
 

 

AMERICAN UNIVERSITY OF BEIRUT 

 

 

 

 

OPTIMAL INVESTMENT DECISIONS IN PRODUCT 
DEVELOPMENT 

 

 

 

 

by 
REMY CHARBEL MAKHLOUF 

 

 

 

 

A thesis 
submitted in partial fulfillment of the requirements 

for the degree of Master of Engineering Management 
to the Engineering Management Program 

of the Faculty of Engineering and Architecture 
at the American University of Beirut 

 

 

 

Beirut, Lebanon 
October 2010 

 
 
 



 

 

AMERICAN UNIVERSITY OF BEIRUT 

 

 

OPTIMAL INVESTMENT DECISIONS IN PRODUCT 
DEVELOPMENT 

 

 

by 
REMY CHARBEL MAKHLOUF 

 

 

Approved by: 
 
    
  
______________________________________________________________________ 
Dr. Ali Yassine, Associate Professor Advisor 
Engineering Management Program 
 
  
 
______________________________________________________________________ 
Dr. Bacel Maddah, Assistant Professor Member of Committee 
Engineering Management Program 
 
 
  
______________________________________________________________________ 
Dr. Walid Nasr, Assistant Professor Member of Committee  
Suliman S. Olayan School of Business 
 
   
 
 
Date of thesis defense: October 28th, 2010 
 
 
 
 



 

 

AMERICAN UNIVERSITY OF BEIRUT 

 

 

THESIS RELEASE FORM 

 

 

I, Remy Charbel Makhlouf 
 
 
 
 
 
     authorize the American University of Beirut to supply copies of my thesis to 

libraries or individuals upon request. 
 
 
 
 
 
     do not authorize the American University of Beirut to supply copies of my thesis to 

libraries or individuals for a period of two years starting with the date of the thesis 
defense. 

 
 
 
 
 
 

____________________ 
                 Signature 
 
 
 
 

____________________ 
                        Date



 

v 
 

ACKNOWLEDGMENTS 

 
First and foremost, I am most grateful to God Almighty who has bestowed on me 

his grace and kind blessings.  
 

I am heartily thankful as well to my supervisor, Dr. Ali Yassine. With his 
enthusiasm, his inspiration, his sound advice and his great efforts to explain things 
clearly and simply, he helped me in making this thesis possible.   

 

I am also grateful to the other members of my thesis committee Dr. Bacel 
Maddah, and Dr. Walid Nasr for their ongoing help and guidance through the 
development of my thesis. 

 

Furthermore, I owe my deepest gratitude to my parents, Charbel and Samia 
Makhlouf and my two adorable sisters Rita and Rosemary who have stood by my 
side, motivated me, supported me, and encouraged me in all the stressed moments.  

 

Last but not least, I am indebted to my many student colleagues at AUB who 
supported me in all my work. AUB has not only given me higher level of knowledge 
and quality education, but also provided me with rich skills that might not have been 
acquired elsewhere.  

 

I thank you all for being such modest supporters of mine. I could not have done 
this without you. 

 

 

 

 

 

 

 

 



 

vi 
 

 

 

AN ABSTRACT OF THE THESIS OF 

 
 
 
Remy Charbel Makhlouf     for     Master of Engineering Management 

                Major: Engineering Management 
 
 
 
Title: Optimal Investment Decisions In Product Development 
 

 

Product development is an essential activity in most organizations as it reflects its 
long-term health and profitability. Furthermore, the importance of innovation is 
paramount in today’s technologically driven world. Consequently, this study suggests a 
systematic methodology to optimize product development investments. 

The objective of my work is to develop a mathematical model to maximize the 
performance of a product under development based on investment constraint. This thesis 
introduces two product development models: one is deterministic and the other is 
stochastic. The outcome would be a set of managerial guidelines for optimally investing 
in various modules of a product and in design rules while taking into consideration the 
interdependencies between modules. Different scenarios will be explored based on two 
important problem dimensions: module performance uncertainty and investment 
frequency. While performance uncertainty reflects the amount of risk (in terms of 
achieving higher levels of module performance) involved in the investment in product 
modules, the investment frequency describes whether these investment decisions (in 
product modules) are made one shot or periodically. The architecture of the product 
played an essential role in affecting the optimal results and leading to a conclusion that 
local optimal investments may not necessary lead to global optimal system/product 
performance. 
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CHAPTER 1 

INTRODUCTION 

 
1.1. Background: Designing Complex Products 

Throughout history, scholars have been attempting to explore the notion of 

modularity when trying to understand and develop complex systems in different 

application fields such as biology (Khastan, et al., 2009), management (Huberman and 

Hogg, 1995), engineering (Mihm, et al., 2003), psychology (Samuels, 1998), aerospace 

(Button and Soeder, 2004), software development (Sullivan, et al., 2001) and many 

others. Designing such a complex system is based upon designing individual components 

(subsystems or modules) that are parts of larger systems and which can be examined, 

substituted, modified, augmented and excluded based on their economic value. This is 

what Baldwin and Clark defined as option values and modular operators (Baldwin and 

Clark, 2004). They have explained a modularized process by a set of “designed elements 

that are split up and assigned to modules according to a formal architecture or plan 

(design rules)” (Baldwin and Clark, 2004).  Baldwin and Clark gave an “option-like” 

property to each module in the system where evaluating the value or performance of any 

product goes from the option of evaluating the system as a whole to the option of 

evaluating each module independently. Accordingly, modularity implies that changes in 

one part of a system should not lead to unexpected behavior in other parts. Then why are 

we still witnessing transplant rejections even when the donor highly matches the receipt? 
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Is it due to coordination among many interdependent organs in the complex human body 

system? 

As a result, many researchers believe that in designing complex products, we can 

individually design or improve each component’s performance separately, but this may 

affect the behavior or performance of other components. This is due to some known or 

unknown common function or feature in the product which is implemented by more than 

one component. As opposed to perfect modularity, where each component has its unique 

functions, integral systems involve a strong dependency between individual modules 

where changes made to any component (to improve its performance) may deteriorate or 

improve the performance of others. Consequently, in an integral architecture a local 

optimal performance for each individual component may not necessarily lead to a global 

optimal performance of the whole product and this is due to complex interactions 

between the various components. Integrality supporters argue that any best reachable 

component’s performance is affected by other decision makers (i.e. components) and thus 

communication is needed among engineers at any decision point to coordinate the mutual 

development of these components and eliminate this mutual dependency. Mihm, et al. 

(2003) highlighted on the issue of system’s performance “arising from designers making 

successive local component decisions over time, taking into account the current status of 

surrounding components”. 

 

1.2. Problem Statement 

A Review of the literature shows that there have been few studies which address 

any kind of product whether been modular in design, integral or hybrid. The literature 
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revealed that improving the performance of any product required formulating a 

mathematical model showing the total product performance which depends on the 

topology of the product. Either the product was considered modular in design thus all 

sub-components are independent or the product was considered integral in design where 

the status of other components must be taken into consideration. Based on the 

architecture of the product the model was constructed accordingly. What if we consider a 

product where some of its components do depend on each other while the rest are totally 

independent? What if we have the option to develop some design rules which eliminate 

or reduce the interdependency, thus getting a perfectly modular architecture? What if we 

chose not to invest in design rules but take into account the dependency between modules 

every time we invest in a certain component?  

This thesis addresses these identified gaps in the literature by trying to answering all 

the above mentioned questions. A methodology for optimally investing in a complex 

engineering product will be provided by taking into consideration a limited budget and 

resource constraint. 

 

1.3. Scope of Work and Research Objectives 

Between perfect modular designs (where all modules are completely independent of 

each other) and perfect integral designs (where every module affects others in the 

system), my study aims to develop a theory of product development performance where 

the typology (whether modular, integral or a hybrid of both) of the product architecture 

will be taken into account while improving the product performance by optimally 

investing in modules and/or design rules.  



 

4 
 

In reality most engineered systems are neither perfectly modular nor completely 

integral but somewhere in between and thus a theory to understand the investment 

policies of such performance evolution systems is necessary. Several techniques will be 

used to divide each product into module groups aiming to improve the performance of 

each group separately, thus improving the global product performance (Allada and Lan, 

2002). We will suggest two kinds of models: one is deterministic and the other is 

stochastic. While the first optimizes total product performance for certain modules the 

latter targets uncertainty where the return on investments for risky modules is no more 

certain but depend on some uniform distribution function assumed. In each model, two 

types of investments will be provided: one shot investment versus periodic investments.  

Finally some managerial guidelines will be provided which will give quick hints about 

investments strategies. Those insights will be based upon results, analysis work and 

sensitivity studies done for each model and investment type. 

 

1.4. Significance of the Study 

Since product development is a key for any business success and innovation is 

essential in capturing market demand in our technological driven world, a systematic 

methodology to optimize the modules’ performances of an evolving architectural product 

is extremely necessary. Accordingly, this study would suggest a set of best practices or 

guidelines for optimally investing in any product taking into consideration the topology 

of the product whether modular, integral or hybrid especially that previous developed 

models targeted only a specific architectural type. 
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The proposed model should maximize the total product performance taking into 

account interdependencies of the modules, a limited budget, design rules effect, 

performance function of each module, time horizon, and the difference in return on 

investments between risky and certain module. 

Finally, this study is beneficial for most business, engineering or any kind of 

companies where their main objective is to design or re-design a complex product 

whether been financial, medical, electrical, technological, etc… and bringing it up to the 

market. 
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CHAPTER 2 

LITERATURE REVIEW 

 
2.1.   Introduction 

Product development is a term used to define the process of designing a product and 

bringing it to market. Many researchers have targeted such a topic and described a 

strategy for improving the performance or value of a certain product by taking into 

consideration the inter-dependency that exists between the different modules of the 

product. The literature summarized below will give the reader a diversified idea about 

product evolution and how such existing models will shape our model to generate a new 

technique for optimal investment decisions in product development.  

 

2.2.   Modularity in the Design of Complex Engineering Systems 

Baldwin and Clark (2004) have demonstrated the power of modularity by 

discussing how a complex engineering system can be modular-in-design by splitting it up 

in the design process into separate modules. Modularization has three purposes: reducing 

complexity, allowing parallel work and capturing future uncertainty.  Reducing 

complexity is done by transforming one whole system to many independent modules as 

shown in Fig.2.1. Some of these modules do not affect other modules and thus called 

“hidden”. Other modules are called “visible” since design decision for these modules do 

affect others; thus design rules are needed and must be obeyed by those “visible” 
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modules to eliminate interdependency between them. After establishing the design rules, 

modules are designed independent of one another and parallel work can be enabled. 

 

System before Modularization                      System after Modularization                                

 

 

 

 

 

 
 

Fig. 2.1: Modularity Creates Design Options (Baldwin and Clark, 2004) 

 

Modularity captures uncertainty because elements of such modularized system can 

be altered and improved over time as long as the design rules are respected. Hence 

modularity has created design options in each separate module where the engineer has 

“the right but not the obligation” to choose a certain design over its alternatives when that 

design shows a better performance. An “option-like” property was given to each module 

in the system where evaluating the value or performance of any product goes from the 

option of evaluating the system as a whole to the option of evaluating each module 

independently. 

Baldwin and Clark (2004) explained that there is no perfect design rules and 

unforeseen insignificant compatibility problems may occur in advanced stages, thus 

“System Integration and Testing” (SIT) is needed to resolve such minor incompatibility 

problems. The design rules and the hidden modules affect the System Integration and 

Option 
  System 
  Option 

Option 

Option 

  Design Rules 

Option 
Option 

Option 

Option 
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Testing but SIT’s decisions should not affect the modular architecture of the product or 

else the system would no longer be modular. 

Representing a modular system can be done in several ways. Baldwin and Clark 

(2004) used the Design Structured Matrix (DSM) map. The DSM map contains several 

blocks where the first and the last are the design rules and SIT respectively and in 

between are the components of the product. Such map shows the dependencies between 

component blocks. 

Another representation of a modular system is the Design Hierarchy Representation 

where the Hierarchy starts with the design rules as a first level and on the second level we 

have the hidden modules and the SIT as shown in Fig. 2.2. 

 

 

 

 

 

 

 

 
Fig. 2.2: A Two-level Modular Design Hierarchy 

 

There is no need for the hidden modules to know what is going on in the SIT stage 

as long as they totally obey the design rules but the System Integration and Testing unit 

should have knowledge about Modules A, B, C and D in order to resolve any unforeseen 

incompatibility problem. 

System 
Integration 
& Testing 

Module A  

        Global Design Rules 
 

Module B Module C Module D 
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In opposed to design rules which once developed are no more altered and are 

considered to be long lasting, modules accommodate uncertainty, thus lodging 

experimentation. Baldwin and Clark (2004) introduced six modular operators where the 

designer can: split, substitute, exclude, augment, collect and organize, and create shells 

for any module. Such operators affect the structure of the modular system and transform 

the two-level hierarchy into a more complex one.  

The main objective of all Baldwin’s and Clark’s work was to establish the 

economic value of a complex engineering system by splitting it up into modules having 

“option” values. Accordingly, they have assumed that the system’s minimal value (i.e. 

base line) exists and has a value of S0 while the modules of the system are not yet 

realized and thus have an uncertain payoff of Xj
1. Then the economic value of the system 

would be the sum of S0 and all the Xj
1 as shown in equation 2.2.1: 

 
Economic Value of the System: �0+�=1���1	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (2.2.1)                                           

 
Xj

1 denotes “the economic value of a single realization of the random variable Xj” 

(Baldwin and Clark, 2004) where each “j” denotes a distribution of random variables. 

Then the total economic value of the system is a sum of J realizations with different 

distributions. The development efforts realized in each module design define the 

realization. The realization can take a positive or a negative value. If the value was 

greater than zero (positive realization) then the total system value would increase by that 

amount. If the realization was less than or equal to zero (negative or zero realization), the 

engineer can disregard such module and develop another one. The six modular operators 
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discussed previously can be used in such a case. Accordingly the economic value of the 

system can be expressed as follows: 

 
��=	  �0+	  ����	  �11	  ,	  0+����	  �21	  ,	  0+…+	  ����	  ��1	  ,	  0	  	  	  	  	  	  	  	  	  	  	  	   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  =	  �0+	  ��1++��2++	  …+	  ���+	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  2.2.2 

 
   The expected value of any module design is the maximum between its 

realization and zero. Since equation 2.2.2 is too general, Baldwin and Clark developed 

further work. They considered the system to be composed of N design parameters and Xα 

to be the value of a module of size αN where summation of all αs equal 1:�=1��� = 1 

Xα is assumed to be normally distributed with a mean zero and a variance �2αN :  

Xα ~ N(0, �2αN) 

Xα = zα	  �(αN)1/2 

Where zα is a standard normal variant with mean zero and variance one: zα ~ N(0,1) 

Substituting Xα in equation 2.2.2, holding S0 and factorizing, we get:  

 
��=�	  �1,	  �2,	  …,	  ��	  ;	  �;�	  =	  ��12	  �112+	  �212+	  …+	  ��12�����,	  0	  	  	  	  	  (2.2.3) 

 
As mentioned before, modularization enables parallel work. To express parallel 

experimentation, Baldwin and Clark supposed that each designer produces kj independent 

design efforts in each of the J modules. When all these designs are accomplished, the 

engineer chooses the best of these kj designs in each module. Q (k) is defined to be the 

expected value of the highest realization of k independent designs and the distribution of 

k is the distribution of the “maximum order statistic of a sample of size k”:  

Q (k) = k0∞�(���−1���� 
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where N(z) is a standard normal distribution and n(z) is the density function. 

