
Vol.:(0123456789)1 3

Molecular Biology Reports (2020) 47:169–177 
https://doi.org/10.1007/s11033-019-05117-7

ORIGINAL ARTICLE

BACs‑on‑Beads™ assay, a rapid aneuploidy test, improves 
the diagnostic yield of conventional karyotyping

Chantal Farra1 · Anwar H. Nassar2 · Fadi Mirza2 · Lina Abdouni1 · Mirna Souaid1 · Johnny Awwad2,3

Received: 18 March 2019 / Accepted: 1 October 2019 / Published online: 8 October 2019 
© Springer Nature B.V. 2019

Abstract
BACs-on-Beads (BoBs™) assay is a rapid aneuploidy test (RAT) that detects numerical chromosomal aneuploidies and 
multiple microdeletion/microduplication syndromes. This study was conducted to appraise the usefulness of the BoB™ 
assay as a complementary diagnostic tool to conventional karyotyping for the rapid detection of chromosomal aneuploi-
dies. A total of 485 prenatal (amniotic fluid and chorionic villi) and blood/products of conception samples were collected 
between July 2013 and August 2018, and analyzed by the BoBs™ assay and cytogenetic karyotyping and further validated 
by fluorescence in situ hybridization (FISH). Forty-three of 484 qualifying samples (8.9%) were identified as abnormal by 
the BoBs™ assay. The assay was comparable to karyotyping in the detection of common structural abnormalities (trisomy 
21, trisomy 18, X, and Y), with a sensitivity of 96.0% and a specificity of 100%. BoBs™ assay detected 20 microdeletion 
and microduplication syndromes that were missed by karyotyping. BoBs™, however, missed 10 cases of polyploidies and 
chromosomal rearrangements which were identified by conventional karyotyping. Our findings suggest that BoBs™ is a 
reliable RAT which is suitable in combination with conventional karyotyping for the detection of common aneuploidies. The 
assay also improves the diagnostic yield by recognizing clinically relevant submicroscopic copy number gains and losses.
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Introduction

Fetal chromosomal analysis using G-banding karyotyping 
has traditionally been considered the gold standard detec-
tion method for aneuploidies and large chromosome rear-
rangements (~ 5 Mb), namely inversions, translocations, 
duplications and deletions [1–4]. Although characterized 
by very high accuracy and specificity [1, 2, 4], karyotyping 

is a time- and labor-consuming methodology that requires 
fetal cells to be cultured in vitro for about 2 weeks prior to 
analysis [2, 5, 6]. The technique also suffers a limited resolu-
tion capacity preventing the identification of chromosomal 
microdeletions and microduplications [5, 7].

Because timely diagnosis of fetal aneuploidies is highly 
desirable for a prompt medical decision making and for 
reducing couple anxiety, complementary rapid aneuploidy 
tests (RATs) have been largely explored [3, 8, 9]. RATs are 
often less costly alternatives to conventional karyotyping 
[10–12], and include quantitative fluorescence-polymerase 
chain reaction (QF-PCR), fluorescence in situ hybridiza-
tion (FISH), and multiplex ligation-dependent probe ampli-
fication (MLPA) [3, 8, 10, 13]. These methods nonetheless 
allow the detection of whole chromosome aneuploidy for 
a limited number of chromosomes (13, 18, 21, X and Y). 
Expanding the range of chromosome detection may mean 
the introduction of additional molecular reactions and con-
sequently could imply a substantial increase in cost [5, 8, 
10, 11, 14]. To overcome the limitations of available RATs 
[8, 10, 11, 14], chromosomal microarray analysis (CMA) 
was introduced as a molecular tool for the genome-wide 
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identification of submicroscopic abnormalities [15–18]. 
CMA nonetheless was deemed to be a costly method with 
doubtful outcome when copy number variations of unknown 
pathogenic significance are detected [15–18]. Accordingly, 
the technical limitations of conventional karyotyping and 
RATs, as well as the diagnostic uncertainties associated with 
CMA, have led to the development of the bacterial artificial 
chromosomes (BACs)-on-Beads (BoBs™) assay [7, 19–21].

