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We aim to develop a new class of well-balanced non-oscillatory second-order accurate 

central schemes for the approximating solution of general two-dimensional hyperbolic 

systems, and in particular to approximate the solution of shallow water equation 

systems (SWE) on Cartesian grids. The base scheme evolves the numerical solution on 

a unique Cartesian grid and avoids the resolution of the Riemann problems arising at the 

cell interfaces thanks to a layer of ghost staggered cells implicitly used while updating 

the solution.  

The system of shallow water equations  
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represents a good mathematical model for the hydrodynamics of coastal oceans, 

simulation of flows in channels and rivers, study of large-scale waves and vertically 

averaged regimes in the atmosphere and ocean.  Here h denotes the water depth, (u,v) 

represents the flow velocity, g is the gravitational constant, and b is the function that 

models the water bed topography. b vanishes in the case of a flat riverbed and the 

resulting system becomes a hyperbolic system. Most numerical schemes fail to maintain 

the steady state constraint of shallow water equation problems and generate numerical 

(nonphysical) waves and storms. In this project, we shall investigate several approaches 

that could be coupled with our numerical base scheme in order to ensure, when 

necessary, the steady state condition of SWE systems. 
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1. INTRODUCTION

Numerical solutions of hydrodynamic problems allow us to predict the behavior of water flow and

other fluids in real life situations. The shallow water equations model the propagation of distur-

bances in incompressible fluids. The equations are derived from depth-integrating the Navier-Stokes

equations, in the case where the horizontal length scale is much greater than the vertical length

scale.

The independent variables are the time t, and the two space coordinates x and y, while the depen-

dent variables are the fluid depth h, and the two-dimensional fluid velocity field (u, v). The system

of shallow water equations is given by [13]:

∂

∂t









h

hu

hv





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+
∂
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hu

hu2 + 1
2gh
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huv
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hv
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
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0

gh
(
− ∂z
∂x

)

gh
(

− ∂z
∂y

)









where z(x, y) is the riverbed function and g is the gravitational constant.

In the recent years, many papers were devoted to treat the numerical solution of the shallow wa-

ter equations using Riemann solvers [1,2,3,4,9,10,11,13,14,17,18,20,21,22]. The discretization of the

source term was the focus point of a considerable number of authors [3,4,5,6,7]. In [17], a parallel al-

gorithm for the solution of shallow water equations, which is based on Arakawa and Lamb’s scheme

[18], is developed. One of the issues associated with the numerical solution of the Shallow Water

Equations is how to treat the non linear advective terms [19,20]. In [21], the two-stage Galerkin

method, combined with a high accuracy compact approximation of the first derivative is used.

Multi-layer problems are considered in [22], in which the derivation is performed by averaging the



1. INTRODUCTION 7

governing Euler equations over each layer. Numerical base schemes for general hyperbolic systems

were developed in [13,15,23,24], whose multidimensional extensions on Cartesian grids (squares

or cubes) or unstructured grids (triangles or tetrahedrons) were intensively and successfully used

to solve problems arising in aerodynamics [24,25], astrophysics and magnetohydrodynamics [26,27].

Galerkin methods for the shallow water equations were discussed in [31,32,33]. In [28], well balanced

central schemes on staggered grids for the Saint-Venant model is considered. The schemes are called

shock capturing schemes since the shocks are identified by the regions with large gradients. Among

shock capturing schemes, the most commonly used are finite volume methods, in which the basic

unknowns represent the cell average of the unknown field. High order central schemes on staggered

grid for conservation laws have been derived [29,30]. In case of the SWE, the crucial balancing

between the flux gradient and the source term leads to very accurate and robust numerical schemes

[8,9,10]. In [8], the conservation property is directly connected with steady solutions. As in the

one-dimensional case derived in [10] and based on the finite volume method, the main advantage of

our two-dimensional scheme is simplicity and accuracy by avoiding the time-consuming process of

solving Riemann problems arising at the cell interfaces and by evolving piecewise linear numerical

solutions. In this thesis, we construct, analyze and implement a new class of unstaggered, nonoscil-

latory, second-order accurate central schemes for the one and two-dimensional system of Shallow

Water Equations. Our two-dimensional scheme is an extension of the one-dimensional method

presented in [10]. The main two features of our scheme are the well-balancing of the source term

with the flux divergence, and the proper discretization of the water height according to the Surface

Gradient method discussed in [11] which is based on an accurate reconstruction of the conservative

variables at cell interfaces. The numerical base scheme evolves the numerical solution on a single

Cartesian grid, but implicitly uses ghost staggered cells to avoid the resolution of the Riemann

problems arising at the cell interfaces.

Based on [10], two one-dimensional central schemes for the shallow water equations will be devel-

oped. The first consists of balancing the source term with the flux divergence, and will therefore be

called ”the Well-Balanced Central Scheme”. As an extension of the well balanced scheme presented

in [10], it discretizes the source term not only using the MinMod limiter, but also the MC-θ limiter
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by introducing the central difference for the derivatives. The adaptation of the one-dimensional

scheme, called the ”Interface-type scheme”, goes further by discretizing the water level instead of

the water depth, following the Surface Gradient Method introduced in [11].

This work aims to extend the discussed one-dimensional schemes to the case of two-dimensional

shallow water equations. The two-dimensional well balanced scheme and the interface-type refor-

mulation that will be developed follow the same strategy used for the one-dimensional case. The

resulting scheme maintains the steady state condition by using the Surface Gradient method [11],

where the riverbed features discontinuities or challenging irregularities.

The robustness and efficiency of our central scheme are confirmed by solving several two-dimensional

Shallow Water problems. Our numerical scheme is capable of maintaining the steady state con-

dition and the numerical results are in good agreement with corresponding ones appearing in the

recent literature.



2. ONE-DIMENSIONAL CENTRAL SCHEMES FOR THE SHALLOW WATER

EQUATIONS

2.1 Well-Balanced Central Scheme for the SWE

In this section, we consider the one-dimensional hyperbolic balance law system







∂tU + ∂xF (U) = S(U, x), U = U(x, t), x ∈ Ω ⊂ R, t > 0

U(x, 0) = U0(x)

(2.1)

In order to ensure well balancing and the steady state condition, an appropriate extension of the

central NT scheme should be constructed. Several possible approaches are given in [12], in which

central NT schemes are extended to nonhomogenous systems and applied to thermodynamics.

The discretization of the source term that depends on the particular balance law ensure the good

accuracy of the numerical scheme we develop.

We apply the nonstaggered central NT scheme [11] to the one-dimensional shallow water equations

∂

∂t






h

hv




+

∂

∂x






hv

hv2 + 1
2gh

2




 =






0

gh
(
− ∂z
∂x

)




 (2.2)

where h = h(x, t) is the water depth, v = v(x, t) is the water velocity, g is the gravitational constant,

and z = z(x) is the bottom topography function.

The crucial property we want to satisfy is the exact C-property [8] in which the steady state

of the quiescent flow (h+ z = const, v = 0) is exactly preserved. Since in this case, the balancing
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will be done between the flux gradient and the source term, we refer to the developed scheme by

the ”Well-Balanced Scheme”.

The computational domain Ω is discretized using the subintervals Ci = [xi− 1
2
, xi+ 1

2
] centered at

the nodes xi. The cells Ci are the original cells of the scheme while the ghost staggered dual cells

are Di+ 1
2
= [xi, xi+1] centered at xi+ 1

2
, endpoints of the original control volumes. The unstaggered

central scheme evolves the numerical solution on a unique grid and avoids the time consuming

process of solving the Riemann problems arising at the cell interfaces.

�� �� �� ��

xi−1 xi xi+1 xi+2
︸ ︷︷ ︸

Ci

︸ ︷︷ ︸

Ci+1

× × ×
x

i− 1
2

x
i+ 1

2

x
i+ 3

2

︸ ︷︷ ︸

Di− 1
2

︸ ︷︷ ︸

Di+ 1
2

︸ ︷︷ ︸

Di+ 3
2

Fig. 2.1: Original control volumes Ci’s and staggered control volumes Di+ 1
2
’s.

We assume that the solution Un
i is known at time t

n on the control cells Ci and we integrate

equation (2.1) over the rectangle Rn
i+ 1

2

= [xi, xi+1]× [t
n, tn+1]

which results in:
∫ ∫

Rn

i+ 1
2

[Ut + F (U)x]dR =
∫ ∫

Rn

i+ 1
2

S(U, x)dR

and applying Green’s formula:
∫ ∫

R

(
∂Q
∂x

− ∂P
∂y

)

dxdy =
∮

∂R
(Pdx+Qdy)

with ∂Q
∂x
= F (U)x and

∂P
∂y
= −Ut, we obtain:

∮

∂Rn

i+ 1
2

(F (U)dt− Udx) =
∫ tn+1

tn

∫ xi+1

xi
S(U, x)dxdt
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��

x
i+ 1

2

× ×
xi xi+1

tn

tn+1

Fig. 2.2: The integration domain Rn

i+ 1
2

.

Expanding the integral to the left hand side, we obtain

∫ xi+1

xi

[F (U(x, tn)) dt− U(x, tn)dx] +

∫ tn+1

tn
[F (U(xi+1, t)) dt− U(xi+1, t)dx]

+

∫ xi

xi+1

[
F
(
U(x, tn+1)

)
dt− U(x, tn+1)dx

]
+

∫ tn

tn+1

[F (U(xi, t)) dt− U(xi, t)dx]

=

∫ tn+1

tn

∫ xi+1

xi

S(U, x)dxdt

Rearranging the integrals, we thus obtain

−

∫ xi+1

xi

U(x, tn)dx+

∫ tn+1

tn
F (U(xi+1, t)) dt+

∫ xi+1

xi

U(x, tn+1)dx−

∫ tn+1

tn
F (U(xi, t)) dt

=

∫ tn+1

tn

∫ xi+1

xi

S(U, x)dxdt (2.3)

Since the solution U(x, t) is assumed piecewise linear defined at the cell centers, the Mean-Value

theorem gives
∫ xi+1

xi
U(x, tn+1)dx = ∆xUn+1

i+ 1
2

and
∫ xi+1

xi
U(x, tn)dx = ∆xUn

i+ 1
2



2. ONE-DIMENSIONAL CENTRAL SCHEMES FOR THE SHALLOW WATER EQUATIONS 12

Equation (2.2) becomes

−∆xUn
i+ 1

2

+

∫ tn+1

tn
F (U(xi+1, t)) dt+∆xU

n+1
i+ 1

2

−

∫ tn+1

tn
F (U(xi, t)) dt

=

∫ tn+1

tn

∫ xi+1

xi

S(U, x)dxdt

The solution at time tn+1 on the dual cells Di+ 1
2
can be calculated as follows

Un+1
i+ 1

2

= Un
i+ 1

2

−
1

∆x

[
∫ tn+1

tn
F (U(xi+1, t)) dt−

∫ tn+1

tn
F (U(xi, t)) dt

]

+
1

∆x

∫ tn+1

tn

∫ xi+1

xi

S(U, x)dxdt (2.4)

The flux integrals are approximated using the midpoint rule:
∫ tn+1

tn
F (U(xi, t)) dt ≈ F (U

n+ 1
2

i ) ·∆t

and
∫ tn+1

tn
F (U(xi+1, t)) dt ≈ F (U

n+ 1
2

i+1 ) ·∆t, where U
n+ 1

2

i is approximated using Taylor expansion

in time and equation (2.1)

U
n+ 1

2

i = Un
i +

∆t

2
∂t(U

n
i )

= Un
i +

∆t

2
[−F (Ui)x + S(Ui, xi)]

The partial flux derivative is calculated using the chain rule to obtain

U
n+ 1

2

i = Un
i +

∆t
2∆x

(

−F
′

i + Sni ·∆x
)

with F
′

i =
∂F
∂U
∗

δn
i

∆x and
(
∂U
∂x

)

xi,tn
≈

δn
i

∆x with
δn

i

∆x

Equation (2.4) becomes:

Un+1
i+ 1

2

= Un
i −

∆t

∆x

[

F (U
n+ 1

2

i+1 )− F (U
n+ 1

2

i )
]

+
1

∆x

∫ tn+1

tn

∫ xi+1

xi

S (U(x, t), x)) dxdt
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The integral of the source term is approximated using a second order quadrature rule as follows:

∫ tn+1

tn

∫ xi+1

xi

S (U(x, t), x)) dxdt ' ∆t ·∆x · S(U
n+ 1

2

i , U
n+ 1

2

i+1 )

with

S(U
n+ 1

2

i , U
n+ 1

2

i+1 ) =






0

g
h

n+ 1
2

i+1
+h

n+ 1
2

i

2

(

− zi+1−zi

∆x

)






Thus the numerical scheme summarizes as follows: starting with Un
i , we first obtain the solution

at the intermediate time tn+
1
2 as follows

U
n+ 1

2

i = Un
i +

∆t

2∆x

(

−F
′

i + Sni ·∆x
)

(2.5)

next the solution at time tn+1 on the staggered dual cells calculated as follows

Un+1
i+ 1

2

= Un
i+ 1

2

−
∆t

∆x

[

F (U
n+ 1

2

i+1 )− F (U
n+ 1

2

i )
]

+∆tS(U
n+ 1

2

i , U
n+ 1

2

i+1 ) (2.6)

where the projection of the numerical solution on the original and staggered grids are obtained

using Taylor expansions in space as follows:

Un
i+ 1

2

=
1

2

(
Un
i + Un

i+1

)
+
∆x

8

(

U
′

i − U
′

i+1

)

(2.7)

Un+1
i =

1

2

(

Un+1
i− 1

2

+ Un+1
i+ 1

2

)

+
∆x

8

(

U
′

i− 1
2

− U
′

i+ 1
2

)

(2.8)

In contrast with the scheme constructed in [10] where Sni was defined using the MinMod limiter, in

this work, we propose a new formulation in terms of the MC-θ limiter that leads to sharper capture

of discontinuities as follows:

Sni = Sni,L + Sni,R + Sni,C

with,
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Sni,L = s2i
1− si

6
(2− si)






0

−ghni θ
zi−zi−1

∆x






Sni,R = s2i
1 + si

2
(2− si)






0

−ghni θ
zi+1−zi

∆x






Sni,C = si
(si + 1)(si − 1)

6






0

−ghni
zi+1−zi−1

2∆x






As for the parameter si in the i
th cell, it is defined by:

si =







−1 if h
′

i = θ
hn

i −h
n
i−1

∆x , ie, backward difference ,

1 if h
′

i = θ
hn

i+1−h
n
i

∆x , ie, forward difference ,

0 if h
′

i = 0 ,

2 if h
′

i =
hn

i+1−h
n
i−1

2∆x , ie, central difference .

and garantees that z
′

i and h
′

i are discretized in the same way (1 6 θ 6 2).

