

AMERICAN UNIVERSITY OF BEIRUT

OPTIMAL INVESTMENT DECISIONS IN PRODUCT
DEVELOPMENT

by
REMY CHARBEL MAKHLOUF

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Engineering Management
to the Engineering Management Program

of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
October 2010

AMERICAN UNIVERSITY OF BEIRUT

OPTIMAL INVESTMENT DECISIONS IN PRODUCT
DEVELOPMENT

by
REMY CHARBEL MAKHLOUF

Approved by:

__
Dr. Ali Yassine, Associate Professor Advisor
Engineering Management Program

__
Dr. Bacel Maddah, Assistant Professor Member of Committee
Engineering Management Program

__
Dr. Walid Nasr, Assistant Professor Member of Committee
Suliman S. Olayan School of Business

Date of thesis defense: October 28th, 2010

AMERICAN UNIVERSITY OF BEIRUT

THESIS RELEASE FORM

I, Remy Charbel Makhlouf

 authorize the American University of Beirut to supply copies of my thesis to

libraries or individuals upon request.

 do not authorize the American University of Beirut to supply copies of my thesis to

libraries or individuals for a period of two years starting with the date of the thesis
defense.

 Signature

 Date

v

ACKNOWLEDGMENTS

First and foremost, I am most grateful to God Almighty who has bestowed on me

his grace and kind blessings.

I am heartily thankful as well to my supervisor, Dr. Ali Yassine. With his
enthusiasm, his inspiration, his sound advice and his great efforts to explain things
clearly and simply, he helped me in making this thesis possible.

I am also grateful to the other members of my thesis committee Dr. Bacel
Maddah, and Dr. Walid Nasr for their ongoing help and guidance through the
development of my thesis.

Furthermore, I owe my deepest gratitude to my parents, Charbel and Samia
Makhlouf and my two adorable sisters Rita and Rosemary who have stood by my
side, motivated me, supported me, and encouraged me in all the stressed moments.

Last but not least, I am indebted to my many student colleagues at AUB who
supported me in all my work. AUB has not only given me higher level of knowledge
and quality education, but also provided me with rich skills that might not have been
acquired elsewhere.

I thank you all for being such modest supporters of mine. I could not have done
this without you.

vi

AN ABSTRACT OF THE THESIS OF

Remy Charbel Makhlouf for Master of Engineering Management

 Major: Engineering Management

Title: Optimal Investment Decisions In Product Development

Product development is an essential activity in most organizations as it reflects its
long-term health and profitability. Furthermore, the importance of innovation is
paramount in today’s technologically driven world. Consequently, this study suggests a
systematic methodology to optimize product development investments.

The objective of my work is to develop a mathematical model to maximize the
performance of a product under development based on investment constraint. This thesis
introduces two product development models: one is deterministic and the other is
stochastic. The outcome would be a set of managerial guidelines for optimally investing
in various modules of a product and in design rules while taking into consideration the
interdependencies between modules. Different scenarios will be explored based on two
important problem dimensions: module performance uncertainty and investment
frequency. While performance uncertainty reflects the amount of risk (in terms of
achieving higher levels of module performance) involved in the investment in product
modules, the investment frequency describes whether these investment decisions (in
product modules) are made one shot or periodically. The architecture of the product
played an essential role in affecting the optimal results and leading to a conclusion that
local optimal investments may not necessary lead to global optimal system/product
performance.

vii

CONTENTS

ACKNOWLEDGEMENTS………………………………………………

 v

 ABSTRACT……………………………………………………………………

 vi

 ILLUSTRATIONS………………………………………………………….

 x

 TABLES………………………...……………………………………………...

 xii

Chapter

1. INTRODUCTION……………………………………………………….

 1

1.1. Background: Designing Complex Products…………….……………

 1

1.2. Problem Statement…………………………………………………..

 2

1.3. Scope of Work and Research Objectives …………………………… 3

1.4. Significance of the Study……………………………………………. 4

2. LITERATURE REVIEW……………………………………………...

 6

2.1. Introduction ………..………………………………………………..

 6

2.2. Modularity in the Design of Complex Engineering Systems ………

 6

2.3. Problem – Solving Oscillations in Complex Engineering Project…..

 12

2.4. Communities of Practice: Performance and Evolution……………..

 15

2.5. New Modules Launch Planning For Evolving Modular Product …

Families

……………..

