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ABSTRACT

The dihedral group is a well known group which is mentioned in
most books on finite groups.

The problems considered in this thesis deal with some of the
properties of the dihedral group and an analogous group which has a
generator of order 3 instead of one of order 2, The properties are
investigated for both groups in an analogous manner,

These properties are: existence, the center, the factor group
with respect to the center, the commutator subgroup, the factor group
with respect to the commutator subgroups, Sylow subgroups, and the
group of automorphisms., A special attempt was made to describe the

group of automorphisms and some of its subgroups.
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CHAPTER 1

INTRODUCTION

1. Remarks

A general knowledge of elementary finite group theory and
elementary number theory 1s presupposed.

Chapter II of thesis is concerned with some of the properties
of the dihedral group and in particular the group of automorphisms of
the dihedral group.

Chapter III is concerned with properties of an analogue of the
dihedral group in which there is a generator of order 3 instead of one
of order 2. The properties of this group will be investigated in an

analogous manner with those of the dihedral group.

2. Notations

The following notations have been used throughout the thesis:

Dn = Dihedral group of order Zn.
Gn = Analogue group of order 3n.
= The center of any group under discussion.
C = The commutator subgroup of any group under discussion.



A(G) = The group of automorphisms of any group G.
I1{G) = The group of inner automorphisms of any group G.
A»~B = The groups A and B are isomorphic.
ib} = The cyclic group generated by the element b.
za,b‘ = The group generated by the two elements a and b.
\A,B} = The group generated by the two groups A and B.
iA,a] = The group generated by the group A and the element a,

[al,az,...,an] = The group whose elements are a,,a,,..., and a_.

(bi) = The permutation which takes a, to b, here the permutation
is an element of a permutation group.

{a,b] —+fc,d} = The automorphism which takes a to ¢ and b to d,
here the automorphism is an element of a group of
automorphisms.

Other notations, especially notations of number theory, have been

used throughout the thesis, but these will present no difficulty since

they are standard notations and they will be understood from the context.

*
3. Dihedral Group [1, p.89]

Consider the groups of symmetries of a regular n sided polygoen,
call its vertices 0,1,2,.,., n-1,

If one rotates the regular polygon through an angle of %E about
the line passing through the center andlperpendicular to the plane of the
polygon then

O""""l, l‘—‘\'z, “ees 9 ﬂ-l-—-o .

*

[1, p.89] = Page 89 of the book whose number is 1 in the entries
of the Bibliography. Here, and within the text hereafter, square brackets
like this will have corresponding meaning.,
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But a rotation through an angle of r. *% , (where r =10,1,.,.,n-1)

will cazuse the vertices to move as such

[}

O0-~0tr, 1 ~—=~1+4r, ..., n-l=—={(n-1)+r = ¢ - 1 {n-1+r = r-1 {mod n

Therefore we may rotate the polygon through cone of the following angles

2x 2%
L] .;]— L] 2. .r__;_ y evay (n"l)-

o 2
Tl

These are n rotations and one may denote them by

t Ly -
e, b, bz, esns b 1
. 2n n_.,0 . X
where b represents a rotation of o and b =Db" = e, Obviously e is

the identity operation since every vertex remains fixed.

The group of symmetries also contains reflections, If n is odd,
all reflections are geometrically equivalent, the axis of reflection in
each case being the line joining a vertex and the midpoint of the opposite
side. There are n symmetries of this type. If n 1s even, however,
they fall into two classes of g reflections each, because an axis of
symmetry through one vertex also contains the opposite cne, and an axis
through the midpoint of a side also passes through the opposite midpoint.

Actually a reflection 1s a rotation through an angle x about
one of the menticned axes. Let a represent a reflectiony then obviously
a2 = e, since a2 represents a double reflection or a rotation through
2n  about an axis, which leaves every vertex fixed.

Considering a and its powers, b and its powers, then one will

have 2n elements of the form ab) (i = 0,13 j = O,l,...,n-1) that



will bring the polygon into itself, Considering the geometry of the
polygon then one can see that ba = ab-l i.e. a-lba = b-l. These
2n elements form a group generated by the two elements a and b,

and its defining relations are

Since a tba = b ! implies (ab)2 = ¢, then the defining relations

may be expressed in the form

a2 = b" =(ab)? =e .

The elements of this group are

[aobo, aob, cres aobn-l, abo, abyeaay abn—l]

or better yet

T e , b, ..., pn~t s @y abyees abn“l].

One can write the elements of the group as b%a’, (3 =0,1,...,n-13 i = 0,1)

since,
99 = pIg0 = 1]

b—‘abJ

b~2abd 72

-1 1

and ab? since ba = ab_l which means ab = b "a

i}

]

I #aeee

b—JabJ_J
b—Ja

= bn-Ja .

It

Now (abJ)2= e,



2 = (abd)(ab?)

= abJ—l ab-l b’ since ba = ab

-2

]

because (abJ)

-1

abi "% ab? b

i

I =+ ®as

a?p I b=,

Therefore (abJ)2 e for all 3 {(j =0,1,...,n"1).