Definition: (Quiescent Flow)

Applied to the Shallow Water Equations, the quiescent flow case represents the steady case of the

water, ie., when the surface of the liquid is initially at rest, corresponding to an initial velocity of

zero. In the quiescent flow case, the shallow water equations are such that:

U =






h

0




 , F =






0

1
2gh

2




 , S =






0

gh ·
(
− dz
dx

)





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Theorem:

For a quiescent flow, equations (2.5) and (2.6) respectively reduce to:

•

U
n+ 1

2

i = Un
i (2.9)

•

Un+1
i+ 1

2

= Un
i+ 1

2

(2.10)

Proof:

• If h
′

i is discretized using the backward difference, ie., si = −1,

Sni,L =






0

−ghni θ
zi−zi−1

∆x




, Sni,R =






0

0




, and Sni,C =






0

0






Therefore,

Sni = Sni,L + Sni,C + Sni,R

=






0

−ghni θ
zi−zi−1

∆x






But,

U
n+ 1

2

i = Un
i +

∆t

2∆x
(−F

′

i + Sni ∆x)

and in the quiescent case, F =






0

1
2gh

2




 so F

′

i =






0

ghi · h
′

i





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Therefore,

U
n+ 1

2

i = Un
i +

∆t

2∆x











0

−ghni h
′

i




+






0

−ghni θ
zi−zi−1

∆x




∆x






= Un
i +

∆t

2∆x






0

−ghni [h
′

i + θ(zi − zi−1)]






= Un
i +

∆t

2∆x






0

−ghni [θ(hi + zi)− θ(hi−1 + zi−1)]






But since hi + zi = H = constant for all i then θ(hi + zi)− θ(hi−1 + zi−1) = 0

leading to

U
n+ 1

2

i
= U n

i

In a similar way, we show that U
n+ 1

2

i = Un
i remains valid if si = 0, 1, 2.

Now we show that Un+1
i+ 1

2

= Un
i+ 1

2

Un+1
i+ 1

2

is calculated using equation (2.6) as follows:

Un+1
i+ 1

2

= Un
i+ 1

2

−
∆t

∆x
(F (u

n+ 1
2

i+1 )− F (u
n+ 1

2

i )) + ∆tS(u
n+ 1

2

i , U
n+ 1

2

i+1 )

where the source term is discretized using the formula

S(U
n+ 1

2

i , U
n+ 1

2

i+1 ) =






0

g
h

n+ 1
2

i
+h

n+ 1
2

i+1

2

(

− zi+1−zi

∆x

)






In the case of a quiescent flow we have U =






h

0




 and F =






0

1
2gh

2




, therefore
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F (U
n+ 1

2

i+1 ) =






0

1
2g(h

n+ 1
2

i+1 )
2




, and F (U

n+ 1
2

i ) =






0

1
2g(h

n+ 1
2

i )2






Equation (2.6) becomes:

Un+1
i+ 1

2

= Un
i+ 1

2

−
∆t

∆x











0

1
2g(h

n+ 1
2

i+1 )
2




−






0

1
2g(h

n+ 1
2

i )2











+∆t






0

g
h

n+ 1
2

i
+h

n+ 1
2

i+1

2

(

− zi+1−zi

∆x

)






Basic algebra operations give

Un+1
i+ 1

2

= Un
i+ 1

2

−
∆t

∆x






0

1
2g
[

(h
n+ 1

2

i+1 + h
n+ 1

2

i )
[

(h
n+ 1

2

i+1 + zi+1)− (h
n+ 1

2

i + zi)
]]






But since hni + zi = H = constant for all i then (hni + zi)− (h
n
i+1 + zi+1) = 0

According to relation (2.9),

U
n+ 1

2

i = Un
i

means 




h
n+ 1

2

i

(hv)
n+ 1

2

i




 =






hni

(hv)ni






Therefore, (h
n+ 1

2

i + zi)− (h
n+ 1

2

i+1 + zi+1) = (h
n
i + zi)− (h

n
i+1 + zi+1) = 0,

leading to

Un+1
i+ 1

2

= Un
i+ 1

2

which means that if the steady state requirement was satisfied at time tn, it will remain as such at

time tn+1.
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2.2 Balanced Central NT Scheme: The Interface Type Reformulation

Due to the fact that the riverbed function and the water level are continuous on the original cells

but not on the staggered ones, the steady state is not properly maintained in case of variable or

discontinuous riverbeds. A new reformulation of the scheme, will be developed to handle such cases.

The Interface Type reformulation [10] is a modification of the Balanced Central NT Scheme derived

previously. The bottom topography is defined at the interfaces of each cell, ie., zi+ 1
2
is defined at

xi+ 1
2
. z(x) is therefore approximated over the whole control cell Ci centered at xi using linear

interpolation:

z(x) = zi +
1

∆x
(zi+ 1

2
− zi− 1

2
)(x− xi)

and, at the cell centers, we define

zi =
zi+ 1

2
+ zi− 1

2

2

The interface type reformulation follows the scheme derived previously by using the formulae:

U
n+ 1

2

i = Un
i +

∆t

2∆x

(

−F
′

i + Sni ∆x
)

and,

Un+1
i+ 1

2

= Un
i+ 1

2

−
∆t

∆x

[

F (U
n+ 1

2

i+1 )− F (U
n+ 1

2

i )
]

+∆tS(U
n+ 1

2

i , U
n+ 1

2

i+1 )

Nevertheless, it differs from the previous scheme in the way it moves the numerical solution

from the original control cells to the staggered dual cells and vice versa. In the interface type re-

formulation, the components of Un
i+ 1

2

and Un+1
i are computed differently, taking into consideration

the non-linearity of the water height and the riverbed function over the staggered dual cells.

The hv component is computed by using exactly the Well-Balanced Scheme derived previously

(equations (2.5) and (2.6)). The reformulation of the new version of the scheme is based on a

special approximation of the water depth h at each step of the algorithm.

h
n+ 1

2

i and hn+1
i+ 1

2

are computed using equations (2.5) and (2.6). Nevertheless, in order to approximate
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hn
i+ 1

2

and hn+1i , relations (2.7) and (2.8) need to be updated using the Surface Gradient Method

discussed in [11], in which the water level H is first updated, then the water height h is calculated

according to the relation h+ z = H.

Using the unstaggered central scheme, the water height h and the bottom topography z are con-

sidered to be linear inside each original control cell Ci.

In this interface-type reformulation, the linearization of the water height is made indirectly by first

linearizing the water level H(x), then using h(x) = H(x)− z(x).

H(x) = Hi +H
′

i (x− xi) for all x ∈ Ci with H
′

i computed using a slope limiting procedure on the

cell values: Hi = hi + zi, which will lead to:

h
′

i = H
′

i − z
′

i

ie., using the cental difference,

h
′

i = H
′

i −
1

∆x
(zi+ 1

2
− zi− 1

2
) (2.11)

Applying relation (2.7) to h results in:

hn
i+ 1

2

=
1

2
(hni + hni+1) +

∆x

8
(h
′

i − h
′

i−1) (2.12)

Equations (2.10) and (2.11) lead to:

hn
i+ 1

2

=
1

2

(
hni + hni+1

)
+
∆x

8

[(

H
′

i −
zi+ 1

2
− zi− 1

2

∆x

)

−

(

H
′

i+1 −
zi+ 3

2
− zi+ 1

2

∆x

)]

(2.13)

which in the quiescent case reduces to:

hn
i+ 1

2

=
1

2

(
hni + hni+1

)
+
1

2

(

zi+ 1
2
−
zi + zi+1

2

)

(2.14)

Remark:

In the quiescent flow case, H(x) = constant reduces H
′

to zero.

In addition, zi+ 1
2
− zi− 1

2
= 2(zi+ 1

2
− zi) and zi+ 3

2
− zi− 1

2
= 2(zi+1 − zi− 1

2
)
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As for the target solution hn+1i , it is approximated as follows:

On the original control volumes, the relation Hi = hi + zi applies.

Similarly, over the staggered control volumes:

H̃i+ 1
2
= hi+ 1

2
+ z̃i+ 1

2
(2.15)

H̃i+ 1
2
and z̃i+ 1

2
are defined differently due to the fact that the riverbed bottom z(x) is linear inside

the original control cells Ci but not inside the staggered dual cells Di+ 1
2
.

�� ��

xi xi+1

︸ ︷︷ ︸

ci
︸ ︷︷ ︸

ci+1

× × ×
x

i− 1
2

x
i+ 1

2

x
i+ 3

2

︸ ︷︷ ︸

Di+ 1
2

�� ��
zn

i
zn

i+1

z(x)overci z(x)overci+1

Fig. 2.3: The bottom topography z(x) is linear on each original control volume, but NOT linear on the

staggered control volumes.

Therefore, define z̃i+ 1
2
as follows:

z̃i+ 1
2
= zi+ 1

2
−
1

2

(

zi+ 1
2
−
zi + zi+1

2

)

(2.16)

H̃i+ 1
2
will be defined accordingly; leading to:

hi+ 1
2
= H̃i+ 1

2
− z̃i+ 1

2
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The numerical dericatives can be calculated now as follows:

h
′

i+ 1
2

= H
′

i+ 1
2

− z̃
′

i+ 1
2

thus we obtain

h
′

i+ 1
2

= H
′

i+ 1
2

−
1

∆x
(zi+1 − zi) (2.17)

The discrete derivatives H
′

i+ 1
2

are derived from the staggered values H̃i+ 1
2
using a slope limiting

procedure.

Using relations (2.14) and (2.16) in (2.15) leads to:

H̃i+ 1
2
= hi+ 1

2
+ z̃i+ 1

2

=
1

2
(hi + hi+1)−

1

2

(

zi+ 1
2
−
zi + zi+1

2

)

+ zi+ 1
2
−
1

2

(

zi+ 1
2
−
zi + zi+1

2

)

=
1

2
(hi + hi+1 + zi + zi+1)

=
1

2
(Hi +Hi+1)

which, in the quiescent flow case, results in H̃i+ 1
2
= constant for all grid points since

Hi = Hi+1 = constant.

Finally, using relation (2.17) in (2.7) for h results in:

hn+1i =
1

2

(

hn+1
i− 1

2

+ hn+1
i+ 1

2

)

+
∆x

8

(

h
′

i− 1
2

− h
′

i+ 1
2

)

and thus

hn+1i =
1

2

(

hn+1
i− 1

2

+ hn+1
i+ 1

2

)

+
∆x

8

(

H
′

i− 1
2

−
zi − zi−1

∆x
−H

′

i+ 1
2

+
zi+1 − zi

∆x

)

(2.18)
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Thus we conclude that the interface type procedure, when applied with the unstaggered central

scheme, ensures the quiescent flow requirement.