Equation 2.2.3 can be updated to accommodate the k designs as below: 

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ��,�	  ;�,	  �=	  ��12�=1���12����=1������	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (2.2.4)	  	  	    

 
After establishing the economic value of a complex engineering system as a 

function of α, k, �,	  and N, Baldwin and Clark concluded that modularity in design is 

neither good nor bad but it is an extremely dangerous concept that need not to be ignored 

by reminding us with the internet bubble crash where the world fall into extreme losses 

after being in a highly innovated period. 

 Design rules’ power in eliminating interdependency is used in our model where 

investing in design rules is a decision variable and depends on some 

modularity/integrality factor kij which will be explained later in the model. Baldwin and 

Clark assumed that Design rules should always exist during the design stage of any 

product while investing in the modules was assumed to be optional. On the contrary, our 

model assumes that investing in design rules and in modules are optional decisions 

depending on the performance of each module and its effect on total product 

performance. So the designer can choose to invest only in modules and disregard design 

rules thus taking into account the interdependencies between modules. To reduce such 

dependencies, one can choose to invest in design rules and make the product modular in 

design. Consequently investing in the modules in such a case does not demand an 

attention to the interdependencies that existed originally (before investing in Design 

rules) in the product. A mathematical model will be developed to explain the 
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performance of each module and design rules will be used in the process of maximizing 

total product performance. 

 

2.3.    Problem – Solving Oscillations in Complex Engineering Projects 

This paper targets complex product development projects which require frequent 

and prosperous communications among project members to ensure the best performance 

of each project. Complex products are composed of many inter-related sub-components 

where each engineer is responsible of designing a certain component by taking into 

consideration the status of other components present in the system as well. Mihm, et al. 

(2003) have characterized the dynamic behavior of a complex system and have used 

simulation to derive some managerial actions to improve performance dynamics. 

Since complex products are composed of many sub-components, each engineer 

was responsible of optimizing a local performance measure specific to his component. 

Accordingly an aggregate system performance was defined as the sum of all local 

performances of individual components where equal weights were assumed between 

components. The notation Pi was used to denote the performance function of engineer i 

for the component he is responsible for and P as total system performance. As a result, 

we can write P as a function of all Pi : 

 

�=���	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (2.3.1)                              

 

The performance of any component i depends on a weighted average of all 

components in i denoted by the decision variable hi and other components j not present in 
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i denoted by the decision variable hj. Thus, Pi = f (hi, {hj}) (hi and hj are assumed to be 

continuous). The other components effect {hj} were assumed to be constant and Pi 

became a function of hi alone as shown in Fig. 2.3 and is represented by Pi = f (hi, {hj}). 

  To simplify things, Pi was assumed to have only one optimum and a quadratic 

function which includes the effect of other components as shown below: 

 

��=�ℎ�,	  ℎ�	  =−��(ℎ�−	  �≠����,�ℎ�)2+	  1	  	  	  	  	  	  	  	  	  	  	  	  	  (2.3.2)  

 

hj represents the most recent decision on component j which engineer i takes it as 

given. The other decision makers j affect the performance of component i in two ways. 

First they can influence the optimal choice of engineer i and can shift the optimal position 

of hi. So the influence that hj has on Pi is represented by bi,j and the summation term 

�≠����,�ℎ� captures the shift of the optimal hi. The second effect is the influence of 

the decision makers’ j status on the optimal performance reached by designer i. The best 

case scenario is when the decisions of components j do not affect at all the decision of 

component i and allow it to reach its best performance and the worst case scenario is 

when components j’s designs tighten component i’s performance and bring it to its 

minimum value. In these extreme scenarios, a small change in hj will create a small 

difference in Pi but in an intermediate scenario, a change in hj matters as shown in Fig. 

2.4.  To represent such twofold interactions, a performance constraint Iij was introduced 

and it takes constant values at the extremes ci,j and a slope ai,j in the intermediate region. 

The total performance Pi of component i was then obtained by multiplying the potential 

performance Pi by performance constraint Iij : 
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	  	  	  	  	  	  	  	  	  	  	  	  	  ��=	  ��ℎ�	  ,	  	  ℎ�	  �≠���,�	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (2.3.3)                                    

 

                               

    Fig. 2.3: Own decision variable hi                      Fig. 2.4: Decision variable of others, hj                          

 

Fig. 2.3 shows how the position of the optimum shifts linearly with a change in 

other decision maker’s status. It shows that the decision variable hj highly influence the 

performance function of component i and a local optimum does not necessary lead to a 

global optimum when the interactions of other components are taken into account. 

Fig.2.4 shows how the decision variable hj which is represented by the gray circle 

places a linear multiplicative constraint function on performance Pi. As discussed earlier, 

as the influence of hj is relatively high on Pi it tightens the performance of component i 

and this is represented by the dotted line. And as component j puts no restrictions on i, it 

loosen the constraint Ii.j and allow component i to achieve higher performance. This is 

represented by the solid line. The constraint Ii,j is mostly sensitive to middle values of hj 

rather than the extremes and this is shown in the middle region of the figure where the 

solid and the dotted lines intersect. 
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After defining the structure of the model, Mihm, Loch, and Huchzermeier have 

used simulation to characterize the dynamic problem-solving behavior. They have 

simulated a base- case scenario which was considered as a bench mark for comparing 

other scenarios. Managerial actions were provided based on the results of the simulation. 

The notion of communication between engineers and its effect on the engineer’s 

performance have helped us in our model in defining an integral product where all 

components are dependent on each other. In the absence of design rules, the designer 

must allocate his budget between modules while taking into consideration the status of 

related modules. That is any amount spent on any module will force the designer to spend 

money on updating or re-designing related modules to accommodate for the changes and 

remain compatible with the revised or improved module. We will consider in our model 

the importance of taking other components’ status into consideration while trying to 

improve the performance of any specific module but the influence of one components on 

the others will not have equal weights as assumed in this model, rather a matrix showing 

the fraction of re-work at each module will be developed. 

 

2.4.    Communities of Practice: Performance and Evolution 

 Huberman and Hogg (1995) started their paper by presenting a brief definition of 

community of practice. They explained that once informal networks exist within an 

organization where communication between people becomes feasible, it creates unified 

goals, norms and interaction activities, thus constituting a community of practice. A key 

feature in this paper is about the dependency between the performance of any single 

individual and the other members of the community. Information should always flow 
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across individuals and each member can choose to work on his own or exploits others’ 

help when it is useful. Huberman and Hogg (1995) tried to characterize the performance 

of each member by being dependent on its own skills or on some interactions with other 

members in the organization. Accordingly, they related the total performance of a 

community of practice to the skills of individuals within the organization. 

To quantify things, the overall performance of a community would be the sum of all 

individual performances: 

�=	  ���	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (2.4.1)	  	  	  	  	  	  	  	  	  	   

where Pi is the performance of individual i  

 
It is assumed that for each individual to finalize his work, he must pass by series of 

steps. So the task is divided into several stages. As mentioned previously, at each stage 

the individual can choose to do “self-work”, i.e. to work on his own and not use others’ 

help in the community or he can decide to make use of others’ information which is 

called “hints”. As a result the notation pij was developed to express the probability of 

individual i choosing to use a hint from individual j. When i = j, pii would then denotes 

the probability of performing self-work. At each stage, the summation of all pij across j 

should be equal to 1, ����=1. 

It is assumed that all steps are completed asynchronously (all workers progress 

and move together in time) at a rate r. Then the rate of individual i utilizing a hint form j 

is rpij and the performance of any individual working on his own and does not use hints 

is: ��	  =�� 

Each task accomplished whether being self-work or through the use of others’ 

help in the community should have a value. Huberman and Hogg assumed that all self-
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work activities produce the same benefit denoted by s where as the quality of a new hint 

sent from j to i is hij where individual j is assumed to be doing self-work in this case. If 

the hint was useful, then hij will be greater than s. At each step, the member of the 

community can do self-work and earn s or with probability pij he will use a hint and 

produces hij. The hint may be useful thus hij will be greater than s or it may be useless 

hence losing the opportunity of making s. 

Hints are assumed to be produced at a rate w which is less than the rate r which 

means that not at each step the member can develop a new hint. If r was too high, then 

using hints repeatedly will carry no innovation and this will lead to a decrease in the hint 

quality. For this reason, a new measure for the hint quality hij
eff is developed which 

reflects the decline in hij in case of reusing old hints: ℎ�����=	  ℎ��1−	  ����� 

Making use of all information presented earlier, Huberman and Hogg defined 

individual performance Pi while taking into account all the interactions with the 

community as: 

	  	  	  	  	  	  	  ��=�����ℎ�����	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (2.4.2) 

After defining the performance of the community as being the sum of all 

individual performances and after relating each member’s performance to the interactions 

that existed in the community, Huberman and Hogg continued their work by examining 

the changes in the community of practice upon varying the interaction structure. They 

considered different cases as: 

1- All members of the community act independently. There is no flow of 

information between individuals, thus they cannot use hints. 
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2- All members have same probability of using hints thus having equal links to all 

individuals in the community. This is known as flat community. 

3- All members can choose hints from one single neighbor; usually the one with 

the best hint quality. 

4- All members can accept hints from several high quality hint sources. 
 

Considering each case separately, Huberman and Hogg tried to define the 

individual performance Pi starting with extreme cases (1 and 2) and reaching a more 

generalized individual performance in case number 4. The highest Pi was that of case 

number 4 which showed that increased size of the community and diversity in receiving 

hints would lead to the optimal performance. 

Similarly, in our model the optimal product performance is attained through 

diversification. It is always optimal to invest your budget in different modules and not 

limit yourself to the module with the highest performance as case number 3 since it will 

not lead to a global optimum. This result was revealed as well in the previous paper 

where Mihm, Loch, and Huchzermeier (2003) showed that a local optimum does not 

necessarily lead to a global optimum.   

In addition to that, our model measures the total performance of an architectural 

product rather than a community of practice and the relation that exists between members 

of the community exists in our work between modules. A similar notation to pij is used in 

our representation where we defined fij to be the fraction of re-work to be applied to 

Module j when changes are done to Module i. In contrary to pii, fii cannot exist.  

2.5.    New Modules Launch Planning For Evolving Modular Product Families 
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 Product family (PF) is a group of products manufactured by a firm and which share 

a common platform. These products have similar characteristics, functions, uses and even 

marketing requirements. They are also known as product line or product group. Allada 

and Lan (2002) in their paper tried to develop a methodology to optimize an evolving 

product family. They have developed a sequential decision process where they aimed to 

maximize the total profit subject to a time horizon and interdependencies between 

modules. 

Allada and Lan (2002) used Dynamic programming (DP) for representing such 

“stage-wise sequential decision process”. Similar to Baldwin and Clark (2004) who 

transferred the evaluation of the performance of any product from the option of 

evaluating the system as a whole to the option of evaluating each module independently, 

Allada and Lan (2002) will proceed from optimizing the whole product family to 

optimizing module groups within that product line. Accordingly, smaller DP optimization 

problems will be developed. As in all dynamic programming problems, stages, states, 

decision variables and objective function should be clearly defined. The stages in this 

model are the “time points with equal intervals during the planning horizon” while the 

states are the possible modules’ combination within one module group. The control 

variable is the decision of whether adopting a certain module design and the objective 

function is to maximize the profit change of a certain module group by taking into 

consideration the interdependency assumption. 

To formulate several smaller DP problems, “module groups” were defined to 

group together all modules that depend and affect each other. In this way, any product 

will be divided into several sub-module groups and the optimization problem would 
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target those characterized groups. Furthermore, Allada and Lan (2002) decreased the 

state space by introducing the concept of “module cluster”. “A module cluster is defined 

as a set of modules within a module group that are strictly inter-dependent on each other 

in replacement actions” i.e. module i affects module j and module j in its turn affects 

module i then these two module can be set together as one module i.j, since any changes 

done to i affects j and vice versa. Consider the below four products: 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Fig. 2.5: Product family architecture and module interdependency 

 
 

Fig. 2.5 shows four products P1, P2, P3 and P4 that share a common platform (the 

blue section) constituting of modules M1, M2, M3, M4 and M5. The arrow (      ) shows 

replacement dependence. To explain what is meant by replacement dependence, different 
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generations of the modules should be considered. Consider the notation M (A, j) which 

represents module A at instance j. If module A was redesigned and been replaced by its 

higher instance M (A, j+1), then the modules that depend on M (A, j) must be redesigned 

and replaced to attain compatibility with module’s A changes: M (A, j+1). For example, 

the decision of replacing module 7 depends on replacement action of module 6.  Since a 

module group is defined as “a group of interacting modules linked by the replacement 

dependence relationships in a PF” then Fig. 2.5 is divided accordingly into eight module 

groups: 

 

Table 2.1: Module Group 
 

Group 1 Module 1 and Module 2 

Group 2 Module 3, Module 4, and Module 5 

Group 3 Module 6 and Module 7 

Group 4 Module 8 

Group 5 Module 9, Module 10, and Module 11 

Group 6 Module 12 

Group 7 Module 13 

Group 8 Module 14 and 15 

 
 

 
As you notice some groups constitute only of one module (as groups 4, 6 and 7) 

since they do not interact with other modules within the product line. Then redesigning 

any module in the PF will not affect such groups and no updates are required.  
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Further work can be done within a group by using the concept of module cluster. 

As defined earlier, a module cluster is a set of modules that should be replaced together 

once replacement actions take place. They strictly inter-depend on each other. For 

example modules 14 and 15 constitute a module cluster and modules 4 and 5 as well. 

Once redesigning module 14, one should accumulate for module’s 15 replacement action 

and vice versa. Then modules 14 and 15 can be seen as one member in the DP 

represented by MC14.15.  

After defining the states, stages, control variables and objective function, Allada 

and Lan (2002) indentified their transition probabilities and dynamic programming map 

aiming to reach an optimal module replacement strategies. This was clearly shown 

through a deterministic illustrative example after which they generalized their work by 

developing a stochastic dynamic programming model.   

Many ideas from this paper were used in structuring our model. For example, the 

module group and module cluster scheme is used in our model where each product is 

divided into groups and the size of the group is decreased by using the concept of module 

cluster. Accordingly, instead of maximizing the total product performance as a whole, we 

seek maximizing groups’ performances. Dynamic programming cannot be applied to our 

model, since it bought up some complications especially that our system includes 

continuous-stochastic formulation.  

In addition to that, the notion of updating module j to accommodate the changes 

of module i given that dependency exists between the two modules is used as well in our 

work but expressed in different manner. As said earlier a data matrix which will show the 

fraction of the rework that should be done once changes are applied to a certain module 
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and other relative data will be developed. In contrary to this paper, our model suggests 

that the use of design rules decreases the interdependency between modules which is 

considered in this paper to be fixed and previously known. 

 

2.6.   Dell Case-Study 

New product development aspects offer various advancement opportunities for the 

product’s performance but it may also add some challenges and riskiness to the product 

development process. The notion of uncertainty was well described by Krishnan and 

Bhattacharya (2002) through a Dell case example. Before illustrating their model with the 

Dell portable computer example, Krishnan and Bhattacharya (2002) defined two 

technological choices which the development team faces. A choice of proven technology 

which provide limited but certain product improvement or a prospective technology 

choice which is not yet fully proven but offers higher improvement level than a proven 

technology. So a certain technology would yield a low but guaranteed development 

where as the uncertain technology would yield high but not guaranteed development. 

