of frustration by normalizing using this upper bound.
That is if we define this macroscale index of frustration to be X(G), then

X(G) = 1− L(G)

m− (3.5)
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3.3 Definition of Balance on the Mesoscale

On the Mesoscale, we seek a partition of the set of nodes V of a graph G into two
sets X and V \X such that if we take two nodes i and j:

• if i, j ∈ X, then σ(ei) = +1

• if i, j ∈ V \X, then σ(ei) = +1

• if i ∈ V, j ∈ V \X, then σ(ei) = −1

• if i ∈ V \X, j ∈ V , then σ(ei) = −1

In other words, nodes within the same set need to be connected with a positive edge,
and nodes across the sets need to be connected with a negative edge. Furthermore,
if we have nodes within the same set connected by a negative edge or nodes across
the sets connected by a positive edge, those scenarios introduce frustration into the
graph. However, we cannot guarantee that this partition always exists. Therefore,
we seek a partition that minimizes the number of positive edges across the sets, and
the number of negative edges within a set.

3.3.1 Node Coloring Formulation

We can formulate the problem as a node coloring problem as suggested by [31].
Let G be a signed graph, and X be a coloring. The frustration count of G under X
is given by

fG(X) =
∑

(i,j)∈E

fij(X)

where

fij(X) =


0, if xi = xj and (i, j) ∈ E+

1, if xi = xj and (i, j) ∈ E−

0, if xi ̸= xj and (i, j) ∈ E−

1, if xi ̸= xj and (i, j) ∈ E+

(3.6)

What this formulation is proposing is finding a coloring that minimizes the frustra-
tion count. The formulation assigns a cost of 1 for any undesired edge (i.e. positive
across or negative within). Then, the frustration count sums all of those costs, and
the coloring would look for a partition that minimizes this frustration count.
In figure 3.1, we see an example of frustrated positive and negative edges. The
coloring would be given by whether a vertex belongs to set A or set B. The label of
the set would be the color of the vertex. In subfigure 3.1a, we see that a positive
edge that connects vertices in the same set is not frustrated (colored in green), while
a positive edge that connects vertices across sets would be frustrated. In this case,
fAB(X) = 0, while fCD(X) = 1. Following the same logic for negative edges demon-
strated in subfigure 3.1b, we see that the negative edge connecting vertices in the
same set is frustrated, and that connecting vertices across the sets is not frustrated.
Thus, fAB(X) = 1 and fCD(X) = 0
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A

B C D

Set BSet A

(a) Positive Edges

-

-

A

B C D

Set BSet A

(b) Negative Edges

Figure 3.1: An example of frustrated edges in the partition. An edge colored in
green is an edge that gets assigned a value of zero, and that in red gets assigned a
value of one.

3.3.2 Cohesiveness and Divisiveness

We can introduce 2 measures of balance on this scale that evaluate the cohesiveness
and divisiveness of a graph.
Cohesiveness is the ratio of the number of positive edges that are within the sets
(i.e. do not introduce frustration into the graph) to the total number of positive
edges.
Similarly, divisiveness is the ratio of the number of negative edges that are across
edges (i.e. do not introduce frustration) to the total number of negative edges.
To formulate the definition better, we define sets of internal and external edges.
For a partition P = X, V \X, the set of internal edges is defined as EP

i = {(i, j) ∈
E|i, j ∈ X or i, j /∈ X} that is the set of edges that are not across the sets. The set
of external edges is defined as EP

e = {(i, j) ∈ E|i ∈ X, j /∈ X or i /∈ X, j ∈ X}.
Thus, we can define the cohesiveness of a partition of a graph as

C(P ) =
|EP

i ∩ E+|
|E+|

and its divisiveness as

D(P ) =
|EP

e ∩ E−|
|E−|

We note that C(P ) = 1 indicates that we do not have any positive edge that connects
nodes in different sets of the partition. Similarly, D(P ) = 1 indicates that we do not
have any negative edges connecting nodes within the same set of the partition. If
we have C(P ) = D(P ) = 1, then the graph is globally balanced with no frustration.

3.3.3 Formulating the size of edge deletion in terms of the frustration
count

We seek the partition P that minimizes the frustration count, and we know that
the frustration count is a total cost function that penalizes edges that introduce
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frustration. We can thus write L(G) as

L(G) = min
X⊆V

fG(X)

since L(G) is the edge deletion set of minimum size, and the coloring problem min-
imizes the number of edges that are penalized. In other words, if we remove the
edges that introduce frustration in the best partition, we would obtain the minimum
number of edges that we need to remove to achieve global balance because those are
the edges that are impeding us from getting the desired partition of the graph.

3.4 Computing Balance on the Microscale

Based on the definition of the index of frustration on the microscale, we can use a
triangle counting algorithm to compute this index. We need two counts to be able
to compute this index:

• The number of balanced transitive semicycles in a graph

• The number of total transitive semicycles in a graph

To compute the numbers above, we exploit the fact that a transitive semicycle can
be detected by only one of its three edges, which is the edge such that both of its
nodes are sources for the two other edges in the transitive semicycle. For instance,
in

A

B C

we have edge AB such that A is the source of edge AC and B is the source of edge
BC. Neither AC nor BC satisfies this property. As such, by using the edge that
satisfies this property in a transitive semicycle, we can detect it and none of the
other edges will detect it, so we can avoid multiple counting this way. It follows
that we can loop over the list of edges of the graph, and for each identify the key
transitive semicycles that it participates in.
We also exploit another fact which is the one that tells us that a transitive semicycle
is balanced if it has exactly 0 or 2 negative edges. Similarly, a transitive semicyle is
imbalanced if it has exactly 1 or 3 negative edges.

3.4.1 Serial Algorithm

The algorithm would loop over the list of (src, dst) pairs in the positive COO array,
identify the outgoing neighbors of the src and dst nodes, and find the cardinality
of the intersection of the two sets of outgoing neighbors. That is, if the endpoints
of an edge are (u, v) in a directed definition, and if N+(u) are the nodes that are
connected to u through an outgoing positive edge, and N−(u) are those connected
to u through an outgoing negative edge, we seek |Nσ1(u)∩Nσ2(v)| to get the number
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of triangles, where σi is some sign.
The following table summarizes how the intersections guide us to determine the
numbers of balanced and unbalanced transitive semicycles.

(u, v) ∈ E+ N+(u) N−(u) (u, v) ∈ E− N+(u) N−(u)
N+(v) balanced unbalanced N+(v) unbalanced balanced
N−(v) unbalanced balanced N−(v) balanced unbalanced

As such, this would enable us to loop over the positive edges, increment the
number of balanced transitive semicycles by finding the 2 intersections that corre-
spond to balance, and then loop over the negative edges, and perform the other
2 intersections that would lead to balance. The hybrid COO-CSR matrix is what
enables us to find the outgoing neighbors of a given node u.
The algorithm is described in Algorithm 1.

Algorithm 1: Serial triangle counting algorithm to compute microscale
index of frustration
1 function microscaleIndex (COOCSR+,COOCSR-);
Input : A hybrid COO-CSR representation of the positive edges

A hybrid COO-CSR representation of the negative edges
Output: T (G) the microscale index of frustration

2 Nbalanced ← 0
3 Nunbalanced ← 0
4 for (u, v) ∈ E+ do
5 Nbalanced ← Nbalanced + |N+(u) ∩N+(v)|+ |N−(u) ∩N−(v)|
6 Nunbalanced ← Nunbalanced + |N+(u) ∩N−(v)|+ |N−(u) ∩N+(v)|
7 end
8 for (u, v) ∈ E− do
9 Nbalanced ← Nbalanced + |N+(u) ∩N−(v)|+ |N−(u) ∩N+(v)|

10 Nunbalanced ← Nunbalanced + |N+(u) ∩N+(v)|+ |N−(u) ∩N−(v)|
11 end
12 T (G)← Nbalanced/(Nbalanced +Nunbalanced)

13 return T (G)

We notice that there are 4 intersections that need to be computed per iteration,
and those intersections may be computed independently.