3. CENTRAL SCHEMES FOR THE TWO-DIMENSIONAL SHALLOW WATER

EQUATIONS

3.1 Well-Balanced Central Scheme for the Shallow Water Equations

In this chapter, we extend the one-dimensional Well-Balanced central scheme presented in chapter

2 to the case of two-dimensional hyperbolic balance law system

∂tU + ∂xF (U) + ∂yG(U) = S(U, x, y) (3.1)

We apply the unstaggered central scheme discussed in [13] to the two-dimensional system of shallow

water equations defined with

∂

∂t









h

hu

hv









+
∂

∂x









hu

hu2 + 1
2gh

2

huv









+
∂

∂y









hv

huv

hv2 + 1
2gh

2









=









0

gh
(
− ∂z
∂x

)

gh
(

− ∂z
∂y

)









(3.2)

where h = h(x, y, t) is the water depth, u = u(x, y, t) and v = v(x, y, t) are the water velocities in

the x and y directions, g is the gravitational constant, and z = z(x, y) is the water bed function.

The C-property of the numerical solution that was proven to be satisfied in the one-dimensional

case is also meant to be satisfied in the two-dimensional case.

We discretize the computational domain using the rectangles Ci,j = [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
]
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representing the original control volume centered at the node (xi, yj), and Di+ 1
2
,j+ 1

2
= [xi, xi+1]×

[yj , yj+1] representing the staggered control volume, centered at (xi+ 1
2
, yj+ 1

2
), corner of the original

cell Ci. As in 1D, the developed scheme evolves the numerical solution on a single grid but avoids

the time consuming process of solving Riemann problems arising at the cell interfaces by implicitly

using the staggered dual cells.

�	 �	 �	

(xi−1, yj−1) (xi, yj−1) (xi+1, yj−1)

× ×
(x

i− 1
2

, y
j− 1

2

) (x
i+ 1

2

, y
j− 1

2

)


� 
� 
�

(xi−1, yj) (xi, yj) (xi+1, yj)

× ×
(x

i− 1
2

, y
j+ 1

2

) (x
i+ 1

2

, y
j+ 1

2

)

�
 �
 �


(xi−1, yj+1) (xi, yj+1) (xi+1, yj+1)

Fig. 3.1: Original control volumes Ci,j and staggered control volumes Di+ 1
2

,j+ 1
2
’s.

We assume that the numerical solution Un
i,j is known at the time tn as a piecewise linear

numerical solution defined at the center (xi, yj) of the cells Ci,j . We integrate equation (3.2) over

Rn
i+ 1

2
,j+ 1

2

= Di+ 1
2
,j+ 1

2
× [tn, tn+1]

∫ ∫ ∫

Rn

i+ 1
2

,j+ 1
2

[Ut + F (U)x +G(U)y]dR =

∫ ∫ ∫

Rn

i+ 1
2

,j+ 1
2

S(U, x, y)dR

and we apply the divergence theorem to the flux integral, thus we obtain

∫ ∫ ∫

Rn

i+ 1
2

,j+ 1
2

UtdR+

∫ ∫ ∫

Rn

i+ 1
2

,j+ 1
2

[F (U)x +G(U)y] dR

=

∫ ∫ ∫

Rn

i+ 1
2

,j+ 1
2

S(U, x, y)dR



3. CENTRAL SCHEMES FOR THE TWO-DIMENSIONAL SHALLOW WATER EQUATIONS 25

�� ��

�� ��
�� ��

�� ��

(xi, yj) (xi+1, yj)

(xi, yj+1) (xi+1, yj+1)

×

×

(x
i+ 1

2

, y
j+ 1

2

)

(x
i+ 1

2

, y
j+ 1

2

)

(xi, yj) (xi+1, yj)

(xi, yj+1) (xi+1, yj+1)

tn

tn+1

Fig. 3.2: The integration domain Rn

i+ 1
2

,j+ 1
2

× [tn, tn+1].

∫ yj+1

yi

∫ xi+1

xi

(
Un+1 − Un

)
dxdy +

∫ ∫ ∫

Rn

i+ 1
2

,j+ 1
2

[F (U)x +G(U)y] dR

=

∫ ∫ ∫

Rn

i+ 1
2

,j+ 1
2

S(U, x, y)dR (3.3)

But
∫ yj+1

yj

∫ xi+1

xi
U(x, y, tn+1)dxdy = ∆y∆xUn+1

i+ 1
2
,j+ 1

2

and
∫ yj+1

yj

∫ xi+1

xi
U(x, y, tn)dxdy = ∆y∆xUn

i+ 1
2
,j+ 1

2

(Mean-Value Theorem).
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Therefore, using the divergence theorem, equation (3.3) becomes:

∆x∆yUn+1
i+ 1

2
,j+ 1

2

= ∆x∆yUn
i+ 1

2
,j+ 1

2

−

∫ tn+1

tn

∫

∂D
i+ 1

2
,j+ 1

2

F (U) · nxdAdt

−

∫ tn+1

tn

∫

∂D
i+ 1

2
,j+ 1

2

G(U)y · nydAdt

+

∫ ∫ ∫

Rn

i+ 1
2

,j+ 1
2

S(U, x, y)dR (3.4)

with Rxy = [xi, xi+1]× [yj , yj+1]

where n = (nx, ny) is the unit normal vector to the boundary of Di+ 1
2
,j+ 1

2
.

n3 n1

n4

n2

(xi, yj) (xi+1, yj)

(xi, yj+1) (xi+1, yj+1)

Fig. 3.3: Di+ 1
2

,j+ 1
2

and normal outer vectors n1 =< 1, 0, 0 >, n2 =< 0, 1, 0 >, n3 =< −1, 0, 0 > and

n4 =< 0,−1, 0 > to its boundary.

Equation (3.4) is therefore equivalent to:

Un+1
i+ 1

2
,j+ 1

2

= Un
i+ 1

2
,j+ 1

2

−
1

∆x∆y

∫ tn+1

tn

∫

∂D
i+ 1

2
,j+ 1

2

F (U) · nxdAdt

−
1

∆x∆y

∫ tn+1

tn

∫

∂D
i+ 1

2
,j+ 1

2

G(U) · nydAdt

+
1

∆x∆y

∫ ∫ ∫

Rn

i+ 1
2

,j+ 1
2

S(U, x, y)dR (3.5)
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Let’s approximate the flux integrals: A =
∫ tn+1

tn

∫

∂Rxy
F (U) · nxdAdt

and B =
∫ tn+1

tn

∫

∂Rxy
G(U) · nydxdydt

A is equivalent to four integrals over the four vertical sides of the cube Ri+ 1
2
,j+ 1

2
:

A =

∫ tn+1

tn

∫

∂Rxy

F (Un+ 1
2 ) · nxdxdy

=

∫ tn+1

tn

∫ yj+1

yj

F (U(xi+1, y, t
n+ 1

2 )) · (1, 0, 0)xdy

+

∫ tn+1

tn

∫ xi

xi+1

F (U(x, yj+1, t
n+ 1

2 )) · (0, 1, 0)xdx

+

∫ tn+1

tn

∫ yj

yj+1

F (U(xi, y, t
n+ 1

2 )) · (−1, 0, 0)xdy

+

∫ tn+1

tn

∫ xi+1

xi

F (U(x, yj , t
n+ 1

2 )) · (0,−1, 0)xdx

Each of these integrals is approximated using the midpoint rule:

A = ∆t∆y

[

F (U(xi+1, yj , t
n+ 1

2 )) + F (U(xi+1, yj+1, t
n+ 1

2 ))

2

]

−∆t∆y

[

F (U(xi, yj , t
n+ 1

2 )) + F (U(xi, yj+1, t
n+ 1

2 ))

2

]

= ∆t∆y




F (U

n+ 1
2

i+1,j) + F (U
n+ 1

2

i+1,j+1)− F (U
n+ 1

2

i,j )− F (U
n+ 1

2

i,j+1)

2





and similarly,

B =

∫ tn+1

tn

∫

∂D
i+ 1

2
,j+ 1

2

G(U) · nydxdydt

= ∆t∆x




G(U

n+ 1
2

i,j+1) +G(U
n+ 1

2

i+1,j+1)−G(U
n+ 1

2

i,j )−G(U
n+ 1

2

i+1,j)

2




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The update of the numerical solution at time tn+1 is now as follows

Un+1
i+ 1

2
,j+ 1

2

= Un
i+ 1

2
,j+ 1

2

−
∆t

2∆x

[

F (U
n+ 1

2

i+1,j) + F (U
n+ 1

2

i+1,j+1)− F (U
n+ 1

2

i,j )− F (U
n+ 1

2

i,j+1)
]

−
∆t

2∆y

[

G(U
n+ 1

2

i,j+1) +G(U
n+ 1

2

i+1,j+1)−G(U
n+ 1

2

i,j )−G(U
n+ 1

2

i+1,j)
]

+
1

∆x∆y

∫ ∫ ∫

Rn

i+ 1
2

,j+ 1
2

S(U, x, y)dR (3.6)

Now we discretize the integral of the source term using the midpoint quadrature rule with respect

to both time and space:

∫ ∫ ∫

Rn

i+ 1
2

,j+ 1
2

S(U, x, y)dR ' ∆t∆x∆y · S
(

U(xi+ 1
2
, yj+ 1

2
, tn+

1
2 ), xi+ 1

2
, yj+ 1

2

)

with

S
(

U
n+ 1

2

i,j , U
n+ 1

2

i+1,j , U
n+ 1

2

i,j+1, U
n+ 1

2

i+1,j+1

)

=









0

g · h
n+ 1

2

i+ 1
2
,j+ 1

2

·
(
− ∂z
∂x

)

g · h
n+ 1

2

i+ 1
2
,j+ 1

2

·
(

− ∂z
∂y

)









Finally, equation (3.3) becomes:

Un+1
i+ 1

2
,j+ 1

2

= Un
i+ 1

2
,j+ 1

2

−
∆t

2∆x

[

F (U
n+ 1

2

i+1,j) + F (U
n+ 1

2

i+1,j+1)− F (U
n+ 1

2

i,j )− F (U
n+ 1

2

i,j+1)
]

−
∆t

2∆y

[

G(U
n+ 1

2

i,j+1) +G(U
n+ 1

2

i+1,j+1)−G(U
n+ 1

2

i,j )−G(U
n+ 1

2

i+1,j)
]

+∆t · S
(

U
n+ 1

2

i,j , U
n+ 1

2

i+1,j , U
n+ 1

2

i,j+1, U
n+ 1

2

i+1,j+1

)

(3.7)
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with

S
(

U
n+ 1

2

i,j , U
n+ 1

2

i+1,j , U
n+ 1

2

i,j+1, U
n+ 1

2

i+1,j+1

)

=
1

2









0

−g
hi+1,j+hi,j

2
zi+1,j−zi,j

∆x

−g
hi,j+1+hi,j

2
zi,j+1−zi,j

∆y









+
1

2









0

−g
hi+1,j+1+hi,j+1

2
zi+1,j+1−zi,j+1

∆x

−g
hi+1,j+1+hi+1,j

2
zi+1,j+1−zi+1,j

∆y









where
zi+1,j − zi,j

∆x
approximates −

∂z

∂x
along the layer y = yj

and
zi+1,j+1 − zi,j+1

∆x
approximates − ∂z

∂x
along the layer y = yj+1

As for U
n+ 1

2

i,j , it is approximated using Taylor’ expansion:

U
n+ 1

2

i,j = Un
i,j +

∆t

2
∂t(U

n
i )

and the system of equations, Ut = −F (U)x −G(U)y + S(U, x, y)

leading to,

U
n+ 1

2

i,j = Un
i,j +

∆t

2
[−F (Ui,j)x −G(Ui,j)y + S(Ui,j , xi, yj)]

Using the chain rule, F (Un
i,j)x =

(
∂F
∂U

)n

i,j
·
∂δn

i,j

∂x
and G(Un

i,j)y =
(
∂G
∂U

)n

i,j
·
∂σn

i,j

∂y
with

δn
i,j

∆x and
σn

i,j

∆y

approximating respectively the partial derivative of U with respect to x and y at time tn leading

to U
n+ 1

2

i,j = Un
i,j +

∆t
2

(

−
F
′

i,j

∆x −
G
′

i,j

∆y + Sni,j

)

with F
′

i,j =
∂F
∂U
·
δi,j

∆x and G
′

i,j =
∂F
∂U
·
σi,j

∆y
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with

Sni,j =









0

−ghni,j
∂z
∂x

−ghni,j
∂z
∂y









=









S1

S2

S3









with S1 = 0,

S2 = S2,L + S2,C + S2,R

Define S2,L, S2,C , and S2,R as follows (1 ≤ θ ≤ 2):

S2,L = s2i
1− si

6
(2− si)

(

−ghni,jθ
zi,j − zi−1,j

∆x

)

S2,C = si
(si + 1)(si − 1)

6
(2− si)

(

−ghni,j
zi+1,j − zi−1,j

2∆x

)

S2,R = s2i
1 + si

2
(2− si)

(

−ghni,jθ
zi+1,j − zi,j

∆x

)

with

si =







−1 if hx = θ
(
hn

i,j−h
n
i−1,j

∆x

)

, ie, backward difference ,

0 if hx = 0 ,

1 if hx = θ
(
hn

i+1,j−h
n
i,j

∆x

)

, ie, forward difference ,

2 if hx =
hn

i+1,j−h
ni−1,j

2∆x .