Thomke and Nigmade (1999) have prepared a detailed case example about “Product 

Development at Dell Computer Corporation”. Dell in 1993 was considering issuing a 

new portable product to be launched in a 12 month period. By that time, Dell was losing 

some market share since it lacked portable product. So a high pressure was set on the 

development team for choosing which feature to be considered as a differentiating 

characteristic. Researches indicated that price, microprocessor choice, battery life, screen 

resolution, reliability, weight and size are the respective high rated features in the minds 

of laptop consumers. Since the company did not want to struggle on price nor on 
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processor speed, the battery life was then considered as the differentiating feature where 

emphasis should take place while developing the laptop.  By that time, NiHi was the used 

battery which had memory problems and lasts for less than three hours. In contrast, LiOn 

a new battery technology developed at Sony promised longer recharge lives but was still 

under development thus considered to be a risky choice. So the team is now faced with 

three options: 

 
• Use a safe choice battery but which captures less market demand: NiHi 

• Use a riskier battery which is still under development but is expected to have a  

larger profit than the proven technology: LiOn 

• Defer commitment to either technologies to a later stage and adopt one of these  

Two approaches: parallel path approach or overdesigning approach 

 

The defer commitment choice would mean that Dell will not engage neither to the 

proven NiHi nor to the prospective LiOn but would wait for more information before 

taking a choice of action. Waiting for more information might cause some delay in the 

product lunching time. To reduce such delays, the team may consider to overdesign the 

product so that it can accommodate either battery choices. Or the team may choose a 

parallel path approach where two different products are pursued simultaneously one 

using NiHi and the other using LiOn. The below table summarizes the advantages and 

disadvantages of considering a certain option. NiHi was referred to as the safest choice 

but lowest potential. LiOn was considered to give Dell unique product position but with a 

high uncertainty level and the defer commitment choice was expected to give the largest 
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net profit but requires immediate money outlays and by that time Dell was considered to 

be severely cash-constrained. 

 

Table 2.2: Advantages and drawback of the three battery choices facing Dell 

 Advantages Drawbacks 

1- NiHi -‐ Safe choice 
-‐ Dell cannot afford 

another failure 
-‐ Would validate new 

structured process 
(which seeks to protect 
firm from further 
setbacks) 

-‐ Lowest upside potential 
-‐ Does not allow significant market 

differentiation with respect to 
battery life. 

2- LiOn -‐ Provides longest 
battery life and would 
give Dell unique 
product position 

-‐ Highest risk: technology is still 
under development 

-‐ Supply is uncertain if product is 
very successful; Sony would be 
single supplier 

3- Defer 

commitment 

-‐ Highest expected net 
margin 

-‐ Limits downside 
technology risk if LiOn 
does not work by 
qualification 

-‐ Violates new process and may 
becomes precedent for many 
other decisions involving 
uncertain outcomes 

-‐ Not consistent with Dell 
culture of commitment 

-‐ Requires additional resources 
-‐ May demoralize the team 

involved with the option that is 
dropped  

  

 
 

Krishnan and Bhattacharya (2002) continued their paper by formulating specific 

equations for each considered choice reflecting the respective expected profit or expected 

net margins. A decision analysis situation was created for each of the three options and 

results showed close profits amounts which made the decision hard and thus concluded 

that no ultimate decision can be based solely on the quantitative calculations; instead 
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some non-monetary factors as morale, process and product strategy should be taken into 

consideration. 

Similar to Dell example, uncertain modules will exist in our model and are 

generally expected to have higher performance than the certain modules and are 

considered to be the top features of the product that can provide a higher market share. 

Three kinds of decisions are available for the designer in our case as well: 

1- Since the modules are uncertain and improvements are not definite, a risk 

averter designer can choose to invest in the parts of the modules that are 

independent of the uncertain module; such decision will certainly improve 

the product performance but not with a significant volume. High product 

performance values cannot be attained in such an investment. 

2- Since the uncertain modules are more profitable for the company and 

extremely important in the eye of the customer, a risk taker designer may 

choose to solely invest in risky modules aiming to add value to the company 

and capture most of market demand. Once investing in such risky modules, 

the designer must allocate his time in a way to update the dependent modules 

to attain compatibility with the uncertain module’s changes if those changes 

were successful. In such a case, higher product performances can be attained 

but not with certainty. 

3- A designer, who is neither extremely risk taker nor enormously risk averter, 

may choose to hedge against risk and eliminate the dependency between 

modules through establishing design rules. Accordingly, once changes are 

done to any module they will not affect others, as if modules were over 
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designed to accommodate all changes. So in such a case a designer may 

chose to invest in the risky and certain module at the same time and then 

decide which one to drop depending on the product performance.  
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 CHAPTER 3 

MODEL FORMULATION 

 

3.1.   Overview 

The methodology adopted in this thesis consists of developing a mathematical 

model that reflects the performance of a given product. As discussed earlier some ideas 

from other papers will be utilized in the process of defining an aggregate system 

performance. Our work will be divided into two types of models: deterministic and 

stochastic models which will be discussed in chapters 4 and 5 respectively. In this 

chapter, the performance function of each module and its corresponding parameters will 

be defined. Below is a table which summarizes all the parameters needed to formulate the 

model. 
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Table 3.1: Parameters of the model 

 
Parameter Definition 

ST Total System Performance 

Sg Performance of group g      1 ≤ g ≤ m 

Pi
g Performance of module i in group g     1 ≤ i ≤ ng 

fij Fraction of update applied to module j to become compatible with the 
changes applied to module i in the absence of design rules 

fij
` Fraction of update applied to module j to become compatible with the 

changes applied to module i in the presence of design rules 
kij Modularity score which defines the knowledge of the relationship that 

exists between modules i and j 
θij Amount invested in design rules between modules i and j 

αi Percentage invested in module i 

Ui Upper limit value for the performance function of module i 

Ci Proxy for module i design’s complexity 

ng Number of modules in group g 

m Total number of groups 

 

 

3.2.   Defining Parameters 

The main objective of this model is to achieve a global optimum performance for a 

given product taking into consideration modularity and integrality effects between the 

sub-components of the product. Any product is made of different modules where some 

modules are dependent on others while some are totally independent. In this model, we 

will group the modules that affect each other and we will be optimizing groups’ 

performances aiming to reach optimum system performance. Equation 3.2.1 denotes the 
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total system performance (ST) which can be expressed as the sum of m optimal 

independent groups’ systems performances (Sg). Our main work will be on optimizing Sg: 

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  � �=�=����	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (�.�.�) 

 
The option-like property defined by Baldwin and Clark (2004) helped us in 

moving from one total system decision to many sub-system group decision. As Allada 

and Lan (2002), we will proceed from optimizing the whole system product to optimizing 

module groups present in that product. Within a group we can check for module cluster 

which is defined as “set of modules within a module group that are strictly inter-

dependent on each other” (Allada and Lan, 2002). A module cluster will be treated as one 

module, since any changes done to any module in the cluster will affect all the remaining 

in the cluster. Fig. 3.1 shows a product composed of eight modules which can be split up 

into two groups: Group 1 containing modules 1, 2, 3, 4, 5, and 6 and Group 2 containing 

modules 7 and 8. Groups 1 and 2 are totally independent and we will seek maximizing 

groups’ 1 and 2 performances to reach an optimal total system performance. The double 

headed arrow (       ) between M3 and M4 indicates a module cluster in Group 1 

composed of modules 3 and 4. Any changes to module 3 will affect module 4 and vice 

versa. Then, modules 3 and 4 can be seen as one module M3-4 as shown in Fig. 3.2. The 

one headed arrow (     ) indicates dependence, i.e. any changes done to M7 will affect 

M8. If M1 changes then M2, M5 and M3-4 are affected but not vice versa and once M2 

changes, M6 will change as well.  
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Fig. 3.1: Modules’ Interdependencies                 

 

  To update a certain product, the designer seeks improvements to be done to the 

modules whether in shape, size, quality etc… Improvements differ among modules. 

Higher investments amounts will be usually allocated to those modules that are 

considered to be the top features of the product causing a high market capturing rate. 

Similar to Dell Case, uncertain modules are expected to have higher performance than 

any other certain modules. Uncertain modules will be targeted in Chapter 5 of this thesis. 

To improve performances of the modules present in the product, money should be 

spent then in an optimized way. For that reason, companies specify budgets to be spent 

on their products for the exerted efforts and invested resources. Each company specifies a 

budget Bg for each group present in its product depending on the size of the group and 

types of existing modules. Some groups will demand higher budget than others since they 

will be composed of more complex modules or even more important or essential 

modules. The budget will be used for improving the groups’ performances present in a 

particular product and for establishing some design rules to reduce interdependencies 

between modules. This model gives the option of investing in design rules, unlike 

Fig. 3.2: Group 1 (n1=5) and Group 2 (n2 =2) 

Group 1 Group 2 
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Baldwin’s and Clark’s (2004) model which assumes that design rules always exist. As 

more effort is spent on design rules as much the modules tend to be independent. So if 

two modules are dependent, then spending money on improving the first oblige us as well 

to spend money on the second and redesign it to remain compatible with the first. But by 

the excessive use of design rules, the two modules will tend to be totally independent. 

Thus spending money on improving the first does not force the designer to spend money 

on the second to attain compatibility.  

Consider a product composed of two modules Mi and Mj only (i.e. one group 

only) and a budget B which is assigned to improve the performance of this group whether 

in investing in design rules or in modules. The dependency that exists between modules 

is explained through fij; 0 ≤ fij ≤ 1. We will define for each group g a data matrix “Dg” (as 

in Fig. 3.3) that shows the fraction or percentage of effect between modules i and j in a 

certain group g (1 ≤ g ≤ m) and other parameters related to that group which will be 

explained later in this chapter.  

  

         
 
 

 

The data matrix “Dg” contains several notations. The diagonal reflects parameters 

that are related to the unique structure of each module whereas other elements as MiMj 

and MjMi reflect parameters that has to do with the relationship that exists between 

modules. We will first start by explaining fij which indicates that (fij*100) % of Module j 

must be redesigned when changes are done to Module i and (fji*100) % of Module i must 

Fig. 3.3: Data matrix Fig. 3.4: A product composed of one group 
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be redesigned to become compatible with Module’s j changes. A zero fij or fji in the 

matrix indicates no impact between modules, in our case fji should be equal to zero 

indicating that Mj does not affect Mi and this is shown in Fig. 3.4 where the arrow 

indicates only effect from Mi to Mj. As a result, and prior to spreading the budget 

between the modules, a good understanding of the architecture of the product and the 

relationship between modules is necessary.      

So the notation fij will be used to specify the fraction of change that should be 

applied on module j to become compatible with the changes applied to module i in 

absence of design rules, and we will introduce the notation fij` to specify the fraction of 

change that should be applied on module j to become compatible with the changes 

applied to module i in the presence of design rules. Note that fij` ≤ fij since design rules 

have the potential to decrease the interdependencies between modules. Any two modules 

will be first related by fij, and after establishing some design rules and reducing 

interdependency between them, they will be related by fij`. Note that each group has its 

unique data matrix and unique parameters that is why the superscript g is used to 

differentiate between parameters of different groups. 

 Let θijB be the amount invested in design rules between Modules i and j. fij` is a 

function of θij and λ (λ is an improvement rate parameter, λ ≥ 0) where fij` decreases as θij 

increases 0 ≤ θij ≤ 1. Accordingly, we will assign a decreasing function for fij` and fij` 

should be in general a function of λ, θij and kij: fij` = f (λ, θij, kij). 
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We have chosen an exponential function for illustrating fij` but this is not the only 

function that can be used to model fij`. If an exponential decreasing function is chosen, 

then fij` will be expressed in the below equation: 

 
     	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �	   ��	  `=	  λ�−�������;                                          ;	  λ	  ≥	  0    	  	  	  	  	  	  	  	  	  	  	  	  	  

(3.2.2) 

 
When we choose not to invest in design rules, θij must be equal to zero and fij` 

should be exactly equal to fij. In this case θij = 0          fij` = λ = fij            therefore: 

 
       	  � ��`=	  ����−���������	  	  	  	  	  	  	  	  	  	  	  	  	  kijg	  >	  0	  ;	  	  	  0	  ≤	  θij	  g	  ≤	  1	  ;	  	  0	  ≤	  fij	  g	  ≤	  1	  	  	  	  	  	  	  	  	  	  	  

(3.2.3)	  	  	  	  	  	  

	  	  	  	  	  	  	  	  	  	  	  	  
kij is a parameter that reflects the amount of decrease in fij with respect to an 

increase in θij and is shown next to fij in the data matrix. Similarly for θij
g and kij

g, the 

superscript g is used just for differentiating parameters among groups. 

Fig. 3.5 below shows fij` versus changes in θij for kij = 10, 20, 30 and 40.     
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Fig. 3.5: fij` for different kij , θij  and fij = 0.85 
 

As you notice from Fig. 3.5, for a low kij, the drop in the curve is less than that for 

a higher kij.  Accordingly we will define kij as a score of Modularity i.e. kij will define a 

measure of modularity between any two dependent modules and can take a score greater 

than zero. In other words, kij defines then the knowledge of the relationship that exists 

between two modules i and j and it increases with the increase of the designer’s 

knowledge making the relationship more modular. This means that in a complex group 

where designer doesn’t know much about the dependency between the modules, 

investing in design rules has a lower impact on fij. By this we mean, that it will slightly 

decrease the interdependencies between modules. Such kinds of complex groups are 

assumed to be highly integral and demand a low score of Modularity as the red curve in 

Fig. 3.5 where we notice that as kij gets closer to zero as the group’s integrality increases. 

Concerning trivial or simple relationships between modules, where the designer 

knows much about the architecture of the group, investing in design rules will make fij` 

highly less than fij implying more decrease in the interdependencies between modules. 

Such kind of uncomplicated relationships between modules are assumed to be highly 

modular and demand a high score of modularity. Once the group is composed of more 

than two modules, kij must be an indicator for the kind of relationship between any 

module i and module j whether modular, integral or somewhere in between. We will have 

in this case several kij. Referring back to Fig. 3.2, the designer should have knowledge of 

four modular scores: k12, k15, k13-4, and k26. 

As the product is more integral (kij is low), investing in design rules will not lead 

to an optimal product performance since reducing interdependencies will demand a large 
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part of the budget. In such cases we are better off not investing in design rules. As the 

product is less integral and more modular, as investing in design rules is necessary to 

achieve total optimal product performance. As kij increases as amount invested in design 

rules increases as well up to certain kij where beyond it θij attains approximately constant 

level. This happens when kij become very large and the drops in fij to fij` become too 

similar as shown in Figure 3.6.  

As you notice from Figure 3.6, the three curves collapses approximately for 

values of kij = 40, 50 and 60, thus the amount invested in design rules for such three 

modularity/integrality relationships will be roughly equal even though kij are different. 