3.4.2 Parallel Algorithm

Exploiting the fact that the four intersections may be computed independently, we
propose a parallel algorithm that computes those intersections in parallel. In order
to do so, we can assign 4 threads to each edge, and each thread would be responsible
to compute one of the intersections that correspond to an edge as demonstrated in
figure 3.2.
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Figure 3.2: Thread assignments to compute the microscale index of frustration on
a GPU

3.5 Computing Balance on the Macroscale and Mesoscale

Computing balance on those scales is not an easy problem. The problem is one
in combinatorial optimization such that finding the global solution is an NP-hard
problem. However, in some formulations, we can compute the macroscale index of
frustration, the cohesiveness and the divisiveness for the mesoscale using the same
algorithm. We also explore algorithms that only achieve balance on cycles of length
3, while balance might not be achieved for cycles of a longer length.

3.5.1 Integer Linear Programming

We need to define the Integer Linear Programming problem (ILP) because the
macroscale formulation is mostly formulated as an ILP. Integer Linear Program-
ming is a type of a combinatorial optimization (maximization/minimization) prob-
lem that has a linear form and subject to linear constraints. Another condition for
ILP problems is to limit the values of the decision variables to integers. ILP are
mostly used in fields such as operation research, and are known to NP-hard [37].
The problem may be put in a mathematical form as defined in 3.7.

minimize cTx

subject to

Ax ≤ b,

xi ∈ Z for all i.

(3.7)

such that A is a matrix of constants, c and b are vectors of constants, x is the
vector of integer decision variables.

3.5.2 The Coloring Problem

In this section, we explore 3 binary linear programming formulations of equation 3.6
provided by [31]. The reference argues that the three formulations are equivalent,
however depending on the graph, one formulation might behave better than the
other.
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3.5.2.1 The AND Model

The following formulation of the ILP assigns a variable for each edge and node in
the graph. All of those variables are binary, and they either indicate the color of
the node or whether an edge is penalized or not. There are two colors for the nodes,
and each color indicates whether a node should belong to the first or second set of
the partition. Based on the partition, the statement checks whether the two nodes
of an edge belong to a frustrated state or not. A frustrated state occurs when the
endpoints (nodes) of a positive edge belong to different sets of the partition, or when
those of a negative edge belong to the same set of the partition. The value of the
objective indicates the number of edges that are in a frustrated state. Given that
the partition is an optimal partition, it means that in the best case, we need to
remove those edges so that we obtain a globally balanced graph. In other words,
the value of the objective corresponds to the size of the set of deleted edges that has
a minimum size.
By starting with the objective

fij =

{
xi + xj − 2xixj ∀(i, j) ∈ E+

1− (xi + xj − 2xixj) ∀(i, j) ∈ E− (3.8)

We notice that the objective is not linear in this case because of the xixj term.
However, we notice that we can introduce a new binary variable instead of this term
such that xij = xixj, such that

xixj =

{
1 if ANDxi,xj

= 1

0 otherwise
(3.9)

which explains the name of the model as the AND Model. So this means that the
objective would evaluate to 0 when (i, j) belong to the same set of the partition
if they are connected with a positive edge or when (i, j) belong to different sets
and are connected with a negative edge. The objective would evaluate to 1 for
each edge otherwise indicating frustration. We add constraints that indicate those
configurations.

min
xi : i ∈ V, xij : (i, j) ∈ E

Z =
∑

(i,j)∈E+

xi + xj − 2xij +
∑

(i,j)∈E−

1− (xi + xj − 2xij)

s.t. xij ≤ xi ∀(i, j) ∈ E+,

xij ≤ xj ∀(i, j) ∈ E+,

xij ≥ xi + xj − 1 ∀(i, j) ∈ E−,

xi ∈ {0, 1} ∀i ∈ V,

xij ∈ {0, 1} ∀(i, j) ∈ E
(3.10)

We see that the model has n + m variables and 2m+ + m− constraints.
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3.5.2.2 The XOR Model

The following model is formulated by noticing that a frustrated edge is a positive
edge (i, j) such that XOR(xi,xj) = 1 or a negative edge such that 1−XOR(xi,xj) = 1.

min
xi : i ∈ V, fij : (i, j) ∈ E

Z =
∑

(i,j)∈E

fij

s.t.

fij ≥ xi − xj ∀(i, j) ∈ E+,

fij ≥ xj − xi ∀(i, j) ∈ E+,

fij ≥ xi + xj − 1 ∀(i, j) ∈ E−,

fij ≥ 1− xi − xj ∀(i, j) ∈ E−,

xi ∈ {0, 1} ∀i ∈ V,

fij ∈ {0, 1} ∀(i, j) ∈ E

(3.11)

Thus, we notice that the XOR model has n+m variables and 2m constraints. This
model captures more elements of the original statement defined in equation 3.6.

3.5.2.3 The ABS Model

We notice that a positive frustrated edge satisfies |xi − xj| = 1 and a negative
frustrated edge satisfies |xi + xj − 1| = 1. To make use of those properties, we need
to linearize the absolute value. As such, we assign two binary variables to each edge
eij and hij.

min
xi : i ∈ V, eij, hij : (i, j) ∈ E

Z =
∑

(i,j)∈E

eij + hij

s.t.

xi − xj = eij − hij ∀(i, j) ∈ E+,

xi + xj − 1 = eij − hij ∀(i, j) ∈ E−,

xi ∈ {0, 1} ∀i ∈ V,

eij ∈ {0, 1} ∀(i, j) ∈ E,

hij ∈ {0, 1} ∀(i, j) ∈ E

(3.12)

We note that for a frustrated edge, either eij or hij, and not both, has to be 1. If
both take a value of 0, then the edge is not frustrated. In this model, we have n+2m
variables and m = m+ + m− constraints.
Each of the formulations above are equivalent. Each attempts to find an optimal
partition that minimizes the frustrated edges and colors the nodes of the vertices to
indicate the set of the partition to which they belong.

3.5.3 The 3-Hitting Set Problem

The models defined in the previous section allow us to evaluate global balance on
any graph, whether complete or incomplete. Yet, the graphs that we handle in our
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work are complete graphs. We make use of the completeness by making use of the
property that the source of frustration in a complete graph is the 3-cycles. The rea-
son behind this is because if the frustration comes from a cycle of a longer length,
we can trace down the origin of the frustration to a frustrated transitive semi-cycle.
We consider variations of an algorithm that would only balance transitive semicycles
of length 3, which we consider to be the source of frustration on the microscale. In
this subsection, we provide some formulations that we considered exploring, however
there was no need to use them.
To define the hitting set problem, consider a collection S = S1, S2, . . . , Sm of subsets
of a finite set U , find the smallest possible subset H of U such that H contains at
least one element from each subset in S. In other words, find a set H of a minimum
size such that H ∩ Si ̸= ∅ for all i ∈ 1, 2, . . . ,m [38].
The d-hitting set problem refers to the instance of the problem in which all the sub-
sets Si in S in the collection have a cardinality of d, i.e. |Si| = d ∀i ∈ 1, 2, . . . ,m.
This definition makes it clear that the 3-hitting set problem refers to the problem
in which all the subsets of the collection have size 3.
What makes the 3-hitting set problem relevant to our problem, is that we aim to
explore algorithms that would remove the edges that are the source of frustration
in triads.
Indeed, we want to minimize the number of edges to be removed to achieve this
purpose. As such, S would be the collection of subsets of the set of edges E, such
that each of the subsets Si represents a triplet of edges that constitute a frustrated
transitive semicycle.
For example, referring to the benchmark graph, a subset of S would be the edge
triplet {e13, e1, e5} because those edges constitute an imbalanced transitive semicy-
cle. Therefore, by deleting at least one edge from this subset, we would destroy an
imbalanced transitive semicycle and thus have 1 less imbalanced transitive semicycle
in the graph. Extending this picture to all the subsets of S, by removing at least one
edge from each of the subsets, we would destroy all imbalanced transitive semicycles
and thus achieve global balance for all triads. It happens that we can minimize the
size of the set of edges H ⊂ E that we delete in the graph to achieve balance by
removing the least number of edges from the graph.