 19

viii

2.6. Dell Case Study ……………………………………………………

11 11

 23

3.

MODEL FORMULATION ……………………….………………...

 28

3.1. Overview …………………………….………………………………

 28

3.2. Defining Parameters………………………………………………….
45 ..….…..3243………………………………………………12…

…………………………………………………1 11
…………………………………………………………..

 29

3.3. Performance Function ………………………………………………. 37

4. DETERMINISTC MODEL…………………..………….…………...

 41

4.1. Overview….…………………………….…………………………... 41

4.2. One Shot Investment Model………………………………………..... 41

4.2.1. Illustrative Example ……………………………………...
…………………………………………...

 44
 4.2.1.1. Excel Solver Results ……………………………. 47
 4.2.1.2. Analysis ………………………………………… 49

4.3. Periodic Investments Model………………………………………… 54

4.3.1. Illustrative Example……………………..……………….. 61
 4.3.1.1. Excel Solver Results ……………………………. 62
 4.3.1.2. Analysis…………….……………………………. 65

5. STOCHASTIC MODEL ……………………………………………

 71

5.1. Overview… …………………………….…………………………... 71

5.2. One Shot Investment Model……………………………………..... 71

5.2.1. Illustrative Example …………………..………………... 76
 5.2.1.1. Excel Solver Results ……………………………. 77

 5.2.1.2. Analysis ………………………………………… 79

ix

5.3. Periodic Investments Model ………………………….…………….. 83

 5.3.1 Illustrative Example...…………………………………….. 85

 5.3.1.1. Excel Solver Results ……………………………. 86

 5.3.1.2. Analysis ………………………………………… 89

6. MANAGERIAL INSIGHTS……………………………………….

 93

6.1. Overview ……………….……………….…………………………... 93

6.2. Guidelines ………………...……………………………….............. 93

7. CONCLUSION……………………………………………………………

 97

7.1. Summary …………………………….………………………….......... 97

7.2. Recommendations for Future Studies ……………………………….. 98

REFERENCES……………………………………………………………………………….....

 99

x

ILLUSTRATIONS

Figure Page

2.1. Modularity Creates Design Options (Baldwin and Clark, 2004)........... 7

2.2. A Two-level Modular Design Hierarchy……………………………… 8

2.3. Own decision variable hi……………………………………………… 14

2.4. Decision variable of others, hj………......................……........................... 14

2.5. Product family architecture and module interdependency……............. 20

3.1. Modules’ Interdependencies………………………………………….. 31

3.2. Group 1 …………………………………………………...................... 31

3.3. Data Matrix…………………………………….………….................... 32

3.4. A product composed of one group……………………………………. 32

3.5. fij` for different kij , θij and fij = 0.85………………………………… 34

3.6. fij in function of θij for high values for kij……………………………. 36

3.7. Updating module j and improving j are totally independent………….. 39

3.8. Updating module j intersects improving module j…………………….. 39

3.9. Investing in module j includes updating j with module’s i changes…… 39

3.10. Updating module j with module’s i changes includes improving j’s
performance…………………………………………………………….

 39

4.1. A product composed of one group having six module………………… 44

4.2. Data matrix for a product composed of six modules…………………... 45

4.3 Time pressure affecting Cost of Change and Design Freedom……….. 57

4.4. Modules’ performances in function of time……………….…………... 68

xi

4.5.

Total product and module’s six performances in function of time…….

 69

5.1.

Total product and module’s six performances in function of time ….