BoBs™ is a newly developed molecular diagnostic tech-
nique consisting of a bead-based multiplex assay using 
microspheres with two distinct fluorochromes of variable 
concentrations to create an array of more than 100 different 
unique probes. Each probe is derived from DNA amplified 
from bacterial artificial chromosomes, allowing for the rapid 
detection of chromosomal abnormalities [19, 21, 22]. Each 
bead contains several copies of the same BAC adherent to 
its surface. Five independent BACs-on-Beads probes are 
included for chromosomes 13, 18, 21, X and Y. Targeted 
BoBs™ assay not only detects common aneuploidies of 
chromosomes 13, 18, 21, X and Y, but it also covers a broad 
set of microdeletions and microduplications in the regions 
causing the following syndromes: Wolf-Hirschhorn, Cri du 
Chat, Williams–Beuren, Langer–Giedion, Prader–Willi/
Angelman, Miller-Dieker, Smith-Magenis, and Di-George 
[7, 19, 21]. Four to eight probes are available for each of 
the nine well-characterized microdeletion critical regions.

In this study, we compared the results of the BoBs™ 
assay for 485 samples with those obtained by conventional 
karyotyping, seeking to (i) calculate the parameters of diag-
nostic accuracy, (ii) estimate the additional diagnostic yield 
in prenatal and blood/products of conception (POC) sam-
ples, and (iii) evaluate the benefits and limitations of this 
technology with respect to conventional karyotyping.

Materials and methods

Study design and sample selection

Between July 2013 and August 2018, the Medical Genetics 
Laboratories at the American University of Beirut Medical 
Center performed genetic testing on 485 samples includ-
ing amniotic fluid, chorionic villi, POC, and blood. Samples 
were collected and transported at room temperature. Each 
sample was then divided into two aliquots: The first was pro-
cessed for DNA extraction either immediately after recep-
tion or after an overnight storage at 4 °C. Genomic DNA 
was extracted and purified from samples using QIAamp 
DNA mini kit (Qiagen, Inc., Germany) according to manu-
facturer’s recommendations. The other was processed then 
cultured immediately for 10–14 days with 5% CO2 at 37 °C 
under sterile conditions for conventional karyotyping.

Each sample underwent chromosomal analysis using two 
diagnostic modalities: targeted BoBs™ assay and conven-
tional karyotyping. Chromosomal findings with BoBs™ 
were validated by conventional karyotyping for common 
chromosomal aneuploidies and FISH for submicroscopic 
structural abnormalities. In the case of prenatal samples, 
maternal cell contamination testing was performed uti-
lizing multiplex-PCR based small tandem repeat (STR) 
genotyping.

BACs‑on‑Beads™ technique (PerkinElmer®, BoBsoft® 
2.0)

Following extraction, genomic DNA was amplified with 
a primer solution, labeled by enzymatic incorporation of 
biotinylated nucleotides, and purified using a purification 
plate for biotinylated DNA. It was then hybridized to BACs-
on-Beads probes by overnight incubation as per manufac-
turer’s protocol, washed and bound to the reporter molecule 
and then washed again. Thereafter, the fluorescent signals 
were measured using a Luminex xMAP cytometric acquisi-
tion system (Luminex Corp., Austin, Texas) equipped with 
BoBsoft® 2.0 software technologies (PerkinElmer®, Wal-
lac Oy, Turku, Finland) for fluorescence data analysis [19]. 
Experiments passing quality control had more than 100 
beads/BACs analyzed alongside male and female reference 
DNAs that were obtained from normal patients tested in our 
lab. Test sample analyses were performed in singletons and 
reference samples were analyzed in duplicates. A sample 
was labelled as “duplicated” or “deleted” in a chromosome 
locus when single copy gains and losses generate fluores-
cence ratios ranging from 1.3 to 1.4 and from 0.6 to 0.8, 
respectively.

The targeted BoBs™ assay was designed for the detec-
tion of aneuploidies of chromosomes 13, 18, 21, X and Y, 
in addition to gains and losses of DNA in chromosomal 
regions associated with the following nine microdeletion 
syndromes: Di-George syndrome region (22q11.2, 10p14), 
Wolf-Hirschhorn syndrome (4p16.3), Cri du Chat syndrome 
region (5p15.3-p15.2), Williams–Beuren syndrome region 
(7q11.2), Langer–Giedion syndrome region (8q23-q24), 
Prader–Willi/Angelman syndrome region (15q11-q12), 
Miller-Dieker syndrome region (17p13.3), and Smith-
Magenis syndrome region (17p11.2) (7, 19, 21). The turna-
round time for the assay was 3–5 days.

Karyotyping, QF‑PCR and FISH

Conventional karyotyping was performed using the standard 
G-banding method, and karyotype description was based on 
the International System for Human Cytogenetics Nomen-
clature [5]. QF-PCR was performed according to the manu-
facturer’s protocol [22], and it was based on polymorphic 
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STR markers on chromosomes 13, 18, 21, X, and Y. FISH 
was performed to confirm the presence of microdeletion and 
microduplication syndromes using a fluorophore-labeled 
DNA probes used routinely for microduplications and 
microdeletions.