3.5.3.1 Greedy Algorithm

A greedy algorithm is a type of algorithmic paradigm that makes locally optimal
choices at each step in the hope of finding a global optimum solution. In other
words, at each step of the algorithm, the choice that appears to be the best is made
without considering the possible consequences of that choice in the future steps. The
basic idea of a greedy algorithm is to repeatedly make the locally optimal choice at
each step, which will eventually lead to the global optimal solution. However, this
is not always the case, and there are instances where a greedy algorithm fails to find
the optimal solution.
The disadvantage of using a greedy algorithm is that the solution it gives is not
guaranteed to be the optimal solution, and in most cases it is not. However, an
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advantage of using a greedy algorithm is its relatively fast speed of execution, com-
pared to exact algorithms. As such, using a greedy algorithm in our case can give
us an upper bound of the exact solution.
The description of the algorithm is given by Algorithm 2.

Algorithm 2: Greedy Algorithm for solving the 3-hitting set problem

1 function greedySet (COOCSR+,COOCSR-,COOCSC+,COOCSC-);
Input : A hybrid COO-CSR representation of the positive edges

A hybrid COO-CSR representation of the negative edges
A hybrid COO-CSC representation of the positive edges
A hybrid COO-CSC representation of the negative edges

Output: Size of greedy edge deletion set |EG|
Greedy solution for edge deletion EG

2 Find the number Ni of frustrated triangles that each edge ei ∈ E
participates in

3 while
∑m

i=1Ni ̸= 0 do
4 e∗ ← ei s.t. Ni = maxi{Ni}
5 EG ← EG ∪ {e∗}
6 Mark e∗ as deleted
7 Update Ni accordingly

8 end
9 return |EG|, EG

10

The greedy algorithm starts by counting the number of frustrated transitive
semicycles that each edge participates in. Then, the algorithm would identify the
edge that participates in the highest number of frustrated transitive semicycles, and
add this edge to the solution. After deleting this edge, we find the edges that share a
frustrated triangle with the deleted edge, and reduce the corresponding count of the
frustrated transitive semicycles that the edge participates in by 1. The algorithm
then repeatedly adds the edge that participates in the constantly updating highest
number of frustrated transitive semicycles to the solution. The algorithm stops when
none of the edges participate in a frustrated triangle, and thus no more frustrated
transitive semicycles exist in the graph. In other words, we would obtain a microscale
index of frustration of 1 to indicate that all transitive semicycles are balanced. The
algorithm returns the indices of the edges that have been added to the solution, and
the size of the returned set would be the greedy size of the edge deletion set.

3.5.3.2 Branching Algorithm

We are interested in finding a hitting set that has a minimum set, since the defini-
tion of the macroscale index of frustration involves the size of the minimum number
of edges that need to be removed and not just any number of edges. As such, we
explore a branching algorithm that recursively explores the combinations of edges
that might result in a hitting set of a minimum size. It is worth noting that the
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solution of the problem does not have to be unique. That is, we might find several
distinct combinations of edges such that the set has a minimum size, yet any of
those solutions is acceptable. The branching algorithm is described in Algorithm 3,
and it calls the recursive hitting set function defined in Algorithm 4.

Algorithm 3: Hitting Set Branching Algorithm for solving the 3-hitting
set problem

1 function branchingHSet (COOCSR+,COOCSR-,COOCSC+,COOCSC-);
Input : A hybrid COO-CSR representation of the positive edges

A hybrid COO-CSR representation of the negative edges
A hybrid COO-CSC representation of the positive edges
A hybrid COO-CSC representation of the negative edges

Output: Size of minimum edge deletion set |H|
An exact solution for edge deletion H

2 |EG| ← greedySet(COOCSR+,COOCSR-,COOCSC+,COOCSC-)
3 U ← edgeSets(COOCSR+, COOCSR−)
4 hittingSet(U , { }, |EG|)
5 return |H|, H

We use the solution obtained from the Greedy algorithm as an upper bound. When-
ever a branch exceeds the solutions of the Greedy algorithm, we can directly decide
that this branch will not return an optimal solution and thus break it. We also find
a set U that contains subsets of the edges that participate in frustrated transitive
semicycles. That is, the elements of U are sets of size 3, and the elements of these
sets are the indices of 3 edges that determine a frustrated transitive semicycle.
The hittingSet function is a recursive function in which the problem is solved, and
its scheme is described in
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Algorithm 4: Hitting Set recursive function

Input: a universe U , a list of sets H, and a greedy parameter greedy
Output: a hitting set

Global: a list of solutions solutions
Global: a current minimum current min

1 H.sort(); if len(H) == 0 then
2 ind max← dictMax(U); S ← U [ind max]; for s in S do
3 hittingSet(U , {s});
4 end

5 end
6 else
7 if len(H) ≤ greedy and len(H) < currentmin then
8 for S in U do
9 if not intersect(S, H) then

10 for s in S do
11 hittingSet(U , H + {s});
12 end

13 end

14 end
15 if superIntersect(U , H) then
16 if len(H) < current min then
17 current min← len(H); append H to solutions;
18 end

19 end

20 end

21 end

The first step in the branching algorithm is to count the number of times that
each edge appears in the subsets of S. We then add the obtained number of times
that each edge in a subset appears in all the subsets for each of the subsets. We
choose the subset that has the highest sum of frequencies of its edges appearing in
all subsets, and we branch on its edges. We branch as long as the size of the current
solution is less than the size of the greedy solution or the size of any smaller solution
that the algorithm has hit.
We demonstrate the branching on the following example. Let S = {1, 2, 3, 4, 5, 6, 7}
assuming that S is the set of edges of some graph. Let U be a collection of subsets
such that each subset contains three edges that determine a frustrated transitive
semicycle, and take U = {{1, 2, 3}, {1, 4, 6}, {2, 3, 6}, {3, 5, 6}}. We notice that the
frequency at which each element appears is as in table 3.2.
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Table 3.1: The frequency at which each edge appears in the subsets of the collection

edge frequency
1 2
2 2
3 3
4 1
5 1
6 3
7 0

Now, associate with each of the subsets the sum of frequency of its elements as
in

Table 3.2: The total frequency at which the edges in a subset appear

subset total frequency
{1,2,3} 7
{1,4,6} 6
{2,3,6} 8
{3,5,6} 7

We notice that the set {2, 3, 6} has the highest total frequency of edges. Thus,
we use it as our initial branching set.
The diagram demonstrates the branching in each direction. We notice that the size
of the minimum set is 2 because if we branch further, we would find a larger solution
on the unfinished branches. The diagram also illustrates how the solution does not
have to be unique.
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Chapter 4

Non-linear Dynamics and
Compartmental Models

Motivation

At this point, we have defined complex systems, their relevance, mathematical and
algorithmic frameworks for their representation, and a method for characterizing
their balance. In this chapter, we introduce non-linear dynamics and emphasize
compartmental models.