 92

xii

TABLES

Table Page

2.1. Module Group………………………………..................................... 21

2.2. Advantages and drawback of the three battery choices facing Dell…. 25

3.1 Parameters of the model …………………………………………….. 29

4.1. Decision variables values after optimization ………………………. 47

4.2. fij vs fij` and αi fij` (Cj / Ci)…………………………………………… 48

4.3. Maximum αi vs optimal αi …………………………………………. 50

4.4. Sensitivity on C1…………………………………………………….. 52

4.5. αi fij` (Cj / Ci) % in absence of design rules…………………………. 54

4.6. Spreading $10 among one module along three periods…………….. 56

4.7. Decision variables values after optimization………………............... 62

4.8. fij(t) vs fij`(t) and αi fij`(t) (Cj / Ci)…………………………………… 64

4.9. Comparison between one-shot and periodic investments………….. 66

4.10. αi fij`(t) (Cj / Ci) % in absence of design rules ………………..…….. 67

5.1. Decision variables values after optimization………………………… 77

5.2. fij vs fij` and αi fij` (Cj / Ci)…………………………………………… 78

5.3. Comparison between deterministic and stochastic one-shot model… 80

5.4. αi fij` (Cj / Ci) % in absence of design rules…………………………. 82

xiii

5.5. Decision variables values after optimization………………………… 87

5.6. fij(t) vs fij`(t) and αi fij`(t) (Cj / Ci)……………………………………. 88

5.7. Comparison between deterministic and stochastic investments………. 90

xiv

DEDICATION

To the most precious individual

who strongly believed in me, my

beloved: Paul Youssef

xv

To you I dedicate this study

Thank you for your support…

1

CHAPTER 1

INTRODUCTION

1.1. Background: Designing Complex Products

Throughout history, scholars have been attempting to explore the notion of

modularity when trying to understand and develop complex systems in different

application fields such as biology (Khastan, et al., 2009), management (Huberman and

Hogg, 1995), engineering (Mihm, et al., 2003), psychology (Samuels, 1998), aerospace

(Button and Soeder, 2004), software development (Sullivan, et al., 2001) and many

others. Designing such a complex system is based upon designing individual components

(subsystems or modules) that are parts of larger systems and which can be examined,

substituted, modified, augmented and excluded based on their economic value. This is

what Baldwin and Clark defined as option values and modular operators (Baldwin and

Clark, 2004). They have explained a modularized process by a set of “designed elements

that are split up and assigned to modules according to a formal architecture or plan

(design rules)” (Baldwin and Clark, 2004). Baldwin and Clark gave an “option-like”

property to each module in the system where evaluating the value or performance of any

product goes from the option of evaluating the system as a whole to the option of

evaluating each module independently. Accordingly, modularity implies that changes in

one part of a system should not lead to unexpected behavior in other parts. Then why are

we still witnessing transplant rejections even when the donor highly matches the receipt?

2

Is it due to coordination among many interdependent organs in the complex human body

system?

As a result, many researchers believe that in designing complex products, we can

individually design or improve each component’s performance separately, but this may

affect the behavior or performance of other components. This is due to some known or

unknown common function or feature in the product which is implemented by more than

one component. As opposed to perfect modularity, where each component has its unique

functions, integral systems involve a strong dependency between individual modules

where changes made to any component (to improve its performance) may deteriorate or

improve the performance of others. Consequently, in an integral architecture a local

optimal performance for each individual component may not necessarily lead to a global

optimal performance of the whole product and this is due to complex interactions

between the various components. Integrality supporters argue that any best reachable

component’s performance is affected by other decision makers (i.e. components) and thus

communication is needed among engineers at any decision point to coordinate the mutual

development of these components and eliminate this mutual dependency. Mihm, et al.

(2003) highlighted on the issue of system’s performance “arising from designers making

successive local component decisions over time, taking into account the current status of

surrounding components”.

