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ABSTRACT

Kelvin's solution to the equations of the linear theory of
elasticity gives the displacements and stresses produced by a
concentrated force acting at a point in the interior of a solid
of indefinite extent. MNuclei of strain are solutions obtained by
differentiation, integration, and superposition, from Kelvin's
solution. A number of solutions for bounded bodies may be constructed
by appropriately superposing the nuclei as unit solutions, to obtain
desired conditions at the boundary of the solid.

The problems considered in this thesis concern the effects
of a concentrated force acting in the interior or on the surface of
a solid bounded by a plane, or by two or three perpendicular planes,
For some problems of this type, specifically those Boussinesq,
Cerruti, and Mindlin for a solid with a single free plane boundary,
the solutions in nuclei of strain are well known, Some other
problems of the type considered have been solved using Papkovitch
functions; specifically, the problem of Rongved for a solid with a
single fixed plane boundary, and the problems of Hijab for solids
bounded by a single plane and by three perpendicular planes, on
which certain mixed conditions obtain.

We present in this thesis an organization and characterization

of nuclei of strain based on their known Galerkin vector and potential

v



function representations, in which certain properties of the nuclei
are clearly displayed. Using these properties, construction of
solutions to many problems of the above mentioned type becomes a
relatively straightforward process.

We construct the solutions for a concentrated force in the
interior of a solid bounded by one, twe, or three planes with two
mixed boundary conditions on the planes, the solutions for a solid
bounded by a single plane which may be fixed or free, and the
solutions for a solid bounded by two or three planes, with mixed
conditions on all planes but one, which may be either fixed or
free.

Constructing solutions in nuclei reveals relationships between
the various problems which are interesting in themselves, and which
may prove useful in constructing solutions for more difficult problems

of the same type.
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CHAPTER I

INTRODUCTION

*
1, Historical Background

In 1848, Lord Kelvin presented a fundamental solution in the
linear theory of elasticity. Kelvin's solution gives the displacements
and stresses at any point of a homogeneous isotropic solid of indefinite
extent, caused by a concentrated force acting at a point interior
to the solid. An infinite class of solutions may be derived from
Kelvin's by differentiation, integration, and superposition. From
these, known collectively as nuclei of strain, the solutions of many
problems of practical significance have in turn been obtained. For
example, the solution to Lame's problem (10) of a spherical container
under uniform external or internal pressure, and of Southwell's
problem (11) of a cavity in the interior of an infinite solid under
uniform tension can be obtained by combining suitable nuclei. 1In

constructing the solutions, the appropriate nuclei are selected and

*In the preparation of this section I have drawn heavily
upon the introductory sections of (1, 7, 14). Here, and within the
text hereafter, numbers inside parentheses refer to the correspondingly
numbered entries in the Bibliography.



superposed so as to obtain the desired conditions of displacement

or stress at the boundary of the body. All the nuclei have singular
lines or points, at which the stresses and displacements become
infinite, which points are thus imagined to be outside the body,

or within a cavity inside the body.

Among the problems which are themselves concerned with the
effects of a concentrated force, Boussinesq's problem of a normal
force on the plane boundary of a semi infinite solid, and Cerruti's
problem of a tangential force on the same boundary, can be solved
in nuclei of strain (11), though they were first solved, in 1879
and 1882 respectively, by the use of potential theory (1). Following
Westergaard's interpretation (11) of these two problems, in which
he also introduced the Galerkin vector representation of the nuclei,
R.D. Mindlin in 1935 solved the problems of a concentrated force in
the interior of a semi infinite solid (5, 7). More recently (9)
Mindlin and Cheng have derived from-these last two solutions a series
of nuclei for the semi infinite solid, and have shown their practical
importance.

Tt was Mindlin himself, however, who in 1953 initiated (12)

a new method of attack on problems concerned with the effects of a
concentrated force in the interior of a solid with specified
boundary conditions. After noting that the essential procedure in
solving a problem by nuclei is guessing, he showed how, by an
ingenuous combination of the Papkovitch functions solution of

elasticity and Green's analysis, the solutions he had previously



found in nuclei, could be derived directly. The Papkovitch functions
approach has been used on all concentrated force problems since

this time. In 1955, L. Rongved derived (13) the solutions for a
force in the interior of a semi infinite solid with a fixed plane
boundary, and in 1956 W, Hijab showed (14) that the power of the
method is sufficient to enéble the derivation of solutions under
mixed boundary conditions, and for bodies with composite boundaries,

such as body bounded by three perpendicular planes.

2. Scope of the Thesis

This thesis is concerned with the solution, in nuclei of
strain, of concentrated force problems in a solid of indefinite
extent bounded by a plane or by two or three perpendicular planes
(hal f-space, quarter-space and eighth-space). While the construction
of solutions in nuclei does not have the certainty and straight-
forwardness of the more powerful techniques, still, the nuclei have
some properties which can be exploited to eliminate much of the
guesswork usually encountered in this procedure.

First, we take full advantage of the Galerkin vector repre-
sentation of the nuclei by constructing tables from which the
displacements and stresses produced by a nucleus can be written
out rapidly. This eliminates much of the computational drudgery
encountered when solving problems and also provides, in conjunction

with the Galerkin vector, an amalytical characterization of the



nuclei, which possesses a clarity lacking in the intuitive charac-
terization generally used. The tables are also useful in solving
problems in that one may see in them the effects of superposition
on various of the expressions which appear as displacements and
stresses of nuclei, after which, consideration of the Galerkin
vector will lead to the selection of a nucleus which creates the
desired effect on the boundary.

In showing how this is done, we extend, and to a certain
extent unify, the collection of concentrated force solutions
mentioned in the last section. As it happens, Kelvin's solution
and the nuclei derived from it are particularly suitable for mixed
boundary condition solutions of the type considered by W. Hijab.
We derive in Chapter III the solutions of all such problems that
can occur in half-space, quarter-space, and eighth-space. At the
end of Chapter IV, we supplement this set with solutions in
quarter-space and eighth-space with one boundary either fixed or
free, and the mixed condition on the others.

In Chapter IV, we show how the tables and vector represen-
tation can be used, by constructing in a relatively straightforward
manner, solutions for the problems of Rongved and Mindlin. 1In
nuclei, these solutions are more complicated than the mixed boundary
solutions, and those of Mindlin more complicated than those of
Rongved , buf the construction of the solutions in nuclei reveals
striking relationships among the problems, and shows the simpler

solutions useful in constructing the more difficult ones.



Mindlin has shown how the solutions in nuclei of the
problems of Boussinesq and Cerruti can be derived from his solu-
tions. At the end of Chapter IV, we investigate the fixed boundary
analogues to the solutions of Boussinesq and Cerruti, which may
be obtained in the same manner from the solution in nuclei, of
Rongved's problem.

The results reported here were found in the course of
investigating the problem of a concentrated force in quarter
space with free boundary. This seems to be an intrinsically
difficult problem, having yielded as yet neither to nuclei nor
to Papkovitch functions. It is hoped that the results of this

work will contribute toward its solution.

3. Equations of Elasticity; Galerkin Vector and Papkovitch Functions

The fundamental equations of the linear theory of elasticity
are the equilibrium equations expressing the condition that the
resultant force on any element of the elastic solid is zero, and
the generalized Hooke's laws, stating the relationship between
the stresses and displacements in an ideally elastic, isotropic solid (10).
Substitution of Hooke's laws into the equilibrium equations produces
the so-called basic equation of elasticity, which may be written

concisely in vegtor form:

G(a + T:%; grad div) u =0, [1]



where G 1is the modulus of rigidity, v is Poisson's ratio,

A is Laplace's operator, and
u = iu + iu + ku
- ="y Y ="

is the displacement vector. In deriving eq. [1] it has been assumed
that body forces are negligible: we shall assume zero body forces
throughout this thesis.

Solving a problem in elasticity might then be said to consist
of finding a vector function (or its component scalar function)
which satisfies eq. [1] throughout the solid and which produces
displacements satisfying desired conditions on the surface of the
solid. If the conditions are made on the displacements, the problem
is said to be a first boundary value problem; if on the stresses,
a second boundary value problem. Or some of conditions may be
made on the displacements, and some on the stresses, in which case
the problem is said to be a mixed boundary value problem.