4.1 Dynamical Systems

A dynamical system is a system that has quantities, known as the dynamical vari-
ables, that are variable with time according to predefined rules. While those rules
can have stochastic components, we will focus on deterministic dynamic systems [39].
To put a dynamical system in mathematical terms, consider a vector of n dynamical
variables x = {x1, x2, ..., xn}, and a vector field f(·) that maps f : Rn → Rn. A con-
tinuous dynamical system is defined as a system of n coupled differential equations
and has the following mathematical form [40]

ẋ = f(x(t)) (4.1)

where ẋ represents the time derivative of x.
A discrete dynamical system is defined as n sequences that have the following math-
ematical form [39]

xt+1 = f(xt) (4.2)

where the subscript t represents the time indexing of the sequence.

4.1.1 Linear Dynamical Systems

A linear dynamical system is a system of n coupled differential equations that has
the following form [41]
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ẋ1 = a11x1 + a12x2 + · · ·+ a1nxn + c1

ẋ2 = a21x1 + a22x2 + · · ·+ a2nxn + c2
...

ẋn = an1x1 + an2x2 + · · ·+ annxn + cn

(4.3)

where x1, x2, · · · , xn are the dynamical variables of the system, ci and aij ∈ R for
i, j = 1, 2, · · · , n are real constant coefficients, and ẋi represents the time derivative
of xi.
This system can be written in matrix form in the form of (4.1) as

ẋ = f(x) = Ax + c (4.4)

or the form of (4.2) as
xt+1 = f(xt) = Axt + c (4.5)

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 , c =


c1
c2
...
cn


When a dynamical system does not have the form described in 4.4, this dynamical
system would be known is a non-linear system.

4.1.2 Fixed Points

We are generally interested in the long-term behavior of a dynamical system. As
such, we look for variables for which the system is observing a steady state, and
thus no change with respect to time.
Translating the statement above to a mathematical statement means solving for the
following equation for continuous systems [40]

ẋ = 0 (4.6)

or, alternatively, for discrete systems

xt+1 = xt (4.7)

To obtain the solution for those equations, we need to solve a system of simultaneous
equations which has the form

f(x∗) = 0 (4.8)

where x∗ is the solution of the system and thus the set of fixed points of the system.

42



4.1.3 The Jacobian and Stability Analysis

We are interested in determining the significance of this fixed point. When we speak
of the significance, we are particularly addressing the question of what happens to
a point that is in the vicinity of this fixed point.
To illustrate our goal, let us consider a small perturbation x̃ and a point

x = x∗ + x̃

Exploiting the time derivative of x

ẋ = ˙̃x

We can linearize around the fixed point x∗ by doing a Taylor expansion [41]

ẋ = ˙̃x = f(x∗ + x̃) = f(x∗) + J(x∗) · x̃ + · · · (4.9)

where J is the Jacobian matrix defined as

J(x) =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

 (4.10)

where ∂fi
∂xj

is the partial derivative of the i-th component of the vector function f

with respect to the j-th state variable xj. The Jacobian matrix is a very important
matrix because it captures how the dynamical variables vary with one another, and
thus it captures their interactions.
Using the fact that f(x∗) = 0, we can substitute in 4.9 to get

˙̃x = J(x∗) · x̃ (4.11)

Since J(x∗) is a constant matrix, we can say

A = J(x∗)

and this would remind us of (4.4).Thus, we can linearize the system around the
fixed point by means of a Jacobian matrix for a small perturbation. This small
perturbation means that we are allowed to ignore the non-linear behavior of the
system to a certain extent.
To characterize the dynamics of the system, we would need to find the eigenvalues
of this Jacobian matrix evaluated at the fixed point x∗ by solving the eigenvalue
problem

det(J(x∗)− λI) = 0

where λ is the eigenvalue(s) and I is the identity matrix. For each eigenvalue λi, we
would have an eigenvector ei. This set of eigenvalues with its corresponding set of
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eigenvectors allows us to solve the linearized system by expanding x̃ on a basis of
eigenvector in the following form

x̃(t) =
n∑

i=1

diei exp (λit) (4.12)

The sign of each of the λi in the set of eigenvalues determines what happens to the
whole exponential term at t = ∞. There is no guarantee that λi ∈ R, as such we
consider the more general case where λi ∈ C.
If the real part Re(λi) < 0, then as t → ∞, the exponential term exp (λit)→ 0. If
Re(λi) < 0∀i, then as t→ 0, we have x̃→ 0 and thus

x = x∗ + ��̃x = x∗

Making sense of the mathematics, it means if all the exponentials for the eigenvalue
expansion decay (because all eigenvalues are negative), when the system is in a state
that is very close to the fixed point, the system will converge to the fixed point. In
this case we call x∗ is a stable fixed point. Alternatively, if at least one of the eigen-
values λi′ > 0, then there is a direction along which the exponential will blow up
to ∞, and thus pull the system away from this fixed point. In this case, the fixed
point would be an unstable fixed point [39].
The process of linearizing the system around a fixed point and studying the eigen-
values of the resultant Jacobian is called stability analysis because it determines
whether a fixed point is stable or unstable.

4.2 Time Series Analysis

A time series denoted {xt} is a sequence of a variables measured at different times.
A time series can be discrete as in

xt = {x0, x1, · · · , xT}

or continuous
x(t) = {x(t = 0), x(t = t1), · · · , x(t = T )}

[42].
Time series are widely used for forecasting and modeling of the relationship that
might exist between different variables. It so happens that real life data is an
example of time series, as the data would be discrete measurements of a certain
quantity with time.

4.2.1 Standard Linear Vector Autoregressive Model (VAR)

As mentioned, forecasting is of interest in time series because it helps us predict the
time series for times for which we do not have observations or measures. One of the
methods that are used for forecasting is the Standard Linear Vector Autoregressive
Model which is abbreviated as VAR. The concept behind VAR is that the next
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observation of a time series is a linear combination of the current and all previous
observations of this time series [43].
That is to say, consider a time series {xt} where x is an n-dimensional vector of
variables. We can write

xt = A1xt−1 + A2xt−2 + · · ·+ Apxt−p + c (4.13)

where Ai is a set of n× n matrices of coefficients, and c is an n-dimensional vector
of constants. Indeed, we can include an irreducible error term ϵ.
The model above, as mentioned in the introduction of the section, is a linear model.
Cenci, Sugihara and Saavedra view this linearity as a limitation in the model because
if the time series evolves in a non-linear fashion, this model cannot capture its trends
accurately [44].