1.2. Problem Statement

A Review of the literature shows that there have been few studies which address

any kind of product whether been modular in design, integral or hybrid. The literature

3

revealed that improving the performance of any product required formulating a

mathematical model showing the total product performance which depends on the

topology of the product. Either the product was considered modular in design thus all

sub-components are independent or the product was considered integral in design where

the status of other components must be taken into consideration. Based on the

architecture of the product the model was constructed accordingly. What if we consider a

product where some of its components do depend on each other while the rest are totally

independent? What if we have the option to develop some design rules which eliminate

or reduce the interdependency, thus getting a perfectly modular architecture? What if we

chose not to invest in design rules but take into account the dependency between modules

every time we invest in a certain component?

This thesis addresses these identified gaps in the literature by trying to answering all

the above mentioned questions. A methodology for optimally investing in a complex

engineering product will be provided by taking into consideration a limited budget and

resource constraint.

1.3. Scope of Work and Research Objectives

Between perfect modular designs (where all modules are completely independent of

each other) and perfect integral designs (where every module affects others in the

system), my study aims to develop a theory of product development performance where

the typology (whether modular, integral or a hybrid of both) of the product architecture

will be taken into account while improving the product performance by optimally

investing in modules and/or design rules.

4

In reality most engineered systems are neither perfectly modular nor completely

integral but somewhere in between and thus a theory to understand the investment

policies of such performance evolution systems is necessary. Several techniques will be

used to divide each product into module groups aiming to improve the performance of

each group separately, thus improving the global product performance (Allada and Lan,

2002). We will suggest two kinds of models: one is deterministic and the other is

stochastic. While the first optimizes total product performance for certain modules the

latter targets uncertainty where the return on investments for risky modules is no more

certain but depend on some uniform distribution function assumed. In each model, two

types of investments will be provided: one shot investment versus periodic investments.

Finally some managerial guidelines will be provided which will give quick hints about

investments strategies. Those insights will be based upon results, analysis work and

sensitivity studies done for each model and investment type.

1.4. Significance of the Study

Since product development is a key for any business success and innovation is

essential in capturing market demand in our technological driven world, a systematic

methodology to optimize the modules’ performances of an evolving architectural product

is extremely necessary. Accordingly, this study would suggest a set of best practices or

guidelines for optimally investing in any product taking into consideration the topology

of the product whether modular, integral or hybrid especially that previous developed

models targeted only a specific architectural type.

5

The proposed model should maximize the total product performance taking into

account interdependencies of the modules, a limited budget, design rules effect,

performance function of each module, time horizon, and the difference in return on

investments between risky and certain module.

Finally, this study is beneficial for most business, engineering or any kind of

companies where their main objective is to design or re-design a complex product

whether been financial, medical, electrical, technological, etc… and bringing it up to the

market.

6

CHAPTER 2

LITERATURE REVIEW

2.1. Introduction

Product development is a term used to define the process of designing a product and

bringing it to market. Many researchers have targeted such a topic and described a

strategy for improving the performance or value of a certain product by taking into

consideration the inter-dependency that exists between the different modules of the

product. The literature summarized below will give the reader a diversified idea about

product evolution and how such existing models will shape our model to generate a new

technique for optimal investment decisions in product development.

2.2. Modularity in the Design of Complex Engineering Systems

Baldwin and Clark (2004) have demonstrated the power of modularity by

discussing how a complex engineering system can be modular-in-design by splitting it up

in the design process into separate modules. Modularization has three purposes: reducing

complexity, allowing parallel work and capturing future uncertainty. Reducing

complexity is done by transforming one whole system to many independent modules as

shown in Fig.2.1. Some of these modules do not affect other modules and thus called

“hidden”. Other modules are called “visible” since design decision for these modules do

affect others; thus design rules are needed and must be obeyed by those “visible”

7

modules to eliminate interdependency between them. After establishing the design rules,

modules are designed independent of one another and parallel work can be enabled.