Two forms of solutions of eq. [1] are of interest to us
in this thesis. The Galerkin vector, with scalar components the
Galerkin functions (2), will be essential in our work with nuclei.
The displacements are derived from the Galerkin vector by the

formula
2Gu = [2(1-v)A - grad div] F , [2]
where

= + +
Eedp v 1, ¢ 19,



is the Galerkin vector and Fx’ Fy, and Fz are the Galerkin functions.
In order that the displacement vector derived by eq. [2] should
satisfy eq. [1], the Galerkin vector must satisfy the biharmonic

equation

AAF = 0.

Westergaard has observed (11) that a single axially symmetrical
component of the vector is identical with Love's strain function
(1, 10). We consider the Galerkin vector in detail, in the next
chapter.

The Papkovitch functions solution (3, 4), though of import
for the methodical solution of concentrated force problems (14),
will be employed only when we desire to compare a solution obtained
here in nuclei of strain, with one given elsewhere in Papkovitch
functions. For this, we make use of the relationship between the

Galerkin vector and the Papkovitch functions given by Mindlin (8):
o
;Bx + JBY + ;Bz e AF
[3]
p =45 (2div E - B AF)
where B,» By’ B, and P are the Papkovitch functions, and

R=1x+ jy + kz

is the radius vector.



4, Some Well-known Nuclei of Strain

In this section we present some typical nuclei of strain
in the terms commonly used for their description. It is in large
part, therefore, a synopsis of Love's description (1) of the
nuclei. The Galerkin vectors for the nuclei are taken from
Mindlin (10), except in some cases where minor alterations have

been made to conform more closely with Love's discussion.

a) Single force (Kelvin's solution). The displacements

and stresses at a point (x, y, z) in the elastic solid, due to a
single force acting at the origin is given in Chapter III, 1.

The displacements and stresses are seen to be singular at the
origin, which is thus taken to be outside the solid. Specifically,
the conditions satisfied by the nucleus are that the resultant

of forces on a small cavity surrounding the origin is a simple
force, and that the displacements and étresses vanish at infinite
distance from the origin. The Galerkin vectors for the single

force aret

iR (single force in x-direction),

I
]

jR (single force in y-direction),

I
I

=1
I

kR  (single force in z-direction),

where R 1is the distance from the point (x, y, z) to the origin.

b) Double force in z-direction. We superpose a single force



in the z-direction at (0, O, O) and an equal but oppositely directed
force at (0, 0, h). Dividing the magnitude of the force by h and
diminishing h indefinitely, we obtain the double force in
z-direction. The components of displacement and stress at a
point of the body are then the partial derivatives with respect
to z, of the corresponding displacement and stress components of
a simple force in z-direction. The Galerkin vector producing

these components is found by a similar differentiation of the

vector for the single force:

F=k ﬁ (double force in z-direction).

c) Double force in z-direction with moment about y-axis.

We superpose a single force in z-direction at (0, O, O) and an

equal but oppositely directed force at (h, O, O) and pass to the
limit as before. The components of displacement and stress are

thus the partial derivatives with resﬁect to x of the corresponding
components of the single force. The forces produced in the neighbor-
hood of the origin are equivalent to a couple about the vy axis,
hence the name of the nucleus. The Galerkin vector for the nucleus
is found from that for the single force in z-direction by differen-

tiating with respect to xi

FekX (double force in z-direction
s T R

with moment about y-axis).

d) Center of compression. A double force in x-direction,
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a double force in y-direction, and a double force in z-direction
are superposed at the origin. The effect on any spherical surface
with center at the origin is a uniform normal tension. The

Galerkin vector may be taken to be:

F=1 (center of compression).

b= P

tigtk

=1 [¥]

e) Line of double forces with moment. We may suppose nuclei

of the type in (c) above, to be distributed uniformly along the
negative z-axis. The components of displacement and stress are
then the integrals with respect to 2z, between the limits z and
@ . of the corresponding components of the double force with
moment. The resulting components are singular along the negative
z-axis, but vanish elsewhere at infinite distance from the origin.
The definite integrals just mentioned are therefore the negatives
of the indefinite integrals, and so we may take for a vector the
negative of the indefinite integral of the vector for the double
force with moment, suitably adjusted so that the components of
displacement and stress vanish at infinite distance. The vector

is then:

(ILine, along negative z-axis,

= - +
E X x log (Rtz) of double forces in z-direction

with moment about x axis).

f) Line of compression. Again, we may suppose centers of

compression to be uniformly distributed along the negative z-axis.
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By reasoning similar to that in the last paragraph, we find the

vector from that for the center of compression:

(1ine of compression

E=-1xlog (R¥z) - 1y log (Rtz) - k R along negative z axis).

An indefinite number of nuclei may be obtained by the processes
illustrated above. Starting with a single force or center of compres-
sion one may differentiate an arbitrary number of times, and integrate
as many times as allowed by the condition that the displacements
should vanish at infinite distance from the origin. Of course,
many nuclei may be formed by simple superposition of nuclei derived
from single forces; the center of compression and nuclei derived
from it receive special consideration because they are éxceedingly

useful in solving the type of problem considered in this thesis.

5. Notation for Nuclei of Strain

We will consider the single forces and the center of compres-
sion as fundamental nuclei, from which all other nuclei are derived
by differentiation and integration. These nuclei will be given

letter names:

X (single force in x-direction),
(single force in y-direction),

(single force in z-direction),

QO N =

(center of compression).

The name of any nucleus derived from these will be formed by prefixing
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to the letter name of the nucleus from which it is derived, the
operators encountered in the derivation.

We will use » to denote partial differentiation, with
subscripts indicating number of differentiations and variables
with respect to which differentiation is performed. The double

forces of the previous section would then receive the names:

s Z (double force in z-direction),

3 Z (double force in z-direction with

moment about y-axis).

We will use the integral sign similarly subscripted to
indicate variables of integration and number of integrations, It
will be seen in the next chapter that in handling nuclei of strain,
we are working with a clearly defined set of functions in which
the result of integration is unique, so that the abbreviated
notation does not lead to confusion.

The last two nuclei of the previous section would then

receive the names

- Iz 3, Z (1ine, along negative z-axis, of double

forces with moment about y-axis),

- Iz c (line of compression along negative z-axis).

The minus signs appear because we shall require that differentiation
of an integral produce the integrand, while the integrals encountered
in the derivation of the nuclei yield, upon differentiation, the

negative of the integrand.
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The justification for this somewhat elaborate system of
nomenclature, which has evolved in the course of working with the
nuclei, is that it has been found to facilitate thought by expressing

characteristics of nuclei significant in selving problems.

6. Symbols Used in the Thesis

The symbols used in the thesis, defined also when they are

first used, are collected here for reference.

G modulus of rigidity

v Poisson's ratio

£ Galerkin vector

Fx, Fy’ Fz components of Galerkin vector

Bx’ By’ Bz, B Papkovitch functions

u displacement vector

U s uy, u, components of displacement vector
O x? dyy’ 9, normal components of stress

6,0 4,0 shearing components of stress
xy’ “yz’ “zx

A Laplace's operator

s bxx’ bxy’ etc. partial derivative, with respect to subscript variables
fx, fxx, etc. integral, with respect to subscript variables

+ AF potential function for nuclei

¢ ' biharmonic expression in Appendix Table

+ A harmonic expression in Appendix Table

(x, vy 2) arbitrary point of elastic solid

R distance from origin to (x, y, z)
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X, Y, Z, C single forces in x-,y-,z-directions, center
of compression
fszz, IZC, etc. nuclei derived from single forces and center

of compression by indicated operations

(x*; Y's 2') point at which nucleus is located
Ry sk distance from (x', y', z') to (x, y, z)
L] L] L}
Zijk’ Cijk’ etc. nucleus located at (x', y', z')
where
0 if x* =0 0 if y' = 0 if z' =0
i=4q41if x'=a j=411ify' =bDb k=111if z' =
2 if x' = -a 2 ify'=-b 2 if z' = -c

R-jk’ Ri-k’ Rij- value of Rijk at x=0, y=0, z=0 respectively

Rk’ Zk’ Ck etc. abbreviation of ROOk’ ZOOk’ COOk etc.
§;TT§;7— "force adjustment™ so that solution represents

force of magnitude P.



