氷

18 Pin
332

 凸

\qquad

SPORTS

CENTER

 at AUB

今

ALI MOKADEM arch 92

$$
10111991 \cdots 1992
$$

$E P_{s} n$
332

HinalProject Ressearch

$13 y$

A1 i MOLくad@M

$$
\begin{aligned}
& \operatorname{Course}=A 592,
\end{aligned}
$$

$$
\begin{aligned}
& \text { Frof.zahikorciani } \\
& \text { Mr- METY }
\end{aligned}
$$

INLSEX

* Introduction 1
- Scope 1
- Objectives 2
* Historjocal Background 3
* Purpose of Project 4
- Architectural Goals 4
- Social Goals 5
* Program 6
-- Existing Study 6
- Comparative Analysis of Similar Projects 12
- Schedule of Sports Offered at AUB 17
- Number of Employees 21
- Proposed Program 22
* Similar Projects 25
* Space Analysis 37
- Design Parameters 37
- Organization Diagrams 45
* Site Analysis 48
- Choice of Site 48
- Topography 48
- Geology 4 S
- Climate 52
- Site Survey and Analytical Maps 54
- Photography Section 61
* Appendix 67
- Space Analysis 6%
- Similar Projects S 1
- Intervjew with Mr. Halimi 109
(Director of the athletic department)

The only indoor facility in $A U B$ where athletes can practice sports duriing winter is the Engineering Allumni Hall known as $A \cup B$ "Indoor". Last year, the faculty of Engineering decided to take charge of the "Indoor" and transform it into a permanent exhibition hall for engineering materials and equipment. This represented a serious problem for the athletes; they could not practice in winter any more. This current problem was raised to the board of Trustiees in New York and a letter was sent from the President of $A \cup B$, in november 1991, stating that the only solution to this crisis is to build a new indoor athletic center on $A U B$ campus.

SCOPE

The project will embody various sports facilities that will serve AUB faculty, students and staff; it will also include anciliary facilities for this purpose. Furthermore, the sports center will house various competitions on many levels as it will be unique in the country.

The project will inclucle:

- Indoor dry sports halls
- Indoor pool hall
- Sports administration
- A lounge including recreational facilities
- A cafeteria
-- Service facilities
I chose to have a sports complex as my final project because of my strong interest in sports. I have been practicing many kinds of sports for many years and I believe thal sports are very important for the development of a community as well as for individuals.

I propose the Practice Field, on the western side of the Green Field, as a site for my project. In my opinion, this is the best location for such a project because it is near other outdoor sports facilities, flat and large enough to accomodate for the project.

OBJECTIVES

The main goal of this project is the promotion and improvement of sports at AUB. To achieve this, the project aims at providing two essential objectives:

- Aclequate facilities for effective training
- Proper recreational areas to encourage interaction among athletes

HISTORICAL. BACKGROUND

Sports at AUB had undergone many changes in the past fifteen years. Prior to the war, the university had a considerable percentage of foreign students who showed enthusiasm for sports which was considered to be important in their culture and it was given a greater and more professional value. In fact, they were examples for their lebanese colleagues to follow and hence, there was an increased contribution to sports activities.

At that time sports facilities at AUB were limited; never theless, there were better athletes who had set records on a national scale.

During the war, interest in sports among students and faculty dropped drastically. This atiitude was faced by the athletic department by improving the existing facilities like the construction of four outdoor Tennis courts in 1983 and the addition of new facilities for new sports like the weight training room adjacent to the changing facilities in 1987. As a result, this improvement succeeded in raising the interest of students in sports.

Since then, the number of students using sports facilities has been improving constantly. Presently, there is a large number of students who are practicing sports; however, the quality of athletes that existed before the war has dropped sharply. Thus, there are no record makers any more.

Every year, many competitions and championships at different levels take place at AUB. For example, we have the "Lebanese Federation of Sports for Universities" championship which is on a national scale, where students from different universities in Lebanon compete in many kinds of sports. An other example would be the AUB intramurals which takes place every year among stuctents from different faculties at AUB.

ARCHITECTURAL GOALS

The proposed site is in the lower part of AUB campus. This part is characterised by its new modern buildings in contrast with the upper part of the campus wich is old and traditional.

In my project, I aim to reach an architectural image that will stand in harmony with the adjacent buildings and will convey a true message of structure and fonction.

Spaces in this project are characterised by having large areas with the impossibility of having intermediate columns within these spaces; hence, we will have big spans. The design of structure in this case is very importent and structural elements play a prominent role in determining the architectural image of the building. Exposing the structural fram would give us a true idea about the relationship between structural elements and vertical planes, and what is happening behind them.

The proposed site is on the northern boundary of $A U B$ campus, streching parallel to the sea road. Being so, it offers a high degree of exposuer to north orientation. The architecture should take advantage of this northern strech of the project to admit light into different sports facilities. North light is best for these facilities because it is glare-free. The introduction of light to spaces would be through architectural elements; glass panels would be an infill between columns and between beams. The combination between these elements will determine the external expression of the project.

As from the inside, it is a multifonctional project, joined together by aprocession of movement and experience through different perspectives.

Technologicaly speeking, steel structures are best for the construction of such projects due to their ability to resist high tensile forces; but, since the location of the project is near the sea, whith causes frequent corrosion to steel, and since this material is not abundant in our country, reinforced concrete becomes more apropriate as a technology for construction clue to its availability and high resistence to corrosion. A combination of the two materlals, steel and reinforced concrete, would be icleal
for the construction of this project; steel would be used in case of large spans, whereas reinforced concrete would be used for compression elements.

SQCIAL GOALS

The presence of such a center will provide a place of identity for the athletic body and a place of interaction; gathering people who share a common interest. In addition to this, the existence of such a center will encourage $A U B$ students to practice sports more frequently and henceforth have a chance to benefit from the numerous advantages that sports offer.

EXISTING STUDY

As a result of the letter sent by the president of $A \cup B$ In Now Work, $A \cup B$ officials started to conduct studies concerning the location and the content of the indoor sports center.

The following plans belong to a proposal by Mr. Richard Mashalani (Presidents office - civil engineer and architect by practice), in november 1991:

The project proposed by Mr. Mashalani of:

- Actministration	-------------------------	$235 \mathrm{~m}^{2}$
- Lounge	---------------------------	$275 \mathrm{~m}^{2}$
- Cafeteria	---------------------------	$117 \mathrm{~m}^{2}$
- Marshal arts room	------------------------------	$155 \mathrm{~m}^{2}$
- Aerobics room	--------------------------	$150 \mathrm{~m}^{2}$
- Table Tennis room	-------------------------	$170 \mathrm{~m}^{2}$
- Squash courts		$145 \mathrm{~m}^{2}$
- Body building room		$250 \mathrm{~m}^{2}$
- Gymnastics area	---------------------------	$390 \mathrm{~m}^{2}$
- Pool hall		$1035 \mathrm{~m}^{2}$
- Multi-sports hall	------------------------------	$830 \mathrm{~m}^{2}$
- Bleachers		$610 \mathrm{~m}^{2}$
- Changing/Lockers	---------------------------	$1050 \mathrm{~m}^{2}$
- Styorage		$150 \mathrm{~m}^{2}$
- Circulation	-	$1160 \mathrm{~m}^{2}$
(17% of total area)		
Total built up area	-----------------	$6722 \mathrm{~m}^{2}$

COMPARATIVE ANALYSIS OF SIMILAR PROJECTS

The following following similar projects were taken from an American magazine called Athletic Business dated on June 1990. Plans of these projects were not included.

Recreational Sports Complex
Loyola University - L.A

* Area: $7430 \mathrm{~m}^{2}$
* Number of students: 3583
* Functions:
- Natatorium
- Sports Forum: 6 independent multipurpose courts
- Indoors jogging track
- Weights room
- Exercise room
- Combative room
- Administration
- Services

Physical Education, Recreation, Intramural Facility University of HartFord

* Area: $8550 \mathrm{~m}^{2}$
* Number of students: 5032
* Functions:
- Gymnasium

1 multipurpose court plus bleachers

- Two RacquetBall/Squash courts
- Aerobics room
- Swimming Pool plus Diving Area
- Weights roon
- Sports Medicine Area

```
The Berry Sports Center
DorthMouth College - N.H
* Area: 6412 m}\mp@subsup{}{}{2
* Number of students: 4400
* Functions:
    - Gymnasium: Three Basketball courts convertable to one
    court plus bleachers for 2200 spectators
    - Seven competition Squash courts
    - Six RacquetBall courts
    - Dance/Aerobics room
    - Services
Barbee Center
The WoodBerry Forest School - V.A
* Area: 7026 m
* Number of students: unknown
* Functions:
    - Fieldhouse: 200m incoor track plus one multipurpose
        court
    - Natatorium
    - Squash Complex
    - Services
Marion Burk Knott Complex
College of NoterDame of MaryLand
* Area: 3428 m}\mp@subsup{}{}{2
* Number of students: 690
* Functions:
    -Gymnasium: 1 multipurpose court plus bleachers
    -Games room
    - Offices
    - 'Iwo RacquetBall/Squash courts
    - Dance/Aerobics room
    - Fitness center
    - Weights room
```

Hunter Student Activity Center

```
WestMinster College - MO
```

* Area: $2788 \mathrm{~m}^{2}$
* Number of students: 734
* Functions:
- Gymnasium: 1 multhpurpose court surrounded by an elevated track plus portable bleachers for 100 persons
- Two RacquetBall courts
- Weights room
- Training Facility
- Games room
- Cafeteria
- Reception Lounge
- Music room
- Administration

Land's End Activity Center
DodgeVille (For employees of clothing manufacturer)

* Area: $7435 \mathrm{~m}^{2}$
* Number of users: 4650
* Functions:
- Gymnasium: 1 BasketBall court plus an indoor track
- Aerobics room
- Physical testing and evaluation area
- Two RacquetBall courts
- Services

Student Recreational Center
University of Missouri - Colombia

* Area: $4553 \mathrm{~m}^{2}$
* Number of students: 18196
* Functions:
- Gymnasium: 2 multipurpose courts
- 3 RacquetBall/Squash courts
- Weights room
- Exercise/Dance room
- Lounge
- Services

Hofstra Recreation Center
Hofstra University - New York

* Area: $3166 \mathrm{~m}^{2}$
* Number of students: S449
* Functions:
- Gymnasium: 2 multipurpose courts
- Weights room
- Indoor running track
- Exercise room
- Reception Hall
- Offices
- Services

Rosary College Center
Rjver Forest - IL.