This proves what have been said earlier about fij` becoming too similar when kij attains 

large modular values. Accordingly, an upper limit for kij could be defined and it is equal 

to M. Note that even when fij is different than 0.85 assumed in the Fig. 3.5 and Fig. 3.6, 

the upper boundary of kij still holds. 
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Figure 3.6: fij in function of θij for high values for kij 

3.3.   Performance Function 

Each module’s performance should be measured by a certain function and 

differentiated from other modules by some parameters. Performance functions are 

dependent on amount invested in each module. Some modules’ performances are highly 

sensitive to dollar amount invested in improving the module whereas others are less 

sensitive. We will define different types of modules’ performances all based on the same 

performance function with different parameters and we will assume that the designer is 

extremely knowledgeable about the module he is designing that he can specify in 

advance the type of performance the module will attain by specifying the parameters Ui 

and Ci discussed below. Accordingly the performance of any module should be a 

function of Ui, Ci, and αi. Since our objective in the coming chapters is to introduce time 

component and formulate a periodic investment model, then Pi = f (Ui, Ci, αi) should 

increase at a decreasing rate by time. For illustration, we have chosen the following 

function to express the performance of modules aiming to introduce time component in 

the coming chapters: 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ��=Ui1+e−CiαiBg−Ui2	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (3.3.1)          

              

Where Pi denotes the performance of module i (in units if Ui) 

Ui = value of curve at upper limit for performance value (units of performance) 

Ci = a proxy for module i design complexity,    0 ≤ Ci ≤ 1 (unit less) 

αi : denotes percentage invested in module i,  0 ≤ αi ≤ 100 (unit less) 

Bg : denotes budget of  group g where i belongs to group g ($) 
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Note that in the model formulation all notations will include the superscript g as shown in 

the data matrix above (Fig. 3.3) to differentiate between modules from one group to 

another. 

 
Ci can be a proxy for modules designs’ complexity, where a simple design 

module, which we will assign for it a large Ci, will directly react upon investing in it a 

small amount of the budget while a complex design module (small Ci) will demand a 

higher investment amount than a simple module for attaining a similar performance. 

Complex modules are assumed to be the most essential modules in the product and are 

expected to have a higher upper limit value Ui than any other simple module and are 

considered to be the top features of the product causing a high market capturing rate. The 

parameter Ci is independent of kij the modularity factor where the first explains the type 

of each module whether complex or simple, and the latter explains the relationship 

between two dependent modules. Since each module has its specific Ui and Ci, then the 

values of these two parameters are known in advance and shown on the diagonal of the 

data marix. 

αiBg is the fraction invested in module i (from a budget Bg). Then αi represent a 

percentage of the budget Bg ; 0 ≤ αi ≤ 100. For every $ αiBg invested in module i, we need 

to invest “$ fij` αi (Cj / Ci )Bg” in module j for module j to remain compatible with module 

i where (Cj / Ci) is a scaling factor used to demonstrate the complexity of module j with 

respect to module i. We should differentiate between investing αj % in module j where 

our aim would be improving performance of module j and investing “(Cj / Ci) fij` αi %” in 

module j as a result of investing αi % in module i and our aim in this case is to update 

module j to accommodate module’s i changes. αj % is optional, i.e. a designer can choose 
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to invest in module j or not, but if the designer chose to invest αi % in module i, then he is 

obliged to spend “(Cj / Ci) fij` αi %” in module j taking into consideration that module j 

depends on module i. 

We are assuming in our model that “(Cj / Ci) fij` αi %” invested in updating 

module j is totally independent from αj % spent in improving module’s j performance. 

But this is not always the case. Consider the below four scenarios shown in Fig. 3.7, 3.8, 

3.9 and 3.10:     

  

 
 
       
 
 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7 shows that updating module j to attain compatibility with module i does  

not influence the performance of module j where as Fig. 3.8 shows an intersection 

Fig. 3.8 updating module j 
intersects improving module j 

 

Fig. 3.9: investing in module j 
includes updating j with module’s i 

changes 

Fig. 3.10: updating module j with module’s 
i changes includes improving j’s 

performance 

Fig. 3.7: updating module j and 
improving j are totally independent 
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between these two acts where updating module j affects part of module’s j performance. 

Fig. 3.9 shows that investing in module j and improving its performance will cover 

achieving compatibility with module i as well while Fig. 3.10 shows the opposite; 

updating module j will improve its performance also. 

Similar to equation (3.3.1), the performance of each group Sg is the sum of all 

modules’ performances present in that group: 

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ��=�=� �����	  	  	  	  	  	  	  	  	  ;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  1	  ≤	  g	  ≤	  m	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

(3.3.2) 

 

where ng is the number of modules present in group g 

	  
Our objective is to maximize Sg subject to a budget constraint. We will develop an 

optimization problem for maximizing each group’s performance and the total product 

performance will be the sum of all the maximized Sg. We will target in our model those 

groups with large number of modules where the optimal amount invested in modules or 

in design rules is not quite simple or direct. 

 

After defining all the parameters needed and before moving to Chapter 4 to 

formulate the optimization problem under deterministic conditions, we will list the main 

assumptions presumed in this chapter: 

• kij has an upper limit of M 

• Ci and kij are totally independent 

• Investing module j and updating it are two independent acts 

• Complex modules will have higher performance i.e. low Ci demands high Ui 
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CHAPTER 4 

DETERMINISTIC MODEL 

 

4.1.   Overview 

After defining all the parameters needed to formulate our optimization model, we 

will target in this chapter certain modules where there upper limit value Ui is guaranteed. 

In the next chapter, the notion of uncertainty will be introduced and we will see how the 

optimal investments decisions would be affected once risky modules exist in a product. 

This chapter will be divided into two main sections: the first will show one shot 

investment and the second will show periodic investments decisions. In the multiple shots 

decisions model, the time component will be introduced. Illustrative examples followed 

by analysis will be provided to ensure full understanding of the deterministic model.  

 

4.2.   One-Time Investment Model 

Consider a product composed of m groups and each group contains ng modules. Our 

objective is to maximize total product performance using a single investment decision 

(i.e. how much dollars to allocate to each module or design rule) at the beginning of the 

development process; i.e., no time component is present. We are assuming that the 

company makes a one-time decision about how much should each module acquire from 
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the budget for the re-design or improvement stage.  We consider a normalized budget of 

1 for each group: Bg = 1 for 1 ≤ g ≤ m. 

Max	  ST=Max�=���� 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  =	  Max�=� ��=� �����	  =	  Max�=� ��=� ��Uig	  	  1+e−Cigαig	  –	  Uig2	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

Subject	  to:	  �=1��=1�����	  +	  �,�(�≠�)������	  +	  �,� (�≠�) �����`� 	  

���������]	  	  	  =	  1	  

	  	  	  	  	  	  	  	  �=1��=1�����	  +	  �,�(�≠�)������	  +	  �,� (�≠�) ������(	  

�−� �����������)	  ���������	  	  =1	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0	  ≤	  αi	  ≤	  100,	  	  	  0	  ≤	  θij	  ≤	  1	  	  	  

	  

Since we are maximizing the objective function, it is necessary to check the 

optimality conditions and test for the concavity of the maximized function and convexity 

of the constraint. Let us first consider the objective function: 

 
• Max	  ST=	  Max	  �=� ��=� ��Uig	  	  1+e−Cigαig	  –	  Uig2	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   

 
Since any weighted sum of a concave function is concave, then it is enough to 

show that Uig	  	  1+e−Cigαig	  –	  Uig2	  	  is concave for any αi
g by showing that second order 

derivative with respect to αi
g is nonpositive. Taking the second derivative we get the 

following: 

 
𝜕2�(���)2Uig	  	  1+e−Cigαig	  –	  Uig2	  =UigCig2e−Cigαige−Cigαig−11+e−Cigαig3	  	    

<0	  	  	  for all αi
g 

 
Therefore, we can conclude that the objective function is concave for all αi

g. 
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Second we must consider the constraint and check as well its convexity, since any 

concave function on a convex set should have a unique global optimal.  

• �=1��=1�����	  +	  �,�(�≠�)������	  +	  �,� (�≠�) ������(	  

�−� �����������)	  ���������	  	   

Taking each term by itself: �=1����� and �,�(�≠�)������ are convex and 

concave for all αi
g and θij

g. Concerning the last term of the summation we have to prove 

that (	  �−� �����������)	  ��� is convex where constants were omitted.  To prove 

convexity, we have to prove that the Eigen values for the Hessian matrix are always 

positive or xTHx > 0 for all x where H denotes the hessian matrix.  

Since the Taylor series expansions for exponential functions starts always with a 

linear function (��=1+�+ x22!+…)	  then the assumed exponential function for fij
`g can 

be converted to a linear version where �−� �����������=1−����	  ����	  ����  

and the proof will target fij
g  (1−����	  ����	  ���� αi

g (Cj
g/Ci

g) instead of ����(	  

�−� �����������)	  ��������� . Since constants can be omitted we will work 

with (1- kij 
gfij

g
 θij

g )αi
g only. The Hessian matrix associated with this function is the 

below: 

 
H=0−��������−��������0    and  

xTHx=�1�20−��������−��������0�1�2 

                                                             =	  −2�1�2��������<0	  	  	  for all x	  

≫������� 

 
Therefore, we can conclude that the constraint is concave. But we know that if the 

constraint g(x) was set to be < B and g(x) is concave, then –g(x) > -B is convex. That is, 
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taking the negative of a concave function will give us a convex function. Concave 

function over a convex set allows for a global optimum. 

 

After defining the model and testing the optimality conditions, we move next to 

an illustrative example. 

 

4.2.1.   Illustrative Example 

Consider a product composed of only one group (m=1). Within this group, we 

have six modules (n1 =6)  related together based on the below diagram: 

 

 

 
 
 
 
 

 

  

From Fig. 4.1 we notice that modules six and five depends on module one and 

modules four and three depends on module two which in its turn depends on module one. 

Therefore, the designers of such a product should be well knowledgeable of the 

relationships between modules and about the types of modules whether being complex or 

simple so that he can specify the parameters accordingly. 

Assume that module one is the most important feature of the product and module 

four the least important. Based on that, module one should have the highest upper limit 

Fig. 4.1: A product composed of 
one group having six modules 
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value U1 and the lowest simplicity factor C1. One ultimate question would be: will the 

highest investments amounts be allocated to the most complex modules with the highest 

upper limit Ui ? A quick answer to this question would be: it depends. 

 It depends on how much Ci is low and on how much Ui is high. This example 

will show us that even though module one has the highest upper limit between all the 

modules but it will take the smallest alpha and this is due to many reasons that will be 

discussed in the analysis section. So we are better off investing a small amount in module 

one. 

Consider the data matrix “D” which summarizes all the information about the 

architectural design of the modules and their interdependencies. 

     

 

The diagonal of the data matrix “D” shows the complexity factor Ci and the upper 

limit value Ui for the performance of each module. As you notice module one is the most 

important module in the product which has the highest performance reflected by the 

Fig. 4.2: Data matrix for a product composed of six modules 
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upper limit U1 = 70 and it is the most complicated module in the product having the 

lowest simplicity factor C1 = 0.01. Module six is the second important module in the 

product having a U6 = 55 which is less than U1 but the design of module six is less 

complex than that of module one and it is reflected by a higher C6 = 0.2. The least 

complex module is module four. Its complexity factor C4 = 1 implying no complexity at 

all. From the other side, being too simple will not result in a high performance where U4 

= 8.  

On the other hand, the diagonal entries, M1M2 for example shows an f12 = 0.3 

and k12 = 5 which means that 30 % of module two must be re-designed to attain 

compatibility when changes are applied to module one and the modularity factor k12 

shows an integral relationship between the two modules. This implies that the designer 

does not know much about the interdependency between module one and two.  

Remember that once kij is small then we will not see a sharp drop from f12 to f12`. We 

expect in such a highly integral case no investments in design rules to take place between 

module one and two. M2M4 shows the highest modularity/integrality factor where k24 = 

40 which shows full designer’s knowledge of the architectural link between modules two 

and four. If the amount invested in module two was among the highest alphas then we are 

better of investing in design rules to reduce interdependency especially that 90% of 

module four must be re-designed once updating module two. In addition to that, the 

designer is extremely knowledgeable about the relation of these two modules, so 

investing in design rules can directly decrease f12 to a relatively small f12`. In such a case, 

we expect that the designer to make use of this high k24 to reduce amount needed to 

update module four: α2f24`(C4/C2). The data matrix contains five non-diagonal entries: 
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M1M5, M1M6, M1M2, M2M3 and M2M4 which clearly explain all the links present in 

Fig. 4.1. 

 

4.2.1.1. Excel Solver Results 

 Using Excel-Solver, we optimized the above mentioned example which is 

composed of one group only made of six modules and we got an optimal total product 

performance of 69.78 and the optimal investments amounts in design rules and modules 

are shown in the below table: 

 

Table 4.1: Decision variables values after optimization 

 
α1 0.36% θ12 0% 

α2 12% θ15 5.27% 

α 3 8.09% θ16 0% 

α 4 6.56% θ23 4.12% 

α 5 9.21% θ24 4.66% 

α 6 27%   

 
 

 From Table 4.1 we notice that around 63.23% (�=16��) of the budget went to 

re-designing modules, 14.06% (�,�=1 �≠� 6���)  for developing design rules and the 

22.71%	  (�,�=1 �≠� 6���`��(���� )) left is for updating modules to attain 

compatibility with the changes done. We notice as well that re-designing module six 

demanded 27% from the budget followed by module two where 12% of the budget was 
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allocated for its development work. Modules five, three and four took from the budget 

9.21%, 8.09% and 6.56% respectively. The lowest alpha is that of module one where 

only 0.36% of the budget should be spent in re-designing it. Concerning design rules, no 

work should be done to reduce the interdependency between modules one and two and 

one and six. 5.27% of the budget must be spent on developing design rules between 

modules one and five, 4.66% and 4.12% must be spent respectively to decrease the 

dependency between modules two and four and between modules two and three. 

 Other important results which are of a high benefit to us in the analysis are the 

reduction in the fraction of updates from fij to fij` and the amounts that should be spent to 

update module j once changes are applied to module i: αi fij` (Cj / Ci). 

 

Table 4.2: fij vs fij` and αi fij` (Cj / Ci) 

 
Mi  Mj M1 M2 M1 M5 M1 M6 M2 M3 M2 M4 

fij 0.3 0.7 0.4 0.85 0.9 

fij` 0.3 0.19 0.4 0.22 0.17 

αi fij` (Cj / Ci) 8.37% 5.78% 2.86% 3.10% 2.59% 

 

 

 Table 4.2 shows that fij`= fij in the absence of design rules where θ15 and θ16 = 0. 

We notice a huge decrease in the fraction of update between modules two and four, 

where prior of investing in design rules, 90% (= f24) of module four must be re-designed 

to attain compatibility with module’s two changes while only 17% (= f24`) now must be 

re-designed after spending part of the budget on developing design rules which clearly 
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decreased the dependency between these two modules. The fraction of re-work between 

modules one and five decreased from 70% to 19% and that of modules two and three 

decreased from 85% to 22%. The last row in Table 4.2 shows the percentages of the 

budget that should be assigned to update the dependent modules after investing the 

optimal alphas amounts in improving the modules’ performances.  

 

4.2.1.2. Analysis 

 In the analysis section we will start first by sorting the optimal alphas in a 

descending order where the first listed alpha refers to the highest amount invested in a 

certain module and the last listed alpha refers to the least amount of investment between 

the modules. The sorted alphas are as follows: α6, α2, α5, α3, α4, and α1. The highest 

investment amount went to module six which has the second highest upper limit U6 = 55 

and the lowest investment amount went to module one which has the highest upper limit 

U1 = 70. One usually expects that the highest αi goes to the module with the highest Ui. 