Data analysis

Data are reported as ratios and percentages. The results of 
the BoBs™ assay were compared with conventional karyo-
type patterns.

Results

Common chromosomal abnormalities detected 
by BACs‑on‑Beads™ assay

A total of 485 prenatal and blood/POC samples were ana-
lyzed by targeted BoBs™ genetic testing, obtaining con-
clusive results on 484 cases with an overall failure rate of 
0.2%. The failed case was due to low DNA quantity and 
quality. There were 312 prenatal samples (amniotic fluid and 
chorionic villi) and 173 blood/POC samples. Indications for 
chromosomal analysis were abnormal antenatal aneuploidy 
screening (180; 37.1%), abnormal ultrasound morphological 
features (76; 15.7%), advanced maternal age (56; 11.5%), 
recurrent pregnancy loss (24; 4.9%), and neonatal dys-
morphic features/developmental retardation (149; 30.7%). 
Significant maternal cell contamination was detected in 5 
prenatal samples which were not retained (1.5%).

Following targeted BoBs™ testing, 43 of 484 qualifying 
samples were classified as abnormal on the basis of their 
allelic ratio, an overall detection rate of 1/11 (43/484, 8.9%) 
(Table 1). The remaining 441 samples were classified as 
normal. A representative BoB™ plot revealing a normal 
disomic pattern is shown in Fig. 1. In prenatal samples 
(amniotic fluid and chorionic villi), the aneuploidy detec-
tion rate was 1/14 (22/312, 7.0%). When considering the 
indication for prenatal diagnosis, the detection rate was 1 
in 8 for abnormal ultrasound findings, 1 in 22 for abnormal 
prenatal maternal aneuploidy markers screening tests, and 1 
in 14 for advanced maternal age. Overall, trisomy 21 (Fig. 2) 
was the most common finding (13/43) representing 30.2% of 
all abnormal results. Other numerical abnormalities were tri-
somy 18 (5/43, 11.6%), monosomy 21 (1/43, 2.3%), mono-
somy X (4/43, 9.4%) and Klinefelter syndrome (1/43, 2.3%).  

With karyotype as the comparator, the diagnostic per-
formance of the BoBs™ assay for common numerical ane-
uploidies (21, 18, X, and Y) was defined by a sensitivity of 
96.0% and a specificity of 100%. No false-positive results 
were observed.

Submicroscopic structural chromosomal 
abnormalities detected by BACs‑on‑Beads™ assay

Among the 451 cases with normal karyotype patterns, the 
BoBs™ assay detected 16 cases of microdeletions and 4 
cases of microduplications that were otherwise classified as 
normal by G-banding karyotyping. There were nine cases 
of deletion of the Di-George syndrome region (22q11.2; 
2.0%) (Fig. 3), three cases of deletion of the Prader–Willi/
Angelman syndrome region (15q11.2; 0.7%), two cases of 
deletion of the Williams–Beuren syndrome region (7q11.2; 
4.6%), one case of deletion of the Cri du Chat syndrome 
region (5p15.3;p15.2; 2.3%), one case of deletion of the 
Wolf-Hirschhorn syndrome region (4p16.3; 2.3%), two cases 
of duplication of the Miller-Dieker region (17p13.3; 4.6%), 
and two cases of duplication of Di-George region (22q11.2; 
4.6%). There were no false-positive results observed follow-
ing FISH confirmation of abnormal findings.

In total, 5 and 15 submicroscopic copy number losses and 
gains were detected by BoBs™ assay in prenatal and blood/
POC samples, respectively, thus providing an additional 
detection yield for prenatal diagnosis of 1/62 (5/312, 1.6%). 
All five prenatal cases were non-suspicious for submicro-
scopic imbalances as they presented for common indica-
tions of prenatal diagnosis (abnormal aneuploidy screening, 
advanced maternal age and abnormal ultrasound findings). 
The estimated additional diagnostic yield of BoBs™ for 
cryptic imbalances in blood samples from children with 
dysmorphic features and/or developmental delay was 1/12 
(15/173, 8.7%).