1l

The above group is called the dihedral group Dn' The elements
b (i =0,1,...,n-1) are the n rotations, and the elements ab?
(j =0,l,...,n-1) are the n reflections,

Analytical expressions for the elements of Dn can be found
as follows:

If x wvaries over the values 1,2,...,n-1, n which denote

the vertices of the regular polygon in counter-clockwise order, the

rotation b 1is described by the congruence relation

xb g x + 1 (mod n) (1)
pJ
and in general x = x + j (mod n),

n
therefore xb = x + n {mod n)

which is an identity relation since
x +n = x (mod n} ,

il.e. b =e .

Again, if «x 1 + z, the image of x under the reflection a is

1 - z. Thus one has

L}

given by x°



a

x" 22 - x (mod n) (2)
and a2

x" = (2 - (2-x)) (mod n)
which is an identity relation since 2 - (2-x) = x. 1i.e. a2 = e,

All relations between the generating elements a and b may

be derived from (1) and (2)3 e.g., one has

xab = (xa)b = (Q-X)b z (2-x) +1 = 3-x

and o

x(ab) =3 - (xab) =3 - (3-x) = x,
i.e.

(ab)2 = e,
Therefore

4, Analogue Group

The defining relations of this group are

3

a = bn = (ab)3 -1 k

=e, a ba=b.

This analogue group Gn may descrlbe a group of summetries in a space
of higher dimension than that of Dn' This is because Gn has the
element a of order 3 1in contrast to that element a in Dn which

is of order 2.



CHAPTER II

PRCPERTIES OF THE DIHEDRAL GROUP

1. Existence
In the intrcduction, the group of symmetries of an n sided

regular polygon was found to have the following defining relations:

When n < 3, these relations still define a group. However, the regular
polygon is degenerate, and the group has no significance for the purpose
of this thesis. Therefore, Dn will represent a group for n > 2,

n being a positive integer.

2, The Center of Dy

It is a well known theorem [1, p.l03] that, the aggregate of self-
conjugate elements of a group G forms an Abelian group Z, which is
called the center of G,
One now finds those elements of Dn that form the center Z of Dn'
Obviously e e Z.
One may divide the elements of Dn’ other than e, into two

classes:



1) Those elements of the form ab’ (

N\
VAN

0 <Jj<n-1)
2) Those elements of the form b? (0 < 3 < n-1).

Elements of class (1) are not self-conjugate, since suppose ab?

is self-conjugate, l.e.

(ab5)(abd) = (ab9)(abX) , (0 < k < n-1)

then -1

(ab) (ab®)(abd) = (ab¥)

i:>_3a_labl‘{ab‘-J = abk
b3 a9 = apk
abz:"—k = abk .

This implies that bz(k—j)= e and this in turn implies that 2k = 2j (mod n)
but both k and Jj are less than n. Therefore, k = j unless n is even,
when k = j T % is possible., Hence abj commutes with abk only when
one of these special relations exlsts between j and k. Therefore, ne
element abj is self-conjugate, and hence none of them belongs to Z.

Elements of class (2) form the cyclic subgroup b  of Dn' Since
b is cyclic then it is abelian and therefore bj commutes with bi for
all j and i {(0< J<n1l;y 0<£1i<n-l). There remains to check for
elements of class (2) that commute with elements of class (1).

Suppose

bj(abi) = (abi) bI , (0<ignl; 0<3<n-1)

then

(abj) bj(abi)

]
o
.



b " abd ab” = bJ, since a = a—1

bt b d le = bJ, since ab’ = b Ja = b Ja.
Therefore

p"d = b,

This equality holds if n = 2j (mod n), but (0 < j < n-1), therefore

n=2j and Jj = % , since j 1s an integer, therefore j = can

ol

hold only when n 1is even,
Hence, if n 1is odd, then Z 1s made up of one element only
namely the ildentity elementy and if n 1is even then Z 1is made up of

bw@

two elements namely e and b 2. Clearly if n 1is even then is

of order 2.

3. The Factor Group of D, With Respect to its Center Z, i.e. °n/y

Applying the definition of the factor group [2, p.B4], one can
see clearly that when n 1is odd, then IhyinfDn, and therefore DW?
is a dihedral group.

9&1

When n is even, then Z 1is [e, b

2n and Z 1is of order 2, Dﬂé is of order 2 n.

2
. % +k -
Now at b° zZ=a'bz, (i =0,130<k<
N n N
= 2+ = 24y

; 2 k

since al 5%z =ab® [e,p%] = alb® , a'b
n n

and al B¢z = & bk[e, b2] = albk, atb? .

Since Dn is of order
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One can easily show that the elements a'b’z, (i = 0,130 < k <
are all distinct and their number is n. These elements form the elements

of Dn/ 3 they are
Z
Z -1
fz, bz, b“Z, ..., b Z, aZ, abZ, ..., ab? Z] .