4.2.2 Sequential Locally Weighted Global Linear Map

To resolve the limitation of VAR as introduced in the previous section, Cenci, Sug-
ihara and Saavedra proposed a method known as the S-Map, which is short for
Sequential Locally Weighted Global Linear Map, which they demonstrate to work
better for forecasting time series generated by non-linear systems and they argue
that it is a non-linear extension to VAR [44]. The idea behind the S-Map is that
the S-map considers the position of the current data point relative to an attractor
in state space rather than the temporal proximity of the point [45].
On the mathematical end, the S-map represents an SVD solution to the linear equa-
tion which has the form

B = A ·C (4.14)

where, after setting Yi = xi(tk + 1),

Bk = wkxi(tk + 1) = wkYi

and
Akj = wkXj(tk)

and the weight is defined as

wk = e−
θ∥x(tk)−x(t∗)∥

d̄
(4.15)

In (4.15), knowing that x(t∗) is called the predictee variable, we have

d̄ =
1

n

∑
i

∥x(ti)− x(t∗)∥

as the average distance from the target point and θ is a parameter that controls the
local weighting [46]–[48].
We notice that (4.14) is equivalent to solving an optimization problem that has the
form

ĉ = argmin
c∈Rd

1

n

∑
j

wj(yj − xjc)
2 = min

c∈Rd

1

n
(Y −Xc)TW (Y −Xc) (4.16)
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and its solution is
ĉ = (V̂ Σ−1ÛT )WY

in which we are getting C row by row [44].
Cenci, Sugihara and Saavedra also provide a regularized version of the solution for
which (4.16) is replaced with

ĉ = argmin
c∈Rd

1

n
(Y −Xc)TW (Y −Xc) + λ∥c∥22, (4.17)

where λ is a regularization parameter, and the solution becomes

c̃ = (XTWX + λnI)−1XTWY (4.18)

in which again we are solving for C row by row [44], [49].
Putting everything together, we can forecast using an S-map by following the fol-
lowing relation

xi(t + 1) = c0 +
d∑

j=1

Jij(t− 1)xj(t) (4.19)

where Jij is the set of interaction coefficients given by (4.18), and c0 is a constant.
In concluding this section, the S-Map gives us a way to linearize our time series by
computing the coefficients of the interaction matrices.

4.3 Compartmental Models

This section is dedicated to introducing compartmental models, which are models
that, as their name indicates, associate compartments with each of the dynamical
variables of a system and links between those compartments by the means of Markov
chains. Then, we introduce a type of compartmental model that are epidemiological
in nature, which we have chosen as our focus.

4.3.1 Definition and Network Representation

A compartmental model is a method of modeling a system in which the system is
partitioned into several compartments from or to which the quantities can flow to
one another. That is, for each variable xi of the system, there would be a compart-
ment associated with it, and we would measure the level of quantity in each of the
compartments at different times xi(t) [50]. What is interesting in compartmental
modeling is that we can look at the model from a network perspective and repre-
sent it as a directed graph, in which the nodes/vertices are the compartments, and
the flows from and to each of the compartments are the edges/links between those
compartments [50]. From this lens, we can see how compartmental models serve as
a great candidate (although not the only one) for modeling complex systems.
In figure 4.1, we have two compartments A and B, and the direction of the arrows
indicates the direction of the flow. If an arrow is incoming to the compartment, we
say there is an inflow, and if it is outgoing from the compartment, we say there is
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A B

Figure 4.1: An example of an open compartmental model with 2 compartments A
and B

an outflow. So here, we have an outflow from A and B to the exterior of the system,
and we have an exchange between A and B. This type of system is known as an
open compartmental model because xA +xB := g(t) which means the total quantity
available in all compartments is variable with time. In this example, we can expect
xA + xB to be decreasing with time.

A B

Figure 4.2: An example of a closed compartmental model with 2 compartments A
and B

In figure 4.2, we have two compartments A and B, and we see that there is an
exchange between the two compartments. However, there is no inflow/outflow from
the exterior of the system, which makes it a closed system. In this case, we expect
xA + xB = cst, and summing up the time derivatives of all variables gives zero.
Indeed, we can generalize to as many compartments as we want, and we can define
the inflows/outflows from any compartment as we please.

4.3.2 System of Differential Equations

Now that we have set up the problem, we can define the general form of the system of
differential equations. The differential equation that governs the i−th compartment
of the compartmental model would have the form [51]

ẋi︸︷︷︸
rate of change of i

=
∑
k

f0i + fki︸ ︷︷ ︸
inflows to i

−
∑
j

fi0 + fij︸ ︷︷ ︸
outflows from i

(4.20)
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where fij represents the flow rate from compartment i to compartment j. f0i and
fi0 describe the rates of flow from and to the external environment for open systems,
and we set them to zero for closed systems. There are several ways in which we can
define the flow rates in (4.20) in a compartmental model [50] as follows

fij =



cij constant flow rate

aijxi donor controlled

bijxj recipient controlled

dijxixj donor-recipient controlled or Lotka-Volterra
αijxi

(βij+xi)
chemostat

(4.21)

We define the flow rates in our compartmental model depending on the problem.
Before taking a particular class of compartmental model, we summarize the steps
involved in defining a compartmental model:

• Identify the compartments of the system

• Identify the inflows and outflows of each compartment

• Assign the flow rates for each flow

• Assign an initial quantity for each compartment (initial conditions)

4.3.3 Epidemiological Models

We defined compartmental models from a network and a mathematical perspec-
tive, and now we are ready to construct a compartmental model. We have chosen
epidemiological models due to their extensive connection to the real world. The
National Library for Medicine (NLM) defines epidemiology as ”the study of the
determinants, occurrence, and distribution of health and disease in a defined popu-
lation” [52].
We will start by setting up the problem with the most basic SI-model from epidemi-
ology, and we will increase the compartments step by step.

SI Model

In the SI model, we have two compartments: S and I. S stands for Susceptible and I
stands for Infected. The SI model considers the disease spread in a population. The
flow rate is βSI from S to I. Figure 4.3 demonstrates this system [53]. Applying
the flow balance equation in 4.20, we get a system of coupled differential equations{

Ṡ = −βSI
İ = βSI

(4.22)

We see that the flow rate is defined as a Lotka-Volterra rate, because the spread of
disease depends on how large the number of susceptible and infected individuals is,
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S(t) I(t)
β S I

Figure 4.3: The SI model has two compartments, such that the flow goes from
compartment S to compartment I with rate βSI.

and thus β is a measure of transmission. An important observation is that summing
up Ṡ + İ = 0. If we denote

N(t) = S(t) + I(t)

then,
Ṅ(t) = Ṡ + İ = 0

which means that
N(t) = N = cst

and thus it is a closed system.
On the long run, the system stabilizes when either S = 0 or I = 0. Since I = 0 is
only increasing due to the absence of outflows from I(t), we expect the system to
stabilize either when all susceptible individuals get infected, or if there is no infection
to spread from the beginning, i.e. I(0) = 0.

SIR Model

The SIR Model is an extension of the SI Model, in which we have 1 extra compart-
ment, which is the R compartment. The R stands for recovered. So the journey
across the SIR Model is that an individual is susceptible, then they get infected, and
then they recover. When they recover, they build up immunity such that they are
neither infected nor susceptible. Figure 4.26 represents the SIR system. We realize

S(t) I(t)
β S I

R(t)
γ I

Figure 4.4: The SIR model has two compartments, such that the flow goes from
compartment S to compartment I with rate βSI, and from I to R with rate γI.

that the flow rate from I to R is a donor controlled rate, because the number of
recovered individuals purely depends on the current number of infected individuals.
In this case, γ is a recovery rate. Now, we can write the differential equations

Ṡ = −βSI
İ = βSI − γI

Ṙ = γI

(4.23)
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Similar to the SI model, we notice that the SIR model is an example of a closed
system, and we notice that S(t) should decrease with time while R(t) should increase
with time. As for I(t), the behavior is determined by a competition between β and
γ, in which we are looking at the strength of the inflow rate compared to that of
the outflow. We can expect that for low levels of R, the inflow rate is higher so I
increases, and then at some point the outflow rate is higher so I starts decreasing.
As such, the ratio α = γ

β
characterizes I, whereby if α < 1, then the inflow rate is

higher, α > 1, then the outflow rate is higher, and if α = 0, this should represent
the peak in the I(t) curve.