* Area: $3159 \mathrm{~m}^{2}$
* Numbir of students: 1042
* Functions:
- Gymnasium: 1 multipurpose court
- Dance room

Facilities

- RacquetBall courts
- Weight room
- Elevated indoor jogging track
- Meeting rooms
- Bookstore
- Services

As a summary, we come up with the following table:

Sports Centers	$\begin{aligned} & E \\ & \stackrel{5}{0} \\ & \stackrel{0}{4} \end{aligned}$	$\begin{gathered} 0 \\ 4 \\ 0 \\ 7 \end{gathered}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \hline \end{aligned}$	$\begin{gathered} 工 \\ 0 \\ 0 \\ 0 \\ \AA \end{gathered}$		$\begin{aligned} & 0-1 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \\ & 4 \end{aligned}$		4 7 4 4 4	$\begin{aligned} & 0 \\ & 0 \\ & \stackrel{1}{\Xi} \\ & \widetilde{0} \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{4} \\ \stackrel{\rightharpoonup}{0} \end{gathered}$	0 0 0 8 8
Sports Center Layola Univ.	230	3583	-	-	-	-	-	-				-
Physical Educ. Cent Univ. of hartford	8887	(1020	-		-	-	-		-			-
Berry Sparts Cent. Dorthmouth College	(44)2	4400	-				-		-			
Barbee Center Woodberry Forest schl.	7026		-	-	-				-			-
Knott Complex Notredame of Meryland	3428	690	-			-	-		-	-		-
Rosary College Cent. River Forest		12/21	-	-		-	-				-	-
Student Recreat. Cent. Univ. of Missouri	1583	18196	-			-	-		-		-	
Hunter Student Cent. Westminster College	2788	734	-			-		-		-	-	
Land's End Activ. Cent Dodgeville	435	4695	-		-		-				-	-
Hofstra Recr. Cent. Hofstra Univ.	3166	8449	-	-		-	-				-	
Project.proposed by Mr. Mashalani	6722	5174	-		-	-	-	-	-	-		

Looking at the pased comparative table, we can conclude the following:

The total built up area of the project depends on the kind and number of sports facili ties to be included in the project.

The nomber of users is not a major determinent of the total area of the project; since most sports facilltios require standard areas regardless of the nomber of users.

Basic sports facilities like a gymnasium (including a multi-purpose court), a weight training room, an aerobics room and squash courts, in addition to a cafeteria, are present in similar projects irrespective of the variant nomber of users. This fact will be a major determinent of the total built up area.

The comparative table gives us a clear idea of facilities the are indispensable to a sports center and others that could be deleated in case we are restricted in area. For example, a gymnasium and a weight training room are a must, while a combative room and a game room are optional. This critirea is fonction of the kind of sports offered in each center, it is also dependent on the policy and orientation of each center (wether individual or team oriented).

SCIIEDULE

This is a weekly schedule of sports offered at AUB:

Sport Frequency/week Duration Place

- Football:
(men)
- Basketball:
(men\&women)
- Volleyball:
(men/women)
- Handball:
(men)
- Tennis (men\&women)
- Track \& Field: daily (men\&women)
- Table Tennis: 3 times (men\&women)
- karate:
3 times 1

1 h
West Hall

- Full__Contact:
- Judo:
- Taek Won w:
- Aerobics:
- Body Building:
+ Sof tball:
$+$
* Many sports listed in the comparative table of similar projects are not offered at $A \cup B$, as: Squash, Indoor Jogging, Swimming and Gymmastics.
a These sports should be added to AUB schedule, and Elative facilities should be provided for them accordingly. * Sporrts listed in AUB schedule are practiced in various olaces on $A \cup B$ campus. They are combined as follows:

PLACE	SPORT
Green Field:	Football
	Track \& Field

_PLACE	SPORT
Indoor:	Basketball (men \& women) Volleyball (men \& women) Handrall
W.hall/Dance room:	Aerobics Dance
W.Hall/Combat room:	Table Tennis Karate Judo Taek Won Do Full Contact
Weights room:	Budy Building
Tennis courts:	Tennis
Practice field:	Softball

These combinations give us a clear idea of sports that can be practiced in the same space. This would help us to achieve maximum efficiency in the use of various spaces.

Looking at the pased schedule table, we notice that some of the sports facilities are underused, like the Green Flejd and the Indoor; while the body building (weight trainning) room is overused. The following tables highlight the rate of occupation per week of sports facilities that should exist in $A U B$ in order to satisfy existing and future needs, and to achieve maximum efficiency in the use of spaces.

It contains a multipurposo hall that will houso tho following sports:

Sports	Frequan	Duration
Basketball (men)	3 times	1h 30 min
Basketball (women)	3 times	1 h 30 min
Volleyball (men)	3 times	1h 30min
Volleyball (women)	3 times	1 h 30 min
Handball (men)	3 times	1 h 30 min
Tennis (men \& women)	daily	1 h
Gymnastics (men \& women)	3 times	1h 30 min

The gymnasium will be used 33 h per week, according to the above table; i.e. it will be occupied for 5 h 30 min per day, six days per week.

* Weight trainning room

It will be used for 8 hours per clay and will cater for an average of 15 persons simultaniously. An average trainning session per person is 60 min .

* Aerobics/Dance room

It will house the following sports:
Aerobics
Dancing
Physical Fitness
Due to the popularity of this kind of sports, we will
have two sections for each sport. The room will be occupied for 21 hours per week; hence, 3 h 30 min per day, six days per week. The room will cater for a maximum of 30 persons.

* Three Squash Courts

Squash courts will be open daily for 8 hours. Λ squash court is used by one or, in most cases, two persons at a time; for an average of per shift.

* Combative room

This room will include marshal art sports and wrestling.


```
Number of Employees
```

```
FGull Timers: - Director
    - Assistent Director
    - Secretery
    -4 Staff members
    - 2 Genitors
    - A Doctor (present for 3 to 4 hours per day)
    - A Nurs
Part Timers: - A coach for each of the following sports:
        * Foutball * Tennis
        * Basketball * Table Tennis
        * Volleyball * Gymnastics
        * Handball * Track & Field
        * Swimming * Weight Trainning
        * Aerobics * Dancing
        * Karate * Taek Won Dò
        * Judo * Wrestling
        * Squash * Full Contact
```

As a conclusion, the sports center would need 29 staff
members, 11 full timers and 18 part timers.

The program that 1 propose is a result of the analysis of similar projects, the interview with Mr. Halimi and the teview of books of archltectural standards conserning gports facilities.

Similar projects were very helpfull in determining the different sports facilities that should exist in a sports center according to the scale of the center.

The interview with Mr. Halimi highlighted the existing bnd futur needs of $A \cup B$ in terms of sports facilities. This fact determined sports facilities that should be added to the existing ones.

Books of standards delt with the technical part of the Program; mainiy areas of sports facilities and their Pelevent services, that summ up at the end to determine the total built up area of the project.

Number of students at AUB: 5174
Program:
4

- Director's office $15 \mathrm{~m}^{2}$
- Assistant director's office $12 \mathrm{~m}^{2}$
- Waiting and secretery space $10 \mathrm{~m}^{2}$
- Lounge $15 \mathrm{~m}^{2}$
- Changing room for a minimum of 6 staff members $12 \mathrm{~m}^{2}$
- Two toilet units $4 \mathrm{~m}^{2}$
- Small kitchenette $4 \mathrm{~m}^{2}$

The area of the cafeteria includes a storage place and a kervice counter.

It will cater for an average nomber of 70 persons.

Game room $220 \mathrm{~m}^{2}$

Table Tennis, Biliards, ets.

Including the following:

- Multipurpose hall $950 \mathrm{~m}^{2}$
- Indoor jopegine track 600m²
- Seating capacity for 1500 spectators $675 \mathrm{~m}^{2}$

Pool Hall
$1400 \mathrm{~m}^{2}$
It includes a $50 \times 21 \mathrm{~m}^{2}$ swimming pool in addition to a diving area.

Weight Trainning Room
$150 \mathrm{~m}^{2}$
This room will cater fol an averege of 15 persons trainning simultaniously.

Nerobics/Dance Room
$120 \mathrm{~m}^{2}$
It will house the following sports: aerobics, dance and physical fitness.

The capacity of this room is 30 persons.

Combative Room
$144 \mathrm{~m}^{2}$
This room will house the following sports: Jucto, Taek wan Do, Karate, Full Contact, Wrestling and any marshal art sport newly introduced.

The room will cater for 30 persons.

Conference/Audio Visual Room $45 \mathrm{~m}^{2}$

This room will be used for team gatherings and meetings. Its area was determined to accomodate for the biggest team (the football team, 16 players) amd staff members, where they can meet, exchange oppinions and watch ralevent visual material.

Medical Screening
It includes:

- Waiting $10 \mathrm{~m}^{2}$
- Examination room $10 \mathrm{~m}^{2}$
- Physical testing room $40 \mathrm{~m}^{2}$
- Office $10 \mathrm{~m}^{2}$
- Toilet unit $2 \mathrm{~m}^{2}$

The medical screening requires a full-time nurse and an attending doctor present for three hours per day.

```
* (:hanging rooms
465m}\mp@subsup{m}{}{2
*- Dry changing area: Area: 200m
```

 Maximum number of users: 105
 - Wet changing area: Area: $140 \mathrm{~m}^{2}$

Maximum number of users: 150

- Clothes storage: Area: $60 \mathrm{~m}^{2}$
- Showers: Number of showers: 25

Area: $40 \mathrm{~m}^{2}$

- Joilets: Number of toilets: 6 (men) -- 9 (women)

Area: $25 \mathrm{~m}^{2}$
Note: These areas would be equally between men and women except for the toilet units.

- Mechatitical 100 m

For water treatmont, heating, veitilation, electrical substation, etc.

* Storage spaces $120 \mathrm{~m}^{2}$ Distributed on all floors.

Total area of spaces: $6305 \mathrm{~m}^{2}$
Circulation is $15-20 \%$ of total space area.

Tolal built-up area: $7250 \cdots 7550 \mathrm{~m}^{2}$

M Parking:

Parking facilities are not needed since the number of cars accessing the $A U B$ campus is limited and parking is already provicled for them. However, service parking will be provided on the road near the service facility.
\square

Sthool and Sports Centre,

Carlton, Nottingham

"
(Project architect Gilbert Mellers)

The project was for the adaptation and extension of Caflon Cavendish secondary modern school to form an eight form entry 1200 pupil comprehensive school. In addition a sports centre was to be provided, to include a swinming pool and sports hall which would be used by school children during the daytime and by general public in the evenings, wekends and during school holidays.

Pitan of sports centre at level 236

Plan of sports centre at level 226

The joint facilities required by the brief were a swimming: pool ($25 \mathrm{~m} \times 12.8 \mathrm{~m}$); a teaching pool 7.3 m wide with a depth of 0.91 m throurhout; a viewing area for spectators located between the two pools; a sports hall 36.6 m long by 18.3 m wide; three activity area for judo, ferting and weight training; changing and cloakroom facilities for the sports centre and associated playing fields; a refreshment area and clubroom and a boiler house and plant room.
Additional facilities to be provided were two squash courts, a licensed bar in the clubroom, floodlighting for the all-weather pitch, parking for 150 cars, two grass pitches, an artificial ski slope and a target golf range of pavilion. The site is among medium to high density urban housing about three niles from the centre of Nottlngham. The sports centre is open from 9.00 to 23.00 hours hours every day, being used by schools until 17.00 each day during term time. It is therefore available to the public for the rest of the day, at weekends and in school holidays.

The area of carlton in which the school is situated is part of Nottingham conurbation and is typically suburban in character.