Let a = 3Z and B

n
2 - -
a = ﬁz - e, a 1 Ba !

bZ, then the defining relations of this group are

. Therefore this group is also a dihedral

"
sl

group,

Hence DQ/ is a dihedral group for all n.
Z

4, The Commutator Subgroup C of Dp

If a and b are any two elements of a group G, then the

commutator Ci of a and b 1is defined as: a_lb-la

b, If a and b
run independently through the whole group, one obtains the commutators
Cl’ C2, cany Cm' It is possible that the product of two commutators
cannot itself be written as a commutator. But in any case the set of
all commutators generates a certain group C = {Cl, CQ’ ceey ka which
is called the commutator subgroup or commutator group of G [1, p.104].

Consider abX and abd of D> (0<k<n1l30<3<n-1)
then

-1 . —1 . . .
(abX) (abd) (ab¥)(abd) = p7F a7l b ATt apk apd

bk gpkI abd, since ala=e

= abzk_J ab? ,» Since b—k a = ab
= a2 bz(j'k) , since bX a = ab
= bQ(j-k) , Since a2 = e,
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Therefore all commutators of elements of the form abj (0 <3< n-1)
are of the form b2i, i being an integer, i.e. they are even powers
of b {(mod n).

Again, consider bX and b of D, (0<k<n130<3<n1)
then

bR p I gk s = e,

for all k and j.

Therefore, elements of the form b (0 <3 <n-1) will form
only one commutator namely the idéntity.

There remains to form commutators cf elements of the form bj

(0 € j <n-1) and elements of the form a® (0 <k € n-1}) by taking

one from each set, and one has

. 1, . .
b 3(apk) T By = b7 b7 4T I K

abk—J s, Since b’a = ab 3

Therefore all commutators of this type are also elements of even powers
of b (mod n).

There always exists the following commutator:

Consider the cyclic group {bQ% . If n 1is even then szf is a subgroup
of fb} and the elements of {bzf are the elements that are even powers
of b 1in (b} , and the order of this subgroup 1s clearly g . This group
is the commutator subgroup C of Dn’ since all commutators are of even

powers of b {mod n).
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Again, consider the cyclic group {bzf when n 1is odd, Then
{bQ} = eb} , since (2,n) = 1, This group is the commutator subgroup
C of D_, since all commutators areeven powers of b (mod n).

Hence, whether n is odd or even, the commutator subgroup C

of D_ is 12},

5. The Factor Group of Dp With Respect to the Commutator Subgroup C

Tt was shown in the previous section that C is (b°F
The factor group DWQ: is of order 2 when n 1is odd, because
here € 1is of order n and therefore DW@ is of order 2% = 2, When

n 1is even then C 1is of order g and DQ&; is of order 2n _ 4,

n
2
When n is odd then Dpy = [C, aC] which is cyclic.
When n 1is even then Dn/c= (c, aC, bC, abC] and this is the

four group {the non-cyclic group of order 4).

6. Sylow Subgroups of Dy

One of the fundamental thecrems in the theory of finite groups is
the following [2, p.58]:

Let G be a group of order n and let p{1 be the highest power
of a prime p contained in n as a factor, a being a positive integer.
Then G contains at least one subgroup of order pa. All its subgroups
of order pa form a single complete conjugate set, and their number is
1 + kp, where k 1s non-negative integer. Such a subgroup of order pEI

is called a Sylow subgroup.
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(i) Let n be odd in D, then the order of P 1is
2n = 2, p:l pSQ .o p:k, Ps f pj for 1 % j and 2 is an odd
prime (1 <i<kg3lg<3i<k)

Applying the theorem, one concludes that there exists a Sylow
subgroup of order 2, In fact there are n Sylow subgroups of order 2,
and this is because there are n elements of the form abj (0<3<n1)
that are of order 2. Clearly they are all cyclic.

There exists one, and only one, Sylow subgroup S.l of order

Q.
pil for each i {1 < i< k), and they are all cyclic. This is because,

p:i is an odd number and therefore all the elements of Si are of odd
order, hence Si is a subgroup of fb}. But fbk is cyclic, therefore
the result follows immediately by applying the theorem [l, p.38] which
statess M™All subgroups of a cyclic group are cyclic. If fbk is a cyclic
group of order g, then corresponding to every diviser h of g there
exists one, and only one, subgroup of order h, which may be generated
by b ",

Therefore when n 1is odd then all Sylow subgroups of Dn are
cyclic,

(ii) When n 1is even then there may exist Sylow subgroups that
are not cyclic, e.g. if 2n = QQTﬁ'p:i, Py is an odd prime for all i,

i=1

then there exist % Sylow subgroups of order 4 which are isomorphic

to the four group .
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7. The Group of Automorphisms of the Dihedral Groups A(Dp)

a) Tt was shown that Dn is generated by a and b 1i.,e.

2 n -1 -1
Dn = fa,b} where a~ = b =e, a ba=b",
The number of ways by which Dn can be represented by {c,d}
where € = d" = e, ¢l de =dl i.e. the number of sets of generators

is the order of A(D).

It was shown earlier that every element of the form abj (0 <3< nl)
is of order 2. There are n of these elements.