SEIR Model

When one gets the trend of compartmental models, it becomes easy to generalize
the epidemiological models to more compartments to get it closer to reality. The
last compartment we will introduce is the exposed compartment, represented by E,
and we represent it graphically in figure 4.27. and following the same process, the

S(t) E(t)
β S I

I(t)
γ I

R(t)
σ E

Figure 4.5: The SEIR model has two compartments, such that the flow goes from
compartment S to compartment E with rate βSI, from E to I with rate σE, and
from I to R with rate γI.

system of differential equations would be
Ṡ = −βSI
Ė = βSI − σE

İ = σE − γI

Ṙ = γI

(4.24)

The system in (4.27) holds the same analysis as that defined in (4.26), and it becomes
clear when we compute Ė + İ = βSI − γI, which is exactly the İ term in the SIR
model.

SIS, SIRS and SEIRS Models

We only explored models so far in which no loop exists. However, all of the models
that have been already introduced can be modified to go into a loop. That is,
after recovery, the individual can become susceptible again. Those models have an
S added to their names to indicate that the journey of the individuals can loop.
Figures 4.6, 4.7 and 4.8 represent the new flow balance diagrams. The system of
differential equations for the SIS model becomes{

Ṡ = −βSI + γI

İ = βSI − γI
(4.25)
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S(t)
β S I

I(t)
γ I

Figure 4.6: The SIS model is very similar to the SI model, and it has an outflow
from I to S at a rate γI.

S(t)
β S I

I(t)
γ I

R(t)

δ R

Figure 4.7: The SIRS model is very similar to the SIR model, and it has an outflow
from R to S at a rate δR.

The system of differential equations for the SIRS model are
Ṡ = −βSI + δR

İ = βSI − γI

Ṙ = γI − δR

(4.26)

S(t) E(t)
β S I

I(t)
γ I

R(t)
σ E

δ R

Figure 4.8: The SEIRS model is very similar to the SEIR model, and it has an
outflow from R to S at a rate δR.

This translates to the system of differential equations
Ṡ = −βSI + δR

Ė = βSI − σE

İ = σE − γI

Ṙ = γI − δR

(4.27)

Coupled SIR Models

We are interested in a system that has a correspondence with real life scenarios.
Consider a set of K populations such that for each population we have compartments
for Sk, Ik and Rk that represent the number of susceptible, infected and recovered
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individuals for the k − th population. Thus, for each population, we would have an
SIR system like the one in (4.26). Figure 4.7 demonstrates multiple disconnected
SIR models.

S2(t)
β2SI

I2(t)
γ2I

R2(t)

SK(t)
βKSI

IK(t)
γKI

RK(t)

S1(t)
β1SI

I1(t)
γ1I

R1(t)

.

.

.

.

.

.

.

.

.

Figure 4.9: This figures depicts multiple SIR models for several populations.

The model becomes interesting when we allow individuals from each population
to migrate from one to another. That is, on the scale of the population, the system
is an open system, but on the global scale of the whole differential equation, the
system is closed. This means we are in control of the whole system. Figure 4.10

S2(t) I2(t) R2(t)

SK(t) IK(t) RK(t)

S1(t) I1(t) R1(t)

.

.

.

.

.

.

.

.

.

Figure 4.10: Multiple SIR models for K populations coupled by means of migration
effects.

does not reflect all the links to avoid the messiness, however the links must exist
between all compartments of the same variable. That is, all S compartments are
connected, so are I and R compartments. Thus, the system of differential equations
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becomes for the i− th population
Ṡi = −βi · SiIi

N
+
∑K

j=1

(
mS

ji · Sj −mS
ij · Si

)
İi = βi · SiIi

N
− γi · Ii +

∑K
j=1

(
mI

ji · Ij −mI
ij · Ii

)
Ṙi = γi · Ii +

∑K
j=1

(
mR

ji ·Rj −mR
ij ·Ri

) (4.28)

where the mV
ij represents the migration rate from i to j for the variable V = {S, I, R}.

The flow rate here is either donor controlled or recipient controlled, depending on
the origin. The system would have 3K compartments.
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Chapter 5

Computational Experiments and
Results

Motivation

As we have introduced complex systems, their graph representations, a method to
characterize them alongside with their algorithms, in addition to dynamical systems
theory with some models, this chapter is dedicated to put the pieces together. We
start by doing computational explorations for the serial vs. parallel algorithms.
After this, we explore the relation between dynamical stability and the frustration
indices. We finally make a conclusion.

5.1 Algorithmic Contribution

5.1.1 Runtimes of Computation of Microscale Index

We consider the runtimes for the computation of the microscale index for the serial vs
the parallelized schemes. For comparing the runtimes, we consider three parameters:

• The number of nodes in the graph

• The number of edges in the graph

• The ratio of negative to total edges of the graphs

As such, we generate random graphs that satisfy a set of values for the parameters
above. For each of the generated graphs, we run the serial and the parallel codes
and measure the time it takes for the function to complete its run.

Variable Ratio of Negative to Total Edges

In this experiment, we fix the number of nodes and we generate a complete directed
graph that has a variable ratio of negative edges to total edges. We vary this ratio
between 0 (fully positive) and 1 (fully negative) with a step of 0.1. The plots in
figure 5.1 show the runtime of the functions for computing the microscale index of
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frustration for 3 complete graphs vs. the ratio of negative to total edges for fixed n
= 50, 250, 350 nodes, and the number of edges is that for a complete directed graph.
Figure 5.1 shows that the GPU acceleration is significant only when the graph is

(a) Directed complete graph for 50 nodes
(b) Directed complete graph for 50 nodes
for the GPU

(c) Directed complete graph for 250
nodes

(d) Directed complete graph for 250
nodes for the GPU

(e) Directed complete graph for 350
nodes

(f) Directed complete graph for 350
nodes for the GPU

Figure 5.1: Comparative analysis of complete directed graphs with 50, 250 and 350
nodes for variable ratio of negative to total edges

large. We also realize that the GPU runtime grows in variation non-monotonously as
a function of the ratio of negative to total edge. The GPU runtimes space out more
as the size of the graph increases. As for the comparison with the CPU runtime,
we realize that the GPU speedup can reach up to 100 times compared to the CPU
runtime.
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Variable Number of Edges

In this experiment, we fix the number of nodes and we generate directed graphs
with a variable number of edges for 3 different ratios. In this part, we are not only
exploring complete graphs. Figure 5.2 shows that the CPU runtime scales up as the

(a) Directed complete graph with ratio
= 0.4 negative to total edges

(b) Directed complete graph with ratio
= 0.4 negative to total edges for the GPU

(c) Directed complete graph with ratio
= 0.5 negative to total edges

(d) Directed complete graph with ratio
= 0.5 negative to total edges for the GPU

(e) Directed complete graph with ratio
= 0.6 negative to total edges

(f) Directed complete graph with ratio =
0.6 negative to total edges for the GPU

Figure 5.2: Comparative analysis of complete directed graphs with 300 nodes and
varied number of edges for 40%, 50%, and 60% negative edges

number of edges in the graph grows, and so does the GPU runtime, however the
rate of growth of the GPU runtime is slower than that of the CPU. The CPU is
always slower in the scenarios that we have considered.

Variable Number of Nodes

In this experiment, we vary the number of nodes and choose the number of edges
such that the graph is complete for the given number of nodes. We fix the ratio
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of negative to total number of edges to be 0.4, because we see in the previous
experiments that around this value for the ratio the CPU computation time peaked.
Figure 5.3 shows that as the number of nodes increases in a graph, the CPU runtime

(a) Directed complete graph with ratio
= 0.4 negative to total edges

(b) Directed complete graph with ratio
= 0.4 negative to total edges for the GPU

Figure 5.3: Comparative analysis of complete directed graphs with variable nodes
for 40% negative to total number of edges

also increases, at an apparent exponential way. The GPU runtime also increases as
the size of the graph increases, but we can see that the rate of increase is way slower
than that of a CPU.