CHAPTER 1I

DISPLACEMENTS AND STRESSES,

CHARACTERIZATION OF NUCLEI OF STRAIN

1. Stresses and Displacements of the Nuclei; Galerkin Vector and

Potential Function

a) Nuclei derived from X. The displacements and stresses

of X are found from the Galerkin vector

FE=41R .

The vector for any nucleus derived from X, is found from the above
by performing on it, the same differentiations and integrations as
were performed on the displacements and stresses of X 1in the

derivation, hence will be of the form
F=1iF_ .
I A

The components of displacement u_, u o, u, are computed from eq. [2],

the components of normal stress o y © and shearing stress

d
xx? “yy? “zz’?

dxy’ dyz’ - follow from these by Hooke's laws. They ares

15
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2Gux = 2(l-v)AFx - sxxe
2Gu = -8 F

Y YX X
2Gu = -5 F

z ZX X
L = (2-v)beFx B bxxxe
dYY = VbeFx - waFx [4]
d = vd AF -3 F
ZzZ X X ZZX X
. = (1-v)ayapx - bxnyx
dyz - - 6yszx
dzx ¥ (l-v)bZAFX - bZXXFx

b) NMuclei derived from Y. The vector for Y is

E=]R

so the vector for any nucleus derived from Y is
F = jF .
E=iF,

The displacements and stresses are:

2Gu - -5 F
X xy'y
2Gu - B(1-y)AF =~ 3. F
y (1-v)AF, YY'Y
2Gu -5 F
z zy'y
By = vbyAFY - bxxyFy
= (2-v)s.AF -8 __F 5
°yy . (2-v)s AR YYY Y (5]
P = Vs AF -8 _F
22 Yoy zzy'y
= (1-y)8 AF. -3 _ F
“xy (1-v)s AF, XYy y
= (1-y)8.AF =35 _F
Oyz (1-v)s,, y yzy'y
o = -
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c) Nuclei derived from Z. The vector for Z is

E=kR
so the vector for any nucleus derived from =z is
E= LFZ .

The displacements and stresses aret

2Gu = - 3% F

X XZ Z
2Gu = - 3% F

Y Yz z
2Gu = 2(1-v)AF -3 F

z z 2z z
g = vd AF -8 F
XX z A XXZ 2Z
Oy = 9 AF, = ayyzpz (6]
S, = (2-v)bzAFz = P
¢ = -5 F
xy Xyz z
- = (l-v)byAFZ - °yzze |
%2x 4 (l_v)beFz = Bonsly

d) Muclei derived from C. We will take as a vector for C:

E=-simy Vv i),

a constant multiple of the vector given in Chapter I, 4(d).

This vector is the gradient of a scalar function:

i§+i§+g§=grad R.

The vector for a nucleus derived from C 1is found from the vector

for C by subjecting it to the same operations as performed on the
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displacements and stresses in the derivation, and this vector will
be the gradient of a function found by doing the same to R.
Letting F denote this function, then the vector for any

nucleus derived from C is of the form

F=- ERT%§;7grad E.

Substituting in eq. [2], the displacement vector in terms of F is
1
2Gu = - ERE:E;T[2(1-V)A - grad div]grad F .
Since div grad = A, this reduces to
2Gu = - grad(3AF).

The function $AF is called the potential function.

The components of displacement and stress are:

26u_ = - bx(ﬁAF)

2Guy = - by(ﬁﬁF)

26u, = - bz(i-AF)

S x = - bxx(iﬂF)

Sy = - aw(iﬁ) (8]
92z - - bzz(#AF)

S = - bxy(ﬁﬁF)

by ¢ ™ 7 byz(iAF)

S, = - s, (3AF)

A one component vector producing the same displacements and

stresses as [B] may be found if desired. In fact, R being
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biharmonic, F 1is also, so that
A($AF) = 0O,

Then, comparison of [8] with [4], [5] and [6] shows that any

of the three vectors:

i§, (aF), if (BAF), kf, GAF) [9]

will suffice.

As a representation of nuclei derived from C, both the
potential function and the vectors [9] have drawbacks; the vectors
obscure the symmetry and simplicity of [8], which thus hampers
one in solving problems, while the potential function does not mix
well with the vectors representing nuclei for which vector represen-

tation is essential,

2. Construction of Tables for Displacements and Stresses of the Nuclei

It is seen from equations [4], [5], and [6] that we may
write out the displacements of any nucleus derived from X, Y, or Z
if we have at hand a certain set of derivatives, the Laplacian, and
derivatives of the Laplacian, of the scalar component of the vector
for the nucleus. For X, Y, and Z this function is R.

It is convenient to think in three dimensions: let us
imagine R located at (0,0,0). By repeated differentiation of R,

we obtain functions at the lattice points in the first quadrant of



a rectangular coordinate system, placing be at (1,0,0), byR at
(0,1,0), 3R at (0,0,1), bxy_R at (1,1,0) etc. Supposing the
process to have been continued indefinitely, we then have at the
lattice points functions which are the scalar component of the
vector for every nucleus derived from a single force by differentia-
tion alone, and all the functions which appear in their displacements
and stresses,

Taking ¢ to denote any function so obtained, the scheme
is consistent since bxy¢ = byx¢’ etc. For each of the ¢, let
us compute also #AQ, and take, as Sx¢, Sxy¢’ etc., the function
such that 6xjx¢ = ¢, 6xy5xy¢ = ¢ etc., then the operators 3, I,
and #A commute. (A sample of the ¢ and #AQ is found in the
Appendix Table).

Looking at the functions more closely, we see that all ¢
obtained from R by two or more differentiations are singular at
the origin and vanish at infinity, and may appear in the components
of displacement and stress of some nuclei, the others appearing only
in the Galerkin vector for some nuclei.

We may extend the scheme to include nuclei derived by
integration from X,Y,Z, and C, by integrating the ¢ already
obtained. The integrals are all subject to the restriction that
any ¢ which may appear in a component of displacement or stress
of a nucleus muét vanish at infinity. Under this restriction, any
given ¢ will have been obtained from R by at most as many

integrations as differentiations, and the properties of cancellation
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and commutivity continue to hold for 3 and S.

We may integrate 2AR once more than we differentiate, to
obtain a potential function for a nucleus derived from C. Then,
within the region where both exist, we maintain commutivity of
8, §, and $A, and cancellation of 5 and {.

Omitting consideration of the &A¢, we may describe the
resulting situation as follows: There is a ¢ at every lattice
point in the region x4y + z> 0. Every @ in the region
x+y+ z22 vanishes at iﬁfinity; the others will appear only
as components of the Galerkin vector. All the ¢ in the region
x+y+ z22 but cutside the first quadrant are singular along
one or more of the negative axes, and will appear in the displace-
ments or stresses of a nucleus derived from a single force by a
process including integration, the ¢ in the first quadrant being
as described above. An analogous situation obtains for the potential

functions, if we imagine them similarly situated in space.

3. Characterization of the Nuclei

The geometrical image of the previous section provides a
characterization of the nuclei, when we associate with each lattice
point the three nuclei, one each derived from X, Y, and Z, having
the ¢ at that point as scalar component of their vector, with
a similar arrangement for the nucleil derived from C. Such a
broad view clarifies the notion of what nuclei are available, and

discloses the pattern of some general characteristics, such as

type of singularity.
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The relationships displayed by the scheme help one to keep
order in situations which can easily become tangled and confusing,
particularly if one relies on the conventional terminology for
the nuclei. In solving a problem one may have been led, for

instance, to superpose

5. X, j’xwa, and jxazzx.

But, noting that axx = bexxx, the Galerkin vector for the

combination is
E = _i_jx(bxxn ta R+ 5, R) = ;foR

i.e., by eq. [9] the same displacements and stresses are produced
by C, apart from a constant. Such results can be anticipated in
the geometrical image, increasing efficiency in solving problems.
So too, the relationships are seen in our notation for the nuclei,
which is essentially a symbolic counterpart of the geometrical
image.