Similarly, we define S3 as follows (1 ≤ θ ≤ 2):

S3 = S3,L + S3,C + S3,R

with

S3,L = t2j
1− tj

6
(2− tj)

(

−ghni,jθ
zi,j − zi,j−1

∆y

)

S3,C = tj
(tj + 1)(tj − 1)

6
(2− tj)

(

−ghni,j
zi,j+1 − zi,j−1

2∆y

)
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S3,R = t2j
1 + tj

2
(2− tj)

(

−ghni,jθ
zi,j+1 − zi,j

∆y

)

with

tj =







−1 if hy = θ
(
hn

i,j−h
n
i,j−1

∆y

)

, ie, backward difference ,

0 if hy = 0 ,

1 if hy = θ
(
hn

i,j+1−h
n
i,j

∆y

)

, ie, forward difference ,

2 if hy =
hn

i,j+1−h
ni,j−1

2∆y .

Therefore, we obtain

S2 =







−ghni,jθ
zi,j−zi−1,j

∆x if si = −1 ,

0 if si = 0 ,

−ghni,jθ
zi+1,j−zi,j

∆x if si = 1 ,

−ghni,j
zi+1,j−zi−1,j

2∆x if si = 2 .

S3 =







−ghni,jθ
zi,j−zi,j−1

∆y if tj = −1 ,

0 if tj = 0 ,

−ghni,jθ
zi,j+1−zi,j

∆y if tj = 1 ,

−ghni,j
zi,j+1−zi,j−1

2∆y if tj = 2 .

Thus the well balanced unstaggered central scheme summarizes as follows: starting with U n
i,j , we

obtain the solution at the intermediate time tn+
1
2 as follows:

U
n+ 1

2

i,j = Un
i,j +

∆t

2

(

−
F
′

i,j

∆x
−
G
′

i,j

∆y
+ Sni,j

)

(3.8)
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next we obtain the solution at the next time tn+1 as follows

Un+1
i+ 1

2
,j+ 1

2

= Un
i+ 1

2
,j+ 1

2

−
∆t

2∆x

[

F (U
n+ 1

2

i+1,j) + F (U
n+ 1

2

i+1,j+1)− F (U
n+ 1

2

i,j )− F (U
n+ 1

2

i,j+1)
]

−
∆t

2∆y

[

G(U
n+ 1

2

i,j+1) +G(U
n+ 1

2

i+1,j+1)−G(U
n+ 1

2

i,j )−G(U
n+ 1

2

i+1,j)
]

+∆t · S
(

U
n+ 1

2

i,j , U
n+ 1

2

i+1,j , U
n+ 1

2

i,j+1, U
n+ 1

2

i+1,j+1

)

(3.9)

where Un
i+ 1

2
,j+ 1

2

is calculated using linear interpolants:

Un
i+ 1

2
,j+ 1

2

=
1

4

(
Un
i,j + Un

i+1,j + Un
i,j+1 + Un

i+1,j+1

)

+
1

16
(δi,j + δi,j+1 − δi+1,j − δi+1,j+1)

+
1

16
(σi,j − σi,j+1 + σi+1,j − σi+1,j+1) (3.10)

and the projection of the solution at time tn+1 on the original grid is obtained as follows

Un+1
i,j =

1

4

(

Un+1
i− 1

2
,j− 1

2

+ Un
i+ 1

2
,j− 1

2

+ Un
i− 1

2
,j+ 1

2

+ Un
i+ 1

2
,j+ 1

2

)

+
1

16

(

δi− 1
2
,j− 1

2
+ δi− 1

2
,j+ 1

2
− δi+ 1

2
,j− 1

2
− δi+ 1

2
,j+ 1

2

)

+
1

16

(

σi− 1
2
,j− 1

2
+ σi− 1

2
,j+ 1

2
− σi+ 1

2
,j− 1

2
− σi+ 1

2
,j+ 1

2

)

(3.11)

Equation (3.10) is derived as follows:

Linear approximation in 2D:

f(x, y) = f(a, b) +
∂f

∂x (a,b)
· (x− a) +

∂f

∂y (a,b)
· (y − b)
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Given Un
i,j , we can approximate the solution U

n(x, y) at the cell Ci,j as follows:

Un
Ci,j
(x, y) = Un

i,j + (x− xi)
δi,j

∆x
+ (y − yj)

σi,j

∆y

We then compute the solution values Un
i+ 1

2
,j+ 1

2

using linear interpolants:

Un
i+ 1

2
,j+ 1

2

=
1

4
UCi,j

(xi + α∆x, yj + β∆y, tn)

+
1

4
UCi+1,j

(xi+1 − α∆x, yj + β∆y, tn)

+
1

4
UCi,j+1

(xi + α∆x, yj+1 − β∆y, tn)

+
1

4
UCi+1,j+1

(xi+1 − α∆x, yj+1 − β∆y, tn)

with α ∈ [0; 12 ] and β ∈ [0;
1
2 ].

But ,

UCi,j
(xi + α∆x, yj + β∆y, tn) = Un

Ci,j
(xi + α∆x, yj + β∆y)

= Un
i,j + (xi + α∆x− xi)

δi,j

∆x

+(yj + β∆y − yj)
σi,j

∆y

UCi,j
(xi + α∆x, yj + β∆y, tn) = Un

i,j + αδi,j + βσi,j

Similarly,

UCi+1,j
(xi+1 − α∆x, yj + β∆y, tn) = Un

i+1,j − αδi+1,j + βσi+1,j

UCi,j+1
(xi + α∆x, yj+1 − β∆y, tn) = Un

i,j+1 + αδi,j+1 − βσi,j+1

UCi+1,j+1
(xi+1 − α∆x, yj+1 − β∆y, tn) = Un

i+1,j+1 − αδi+1,j+1 − βσi+1,j+1
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Replacing in Un
i+ 1

2
,j+ 1

2

, we obtain:

Un
i+ 1

2
,j+ 1

2

=
1

4

(
Un
i,j + αδi,j + βσi,j

)

+
1

4

(
Un
i+1,j − αδi+1,j + βσi+1,j

)

+
1

4

(
Un
i,j+1 + αδi,j+1 − βσi,j+1

)

+
1

4

(
Un
i+1,j+1 − αδi+1,j+1 − βσi+1,j+1

)

Un
i+ 1

2
,j+ 1

2

=
1

4

(
Un
i,j + Un

i+1,j + Un
i,j+1 + Un

i+1,j+1

)

+
α

4
(δi,j + δi,j+1 − δi+1,j − δi+1,j+1)

+
β

4
(σi,j − σi,j+1 + σi+1,j − σi+1,j+1)

Setting α = β = 1
4 ensures second order accuracy in space [13].

Un
i+ 1

2
,j+ 1

2

=
1

4

(
Un
i,j + Un

i+1,j + Un
i,j+1 + Un

i+1,j+1

)

+
1

16
(δi,j + δi,j+1 − δi+1,j − δi+1,j+1)

+
1

16
(σi,j − σi,j+1 + σi+1,j − σi+1,j+1)

Equation (3.11) is derived using a similar strategy.

The discretization of the source term, along with relations (3.8) and (3.9), will lead to the fol-

lowing relations in the quiescent case:

U
n+ 1

2

i,j = Un
i,j (3.12)

and,

Un+1
i+ 1

2
,j+ 1

2

= Un
i+ 1

2
,j+ 1

2

(3.13)
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Quiescent Flow as defined in [10]:

In the case of Shallow Water Equations, the quiescent flow represents the steady state of the water,

ie., when the surface of the liquid is initially at rest, corresponding to an initial velocity of zero,

it remains at rest at any later time. In the quiescent flow case, the unknown U , the flux and the

source term vector reduce to:

U =









h

0

0









, F =









0

1
2gh

2

0









, G =









0

0

1
2gh

2









, S =









0

gh ·
(
− ∂z
∂x

)

gh ·
(

− ∂z
∂y

)









Let’s prove that for all values taken by the parameters si and tj relation (3.12) holds:

According to relation (3.8),

U
n+ 1

2

i,j = Un
i,j +

∆t

2

(

−
F
′

i,j

∆x
−
G
′

i,j

∆y
+ Sni,j

)

• For si = −1 and tj = −1

Sni,j =









S1

S2,L

S3,L









=









0

−ghni,jθ
zi,j−zi−1,j

∆x

−ghni,jθ
zi,j−zi,j−1

∆y









For a steady state we have:

U =









h

0

0









, F =









0

1
2gh

2

0









, G =









0

0

1
2gh

2









with hi,j + zi,j = H = constant
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Therefore, F
′

i,j =









0

ghni,jhx|
n
i,j

0









and G
′

i,j =









0

0

ghni,jhy|
n
i,j









where hx|
n
i,j and hy|

n
i,j denote the derivatives of the water height h with respect to x and

y, respectively.

Equation (3.8) becomes:

U
n+ 1

2

i,j = Un
i,j +

∆t

2

















0

−ghni,j
hx|

n
i,j

∆x

0









+









0

0

−ghni,j
hy|

n
i,j

∆y

















+
∆t

2









0

−ghni,jθ
zi,j−zi−1,j

∆x

−ghni,jθ
zi,j−zi,j−1

∆y









= Un
i,j +

∆t

2









0

−ghni,j

(
hx|

n
i,j

∆x + θ
zi,j−zi−1,j

∆x

)

−ghni,j

(
hy|

n
i,j

∆y + θ
zi,j−zi,j−1

∆y

)









and since si = −1 and tj = −1, then,

hx|
n
i,j = θ

(
hni,j − hni−1,j

)

hy|
n
i,j = θ

(
hni,j − hni,j−1

)
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Replacing hx|
n
i,j and hy|

n
i,j by their values, we obtain:

U
n+ 1

2

i,j = Un
i,j +

∆t

2









0

−ghni,jθ
(
hi,j−hi−1,j

∆x +
zi,j−zi−1,j

∆x

)

−ghni,jθ
(
hi,j−hi,j−1

∆y +
zi,j−zi,j−1

∆y

)









= Un
i,j +

∆t

2









0

−ghni,j
θ
∆x [(hi,j + zi,j)− (hi−1,j + zi−1,j)]

−ghni,j
θ
∆y [(hi,j + zi,j)− (hi,j−1 + zi,j−1)]









But hi,j + zi,j = H = constant for all (xi, yj), therefore,

U
n+ 1

2

i,j = Un
i,j +

∆t

2









0

0

0









= Un
i,j

• In a similar way, we show that U
n+ 1

2

i,j = Un
i,j for any value of si and tj.

For all values of the parameters si and tj , i.e., whether we are using the backward, forward, central

differences, or zero derivative to the case of quiescent flow, the numerical scheme leads to

U
n+ 1

2

i,j = Un
i,j
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Proof of relation (3.13): Un+1
i+ 1

2
,j+ 1

2

= Un
i+ 1

2
,j+ 1

2

According to equation (3.9):

Un+1
i+ 1

2
,j+ 1

2

= Un
i+ 1

2
,j+ 1

2

−
∆t

2∆x

[

F (U
n+ 1

2

i+1,j) + F (U
n+ 1

2

i+1,j+1)− F (U
n+ 1

2

i,j )− F (U
n+ 1

2

i,j+1)
]

−
∆t

2∆y

[

G(U
n+ 1

2

i,j+1) +G(U
n+ 1

2

i+1,j+1)−G(U
n+ 1

2

i,j )−G(U
n+ 1

2

i+1,j)
]

+∆t · S
(

U
n+ 1

2

i,j , U
n+ 1

2

i+1,j , U
n+ 1

2

i,j+1, U
n+ 1

2

i+1,j+1

)

with

S
(

U
n+ 1

2

i,j , U
n+ 1

2

i+1,j , U
n+ 1

2

i,j+1, U
n+ 1

2

i+1,j+1

)

=
1

2









0

−g
hi+1,j+hi,j

2
zi+1,j−zi,j

∆x

−g
hi,j+1+hi,j

2
zi,j+1−zi,j

∆y









+
1

2









0

−g
hi+1,j+1+hi,j+1

2
zi+1,j+1−zi,j+1

∆x

−g
hi+1,j+1+hi+1,j

2
zi+1,j+1−zi+1,j

∆y









For a quiescent flow, the shallow water system is such that

U =









h

0

0









, F =









0

1
2gh

2

0









, G =









0

0

1
2gh

2









We assume that at time t = tn, the steady state requirement is maintained,

i.e., hi,j + zi,j = H = constant
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• Consider the second component:

Un+1
i+ 1

2
,j+ 1

2
|2

= Un
i+ 1

2
,j+ 1

2
|2

−
∆tg

4∆x

[(

h
n+ 1

2

i+1,j

)2

−
(

h
n+ 1

2

i,j

)2

+
(

h
n+ 1

2

i+1,j+1

)2

−
(

h
n+ 1

2

i,j+1

)2
]

+
∆t

2



−g
h
n+ 1

2

i+1,j + h
n+ 1

2

i,j

2
∗
zi+1,j − zi,j

∆x





−
∆t

2



g
h
n+ 1

2

i+1,j+1 + h
n+ 1

2

i,j+1

2
∗
zi+1,j+1 − zi,j+1

∆x





= Un
i+ 1

2
,j+ 1

2
|2

−
∆tg

4∆x

[

(h
n+ 1

2

i+1,j + h
n+ 1

2

i,j )(h
n+ 1

2

i+1,j − h
n+ 1

2

i,j )
]

−
∆tg

4∆x

[

(h
n+ 1

2

i+1,j+1 + h
n+ 1

2

i,j+1)(h
n+ 1

2

i+1,j+1 − h
n+ 1

2

i,j+1)
]

−
∆tg

4∆x

[

(h
n+ 1

2

i+1,j + h
n+ 1

2

i,j )(zi+1,j − zi,j)
]

−
∆tg

4∆x

[

(h
n+ 1

2

i+1,j+1 + h
n+ 1

2

i,j+1)(zi+1,j+1 − zi,j+1)
]

= Un
i+ 1

2
,j+ 1

2
|2
−
∆tg

4∆x

[

(h
n+ 1

2

i+1,j + h
n+ 1

2

i,j )(h
n+ 1

2

i+1,j − h
n+ 1

2

i,j + zi+1,j − zi,j)
]

−
∆tg

4∆x

[

(h
n+ 1

2

i+1,j+1 + h
n+ 1

2

i,j+1)(h
n+ 1

2

i+1,j+1 − h
n+ 1

2

i,j+1 + zi+1,j+1 − zi,j+1)
]

= Un
i+ 1

2
,j+ 1

2
|2

−
∆tg

4∆x

[

(h
n+ 1

2

i+1,j + h
n+ 1

2

i,j )
[

(h
n+ 1

2

i+1,j + zi+1,j)− (h
n+ 1

2

i,j + zi,j)
]]

−
∆tg

4∆x

[

(h
n+ 1

2

i+1,j+1 + h
n+ 1

2

i,j+1)
[

(h
n+ 1

2

i+1,j+1 + zi+1,j+1)− (h
n+ 1

2

i,j+1 + zi,j+1)
]]

But hni,j + zi,j = H = constant for all i, j, and since U
n+ 1

2

i,j = Un
i,j thus

Un+1
i+ 1

2
,j+ 1

2
|2
= Un

i+ 1
2
,j+ 1

2
|2
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• And similarly for the third component:

Un+1
i+ 1

2
,j+ 1

2
|3

= Un
i+ 1

2
,j+ 1

2
|3

−
∆tg

4∆y

[(

h
n+ 1

2

i,j+1

)2

−
(

h
n+ 1

2

i,j

)2

+
(

h
n+ 1

2

i+1,j+1

)2

−
(

h
n+ 1

2

i+1,j

)2
]

+
∆t

2



−g
h
n+ 1

2

i,j+1 + h
n+ 1

2

i,j

2
∗
zi,j+1 − zi,j

∆y





+
∆t

2



−g
h
n+ 1

2

i+1,j+1 + h
n+ 1

2

i+1,j

2
∗
zi+1,j+1 − zi+1,j

∆y





= Un
i+ 1

2
,j+ 1

2
|3

−
∆tg

4∆y

[

(h
n+ 1

2

i,j+1 + h
n+ 1

2

i,j )(h
n+ 1

2

i,j+1 − h
n+ 1

2

i,j )
]

−
∆tg

4∆y

[

(h
n+ 1

2

i+1,j+1 + h
n+ 1

2

i+1,j)(h
n+ 1

2

i+1,j+1 − h
n+ 1

2

i+1,j)
]

−
∆tg

4∆y

[

(h
n+ 1

2

i,j+1 + h
n+ 1

2

i,j )(zi,j+1 − zi,j)
]

−
∆tg

4∆y

[

(h
n+ 1

2

i+1,j+1 + h
n+ 1

2

i+1,j)(zi+1,j+1 − zi+1,j)
]

= Un
i+ 1

2
,j+ 1

2
|3
−
∆tg

4∆y

[

(h
n+ 1

2

i,j+1 + h
n+ 1

2

i,j )(h
n+ 1

2

i,j+1 − h
n+ 1

2

i,j + zi,j+1 − zi,j)
]

−
∆tg

4∆y

[

(h
n+ 1

2

i+1,j+1 + h
n+ 1

2

i+1,j)(h
n+ 1

2

i+1,j+1 − h
n+ 1

2

i+1,j + zi+1,j+1 − zi+1,j)
]

= Un
i+ 1

2
,j+ 1

2
|3
−
∆tg

4∆y

[

(h
n+ 1

2

i,j+1 + h
n+ 1

2

i,j )
[

(h
n+ 1

2

i,j+1 + zi,j+1)− (h
n+ 1

2

i,j + zi,j)
]]

−
∆tg

4∆y

[

(h
n+ 1

2

i+1,j+1 + h
n+ 1

2

i+1,j)
[

(h
n+ 1

2

i+1,j+1 + zi+1,j+1)− (h
n+ 1

2

i+1,j + zi+1,j)
]]

But hni,j + zi,j = H = constant for all i, j, and since U
n+ 1

2

i,j = Un
i,j

Un+1
i+ 1

2
,j+ 1

2
|3
= Un

i+ 1
2
,j+ 1

2
|3

So we conclude that, in the steady state,

Un+1
i+ 1

2
,j+ 1

2

= Un
i+ 1

2
,j+ 1

2
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3.2 2D Balanced Central NT Scheme: The 2D Interface Type Reformulation

As in 1D, the Interface Type reformulation is a particular adaptation of the Balanced Central NT

Scheme. The bottom topography is defined at the interfaces of each cell Ci,j , ie., zi+ 1
2
,j+ 1

2
is defined

at (xi+ 1
2
, yj+ 1

2
).

At the cell centers, we define

zi,j =
zi− 1

2
,j− 1

2
+ zi− 1

2
,j+ 1

2
+ zi+ 1

2
,j− 1

2
+ zi+ 1

2
,j+ 1

2

4

The interface type reformulation is a particular adaptation of the well balanced central scheme

derived previously. Assuming that for a quiescent flow, the numerical solution Un
i,j satisfies the

steady state requirement at time tn, the numerical solution Un+1
i,j is calculated as follows:

First we calculate the solution at the intermediate time tn+
1
2 :

U
n+ 1

2

i,j = Un
i,j +

∆t

2

(

−
F
′

i,j

∆x
−
G
′

i,j

∆y
+ Sni,j

)

where

Sni,j =









0

−ghni,j
∂z
∂x

−ghni,j
∂z
∂y









and, next we calculate the solution at time tn+1 on the staggered grid as follows

Un+1
i+ 1

2
,j+ 1

2

= Un
i+ 1

2
,j+ 1

2

−
∆t

2∆x

[

F (U
n+ 1

2

i+1,j) + F (U
n+ 1

2

i+1,j+1)− F (U
n+ 1

2

i,j )− F (U
n+ 1

2

i,j+1)
]

−
∆t

2∆y

[

G(U
n+ 1

2

i,j+1) +G(U
n+ 1

2

i+1,j+1)−G(U
n+ 1

2

i,j )−G(U
n+ 1

2

i+1,j)
]

+∆t · S
(

U
n+ 1

2

i,j , U
n+ 1

2

i+1,j , U
n+ 1

2

i,j+1, U
n+ 1

2

i+1,j+1

)
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with

S
(

U
n+ 1

2

i,j , U
n+ 1

2

i+1,j , U
n+ 1

2

i,j+1, U
n+ 1

2

i+1,j+1

)

=
1

2









0

−g
hi+1,j+hi,j

2
zi+1,j−zi,j

∆x

−g
hi,j+1+hi,j

2
zi,j+1−zi,j

∆y









+
1

2









0

−g
hi+1,j+1+hi,j+1

2
zi+1,j+1−zi,j+1

∆x

−g
hi+1,j+1+hi+1,j

2
zi+1,j+1−zi+1,j

∆y









The adaptation of the surface gradient method or the interface type reformulation is based on a

particular projection of the numerical solution on the original grid and on the staggered one.

The hu and hv components are computed by using exactly the Well-Balanced scheme derived pre-

viously. However, a special approximation of the water depth h at each step of the algorithm is

required.

h
n+ 1

2

i,j and hn+1
i+ 1

2
,j+ 1

2

are computed using equations (3.7) and (3.8). Nevertheless, in order to ap-

proximate hn
i+ 1

2
,j+ 1

2

and hn+1i,j , equations (3.9) and (3.10) need to be updated using the Surface

Gradient Method discussed in [10].

Using the two-dimensional unstaggered central scheme, the water height h and the bottom topog-

raphy z are considered to be linear inside each original control volume Ci,j .

In this interface-type reformulation, the linearization of the water height is made indirectly by first

linearizing the water level H(x, y), then using h(x, y) = H(x, y)− z(x, y).

H(x, y) = Hi,j +Hx|i,j(x−xi)+Hy|i,j(y− yj) for all (x, y) ∈ Ci,j with Hx and Hy computed using

a slope limiting procedure.

Hn
i,j = hni,j + zi,j

This will lead to:

hx|
n
i,j = Hx|

n
i,j − zx|i,j

and

hy|
n
i,j = Hy|

n
i,j − zy|i,j
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ie., using the cental difference,

hx|i,j = Hx|i,j −
1

∆x

(
zi,j + zi+1,j

2
−
zi−1,j + zi,j

2

)

(3.14)

hy|i,j = Hy|i,j −
1

∆y
(

(
zi,j + zi,j+1

2
−
zi,j−1 + zi,j

2

)

(3.15)

Applying relation (3.10) to h results in:

hn
i+ 1

2
,j+ 1

2

=
1

4

(
hni,j + hni+1,j + hni,j+1 + hni+1,j+1

)

+
α∆x

4

(
hx|i,j + hx|i,j+1 − hx|i+1,j − hx|i+1,j+1

)

+
β∆y

4

(
hy|i,j − hy|i,j+1 + hy|i+1,j − hy|i+1,j+1

)
(3.16)
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Equations (3.13), (3.14) and (3.15) lead to:

hn
i+ 1

2
,j+ 1

2

=
1

4

(
hni,j + hni+1,j + hni,j+1 + hni+1,j+1

)

+
α∆x

4



Hn
x|i,j −

z
i+ 1

2
,j− 1

2

+z
i+ 1

2
,j+ 1

2

2 −
z

i− 1
2

,j− 1
2

+z
i− 1

2
,j+ 1

2

2

∆x





+
α∆x

4



Hn
x|i,j+1 −

z
i+ 1

2
,j+ 1

2

+z
i+ 1

2
,j+ 3

2

2 −
z

i− 1
2

,j+ 1
2

+z
i− 1

2
,j+ 3

2

2

∆x





−
α∆x

4



Hn
x|i+1,j −

z
i+ 3

2
,j− 1

2

+z
i+ 3

2
,j+ 1

2

2 −
z

i+ 1
2

,j− 1
2

+z
i+ 1

2
,j+ 1

2

2

∆x





−
α∆x

4



Hn
x|i+1,j+1 −

z
i+ 3

2
,j+ 1

2

+z
i+ 3

2
,j+ 3

2

2 −
z

i+ 1
2

,j+ 1
2

+z
i+ 1

2
,j+ 3

2

2

∆x





+
β∆y

4



Hy|i,j −

z
i− 1

2
,j+ 1

2

+z
i+ 1

2
,j+ 1

2

2 −
z

i− 1
2

,j− 1
2

+z
i+ 1

2
,j− 1

2

2

∆y





+
β∆y

4



Hn
y|i+1,j −

z
i+ 1

2
,j+ 1

2

+z
i+ 3

2
,j+ 1

2

2 −
z

i+ 1
2

,j− 1
2

+z
i+ 3

2
,j− 1

2

2

∆y





−
β∆y

4



Hn
y|i,j+1 −

z
i− 1

2
,j+ 3

2

+z
i+ 1

2
,j+ 3

2

2 −
z

i− 1
2

,j+ 1
2

+z
i+ 1

2
,j+ 1

2

2

∆y





−
β∆y

4



Hn
y|i+1,j+1 −

z
i+ 1

2
,j+ 3

2

+z
i+ 3

2
,j+ 3

2

2 −
z

i+ 1
2

,j+ 1
2

+z
i+ 3

2
,j+ 1

2

2

∆y



 (3.17)

The water depth hn+1i,j at time tn+1 on the original grid is approximated as follows:

We first note that on the original control volumes, the relation Hi,j = hi,j + zi,j applies, while

on the staggered control volumes, a similar relation holds

H̃i+ 1
2
,j+ 1

2
= hi+ 1

2
,j+ 1

2
+ z̃i+ 1

2
,j+ 1

2
(3.18)
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where H̃i+ 1
2
,j+ 1

2
and z̃i+ 1

2
,j+ 1

2
are defined differently due to the fact that the riverbed bottom

z(x, y) is linear inside the original control volumes Ci,j but not inside the staggered control volumes

Di+ 1
2
,j+ 1

2
.