This can be the case in our example if module one was disregarded and the rest of the 

modules were sorted by their upper limit in a descending order. By this we mean, if we 

sort modules two, three, four, five and six by their Uis from the largest to the smallest we 

get: U6, U2, U5, U3, and U4 which is a clear indication for the optimal investments 

amounts (αi) without α1 sorted from highest to lowest. In contrary if we don’t disregard 

U1, then the correct sorting of the modules by their Uis from the largest to the smallest is: 

U1, U6, U2, U5, U3 and U4 which cannot be used as an indication for the highest alphas 

since it assumes that module one having the largest upper limit should have the largest 

alpha which totally contradicts our optimal findings.  
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Accordingly, one could conclude that the complexity factor Ci is affecting the 

optimal results. Remember that a high Ci implies that the module is too simple in design 

and reaching its optimal performance does not demand a large part of the budget. A low 

Ci refers to a very complex module where improving such a module demands a huge 

amount of the budget. Such modules are usually the most important modules in the 

product. 

A good comparison here would be between optimal alpha and maximum alpha. 

By maximum alpha we mean the investment amount which helps the module reaches its 

highest performance. Consider the below table:  

 

Table 4.3: Maximum αi vs optimal αi 

 
Module Maximum αi Optimal αi 

M1 100% 0.36% 

M2 12% 12% 

M3 10% 8.09% 

M4 8% 6.56% 

M5 10% 9.21% 

M6 47% 27% 

 

 

 Inspecting Table 4.3 we notice that module one needs all the budget to attain its 

highest performance that’s why we are better off not investing the largest amount in 

module one. This clearly proves that module one is too complex and this is due to the 
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high complexity factor C1 assigned to it. The next complex module is M6 where C6 = 0.2 

and the maximum alpha which will make module six reaches its highest performance is 

47% of the budget which is less than the optimal amount assigned to it where α6 = 27%. 

Note that if maximum alphas were assigned as optimal alphas then easily we will violate 

our budget constraint. That is why most of the optimal alphas should be much less than 

maximum alphas. In addition to that, remember that the budget also should be spread 

among updating modules to attain compatibility rather than just improving modules.  We 

do not benefit if we spend higher amounts on improving each module’s performance 

separately but once combining all the modules of the product they will not fit to each 

other. In this case, money would be spent and modules’ performances are improved but 

the total product performance would remain equal to the same value before those 

investments. 

 Going back to Table 4.3, we notice that only module two has same value for 

maximum and optimal α2, whereas all other modules have a maximum αi less than 

optimal αi.  

 Let us consider some sensitivity analysis on the value of C1 to understand the 

relationship between the module’s complexity and its optimal investment amount α1. The 

below table shows: different values for the complexity of module one, its correspondent 

optimal investment amount and its rank between the modules. 

 

	   	  

Table 4.4: Sensitivity on C1 

 
C1 0.01 0.05 0.06 0.07 0.15 0.2 0.3 
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α1 0.36% 4.06% 5.3% 6.53% 13.59% 15% 15.03% 

Rank 6 6 4 2 2 2 2 

 

 

 Since module one has the highest upper limit U1 = 70 then it is assumed to be the 

most complex module having the lowest Ci. From Table 4.4 we notice that for C1 = 0.05, 

α1 is still the smallest between all the modules and ranked the last. When C1 was 

increased to 0.06, α1’s rank increased to four and when C1 was assigned a value larger or 

equal to 0.07, α1 was ranked the second highest between the six available modules. Note 

that module one cannot take a value of complexity larger or equal to 0.2 since module six 

has the second largest upper limit value of 55 and a C6 of 0.2. So module one cannot have 

a larger upper limit and a larger simplicity factor at the same time. The two last columns 

were introduced to say that even though module one became less complex then module 

six and even though module’s one upper limit is larger than that of module six, still M6 is 

taking the largest optimal invested amount. In all the above cases, α6 was the largest. We 

can conclude that α1 increased with the increase in C1 but would stabilize for high values 

of C1 (simple designs). This explains that assigning optimal alphas depends on both the 

complexity factor and the upper limit and foreshadows for some other elements 

interfering in making the optimal solution as such.   

 If we reconsider Fig. 4.1, we can notice that modules two, five and six depends on 

module one. So any amount α1 spent on module one, α1f12`(C2/C1)% will be spent on 

module two, α1f15`(C5/C1)% will be spent on module five, and α1f16`(C6/C1)% will be 

spent on module six. And since module one is the most complex module having the 

smallest Ci and since its maximum alpha is 100%, then one could expect that module one 
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should not take the largest investment amount. If α1 was the largest then a huge amount 

of the budget will go to update modules two, five and six. In addition to that, even though 

C1 was close to C6 (as shown in Table 4.4), the largest alpha still goes to module six and 

this is due to the fact that re-designing module six will not demand any updates to other 

modules. In Fig. 4.1 we notice that none of the module is related to module six so we can 

say that module six is not visible to any other modules as opposed to module one which 

is visible to modules two, five and six. These results build upon the concept of 

“visibility” discussed by Baldwin and Clark (1999). Accordingly, one could expect that a 

module with a high upper limit and no other modules depending on it should take the 

largest percent of the budget for its performance improvement.  

 Rather than the optimal alphas, one should also pay attention to the analysis of the 

optimal θij. From Table 4.1 we knew that it is optimally to spend money on developing 

design rules between modules one and five, two and three, and two and four. No advice 

on spending money on the design rules between module one and six and one and two 

since their respective fijs are initially small, thus spending money on decreasing them 

further is of no use. In addition to that, k12 and k16 are the smallest between all the kij, 

which implies the highest integrality factor and the lowest drop from fij to fij`. If we didn’t 

allocate money for developing the design rules between M1M5, M2M3 and M2M4 then 

higher amounts would go for updating the modules due to the interdependencies between 

them. Consider Table 4.5 which shows the amount of money to update the modules in the 

absence of design rules i.e. when fij` = fij:  

Table 4.5: αi fij` (Cj / Ci) % in absence of design rules 

 
Mi  Mj M1 M2 M1 M5 M1 M6 M2 M3 M2 M4 
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fij = fij` 0.3 0.7 0.4 0.85 0.9 

αi fij` (Cj / Ci) 8.37% 21.04% 2.86% 11.77% 13.85% 

 
  

As you notice from Table 4.5, larger amounts are needed to update the modules in 

the absence of design rules where 57.89% of the budget (more than half of the budget) 

will go to updating the modules and the rest will go for improving the performance of the 

modules. On the other hand, in the presence of design rules, 22.7% (refer to Table 4.2) of 

the budget is needed for updating the modules and 14.05% (refer to table 4.1) of the 

budget for developing design rules which makes a total of 36.75% (22.7% + 14.05%) 

which is less than the 57.89% in the absence of design rules. We can conclude that the 

amount of updates in the absence of design rules is always greater than the amount of 

updates plus the amount spent on developing design rules. 

 

4.3.   Periodic Investments Model 

In the previous section, we assumed that the time component does not exist. The 

implicit assumption here is that the assigned budget for a specific module will be spent 

within the development time line at the same rate. If the company wants to investigate 

further its allocation decision as to how much dollars must be invested on a module at 

different intervals of time during the development time line (Burn rate), then a time 

component must be added to the earlier model. 

In this section we will assume that the development process is divided into T 

periods and the PD (product development) managers make these periodic allocation 

decisions at the beginning of the process. By this we mean that, at t = 0 the designer 
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makes in advance αi(1), αi(2), …, αi(T) and θij(1), θij(2), …, θij(T) where αi(t) and θij(t) 

denote optimal amount invested in the modules and design rules respectively for module i 

at time t where 0 ≤  t ≤ T.  Accordingly, the performance function of module i at time t 

will be denoted by Pi (t) i.e. performance per period and not total performance of the 

module.  The performance function of module i at time t, Pi (t), will be have some 

additional terms reflecting the time component that was not present in the function used 

previously. Many researchers believe that product development performance follow an S-

shaped curve (Foster, 1986) where performance build up starts slow then picks up rather 

quickly in the middle and then finally slows down and stabilizes for large t. Accordingly, 

we will assume that the performance of any product increases with time but at a 

decreasing rate. That is, higher levels of performance can be attained in the early periods 

of development than in the later periods. So αi(t) will decrease with time  for all the 

modules starting with a high αi(1) and reaching zero for αi(∞). This implies that the total 

product performance increases at a decreasing rate in time and then stabilizes for large 

values of t. Accordingly Pi (t) which denotes the increment in the performance at time t 

will have the below functional form: 

 
	  � �(t)=Ui1+e−Ci(αi(t)Bg)−	  Ui2	  e−t                               (4.3.1) 

	  
Two main objectives are achieved by this performance exponential smoothing. 

The first desired behavior achieved is the fact that spending a dollar on development 

earlier is better than later as more design freedom is still available and re-work costs are 

low. Second, spending a dollar over a larger development time is better than spending it 

over a shorter period. This reflects the crunch of time (with more time, designers can 
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perform more experiments and tasks) and less likelihood of making errors (with less time, 

designers are prone to make more design errors). 

To understand more equation 4.3.1, consider an available budget of $10, a 

duration of three periods (T=3), upper limit = 20, complexity factor = 0.3 and only one 

module to invest in. The below table shows different combinations for spreading the 

budget along the three periods (αi (t) is shown in dollar and not in percentage), the 

performance Pi(t) per period and the overall performance (Pi(1) + Pi(2) + Pi(3)) for each 

arrangement. 

 

 

 

 

 

 

 

 

 

 

 

Table 4.6: Spreading $10 among one module along three periods 

αi (1) αi (2) αi (3) Pi(1) Pi(2) Pi(3) Overall Performance 

3.33 3.33 3.33 1.7 0.6254 0.6254 2.9508 

10 0 0 3.3299 0.0000 0.0000 3.3299  
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0 10 0 0.0000 1.2250 0.0000 1.2250 

0 0 10 0.0000 0.0000 0.4506 0.4506 

1 9 0 0.5477 1.1829 0.000 1.7306 

9 1 0 3.2155 0.2015 0.0000 3.4170 

0 9 1 0.0000 1.1829 0.0741 1.2570 

4 6 0 1.9757 0.9694 0.0000 2.9451 

6 4 0 2.6351 1.9757 0.0000 4.6108 

6 0 4 2.6531 0.0000 0.2674 2.6040 

0 6 4 0.0000 2.6351 0.3162 2.9513 

5 4 1 2.3366 1.9757 0.0741 4.3864 

 

 

As you notice from Table 4.6 the highest total performance goes for those 

combinations which have alphas that decrease by time. The lowest overall performance 

goes for the combinations that start with αi (1) = 0. For example (10, 0, 0) gave a total 

performance of 3.33 whereas (0, 10, 0) gave a total performance of 1.22 and this is due to 

time pressure where investing a $10 in the first period will give a higher performance 

(due to the availability of more time) then a $10 spent in the second or in the last period. 

Ulrich and Eppinger (2008) explained that behavior by the below graph which indicates 

that design freedom for any product decreases with time where as the cost of change 

increases with time.   
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Fig. 4.3: Time pressure affecting Cost of Change and Design Freedom 

 

Fig. 4.3 shows that the freedom of re-designing a certain module decreases with 

time while its respective cost increases with time. Accordingly we have chosen to 

multiply our performance function by e-t to reflect time pressure. That is, investing a 

certain amount during the first few periods will have a higher performance than investing 

the same amount during the last periods where we have a significant cost of change and a 

minimal freedom of designing.  

Consequently, even though the same amount of alpha (= 10) is spent in both 

arrangements but the factor e-t in the performance function is shifting the result where e-1 

= 0.37 and e-2 = 0.14 when Ui1+e−Ci(αi(t)−	  Ui2 = 9.0515 in both cases. Accordingly, it 

is not optimal to miss the opportunity of investing in the first period, thus missing 37% 

(e-1) from the performance. Moreover, since e-t is always greater than e-(t+1) then in order 

to maximize the performance of a certain module, αi(t) should be greater than αi(t+1). 

Accordingly one can conclude that once αi(t) becomes zero, then αi(t+1), αi(t+2), etc… 
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are equal to zero as well. In addition to that, Table 4.6 shows that dividing your budget 

among periods is better than investing the whole amount in a one period. For example, 

spending $5 in the first period, $4 in the second period and $1 in the last period is much 

better than spending the whole $10 in the first period. You will be able to spend your 

whole budget in a one period but you will not guarantee an optimal total performance. 

In the periodic investment model, the fraction of update between modules is a 

recursive formula expressed by:  

 
	  	  	  	  	  	  	  	  	  	  	  	  	  fij`t=	  fij`t−1e−θijtfij`t−1kij	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (4.3.2) 

 
where the decrease in the fraction of update in period t,  fij`(t), depends on amount of 

update reached in the previous period fij`(t-1).  

To simplify representations, we will introduce the superscript “Ov” denoting 

“overall” sum whether for performance, amount invested, design rules or fraction of 

updates as follows: 

 
                 PiOv	  =	  �=1���(�) 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (4.3.3) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  αiOv	  =	  �=1���(�) 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (4.3.4)	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  θijOv	  =	  �=1����(�) 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (4.3.5)	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  fij`αiCjCiOv=t=1Tfij`tαi(t)CjCi	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (4.3.6)	  

where 1 ≤ i ≤ ng and 1 ≤ g ≤ m 

 
The optimization problem for the periodic investments model where we consider 

a product composed of m groups, each group contains ng modules, T periods exist, 
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normalized budget of 1 for each group, and an objective of maximizing total product 

performance in a multiple shot investments all known in advance will be as follows: 

 

Max	  ST	  =	  Max	  g=1mSg	  	  	  	  =	  Max	  g=1mi=1ngPigOv	  	  	  	  	  	  =	  Max	  �=� ��=� ��t=1TPig(t) 

	  =	  Max	  �=� ��=� ��t=1T(Uig1+e−Cigαig(t)	  −	  Uig2)	  ∗ 	  e−t	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

	  
Subject	  to:	  �=��i=1ng(αig)Ov+	  i,j(i≠j)ng(θijg)Ov	  +	  i,j(i≠j)ngfij`gαigCjgCigOv	    = 1  

g=1mi=1ng�=1����(�) 	  +	  i,j(i≠j)ng�=1�����(�) 	  +	  

i,j(i≠j)ng�=1�fij`g(t)αig(t)CjgCig=1 g=1mi=1ng�=1����(�) 	  +	  i,j(i≠j)ng�=1�����(�) 	  +	  

i,ji≠jng�=1�fij`gt−1e−θijgtfij`gt−1kijgαig(t)CjgCig=1        

	  
0	  ≤	  αi	  ≤	  100,	  	  	  0	  ≤	  θij	  ≤	  1	  	  	  

   

Similar to the previous section, we should check the optimality conditions and test 

for the concavity of the maximized function. Let us first consider the objective function: 

 
• Max	  ST=	  Max	  �=� ��=� ��t=1T(Uig1+e−Cigαig(t)	  −	  Uig2)	  ∗	  e−t	  	  	  	   

 
Adding the time component will not affect the results of concavity derived earlier. 

Even though the second derivative in this case will be with respect to αig(t) rather than 

αig but still the second derivative is the same and still < 0 for allαig(t), implying a 

concave objective function. 

Second we must consider the constraint and check as well its convexity, since any 

concave function on a convex set should have a unique global optimal.  
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• g=1mi=1ng�=1����(�) 	  +	  i,j(i≠j)ng�=1�����(�) 	  +	  

i,ji≠jng�=1�fij`gt−1e−θijgtfij`gt−1kijgαig(t)CjgCig   

 
Considering each term by itself we get: i=1ng�=1����(�) and 

i,j(i≠j)ng�=1�����(�) are both convex and concave for all αi
g(t) and θij 

g(t) 

respectively. To prove convexity for the last term of the summation we adopt the linear 

version discussed in the previous section and we assume that T=2 and by induction 

convexity applies for all values of T especially that we have a recursive equation of 

fij`g(t). 