These aspects of the situation are still of somewhat peripheral
importance, though they help one understand the nature of the entities
he is working with. 1In solving problems, one derives the greatest
benefit from the scheme by descending to its smallest parts: What
is usually desired, in solving a problem, is to find a nucleus or
a group of nucléi, which have a particular ¢ or §ﬂ¢ in a certain
one of their displaceménts or stresses. This function being located

in the scheme (or in its imperfect realization, the Appendix Table),



23

then, using the forumlae [4], [5], [6] and [8], one determines
the nuclei that have the desired properties. The details of this
process will be seen in Chapter IV, in deriving solutions to the

problems of Rongved and Mindlin.

4, Data for Displacements and Stresses of 49 Nuclei of Strain

The displacements and stresses of 10 nuclei derived from
each of X, Y, and Z, and 19 from C may be found from the
entries of the Appendix Table, which have been computed as described
in the previous sections. The nuclei are assumed to be located at
the origin or along the whole of one of the negative axes.

The appropriate entries for a given nucleus are located
from its vector or potential function given below and formulae
[4], [5], [6], and [8]. The tables include, for each potential
function, at least one of the integrals [9], for Galerkin vector

representation of nuclei derived from C.

Nucleus ¥

Xz AR

Y: iR (single force)

Z: kR
X

b X i R

byY: 3 % (double force)
Z

sz: k R



Nucleus
5 Xz
Yy
3 Xt
z
5 Y:
b
5 Y:
z
b Zt
X

5 Z3
Y

jybxx'
§ b X1
fxbyY:
fzbyY:
bezZ:

Syb Z:

§ s xs
fzbyx:
fxbzX:
Sybsz
bexY:
fszY:
fxsz:
Syszz
Sybe:
fsz2|
Sxayz:

Szayz:

I~ P

I= = e ke e
W Wik win wix oin ok

[ [==

= I= B B e

[

L N S N A

I= I= I=
~

»

log(R+y)
log (R+z)
log(R+x)
log (R+z)

log (R+x)

log (R+y)

log (R+x)
log(R+z)
log (R¥x)
log(R+y)
log(R+y)
log (R+z)
log (R+x)
log (Rty)
log(R+y)
log(R+z)
log(R+x)
log (R+z)

(double force with moment)

(line of double forces)

(line of double forces with
moment )
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Nucleus $AF
C: % (center of compression)
jxc; log(R+x)
jyc: log(R+y) (1ine of compression)
SZC: log(R+z)
X
be: - o
A A
b C: - doublet)
b R3 (
Z_
sz: - R3
S 5 C: -
zZ X iR+zSR
X
Il Ty
{ s cCa 'ﬁ_yT
ok KR (line of doublets)
S 5 Ct
B iR+ziR
b0t TRR
z
fysz| T§:;7§
=
jzszC' Rtz
X
jyybe' " Rty
§ 3, Ct -
xxy (line of doublets, strength
Szzbyc: - Ef; proportional to distance
from origin)
I 5 Cs - 5
XX Z R+x
e 3
Syysz: Rby



CHAPTER III

A SERIES OF MIXED BOUNDARY

VALUE PROBLEMS: HIJAB'S PROBLEMS

1. Preliminary Considerations

We will determine the components of displacement and stress
produced by a concentrated force in the interior of three bodies,
subject to two boundary conditions,

The bodies are:

The half-space, bounded by the plane z =0 and occupying

the region z > O. The force acts at (0,0,c) and (x,y,z) is
an arbitrary point of the body, as in Fig. 1.

The guarter-space, bounded by the planes z =0 and x =0,
and occupying the region z > 0, x > O. The force acts at (a,0,c)
and (x,y,z) 1is an arbitrary point in the body, as in Fig. 2.

The eighth-space, bounded by the planes z =0, x =0, and

y =0, and occupying the region z > 0, x > 0, y > 0. The force
acts at (a,b,c) and (x,y,z) is an arbitrary point in the body,

as in Fig..3.

26
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(D, o,-C)

(x.y,z)

Fig. 1t The Half-space
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EQ,O,(‘.) [

R

Fig, 2t The Quarter-space
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tab-c)

¢abc)

Fig., 3: The Eighth-space



The boundary conditions are:

Zero normal displacement and zero shearing stresses. Speci-

fically,

on _z =0 on x =0 ony =0
u =0 u =0 u =0

z X Y
g =0 g =0 g =0

ZX Xy yx
d = d =0 g =0

zy X2z Yz

Zero in-plane displacements and zero shearing stresses. Speci-
fically,

on z =0 on x =0 ony =0
u =0 u =0 u =0
X y X
u =0 u =0 u =0
Yy z z
g =0 ¢ =0 g =0
zz XX YY

Nuclei will be situated at the point where the force acts,
and at points symmetrical to it, with respect to the boundaries.
We will use subscripts to denote the distance from these points to

the arbitrary point (x,y,z), and to indicate the location of the

nucleiz
Rijk is the distance from (x,y,z) to (x",y',z')
xijk’ Yijk’ etc. is located at (x*,y*,z")
where
0if x'* =0 0ify'=0 0 if 2" =0
i=411if x*" = a j=41lify' =D k=411if z' =¢
2 if x' = -a cl2ifyt = b 2 1f 2* = -¢
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When we are working with the half-space, we will use the abbre-

viations

Ry = Rook? Xk = Xook» ete-

The displacements and stresses produced at (x,y,z) by the
NMuclei X,Y,Z, are found from their Galerkin vectors, formulae [4],

[5], and [6], and the Appendix Table:

X (single force in x-direction)
E = iR
3-4y x2
ZGux = R + E3
2Gu = 2L
Y r3
= Xz
2Guz R3
" - _ Al-2y)x  3x”
XX R3 R5
g = (1-2v)x 3xy
¥ R3 RO
¢ = (-2y)x 3xg?
zz ] RS
R - vy
xy R3 RO
= 3xyz
d = -
Yz RS

. _Al-2y)z 3%’z
zX R3 RS



(single force

Yz

ZX

(single force

32

in y-direction)

iR

yx

R3

2

3-4

S -2

Yz

R3

(-2v)y _ 3yx2
R3 RS

(1-2v)y _ 3y3
R3 RO
R3 35

(1-2v)x _ 3y2x
R3 RO

(1-2y)z _ 3v2%z
R3 RO

3xyz

R5

z-direction)

in

kR

zX

R3

Zy

R3

34y, z_

R R3

(1-2y)z _‘3zx2
R3 RS

!1-2§[z _ 3§§2
R R

(1-2v)z _ Q;E
R3 RO
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E - kR
3xyz
d = -
xy RO
2 _ -2y 3y
Yz R3 RO
4 A s 11-2!2x Sz2x
ZX R3 R5

It may be noted that the formulae for Y and Z may be
obtained from those for X by cyclic permutation of variables and
subscripts. The formulae are applicable if the nuclei are located
at the origin. If the nuclei are at (x",y',z') the proper formulae
are obtained from those given by substituting x-x', y-y', z-z',
and Rijk for x,y,z, and R.

The magnitude of the above forces is B8x(l-y) in the
positive direction. The magnitude is not affected by the super-
position of nuclei at a finite distance from the point at which the
force is acting, so that all our solutions will represent a force

of this same magnitude. Having once obtained a solution, we may

multiply throughout by

P " . L]
=) ("force adjustment")

to obtain the solution for force of magnitude P.

2. Half-space, Quarter-space, and Ei hth-space With Zero No

s cement and Zero Shearing Stresses at the Bo

a) Half-space. Hijab (14) has solved this by the Papkovitch

functions:



Pl L
B, " 7GR, " Ry

e 1 1
P '4nG(R1+R2)

for a force in the z-direction, and

R A S
B =EE '
B, =0
Y
B, =0
z
p =0

for a force in the x-direction.
Utilizing the relationships [3], we find that the Galerkin

vectors corresponding to these Papkovitch functions are

E= kg Ry - Ry

for a force in the z-direction, and

E = tmam (Rt R

for a force in the x-direction. That is, apart from the force adjust-

ment, the two solutions are obtained by superposing the nuclei

and

respectively.
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Investigating the reason for this striking result, we find
these interesting facts: The displacements and stresses of X,Y,
and Z are all even or odd in each of the variables, so that if
two identical single forces are situated symmetrically with respect
to a plane, the displacements and stresses on the plane are double
that for one force alone, or zero.