Principal planning and disign decisions

To integrate the scheme, seperate entrances for the sports centre and school, lead into a combined entrance foyer. Glass doors allow the school premised to be locked from the public at weekends and holiday times. The sports centre block is to the west to be nearer to the public car park and playing fields. The main swimming pool is of the level deck type and electronic swim time equipment regulate the flow of bathers. Natural light to the sports hall is by pltched rooflights designed to reduce glare to a minimum. The sports hall has red-brown faced brickwork panels at ground floor with grey-green plastic coated steel sheet cladding over. Retaining walls are reinforced concrete with red-brown facing bricks to match the sports hall.

Bury St Edmunds Sports and Leisure Centre,

 Suffolk (Project arditect Henk Pieksma)
Site

The site of approximately 7.5 hectares, known as the Gibralter Barracks site, was originally the headquarters of the Suffolk Regiment.

The site is enclosed on three sides by a heavy red brick wall(part of the old barracks complex) which is subject to a planning preservation order. The three buildings on the site__regimental museum, youth centre and sports centre, are all strong simple forms. It was intended to emphasise this character by restraint and simplicity in the landscape treatment. The site is approximately half a mile from the town centre.

On the north and east sides there are educational establishments, with playing fields, including a 400 m all weather running track, hard on the site boundaries.

Design

As a result of site requirements the building was designed as a simple rectangular box, sited on top of the bank and in front of the wooded area. The structural steel frame supporting the roof is exposed to give a feeling of rhythm and scale to the building. Brick was used inside and out up to a heipht of 2.1 m and above this the secondary steel. frame is clad externally with horizontal metal boarding and internally with timber boarding.
Extensive use is made of different levels leading off landings and half-landings of the staircases within the simple box conception. The architects have tried to express the relationship of spaces within the building by way of through views. Simplicity of construction and materials oxpressing the structure inside as well as out was always borne in mind.

1 Section AA

2 First floor plan

Construction and materials
With a view to reducing maintenance to a minimum, materials are restricted to steel, brick, timber and glass_alal of good quality. The quality of brickwork, metal cladding and timber boarding, coupled with the fact that all pipework has been hidden in ducts, will keep down vandalism.

The simple rectangular envelope is $76.2 \times 32.4 \times 7.5 \mathrm{~m}$ high (floor to ceiling). The southern half of this volume is taken up by two roughly equal areas: main $33.33 \times 12.60 \mathrm{~m}$ pool(water area) and a $34.80 \times 17.18 \mathrm{~m}$ main sports hall. The northern half has three levels containing learner pool, changing areas, and weight training room, on the ground floor; bar, refreshments, three squash courts and two practice halls on the first floor. The second floor accomodates the upper levels of these spaces and another viewing gallery. Between these two main divisions, along the major axis at each level, run the long public viewing areas which, at one end, form the refreshment room and bar.

Having entered at ground floor level ihrough the centrally positioned foyer and ticket office, the public are split four ways: to dry changing, wet changing, up to spectator areas, and down to the rifle range.

Structure

The simple box iclea, with only high level fenestration, has three advantages. It allows a very plain elevational statement which seems right in this setting, it ensures a very tight economical plan and it overcomes the distraction, glare. The Stanchions also express the 6.6 m grid(into which squash courts fit perfectiy) and provide rhythm and interestexternally.
The 2.1 m high continuous brick perimeter floats the building above its banked podium. The basement boiler house and rifle range are in reinforced concrete, as are both pools and their surroundings.

Form and Space

One remarkable effect on the inward-looking design, the variation of interior levels and simple elevations, is that the building appears twice as large inside as it does
externally. The diagonal views achieved internally by the extensive use of glass screens give a remarkable feeling of spaciousness and interest, and while the decision to adopt the $45^{\circ} \mathrm{high}$-level glazing was to solve problems of glare, vandalism and maintenance, the architects were also aware of the internal views of leaf and tree patterns outsicle.

Area: Ground floor area: $2472 \mathrm{~m}^{2}$.
Total floor area: $4129 \mathrm{~m}^{2}$.

Park Recreation Centre

Horsham, West Sussex
(Project architects D.F. Tandy, A. Bisztyga)

This project was for a recreation centre with accommodation for indoor and outdoor sporting activities.

2 Ground and first floor plans

The accommodation comprises at ground level a $32 \mathrm{~m} \times 21 \mathrm{~m}$ multi-purpose sports hall with three eqpuipment stores, male and female changing rooms with showers and toilets, disabled persons' toilet, first aid room, two instructors' changing rooms, referee's room, boiler house, beer store and cleaner's store, with eight external team changing rooms complete with toilets and showers serving the playing fields in Horsham Park.

In the first floor, approached by stairs and ramps, there is an entrance foyer and ticket office, male, female and disabled persons' toilets, two club rooms, restaurant and bar with services and kitchen, viewing galleries on three sides, one leading to an oxternal gallery for viewing to the sports fields and two management offices overlooking the sports hall and most of the public area including the entrance.

The site

The building is located on the south side of Hrsham Park. It has been built as low into the ground as the relatively high water table will allow. The nature of the site is such that the sports centre appears to be a single-story building when viewed from most of the Park.

Factors influencing design
A number of factors, influenced the design; the building; had to blend with its park surroundings, stay within financial limits, have low maintenance costs, and cater for maximum use.

Construction

The building is steel framed with a clear roof span and clad with bricks externally and internally. The building is mainly artificially ventilated with gas fired entrained heating but it is not air conditioned.

Area: Ground floor area: $1130 \mathrm{~m}^{2}$ - Total floor area: $1690 \mathrm{~m}^{2}$

[^0]

Variety Club Sports Pavilion
Philadelphia
Arch: BJC / Knowles

The central spine, composed of lobby, locker rooms, support facilities and mezzanine above, is marked on the exterior by the curved glass-block entrance.

Colorado

1. Senior activities
2. Kitchen
3. Arts and crafts
4. Multipurpose
5. Administration
6. Art court
7. Play court
8. Lobby/atrium
9. Gymnasium
10. Aerobics/dance
11. Racquetball 12. Storage 13. Weight room 14. Pool

Recreayion Center

Riengwood

- Clear subdivision between served anci servant space.
- Seperate dry/wet changing facilities.

Ground floor plan
lndiana University

Arch: Edward Larrabee Barnes

1. Instructional pool
2. Competition pool
3. Diving pool
4. Filier room
5. M/E
6. Lounge
7. Concourse
8. Lobby
9. Ritchenette
10. Vending

Notice the massiveness and the bulk of this
volume compared to the volume of the previous
project which is broken
into smaller volumes.

The design took advantage of the building's bulk to establish a strong edge for the campus, but they nevertheless attempted to humanise the architectural scale by using ventilation louvers on the fasade (windows are denied because of glare).

The circulation corridor was given grand dimantions to act also as an exebition space and to evoke somthing of the grandeur Greeks associated with physical exercise.

Recreation Center

Westminster
Colorado
Arch: Barket Seacat and Partners

The center is on two levels, and access is from the upper level, where one overlooks the pool and the gymnasium.

1. Galleria
2. Kitchen
3. Community room
4. Deck
5. Lounge
6. Pool below
7. Gymnasium below
8. Racquetball below
9. Vending
10. Office
11. Reception
12. Classroom
13. Crafts
14. Daycare
15. Lower lobby
16. Staff
17. Storage/expansion
18. Lockers
19. Steam/sauna
20. Pool
21. Spa
22. Gymnasium
23. Racquetball
24. Weight room

University of California Berkley
Arch: Elbasani and Logan

Administrative refreshmente social and ancillary areas

Entrance hall/control area

Space must be large enough to accommodate normal flow of public - participants and spectators - with area for waiting (including some seats). Considiration must be given to crowds leaving main activity areas after spectator event or special functions. Minimum area to be approximately 20 sq.m. Reception/Control space is usually glass enclosed for security and large enough to accomodate two people; minimum area around $10 \mathrm{sq} . \mathrm{m}$. There must be access from entrance hall to toilets, refreshment areas and changing rooms. Consider segregation of players and spectators where required (as in pool hall). Reception/Control office staff should have good view over major circulation spaces, and space must be positioned so that all users must pass it to enter activity areas. It must, therefore, be in a prominent position. Consider directional sipns and possible planting.

The type, size and numver of offices depend upon the size of center, number of staff, managerial policy and organisation. A rough guide of likely minimum areas is: manager's office 14-20 $\mathrm{sq} . \mathrm{m}$; general offices (supervisor, engineer, instructors/coaches, etc.) 9-11 sq.m;
secretary/typist $8-9 \mathrm{sq} . \mathrm{m}$. Offices should ideally be close to reception control space but away from main public
circulation areas. Group offices should be together as far as possible. Some (instructors/coaches) may need to be adjacent to activity areas or changing rooms.

Size will clepend on the number of staff. Area of 10-15 sq.m will probably be required for restroon. Changing and toilet facilities may be seperate for males and females or shared. One WC and one wash-basin will be adequate for up to 15 persons.

Refreshment and social facilities

Bar: to determine overall (customer and servery) space required allow approximately 0.6 sq . m per person if only drink is served; where food is also served, 0.9 sq.m per person. The average bar (Cafeteria) area is around 140-150 sq.m. Storage space (excluding empties) of between 30-45 sq.m will be required. For seating at tables for four-six persons (self-service) allow 0.9-1.4 sq.m per person.

The refreshment areas should, ideally, be sited at the heart of the center, possibly overlooking the major activity areas and, if possible, should be visible from the entrance hall.

Public toilets should be situated adjacent to the vefreshment areas.

Toilets: statutory requirements vary from place to place. A general guide is

Men WCs:minimum two (up to 200 persons), then one for each 100 up to 500, then one for each additional 200 . Urinals:minimum two (up to 1,000) then one for each 50 .

Wash-basins:one for each sixty persons.

Women WCs:mlnimum two (up to 75), then one for each 50 . Wash-basins:one for each sixty persons.

Changing-rooms

The number of changing-spaces should relate to the maximum utilisation of the facilities with allowance for overlap. For dry sports calculate maximum number of persons using each activity space during a one-hour period and double total to allow for overlap. For Swimming-pools changing-space is normally related to pool area: one place for each $8.4 \mathrm{sq} . \mathrm{m}$ of water area. Add two places for the a diving pool. Area required is generally based on 0.7-0.85 sq.m per person which include 400-500 mm of bench space per person.

Provision should be made for a drying/towelling area between the showers and changing-spaces.

Changing-rooms must be centrally placed in the complex particularly if they are shared by swimming-pool(s) and dry sports. Changing can be all cubicles, open plan or (most commonly) a combination of the two. In this case space mainly for open changing with some cubicles provided for the shy (minimum size $800 \mathrm{~mm} x 900 \mathrm{~mm}: 1 \mathrm{~m} x 1 \mathrm{~m}$ preferred). The proportion of cubicles to open changing areas may need to be increased for females.

Clothes storage: either in individual lockers - which can be grouped together or dispersed - or in central store (for hanger/baskets). Both systems require approximately the same area. For dry sports, storage space (usually lockers) should be provided for the estimated number of players using the facilities per hour $x 2.5$, while for swimmers, storage units for $4-6$ times the number of
changing places are normally provided.
Showers and toilets: provision is based on the number of changing places provided.
WCs(2 minimum) 1 per 15-20 (males), 1 per 7-10 (females)
Urinals
Showers 1 per $7-8$ both males and females
Wash-basins
1 per 15 both males and females
Showers and toilets must be placed so that bathers pass them on their way to the pool. Stais and steps must be avoided. Access to pool from this area to be at shallow ends.