Therefore, define z̃i+ 1
2
,j+ 1

2
as follows:

z̃i+ 1
2
,j+ 1

2
= zi+ 1

2
,j+ 1

2
−
1

2

(

zi+ 1
2
,j+ 1

2
−
zi,j + zi+1,j + zi,j+1 + zi+1,j+1

4

)

(3.19)

H̃i+ 1
2
,j+ 1

2
will be defined accordingly; leading to:

hn+1
i+ 1

2
,j+ 1

2

= H̃
n+1

i+ 1
2
,j+ 1

2
− z̃i+ 1

2
,j+ 1

2

The partial derivative can be now calculated as follows

hi+ 1
2
,j+ 1

2
|x = Hi+ 1

2
,j+ 1

2
|x −

z
i+ 1

2
,j− 1

2

+z
i+ 1

2
,j+ 1

2

2 −
z

i− 1
2

,j− 1
2

+z
i− 1

2
,j+ 1

2

2

∆x
(3.20)

and

hi+ 1
2
,j+ 1

2
|y = Hi+ 1

2
,j+ 1

2
|y −

z
i− 1

2
,j+ 1

2

+z
i+ 1

2
,j+ 1

2

2 −
z

i− 1
2

,j− 1
2

+z
i+ 1

2
,j− 1

2

2

∆y
(3.21)

The discrete derivatives Hi+ 1
2
,j+ 1

2
|x and Hi+ 1

2
,j+ 1

2
|y are derived from the staggered values H̃i+ 1

2
,j+ 1

2

using a slope limiting procedure.
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Finally, using relations (3.19) and (3.20) in equation (3.11) for h:

hn+1i,j =
1

4

(

hn+1
i− 1

2
,j− 1

2

+ hn+1
i+ 1

2
,j− 1

2

+ hn+1
i− 1

2
,j+ 1

2

+ hn+1
i+ 1

2
,j+ 1

2

)

+
α∆x

4



Hn+1
x|i− 1

2
,j− 1

2

−

z
i− 1

2
,j− 1

2

+z
i+ 1

2
,j− 1

2

2 −
z

i− 3
2

,j− 1
2

+z
i− 1

2
,j− 1

2

2

∆x





+
α∆x

4



Hn+1
x|i− 1

2
,j+ 1

2

−

z
i− 1

2
,j+ 1

2

+z
i+ 1

2
,j+ 1

2

2 −
z

i− 3
2

,j+ 1
2

+z
i− 1

2
,j+ 1

2

2

∆x





−
α∆x

4



Hn+1
x|i+ 1

2
,j− 1

2

−

z
i+ 1

2
,j− 1

2

+z
i+ 3

2
,j− 1

2

2 −
z

i− 1
2

,j− 1
2

+z
i+ 1

2
,j− 1

2

2

∆x





−
α∆x

4



Hn+1
x|i+ 1

2
,j+ 1

2

−

z
i+ 1

2
,j+ 1

2

+z
i+ 3

2
,j+ 1

2

2 −
z

i− 1
2

,j+ 1
2

+z
i+ 1

2
,j+ 1

2

2

∆x





+
β∆y

4



Hn+1
y|i− 1

2
,j− 1

2

−

z
i− 1

2
,j− 1

2

+z
i− 1

2
,j+ 1

2

2 −
z

i− 1
2

,j− 3
2

+z
i− 1

2
,j− 1

2

2

∆y





+
β∆y

4



Hn+1
y|i+ 1

2
,j− 1

2

−

z
i+ 1

2
,j− 1

2

+z
i+ 1

2
,j+ 1

2

2 −
z

i+ 1
2

,j− 3
2

+z
i+ 1

2
,j− 1

2

2

∆y





−
β∆y

4



Hn+1
y|i− 1

2
,j+ 1

2

−

z
i− 1

2
,j+ 1

2

+z
i− 1

2
,j+ 3

2

2 −
z

i− 1
2

,j− 1
2

+z
i− 1

2
,j+ 1

2

2

∆y





−
β∆y

4



Hn+1
y|i+ 1

2
,j+ 1

2

−

z
i+ 1

2
,j+ 1

2

+z
i+ 1

2
,j+ 3

2

2 −
z

i+ 1
2

,j− 1
2

+z
i+ 1

2
,j+ 1

2

2

∆y



 (3.22)

Proposition:

The 2D Interface-Type (equations (3.7), (3.8), (3.17), (3.22)) maintains the Steady State Condition

in the way it moves from the original cells to the staggered ones, and vice versa

Proof:

In order to prove that the transformations between the original and the staggered grid main-

tain the steady state condition, we will use the following two relations (3.17) and (3.22) from the
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2D-Interface-Type reformulation.

The main idea consists in replacing relation (3.16) in (3.21) by using the fact that in the steady

state, hn+1
i+ 1

2
,j+ 1

2

= hn
i+ 1

2
,j+ 1

2

as proved in equation (3.12).

• Simplify equation (3.22) in case of a steady state:

Let A be the term involving the x-derivatives and B the terms involving the y-derivatives

in equation (3.22).

The reduction of A and B uses the fact that in the steady state,

Hx = Hy = 0.

A =
α∆x

2 ∗ 4∆x

[

−(zi− 1
2
,j− 1

2
+ zi+ 1

2
,j− 1

2
) + (zi− 3

2
,j− 1

2
+ zi− 1

2
,j− 1

2
)
]

+
α∆x

2 ∗ 4∆x

[

−(zi− 1
2
,j+ 1

2
+ zi+ 1

2
,j+ 1

2
) + (zi− 3

2
,j+ 1

2
+ zi− 1

2
,j+ 1

2
)
]

+
α∆x

2 ∗ 4∆x

[

(zi+ 1
2
,j− 1

2
+ zi+ 3

2
,j− 1

2
)− (zi− 1

2
,j− 1

2
+ zi+ 1

2
,j− 1

2
)
]

+
α∆x

2 ∗ 4∆x

[

(zi+ 1
2
,j+ 1

2
+ zi+ 3

2
,j+ 1

2
)− (zi− 1

2
,j+ 1

2
+ zi+ 1

2
,j+ 1

2
)
]

=
α

8

[

zi− 3
2
,j− 1

2
+ zi− 1

2
,j− 1

2
+ zi− 3

2
,j+ 1

2
+ zi− 1

2
,j+ 1

2

]

+
α

8

[

zi+ 1
2
,j− 1

2
+ zi+ 3

2
,j− 1

2
+ zi+ 1

2
,j+ 1

2
+ zi+ 3

2
,j+ 1

2

]

−
α

8

[

zi− 1
2
,j− 1

2
+ zi+ 1

2
,j− 1

2
+ zi− 1

2
,j+ 1

2
+ zi+ 1

2
,j+ 1

2

]

−
α

8

[

zi− 1
2
,j− 1

2
+ zi+ 1

2
,j− 1

2
+ zi− 1

2
,j+ 1

2
+ zi+ 1

2
,j+ 1

2

]

=
α

8
(4zi−1,j + 4zi+1,j − 8zi,j)

=
α

2
(zi−1,j + zi+1,j − 2zi,j)
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B =
β∆y

2 ∗ 4∆y

[

−(zi− 1
2
,j− 1

2
+ zi− 1

2
,j+ 1

2
) + (zi− 1

2
,j− 3

2
+ zi− 1

2
,j− 1

2
)
]

+
β∆y

2 ∗ 4∆y

[

−(zi+ 1
2
,j− 1

2
+ zi+ 1

2
,j+ 1

2
) + (zi+ 1

2
,j− 3

2
+ zi+ 1

2
,j− 1

2
)
]

+
β∆y

2 ∗ 4∆y

[

(zi− 1
2
,j+ 1

2
+ zi− 1

2
,j+ 3

2
)− (zi− 1

2
,j− 1

2
+ zi− 1

2
,j+ 1

2
)
]

+
β∆y

2 ∗ 4∆y

[

(zi+ 1
2
,j+ 1

2
+ zi+ 1

2
,j+ 3

2
)− (zi+ 1

2
,j− 1

2
+ zi+ 1

2
,j+ 1

2
)
]

=
β

8

[

zi− 1
2
,j− 3

2
+ zi− 1

2
,j− 1

2
+ zi+ 1

2
,j− 3

2
+ zi+ 1

2
,j− 1

2

]

+
β

8

[

zi− 1
2
,j+ 1

2
+ zi− 1

2
,j+ 3

2
+ zi+ 1

2
,j+ 1

2
+ zi+ 1

2
,j+ 3

2

]

−
β

8

[

zi− 1
2
,j− 1

2
+ zi− 1

2
,j+ 1

2
+ zi+ 1

2
,j− 1

2
+ zi+ 1

2
,j+ 1

2

]

−
β

8

[

zi− 1
2
,j− 1

2
+ zi− 1

2
,j+ 1

2
+ zi+ 1

2
,j− 1

2
+ zi+ 1

2
,j+ 1

2

]

=
β

8
(4zi,j−1 + 4zi,j+1 − 8zi,j)

=
β

2
(zi,j−1 + zi,j+1 − 2zi,j)

For α = β = 1
4 , equation (3.22) becomes:

hn+1i,j =
1

4

(

hn+1
i− 1

2
,j− 1

2

+ hn+1
i+ 1

2
,j− 1

2

+ hn+1
i− 1

2
,j+ 1

2

+ hn+1
i+ 1

2
,j+ 1

2

)

+
1

8
(zi−1,j + zi+1,j + zi,j−1 + zi,j+1 − 4zi,j)

But according to equation (3.13), hn+1
i+ 1

2
,j+ 1

2

= hn
i+ 1

2
,j+ 1

2

, which leads to

hn+1i,j =
1

4

(

hn
i− 1

2
,j− 1

2

+ hn
i+ 1

2
,j− 1

2

+ hn
i− 1

2
,j+ 1

2

+ hn
i+ 1

2
,j+ 1

2

)

+
1

8
(zi−1,j + zi+1,j + zi,j−1 + zi,j+1 − 4zi,j) (3.23)



3. CENTRAL SCHEMES FOR THE TWO-DIMENSIONAL SHALLOW WATER EQUATIONS 49

• Simplify equation (3.16) in case of a steady state:

In case of a steady state, Hx = Hy = 0, so we obtain:

hn
i+ 1

2
,j+ 1

2

=
1

4

(
hni,j + hni+1,j + hni,j+1 + hni+1,j+1

)

+
α∆x

4



−

z
i+ 1

2
,j− 1

2

+z
i+ 1

2
,j+ 1

2

2 −
z

i− 1
2

,j− 1
2

+z
i− 1

2
,j+ 1

2

2

∆x





+
α∆x

4



−

z
i+ 1

2
,j+ 1

2

+z
i+ 1

2
,j+ 3

2

2 −
z

i− 1
2

,j+ 1
2

+z
i− 1

2
,j+ 3

2

2

∆x





−
α∆x

4



−

z
i+ 3

2
,j− 1

2

+z
i+ 3

2
,j+ 1

2

2 −
z

i+ 1
2

,j− 1
2

+z
i+ 1

2
,j+ 1

2

2

∆x





−
α∆x

4



−

z
i+ 3

2
,j+ 1

2

+z
i+ 3

2
,j+ 3

2

2 −
z

i+ 1
2

,j+ 1
2

+z
i+ 1

2
,j+ 3

2

2

∆x





+
β∆y

4



−

z
i− 1

2
,j+ 1

2

+z
i+ 1

2
,j+ 1

2

2 −
z

i− 1
2

,j− 1
2

+z
i+ 1

2
,j− 1

2

2

∆y





+
β∆y

4



−

z
i+ 1

2
,j+ 1

2

+z
i+ 3

2
,j+ 1

2

2 −
z

i+ 1
2

,j− 1
2

+z
i+ 3

2
,j− 1

2

2

∆y





−
β∆y

4



−

z
i− 1

2
,j+ 3

2

+z
i+ 1

2
,j+ 3

2

2 −
z

i− 1
2

,j+ 1
2

+z
i+ 1

2
,j+ 1

2

2

∆y





−
β∆y

4



−

z
i+ 1

2
,j+ 3

2

+z
i+ 3

2
,j+ 3

2

2 −
z

i+ 1
2

,j+ 1
2

+z
i+ 3

2
,j+ 1

2

2

∆y





But

zi+ 1
2
,j− 1

2
+ zi+ 1

2
,j+ 1

2

2
−
zi− 1

2
,j− 1

2
+ zi− 1

2
,j+ 1

2

2
= 2

(
zi+ 1

2
,j− 1

2
+ zi+ 1

2
,j+ 1

2

2
− zi,j

)