Looking to the Appendix Table we see that the functions
there possess the same property, alternate derivatives being
successively even or odd in the variable of differentiation. Finally,
the structure formed of the functions in the displacements and
stresses of the nuclei is seen from formulae [4], [5], and [6],
and this structure leads us to state the principle:

(1) Place two single forces symmetrically with respect to
a plane., Then, to obtain zero normal displacements and zero shearing
stresses on the plane, forces perpendicular to the plane should be
in opposite directions, forces parallel to the plane in the same
direction,

The half-space solution for force in the y-direction is

then given by the nuclei

Yl *+ Y.

Hijab has given the displacements and stresses for the force in
z-direction and force in x-direction, but they are given in Tables I
and II (computed from the single force solutions), for later reference.

Displacements and stresses for force in y-direction may be obtained
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from Table II by interchanging x and y subscripts and

variables,

b) Quarter-space. We apply the above principle to the quarter-

space, and obtain the solutions immediately. They are given by the

nuclei

Zio1 - %102 * Zoo1 T Zop2?
X101 ¥ X102 = *o01 ™ %2027
Yio1 ¥ Y102 * Yoo1 * Yoooo

for forces in the z,x, and y directions. Displacements and
stresses for force in the z-direction may be computed from Table I

in the order:

- Z

(Z10, = Zy02) *+ (Zng) = Zog2)-

That the condition on the plane x =0 1is satisfied may be seen
from Table I, by noting that only odd powers of x appear in

2Gu_, o

" and LI Similar methods of computation and verifica-

xy’
tion may be used for the other solutions.

c) Eighth-space. Applying the above principle to the eighth-

space, we obtains

Zip Y20 Y 2oy Y 2o T B0 Zyp - 2

= 2190 " 2910 T 49000

X0t X0t Kot X0 T %oy T Xopo 7 Kooy T X000

+ + + - - 2 -
Yin Yo Y Yot Yoo~ o1 7 Yoor T Yioo T Yoooo
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Displacements and stresses for force in the z-direction could be

obtained from the quarter-space solution by computing in the order:

[z Z,.,+Z

11 " Zao 2oyt Zpppl Y UZyg) - Zy00 * Zp) - Zpp0]e

The others would then follow from this by cyclic permutation of

subscripts and variables.



TABLE 1

DISPLACEMENTS AND STRESSES FOR A FORCE IN Z-DIRECTION

IN HALF-SPACE WITH ZERO NORMAL DISPLACEMENT

AND ZERO SHEARING STRESSES ON THE BOUNDARY

d
Yz

ZX

it

x[_z_-.s _ ztc
3 3
Ry 2
Y[Z;c - rf_Cl
3
Ry RS ) .
1 B z+c)”]
(3-4v) |5~ - + -
1 2 -
oullzze _ zte] | 4 2[z-c | zEc]
(1-2v) e 8x [Rs o5
[ R ey 1 9 |
LR} Ry | Ry Ry
ooy = - zte] | gfle=e)’ (zte)®
RS RS R> R>
L8y M 1 2
- v |EeE - zic
Y TR
1 2
B 1 | zZ-C 2 ! +c:[2
5 (1-2V)Y .-3 2 -5] == 3y 3 - = 3
LRl R2 L Rl R2 ]
r I 2 27
- (1-2v)x 5 - -1-3-] - axflz=el (et
R, R, Ry Ry

A factor of 'B—vc%l_:;j is omitted throughout
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TABLE 11

DISPLACEMENTS AND STRESSES FOR A FORCE IN X-DIRECTION
IN HALF-SPACE WITH ZERO NORMAL DISPLACEMENT

AND ZERO SHEARING STRESSES ON THE BOUNDARY

20u = (3-av)[ & + ;_2.] : xz[% : .1_3]
1 Rl R2
2Gu_ = xy ? S
@ g
1 B
B R
1 2
g =-(1-2v)x-]=—+1—-3x3l-+-1—
XX R3 R3 R5 R5
Ay He 1 M2
g =(l-2v)x .]=...+.].~_ -3XY2'1—"1_'
Yy RS RS R° R
LR Rl 1 "9
- : 2 2
é =(1‘2V)X l'_+.l.- _3x.(££L+..(Ei£L
zZZ R3 3 R5 R5
(R} Ry 1 2
o == (2v)yl+ ] - ey + &
Xy R3 3 R5 R5
(R} Ry, 1 2
- g fzoe 4 ZHe
%z 3“[35 * 5]
1 B
d =..(1-2').z._-..§+_zi'.§_3x2.2_'_c.+£.+_c
zZX R3 3 R5 R5
1 R 1 2

A factor of Bl

is

-y

omitted throughout



3. Half-space, Quarter-space, and Eighth-space with Zero In-plane

Displacement and Zero Normal Stress at the Boundary

a) Half-space. The investigation which led us to state
principle (i) leads at the same time to

(ii) Place single forces symmetrically with respect to a
plane. Then, to obtain zero in-plane displacements and zero normal
stress, forces perpendicular to the plane should be in the same
direction, forces parallel to the plane in opposite directions.

Thus, the nuclei which produce the desired conditions are:

for the force in the 2z, x, and Yy directions, respectively. The
displacements and stresses for force in the z-direction and in the
x-direction are given in Tables III and IV. Those for force in

y-direction are obtained from Table IV by interchanging x and vy

subscripts and variables.

b) Quarter-space. Applying principle (ii) to the quarter-

space, we obtain the nucleis

Zior ¥ %102 " Zo01 T Zoo2
X101 =~ %102 ¥ X001 * X902
Y. -Y

101 ~ Y102 ~ Yoor * Yoo
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for forces in the z,x, and y directions, The solution may be
verified, and the displacements and stresses computed, using Tables
III and IV, as for the quarter-space solutions in the previous

section,

c) Eighth-space. Principle (ii) applied to the eighth-space

leads us to the solution, for force in the x-direction:

- X - X + X

X111 = X110 ~ Xpop t Xppp X 212 ~ Xoo1 * X922-

111 112 121 122 211

This solution has been obtained by Hijab (14). The Galerkin vector

(with force adjustment) for the above nuclei is

= P - - = o
E=igmiy Ry - Ripo ~ Ry ¥ Rygp # Ry - Ryjp - Rop) + Rypp).

Then using relation [3], the Papkovitch functions are:

oo
]
o

which are identical (apart from notation) with those given by Hijab.
Hijab has also given the stresses and displacements for the sclution.

The nuclei for a force in the y and z-directions are:

b § Y +Y

11 " Yoi1 ”
Z.. . -z

s ¥ Yyt Y w- ¥

121 ~ Yo21 " Yy t Yoop:

= Zy10 * Z90pe

11 21

Z + Z 4+ 2 - E

111 121 ~ “211 221 112 122

The stresses and displacements may be obtained, as usual, by cyclic

permutation of those for a force in the x-direction.
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TABLE III

DISPLACEMENTS AND STRESSES FOR A FORCE IN Z-DIRECTION
IN HALF-SPACE WITH ZERO IN-PLANE DISPLACEMENTS

AND ZERO NORMAL STRESS ON THE BOUNDARY

Gu = x [B=L + 2L
X RS R3
-1 2
[ 2 +
Ry R
r 2 2
26u, = (3-4y) |- + %R—Q-] + [(?-“g) + iﬂg)]
di; R) R
LR, R, R R,
oy = (1-2v) 3—59 +5-+—°] - 3y2[5-;—c - 2—+°-]
: LN RS R
. 3 3
r = -
g = =(1-2y) _;__t_:+z_+c_ - gfdz=el (z+c)
zZzZ R3 RS R5 R5
L 1 2 - l 2
Sy T T 3"er—;£ +-2:5:§
R} Ry
- _32 2
0,, = -(1-2v)y|%5 +l—3-] - ay[le=gl 4 Lzte) ]
:Rl R? Rl > R2 o
Iox -(1-2y)x ‘1—3 + ;‘5] - Bx[(z_g) - (z+g) ]
th R2 Rl R2