Every element of order n must be of the form bi where (n,i) =1,
(0 <1 {n-1). There are Q(n) elements of order n, where Q is the
Euler Q-function.

There may exist elements of the form bk of order 2, but these
are generated by bi. Therefore Dn % {bk, bi} and hence Dn caﬁ only
be generated by sets of the form {abj, bi}, (n,i) = 1. Furthermore
this always works, because

1) bt generated b.

2) abd and b generate a, since b generates 6™ and
Dn = fa,b}.

Since ab may be chosen in n ways, and b' in Q(n) ways,
therefore the order of A(Dn) is n.Q{n).

Since Q(n) = nTT(1 - i), [4, p.29], where the notation indicates
a product over all the S!gtinct primes which divide n, then applying this
one can show easily that @Q{(n} is even for all positive integers n > 2,

Hence n . Q{n) is always even,
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b) The following is a well known theorem on inner automorphisms
{3, p.85]3 "The inner automorphisms of a group G form a normal subgroup
1(G) of the group A{G) of all automorphisms of G. Also the mapping
a—Aa (where a ¢ G and Aa & I{G)) 1is a homomorphism of G onto
1(G) whose kernel is the center of G," Therefore I(G)»«-Q&Z .

Consequently, I(D)ffoq/Z. it was shown that when n 1is odd
then Z = e, and hence, I(D)r~vDQ4Z= D, i.e. I(Dn) is a dihedral group
of order 2n, When n is even then I(Dn)f-Dq4Z and therefore I(Dn) is
a dihedral group of order n, since I%fz is a dihedral group of order n
as was shown,

Clearly a dihedral group is not abelian, therefore I(Dn) is not

abelian and this in turn implies that A(Dn) is not abelian.

¢) The elements of A(Dn) can be written as followst

aij = fa,b} —_— fabi, bj% s

where (i =0,l,,.., n-1} and (j,n) =1, j < n.
Consider the element

a1 fa,b} — fa, b i.e. abd—s b

then

and hence a is an inner automorphism. Consider the element

B, = fa,by —{ab”, b} i.e. abdwapI’?

>
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then

bl abdb = apd 2

and hence B, 1s an inner automorphism. Now
ap, = ta,by -2~ {a,b7 L B AR BT

Obviously this af, is also inner since it i1s the product of two inner

automorphisms,

a2 = fa,b} — ?a,b-l} 2y %a,b} = ?a,bﬁwﬁfa,b} s

i.e. a 1s of order 2,

When n 1is even, let n = 2m, then

52)1 {a, b}-—u}ab b}

(8,)° = {a,bj—fab*, b}

. . .
-

(p;)m = fa,by— fab
{a,b}—*fa, b}

n
2

2m, b%

[

i1

i.e. ﬁ2 is of order m

When n 1is odd, let n = 2mtl, then
1 2
(BQ) = ?a,b}“‘"‘iab ) b;

(B2)2 = ?a,b}***{ab

- - L
- L]
- - -
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-

(ﬁz)m = {as b}"""{abzm’ b}

1t

(5™ = fa, bl — a3y

-
. - L]
. . -

({32)m+i - fa, by JaplZm)+2i-l % i<m
(ﬁz)zm _ {a,b} . {ab(2m+l)+2m-l’ b
(52)2m+l . fa, b} ~— {ab(EnH-l)-*Qm-Fl’ b}
= Ya, by —{a, b}
i.e. P, 1is of order 2mtl = n.
Now 5 1 a
(a8)” = {a, b} B2 pan®, v7H F2 Y 577, b}

= ]‘a, b}"""' \!a: b} ’
i.e. ap, 1is of order 2.

Now, when n 1is even, then Hl = fq, 52} whose defining relations

are

and this Hl is I(Dn)'

When n 1is odd, then H2 = {u, 52% whose defining relatlons are

and this H, is I(D ).
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Now, consider the following automorphisms:
a = fa, b}“‘* §a, b—l

which was shown tc be inner and of order 2.
B = ?a, bk ~—~{ab, b}

this 1s obviously of order n, whether n 1is odd or even.

n

ap = ta, b} Sufa, b7 B fb, 7Y = fa, Bjoa{ap, 071}

%a, b}——~fa, b%

H

(ap)2=1a, b} 28 fab, b~ {abb™t,b}

i.e. af 1is of order 2, therefore

is a dihedral group of order 2n, since

when n 1is odd then B 1is inner, since it can be generated by the inner

+
automorphism Pos Bg 1. B. Therefore H3 = H2. wWhen n 1is even then

B 1s not inner for the simple reason that H, # Hy, since H) is I(Dn)

and is of order n, while H3 is of order Z2n,

More generally one may consider the automorphism

where (i, n} = 1, then
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and since

ky £nf{mod n) , (i, n) =1 forall 0<k<n

and

k, =n(mod n) , (i, n) =1 when k=n or k =nl

i

and hence B, 1is of order n, (i, n) = 1.