zi+ 1
2
,j+ 1

2
+ zi+ 1

2
,j+ 3

2

2
−
zi− 1

2
,j+ 1

2
+ zi− 1

2
,j+ 3

2

2
= 2

(
zi+ 1

2
,j+ 1

2
+ zi+ 1

2
,j+ 3

2

2
− zi,j+1

)

zi+ 3
2
,j− 1

2
+ zi+ 3

2
,j+ 1

2

2
−
zi+ 1

2
,j− 1

2
+ zi+ 1

2
,j+ 1

2

2
= 2

(

zi+1,j −
zi+ 1

2
,j− 1

2
+ zi+ 1

2
,j+ 1

2

2

)
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zi+ 3
2
,j+ 1

2
+ zi+ 3

2
,j+ 3

2

2
−
zi+ 1

2
,j+ 1

2
+ zi+ 1

2
,j+ 3

2

2
= 2

(

zi+1,j+1 −
zi+ 1

2
,j+ 1

2
+ zi+ 1

2
,j+ 3

2

2

)

and

zi− 1
2
,j+ 1

2
+ zi+ 1

2
,j+ 1

2

2
−
zi− 1

2
,j− 1

2
+ zi+ 1

2
,j− 1

2

2
= 2

(
zi− 1

2
,j+ 1

2
+ zi+ 1

2
,j+ 1

2

2
− zi,j

)

zi+ 1
2
,j+ 1

2
+ zi+ 3

2
,j+ 1

2

2
−
zi+ 1

2
,j− 1

2
+ zi+ 3

2
,j− 1

2

2
= 2

(
zi+ 1

2
,j+ 1

2
+ zi+ 3

2
,j+ 1

2

2
− zi+1,j

)

zi− 1
2
,j+ 3

2
+ zi+ 1

2
,j+ 3

2

2
−
zi− 1

2
,j+ 1

2
+ zi+ 1

2
,j+ 1

2

2
= 2

(

zi,j+1 −
zi− 1

2
,j+ 1

2
+ zi+ 1

2
,j+ 1

2

2

)

zi+ 1
2
,j+ 3

2
+ zi+ 3

2
,j+ 3

2

2
−
zi+ 1

2
,j+ 3

2
+ zi+ 3

2
,j+ 1

2

2
= 2

(

zi+1,j+1 −
zi+ 1

2
,j+ 1

2
+ zi+ 3

2
,j+ 1

2

2

)
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Therefore,

hn
i+ 1

2
,j+ 1

2

=
1

4

(
hni,j + hni+1,j + hni,j+1 + hni+1,j+1

)

+
α

4

[

−2

(
zi+ 1

2
,j− 1

2
+ zi+ 1

2
,j+ 1

2

2
− zi,j

)]

+
α

4

[

−2

(
zi+ 1

2
,j+ 1

2
+ zi+ 1

2
,j+ 3

2

2
− zi,j+1

)]

+
α

4

[

2

(

zi+1,j −
zi+ 1

2
,j− 1

2
+ zi+ 1

2
,j+ 1

2

2

)]

+
α

4

[

2

(

zi+1,j+1 −
zi+ 1

2
,j+ 1

2
+ zi+ 1

2
,j+ 3

2

2

)]

+
β

4

[

−2

(
zi− 1

2
,j+ 1

2
+ zi+ 1

2
,j+ 1

2

2
− zi,j

)]

+
β

4

[

−2

(
zi+ 1

2
,j+ 1

2
+ zi+ 3

2
,j+ 1

2

2
− zi+1,j

)]

+
β

4

[

2

(

zi,j+1 −
zi− 1

2
,j+ 1

2
+ zi+ 1

2
,j+ 1

2

2

)]

+
β

4

[

2

(

zi+1,j+1 −
zi+ 1

2
,j+ 1

2
+ zi+ 3

2
,j+ 1

2

2

)]

=
1

4

(
hni,j + hni+1,j + hni,j+1 + hni+1,j+1

)

+
α

4
(2zi,j + 2zi,j+1 + 2zi+1,j + 2zi+1,j+1)

−
α

4

(

2zi+ 1
2
,j− 1

2
+ 4zi+ 1

2
,j+ 1

2
+ 2zi+ 1

2
,j+ 3

2

)

+
β

4
(2zi,j + 2zi+1,j + 2zi,j+1 + 2zi+1,j+1)

−
β

4

(

2zi− 1
2
,j+ 1

2
+ 4zi+ 1

2
,j+ 1

2
+ 2zi+ 3

2
,j+ 1

2

)
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For α = β = 1
4 ,

hn
i+ 1

2
,j+ 1

2

=
1

4

(
hni,j + hni+1,j + hni,j+1 + hni+1,j+1

)

+
1

4
(zi,j + zi+1,j + zi,j+1 + zi+1,j+1)

−
1

8

(

4zi+ 1
2
,j+ 1

2
+ zi+ 1

2
,j− 1

2
+ zi+ 1

2
,j+ 3

2
+ zi− 1

2
,j+ 1

2
+ zi+ 3

2
,j+ 1

2

)

= H

−
1

8

(

4zi+ 1
2
,j+ 1

2
+ zi+ 1

2
,j− 1

2
+ zi+ 1

2
,j+ 3

2
+ zi− 1

2
,j+ 1

2
+ zi+ 3

2
,j+ 1

2

)

(3.24)

with H = hi,j + zi,j for all i, j.

Similarly,

hn
i− 1

2
,j− 1

2

= H −
1

8

(

4zi− 1
2
,j− 1

2
+ zi− 1

2
,j− 3

2
+ zi− 1

2
,j+ 1

2
+ zi− 3

2
,j− 1

2
+ zi+ 1

2
,j− 1

2

)

hn
i+ 1

2
,j− 1

2

= H −
1

8

(

4zi+ 1
2
,j− 1

2
+ zi+ 1

2
,j− 3

2
+ zi+ 1

2
,j+ 1

2
+ zi− 1

2
,j− 1

2
+ zi+ 3

2
,j− 1

2

)

hn
i− 1

2
,j+ 1

2

= H −
1

8

(

4zi− 1
2
,j+ 1

2
+ zi− 1

2
,j− 1

2
+ zi− 1

2
,j+ 3

2
+ zi− 3

2
,j+ 1

2
+ zi+ 1

2
,j+ 1

2

)

• Replace hn
i− 1

2
,j− 1

2

, hn
i+ 1

2
,j− 1

2

, hn
i− 1

2
,j+ 1

2

, hn
i+ 1

2
,j+ 1

2

by their values in equation (3.22):
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hn+1i,j =
1

4
(H +H +H +H)

+
1

4 ∗ 8

(

4zi+ 1
2
,j+ 1

2
+ zi+ 1

2
,j− 1

2
+ zi+ 1

2
,j+ 3

2
+ zi− 1

2
,j+ 1

2
+ zi+ 3

2
,j+ 1

2

)

+
1

4 ∗ 8

(

4zi− 1
2
,j− 1

2
+ zi− 1

2
,j− 3

2
+ zi− 1

2
,j+ 1

2
+ zi− 3

2
,j− 1

2
+ zi+ 1

2
,j− 1

2

)

+
1

4 ∗ 8

(

4zi+ 1
2
,j− 1

2
+ zi+ 1

2
,j− 3

2
+ zi+ 1

2
,j+ 1

2
+ zi− 1

2
,j− 1

2
+ zi+ 3

2
,j− 1

2

)

+
1

4 ∗ 8

(

4zi− 1
2
,j+ 1

2
+ zi− 1

2
,j− 1

2
+ zi− 1

2
,j+ 3

2
+ zi− 3

2
,j+ 1

2
+ zi+ 1

2
,j+ 1

2

)

+
1

8
(zi−1,j + zi+1,j + zi,j−1 + zi,j+1 − 4zi,j)

= H −
1

8
(zi−1,j + zi+1,j + zi,j−1 + zi,j+1 + 4zi,j)

+
1

8
(zi−1,j + zi+1,j + zi,j−1 + zi,j+1 − 4zi,j)

= H − zi,j

= hni,j + zi,j − zi,j

= hni,j

(using: zi,j =
z

i− 1
2

,j− 1
2

+z
i+ 1

2
,j− 1

2

+z
i− 1

2
,j+ 1

2

+z
i+ 1

2
,j+ 1

2

4 and hni,j + zi,j = H)

We finally prove that H̃i+ 1
2
,j+ 1

2
is maintained constant in the quiescent case:

Using equations (3.19) and (3.24) in equation (3.18) we obtain:

H̃i+ 1
2
,j+ 1

2
= hi+ 1

2
,j+ 1

2
+ z̃i+ 1

2
,j+ 1

2

= H −
1

8

(

4zi+ 1
2
,j+ 1

2
+ zi+ 1

2
,j− 1

2
+ zi+ 1

2
,j+ 3

2
+ zi− 1

2
,j+ 1

2
+ zi+ 3

2
,j+ 1

2

)

+zi+ 1
2
,j+ 1

2
−
1

2

(

zi+ 1
2
,j+ 1

2
−
zi,j + zi+1,j + zi,j+1 + zi+1,j+1

4

)

= H

End of Proof
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Concluding Remark:

The Stability condition is defined as in [15] by: ∆t = min(∆t1,∆t2),

with ∆t1 = CFL∗ ∆x
max(max(LF )) and ∆t2 = CFL∗ ∆y

max(max(LG)) where LF and LG are the matrices

containing respectively the eigen values of ∂F
∂U
and ∂G

∂U
.

In our computations, we considered a CFL number equal to 0.485.



4. NUMERICAL EXPERIMENTS

4.1 One-dimensional numerical experiments:

4.1.1 Toro’s problem

This first example features a constant riverbed (z(x) = 0) with a discontinous initial condition as

discussed in [13]. The computational domain [0,40] is discretized using 600 gridpoints and the final

solution is calculated at time t = 2 using the interface-type reformulation. The initial condition for

h is given by

h(x, 0) =







2.5 , if 17.5 < x < 22.5 ,

0.5 , otherwise .

with initial velocity v(x, 0) = 0.

The water height is shown in figure 4.1 and compared to the one returned by the numerical base

scheme derived in [13]. For this problem, the numerical base scheme is capable to generate the

exact profile without additional treatment, since the source term is set to zero.

4.1.2 Dam Break over a rectangular bump

The second example features a rapidly varying flow over a discontinuous bottom as discussed in

[10]. The computational domain is [0;1500] discretized using 600 grid points. The computations

are performed at t = 15s.
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Fig. 4.1: Toro’s problem: Water height at t = 2 using the MC-θ limiter for the Base scheme and Interface-
type reformulation.

The discontinuous riverbed is given with

z(x) =







8 , if |x− 1500
2 | <

1500
4 ,

0 , otherwise .

The initial water level is:

H(x) =







20 , if x < 1500
2 ,

15 , otherwise .

with v(x, 0) = 0. The nonphysical oscillations returned by the well-balanced algorithm at the points

of discontinuity of the riverbed disappear whenever the interface type reformulation is considered

(figures 4.2, 4.3) showing, numerically, that the interface-type reformulation eliminates the non

physical oscillations whenever the riverbed is discontinuous.

Figure 4.4 shows a comparison of the numerical results returned by the interface type reformu-
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Fig. 4.2: Dam Break problem: Water height at t = 15 using the well-balanced algorithm and the Interface-
type reformulation
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Fig. 4.3: Dam Break problem: Water height using the well-balanced algorithm and the Interface-type
reformulation (zoomed)
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lation using two different limiting procedures: MinMod and MC-θ (θ = 1.5). As expected, MC-θ

returns sharper results, showing that our extension of the discretization of the source term from

the MinMod limiter to the MC-θ limiter resulted in less diffusive solutions.

0 500 1000 1500
14

15

16

17

18

19

20

21
MinMod vs MC−θ for tf = 15

MinMod
MCtheta

Fig. 4.4: Dam Break problem: comparison of the limiters for θ = 1.5

The validation of the method is made by finding the numerical solutions for different grid

spacings: ∆x, ∆x2 , and
∆x
4 . Considering the solution returned for

∆x
4 to be the most precise

solution, compare the two other results to it. Concluding that our numerical solution does not

depend on ∆x results in the validation of the method used.

4.1.3 Quiescent flow over an irregular riverbed

We consider the case of a gradually varied flow. The riverbed is defined through a set of points

in [14] and in section 3.1 of [10]. The computational domain is [0,1500] and the computations are

performed with ∆x = 7.5. The water is initially at rest with a height of 12m. The right boundary

condition is v(1500, t) = 0.