The facility will contain both open changing ares and self-contained team changing area.

The open changing area could be concentrated on one floor adjacent to the gymasium and the pool hall, or, if needed, it could be divided on diferent floors, depending on the zoning of various sports facilities.

```
    Two self-
```

Contained team
changing areas would
be provided: one near
the Gym. and an other external one to serve the football team.

Storage areas

General storage areas may be necessary in addition to the specialised storage areas that are located within the various sports facilities. It is difficult to generalise, and only arough guide to areas can be given. For example, poolside storage (can also be adjacent to pool hall) may be required for Jines, starting-blocks, water-polo nets, floats and other swimming/training aids, tables, ohairs, bleacher seating, cleaning equipment, etc: minimum of 30 sq.m up to $75 \mathrm{sq} . \mathrm{m}$ or more. Also, storage for various equipment and seating for the main sports hall: from 50 sq.m (small hall) to $115 \mathrm{sq} \cdot \mathrm{m}$ or more (large hall).

Storage for cleaning equipment (floor cleaning machines, buckets, mops, cleaning materials, etc.) and general equipment (spare light bulbs, access ladders, etc.) must be provided.

Stores should be kept fairly shallow (about 5.5 m deep maximum) and may require direct access from aoutside for cleliveries. All doors ancl access routes will need to be a minimum of 2.25 m high and preferably 2.7 m . Where movable bleacher seating is used the minimum hight must be 2.85 m .

Plant rooms

These are necessary for water treatment and filtration, heating, ventilation, electrical substations, etc. Space requirements will depend on size of complex, size of pool plant room for pool can be based on $50-60 \%$ of water area and systems used. Approximate area required for medium to large complex (total area $\pm 4,000 \mathrm{sq} . \mathrm{m}$) would be in the region of $250-300 \mathrm{sq} . \mathrm{m}$. Seperate store (about $10 \mathrm{sq} . \mathrm{m}$) will be required for chemical storage. Cold water storage usually at high level will be required.

Spaces should be grouped together and sited so as to minimize the length of service rounds. Certain spaces (electrical substation and chemical store) will require direct access from the outside. A service yard is desirable.

SPORTS FACILITIES

Gymnasium

In order to provide a healthy and enjoyable environment for practice, a gymnasium requires the following:

- Natural light is best from above and it should be glare free.
- In case of artificial light, light sources should not be suspended from the ceiling because they risk hitting the ball that might frequently reach the ceiling level.
- walls and ceiling should be designed to reduce reverberation (sound insulation).
- Storage required for: goal-posts, nets, ets.
- hight : 7-9m
- Seating arramgement should give reasonable comfort and sight line, along with safety and space standards. The following diagrams are seating and court arramgement alternatives:

Pool Hall

The Pool Hall is more sensitive in terms of envelope than the fym. because of the constant water ovaporation;
therefore, the following is required:

- Large glass areas should be avoided.
- The problem of glare should be solved be either orienting openings north, or using tinted glass.
- Storage is needed for: pool cleaning equipment, floating lane markers, ets.
- Hight: 6-7m. In case of the presence of an olympic diving area the hight of the ceiling should reach 12.5 m

Squash Courts

Squash courts are self contained boxes which do not need any breathing to the outside. Thy require artificial lighting, mechanical ventilation to avoid condensation and a minimum ceiling hight of 5.7 m

Combative Room

This room requires the following:

- Mechanical ventilation
- Storage is needed for equipment (mats, training euipment)
- Ceiling hight of $4 m$ is preferable

This room could be either naturally or artificially
lit.

Aerobics/Dance Room
This room requires the following:

- Artificial light
- Mechanical ventilation is required to avoid condensation on the mirrors surrounding the space.
- Storage is needed for training equipment
- Ceiling hight: 3-4m

Weights Room

The weight training activity can be noisy; this may be a problem particularly if the room is located over other spaces; however, the requirements of the space are:

- Natural or artificial lighting is possible
- Mechanical ventilation is needed to keep a healthy environment.
- Structure of floor and walls should be strong enough to support heavy training equipment.
- small storage area is needed for spare parts
- Ceiling hight: 3 m and above

Medical Screening Facility
This facility is also called: medical testing and evaluation. It is preferable to have a direct exit to the outside for emergency cases. It Includes the following spaces:

- waiting space
- doctors office
- Examination room
- Physical testing space

ORGANISATION DIAGRAMS

Diaframmatic plam of upper level showing circulation routes

Diagrammatic plan of Lowfy Lowol

Diaurammatic section

An example on the passed diagramatic plan is:

refrestment/
social / bar
areas on
upper floor r-..
1 Spatial patterns and circulation in a wet and dry centre

This is a simplified organisation diagram. It deals with the Sports Hall, the Pool Hall, The Main Entrence and services. High lighting the spacial and circulation relationship among them.
An example of this organisation is the Bury $S t$ Edmunds sports center which plans are shown on this page:

l chose the Practice field as an alternative site for my project. the site is located on the northern edge of AUB, where outdoor sports facilities (Green field, Tennis courts, access to beach) are concentrated. it is adjacent to some incompatible land uses, two academic buildings and a residence. Thise land uses are separated from the site by a concentration of high trees that act as a buffer zone inbetween. the northern edge of the site is defined by the sea high way (Avenue De Paris).

The site has a direct vehicular access from its eastern side (near the AUB "sea gate"). On other hands it could be accessed on foot from its eastern side, facing the Green field entrance, and from its western side, between the Physics and the Agriculture building.

The site has an irregular shape, its longest side streaches parallel to the sea high way. Its area is approximately $7500 \mathrm{~m}^{2}$.

TOPOGRAPHY

Beirut is built on undulating site which falls sharply to the nortwest, west and east and rather gently to the north.

The site is located on the northern area of Beirut. It is flat and rises 8 m above sea level. In case of excavation we should not go below this level because we would hit the water table.

GEOLOGY

The Beirut region has a very varied soil structure with several geological faults.
the area of Res Beirut, in which the site is located, is characterised by its Cretaceous, Cenomanian limestone soil formation. this soil is relatively hard. Therefore, excavation is not advisable unless it is a must, and the rock bed could be used as a support for the foundations.

CLIMATE

Beirut enjoys an equable Mediterranean climate with mild winters and hot humid summers. The spring and autumn seasons are very agreable. Rainfall is seasonal and falls mainly in winter in heavy downpours. Thunderstorms are common and wind of gale force are not unknown especially in January. The prevalling breezes are southwesterly which is typical of this coastal area.

The following table No. 1 and the constructed wind rose, show that a clominent feature of the Beirut region climate is the prevaling southwest breeze, more noticeable in the afternoon.

Table 2, figure 2, gives the Beirut wether at a glance. It will be seen that most of the rain falls during the months December to February. The temperature of the sea is warmest from mid-July to mid -September.
(Comprehensive Plan for the City of Beirut. The Executive Board of Major Projects for the City of Beirut March 1968)

Beirut Lat. 33 54' Long. 3528^{\prime} It. 33.8 m above MSL

$$
\frac{\frac{\text { Tingle No. } 1}{\text { Wind diction }}}{(30 \text { years })}
$$

Observations 1875 to 1948

The site is surrounded by three adjacent buildings. The Agriculture/Biology building to the west, the physics building to the south-west and a small residence to the south. It contains some plne trees on the north edge and a combination of several kinds of trees on the western side. These trees should be preserved because they play a doubled role. First, they act as boundaries for space enclosure. Second, they define buffer zones that separate areas of incompatible land uses; in other words, trees act as buffers between sports facilities and academic buildings and between sports facilities and the residence. Therefore, we can conclude from this observation that whatever the shape and bulk of the project will be (assuming that we will not go more than three floors above ground level), it will not create any visual disturbance to the neighbouring buildings.

To the eastern side of the site, we have the main concentration of sports activities, the Green field and the entrance to the beach. The harmony created by the proximity of the sports facilities (including the practice field) is interrupted by a street linking the sea gate to the vehicular circulation network in AUB. This street creates an edge of tension between the eastern side of the site and the Green field.

As AUB owns a very large area of land in which the practice field is located, there is no legal restrictions on the site exept for the 4 m setback from the stieet on the northern boundary.

The maps that will follow are:

- Location map: relative to $\Lambda U B$ campus
- Immediate context map
- Survey map
- Circulation map

The immediate context map gives us a clear idea how sports facilities: Green field, Practice field, Tennis courts and beach access are concentrated in an area characterised by its mild topography relative to $A \cup B$ campus.

The survey map informs us about the surrounding land uses, buildings and green areas. It also gives us an idea about natural features like orientation and wind direction.

The circulation map shows us how various sports facilities are connected to other uses by a vehicular network (streets) and a pedestrian network (stairs and streets). It also pinpoints the different access points to the proposed site and locations of photographic shots.

CROSS SECXION

LONGITUDINAY SECXION

BASKETBALL

Indoors natural lighting is best from above and artificial light sources should not be suspended below the ceiling, and should be protected against impact.

Court size $26 \mathrm{~m} \times 14 \mathrm{~m}$

- During training, ideally, the court should have 1.5 m of extra space at each side and 3 m at each end.
- During competitions an area of $30 \mathrm{~m} \times 26 \mathrm{~m}$ is required.
- The floor to ceiling height should be at least 7 m .
- Best view for spectators is from the sides, and must be a minimum of $2 m$ away from court.
- The arrangement of team benches and officials table shown in the picture is obligatory for all matches.
- Minimum temperature is $12.8^{\circ} \mathrm{C}$.
- Mechanical ventilation is best, providing a maximum of 4 air changes an hour.
- Walls and ceilings should be designed to reduce reverberation because Basketball is a very noisy game.
- Storage is required for goal units if they are not suspencled.

VOLLEXBALL

- Volleyball is another very popular game played both inddors and outdoors.
- The indoor court should be in a glare-free space as the players continually look upwards during play.
- Hanging lights should also be avoided as the ball is constantly in the air.
- Minimum height of space for national play is 9 m .
- Court size is $18 \mathrm{~m} \times 9 \mathrm{~m}$.
- Overall area required for training and competition is $24 \mathrm{~m} \times 17 \mathrm{~m}$.
- Spectator seating is best along the sides.
- Storage is necessary for the net (which is 1 m long \times 300 mm diam. when rolled) and posts.
- Temperature needed is $10^{\circ} \mathrm{C}$ minimum for training but when spectators are present $15^{\circ} \mathrm{C}$ is necessary.
- Either natural or mechanical ventillation can do.
- Volleyball is rather a noisy sport; accordingly walls and ceiling should be designed to reduce reverberation time.

MANDBALL

- Court must be $40 \mathrm{~m} \times 20 \mathrm{~m}$ and 9 m high.
- On ends and on one side 1 m clear space should be provided and 2 m on the other side to allow for substitutes, coaches, etc.
- Best viewing is from gallerries but bleacher seating along sides - at least 2 m away from side lines - is suitable.
- Storage is necessary for portable goal-posts.
- Walls should be projection-free and non-abrasive.
- Minimum temperature is $12.8^{\circ} \mathrm{C}$.
- Lighting should be even and glare free.