(uﬁi) = {a, bk A {a, b—l} .Ei. {abi, b_l§
and . a .
(.:1;31)2= la, b} Rl fabl,b'll ~~ jabb ', b}

= {a, b} — {a, b} i.e. af, 1s of order 2,

Therefore Hi = §u, 51} is also a dihedral group ¢f order 2n, In fact

Hi = Hy; since B generates Bi'
Still more generally, when one considers the gutomorphism

By = fa, by —fab’, b} , (j, n) = d,

() =ta, bl = b, b} = § fa, b i =0 (

By) =la, bl ab 7, = Ya, bj—~{a, b} , when kj =n (mod n).
Let j = dj! and n = djm then kj = kdj] and hence k} = m (mod n) but
(3, m} =1 i.,e. k=m or k =cm, and here k =m = ﬁ- is the least

3
positive integer that will do, therefcre ﬁj is of order §T . Here also
J

the group Hj = {a, Bj} is a dihedral group of order %ﬂ .
J



CHAPTER TII

PROPERTIES OF THE ANALOGUE GROUP

1. Existence

a) If the following defining relations are given

3

a - bn - (ab)3 -1 k

=e, a ba=h

then these defining relations will define a group provided

k2 +k +1 =0 {mod n)

since
a-l ba = bk —= ha = abk
and
e = (ab)? = ab ab ab = aZKL 5p = SFlllkHL _ 3
therefore

K%+ k +1 = 0 {mod n) .

Since k2 + k +1

moreover mm = k° + k + 1 implies (k, mn) = 1 and hence

i

m and n being positive integers,

b

k2+k+l

O (mod n), then obviously n is odd always, and

(k,n) =1,

b) The group defined as shown above will be called here:

"The Analogue Group Gn"' This group is of order 3nm and its elements

20
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L1

are given by a'b’ [i 20,1,2 (mod 3)3 j = O,1,...,n-1(mod n)1. The
group {b] is a cyclic subgroup of G_ . The rest of the elements are

all of order 3, since

Gipd) = atpd aled albd . (1= 1,25 5 =0,1,..0,n01)
) azibjki+j i3, since ba= abX and ba' = aibki
_ 3, (K )
) bj(k21+ki+l)
=e .
The last step namely bj(k2i+ki+l)= e 1is valid because,
el sv1 =P +x+1:=0 {mod n}, i=1
and R S (k2 + k + 1)(k2 -k +1) =0 (mod n),
Clearly
I S N (5 = 0y1,0e.,n-1)
and . -1 . . . 2
(abJ) = b"Ja\-l = b—Ja2 = ab_Jka = a2b—Jk
(agbj)‘l= b“ja-2 = b-ja = ab_jk *

An interesting special case is when k = 1, then

K? +k +1 =3,

and

ad = p° =’(ab)3 =e, a ba=b
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will define an abelian group of order 33 = 9 and all the elements
are of order 3 except the identity. Hereafter, the thesis will be

concerned with k > 1.

c) Upon replacing k by K° in k2 + k +1 =0 (mod n), one
has
k4 + k2 + 1 =0 (mod n) and (k2,n) =1,
Furthermore
k2 £ k (mod n),

because, suppose

k2 = k (mod n)

then
k(k-1} = 0 (mod n).

Since (k,n) =1, it follows that nf(k-1), but this is impossible

because k < n, Therefore k and k2 are distinct modulo n. Now

kP + k2 + 1=k +k +1 (mod n)

therefore

4

k k (mcd n).

H

One may also note that =1 (mod n), because K31 = (k-l)(k2+k+l).

d) From the discussion above cne concludes that corresponding
to every n, for which an analogue group Gn is defined, there exist
at least two distinct numbers {modulo n) namely k and k2.

Let Gn have the following defining relations
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a3 = bn = (ab)3 = a, a ba = b

|
and let Gn have the defining relations

3= al = (cd)3 = e, ¢! ode = a8 ,

7
then Gnﬂﬁu Gn , and the isomorphism is established by the correspondence

and to prove the isomorphism, one has
a'bd = ¢ *g? , (i =0,1,23 3 =0,1,00.,n-1)

a®pd . TPge , (p=0,1,23 q = 0,1,4us,n-1)

- . )
JRS N A a(1+p)b3k +2

. 9] e o)
Jap) dk+g _, -(i4p) 3k 4,

but 5 7P P
lgd P o (i) J3(KT) g | -{i4p) (kT4

3

the last equality holds, since -p = 2p {mod 3) and K =k (mod n)

ile. 2p

. 24P ] 2 ] -
) Prg L (i) 303) e - (519) e

Therefore isomorphism is established,

The set k and k2 is not unique for every n, since when

n =91 one has
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_ 2 _
kl =9, kl = Bl
and
k. = 16 K2 = 74
2 ? 2 *

It was shown above that k and k2 give the same analogue

1 1
group. Obviously k2 and kg will also give the same anslogue group.
The question now is whether kl and k2 will give the same group, and

the answer i1s negative, Suppose that kl and k2 satisfy the following

2

ki + k, + 1= 0 (mod n)
k2 + k, +1 = 0 (mod n)
2 2
ky # Ky
and 5
k] # k., (mod n).
Let (G_), have the defining relations

nl

a2 =b" = (ab)=e, a7l ba=b" 3

and let (G_)

no have the defining relaticons

K
S edh=(cd)® =6, eltdc=d?.