Chromosomal abnormalities not detected 
by BACs‑on‑Beads™ assay

After conventional karyotyping, 10 cases of false-nega-
tive results (2.1%) missed by targeted BoBs™ assay were 
observed (Table 2). Two of them were cases of triploidy 
(69, XXY) which were initially misinterpreted as nor-
mal disomic males. Two were cases of mosaicism, one of 
which had a mosaic pattern involving chromosome 22 (mos 
47,XX,+22[6]/46,XX[15]). Five cases of cytogenetically 
visible chromosomal rearrangements, translocations and 
inversions, involving chromosomes 9, 10, 13, 14, and 22 
were also missed by BoBs™.

Discussion

In this study, we compared the diagnostic performance of 
targeted BoBs™ assay with gold standard karyotype. Our 
findings suggest that BoBs™ assay is a reliable method for 
the rapid detection of common aneuploidies in prenatal and 
blood/POC samples, with the added benefit of identifying 
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submicroscopic structural chromosomal abnormalities oth-
erwise undetected by conventional karyotyping.

Our results confirmed the high diagnostic accuracy 
of the BoBs™ assay in detecting common chromosomal 
abnormalities (13, 18, 21, X and Y) in prenatal and blood/
POC samples. A concordance rate of 100% with conven-
tional karyotyping was found, which is in agreement with 

the findings of other studies [2, 5, 21, 23, 24]. With karyo-
type as the comparator, targeted BoBs™ assay demon-
strated a sensitivity of 96.0% and a specificity of 100% in 
identifying common aneuploidies. Comparable diagnostic 
performance parameters were also reported by other inves-
tigators [2, 21, 23].

Table 1   Chromosomal abnormalities detected by BoBs™ assay

Samples 
(n = 43)

Karyotype FISH BoBs™ assay

Trisomy 21 4 47, XY +21 – Trisomy 21
1 47, XX +21 – Trisomy 21
1 46, XX, rob (21,21)(q10;q10) – Trisomy 21
7 47, XY +21 – Trisomy 21

Trisomy 18 1 47, XX +18 – Trisomy 18
1 47, XX +18 – Trisomy 18
1 47, XY +18 – Trisomy 18
2 47, XY +18 – Trisomy 18

Monosomy 21 1 45, XY −21 – Monosomy 21
Monosomy X 2 45, X – Monosomy X

2 45, X – Monosomy X
Di-George syndrome 2 46, XX 46,XX.ish del(22)(q11.2q11.2)

(D22S75−)
22q11.2 deletion

1 46, XY 46,XY.ish del(22)(q11.2q11.2)
(D22S75−)

22q11.2 deletion

1 46, XX 46,XX.ish del(22)(q11.2q11.2)
(D22S75−)

22q11.2 deletion

4 46, XY 46,XY.ish del(22)(q11.2q11.2)
(D22S75−)

22q11.2 deletion

Klinefelter syndrome and Di-
George

1 47, XXY 47,XXY.ish del(22)(q11.2q11.2)
(D22S75−)

22q11.2 deletion+XXY

Prader–Willi syndrome/Angelman 
syndrome

1 46, XY 46,XY.ish del(15)(q11.2q11.2)
(SNRPN−,D15S10−)

15q11 deletion

1 46, XX 46,XX.ish del(15)(q11.2q11.2)
(SNRPN−,D15S10−)

15q11 deletion

1 46, XX 46,XX.ish del(15)(q11.2q11.2)
(SNRPN−,D15S10−)

15q11 deletion

Williams–Beuren syndrome 1 46, XX 46,XX.ish del(7)(q11.23q11.23)
(ELN−)

7q11.2 deletion

1 46, XY 46,XY.ish del(7)(q11.23q11.23)
(ELN−)

7q11.2 deletion

Cri du Chat syndrome 1 46, XX 46,XX.ish del(5)(p15.2p15.3)
(D5S23−, D5S721−)

5p15.3-p15.2 deletion

Wolf-Hirschhorn syndrome 1 46, XX 46,XX.ish del(4)(p16.3p16.3)
(D4F26-,D4S96-)

4p16.3 deletion

Di-George region duplication 1 46, XY 46,XY.ish dup(22)(q11.2q11.2)
(D22S75−)

22q11.2 duplication

1 mos 47, XX, +22[6]/46, XX[15] 46,XX.ish dup(22)(q11.2q11.2)
(D22S75−)

22q11.2 duplication

Miller-Dieker region duplication 1 46, XY 46,XY.ish dup(17)(p13.3p13.2)
(MDCR+)

17p13.3 duplication

1 46, XY 46,XY.ish dup(17)(p13.3p13.2)
(MDCR+)