- Tennis is a game played both indoors and outdoors.
- In case the court is inside, walls should be without windows up to $3-4 \mathrm{~m}$ above floor level, and the total height should not be less than 9.1 m .
- Court size is $23.77 \mathrm{~m} \times 10.97 \mathrm{~m}$; a clear space of 4 m on each side and 6.4 m on each end is required.
- Spectator seating may be all around court with careful. positioning at ends to avoid obscuring player's vision of ball.
- Storage is necessary for net, posts and umpire's chair.
- good even lighting is essential over the whole playing area.

TABLE TENNIS

- This sport requires good artificial lighting
(fluorescent tubes should be avoided) and a draught-free atmosphere.

Furthermore, the walls should provide a uniformly dark nonglossy background.

- Table-tennis competitions, however, do take place in the main hall to accomodate for the spectators and the space needed for the simultaneous competitions.
- The table is $2.74 \mathrm{~m} \times 1.52 \mathrm{~m}$
- The overall space required per table for a national match is $14 \mathrm{~m} \times 7 \mathrm{~m}$.
- For practice: 2 tables can be accomodated in a $10 \mathrm{~m} \times$ $10 \mathrm{~m}, 3$ tables in a $10 \mathrm{~m} \times 15 \mathrm{~m}, 4$ tables in a $10 \mathrm{~m} \times 20 \mathrm{~m}$.
- Seating can be provided all around but best viewing is from the sides.
- Storage is required for the tables and barrier panels.
- Temperature desired is $13^{\circ} \mathrm{C}$.

A squash court for tournament play should provide for spectator viewing, and as such should incorporate a rear glass wall termed as "championship" wall. This wall is a self-supporting 12 mm toughened glass sheet, 2134 mm high with a central glass door.

Directly above this glass, the rear wall should also incorporate a sounding board which may extend to any height but should not be less than 200 mm deep.

The front wall should incorporate the playboard (known as the tin) to a height of 483 mm .

To be used for chanpionship play, the court must have a minimum clear light of 5.7 m .

Walls should be preferably white, able to withstand impact and to absorb a certain amount of condensation.

For the completions, it should be remembered also, that there will be need for a referee's position: If there is a gallery, then there will be no problem. This gallery could also be used for casual viewing and as a coaching aid.
_ A good mechanical ventilation system is necessary to keep the courts free from condensation.

- Temperature needed is around $18^{\circ} \mathrm{C}$.
- Natural lighting should be excluded and light is to be supplied by artificial means.
- The floorfinish adjacent to the wall on the spectator side should be of the same material as the squash courtfloor for a distance of 90 mm . In addition, during competitions a white painted upstand 700-900mm high should be positioned 900 mm behind the glass wall and the side walls should be extended by 900 mm beyond the glass wall and finished in the same colour as the squash court wall finish.

Graphic representations of squash courts are shown on the next page.

Side wall

Front wall

Rear wall

Plan

- Squash court dimensions
.

The pool hall should be linked to the changing facilities by means of 2 access points which could be totally seperated in case of competitions.

The temperature requirements are the following:

- Water temperature for swimming is $24^{\circ} \mathrm{C}$ minimum, and for diving $26^{\circ} \mathrm{C}$ minimum.
- Air temperature should be kept at $27-28^{\circ} \mathrm{C}$.

An indoor pool building presents the following problems which should be overcome:

- Humidity and chlorine vapour: These have a damaging effect on materials; accordingly the latter should be chosen to be impervious and non corrosive.
- Condensation is another problem; the relative humidity should be maintained at an average of 60%, and this is achieved by: Good ventilation, and proper insulation of walls, ceiling and windows.
- LArge glass areas should be avoided as these can result in unpleasant specular glare, unwanted heat gain or loss. and cleaning problems. Glare can be reduced in various ways including facing windows north, tinted glass, external screening or planting close to glazed areas, and underwater lighting.

```
    Siorase is neaded fo: the fallowins:
```

- Pool cleaning brushes and raterials
- floating lane markers
- Polo nets
- Judge's tables and chairs as well as spectators' seats

The pool tank can be sunken in ground,or either partially or completely above ground.

The length of the olympic pool is 50 m ; the width varies depending on the number of lanes where each lane is 2.5 m wide.

International pools are 8 to 10 lanes wide plus 50 cm extra on the edge side of the 2 outer lanes; thus giving a pool dimension of $50 \mathrm{~m} \times 2 \mathrm{~mm}$ or $50 \mathrm{~m} \times 25 \mathrm{~m}$.

- Depth of pool is 1.8 m minimum throughout.
- Storage is needed for the floating roaps that indicate lane markings. (This assuming that the starting boxes will not be dismantled because they do not hinder other activities taking place in the pool).
- Pool sur rounds should have a minimum width of 2 m on the sides and 5 m on the ends.

DIVING

Spring boards are from 1 m to 10 m high. All diving boards above 1 m might need a seperate diving pit.

For a seperate diving pit the diving pool required is $12.5 \mathrm{~m} \times 15 \mathrm{~m} \times 4.5 \mathrm{~m}$ deep; otherwise, if the diving area is part of the swimming pool a 4.5 m deep spot should be provided.

Boards should face a blank wall and not towards any activity where movement will cause distraction.

This is a sport requiring absolute concentration and thus, under no circumstances should the diver face public seating, a cafe or a window.

- Ideally the seperate diving pool should be 5 to 6 m away from the main pool.
- Height of ceiling should be 3.4 m minintum above the highest platform. Thus giving an approximate 14 m height for the space. (For more details refer to table below).

Sections of diving pool to be read in association with Table III showing FINA requirements

WEIGHTLIFTING

- Weightlifting competitions take place in the main hall. Weightlifting training, however, requires a self-contained space in which equipment is permanently installed as jt is inpractical to move it from place to place.
- The activities can be noisy; this may be a problem particularly if the room is located over other spaces.
- Ceiling, walls, and floors must be structurally strong enough to support heavy equipment, some of which may be strenuously used.
- A temperature of $10-13^{\circ} \mathrm{C}$ is recommended
- Good ventilation is essential
- Storage is needed for weights which should be stored clear of the floor area.
- This space must be accessible to changing rooms and, if possible, to the sauna.

Fitness room layout, Cramlington Leisurc Centre

- Contest area is $9 \mathrm{~m}^{2}$ around which there is a 1 m danger area. Then this is sur rouncled by a safety area giving a total space of $16 \mathrm{~m} \times 16 \mathrm{~m}$.
- Practice can take place in an ancillary hall, but competition needs to be held in the main hall.
- For national championships three mats are usual and competitions can take place simultaneously.
- Temperature required is between 10 - $15^{\circ} \mathrm{C}$
- Adequate ventilation is important because a damp mat surface is dangerous.
- Storage: Every $16 \mathrm{~m} \times 16 \mathrm{~m}$ competition area requires 128 mats (each $2 \mathrm{~m} \times 1 \mathrm{~m}$). Each additional contest area adds 104 mats. Theseare best stored on trollies.
- Minimum clear headroom for national standard competitions is 7.6 m , while for training a 4 m height is acceptable.

WRESTLING

- Mat size is $12 \mathrm{~m} \times 12 \mathrm{~m} \times 2 \mathrm{~m}$ minimum sur rounding space is required.
- Height of space needed is 6.7 m during competitions and 4 m during training.
- Storage is necessary for mats.

KARATE

- For national standard competitions, the combat mat needs to be $10 \mathrm{~m} \times 10 \mathrm{~m}$ and the overall area $15 \mathrm{~m} \times 15 \mathrm{~m}$.
- Other requirements are samo as Judo.

TAEKWONDO

- Requirements are same as Judo.

Gymnastics

This activity is held, whether for training or competition, in the main sports hall and hence general design considerations of the main hall apply. However, jt needs additional special requirements such as:

- Floor and equipment: For all floor work the official measurements of the competition mat area are $12 \mathrm{~m} \times 12 \mathrm{~m} \times$ 54 mm within a $14 \mathrm{~m} \times 14 \mathrm{~m}$ area if on a raised podium.

Additional pieces of apparatus require areas of approximately $36 \mathrm{~m}^{2}$ each and a minimum of 25 m is required for vault run-up.

- Storage: is required for all or most of the pieces of apparatus such as the vaulting horse, horizontal bars, parallel bars, rings, beam, asymmetrical bars, and floor. Storage will also be needed for: a Safety control weights and test equipment * Modern rhythmic gymnastic apparatus
a Trampolines used for gymmastic training
- Other considerations are roof loadings and headrooms for training apparatus and trampolines.

 Recreation Center University of Missouri Columbia, MO

Acomprehensive master plan was developed for recreation facilities at the University of Missouri campus at Columbia. A "charette" process by the architects and planners addressed a need to involve the university administration, recreational staff and students in identifying issues in terms of facility needs, phasing of the construction process and longterm potential growth. The first phase of the master plan involved designing an addition to, and renovation of, Brewer Field House and Rothwell Gymmasium.
The addition provides six multipurpose basketball/volleyball courts, three racquetball/handball courts and an elevated $1 / 6$-mile jogging track. The multipurpose area was designed to utilize natural lighting, as skylights and translucent wall panels provide 40 footcandles of light throughout the area.

Circulation patterns tie to existing levels in Brewer Field House and a newly installed elevator provides handicapped access to all facilities. Portions of Brewer Field House are included within the scope of remodeling and include an additional three handball/racquetball courts, one of which can be converted

Fhros SMike Sinclair, Sinclair-Reinsch

Building materials include limestone, precast concrete pancls, buff and red brick, and stunding seam metal panels.
to squash; a weight room; an exercise/ dance room; and an upgraded mechanical system.

The addition is carefully located and oriented to continue the border of an existing pedestrian mall that extends through the campus. The architecture of the addition recalls the historic character of both Brewer Field House and the original Rothwell Gymnasium. Major building materials include limestone, precast concrete panels, buff and red brick and standing seam metal panels, all materials characteristic of the Columbia central campus.

- Six new multipurpose basketball/ volleyball courts are a highlight of the Brewer Field House/Rothwell Gymnasium addition.

Rosary College Center River Forest, IL

Hastings \& Chivetta Architects Inc. Itasca, IL
Cost: $\$ 3.5$ million
Square Feet: 34,000
Occupancy: February 1989

The turn-of-the-century "tampus eclectic" style of the surrounding campus is reflected in the rhythm and geometry of the new facility.

Mores by Dom Dubreff

TThe Rosary College Center brings the school together in one central activity space through the adaptive reuse of existing buildings, as well as new construction. In deciding to build the facility, Rosary College administrators saw the need for a central gathering place or focal point for the predominantly commuter campus. And, with the interest in recreation and fitness soaring, students needed a new place to play and socialize. Existing recreation facilities on the landlocked campus were antiquated and overutilized.
Major spaces include a multipurpose gymnasium, dance studio, racquetball courts, a weight room, an elevated jogging track, bookstore, meeting rooms, snack grill, locker area and a concourse that connects existing structures with the new facility, creating a public environment for cross-connecting the entire campus.

The center serves as a focal point of student activity. It's a place to both play and socialize.

Gym users have easy access to new locker facilities located under the center's concourse.

Hunter Student Activity Center Westminster College Fulton, MO

Cannon

St. Louis, MO
Cost: $\$ 2.5$ million
Square Feet: 30,000
Occupancy: May 1989

An elevated, two-lane running irack surrounds the gymnasium, the hub of the facility.