Then both (Gn)l and (Gn) are analogue groups of the same order 3nj

2
but they are not isomorphic, because trying all possible ways c¢f isomorphism
between them will fail, and this can be shown as follows:

In any isomeorphism one must have a correspondence of generators

of the form

{a,b}-*{cidj, dp} (i = 1,2 mod 3 3 (p,n) =1).



25

Now 1

and K

Since K

one has
ot
pkl = pk2 (mod n)
kl = k; (mod n)  because (p,n) =1,
therefore
. 2 .
kl = k2 oT k2 because i =1 or 2.

But this contradicts the hypothesis.
If 3a|n then a =1, because

L2, .2 .
(k) + k' + 1= (X" -1) + 3(k*-1) + 320 {mod n), (i =1,2)

and this implies that (k*-1,n) = 1 or 3, and if {(k'-1,n) = 3, then

i :
ik—éll“ + (k'-1} + 1 = 0 (mod %) )

now if 3|(%) then
. 2
S|l (i 4,

but 5

3l(i£i:ll_ + (ki-l),

3

therefore 3|1 which is impossible, and hence 3 {‘% i.e. if 3%n then

a""ln
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2. The Center of ©n

Let the center of Gn be denoted by Z.

Cne may divide the elements of Gn into two classes:

(1) Those elements of the form aibj, (i=1,25 3 =0,l,0u.,n-1)
(2) Those elements of the form b, (3 = 0,1,...,n-1).

None of the elements in class (l) belongs to Z, since

i, Jk

a_lal = a'b? ,

bja
therefore
o'p ¢z, (i=1,23 3=0,1,.u.,0-1).

Elements of class (2) have the element 0 = e £ Z. As for the
rest of the elements in this class, i.e. bJ (3 = 1,2,000,n-1), one may
note that {b'} is a cyclic subgroup of Gn and therefore bj commutes
with bP for all 3 and p (j = 0,l,eee,n-13 p = 0,1,...,n-1). There
remains to determine those elements of class (2) that commute with elements
of class (1). Then

R -1 . . . s s

(a'bP) b (a'b®) = b PatplatwP, (i =1,23 3=1,...,n-13 p=0,1,...,n-1)

_ etk
i

bk,

Therefore b7 will be self-conjugate provided 3kt = 5 (mod n}, but

k' #1 (mod n), therefore jk = j (mod n) implies (j,n) ¥ 1. It was

i

shown earlier that (k'-1,n) =1 or 3, and now jk* = 5 (mod n) implies
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j{k -1) = 0 (med n). Therefore,

(i) 1f (k'-1,n) =1 then j =qn but j < n and hence
b? £ Z and this is the case when 3 { n.
(i1) 1f (k*-1,n) =3 then j =g g, 3 < n and therefore

%3 %

if g=1 or 2 them b~ ¢ Z and b € Z. This is the case when

3|n.
In conclusion,
Z=[e], when 3{n
and n 2n
_ 3 3
Z=1e, b, b~ ], when 3|n.

The analogy with the center of Dn is obvious.

3. The Factor Group (hyz

It wes shown that when 34 n then Z =[e] and therefore Gy~ Gy,

and hence the order of (%Vi= 3n. A 2n

When 3|n then, as was shown above, Z = [e, b3, b ] and therefore

GQﬁw is of order %ﬂ = n, and one has
Z

|}

. %E +p
a'b v4

n 2n

. +p .
a'b z = abz, (i=0,1,23 p=0,1,...,% -1),

w

il

since b3 and b3 are in Z.

One can easily show that the elements alpr, for all 1 and p,

are all distinct and their number is n, These are the elements of Gq/z.



28

Let o« =aZ and 3 = bZ, then the defining relations of Gné are

n
a = BS = (aﬁ)a = e, a_lﬁa = Bk .

Therefore this group is also an analogue group of order n. The analogy

with DI)/Z is also cbvious.

4, The Commutator Subaroup C of On

Consider the commutator

.. -l -1 . .
1 5 r 1 5. T
(a?) (%) (a™’)(2"p"),
where i =0,1,23 s =0,1,23 3 =0,l,e04,n-13 r =0,l,¢..,n-1).
The given commutator reduces to

301 -x (k1)
]
and the expression
3(k°-1)-r(k"'-1)

is easily shown to have the factor k-1, whether i and s are 0,1,
or 2, Hence every commutator is a power of bk-l; note that when
i=s =0 then one has b b 'b’b’ = e for all j and r. In particular,

bk-l

when i =r =0 and J =s =4, the commtator is and this commutator

generates the commutator subgroup C of Gn which is the cyclic subgroup
ibkﬂl}_
It was shown in section (1) of this chapter that, when 44 n

then (k-l1,n) =1, and hence b5l 55 of order n and the commutator
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subgroup ibk—l} = ib} which is of order n. When 3|n, then

(k-1,n) = 3 and hence b5 1 is of order % and the commutator

subgroup {bk'l} is a subgroup of {b} and it is of order % . Here

again the analogy is clear.