17p13.3 duplication
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Although RATs, including BoBs™, offer the significant 
benefit of early reporting, there is no agreement that anyone 
of these tests may be used as a stand-alone method to replace 
conventional karyotyping. It should be noted that RATs are 
often targeted assays designed specifically to detect common 

chromosomal aneuploidy. Abnormalities of chromosomes 
other than 13, 18, 21, X and Y remain therefore untargeted 
and invariably fall out of detection range. In prenatal diag-
nosis for example, it has been estimated that about 15–30% 
of aneuploidies detected by karyotyping are missed by RATs 

Fig. 1   Representative BoBs™ plot of a normal male (46, XY). Blue line represents a normal male reference DNA. Red line represents a normal 
female reference DNA. Green lines represent the normal range. (Color figure online)
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Fig. 2   Representative BoBs™ plot of Trisomy 21. Blue line represents a normal male reference DNA. Red line represents a normal female refer-
ence DNA. Green lines represent the normal range. (Color figure online)
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Fig. 3   Representative BoBs™ plot of Di-George microdeletion (22q11.2). Blue line represents a normal male reference DNA. Red line repre-
sents a normal female reference DNA. Green lines represent the normal range. (Color figure online)
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[25], and that one clinically significant chromosomal abnor-
mality for every 250 invasive prenatal samples may be unde-
tected by these tests [26, 27]. The potential consequences of 
these diagnostic inaccuracies may be significant in terms of 
the serious medical, emotional and financial burden imposed 
by the birth of an affected child, unless used in conjunction 
with conventional karyotyping.

Like other rapid aneuploidy detection tests, targeted 
BoBs™ assay underperforms conventional karyotyping in 
the diagnosis of specific types of chromosomal abnormali-
ties. In our study, the assay failed to recognize two cases 
of triploidy and five cases of chromosomal rearrangements 
which were misclassified as normal. These findings are in 
line with the study by Choy et al. [2], in which BoBs™ 
assay missed four cases of polyploidy. Vialard et al. [21] also 
reported six false-negative cases of triploidy and seven cases 
of cytogenetically visible unbalanced rearrangement. Fur-
thermore, targeted BoBs™ has been shown to detect mosai-
cism (≥ 20%) with a sensitivity of 57.1% [28]. It is therefore 
reasonable to believe that the combination of BoBs™ and 
conventional karyotyping would reduce false negatives and 
improve overall sensitivity of prenatal genetic testing.

In contrast to other rapid aneuploidy detection tests, tar-
geted BoBs™ was found to increase the overall detection 
rate of conventional karyotyping by 1 in 24 in our study 
sample, taking into account all 20 cases of microdeletions 
and microduplications missed by cytogenetic analysis. When 
considering only amniotic fluid and chorionic villi samples 
submitted for prenatal diagnosis, the additional detection 
rate was 1 in 62. In these cases, targeted BoBs™ enabled the 
detection of submicroscopic copy number aberrations in the 
absence of pathognomonic ultrasound markers. For postnatal 
blood samples from children with dysmorphic features and/
or developmental delay, the additional diagnostic yield of 
BoBs™ for cryptic imbalances was 1/12.

In this study, the 20 cases of microduplications and 
microdeletions identified by BoBs™ corresponded to nine 

well-characterized clinical syndromes covered by the assay, 
namely Di-George, Wolf-Hirschhorn, Cri du Chat, Wil-
liams–Beuren, Langer–Giedion, Prader–Willi, Angelman, 
Miller-Dieker, and Smith-Magenis. Other investigators [2, 
5] confirmed this diagnostic advantage when they reported 
the detection of microdeletion and microduplication syn-
dromes which were missed by karyotyping and other RATs. 
Karyotyping using routine banding resolutions (750-band 
level), lacks the diagnostic capability of detecting submi-
croscopic structural abnormalities of less than 5 Mb. This 
technical shortcoming explains the false-negative diagno-
ses associated with conventional karyotyping for specific 
microduplication and microdeletion syndromes. As a result 
of this unique diagnostic advantage, BoBs™ appears to be 
particularly suited to complement conventional karyotyping 
in prenatal and blood/POC genetic diagnosis.

In conclusion, the findings of this study suggest a high 
concordance between targeted BoBs™ assay and conven-
tional karyotype for the detection of common chromo-
some aneuploidies in prenatal and blood/POC samples. 
Complementary BoBs™ also offers the added benefit of 
increasing the diagnostic yield by enabling the detection 
of microdeletion and microduplication syndromes with a 
relatively significantly shorter turnaround time. The main 
shortcoming of the technique remains its limitation to rec-
ognize polyploidies, low-level mosaicism, and chromosomal 
rearrangements.
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