 For T = 2 and the linear version assumption we have: 

fij`gt=1αig(t=1)CjgCig+fij`gt=2αig(t=2)CjgCig 

⇒����1−kijgfijgθijg(t=1)αig(t=1)CjgCig+fij`g(t=1)1−kijgfijgθijg(t=2)αig(t=2)CjgCig 

 
We take again each term separately. The first term (when t=1) is already proven 

concave in the one shot investment, then we are rest with proving concavity for the 

second term and then multiplying the whole constraint with a negative sign to obtain a 

convex constraint. 

fij`g(t=1)1−kijgfijgθijg(t=2αig(t=2)CjgCig=fijg1−fijgkijgθijg(t=1)1−fijgkijgθijg(t=2)αi

g(t=2)CjgCig	   

Dropping out the constants, and deriving with respect to: αig(t=2)CjgCig , 

θijg(t=1), and θijg(t=2) we get the below 3x3 Hessian matrix. 

H = 	  0−��������+	  ��������2����(�=2) ��������+	  

��������2����(�=1) −��������+	  
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��������2����(�=2) 0��������2���(�=2) ��������+	  

��������2����(�=1) ��������2���(�=2) 0	   

 
and xTHx = �1�2�3H�1�2�3=	  2�1�2−��������+	  ��������2�����=2+	  

2�1�3��������+	  ��������2�����=1+	  2�2�3��������2����=2>0	  	  	  for	  all	  x	  

≫������ 

 
xTHx being greater than zero, it implies convexity. Therefore, we can conclude 

that part of the periodic constraint is concave and part is convex. Since decision variables 

exist in both parts, no comparison or further work can be done. 

 

4.3.1.   Illustrative Example 

Consider the same product in the previous example which was composed of only 

one group and six modules related together based on Fig. 4.1 and based on the data 

matrix of Fig. 4.2. We will assume in this example that T=3, i.e. we have three periods of 

investments and we are seeking optimal investments decisions in advance of the three 

periods. 

 

 

4.3.1.1. Excel Solver Results 

 Using Excel-Solver, we optimized the above mentioned example during three 

time periods and we got an optimal total product performance of 96.76 and the optimal 

investments amounts in design rules and modules are shown in the below table: 
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Table 4.7: Decision variables values after optimization 

 
 t = 1 t = 2 t = 3 

α1 (t) 0 % 0 % 0 % 

α 2 (t) 5.87 % 4.42 % 2.85 % 

α 3 (t) 4.45 % 3.14 % 1.77 % 

α 4 (t) 3.38 % 2.15 % 1.03 % 

α 5 (t) 4.93 % 3.54 % 2.06 % 

α 6 (t) 15.14% 15.14% 15.14% 

θ12 (t) 0 % 0 % 0 % 

θ15 (t) 0 % 0 % 0 % 

θ16 (t) 0 % 0 % 0 % 

θ23 (t) 4.42% 0 % 0 % 

θ24 (t) 4.72% 0 % 0 % 

  
 

 From Table 4.7 we notice that around 85% of the budget went to re-designing 

modules, 9.14% for developing design rules and the 5.86% left are for updating modules 

to attain compatibility with the changes done. We notice as well that module’s six 

investments were the highest between all the modules among all the periods where 

15.14% from the budget each period should be spent on improving module’s six 

performance. On the contrary, the lowest alphas are that of module one where none of the 

money should be spent in re-designing it. Concerning the rest of the modules (two, three, 

four, and five), all their alphas decrease by time and this is due to the performance 

function Pi (t) assumed in the previous section. If we sum the alphas for each module 
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along t, we see that 45.42% of the budget is invested in module six, around 13% in 

module 2, 10.5%, 9.35%, 6.55% and 0% in modules five, three, four and one 

respectively. 

 Concerning design rules, since no investments plans are advised for module one 

along the periods, then no efforts should be exerted to reduce the interdependency 

between modules one and two, one and five, and one and six. 4.72% of the budget must 

be spent on developing design rules between modules two and four, and 4.42% must be 

spent to decrease the dependency between modules two and three. 

To emphasize the importance of the design rules, the reduction in the fraction of 

updates from fij to fij`(t) and the amounts that should be spent to update module j (αi fij`(t) 

(Cj / Ci))  once changes are applied to module i should be taken into consideration. 

Consider the below table: 

 

 

 

 

 

 

Table 4.8: fij(t) vs fij`(t) and αi fij`(t) (Cj / Ci) 

 
Mi  Mj M1 M2 M1 M5 M1 M6 M2 M3 M2 M4 

fij 0.3 0.7 0.4 0.85 0.9 

fij` (t=1) 0.3 0.7 0.4 0.2 0.16 

fij` (t=2) 0.3 0.7 0.4 0.2 0.16 
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fij` (t=3) 0.3 0.7 0.4 0.2 0.16 

αi fij`(t=1) (Cj / Ci) 0 % 0 % 0 % 1.38 % 1.24 % 

αi fij`(t=2) (Cj / Ci) 0 % 0 % 0 % 1.04 % 0.93 % 

αi fij`(t=3) (Cj / Ci) 0 % 0 % 0 % 0.67% 0.6 % 

 

 Table 4.8 shows that fij`(t)= fij in the absence of design rules where θ12, θ15 and θ16 

= 0. We notice a huge decrease in the fraction of update between modules two and four, 

where prior of investing in design rules, 90% (= f24) of module four must be re-designed 

to attain compatibility with module’s two changes while only 16% (= f24`) now must be 

re-designed after spending part of the budget on developing design rules which clearly 

decreased the dependency between these two modules. The fraction of re-work between 

modules two and three decreased from 85% to 20%. Since no investments in design rules 

is witnessed in periods two and three then:  fij`(3) = fij`(2) = fij`(1).  The last three rows in 

Table 4.8 show the percentages of the budget that should be assigned to update the 

dependent modules after investing the optimal alphas amounts in improving the modules’ 

performances. Since the alphas are decreasing by time, then definitely the updates’ 

amounts will diminish as well even though the fraction of re-works of periods two and 

three are the same as that of period one. Moreover, since α1 is zero, then all updates 

related to module one are zero as well. 

 

4.3.1.2. Analysis 

Similar to the previous analysis section, we will start first by sorting the optimal 

alphas in a descending order where the first listed alpha refers to the highest amount 
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invested in a certain module and the last listed alpha refers to the least amount of 

investment between the modules. Since we did not change the data matrix nor the 

architecture of the product between the two examples, then one could expect to get the 

same order of alphas we previously obtained even though the amounts of performances 

and investments differ (this is due to time component introduction). The sorted alphas are 

as follows: α6, α2, α5, α3, α4, and α1 and they are exactly the same as example 4.2.1. The 

highest investment amount went to module six which has the second highest upper limit 

U6 = 55 and the lowest investment amount went to module one which has the highest 

upper limit U1 = 70. The same conclusion applies here, which highlights the cause on the 

complexity factor Ci which is affecting the optimal results.  

Note that we cannot directly compare the periodic model to the one shot model 

due to the difference in the objective function; however, we can have a relative 

comparison. As you see from Table 4.9, there is difference in the total product 

performance between the two types of investments and this due to α6 being 45.42% in the 

periodic investments as opposed to 27% in the one-shot model. This is due to that fact 

that we are multiplying Pi by e-1, e-2 and e-3 thus more investment amounts are needed to 

achieve the same performance of the deterministic model. Since module six is the most 

important module, more dollars were assigned to that module as opposed to approximate 

same amounts of dollars to the other modules.  The important fact is that the sorting of 

alphas is the same between the two models but only the amount invested in module six 

differs. There is no much benefit from having multiple investment time points since we 

can perfectly predict the performance estimation of modules. 
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Table 4.9: Comparison between one-shot and periodic investments 

 One- Shot Investment Periodic Investments 

α1 / P1 0.36%         --           0.06 0%              --         0 

α 2 / P2 12%            --            19 13%            --        10.02 

α 3 / P3 8.09%         --            8.49 9.35%        --         4.31 

α 4 / P4 6.56%         --            3.99 6.55%         --        1.89 

α 5 / P5 9.21%         --           10.99 10.5%         --        5.64 

α 6 / P6 27%            --           27.35 45.42%       --       74.88 

ST 69.78%          96.76 

�=16��	   63.23%          85% 

�,�=1 �≠� 6���	   14.06% 9.14% 

�,�=1 �≠� 6���`��(����	  

)	  

22.71% 5.86% 

 

 

Similar studies concerning sensitivity on Ci and comparison between optimal and 

maximum alphas could be done and will lead to the same result derived earlier which 

states that a module with a high upper limit and no other modules depending on it is 

expected to take the largest percent of the budget for its performance improvement. Being 

highly complex, module one will demand the entire budget to attain its maximum alpha 

and will require a high percentage of the budget for updating modules two, five and six. 

One can conclude then, that three factors must be taken into consideration once deciding 
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on investing in a certain module:  the upper limit, complexity factor and architectural link 

between modules. 

In addition to that, one should also pay attention to the analysis of the optimal θij. 

From Table 4.7 we knew that it is optimal to spend money on developing design rules 

between modules two and three, and two and four. However, it is not optimal to spend 

money on the design rules between modules one and two, one and six and one and five. 

Since it is not optimal to invest in module one (α1 = 0) so no need to update any modules 

dependent on it. If we did not allocate money for developing the design rules between 

M2M3 and M2M4 then higher amounts would go for upgrading the modules due to the 

interdependencies between them. Consider Table 4.10 which shows the amount of money 

to update the modules in the absence of design rules i.e. when fij`(t) = fij:  

 

Table 4.10: αi fij`(t) (Cj / Ci) % in absence of design rules 

 
Mi  Mj M1 M2 M1 M5 M1 M6 M2 M3 M2 M4 

fij = fij`(t) 0.3 0.7 0.4 0.85 0.9 

αi fij`(t=1) (Cj / Ci) 0 % 0 % 0 % 5.76 % 6.77 % 

αi fij`(t=2) (Cj / Ci) 0 % 0 % 0 % 4.34 % 5.11 % 

αi fij`(t=3) (Cj / Ci) 0 % 0 % 0 % 2.8 % 3.29 % 

 

As you notice from Table 4.10, larger amounts are needed to update the modules 

in the absence of design rules where 28.07% of the budget will go to updating the 

modules and the rest will go for improving the performance of the modules. On the other 

hand, in the presence of design rules, 5.86% (refer to Table 4.8) of the budget is needed 
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for updating the modules and 9.14% (refer to table 4.7) of the budget for developing 

design rules which makes a total of 15% (5.86% + 9.14%) which is less than the 28.07 % 

in the absence of design rules.  

 Concerning the total product performance, at t=1 we have a total performance of 

40.12, at t=2 we have an increment of 30.17 making the total performance at time two 

equals to 70.28, and at t=3, we have an increment of 26.48 making the cumulative total 

product performance equals 96.76. As discussed in the previous section, the product 

performance will evolve at a decreasing rate where for a large T we expect minimal 

increments, thus stabilization for product performance and no more improvements. 

Consider the below two graphs which show the growth of the modules’ performances and 

total product performance as a function of time for the above three periods’ example: 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 



 

70 
 

 
 
 
 
 
 
 
 

Fig.4.4: Modules’ performances in function of time 
 

 

Fig. 4.4 shows the performances of modules one to five as a function of time. As 

you notice the performance of any module will increase with time. The product highly 

reacts in the first period and then enters a steady state once t gets larger. The below graph 

shows: the total product performance and the performance of module six as a function of 

time. Since module six affects mostly the total performance, it is better to group them in 

one figure. 

Fig. 4.5 below shows the Total product performance increasing at a decreasing 

rate and shows as well the performance of module six how it is constantly increasing 

depending on the optimal equal alphas invested in each period. 
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Fig. 4.5: Total product and module’s six performances in function of time 
 

 

After establishing the deterministic model through two types of investments (one 

shot and periodic), we will move next to develop the stochastic model in those two 

investments strategies as well. The only assumption made in this chapter was that 

concerning the periodic investments model where the performance was assumed to 

increase at a decreasing rate. 
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CHAPTER 5 

STOCHASTIC MODEL 

 

5.1.   Overview 

As discussed previously, uncertain modules may exist in a given product and are 

expected to have a higher performance than any other certain module for the same amount 

of investment. Thus they are considered to be the top features of the product causing a high 

market capturing rate. In this chapter, the notion of uncertainty will be introduced into the 

two types of investments: one shot investment and periodic investments. Similar to the 

earlier chapter, illustrative examples followed by analysis will be provided to ensure full 

knowledge of stochastic events. 

 

5.2.   One Shot Investment Model 

In the last chapter, all modules whether complex or simple in design had a 

deterministic and fixed known Ui denoting the upper limit value the performance function 

can attain. But as we saw in the Dell case-study, not all modules have proven technologies 

where they provide limited but guaranteed performance. Some modules are considered to 

be a prospective technology choice where they offer high but risky performance 

improvement. So “certain” modules would yield low but guaranteed performance 

improvement where as “uncertain” modules would yield high but not guaranteed 

improvements. Since complex design modules having low Cis are assumed to achieve 

higher Uis, complex modules then are the ones which likely hold uncertainty in their 
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performances. Simple modules cannot be uncertain, because the designer would definitely 

not choose to spend money on re-designing a low and uncertain Ui. 

For uncertain modules, we will assume that Ui will vary based on a known 

probability distribution. In this thesis we will assume a Uniform distribution function: U~ 

(ai, bi) where ai and bi are the minimum and maximum values for the upper limit value Ui 

of module i. Accordingly, the performance of any group would be the sum of all expected 

Pis present in that group: 

 
��=�=� ���(��)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (5.2.1) 

	  
  For example, if module i was considered to be a risky module having an upper 

limit Ui where Ui is a Uniform random variable: U(ai,bi), then an expected value of the 

upper limit Ui of module i will be used and it is equal to (ai+bi)/2. Note that module i has 

the same chance of attaining ai, bi or any value in between that’s why uncertain modules 

are risky: as they can attain larger performances than certain modules, they are equally 

probable to behave worse and attain lower performances.  

 
 

           �	  ��=�	   Ui	  	  1+e−Ciαi	  –	  Ui2	  	  =	  EUi	  	  1+e−Ciαi	  –	  EUi2  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  =	  (	  ai+bi)2	  	  1+e−Ciαi	  –	  (	  ai+bi)22	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

(5.2.2)	   

 
Note that if module i is a deterministic module then E (Pi) = Pi. Note as well that 

kij can be stochastic also, where the designer’s knowledge of the relationship between the 

modules can vary uniformly between (kij
low, kij

high) as well thus E (fij`) can be used which 

is equal to: E	  (fij`)=fijg(	  e−θijgfijgE(kijg)). E(kij) is equal to (kij
low + kij

high) /2. 
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In the stochastic model, our objective will not only be maximizing total product 

performance but rather as well minimizing the variability. The notation Vg will be used to 

denote the variance of group g and Vi to denote the variance of module i. We assume that 

groups are independent of each other, then no correlation exists between various groups 

in the system. Within a certain group, modules do depend on each other but we also 

assume that no correlation exists between the upper limits of the modules. Thus the 

variance of a certain group will be the sum of all the modules’ variances only. 