Figures 4.8 and 4.9 show the numerical results returned by the interface-type reformulation
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Fig. 4.5: Dam Break problem: validation of the method. Water height for different grid spacings with
∆x = 5
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Fig. 4.6: Dam Break problem: validation of the method. Water height for different grid spacings with
∆x = 5 (zoomed)
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Fig. 4.7: Dam Break problem: validation of the method. Water height for different grid spacings with
∆x = 5 (more zoomed)

compared to those returned by the well-balanced algorithm. The nonphysical oscillations showed

by the well-balanced algorithm at the right boundary are treated by the interface type algorithm,

proving that the modified scheme maintains the steady state condition, even when the riverbed is

irregular.

4.2 Two-dimensional numerical experiments

4.2.1 Toro’s problem

This first two-dimensional example features a non variable riverbed (z(x, y) = 0) with a discontinous

initial condition as discussed in [13]. The computational domain [0,40]×[0,40] is discretized using

1002 gridpoints. The initial conditions are u(x, y, 0) = 0, v(x, y, 0) = 0, and

h(x, y, 0) =







2.5 , if 17.5 < x < 22.5 ,

0.5 , otherwise .

Figure 4.10 shows the profile of the water height at the final time t = 4.7s obtained using the

Interface-type reformulation; and figure 4.11 shows a plot of the height h along the line y = 10
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Fig. 4.8: Quiescent flow: comparison of results for t = 100s using the MC-θ limiter for the well-balanced
algorithm and the interface-type reformulation
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Fig. 4.9: Steady state problem: comparison of results for t = 100s using the MC-θ limiter for the well-
balanced algorithm and the interface-type reformulation (zoomed)
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obtained using the base scheme (solid line) and the well balanced and interface-type scheme (dotted

line). The results are in good agreement with the ones shown in [13], in which the two-dimensional

shallow water equations are numerically solved using the base scheme.
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Toro’s problem with zero source term using MC−θ limiter at t = 4.7

Fig. 4.10: Two-Dimensional Toro’s problem at t=4.7s, 100x100 gridpoints, MC-θ
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Fig. 4.11: two-dimensional Toro’s problem: comparison of the Interface-type scheme with the Base scheme
for y = 10, 100×100 gridpoints, MC-θ
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4.2.2 Dam Break over a rectangular bump

This second problem is a two-dimensional extension of the rapidly varying flow over a discontinuous

bottom discussed in [10].

The computational domain [0;1500]x[0;1500] is discretized using 600×11 gridpoints and the com-

putations are performed at the final time t = 15s.

The discontinuous riverbed is defined by

z(x, y) =







8, if |x− 1500
2 | <

1500
4 ,

0, otherwise .

The initial water level is defined as follows:

H(x, y, 0) =







20, if x < 1500
2 ,

15, otherwise .

with u(x, y, 0) = v(x, y, 0) = 0.

The nonphysical oscillations returned by the well-balanced algorithm at the points of discontinuity

of the riverbed disappear whenever the interface type reformulation is considered (figure 4.13),

showing that the derived two-dimensional interface-type scheme reduces the oscillations returned

at the discontinuities in case of a discontinuous riverbed.

The method is validated by comparing it to the one-dimensional interface-type reformulation derived

in chapter 2, which was also derived in [10]. The cross sectional result of the water height returned

by the two-dimensional interface-type scheme in figure 4.14 is in great agreement with the water

height obtained from the one-dimensional scheme, validating the two-dimensional extension of the

scheme.
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Fig. 4.12: Two-Dimensional Dam Break over a Rectangular Bump at t=15, 600×11 gridpoints, MC-θ
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Fig. 4.13: Two-Dimensional Dam Break problem: Well-Balanced VS Interface-type
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Fig. 4.14: Dam Break problem over a rectangular bump: Interface-Type, 1D VS 2D

4.2.3 Dam Break over a flat bottom

This problem is meant to prove the validity of the two-dimensional interface-type scheme by com-

paring the numerical solution obatined by our scheme to the reference solution returned by the

Riemann solver CLAWPACK. It is of a great benefit to compare our scheme, which avoids Rie-

mann prolems, to a solver that is based on the strong Riemann procedure.

The computational domain [-5, 5]x[-5, 5] is discretized using 600×11 gridpoints and the solution is

computed at the final time t = 2s. The riverbed function is set to zero and the initial water level

is defined by:

H(x, y) =







3 , if x < 0 ,

1 , otherwise .

with zero initial velocities. The Interface-type solution is computed using the MC-θ limiter and

represented for y = 0 (figure 4.15).

The two solutions agree, with a relatively small relative error (figure 4.16) confirming the ef-

ficiency and the potential of the Non-Riemann Interface-type scheme, compared to a Riemann

solver.



4. NUMERICAL EXPERIMENTS 66

−5 −4 −3 −2 −1 0 1 2 3 4 5
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
Comparion with the CLAWPACK solution for the DamBreak Problem at t=2

Clawpack solution
2D interface−type solution at y=0

Fig. 4.15: Dam Break problem over a flat bottom: reference solution (solid line) obtained using the CLAW-
PACK solver and the numerical solution using our scheme (dashed line) through the line y = 0
using the 2D Interface-type scheme at t=2 using the MC-θ limiter
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Fig. 4.16: Dam Break problem with zero source term: Absolute error of the interface-type solution compared
to the clawpack solution at t=2 using the MC-θ limiter
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Grid Size ‖E‖22 Oh1
(E)

100x100 0.8848 -
200x200 0.3771 1.23
400x400 0.1257 1.6

Time Step ‖E‖22 Oh1
(E)

∆t
3 0.0055 -
∆t
4 0.0038 1.3
∆t
5 0.00261 1.7

Tab. 4.1: Interface-Type Scheme, Dam Break problem: L2 norms of the errors of the numerical solution
compared to the reference solution with respect to space (n=800) and time (∆t

7
)

4.2.4 Continuous water level over a flat bottom

In this problem we consider a continuous water level problem over a flat bottom. The computa-

tional domain [0;1500]×[0;1500] is discretized using 600×11 gridpoints and the numerical solution

is computed at the final time t = 2s. The initial velocities are set to zero, and the inital water level

is defined by

H(x, y, 0) =







20, if x < 500 ,

− x
100 + 25, if x < 1000 ,

15, otherwise .

This problem was used to study the numerical accuracy of our scheme in time and space. Taking

the numerical solution returned using the finest grid (800 gridpoints) for the Dam Break problem

as the exact solution, a simple variation of the number of gridpoints proves the quadratic numerical

accuracy of the scheme. Similarly, considering the solution returned for smallest time step ∆t to

be the exact one, variations of the time step prove the quadratic accuracy of the Interface-type

reformulation with respect to time; although this quadratic accuracy is theoretically maintained

due to the fractional time step used in the base scheme. The scheme is also proven to be not

dependent on the number of gridpoints or the time step used (figures 4.17, 4.18). Figures 4.17 and

4.18 show the superposition of the solutions returned by the Interface-Type scheme for this problem

for different number of gridpoints and different time steps, respectively.

According to figures 19 and 20, showing the L2 norm of the error with respect to the grid size and

the time step on a LOGLOG scale, the numerical accuracy of the scheme is O(1.6) with respect to

space and O(1.7) with respect to time.
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Fig. 4.17: Continuous water level over a flat riverbed: solutions returned for different grid sizes compared
to the finest grid using the MC-θ limiter at t=2
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Fig. 4.18: Continuous water level over a flat riverbed: solutions returned for different time steps compared
to the smallest time step using the MC-θ limiter at t=2

4.2.5 Dam Break over a discontinuous riverbed

This two-dimensional problem features a rapidly varying flow over a discontinuous bottom. The

computational domain [0;1500]x[0;40] is discretized using 600×11 gridpoints and the numerical so-

lution is calculated at time t = 15s using the MC-θ.
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Fig. 4.19: Dam Break problem with continuous riverbed: LOGLOG: L2 norm of the absolute error of the
solutions returned for different time steps compared to the smallest time step using the MC-θ
limiter
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Fig. 4.20: Dam Break problem with continuous riverbed: LOGLOG: L2 norm of the absolute error of the
solutions returned for different time steps compared to the smallest time step using the MC-θ
limiter
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The discontinuous riverbed is defined by

z(x, y) =







8, if 700 < x < 800 ,

7, if 600 < x < 700, or 800 < x < 900 ,

6, if 500 < x < 600, or 900 < x < 1000 ,

5, if 400 < x < 500, or 1000 < x < 1100 ,

4, if 300 < x < 400, or 1100 < x < 1200 ,

3, if 200 < x < 300, or 1200 < x < 1300 ,

2, if 100 < x < 200, or 1300 < x < 1400 ,

1, otherwise .

The initial water level is defined by:

H(x, y) =







20, if x < 1500
2 ,

15, otherwise .

and the initial velocities are set to zero.

The whole purpose of such a problem is to challenge the interface-type reformulation in case

of multiple discontinuities. Our scheme showed a great performance in such a case; figure 4.21

represents the water height returned by the new reformulation, not showing any oscillation at the

discontinuities.

4.2.6 Quiescent flow over an irregular riverbed

We consider the case of a varying flow over the riverbed shown in figure 4.22. The problem is an

extension of the one-dimensional example discussed in section 4.1.3 and in [14]. The computational

domain [0,1500]x[0,1500] is discretized using 2002 grid points and the solution is calculated at the

final time t = 0.5914. The water is initially at rest with a height of 90m.
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Fig. 4.21: Interface-Type scheme: Dam Break over a discontinuous riverbed at t= 15

Figure 4.22 shows the steady state of the water height at time t = 0.5914s. Figures 4.23 and 4.24

show the water height returned by the interface-type reformulation compared to that returned by

the well-balanced algorithm. The nonphysical oscillations showed by the well-balanced algorithm

at the right boundary are erased by the interface type algorithm, thus confirming the high potential

and efficiency of the scheme and its capability to maintain the steady state of the water even when

an irregular riverbed is considered.

4.2.7 Two Rarefaction waves over a zero riverbed

We consider the problem of two rarefaction waves propagating in opposite directions as presented

in [16], where the initial conditions are given with H(x, y, 0) = 2 and

u(x, y, 0) = v(x, y, 0) =







−5.0, x < 25,

5.0, x > 25.

with non variable riverbed (z(x, y) = 0).

The solution consists of two rarefaction waves, presented at the final time t = 0.3s. The profile
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Fig. 4.22: Two-Dimensional quiescent flow problem: Steady State at t=0.5914, 2002 gridpoints, MC-θ
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Fig. 4.23: Two-Dimensional quiescent flow: Comparison of results obtained at t = 0.5914s using the MC-θ
limiter for the well-balanced algorithm and the interface-type reformulation.
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Fig. 4.24: Two-Dimensional quiescent flow: Comparison of results obtained at t = 0.5914s using the MC-θ
limiter for the well-balanced algorithm and the interface-type reformulation (magnified).

of the water height is shown in figure 4.25 and a cross section along the line y = 0 is presented

in figure 4.26. The obtained results are in good agreement with the corresponding ones presented

in [5], showing the validity of the two-dimensional interface-type reformulation whenever non zero

initial velocities are considered.
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Two rarefaction waves with zero source term using MC−θ limiter at t = 0.3
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Fig. 4.25: Two-Dimensional Interface-Type Scheme: Rarefaction waves problem at t = 0.3 and a cross
section for y=0 using the MC-θ limiter
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In this work, we presented a class of one and two-dimensional well-balanced unstaggered central

schemes for the approximation of the solution of balanced laws with geometrical source terms.

The schemes are first applied to the one-dimensional shallow water equations and then extended

to the two-dimensional case. The one-dimensional shallow water equations are first numerically

solved using the well-balanced central scheme and an adaptation of the surface gradient method,

the interface-type reformulation, both extensions of the work discussed in [10]. They focus on

discretizing the source term according to the flux divergence, aiming therefore at balancing the

shallow water system in the case of a quiescent flow. The interface-type reformulation, adaptation

of the well-balanced scheme, is based on a particular discretization of the water height by first

linearizing the water level, in which case the quiescent flow is maintained. The method is then

extended to the case of two-dimensional shallow water equations, which is the main objective of

this thesis. As in the one-dimensional case, the method guarantees well-balancing by discretizing

the source term according to the flux divergence using some parameters based on the MinMod and

the MC-θ limiters. Furthermore, the proposed method maintains the steady state by following the

Surface Gradient method discussed in[11], according to which the water depth is discretized using

the water level. This last feature assures the well performance of the schemes in cases of quiescent

flows. The computations performed on several test problems show very good results in both steady

and unsteady flow cases, as well as in discontinuous and irregular riverbed cases, and thus confirm

the high potential and efficiency of the proposed methods.

As a future work one could investigate the extension of our method to the case of unstructured

grids by applying the well balanced scheme and the interface-type reformulation to triangular grids

instead of rectangular ones. The treatment of the dry state is also of great importance whenever it
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comes to shallow water systems. In some problems, the falling of an important water dam might

cause the dryness of the riverbed, leading in most cases to negative water height or even to the

divergence of the numerical schemes.
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