A factor 5-;-(%_7)- is omitted throughout



43

TABLE IV

DISPLACEMENTS AND STRESSES FOR A FORCE IN X-DIRECTION
IN HALF-SPACE WITH ZERO IN-PLANE DISPLACEMENTS

AND ZERO NORMAL STRESS ON THE BOUNDARY

2Gu_ = (3-4y) [4- 2 -l-J PR b S
X R R 3 3
1 2 Rl R2
L. <&y
2Gu_ = Xy [—3 3]
Y R R
- z-c _ zic
ZGuz = X[RS 3 ]
1 R
) ; .
¢ =-(l—2v)xl—-'}'—' - adde - &
XX R3 3 R5 R5
LRy Ry 1. e
o .. = (1-2v)x '1—3 - -1—3 eyl - L
Yy R. R R° RO
= 2 1 2
- b 2 2
o = (1-29)xfds - L] - axfla=e)” | (zte)”
zz R3 R3 R5 RS
s ¢ 2- 1 2
6. ==(1-2y)y -J"§ - 'l'g -3x2y Lo L
i R R R° RD
i | 2 1 2
o - Z-¢c _ zic
dyz 3”[ R5 RSJ
1 2
6 ==(1-2y)[Z=€ - Ze] _ 3 2fz-c _ zic
zX R3 Ra R5 R5
1 2 1 2

A factor of a—ﬁ-l(;m is omitted throughout
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4, Quarter-space and Eighth-space with an Arbitrary Combination of

the Two Boundary Conditions

By applying principles (i) and (ii) we may obtain quarter-
space and eighth-space solutions with zero normal displacement and
zero shearing stresses on any one or two of the plane boundaries,
and zero in-plane displacements and zero normal stress on the others.
As we may specify the boundary conditions in two ways for the
quarter-space, and in six, for the eighth-space, for each of three
directions of the force, there are 24 solutions, many of them
obtainable from others by permuting variables.

Nothing is to be gained by writing out the solutions; one
example will suffice. We specify zero normal displacement and
zero shearing stress on the plaﬁe z =0, zero in-plane displace-
ment and zero normal stress on x =0, for a force in the z-direction
in quarter-space. Then we must take the forces symmetrically located
with respect to the boundary planes to be oppositely directed.

The nuclei for the solution are then

2101 ~ %102 ~ %01 * Zo02
We may compute the displacements and stresses from Z directly,

or use Table I by computing in the order:

(Z)o1 = Z1g2) = (Zggy - Zogp)-

By interchanging x and 2z, we would find the displacements

and stresses for
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X L

101 201 ~ X

+ X

102 202

giving a force in the x-direction in quarter-space with boundary

conditions, also the interchange of those above.



CHAPTER IV

FIRST AND SECOND BOUNDARY VALUE PROBLEMS

IN HALF-SPACE: RONGVED'S AND MINDLIN'S PROBLEMS

1. Preliminary Considerations

We will be concerned withs

Rongved's problem (Z), of a force in z-direction in half-
space (Fig.l) with boundary fixed (a first boundary value problem:
zero displacements at the boundary);

Rongved's problem (X), of a force in x-direction in half-

space with boundary fixed;

Mindlin's problem (Z), of a force in the z-direction in half-

space with boundary free (a second boundary value problem: zero stresses);

Mindlin's problem (X), of a force in the x-direction in half-

space with boundary free.

By superposing nuclei at (0,0,-c), we will remove from the
plane z=0, the displacements and stresses of the single force at (0,0,c).
But before we attempt to work with the nuclei as units, it is well
to consider individually the functions appearing in their stresses
and displacemeﬁts. These are the functions of the Appendix Table
except that, the nuclei being located at (0,0,-c) instead of at the

origin, z + ¢ and R, appear in place of z and R. We denote

46
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a biharmonic expression obtained from a ¢ by this substitution
as ¢2, and a harmonic expression obtained from a 3A(, as §ﬁ¢2.
As the value of a bz or §ﬁ¢2 at z =0 1is obtained from the
corresponding ¢ or §ﬁ¢ of the Appendix Table simply by replacing
z with ¢ and R with R = (x2+y2+c2)§} we may conveniently
look there to investigate what linear combinations of the ¢2 and
§A¢2 vanish at the boundary.

We see then that in many cases a combination of a given ¢2

with its derivative bz¢2 contains terms which vanish at z = 0.

N

1f, for instance, we choose ¢ = ﬁ, then bz¢ = % - 53 , and
R
2
¢~Cb¢=-z—_-c—(z+'—c£
2 zZ’2 R 3
2 R2

has first term which vanishes at z = 0. We say that the latter

function has annulled the former, and formulate a guide to proceduret

(iii) Annullment of a given ¢2 may often be accomplished
by superposing bz¢2 (though this may introduce nonvanishing new
terms).

Another combination vanishing at z = 0 may be obtained
from bz and the harmonic expression SZ§A¢2. Using the same ¢

as before, then Ii§A¢ ='%, so that

¢2 - széf@z = ﬁ;

vanishes at z = O. Again, the nonvanishing term of the previous

example was introduced by bz¢2’ and so, finding

§ 30 0) = $ab = - 25
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we obtain another COII].biII&tiO]!,
Z : czlztc
R2 ’

which vanishes at z = 0. We thus formulate another guide to

¢2 - Cbz¢2 - C2§A¢2 1

procedure:

(iv) Annullment of a given ¢2 may often be accomplished
by superposing 52§A¢2.

The Galerkin vector and potential function formulae [4],
[5], [6], and [8] allow us to reformulate the guides to procedure
in terms appropriate for work with nuclei as units, In the problems
to be considered, we have need only for nuclei derived from Z and
C, and in any case, we are interested only in components of stress

acting on the boundary. The pertinent information then, ist

F = kF

- z
2Gu = -5 F

X ZX Zz
2Gu = -5 F

Y zy z
2Guz = 2(1-9)AFZ -3 F

[6']

OZX = (1-v)beFZ - bZZXFZ
Sy = (l—v)byAFz - 6zzsz
dZZ = (Z-V)bzAFz - bZZZFZ
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F = - grad(#AF)
6u, = - 6x(§ﬂF)
2c;uY = - by(%AF)
Gu, = - az(éu)

[e']

d = -bzx@%ﬁF)

zx
o = —bzy(%AF)

922 = -bzz(%ﬂp)

Viewing [6'] and [8'], we may say:

(v) 1f the nucleus producing the ¢2 to be annulled has
Galerkin vector F = LFZ, then the bz¢2 of (iii) may be obtained

from the nucleus with Galerkin vector F = gszz.

(vi) If the nucleus producing the ¢2 to be annulled has
Galerkin vector E = kF_, then the Siﬁﬂ¢2 of (iv) may be obtained
from the nucleus with potential function 3AF = tAFz. We note an

alternative way of obtaining harmonic expressions (for whatever purpose):

(vii).A certain group of harmonic expressions, "symmetrical
with respect to z" (see [6']) can be obtained from a nucleus with

Galerkin vector F = ng.

We see from [6'] and [8'] that superposing nuclei, we

may not only annull certain expressions but also, if these are



harmonic, eliminate them for all values of z. In particular,

(viii) Harmonic expressions may be eliminated from a
nucleus with Galerkin vector F = EFZ by superposing a nucleus
with potential function 4AF = %AJZFZ.

The nuclei (excepting the single forces) to be used in the
probl ems follow: Galerkin vectors are given for all, but only
components of displacement and stress acting on the boundary of

interest in the particular problem appear. The nuclei are assumed

to be located at the origin.