5.2 Time Series Analysis Contribution

In this section, we examine closely a dynamical system which has multiple variables
and deduce the properties that are encoded in measuring an index of balance.

5.2.1 Data Generation

For the purpose of validating that there is a relation between balance and dynamical
stability, we explore the compartmental model introduced in (4.10). We start by
solving this system numerically for 10 populations, each of which has a compartment
for S, I and R, which adds up to a total of 30 compartments. We use ODE solvers
provided by the SciPy library [54].
To make the system as close as possible to reality, we generate initial conditions
for each of the S and I variables of the system sampled from a uniform random
distribution, and for each SIR triplet, R0 = N − S0 − I0, where N is the initial size
of each of the population, initialized to 100000.
For the flow rates between the compartments of a population, we sample from a
normal distribution:

• βi ∼ N(µβ, σβ), such that µβ = 0.3 and σβ = 0.05

• γi ∼ N(µγ, σγ) such that µγ = 0.1 and σγ = 0.02

For setting up the migration effects across the population, we define 3 matrices that
contain the migration rates from each of the Si → Sj, Ii → Ij and Ri → Rj. We
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set up those rates asymmetrically such that the migration from Si → Sj ̸= Sj → Si.
We sample those matrices from a uniform random variable that is at most 1% of
the population in a compartment.
Figure 5.4 represents the variation of the population sizes for each time instant. We
observe that the population size varies with time due to the migration across the
compartments.

Figure 5.4: A plot of the variation of each population with time

As for the time series, we can get an idea of its behavior, although not with
clarity of its behavior with time due to the difficulty of representing 30 variables on
1 graph, in figure (5.5), which looks like multiple SIRs that are not in exact sync if
we look closely. Since we expect to handle an index that has a value between 0 and
1, we normalize the time series by dividing by the total population so that we get
to visualize the index on the same plot as the time series later. We also round up to
3 decimal places to avoid the numerical fluctuations from the numerical solver from
impacting our analysis.

Figure 5.5: A plot of the variation of the time series and the variation of its variables
with time

58



J1,1 J1,2 J1,3 J1,4 J1,5

J2,1 J2,2 J2,3 J2,4 J2,5
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Figure 5.6: Stacked interaction matrices at different time instants, each matrix
labeled with Ji,j.

5.2.2 Inference of Interaction Matrices

After preprocessing the data, we move to inferring the matrices of the interaction
coefficients by utilizing the S-Map method introduced in 4.2.2. This method is
available to us through the pyEDM package through the smap function [55].

Figure 5.6 represents a piece of the multiple interaction matrices that we infer
for multiple time instants. Given that in our context self-loops do not have any
significance, we replace the diagonal entries with zero.

5.2.3 Frustration Index Computation

For every set of time instants, we have an interaction matrix that encodes its inter-
actions locally. At this point, we assume that the interaction matrix at a certain
instant is the adjacency matrix of the graph that represents the interactions of the
system at this instant. As such, we compute the frustration indices for this graph
at a given instant. Figure 5.7 shows how the microscale index of frustration varies
with time at multiple instants in the graph. It is important to mention that the
index of frustration is actually a measure of balance. That is, an index of frustration
that has a value of 1 indicates an underlying fully balanced graph. We see that as
a trend, the system moves from low levels of balance and increases all the way to
total balance.
We are also interested in the macroscale index of frustration which is depicted in
figure 5.8, in which we see a similar trend as the microscale index. The interesting
point is that the microscale and macroscale indices have a value of 1 at the exact
instants, indicating total balance.
We also look at the cohesiveness and divisiveness determined by the mesoscale mea-
sure of frustration, through which we can tell how good the partition is in terms of
separating nodes connected with negative edges and grouping those connected with
positive edges. We see in figure 5.9 that the quality of the partition (which is the
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Figure 5.7: The variation of the microscale index of frustration as a function of time

best interpretation of the mesoscale index of frustration) increases with time, mean-
ing that we are having less nodes that are connected with negative edges within the
same set, and likewise positive edges across the sets.

5.2.4 COVID-19 Real Data

In this experiment, we explore time series that originate from real data. From the
mood of epidemiological modeling, we look at the the COVID-19 dataset available
on ourworldindata.org [56]. We take the number of daily confirmed cases, and we
take the cumulative sum for those cases for days distributed over 4 years from March
1st, 2020 till February 29th, 2024. We choose 12 countries which have significant
COVID-19 cases per population, and among which there is a noticeable mobility.
Those countries are Australia, Brazil, China, France, Germany, India, Italy, Japan,
Mexico, Russia, Spain and the United States. We normalize by dividing by the
maximum number of cases to maintain our values between 0 and 1.
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Figure 5.8: The variation of the macroscale index of frustration as a function of time

Figure 5.10: The cumulative sum of COVID-19 cases with time for 12 countries with
significant interaction and infectivity

Figure 5.10 shows the normalized time series for the countries that have been
chosen. The results for evaluating the frustration for the real data is depicted in
figure 5.11. We see that for real data, we can still interpret balance using our
method, especially from the microscale and macroscale indices of frustration plotted
in subfigures 5.11a and 5.11b. We can say that we have achieved a state of balance
for the state of the COVID-19 pandemic. We realize that there are some fluctuations
in all indices after achieving an index of 1, and there are multiple reasons that can
explain this fluctuation. It is possible that with the introduction of new strains
and variants of the virus, the equilibrium gets perturbed slightly before recovering.
It is also possible that real data has a lot of uncertainties and thus the interaction
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Figure 5.9: The variation of the mesoscale index of frustration represented by the
measures of cohesiveness and divisiveness as a function of time

coefficients may be challenged by the smoothness of the data (and the resulting issues
with differentiability). Another reason can be that we are not taking a full network
of interacting countries, and thus we are missing out on some minor interactions
that might be reasonable. Using a full scale network from real data requires large
datasets, because generating the SMap requires a minimum number of instants that
is related to the number of variables we have in the system, which stems from the
constraints we have from solving linear regression problems.
To illustrate the maximum number of data points for which we can compute the
index of frustration, we processed the system for a full network of countries and
computed the microscale index in figure 5.12.
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Figure 5.12: The microscale index of frustration for a network of 210 countries

In figure 5.12, we see that despite the scarcity of the points for which we can
compute the microscale index of frustration, we can see that as a trend the index is
moving towards balance, and we hope that when with more data that gets recorded,
to be able to capture this balance.
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(a) The microscale index of frustration

(b) The macroscale index of frustration

(c) The mesoscale index of frustration

Figure 5.11: The indices of frustration on multiple scales for real data of COVID-19
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Chapter 6