Purposely built on the campus' main circulation spine, Westminster College's new activity center physically and visually links both the academic and student housing areas of the campus.

The prominence of the site required special care with the architectural design. The building is compatible in both appearance and mass with the traditional look of surrounding structures on the 136-year-old campus.
Key components of the facility are a single-level gymnasium and a two-story section that accommodates passive recreation, major social events and organizational activities.

The gymnasium features a basketball court, an elevated two-lane running track and portable bleachers for up to 100 spectators. Accessible from the gym are two racquetball courts, a weight room and training facility, an equipment checkout area, and men's and women's locker rooms.

The lower level of the two-story section houses television and game rooms, mail facilities, a publications office and darkroom, and a student cafe called the

Colorful tile floors and an open ceiling structure in College Inn and student areas provide an open, friendly atmosphere.

College Inn. The upper level includes a reception hall and lounge with adjacent serving kitchen, music room, two conference rooms and a director's office.
To capitalize on attributes of its location and site, a veranda is designed to extend the interior space of College Inn and allow enjoyment of the outdoors during pleasant weather.

Mechanical equipment is screened from view behind the sloping roof surfaces, which also serve to reduce the silhouctle of the building

Tully Associates

Melrose, MA
Cost: $\$ 4.6$ million
Square Feet: 75,600
Occupancy: September 1987

The Barbee Center represents the optimization of quality and economy in athletic facility design. Utilizing a design-build approach, the architect designed a fully functional, multipurpose facility for $\$ 61$ per square foot, including fees.

With student athletic participation greatest in late afternoon, the school required a large facility containing a field house with a 200 -meter indoor track, a natatorium, a squash/racquetball com-

The sloping roof forms emulate the gently rolling hills of the Virginia site.
plex, a training facility and locker rooms.

The design employed a thin-shell wood hyperbolic paraboloid structural system, offering cost economy comparable to that of metal buildings, yet because of the rich texture and color of wood, the athletic environment has a club-like feeling.

The natatorium includes a 25 -yard pool with diving area, while the field house courts (left) are surrounded by a 200 -meter track. The entire building is handicapped accessible.

The John W. Berry Sports Center Dartmouth College Hanover, NH

Gwathmey Siegel \& Associates
Architects
New York, NY
Cost: $\$ 7.3$ million
Square Feet: 69,000
Occupancy: May 1987

Architects of The John W. Berry Sports Center at Dartmouth College were charged with the responsibility of expanding and reconsolidating primary athletic facilities through new construction and renovation within the context of a traditional New England brick and stone Ivy League college campus.
The new 69,000 -square-foot building houses a 2,200 -seat intercollegiate basketball arena, which reconfigures into a gymnasium with three regulation basketball courts through the use of movable seating. The facility also includes seven competition squash courts, including one exhibition court with three glass walls; six racquetball courts; a fitness center; a dance studio; varsity locker rooms; a multipurpose classroom and a ticket office.
A new bridge on the second level connects the new facility with existing

The exhibition squash court features three glass walls, which allow spectators to vicw the fast-paced action taking place on the court.

Alumni Gymnasium, where the pool, basketball courts, running tracks, crew tanks, lockers and staff offices were renovated.

A pedestrian bridge on the second level connects the John W. Berry Sports Center with Alumni Gymnasium.

Physical Education, Recreation, Intramural Facility University of Hartford West Hartford, CT

New facilities at the University of Harlford include an eight-lane, 25 -yard pool and diving area (above) and a multipurpose field house (right).
the goal of the renovation and expansion of the University of Hartford athletic facility. When finished, a contemporary multipurpose athletic, recreation and physical education facility resulted, offering total access control, segregation of spectators and participants, and merchandising of program offerings via interpenetrating views.
The new multipurpose field house employed intersecting wood barrel vaults sheathed with heavy timber decking. The cruciform design minimized building volume by concentrating high space only where needed at center court and at second-tier spectator seating.
Cost economy was obtained by adaptively reutilizing an existing gymnasium for locker rooms, an aerobics room, a practice gymnasium and a squash/racquetball court complex. A new natatorium containing an eight-lane, 25 -yard pool and diving area was naturally illuminated by a barrel vaulted greenhouse that creates a positive relationship with the outdoors.

The upper section of an old gymnasium was remodeled into squash and racquetball cours.

Synergy was enhanced by incorporating classrooms, offices, weight training, sports medicine and student health services into the project.
The design employs energy-saving HID light fixtures in activity areas and fluorescent fixtures elsewhere. The building is interconnected with the cam-pus-wide energy management system. The entire facility is handicapped accessible.

 M
 \section*{Archilicturaral
 \section*{Archilicturaral aking the old new again was} aking the old new again was}

> Recreational Sports Complex \& Parking Garage Loyola University New Orleans, LA

Hastings \& Chivetta Architects Inc.

St. Louis, MO
Cost: $\$ 9.5$ million
Square Feet: 80,000 (rec center)
240,000 (parking garage)
Occupancy: February 1988

Students enter a lobby through a centralized control area that monitors the building's use.

Indibictery) Seancase

The Loyola campus had two very pressing necds: a facility for student recreation and more parking. This presented quite a challenge, for there was limited space on the land-locked, urban campus. In addition, due to the high water table in New Orleans, nothing could be built underground.

The solution was innovative, yet simple. The new recreational sports complex was built on top of a four-story parking garage.

Nearly half of the square footage in the recreation complex, 34,500 square feet, is devoted to a multisport forum. It contains six independent, multipurpose courts, each of which is striped for various court activities. Through the use of drop nets, each court can be isolated, allowing for several different activities to take place simultancously. Three of the courts' surfaces are wood and three are carpet to allow for sports like tennis and indoor soccer.

A movable bulkhead divides the pool into
two sections by rolling to any position along
A movable bulkhead divides the pool into
two sections by rolling to any position along the length of the pool.

The natatorium houses a 45 -by-125foot, six-lane "stretch" pool and a foot, six-lane "stretch" pool and a
recreational whirlpool. Other amenities in the facility include a jogging track, handball/racquetball courts, a freehandball/racquetball courts, a free-
weight room, a machine-weight room, exercise rooms, meeting rooms, administrative offices, a combatives room and locker/shower rooms.
The tight budget and compact sight are reflected in the design, which eliminates the excessive use of corridors and allows for plenty of natural light throughout the building to help limit operating costs.

The elevated jogging track surrounds the multisport forum and overlooks the major activity areas.

Lands' End Activity Center Dodgeville, WI

Martinson Architects Inc.
Green Bay, WI
Cost: $\$ 6.7$ million
Square Feet: 80,000
Occupancy: February 1989

Charged with creating a firstclass facility to be actively used by all employees of the clothing manufacturer, architects of the Lands' End Activity Center designed an open environment with multipurpose spaces. Centrally located between the distribution center and office building, the center is equally accessible to all employees and underground connections ensure use in inclement weather.
Extensive use of glass for exterior walls, interior partitions and skylights, and a skillful, open organization allow employees to simultaneously view various activity areas, encouraging their participation. Natural lighting enhances the open feeling created by supplemental indirect lighting and a roof composed of round tubular members, painted white and left exposed to complement the center's informal, active character.
The center's pool contains six 25meter lanes for lap swimming, a low diving area and a radiused end area for water aerobics and other classes. Special detailing keeps the temperature of exposed surfaces above the dew point, eliminating condensation of pool windows caused by Wisconsin's subzero temperatures.
A motorized net divides the gymnasium's full-size basketball court into two cross courts, and there are two
volleyball courts, four badminton courts and bleacher seating for 250 . Exterior glass walls at the second level filter in natural light. With a cover for the floor, theatrical lights above and two sound system spheres suspended from the ceiling, the gymnasium can be used for dining, assemblies or other programs.

In addition to the pool and gymnasium, the facility includes a track, exercise equipment area, 25 -person aerobics room, physical testing/evaluation area, meeting rooms, 1 l -person whirlpool, two racquetball courts, laundry, dining area and full-service kitchen.

Computers located at all main entrances and locker rooms allow individuals to call up their exercise records for monitoring

The Lands' End site features an outdoor tennis court, basketball court and volleyball courts, as well as an ice skating rink and softball field.

> Marion Burk Knott Complex College of Notre Dame of Maryland Baltimore, MD

Bonnett \& Brandt Inc.

Baltimore, MD
Cost: $\$ 3.6$ million
Square Feet: 37,000
Occupancy: November 1989

The Marion Burk Knott Complex was designed to replace an existing gymnasium constructed in 1926. Although entirely inadequate for modern-day sports and fit-ness-both because of its size and anti-quity-the gym occupied an important place in the main facade of the college. As a result, the design required that there be little or no changes to the building's facade, the entrances be architecturally sympathetic to existing buildings, and the new facility provide for continuous student use and participation, in addition to those uses normally associated with a gymnasium.
More than 22,000 square feet of new
facilities were added and the existing 15,000 square feet refurbished. The 500 -seat, 10,000 -square-foot gymnasium, the centerpiece of the facility, accommodates basketball, volleyball, badminton and other team sports. Overlooking the gym are athletic offices; the student activities area, which includes a variety of student organization offices; a seminar room; a game room with snack, Ping-Pong and pool facilities; and two racquetball courts.

Downstairs are a dance and aerobics room, a fitness center, a training room and a classroom. Existing locker areas were refurbished, and more than 1,100 square feet of new storage was addcd.

The 1,500-square-foot, doubleheight game room offers students snacks, drinks, and Ping-Pong

Brick with limestone trim and a slate mansard roof were utilized on the front of the complex.

1
Outer screen wati helps reduce apparent size of sports hall and allows a cloister,
transforming what would otherwise b an imperforate brick box and anchoring in to its setting.
2
Main entrance is off centre, elosing a vista form a traditional path.

Perhaps because the requirements of leisure lack clear defintion, new centres for recreation seem to be less distinet in form than many other architectural types. Buildings designed for the organised pursuit of sport and beisure take many differem shapes - some reflect a spartan austerity which refers to ideas of cleanand healthy bodies and minds, while others create an out-of working-hours fantasy work of persistently blue water with palm trees on wave-machine washed islands Because of the nature of the programme and sites suitable for it, they also often tend to be huildings which are large and in ward looking and built in the midst of a seaof asphalt on urban fringes.

Shad Itall, the new Athletic and lituess Center for the Graduate Schoot or Business Adninistration at Harvard is a sharp contrast to this grim pattern. It occupies an important position within a planned academic village in Boston. Unlike the original campus which is made up of an edectic accretion of buildings integrated by the open spaces or Harvard Yard, this

3 the sums, compernion and materia wormerther esmpus
4
Northelevation. Entrance, ii ambersome, is generously formed under aglassiod.

Sthins down to squesh courts from stinm.
The atrium whichlinks the two hatvea of the buidhgs a tall narrowepace thetis defined by a pertorate wall matings a series of colisters.

Thegymasiumis adouble heigh space with a ruming tack over thre basketbail couth.

campus has an overall order established by a master plan
which formed the competition-winning submission prepared by McKim Mead \& White in 1927. It outined a layout for the site generated by a series of radialing lines originating from I:liot I Iall on the opposite bank of the Charles River and set down patterns for the form and scale of new development to create a campus of NeoGeorgian style red-brick buildings forming a network of collegiate quads and grassy courts.