5. The Factor Group Gq/c

It was shown in the previous section that € is fbk‘l} and
that it is of order n, when 3 f n, and of crder % when 3]n. Hence,
the factor group Gg&: is of order 3 1in the first case and is of order
9 in the second case, The elements of Gq%:, when 3 { n, are

[c, aC, aQC] and this is the cyclic group {aC} which is of order 3.

The elements of GUQ:’ when 3|n, are

a’blc (1

il

0,1,2 (mod 3)5 j = O, %, %9 (mod n)).
n

This group is generated by aC and b3C, where both elements are of
order 3, and it is an abelian group of order 9 in which all elements
except the identity are of order 3. 1In fact it is the abelian analogue

of order 9.

6. Sylow Subgroups of Cn [2,p.58]

(i) Let be such that 3 { n, then the order of G, 1is

G.l a

n
3n = 3 2 “m % for 1 % i and is an odd prim
. pl p2 eve m s p.'l pj J pi prime

<

(1£igmy 1<
Applying Sylow's theorem [2, p.58], one concludes that there

exists a Sylow subgroup of order 3, In fact there are n Sylow
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subgroups of order 3, and this is because there are n elements of
the form abY (j = 0,1,00.,n-1) and n elements of the form %0’
(j =0,l,...,n-1) and every element of these is of order 3. Clearly
these subgroups are all cyclic.

There exists one, and only one, Sylow subgroup Si of order
p:i for each i (1 € i1 < m), because they are subgroups of the cyclic
group ib], and obvicusly all are cyclic,

Consequently, when 3 { n then all Sylow subgroups cf Gn are
cyclic.

(ii) When n 1is such that 3|n, then there exist Sylow subgroups
that are not cyclic, since 3n = 32. p:l o p;m, where Py is an odd
prime for all i {1 < 1 < m). In fact there exist % Sylow subgroups of

order 9 and these are abelian but not cyclicy all the elements are of

order 3 except the identity.

7. The Group of Automorphisms of the Analogue Groups A(Gp)

It was shown that G _ = ga,b} where a° = b" = (ab)3

a_lba = b and provided that K+ k41 = 0 (mod n).

.‘=e’

The number of ways in which Gn can be represented by {c,d},

3 -1 k 2
)

n =e, a ba=05b and k" + k +1 = 0 (mod n),

where ¢ =" = (cd
i.e., the number of sets of generators, is the order of A(Gn).
It was shown earlier that every element of the form a'b"

(i =1,23 j=0,l,...,n-1) 1is of order 3. There are 2n of these

elements.
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Every element of order n must be of the form b® where
(n,p) =1 and (0 < p < n-1). There are Q{(n) elements of order n,
where Q 1s the Euler {Q-function.

There may exist elements of the form bj of order 3, but
these are generated by b®,  Therefore Gn % {bj,bpk and hence Gn
can only be generated by sets of the form {aibj, bpi, {n,p) = 1.

Furthermore this always works, because

(1) b® generates b

(2) a'b? and b° generate a.

Since a'b’ may be chosen in 2n ways, and bP in Q(n) ways,
therefore the order of A(Gn) is 2n Q{n). Since n > 2, therefore
Q{n) 1is even and 2n Q(n) always has 4 as a factor and one may express

the order of A(G ) as 2nQ(n) = o'm, i>2 and m is odd.

(b) The group of inner automorphisms is isomorphic to the factor

group with respect to the center, i.e. I(Gn)f"‘G It was shown that

q%'
when 3'{ n then (Lyi is an analogue group of order 3n and therefore
I(Gn), 3 4 n, is also an analogue group of order 3n, When 3]n then
Gqéﬁ was shown to be an analogue group of order n and hence I(Gn) for
this case is also an analogue group of order n. Clearly an analogue
group is non-abelian and hence I(Gn) is nen-abelian, and this in turn
implies that A(Gn) is also non-abelian.

Since I(Gn) is a subgroup of A(Gn), the order of I(Gn) is

a factor of the crder of A(Gn). Now ,



32

(i) When 3|n then 1(G,) 1is of order n and hence n|2n Q(n)
which is obviously true,

(ii) When 34 n then I(Gn) is of order 3n and hence
3n|2n Q(n) and this implies that 3|Q(n). From this one concludes
that n cannot be of the form p" where p = 6t + 5 (p being a prime),
and n cannot be of the form p: p;g e p;m where all the p's are
of the form 6t + 5 (pi being a prime, for all i, 1 < i< m), since
Q(n) =n 1d5’ (1 - l—) and 1 -~ . Ei:i, here S‘T(p—l) for all 1
P;in Py Py Py

i
and 34 n and therefore S‘TQ(n).