4 (double force in z-direction)
Z
E k3

X
2Gux - R3 -

3xz
R5
2
2Gu = 13 % ng_
R R
z

Y
: 3
T ey

2 R R

4 o _3(1+2y)xz + 15xz°
ZX R5 R?

o - .30#2)yz 15y’
2y R R

2 4
._.(%l-iu%)z_+l5_;

dZZ
R R R
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c (center of compression)
BF = % E = k log(Rtz)
x_
2Gu = R3
. X
2Gu R?’
Z_
2Guz R3
= . SXz
92x R5
g = - SV
zy R2
. . L _3
zz R3 R5
5.C (doublet with axis parallel to x-axis)
#F = - & 5l
R E=Xxyp
X
R
20y = - 3
Y RO
2
S <
£ R° R
” 1|=___35'%15::(22
zZX R5 R'?
2
o ,-.@Ls.,.iﬂ%_
o R R
3

~J

zZZ

Q
n
I
Tl
-
p—
f
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SZC (1ine of compression along negative z-axis)
#F = log(R+z) F=k[z log(R+z)-R]
o = X
zZX R3
e Y=
d =
zy RS
d =
zz R3
5.2 (double force in z-direction with

moment about y-axis)

E = k%
oGu = = - 3x22
X R3 R5
oGu = - 2XYZ
y 5
R
Sy = (3-4v)x I 3xz2
z R3 R5
b B (1-2v) + 3!1-2v)x2 - g;f 4 15x212
zZx R3 R5 R5 R?
= . 30-2v)xy i 155222
zy 5 14

R R
3(1-23!5; + 15xz3

zz R5 R7
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5.C (doublet with axis parallel to x-axis)

F

a&n

2Gu
X
2Gu

2Gu
z

ZX
zy
zz

§28:8

with axis parallel to x-axis)

3AF

ZX

ZZ

2

Im

|

o=

ZR+25R

-k

(7%
>
™

=
&)

3x

R

(1ine, along negative z-axis, of doublets

F = i log(R+z)
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) ¥ Z (line, along negative z-axis, of double

forces with moment about y-axis)

F = k x log(Rt+z)
z 3x%2 . 2(1-y) 2 1 1
O2x = .3 .5 . - 2(1-v)x] 5+ 3
R R° (Rt2)R (r+z)°R°  (R+z)R
by e BB 2ty ¢
¥ R (R+z)R”  (R+z)R
P €= 1 - "
zz R3 R5
§ s.cC (line, along negative z-axis, of doublets

ZZ X

with axis parallel to x-axis, strength

proportional to distance from origin)

BF = -2 E = i[z log(R+z)-R]
O2x = T Riz R + X2[(R+i)232 +(Riz)R3
zy T s (R-I-z];zﬂ2 ’ (&]i.-z)Ra]

2. Half-space with Fixed Boundary and Free Boundary, Force in z-direction

a) Rongved's problem (Z). We begin with Z,-2, (Table I).

This produces, at the boundary:

26u = -
X

_ 2yc -
Gy = R3 . (zl 22)z=0
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Annullment of these displacements may only be accomplished by super-
posing nuclei at (0,0,-c), the c¢ in R? being obtainable in no

other way. Using (v), we select & Z, which contains terms to

annull the above, but which also introduces nonvanishing new expressions,
some harmonic and some biharmonic. Using (viii), we select C to

~Z
#AF = 3AR = Sz éA(bzR). Using (vi), we annull the biharmonic expressions

eliminate the harmonic ones, since for sz, F, = bzR, and for C,

with sz. These three nuclei combine to produce at the boundary:

_ {3-4v)y ,
2GuY 5 (bzz2 + 2(1 2v)G2 cbzc2)z=0

The desired condition at the boundary, then, is provided by

the combination:

£¢
-z, + 3508 ,2, + 2(1-2v)C, - ¢ C,l. [10]

Z,

The Galerkin vector (with force adjustment) for these nuclei

is:

P 2¢ rztc £
E= 5] k {R1-32 + ok R2 + 2(1-2v)1log(R+z+c) - R2]} S

The Papkovitch functions are found from the Galerkin vector by eq.[3]:

B =0,

B =0
y ’

o et < Ay ztc
B, = %G R, 32) 2153-4VSG( Rg) )
= _ E—(A‘-— = L)
P #G'R, R ’
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identical with those obtained by Rongved (13). The displacements

and stresses are given in Table V.

b) Mindlin's problem (Z). We begin with Z,+Z, (Table III).

This produces, at the boundary:

__2(1-2v)x _ 6xc”

d b

ZX RB R5
.o 202wy ey’ (2.42.)

zy R3 R5 * 1 727z=0
¢ = 0.

z

To annull the final terms, using (v), we again select 3 Z,
then, to remove or annull the nonvanishing terms in sz we select,
using (viii) and (vi), C and 5,0, exactly as before. These

three nuclei combine to produce at the boundary:

_ L 3cx
9ox = R5 ’
6. = - 3c (& + (1-2v)C,-cd_C,)
zy R5 e 222 2 Tz 2'z=0
0 = 0.

ZZ

The initial terms are harmonic and may be eliminated. Noting
the symmetry (vii), we select Z. The nonvanishing harmonic expressions
introduced by Z are eliminated using (viii), with IZC, nonvanishing
biharmonic ones annulled using (vi), with C. These three nuclei

combine to produce at the boundary:
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s = %
zZX RS :
o AN = -
S 2y 3 (22 + 2(1 v)fZC2 cC2)z=0
g = 0.
zz

The desired condition at the boundary then, is provided by

the combination:

A o 5

2y * 2(1_2\,)[22 + 2(1—2\!)5202 = 002]

[11]

- 2c[azz2 + (1-2v)C2 - cazc2].

Some nuclei having been mentioned twice, we rewrite the combination

ass

2
Z, + (:a-:w)z2 - 2¢3 Z, --él(l—:z\.)‘:c2 + 4(1-\;)(1—21;)5'?_02 + 2¢3 C,.

From this latter form, we write out the Galerkin vector:

e = _2c(zhe) _ 40qe
F = ey e _15{R1+(3 4v)R2 R2 4(1-2vy)c log(R2+z+c)

2
+4(1-v) (1-2v)[ (z+c)log(Ry+z+e) - Ry] + %-:-}

given by Mindlin (7). Mindlin has given the displacements and stresses.
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3. Half-space with Fixed Boundary and Free Boundary, Force in

x-direction

a) Rongved's problem (X). We begin with X, =X, (Table IV)

which produces, at the boundarys

2Gu_ =0 ,
X
2(5uY =0, (xl - x2)z==0
2GUZ . - g-x_g .
R

As observed in (vii), we may annull this with the harmonic expression

in a nucleus with vector F = kF By (iii), the appropriate expres-

z.
sion is § 3A %% =3A X | so we select 3 Z having F =k £ | uUsing
z R3 R X =R

(vi), we annull the nonvanishing biharmonic terms introduced by

be with be, to produce, at the boundary:

2Gux =0,
260.}, =0, (t»xz2 - °"x°2)z=o
2Gu = - (3-4y)x

z 3 2

This time, two nuclei are sufficient. (The third nucleus entering
‘the previous combinations to eliminate the presently desired harmonic
expression would have been, using (viii), fszc.)

The desired condition at the boundary, then, is provided by



the combination

X, = X, = -—-—;(zsxz2 - caxcz). [12]

The Galerkin vector (with force adjustment) for these nuclei

is:

= 8!?1'?5 { "Ry ( 3- 4v) ——] X- 3 4v %;j}'

The Papkovitch functions are found from the Galerkin vector by eq. [3]:

P /1l 1
B 5—(-'—)3
X 4G Rl R2
B =0
Y ]
B, e adeas { A
z 2n(3-4v )G Rg ’

identical with those obtained by Rongved (13). The displacements and

stresses are given in Table VI.

b) Mindlin's problem (X). We begin with X +X, (Table II).

This produces, at the boundary:

G 286 =0 ,

6 WA, =

2% zaﬁy o, (x]L + 3(2)z=0
G f -2g!x 6xc

. -

Using (vii) and (iii) as before, we select 5.Z to annull

the final term. Some of the nonvanishing expressions introduced by
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5 Z are harmonic. Using (viii) we select fszc to eliminate the
harmonic expressions, and, using (vi), we select 6XC to annull the

biharmonic ones. The three nuclei combine to produce at the

boundaryt
@» mx =0,
6 - ; -
. ,,72136), 0, (6.2, + (1-29)f3.C, - &.Cp)), o
i
o T, = E
z R5

The initial term is harmonic and may be eliminated, noting
the symmetry (vii), by a nucleus with Galerkin vector E = kF . The
condition that 3 JAF, ="— 3 3R is satisfied by § 3 Z with
Galerkin vector [ = szbiR. The nonvanishing harmonic expressions
introduced by fszz are eliminated, using (viii), with jzszC,

and the nonvanishing biharmonic expressions annulled, using (vi),

with fszc. The three nuclei combine to produce at the boundary:

C)iz‘mx=o

7 280 =0 (5,82, + 2(1-v)§ 3. C, - cf 5 C))
o g =-%

“11 z R3

The desired condition at the boundary, then, is provided by

the combinations

z=0
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xl + X2 v 2(1-2v)[fsz22 * 2(l-v)szszc2 - csszCZJ
+ 2c[3 2, + (1-2v)jzax02 - cb C,l. [13]
The Sszc cancel one another, so we rewrite the combination as:
2
X, + Xy - 26°8.Cy + 4(1-v) (1-2v)§ > C, + 2cd Z, + 2(1'2")5z°x22 .