The variance of group g and variance of module i will be expressed as follows where 1 ≤ 

g ≤ m and 1 ≤ i ≤ ng: 

 
��=	  �=1����	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (5.2.3)	  

��=�	   ��2−[�	   ��]2	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (5.2.4)	  

	  
where E (Ui) = (ai + bi )/2 and E (Ui

2) = [( bi – ai)2/12] + [(ai + bi) /2]2  
 

   For formulating the optimization problem, we will consider a product composed 

of m groups and each group contains ng modules some of them certain and others risky 

with a Ui ~ U(ai, bi). Our objective is to maximize total product performance and 

minimize the variance in a one shot investment where no time component is present. For 

the objective function to have a unique performance unite, the standard deviation 

multiplied by a weight wi  will be subtracted from each modules’ performance instead of 

the variance. The designer can choose wi (0 ≤ wi ≤ 1) depending on his preferences where 

wi = 0 cancels the objective of minimizing variability and wi = 1 ensures full 

minimization of risk (standard deviation is a measure of risk). Then the standard 
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deviation of a certain group will be the sum of all standard deviations multiplied by their 

respective weights for all the modules present in that group: 

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ��.���.= ��=	  �=1����	  ��	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (5.2.4)	  

 
  A normalized budget of 1 for each group is considered: Bg = 1 for 1 ≤ g ≤ m. 

Since some modules are uncertain then E (Pi) is always used. Remember that the 

superscript g will be used to differentiate between the modules’ parameters among 

various groups: 

	  

Max	  ST	  =	  Max	  g=1mSg−	  Vg	  =	  Max	  �=� �Vigwig	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   

	  =	  Max�=� �E	  (Pig)2−[E	  Pig]2wig 

	  
Let	  ��+�−������−��=���	  	  	  then: 

• ���=�����+�−������−��=	  ������	  	  	   

• ����=	  ���+����	  ���	  	  	   

• 	  �	  (���)2=	  ���−	  ���212+���+���22���2	  

• [�	   ���]2=	  ���+���22���2	  

	  

Replacing all the above in the objective function we get: 

 
	  	  	  	  	  	  	  	  Max	  ST	  =	  Max	  �=� ��=� �����+�������−���−�����������	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

=	  Max�=� ��=� ����������−����+����+���� 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  =	  Max�=� �	  ��+��−������−������−����+����+����	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  Subject	  to:	  �=1�i=1ngαig	  +	  i,j(i≠j)ngθijg	  +	  i,j(i≠j)ngfij`g	  αigCjgCig	  =1	  
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	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  �=1�i=1ngαig	  +	  i,j(i≠j)ngθijg	  +	  i,j(i≠j)ngfijg(	  e−θijgfijgkijg)	  αigCjgCig	  

=1	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0	  ≤	  αi	  ≤	  100,	  	  	  0	  ≤	  θij	  ≤	  1	  	  	  

	  

Note that for a certain module, ai = bi = Ui and no variability exists (wi = 0), that is: 

��+��−������−������−����+����+���� 

=������+��−������−��=�����+�−������−��=��� 

Since we are maximizing the objective function, it is of vital importance to check the 

optimality conditions and test for the concavity of the maximized function and convexity of 

constraint. Let us first consider the objective function: 

 
• Max	  ST=	  Max�=� �	  ��+��−������−������−����+����+���� 

 
Since any weighted sum of a concave function is concave, then after omitting the 

constants, it is enough to show that 1	  	  2+2e−Cigαig	  	  	  is concave for any αi
g by showing 

that second order derivative with respect to αi
g is nonpositive. Taking the second 

derivative we get the following: 

 
�2�(���)21	  	  2+2e−Cigαig	  	  =Cig2e−Cigαige−Cigαig−121+e−Cigαig3	  	    <0	  	  	  for 

all αi
g 

 
Therefore, we can conclude that the objective function is concave for all αi

g. 

Concerning the constraint, the same proof of the one shot investment model 

applies here and implies a concave constraint. 
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After defining the model and testing the optimality conditions, we move next to 

an illustrative example. 

 

5.2.1.   Illustrative Example 

We will consider the same example of chapter 4, the product which is composed 

of only one group having six modules. The modules are dependent on each other based 

on the architectural diagram provided earlier (Fig. 4.1). The data matrix of the previous 

chapter still hold as well except for the upper limit of modules one and six which are 

assumed to be uncertain having uniform distributions: U1~ U (40, 120) and U6 ~ (30, 85). 

Since only complex modules can have risky performances, then the other modules (two, 

three, four and five) are certain and have the same upper limit defined previously (Fig. 

4.2).  We will assume that the designer’s objective is to maximize total product 

performance and fully minimize the variability in one shot investment. Accordingly we 

will set w1 = w6 = 1. 

 

5.2.1.1. Excel Solver Results 

  Using Excel-Solver, we optimized the above mentioned example based on the 

formulation provided in the earlier section where uncertainty and reducing variability 

were taken into account. We got an optimal total product performance of 63.30 and the 

optimal investments amounts in design rules and modules are shown in the below table: 

 

Table 5.1: Decision variables values after optimization 

 
α1 0.02% θ12 0% 
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α2 11.95% θ15 0 % 

α 3 10.07% θ16 0% 

α 4 8.43% θ23 4.12% 

α 5 10.99% θ24 4.45% 

α 6 42.25%   

 
 

  From Table 5.1 we notice that around 83.71% of the budget went to re-designing 

modules, 8.57% for developing design rules and the 7.72% left are for updating modules 

to attain compatibility with the changes done. We notice as well that re-designing 

module six demanded 42.25% from the budget followed by module two where 11.95% 

of the budget was allocated for its performance improvement work. Modules five, three 

and four took from the budget 10.99%, 10.07% and 8.43% respectively. The lowest 

alpha is that of module one where only 0.02% of the budget should be spent in re-

designing it which is a very minimal amount and can be omitted. Concerning design 

rules, no work should be done to reduce the interdependency between modules that are 

linked to module one as modules two, five and six. 4.45% of the budget must be spent 

on developing design rules between modules two and four, and 4.12% must be spent to 

decrease the dependency between modules two and three. 

  Other important results are the reduction in the fraction of updates from fij to fij` 

and the amounts that should be spent to update module j once changes are applied to 

module i: αi fij` (Cj / Ci). 

 

Table 5.2: fij vs fij` and αi fij` (Cj / Ci) 



 

79 
 

 
Mi  Mj M1 M2 M1 M5 M1 M6 M2 M3 M2 M4 

fij 0.3 0.7 0.4 0.85 0.9 

fij` 0.3 0.7 0.4 0.22 0.18 

αi fij` (Cj / Ci) 0.48% 1.2% 0.16% 3.10% 2.78% 

 
 

Table 5.2 shows that fij`= fij in the absence of design rules where θ12, θ15 and θ16 = 

0. We notice a huge decrease in the fraction of update between modules two and four, 

where prior of investing in design rules, 90% (= f24) of module four must be re-designed 

to attain compatibility with module’s two changes while only 18% (= f24`) now must be 

re-designed after spending part of the budget on developing design rules which clearly 

decreased the dependency between these two modules. The fraction of re-work between 

modules two and three decreased from 85% to 22%. The last row in Table 5.2 shows the 

percentages of the budget that should be assigned to update the dependent modules after 

investing the optimal alphas amounts in improving the modules’ performances.  

 

5.2.1.2. Analysis 

Similar to the previous chapter, if we want to sort the optimal alphas in a 

descending order then we will get the same order of alphas we previously obtained even 

though the upper limit U1 and U6 changed. What is different in this model is the huge 

amount assigned to re-designing the modules where 83.71% of the budget was allocated 

for investments compared to 63.23% for the deterministic model. When the upper limit 

U1 varied uniformly between 50 and 120, no advice was given to invest in such a risky 
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module especially that it has a high complexity factor and many architectural links with 

other modules. In contradiction to module one, when its upper limit U6 varied uniformly 

between 30 and 85 more budget was allocated for the investments in module six. When 

module six was certain, it was optimal to invest in it 27% of the budget, and when it 

became risky the optimal amount increased to 42.25%. In the deterministic module, since 

none of the modules depend on module six, and since U6 was large in value it was 

advisable to invest the largest part of the budget in re-designing module six. Now in the 

stochastic model, we notice that even though module six became uncertain more money 

was allocated to such a module. The reason for that lies also in the non-existence of 

modules depending on module six but moreover on the upper limit of module six where it 

is equally probable to attain any value between 30 and 85 with an expected value of 57.5, 

the second largest between all the modules and larger than U6 of the deterministic case. 

Accordingly more budget will go to module six and less for module one which implies 

less for design rules and updates since most of the modules depend on module one. 

Consider the below table which shows a comparison between the deterministic and the 

stochastic one-shot model results: 

 

Table 5.3: Comparison between deterministic and stochastic one-shot model 

 Deterministic One- Shot 

Investment 

Stochastic One-Shot 

Investment 

α1 0.36% 0.02% 

α 2 12% 11.95% 

α 3 8.09% 10.07% 

α 4 6.56% 8.43% 
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α 5 9.21% 10.99% 

α 6 27% 42.25% 

ST 69.78 63.30 

�=16��	   63.23% 83.71% 

�,�=1 �≠� 6���	   14.06% 8.57% 

�,�=1 �≠� 6���`��(����	  

)	  

22.71% 7.72% 

 

 

If we compare the total product performance between the deterministic and the 

stochastic model from Table 5.3 we notice that the deterministic attained larger total 

product performance even though less investments amounts were allocated to its 

modules. This can be explained by the fact that we are minimizing variability in the 

stochastic model which implies subtracting the weighted standard deviation from each 

module’s performance. More money went to modules’ re-design stage but less total 

product performance reached. The difference is not huge (69.78 vs. 63.30) but still 

significant if the amount spent on the modules was taken into consideration. 

Similar table to that of the previous chapter can be drawn to compare the optimal 

and maximum alphas. All maximum alphas in Table 4.3 hold except for that of module 

six, where its maximum alpha now equals 44 and optimal alpha 42.25.  We notice that in 

this model all the optimal alphas were approximately equal to their maximum alphas 

except for module one. And this is due to the lack of investment in module one which 

increases the available budget for the others modules. Remember that if we did not invest 
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in module one, then we will not need to spend much money on developing design rules 

and updating modules for attaining compatibility. 

Similar sensitivity study on the value of C1 can be done, and same results will be 

obtained; where for C1 ≥ 0.07, module one will be ranked the second largest between all 

the alphas. But as said previously, module one cannot decrease in complexity (C1 

increases) and still attain the same high upper limit U1.  

Rather than the analysis of the optimal alphas, we can pay attention as well to the 

analysis of the optimal θij. From Table 5.1 we knew that it is optimally to spend money 

on developing design rules only between modules two and three, and two and four. No 

advice on spending money on the design rules related to module one since it is not 

optimal to invest in the risky module one at all. If we didn’t allocate money for 

developing the design rules between M2M3 and M2M4 then higher amounts would go 

for updating the modules due to the interdependencies between them. Consider Table 5.4 

which shows the amount of money to update the modules in the absence of design rules 

i.e. when fij` = fij:  

 

Table 5.4: αi fij` (Cj / Ci) % in absence of design rules 

 
Mi  Mj M1 M2 M1 M5 M1 M6 M2 M3 M2 M4 

fij = fij` 0.3 0.7 0.4 0.85 0.9 

αi fij` (Cj / Ci) 0.48% 1.2% 0.16% 11.72% 13.79% 

 
 

  As you notice from Table 5.4, larger amounts are needed to update the modules in 

the absence of design rules where 27.35% of the budget will go to updating the modules 
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and the rest will go for improving the performance of the modules. On the other hand, in 

the presence of design rules, 7.72% (refer to Table 5.2) of the budget is needed for 

updating the modules and 8.57% (refer to table 5.1) of the budget for developing design 

rules which makes a total of 16.29% (7.72% + 8.57%) which is less than the 27.35% in 

the absence of design rules. One more time the power of design rules in decreasing the 

amount spent on upgrading modules and increasing the available budget for investments 

in the modules is being shown. By comparing these results to that of the deterministic 

model, we notice that the role of the design rules is extremely important in the 

deterministic example and less important in the stochastic one and this due to omitting 

investments in the uncertain module (M1) thus omitting developing design rules (M1M2, 

M1M5, and M1M6).   

 After illustrating the one shot stochastic model, similar work will done to the 

periodic model presented in the below section. 

 

5.3.   Periodic Investments Model 

In this section both time and uncertainty components will be introduced to our 

model. It will be assumed that T periods exist in the development process and the 

designer must be aware of all his periodic optimal investments decisions prior to starting 

re-designing his modules. All the equations derived in section 4.3 concerning Pi (t), fij` 

(t), Pi
Ov, αi

Ov, θij
Ov, and (fij

`αiCj/Ci)Ov hold. Concerning uncertainty, it is still assumed that 

only complex modules can be risky in performance where Ui will vary based on a 

Uniform distribution function: U~ (ai, bi) where ai and bi are the minimum and maximum 

values for the upper limit value Ui of module i.  
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Our objective in this section will be to maximize total product performance and 

minimize variability in multiple investments periods. The optimization problem for the 

stochastic periodic investments model where we consider a product composed of m 

groups, each group contains ng modules some of them certain and others risky with a Ui ~ 

U (ai, bi), T periods exist, normalized budget of 1 for each group, and an objective of 

maximizing total product performance and minimizing weighted standard deviation in 

multiple shots investments all known in advance will be as follows: 

 

 

 

 
MaxST=Max�=� �(	  	  	  	  	  =Max�=� ��=� ��t=1T�	  (���Vigtwig(t) 

	  	  	  	  	  	  	  	  	  	  	  	  =Max	  �=� ��=� ��t=1T	  E	  (Pig(t))2−[E	  Pig(t)]2	  	  	  	  

Let	  ��+�−������−	  ��=	  ���	  	  	  then:	  

• ���=	  �����+�−������(�)−	  ���−�=	  �������−� 

• ����=	  ���+����	  ����−�	  

• 	  �	  (���)2=	  ���−	  ���212+���+���22����−�2	  

• �	  ���2=	  ���+���22����−�2	  

	  
Replacing all the above in the objective function we get: 

 
Max	  ST	  =	  Max�=� ����+����	  ����−�−���−	  ����	  ����−�����	   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  =	  Max�=� �����−������−����+���	  �+����	  	  	  	  	  	  	  	   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  =	  Max�=� ��−���+��−������(�)−	  ������−����+���	  �+���� 

Subject	  to:	  �=��i=1ng(αig)Ov+	  i,j(i≠j)ng(θijg)Ov	  +	  i,j(i≠j)ngfij`gαigCjgCigOv	    = 1	  
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�=1�i=1ng�=1����(�) 	  +	  i,j(i≠j)ng�=1�����(�) 	  +	  

i,j(i≠j)ng�=1�fij`g(t)αig(t)CjgCig=1 �=1�i=1ng�=1����(�) 	  +	  i,j(i≠j)ng�=1�����(�) 	  +	  

i,ji≠jng�=1�fij`gt−1e−θijgtfij`gt−1kijgαig(t)CjgCig= 1        

0	  ≤	  αi	  ≤	  100,	  	  	  0	  ≤	  θij	  ≤	  1	  	     

 

Similarly to the previous section, we should check the optimality conditions and test 

for the concavity of the maximized function and constraint. Let us first consider the 

objective function: 

 
• Max	  ST=	  Max�=� ��−���+��−������(�)−	  ������−����+���	  �+���� 

 
Adding the time component will not affect the results of concavity derived earlier. 

Even though the second derivative in this case will be with respect to αig(t) rather than 

αig but still the second derivative is the same and still < 0 for allαig(t), implying a 

concave objective function. 