(c) The elements of A(Gn) can be written as follows:

0., = ja,o}~{a'nd, P},

ijp

where (1 =1,2)3 (j =0,l,...,n-1)3 and {p,n) = 1. This means that
a—a"b’ and b —bF under A(Gn), which is then completely determined

because & and b generate Gn' Consider the element of A(Gn)
- f k . 2 -
o = fa,b}—fa,b’} , k is such that k“+ k +1 =0 (mod n).,

It is noted that

and therefore a 1s an inner automcrphism., Now consider,

B = {a,b} -a{abk'l,b} , k is such that k“+k + 1 =0 (mod n).
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bab_l = abk-l
bbb = b
and therefore B is an inner automorphism, Since a and

then
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ap = fa,bk‘*iabk_l,bk}

is also inner.

and therefore a

Now 5

and here if (k-

but if (k-1,n)

(ap

(ap

Now,

f

1f

is

i

it

1t

i,n)

=3

)2

1]

i}

)3

?as
ta,
$a,

%a)
ta,

?a,

s

blﬁn—h lsa3bk } )

by —fa, 0 }

b{—{a,p} , since k° =1 (mod n},

of order 3.

k—l)’b% ’

b} — {ab> D) b

b}~ fab’!

bi"‘{abj(k—l),b%;

are inner

=1 then J = n, and hence B 1is of order nj

then j = % , hence B 1s of order

{a’b}__,fabk-l+k(k—l),bk2}

2 2
§a,b}"‘{abk _l,bk }

2 3
-1+ -
;a,b} ?abk 1+k{k 1)’bk J

fa,b}-d-ta,b} since ko £ 1 (mod n)

wl3
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and therefore «f 1s of order 3. One may note that

-1 k
a Pa = f,
because 3
_ L 2 ) 2 a k(k-1)  k
o g = fa,b}_gdf $2,05 ) B ankL ok 1_,,{ab b ]
3
_ {a,b} — { abk(k—l)’b} , k7 =1 (mod n),
but
kik-1
ﬁk = za’bj]—_‘ iab ( )Jb; s
therefore
o tpa = a¥
Now, when 3|n, then Hl = {u,ﬁi whose defining relations are
n

a3 = B3 = (aﬁ)s = e, G—lﬁa = ﬁk

and this H, is I(Gn)' When 3 { n then H, = ia,ﬁ} whose defining

relations are:

@ =" = (ap)’ = e, o pa =gt

and this H, is I(Gn). Therefore I(Gn) is always generated by a
and B.
Again, consider the following automorphisms:
k
a = fa,b}-——- fa,b }
which was shown to be inner and of order 3,
B, = ta,b}-~{ab,b}

and this is obviously of order n, whether 3|n or 314 n,
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o, = §a,b}--1ab,bk}
2
(cp)? = fa,bf— fau 05
2 3
(ap)° = fa,b} —tab® B}

#

*a’b} - {asb} ]

therefore of, 1is of order 3. Again one may note that

-1 k
a Bl“ = ﬁl ’
because
- 2 B 2
-1 k 1
o pra = {a,b} & a,b) X fab, by 2 {ab® i3
= {a,b} — fabk,b1 , e (mod n)
but
k
ﬁlf = {a)b}—_‘ éab :b}
i.e.

-1 k

Therefore, H3 = {a,Bl} is an analcgue of order 3n and Har--—Gn .
When 3 4 n then By is generated by B and hence By will be inner

and therefore Hy = H,e  When 3|n then p; is not inner, for the

simple reason that H, # H), since H is I(Gn) and is of order n,

1

while H3 is of order 3n.

More generally one may consider the automorphism

3p = fasb}'kx§abp:b} , where (p,n) =1,

then
(Bp)"‘:{a,b} — fab™,bi,
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and since

mp £ 0 {(mod n) , {p,n) =1 for all 0<m<n

and

mp = O {mod n) , (pyn) =1 when m=n or m= nt,

therefore B 1s of order n,
p

(ap) = fa,b} —={ab®,b% }
2
(a{ap)2 - ka,b}—‘iabp(kﬂ),bk [
0 3
(aﬁp)3 _ {a,b}‘*‘iabp(k +k+l),bk {

ia,b} {a,b}.

therefore aﬁp is of order 3. Again, it can be proved easily that
a-prﬁ = B; + Hence, Hp =fq,ﬁp} is alsc an analogue group of crder
3n. In fact Hp = H3, since B generates Bp.

Still more generally when one considers the automorphism

™
I

{a,b}—*iabj,b} ; (3,m) = dy,

then

il

{a,b‘“‘{abmj,b}

I

Ya,b}— {a, bi, when mj = C {mod n),

il

Let j = djz, and n = djx, then mj = m djz and hence mz =z O (mod x),

but (z,x) =1, therefore m = x or m = yx, but here the least integer
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that will do is m=x = g— ,» therefore Bj is of order m = g— .
J J
Here also one can show easily that aﬁj is of order 3 and

-1 k .
o "Bya = By - Hence, Hj = {a,ﬁj} is an analogue group of order

Lo
- 19
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