From this latter form, we write out the Galerkin vector:

26

E = _-(_—781:?1-" 1 [R +Ry - N + 4(1-v) (1-2v) ([z+c]1og[Ry+z+c]-Ry)]

+ K[ZE + 2(1-2v)x log(Rytz+c)]}
2

given by Mindlin (7). Mindlin has given the displacements and stresses.



TABLE VI

IN HALF-SPACE WITH FIXED BOUNDARY

DISPLACEMENTS AND STRESSES FOR A FORCE IN X-DIRECTION
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4, Observations on the Solutions of the Four Problems

The three nuclei in each group (two for Rongved's problem (X))
bear a fixed relationship to one another, the last two having been
found in each case by (viii) and (vi) to eliminate and annull the
nonvanishing expressions of the first. "Factoring" the common
operator, the six groups of [10], [11], [12], and [13] in the

order they appear, contain the nuclei

s, (2, 520, c) [10a]
(5.5,)(z, 5,6, ©) [11b]
5, (2, §,cs ) [11a]
b, iz, C) [12a]
5,8y (2 §,Cs ©) [13b]
s (2, Szc, c). [13a]

Disregarding then, the steps which led to the selection of the last
two of each group, we have made only six selections. These further
reduce to three, [10a] and [1la] both were obtained by (v) to
annull ¢ with az¢ as in (iii), [12a] and [13a] both by (vii)
to annull . with Si§A¢ as in (iv), and [11b] and [12b] both
by (vii) to eliminate harmonic expressions.

This reqularity has been brought about by taking the half-

space solutions of Chapter III as starting point. This important
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first step has also induced the similarities between fixed boundary
and free boundary problems, and induced the symmetry of the conditions
on the boundary that made the observation (vii) a fruitful one. It

is noted that when the combinations are rewritten, combining like
nuclei and dropping nuclei which cancell one another, little remains

to indicate the mode of constructing the solutions.

5. Quarter-space and Eighth-space with One Fixed or One Free Boundary,

and Mixed Conditions on the Other Boundaries

The properties of the functions entering in the displacements
and stresses, and the structure of [4], [5], and [6] which led to
the emunciation of (i) and (ii) hold not only for the single forces
but for all other nuclei as well, and hence (i) and (1i) may be applied
to any nuclei, if we interpret "same direction of force" to mean
"same algebraic sign" and "opposite directions of force" as "opposite
algebraic sign”".

In particular, (i) and (ii) hold for all the nuclei in [10],
[11], [12], and [13], as may be verified by looking at the displace-
ments and stresses for Rongved's problems, Tables V and VI, and for
Mindlin's problems, (7). Therefore, we may use the combination of
nuclei solving these problems as units just as we used the single
forces, to obtain the mixed conditions on a plane boundary in quarter-
space, or two plane boundaries in eighth-space, the other being free

or fixed.
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One example is sufficient: let us require a force in the
z-direction in quarter-space, with the boundary z =0 fixed, and
with zero normal displacements and zero shearing stresses on the
boundary x = O. Then, by (1) we must place two forces in the
same direction symmetrically with respect to the plane x = 0; we
obtain z = 0 fixed by using, for the two forces, the nuclei for
Rongved's problem (z).

The combination of nuclei producing the desired condition

is therefore written out from [10]:

_2c_ - =
{2101 - Zyop * 34yt 102 t 2(1-2v)Cy °"’z‘3102]}

_2¢c_ » r
+{2201 - Zogp + Fodylbafo02 t 2(1-2v)Cpp 0620202]} .

The displacements and stresses may be written out from Table V.
A glance at that table shows that the desired condition on x =0 is
indeed obtained, since only odd pbwers of x appear in 2Gu_, dxy,
and o

xz'

6. Fixed Boundary Analogues to the Problems of Boussinesg and Cerruti

Mindlin has shown (7) that the solution of Boussinesq's
problem of a force in the z-direction on the surface of the half-
space, and of Cerruti's problem of a force in the x-direction on
the surface of the half-space (11), may be obtained as limiting
cases of his solutions [11] and [13], as ¢ is indefinitely
diminished. That is, the combination of nuclei solving Boussinesq's

problem is, from [11]:‘
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2z + 2(1-2v)[Z + 2(1-v){ C]

for a force of magnitude 8n(l-v), and the combination solving

Cerruti's problem with some magnitude force is, from [13]:
2X + 2(1-2)[f 3.z + 2(1-v)§ 3 C].

Upon similar passage to the limit with the solutions [10]
and [12] of Rongved's problems, all the nuclei disappear. But we
may; as in deriving the double force from the single force, divide
by c¢ and then pass to the limit, obtaining thus an approximate
solution for a force in the neighborhood of a fixed boundary of the
hal f-space.

Rewriting [10] to include ¢ with the force adjustment,

the combination for Rongved's problem (Z) with force of magnitude

P ist
= [l(z 2,) + =2—(5.Z, + 2(1-2y)C, - b C )]
8n(l-y) tc'™1 72 3-4y T z72 2 222"

As ¢ 1is diminished, %(21-22) becomes -2622, and csz2 produces
negligible effect. Therefore, for small ¢, the solution to Rongved's
problem (Z) with force of magnitude P is given approximately,

by the combinations

H ey o+

The Galerkin vector for these nuclei ist

Lo 1-2y )Pc £
X 2n(1l-v ) (3-4y LER log(R+z)].
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The displacements and stresses are given in Table VII.

Treating [12] similarly, we rewrite it ass

Pc 1L 2
Bx(1oy) Lo 7%y) - 3275(6. 25 = c8.C))].

As ¢ is diminished, %(zl—zz) becomes -25 Z, and so for small
c the solution of Rongved's problem (X) with force of magnitude

P 1is given, approximately, by the combination:

4!(1f3)(3'4\l) [-(3-4\:)62)( = be].

The Galerkin vector for these nuclei is:

p
E=- 4«:(1-5(3-4\,) (L% +kj

The displacements and stresses are given in Table VIII.
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TABLE VII

DISPLACEMENTS AND STRESSES FOR A FORCE IN Z-DIRECTION

IN HALF-SPACE WITH FIXED BOUNDARY, WHEN

THE FORCE IS VERY CLOSE TO THE BOUNDARY

2
2Gu = BX;
B
2Gu = ﬂ-g—
Y R
2Gu = _2,(1-?); " 37_5
z R R
2y L 3(1-2v)2 18222
¢ = 37T 5 . an
xx R R R
2 g 9
" - 2§+31-§ z _15;71(
Yy R R R
4
B R R R
2
4 = - A3xyz
xy R’
3
o i .émsu - i%vz-
Yz R R7
6yxz  15xz°
d = -
zx R5 R?

=2
A factor of Zx (1-v) (3-4v is omitted throughout
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TABLE VIII

DISPLACEMENTS AND STRESSES FOR A FORCE IN X-DIRECTION
IN HALF-SPACE WITH FIXED BOUNDARY, WHEN

THE FORCE IS VERY CLOSE TO THE BOUNDARY

2
2Gux - B‘l-Zg)z + 12% 2

R> R®
2Gu - 12xyz
5
R
2Gu - 12xz
z 5
R
3
3 3g; 3 60x7g
XX R R
d - 12!1-%1 )xz _ 60517 z
b 7 § : R R
4 . 24(1-y)xz _ 60x;3
44 R5 R'?

- 6(l-4y)yz _ 60x°yz

xy R° R’
2
P = Sxy 60xyz
Yz R5 R7
4(1-2y) ‘6(1-4,);2 6;2 2,2
o = - + = &L
ZX R3 R5 R5 R?

A factor of ;;(%)‘ is omitted throughout
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