Concerning the constraint, the same proof of the periodic deterministic investments 

model applies here. 

 

After defining the model and testing the optimality conditions, we move next to an 

illustrative example. 

 

5.3.1.   Illustrative Example 

We will continue with the same example of the product composed of only one 

group and six modules related together based on Fig. 4.1. The data matrix of the previous 

chapter still hold as well except for the upper limit of modules one and six which were 
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assumed in the previous section to be uncertain having uniform distributions: U1~ U (40, 

120) and U6 ~ (30, 85). Since only complex modules can have risky performances, then 

the other modules (two, three, four and five) are certain and have the same upper limit 

defined previously (Fig. 4.2).  We will assume that the designer’s objective is to 

maximize total product performance and fully minimize the variability in one shot 

investment. Accordingly we will set w1 = w6 = 1.We will assume that T=3, i.e. we have 

three periods of investments and we are seeking optimal investments decisions in 

advance for the three periods. 

 

5.3.1.1. Excel Solver Results 

 Using Excel-Solver, we optimized the above mentioned example during three 

time periods where uncertainty and minimizing variability where taken into 

consideration. An optimal total product performance of 32.79 was obtained and the 

optimal investments amounts in design rules and modules are shown in the below table: 
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Table 5.5: Decision variables values after optimization 

 
 t = 1 t = 2 t = 3 

α1 (t) 0 % 0 % 0 % 

α 2 (t) 6.05 % 4.73 % 3.33 % 

α 3 (t) 4.89 % 3.73 % 2.47 % 

α 4 (t) 3.73 % 2.64 % 1.29 % 

α 5 (t) 5.47 % 4.24 % 2.92 % 

α 6 (t) 18.85% 13.44% 6.8% 

θ12 (t) 0 % 0 % 0 % 

θ15 (t) 0 % 0 % 0 % 

θ16 (t) 0 % 0 % 0 % 

θ23 (t) 4.64% 0 % 0 % 

θ24 (t) 4.91% 0 % 0 % 

 
 

From Table 5.5 we notice that around 84.58% of the budget went to re-designing 

modules, 9.55% for developing design rules and the 5.87% left are for updating modules 

to attain compatibility with the changes done. We notice as well that module’s six 

investments were the highest between all the modules among all the periods where 

approximately 39% from the budget was allocated for improving module’s six 

performance. On the contrary, the lowest alphas are that of module one where none of the 
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money should be spent in re-designing it. Concerning the rest of the modules (two, three, 

four, and five), all their alphas decrease by time and this is due to the performance 

function Pi (t) assumed in the earlier chapter. If we sum the alphas for these modules 

along t, we see that around 14.11% should be spent on re-designing module 2, 12.63%, 

11.09%, and 7.66% modules five, three, and four respectively. 

 Concerning design rules, since no investments plans are advised for module one 

along the periods, then no efforts should be exerted to reduce the interdependency 

between modules one and two, one and five, and one and six. 4.91% of the budget must 

be spent on developing design rules between modules two and four, and 4.64% must be 

spent to decrease the dependency between modules two and three. 

Similar to other sections, we will show, the reduction in the fraction of updates 

from fij to fij`(t) and the amounts that should be spent to update module j (αi fij`(t) (Cj / Ci))  

once changes are applied to module i. Consider the below table: 

 

Table 5.6: fij(t) vs fij`(t) and αi fij`(t) (Cj / Ci) 

 
Mi  Mj M1 M2 M1 M5 M1 M6 M2 M3 M2 M4 

fij 0.3 0.7 0.4 0.85 0.9 

fij` (t=1) 0.3 0.7 0.4 0.19 0.15 

fij` (t=2) 0.3 0.7 0.4 0.19 0.15 

fij` (t=3) 0.3 0.7 0.4 0.19 0.15 

αi fij`(t=1) (Cj / Ci) 0 % 0 % 0 % 1.33 % 1.19 % 

αi fij`(t=2) (Cj / Ci) 0 % 0 % 0 % 1.04 % 0.93 % 
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αi fij`(t=3) (Cj / Ci) 0 % 0 % 0 % 0.73% 0.65 % 

 

Table 5.6 shows that fij`(t)= fij in the absence of design rules where θ12, θ15 and θ16 

= 0. We notice a huge decrease in the fraction of update between modules two and four, 

where prior of investing in design rules, 90% (= f24) of module four must be re-designed 

to attain compatibility with module’s two changes while only 15% (= f24`) now must be 

re-designed after spending part of the budget on developing design rules which clearly 

decreased the dependency between these two modules. The fraction of re-work between 

modules two and three decreased from 85% to 19%. Since no investments in design rules 

is witnessed in periods two and three then:  fij`(3) = fij`(2) = fij`(1).  The last three rows in 

Table 5.5 show the percentages of the budget that should be assigned to update the 

dependent modules after investing the optimal alphas amounts in improving the modules’ 

performances. Since the alphas are decreasing by time, then definitely the updates’ 

amounts will diminish as well even though the fraction of re-works of periods two and 

three are the same as that of period one.  

 

4.3.1.2. Analysis 

Similar to the previous analysis sections, if we want to sort the optimal alphas in a 

descending order then we will get the same order of alphas we previously obtained even 

though the upper limit U1 and U6 changed and periodic investment is assumed.  

We notice in this chapter that the amounts allocated to re-designing the modules, 

investing in design rules and updating the dependent modules are approximately the same 

as the deterministic periodic model but with less total product performance. Consider the 
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below table which compares the periodic investments between the deterministic and the 

stochastic model. 

Table 5.7: Comparison between deterministic and stochastic investments 

 Deterministic Periodic 

Investments 

Stochastic Periodic 

Investments 

α1 0% 0% 

α 2 13% 14.11% 

α 3 9.35% 11.09% 

α 4 6.55% 7.66% 

α 5 10.5% 12.63% 

α 6 45.42% 39% 

ST 96.76 32.79 

�=16��	   85% 84.58% 

�,�=1 �≠� 6���	   9.14% 9.55% 

�,�=1 �≠� 6���`��(����	  

)	  

5.86% 5.87% 

 

 If we compare the total product performance between the deterministic and the 

stochastic model for the periodic type investments, we notice that the deterministic 

attained a significant larger total product performance (96.76) compared to the stochastic 

model (32.79) even though identical investments amounts were allocated to the modules. 

This can be explained first by the fact that we are minimizing variability in the stochastic 

model which implies subtracting the weighted standard deviation from each module’s 
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performance. Remember that w6 was assumed to be equal to 1 which resulted in a total 

performance for module six equal to 10.38 compared to 74.88 in the deterministic case. 

Second in the stochastic model, U6 can vary between 30 and 85 with equal probability 

compared to certain upper limit of 55 in the deterministic case. Accordingly when the 

same amount of money is spent on developing and updating the modules, the 

deterministic model (in our example assumed) attained larger total product performance.   

Similar studies concerning sensitivity on Ci and comparison between optimal and 

maximum alphas could be done and will lead us to the same result derived earlier which 

states that a module with a high upper limit and no other modules depending on it is 

expected to take the largest percent of the budget for its performance improvement. Being 

highly complex and uncertain, module one will demand the entire budget to attain its 

maximum alpha and will require a high percentage of the budget for updating modules 

two, five and six. One can conclude then, that four factors must be taken into 

consideration once deciding on investing in a certain module:  the upper limit, complexity 

factor, uncertainty and architectural link between modules. 

We can as well demonstrate the power of design rules by deriving a very similar 

table to that of Table 4.8 where identical results will be shown: larger amounts are needed 

to update the modules in the absence of design rules where 28.52% of the budget will go 

to updating the modules and the rest will go for improving the performance of the 

modules. On the other hand, in the presence of design rules, 5.87% (refer to Table 5.5) of 

the budget is needed for updating the modules and 9.23% (refer to table 5.4) of the 

budget for developing design rules which makes a total of 15.1% (5.87% + 9.23%) which 

is less than the 28.52 % in the absence of design rules. 
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Concerning the total product performance, at t=1 we have a total performance of 

22.6, at t=2 we have an increment of 7.85 making the total performance at time two 

equals to 30.85, and at t=3, we have an increment of 2.34 making the cumulative total 

product performance equals 32.79. As discussed in the previous section, the product 

performance will evolve at a decreasing rate where for a large T we expect minimal 

increments, thus stabilization for product performance and no more improvements. We 

notice that in the stochastic model, the increments are too low foreshadowing an early 

steady state faster than that of the deterministic. Consider the below two graphs which 

show the growth of the product as a function of time in the stochastic and deterministic 

case: 

 

         
Fig. 5.1: Total product and module’s six performances in function of time 
 

From Figure 5.1 we notice how both functions increase at a decreasing rate and 

how the deterministic model in our example reached higher performance amount than the 



 

93 
 

stochastic one. It shows as well how the stochastic function stabilizes faster than the 

deterministic due to the less amounts of increments taking place.   

 

 

CHAPTER 6 

MANAGERIAL INSIGHTS 

 

6.1.      Overview 

After defining the deterministic and stochastic model, and after establishing a 

methodology to measure product’s performance, we come to identify some managerial 

guidelines which can give quick hints about investments strategies. Those insights will be 

based upon the results derived earlier and upon the analysis work and sensitivity studies 

done in the previous sections. Below are some guidelines for understanding the 

architecture of the product and some investments hints that can be utilized prior to 

optimizing the total product performance. 

 

6.2.     Guidelines 

• Understand the architecture of the product. 

Before investing in any module, it is important for the designer to understand the 

architecture of the product. The designer should clearly understand the data matrix which 

shows all the characteristics of the modules and explains the relationships between them. 

The designer should check the upper limits of all the modules and see which modules 

have the highest Ui.  The designer should examine as well the links between the modules 
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i.e. which columns in the data matrix are approximately fully filled. Such columns show 

which modules have many interdependencies relationships that demand from the rest of 

the modules present in the product some updates once changes are applied to them. In 

addition the designer should look for the most complicated or integral interdependency 

relationship by searching for the lowest kij. Moreover, the designer should check the 

fraction of updates; see by how much the modules are being affected with others’ 

changes. By completely understanding the data matrix, the designer can have a good feel 

for the proper investments in design rules and modules, as discussed next 

 

• Invest large amounts in high upper limits modules having no modules 

depending on them. 

When a module has a very low Ci (usually accompanied by a high Ui), and having many 

modules depending on it then we are better not investing in such a module. Such 

modules, being highly complex, demand a huge amount of the budget for their re-design 

work.  If such a large amount was assigned for performance’s improvement, then a large 

amount would go for updates. So in such a case, we will exceed the budget and we will 

not obtain an optimal product performance. Consider the performance function of module 

i: 

 
��=Ui1+e−CiαiBg−Ui2 

 
As you notice, when Ci is too low we need a very large αi to decrease the denominator 

(1+e−CiαiBg) thus increasing Pi especially that the upper limit Ui is large when the 

module is complex (low Ci). 
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• Do not develop design rules if the relationship between the modules is 

extremely integral and the initial fraction of update is low. 

When kij is small (integral relationship) and fij is small as well, we need a very large θij 

(close to 1) to decrease fij to fij`. By this we mean, for fij` to be less than fij in the presence 

of integral module relationship and minimal updating requirements, the power of the 

exponential function in ���`=����−��������� should be high implying large θij. 

In such a scenario, most of the budget will go to developing design rules rather than 

improving product performance. Accordingly, we better off not investing in design rules. 

 

• Do not spend large investments amounts on simple modules.  

Modules that are simple in designs i.e. have high Ci, do not require a huge amount of the 

budget for their performance improvement. The maximum alphas of such modules are 

small and very close to their optimal alphas as opposed to complex modules where their 

optimal alphas are much smaller than their maximum alphas and this due to their design 

complexity which demands a very large alpha for attaining maximum performance. 

 

• If you decided on investing in a certain module, then invest as well in 

developing its respective design rules (if dependency exists) if the fraction of 

updates were noticeable (i.e. not too small).  

As we saw in the example we used in the previous chapters, always the amount of 

updates in the absence of design rules is greater than both the amount of updates plus the 

amount spent on developing design rules.  
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As we know, fij` (���`=����−���������)  is less than fij thus the amount of update 

after developing design rules is less than that without design 

rules:����−���������������<	  ���������. 

And when kij is not too small i.e. simple relationships exist between modules then the 

drop from fij to fij` would be huge making  ����−��������������� much less 

than ��������� and leading to the result that amount spent on developing design 

rules θij and amount spent on updating the modules is less than amount spent on updating 

the modules in the absence of design rules: ����−���������������+���< 

���������	  	   

 

• If the complexity of a certain module was decreased, then the amount invested 

in that module increases or stabilizes but never decreases.  

For the complexity to decrease, Ci must increase and since our objective is to maximize 

performance i.e. increase Pi thus we have to decrease the denominator of Pi. 

	  
��=Ui1+e−Ciαi−Ui2	  
	  
 
To increase Pi we have to decrease 1+e−Ciαi thus decreasinge−Ciαi. To do so we have to 

increase Ciαi . As Ci increases, αi increases too or stabilizes but never decreases. This was 

proven in the previous chapters once sensitivity analysis on the complexity of module 

one was provided. As the module tends to become simpler as its respective αi increases to 

a certain limit and then stabilizes. Remember that modules that are too simple design do 

not require large amounts of investments. 
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CHATER 7 

CONCLUSION 

 
7.1.   Summary 

The main objective listed in Chapter 1 was to develop a mathematical model which 

maximizes total product performance and suggest optimal investments decisions. Such 

decisions can target either the modules by themselves or the design rules that describe the 

link between the dependent modules. As we saw in the preceding chapters, a systematic 

methodology to optimize the performance of any architectural product was suggested. 

Given a certain budget, the model proposes optimal investments strategies. 

This thesis have offered two kinds of models; one is deterministic where the 

performance of any module is guaranteed and the other is stochastic where some modules 

behave in a risky way where their upper limits fluctuate based on a uniform distribution 

function thus resulting in an uncertain return on investments. 

In each model we have introduced two types of investments: one shot investment 

and periodic investments. Since all the decisions are assumed to take place at t=0 i.e. 

prior to investing in any module, the periodic model did not show any change in the 

results from that of one shot model. Only time component was introduced and such 

model can be useful if the budget was not fully given at t=0 rather parts of the budget are 

given each period. Accordingly the periodic model suggests optimal investments amounts 

per period which were decreasing per time leading to an increasing total product 

performance but at a decreasing rate. As it was assumed to performance of any product 

will increase by time and stabilizes as t tends to infinity. 
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Finally managerial guidelines were provided which gives quick hints about 

investments strategies. Those insights were based upon results, analysis work and 

sensitivity studies done in the previous chapters. Such guidelines are extremely important 

for any product development process. 

 

7.2.   Recommendations for Future Studies 

Extensions of our model are possible in several directions: 

• It may be productive to put more efforts on the periodic type investments 

whether in the deterministic or stochastic model. It would be beneficial if 

investment decisions can be updated throughout the development process i.e. in 

each period we optimize our total performance and we update our product based 

on investments done in previous period. No more all decisions are taken at t=0, 

but rather decisions should be taken in each period separately. Accordingly, the 

design complexity of each module should decrease by time and investment 

decisions are updated accordingly. 

• It may be fruitful to assess uncertainty of the performance in the stochastic 

model with other measures (rather than uniform distribution) and would be 

interesting if we can take into consideration from period to period the real 

performance attained since at the end of each period the designer would know 

for certain the performance reached and such knowledge would affect the 

decisions of the next period. 
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