Conclusion and Future Work

Throughout the work, we provided an interesting observation for a field that is mas-
sively growing and is becoming present all across the disciplines. We introduced in
chapter 1 complex networks with a decent portion of their applications in multi-
ple fields ranging from Physics to Biology to Social Science, International Relations,
Politics and Finance. The applications may also extend to multiple other disciplines.
We also saw that through network thinking, if one can properly represent a system
as a set of nodes having some links as interactions, we can represent the complex
system as a network. Moving to chapter 2, we explored graph theory and we used
the notion of graphs to represent networks. We explored all the relevant properties
of graphs, in addition to storage formats that enable us to represent those graphs
in a computation-friendly framework. Then, in chapter 3, we explored multiple al-
gorithms derived from social theory that evaluate the frustration and balance of a
social network. The algorithms were graph algorithms at heart, and they ranged
from triangle counting to ILP problems and hitting set formulation. We also sus-
pected that the size of the graph that represents our network influences our runtimes
considerably, and thus we proposed a parallelization for the algorithm that computes
the microscale index of frustration. In chapter 4, we investigated dynamical systems
theory, stability and mathematical notions that get us to describe a dynamical sys-
tem. We also looked into time series and explored the SMap method to infer the
matrices of interaction coefficients for the linearized dynamical system that governs
a time series. We then introduced compartmental models, and emphasized epidemi-
ological models that are used for modeling the spread of a disease in a population.
Finally, in chapter 5, we explored our results on 2 ends.
On the algorithmic end, in which we looked closely at the speedup that has been
offered by the parallelization of the algorithm that computes the microscale index of
frustration, we observed that the parallel version of our algorithm that computes the
microscale index of frustration outperformed the serial version for graphs that have
a huge size (whether in terms of edges or nodes). We also realized that our runtime
increases when the number of positive edges in a graph, and that of negative edges
get close to one another.
The other end was the dynamical systems end for which we took a time series, in-
ferred its matrices of interaction coefficients at multiple instants, assumed that they
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constitute the adjacency matrix of a time-evolving graph that characterizes our un-
derlying dynamical system, and evaluated the time-evolving multilevel indices of
frustration.
We realized that as the time series stabilizes, the indices of frustration indicate a
state of balance by admitting an index of 1. We explored this state for a system that
has been modeled as a compartmental model, and for time series that have been
taken from real COVID-19 data. We also explored the limitations of our method
and the impact of the number of dynamical variables on our method. For the sake
of increased accessibility, we combined the code for our method in a library called
FrustrationDynamiX that was explained in Appendix A.
As a general reflection, we realize that the macroscale index has the most infor-
mation, yet it is the most computationally expensive one to compute. We realize
that the microscale index of frustration can be less expensive, and it captures some
important phenomena for complete graphs. As such, one might want to aim to
compute the macroscale index of frustration of their system to capture more phe-
nomena in the system. This motivates the future work to explore parallelizations of
the macroscale index of balance, ILP problems or alternative formulations.
We can also suspect that edge weights should have an impact on the measures of
frustrations, and as such we should explore the weighted analogs of all the proposed
algorithms and study the impact of weights on our dynamical systems.
Our work essentially contributed to a massive field that is constantly growing with
the growth we are witnessing the data-driven modelling, and further explorations
appear to be rewarding to the community.

66



Appendix A

FrustrationDynamiX Library
Documentation

This appendix serves the purpose of giving the reader a basic tutorial on calling the
FrustrationDynamiX library in Python to generate results using the tool.

Installing the Package

To install the package and use it in Python locally, in the command prompt, call

pip i n s t a l l FrustrationDynamiX

If the package is to be used in Google Colab or Jupyter Notebook, in a coding block
call

! pip i n s t a l l FrustrationDynamiX

Importing the data

The data must have the following format:

time X1 X2 · · · Xn

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

Table A.1: The format of the data of the input timeseries

When the format of the data is like the one described in A.1, we can use Pandas
to import it. If it is stored in a CSV file we would

import pandas as pd
df = pd . r ead c sv ( . . . )
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Initializing the FrustrationDynamiX Object

When we have the data ready, we can initialize an instance of FrustrationDynamiX

from FrustrationDynamiX import ∗
fdx = FrustrationDynamiX ( t i m e s e r i e s d f , i s n o r m a l i z e d=False

)
#t im e s e r i e s d f i s the pandas dataframe with the data
#i s no rma l i z ed i s an op t i ona l argument i n i t i a l i z e d as Fa lse

by d e f au l t , but may be i n i t i a l i z e d as True in case the
data i s a l r eady normal ized between 0 and 1

Data Preprocessing

If the data is not normalized, there are two options to normalize the time series
between 0 and 1.
First option is to divide all values by the absolute value of the maximum across all
values of the timeseries

fdx = fdx . no rma l i z e s e r i e s max ( )
#No argument i s needed

Second option is to allow the user to provide a value that divides all values of the
time series. This value must be real and positive

fdx = fdx . n o r m a l i z e s e r i e s c o n s t a n t ( va lue )
#va lue i s the user−de f ined r e a l and p o s i t i v e number to

normal ize the s e r i e s

We can also choose to round the timeseries to a certain number of decimal places,
and this feature is recommended to be used after normalizing

fdx = fdx . r o u n d s e r i e s ( number f igures )
#number f i gures i s a p o s i t i v e i n t e g e r t ha t determines the

number o f decimal p l a c e s to be taken

Frustration Computation

We can compute the frustration indices for a time series by calling the following
methods.
For the microscale index of frustration, call

t ime vector , t r i a d i c b a l a n c e , b a l a n c e d t r i a n g l e s ,
u n b a l a n c e d t r i a n g l e s = fdx . c o m p u t e t r i a d i c e v o l u t i o n (
window size = None , showPlots = True )

#window size i s the s i z e o f the i n t e r v a l to be taken ,
i n i t i a l i z e d to number o f v a r i a b l e s + 2 by d e f a u l t
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#showPlots (True by d e f a u l t ) a l l ow s the user to view the
SMap f i t n e s s p l o t s

#t ime vec t o r conta ins the va l u e s o f time f o r which ba lance
was eva l ua t ed

#t r i a d i c b a l a n c e conta ins the microsca l e i n d i c e s o f ba lance
computed as b a l a n c e d t r i a n g l e s . / ( b a l a n c e d t r i a n g l e s +
unba l an c ed t r i an g l e s )

For the macroscale and mesoscale indices of frustration, call

t ime vector , F , Z , C, D = c o m p u t e f r u s t r a t i o n e v o l u t i o n (
method , window size = None , showPlots = True )

#method i s e i t h e r ”XOR” , ”ABS” or ”AND”
#window size and showPlots as p r e v i o u s l y de f ined
#t ime v e c t o r s con ta ins the va l u e s o f time f o r which ba lance

was eva l ua t ed
#F conta ins the macroscale index
#Z conta ins the s i z e o f the edge d e l e t i o n s e t
#C and D conta in the cohe s i v ene s s and d i v i s i v e n e s s

r e s p e c t i v e l y

Plotting

We can either plot the raw timeseries, or the time series overlapped by one of the
computed indices.
To plot the raw timeseries, call

fdx . p l o t s e r i e s ( x l a b e l = ”Time” , y l a b e l = ” Var iab l e s ” , t i t l e
= ”Time  s e r i e s ” , s a v e p l o t = None )

#Where the parameters determine the p l o t s e t t i n g s
#s a v e p l o t t a k e s a s t r i n g t ha t saves the p l o t in the name o f

the s t r i n g i f g i ven

To plot the timeseries with an index, one must have called the Frustration com-
putation function corresponding to the desired scale of the index before calling the
following function

fdx . p l o t f r u s t r a t i o n s e r i e s ( method , x l a b e l = ”Time” , y l a b e l
= ” Var iab l e s  and  Frus t ra t i on ” , t i t l e = ” Frus t ra t i on  vs .  
Time” , s a v e p l o t = None )

#Where the method i s ”MIC” fo r microsca le , ”MAC” fo r
macroscale , and ”MES” fo r cohe s i v ene s s and d i v i s i v e s s

#s a v e p l o t t a k e s a s t r i n g t ha t saves the p l o t in the name o f
the s t r i n g i f g i ven

Note that a warning will be issued in case the timeseries was neither normalized
using one of the preprocessing functions nor normalized before instantiation. The
warning is due to the fact that the frustration index may not appear properly on
the plot due to the variation in the scales.

69



Remarks

The package includes many methods that can compute the index of frustration for a
single graph. In fact those methods were used as helper methods to call the functions
outlined above. However, this appendix only serves the purpose of providing the
user with a documentation for using the package to produce results similar to the
one produced in the research.
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