The new centre is a building of more than 11000 sq m in area and almost 20 metres in height. It is bounded by the colonnaded walls of the Harvard Stadium to the north-west with the donestic scale buitdings of the residence halls and the Baker I ibrary to north and east. It provides a wide range ofeducational, sporting and recreational facilities for the 2500 members of the Business School community.

This setting has obviously provided much of the inspiration for the designers and early sketches by both Kallmann and McKinnell show studies which make reference not only to the proportions, composition and materials of the surrounding buildings but also to the basic structure of the plan for the campus. The organisation of Shad I Iall is clearly developed from the plans of the first buildings on the campus. This first group, which was built in 1928, consisted of a mix of residential and educational facilities orientated to the Charles River and the original campus beyond, with the Baker Library at the centre framed by wo identical sets of buildings forming collegiate quadrangles. Within these quadrangles, residential rooms were aggregated to enclose three sides with the fourth side formed by smaller stucco pavilions of offices and public functions framed by the projecting wings of the brick residences. This design established a dominant pattern for development on the campus. But several buildings added during the ' 60 s and 70 s ignored the outlines of the original master plan and the design or Shad Hall (which has re-adopted and developed many of the ideas of the plan) clearly demonstrates the value of learning from the existing landscape.

It consists of two buildings. They refer to the established brick and stucco patterns and, like the raditional college field houses of many American universities, they combine the qualities of barn and club room. One building - a large sports hall planned on two levels-accommodates squash and racketball courts with a single volume on the upper floor for a gymnasium with three basketball courts and a high-level banked indoor running track. The second-a four-storey block-houses a mix of different uses including the main entrance, exercise rooms and club facilities in a series of smaller rooms. The two buildings are linked around a toplit atrium, the focus of the centre.

The different internal spaces have been located to respond to the differing scales of the surroundings. So the large volume of the gymnasium has been placed alongside the Ilarvard Stadium to form the southern wall of the court, while snaller spaces make up the other three sides and front the residential quadrangles to the north. Like the original buildings, the side walls of Shad I hall are splayed to respond to the radial layout of the campus and this is further emphasised by the addition of an outer screen wall of brick around three sides of the building. The device helps to reduce the overall scale of the sports hall while introducing an order which articulates a base, middle and setback attic storey, and creating a cornice which aligns with the surrounding buildings. These gestures, and the ereation of a cloister-like space around the edges of the building along Gordon Drive, North Itarvard Street and the playing fields, transform what

Athletics Centre, Harvard, Boston, USA
9, 10
Cale. lined with panels of stained red oak, will mellow comfortably with age.
might otherwise be a large and vintually imperforate brick box and anchor it in its setting. In its detail, his wall reflects an interest in the building which recalls the work of Kahn. In manystudies, he suggested wrapping buildings in ruins - an idea which he was to subsequently develop along with his obsession with the nature and making of the masonry wall. Perhaps the most significant of these is the library for Philips Exeter Academy in New I lampshire, where the wall developed a depth which housed rooms for stedy and formed a cloister around the building. The architects have developed a similar theme for Shad I Itll and although, rather surprisingly, parts of the arcaded space here have been landscaped and consequently discourage its use as a walkway or a place for shelter, this device brings a presence and weight to this otherwise ill-defined corner of the campus.

Against a carefully organised and symmetrical plan the main entrance is set off-centre with the central stucco pavilion so as to close a vista from a traditional campus path and complete the small courtyard between Cotting and Morgan Halls. It is marked by a single totemic free-standing concrete column with a rawly gilded steel capital. This column supports a tapered steel limtol and a glazed roof on a series of radiating beans. Although thisis all rather cumbersome in detail, it forms an entrance with a generous threshold contained within a glassy porte-cochere. In an obvious response to the form of the fenestration of the surrounding buildings, the windows in this block are formed with deep brick heads and sills to white gridded frames. However, in that effort to respond to the existing patterns, tectonic details seem to have been overlooked in favour of an essentially graphic visualisation. The original buildings rarely had brick sills and their arched brick heads are delicate. but the shallow sections of pre-finished window frames which have been used in the new buid ling read as rather crude imitations.

Internally, spaces are organised with a spartan attention to detail and clarity which reflect the order of the activities they house. Wings of lockers for men and
women, gencrous in their provision of both facilities and space, are set symmetrically about the entrance; exercise and fitness rooms are thoughtfully planned and the large hall housed within a daylit barn under a workmanlike roof of steel and timber. Most spaces are finished in white except in the caré. This long room, with views out over the entrance and to the courtyards beyond, has been lined with panels of stained red oak with an occasional inset grid of small mirrors. It hints at Matkintosh and perhaps the pannelled rooms designed by Emerson, Arthur Little or McKim Mead \& White for the rambling Shingle-style houses a little further down the coast of New England. Here, new and not yet hung with the trophies, team photographs and inevitable paraphernalia of competitive sports, the space has an impressive elegance which should mellow comfortably withage. However it is the central court, with its grand staircases and layered walls cut back to frame the activities of the athletes, which establishes the building. By comparison with the large halls for sport, this is a tall, narrow space defined by a perforate inner wall which forms a series of arcaded cloisters. At the centre of the space, under a steel and glass skylight, the floor is finished in polished slips of grey green stonc. Like the atrium at the centre of an ancient villa, this reads like a still pool which mirrors the sky. It is a contemplative space at the centre of this sweatbox which has some of the calm presence of the courts created by Kahn at the heart of the Exeter Library or the Center for British Art at Yale.

This space in the middle of Shad Hall, with the scenographic references which have been adopted and developed in making the plan and elevation, allow this large new building to significantly contribute to and improve the setting. It is a design which builds on that lineage of an American Beaux Arts which links McKim Meal \& White and Kalu and thoughfully extends it to transform this particular university sports and fitness centre into a dignified place of physical well-being.

fong section

eross section

Sporishalls.
Gempany Afanitects tumthe Belvised

Q Patalt

Critlelstir athad
biltrodtebhy
Bday Eluntan lines

Chtian Rathe

Belnselisports

1
Schacl sports hall at Lorch, 1976.
School sports hall at Waiblingen. 1970. ${ }^{3}$ Olymple training hall, Munich, 1972.
Large public sports hall in Sindefingen, 1977. 5
Main Olympic arena, Munlch, 1972.
The most recent Eehnisch school sport: hallat Bruchsal, 1989.

of sports buildings, to date no less than 17 of various sizes. ${ }^{1}$ While this experience gives them an undoubted authority in planning buildings of this type, lending the hater ones at least a considerable exemplary value, the 25-year pattern of evolution is also ofinterest for the way it reflects the changing perceptions and concerns of the firm. The following selected examples show the main path of development, taking in chronological sequence, first the halls of modest size, then a couple of the larger ones.

Schwenningen 1969

The design for a sports hall at Schwemningen of 1968-69, may come as a shock to devotees of recent Behnisch work, for there is hardly a hint of the expressed construction and layering which is the hallmark of the later buiddings. Typical of the time, it belongs to a whole series of prefabricated school buildings by the firm using concrete elements, and expressing a hard repetitive discipline of assembly. The regular gridded box, its roof edge completely suppressed, is relieved only by twostorey glazing and a projecting entrance canopy. Intermally the structure is concealed, and rootlights are treated merely as holes cut in a flat plane. The
organisation has some subtlety, however, exploiting the given slope to provide contrasted entrances on opposite sides and at different levels, for sports people and spectators. The public get a grand front entrance into a double-height glazed space with cloakroom facilities, arriving at mid level in the hall via a series of three straight staircases. From here they have access both to the gallery seating and to the lower banks of seats which can be folded away. Sports people arrive at the back more infomally a the upper level, change, thendescend tothe arena. The space under the changing rooms is given to equipment storage and plant. It is a great arrangement, involving careful exploitation of the section.

-r:

Rothenturg school sports hall, 1970
a, upper levelplan.

1. entrance.
2. chamging
3. plant
4. plant
5. main spors hall
6. gymmasium.
b, isometric.
c. long section.

Rothenburg and Waiblingen 1970
Completed only a year later, the school sports halls at Rothenburg and Waiblingen are radically different, and much closer in both appearance and conception to the Behnisch we now find familiar. The organisational strategies are similar to that of Schwenningen, with the orthogonal discipline of structural bays still present, but suddenly structure and construction are laid bare, while the materials used are steel and glass. The projecting roof and transparent walls make both buikings more pavilion-like and less boxy, and begin to produce a contrast between the manipulation of the ground carthworks - and the provision of a sheltering canopy. This contrast is exploited again and again in the subsequent work of the firm, and was the guiding idea behind the Olympics design, in which earthworks play against vast cable-net roofs.

The sports hall at Rothenburg stands in front of the famous medieval town wall as a finely-proportioned long low pavilion, fitting into its historical context well. The main hall is sunk 1.5 m into the ground, crucially reducing its visual impact, and since the site slopes, the building can be entered 2.5 m above hall level at the back. The entrance leads directly to changing rooms at the same level, allowing storage and plant below. The open changing room cubicles stand as separate cells on the intermediate floor, in the manner of Corbusian plan libre, leaving the metal ceiling deck and structure to run through uninterrupted, while the main roof beams
penetrate the glass with a detail which has since become almost a Behnisch cliché, ${ }^{2}$

Waiblingen sports hall employs the same ideas on a larger scale, with changing roons on a bridge-like upper floor between halls of different sizes. Again the building is sunk, but the ground is excavated at the lowest comer to produce an extermal amphitheatre and to allow one of the halls to relate directly to the outside. This technique, which exposes one corner to relieve an otherwise sunken building from seening chaustrophobic, can be found again in most of the later sports halls, including L orch.

Lorch 1976

With a maximum span of only 12.5 m and bays of 3 m , the Rothenburg roos could be carried on simple rolled steel joists, but a Wablingen the span is 21 m , and heavier castellated beams are used, still at 3 m centres. The roof structures on subsequent halls are more complex and differentiated, partly to produce larger clear spans and partly to allow smaller scale treament of the buidding edges. Lorch, of 1976, represents a dramatic departure with two interacting structural systems, giving a clear span of nearly 30 m .

The central 20 m span supporting a flat root is carried on a series of trusses made by adding downstand tension elements or seel joists. These oceur at 3 m centres, transmitting their load via a frame to a series of Y - and T-shaped stecl portals at 6 m centres, tensioned along the outer edge. The architectural advantage of this complex arrangement is that it brings the roof down at the outside, giving a genter profile and smatler scale at the point of entry.

Rather than being subsumed under the all-embracing pavilion roof as in the earlier halls, the foyer and starcase arrangements at lorch are treated as added elements

along the edge of the building, set under their own subsidiary roof provided by the outer arm of the portal element, but setting up a frcely faceted glass envelope which runs both within and beyond it, following the requirements of internal circulation. The interplay here between structural discipline and the shapes demanded by use and movement marks a new tendency in Behnisch work, taken much further in buildings like the second Lorch school ${ }^{3}$ and Keller I Laus. ${ }^{4}$

Specialisation of the perimeter also allows a clearer differentiation between front and back than that obtained with a pure pavilion. Δ t sides and rear sloping metal-clad rools come down protectively, producing a closed, barnlike image in contrast with the light and airy pavilion suggested by the earlier halls. This was partly toavoid environmental problems encountered with the carlier designs, for the high glass walls at Waiblingen had resulted in too much solar exposure, especially from low spring and autumn sun which could be dazzing and disruptive, and solar louvres had to be added. At Lorch sidelight is restricted by sloping roofs, while toplight is increased, using a series of lincar skylights which run along the building across the main structure.

4

8, 9,10
School
Schoolsports hall at Loreh, 1976.

11,12
Schgolgportshallat Rothenburg, 1970. 13.16 Exterior, large hall, smalthalland corner aymnasium.
17.20

Theol sperts hat at Sulbach, 198: These buildings stendat opposite the chang theries, showing by comtras ofice over th years. The hard mate and schematic organisation havegiven way to a softer and moreresponsive methodology: the structure is move subte and combined with generous skylights.

Behnisch sports

 (1and

Sulzbach 1984
In later halls, the pavilion returns, but it is combined with a lower subsidiary element for entry and changing, under a separate small-scale structure. Both structural order and hierarchy of organisation hecome clearer. The hall at Sulzbach of 1984 , and the recently completed hall at Bruchsal, are similar both in conception and appearance.

At Sulzbach, there are three structural zones. The main span is achieved by 20 ni trusses forming 5 m bays, and the truss depth is kept above ceiling level by neatly incorporating each truss within a projecting glazed skylight (an idea pioneered at the larger hall of Sindelfingen described below). The clear span is extended 2 23 mbearying the truses an one cmatona series of T-shaped portal elements as at Lorch, again tensioned along the outer edge, beyond the glass envelope. This is the second structural zone, but it does not produce a clear division of the internal space, for the horizontal ceiling runs through uninterrupted. It is a clever arrangenent, for the portal structure carries the flat roof out to a delicate thin edge, presenting a pavilionlike appearance to the sports field to the east which it fronts. The deep roof overhang and spectator gallery limit solar penetration to a low angle. White internal roller blinds can be unfurled to reduce the low winter sun.
Λt its rear end, each truss is taken vertically by a column, and beyond this is the third structural zone, an independent lower and smaller-scale system of trusses which runs along the back of the building and the approach side, covering entry, foyer and changing arrangements, and even allowing itself to be skewed around in celebration of the corner entrance. 'Jimber is used for the smaller spans, even between the main trusses, while white-painted steel elements take the larger loads. This treatment intensifies the reading of structural hierarchy. The layering of elements is also explicit, going as far as the exposed plywood roof deck. The combination of materials provides a warmer and acoustically softer enviromment than the all-metal surfaces of Rothenburg or Waiblingen.

Sulzbach combines the ace umblated ideas from the earlier halls in a fortunate way. The simple flat ceiling achieved by pushing the structure up into the rooflights seems more harmonious than the cluter at Lorch, while the pavilion inage has the same noble simplicity seen at Rothenburg. Not a trick is missed in the manipulation of the ground level, ${ }^{5}$ which helps greally in differentiating the four sides. The lower level to the east gives a generous view from the open side of the hall, sets the spectators at a suitable level, and produces the large-scale pavilion elevation seen in long view from the field. The westfacing back with its two rool layers is opaque and protective, but also moregentle in scale, since the ground is raised bere to internal upper floor level. On the north, facing the approach road and adjacent schoots, the ground ramps down towards the comer entrance both inside and out, and the glazing follows the slope dramatically, increasing awareness of the way the whole volume is carved out of the ground. On the least important south side, the slope runs the other way to provide access at basement level. This is not seen from inside, for a solid end wall terminates the space, relieved only by glazed corners and clenestory. This stab-like clement provides a backdrop for activities orientated on the long axis of the hall, besides reducing the solar gain. A turret-like retaining wall at the south-west corner reconciles the two ground levels.

Larger halls - training and warm-up hall at Munich 1972
With larger halls the structural problems of creating clear spans becomes more acute, and the hardware involved more obtrusive. The impact of the whole building on the landscape tends to be greater, and the potential disparity of scale between major elements of the building and the single human being is also increased. The two halls considered here, Munich and Sindelfingen, both have spaces delined by semicircular-ended running tracks, and involve clear floor areas of $90 \times 45 \mathrm{~m}$ and $77 \times 40 \mathrm{~m}$ respectively.

The Munich training hall is part of the whole Olympic complex designed by Behnisch \& Pariner between 1967 and $1972 .{ }^{\text {. }}$ This was the first time the Olympics had been held in Germany since the infamous Berlin games of 1936. The architccture chosen was thus in conscious contrast to the ponderous monumental treatment of 1 fither's architect, which had been intended to demonstrate the might and power of the Third Reich. Behnisch and his partners won the competition with a radically 'soft' proposal in which the major gestures were accomplished by manipulation of the landscape, the formation of artificial hills carved away to produce the great arenas, as with the outdoor ones of Classical Greece and Rome, but in a flowing and seemingly natural unregimented layout unencumbered with formal axes. The visible architecture was then provided by the great cable-net roofs and their compression masts, presented as astrong conerast to the landforms.

The training hall follows the same patterm in a nuch more modest way; the running track carved out of the ground, the changing and service rooms largely buried on one side. The 52 in span roof is divided into bays of 12.5 m , carried on a seties of huge trusses of triangular section, supported on each side by paired steel posts. Over each truss is a rooflight, and a series of valley roofs on secondary trusses are slung between. The structure dictates its own rectangular plan shape, but over certain bays the intermediate roof is extended to provide a canopy. Between this disciplined roof and the groundworks is a skin of glass, which follows the curved running track around the ends of the building, playing against the rectangular system. The great trusses penetrate the glass wall in a suitably dramatic manner.

21.22
Muni
plan

cross section
cross section

$$
1-1 / 1)^{2}
$$

F 4

Sindelfingen 1977

The hatl at Sindelfingen ${ }^{7}$ is of similar size and follows the same initial principles as at Munich, but is much more subtle: indeed, it makes the other design seem almost diagrammatic in comparison. It serves a different purpose, being a public arena rather than just a training ground for sports people, and therefore requires large numbers of seats, a foyer, and a far taller space. Again the arena is carved out of the ground like a CirtasMaximus, again services, many ancillary rooms and evena bowling alley are concealed in the ground. The steel roof structure consists again of triangular trusses, now spanning 54 m , with bays of 13 m , but this time the trusses are inverted and projected upward into roollights, while the intermediate roofs are flat. This produces a far genter ceiling inside and a surprisingly even quality of light, seeming bright even on a dull day. On the outside it produces a dramatic sequence of fin-like elements which help give the building a recognisable identity and reveal
its scale. Unlike the Munich example, the russ ends are treated asymmetrically in sympathy with the programme, for on the west side banks of spectator seating just need to be contained and there is no reason to see out, while on the east side the arena must open itself to foyer and entrance. So the west ends of the trusses are cranked over to meet the ground, and the roof treatment carried over into a mansard-like side wall. Δ t the east end cach truss is carried on a pair of steel posts, and the main roof gives way to a lower, lighter structure for entrance and foyer. In recognition of the plan shape of the arena, the end trusses are shorter, and the curves of the spectator seating are covered by a low roof, a variant of the secondary structural system between the trusses. This brings the roof down gently, assuring that the appronches to the building are scaled down and reducing its impact in the landscape. It is astonishing how gentle it all seems when one reflects on how big this building really is.

28
Sindelfingen, view from the top
spectators' gallery.
29
View from running track.
-in Fowhors
1 Behnisch \& Partner have not published a complete work list, hut from publications and exhibition catalogucs, I have compiled the following: Steissling 1966. Radolizell, Oppelstoohm and Schwenningen 1969, Kowhenhurg and W'aiblingen 1970, Munich Olympic and training halls 1972, Dachau 1974, Rothenturg 2 1975, Lorch 1976, Sindelfingen 1977, Ludwigsturg 1979, Reutlingen 1982, llerrenterg 1983, Sulabach 1984 and Bruchsal 1989. These are completion dates.

2 Usually achieved by fitting a pane of acrylic sheel in the phazing where a beam comes through, Jividing it and cutting each half tothe shape of the beam, then sealing the gaps with ranslucent mastic
3 For an accoumt of the same development of ideas in scheol buildings see AJ 24 Seprember 1986.

4 AR June 1985, ppl6-56
5 Because of the high water table, the ground around the Sulabach hall is mainly buill up rather than dug in, but the effect is similar. 6 Behnisch \& Partner won first prize in the competition of 1967 with a complete design including the cable-net roofs which have always been the most grominent part. PreiOlto was involved only as consultant on the development of the idea: engineers were Leonhardt and Andrä.
7 This hall was the result of a competition in

- 1967, though in the eight year delay before building both programme and design changed radically. Constructed 1975-77.
Its origin is explaired in a fascinating essay by tizon in the '60s annual Zodiac volume 10 .

Sports at AUB had undergone many changes in the past fifteen years. Prior to the war, the University had a considerable percentage of foreign students who showed enthusiasm for sports due to their sociocultural background. In fact, they were examples for hebanese students to follow. At that time sports facilities at A.U.B were limited; never theless, there were better athletes who had set records on a national scale.

During the war, interest in sports amons students and faculty dropped drastically. This attitude was faced by the Athletic Department by improving the existing facilities like the construction of four outdoor tennis courts and the addition of new facilities for new sports. As a result, this improvement succeeded in raising the interest of students in sports.

Since then the number of students using spores facilities has been improving constantly. Presently, there is a large number of students who are practicing sports; however, the quality of athletes that existed before the war has dropped sharply. Thus, there are no record makers any more.

If asports center is to be built in AUB, it should include the following facilities:

- Gymnasium with a multipurpose court and a seating capacity of a minimum of 4,000 spectators.
- Practice court.
- Swimming/Diving pool.
- Combative room.
- Aerobics room.
- Body Building room.
- Archery.
- 3 Indoor Tennis courts.
- 4 squash courts.
- Medical Screening.
- Administration.
- Storage.

As for sports that are located in West Hall (like Marshal Arts Table Tennis and Aerobics); they should be definitly remouved from there because west Hall is a student uniun bldg not a sports center
end of interview


```
* Interview with Mr. Mash'alani (administration)
* Interview with Mr. Halimi (director of athletic dept.)
```


* REFERENCES:

- Sports Buildings Allen Konya, The Architecture Press, London, 1986
- Handbook of Sports and Recreational Building Design volumes: 1,2,4, The Sports Council, The Architecture Press, London, 1981
- Athletic Business american journal, june 1991
- Technique \& Architecture Archibat, Lyon, Dec. 1990-. Jan. 1991
- Architectural Records AMcGrow-Hill publication, June 1991
- The Architectural Review MBC Architecture Press, . February 1991
- Research done by Miss Mathilda Khoury in 1990
- Architect's Data Neufert, 1986

[^0]: The plans on the following pages have been selected because they illustrate the difference between:

 - Treating the indoor facilities as one bulk or breaking them into smaller friendlier volumes.
 - Combining the wet and dry changing facilities as opposed to sepereting them.
 - Providing one access point for the athletes from the chainging facility into the main hall versus providing more than one access.