System before Modularization System after Modularization

Fig. 2.1: Modularity Creates Design Options (Baldwin and Clark, 2004)

Modularity captures uncertainty because elements of such modularized system can

be altered and improved over time as long as the design rules are respected. Hence

modularity has created design options in each separate module where the engineer has

“the right but not the obligation” to choose a certain design over its alternatives when that

design shows a better performance. An “option-like” property was given to each module

in the system where evaluating the value or performance of any product goes from the

option of evaluating the system as a whole to the option of evaluating each module

independently.

Baldwin and Clark (2004) explained that there is no perfect design rules and

unforeseen insignificant compatibility problems may occur in advanced stages, thus

“System Integration and Testing” (SIT) is needed to resolve such minor incompatibility

problems. The design rules and the hidden modules affect the System Integration and

Option
 System
 Option

Option

Option

 Design Rules

Option
Option

Option

Option

8

Testing but SIT’s decisions should not affect the modular architecture of the product or

else the system would no longer be modular.

Representing a modular system can be done in several ways. Baldwin and Clark

(2004) used the Design Structured Matrix (DSM) map. The DSM map contains several

blocks where the first and the last are the design rules and SIT respectively and in

between are the components of the product. Such map shows the dependencies between

component blocks.

Another representation of a modular system is the Design Hierarchy Representation

where the Hierarchy starts with the design rules as a first level and on the second level we

have the hidden modules and the SIT as shown in Fig. 2.2.

Fig. 2.2: A Two-level Modular Design Hierarchy

There is no need for the hidden modules to know what is going on in the SIT stage

as long as they totally obey the design rules but the System Integration and Testing unit

should have knowledge about Modules A, B, C and D in order to resolve any unforeseen

incompatibility problem.

System
Integration
& Testing

Module A

 Global Design Rules

Module B Module C Module D

9

In opposed to design rules which once developed are no more altered and are

considered to be long lasting, modules accommodate uncertainty, thus lodging

experimentation. Baldwin and Clark (2004) introduced six modular operators where the

designer can: split, substitute, exclude, augment, collect and organize, and create shells

for any module. Such operators affect the structure of the modular system and transform

the two-level hierarchy into a more complex one.

The main objective of all Baldwin’s and Clark’s work was to establish the

economic value of a complex engineering system by splitting it up into modules having

“option” values. Accordingly, they have assumed that the system’s minimal value (i.e.

base line) exists and has a value of S0 while the modules of the system are not yet

realized and thus have an uncertain payoff of Xj
1. Then the economic value of the system

would be the sum of S0 and all the Xj
1 as shown in equation 2.2.1:

Economic Value of the System: �0+�=1���1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (2.2.1)

Xj

1 denotes “the economic value of a single realization of the random variable Xj”

(Baldwin and Clark, 2004) where each “j” denotes a distribution of random variables.

Then the total economic value of the system is a sum of J realizations with different

distributions. The development efforts realized in each module design define the

realization. The realization can take a positive or a negative value. If the value was

greater than zero (positive realization) then the total system value would increase by that

amount. If the realization was less than or equal to zero (negative or zero realization), the

engineer can disregard such module and develop another one. The six modular operators

10

discussed previously can be used in such a case. Accordingly the economic value of the

system can be expressed as follows:

��=	 �0+	 ����	 �11	 ,	 0+����	 �21	 ,	 0+…+	 ����	 ��1	 ,	 0	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 =	 �0+	 ��1++��2++	 …+	 ���+	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 2.2.2

 The expected value of any module design is the maximum between its

realization and zero. Since equation 2.2.2 is too general, Baldwin and Clark developed

further work. They considered the system to be composed of N design parameters and Xα

to be the value of a module of size αN where summation of all αs equal 1:�=1��� = 1

Xα is assumed to be normally distributed with a mean zero and a variance �2αN :

Xα ~ N(0, �2αN)

Xα = zα	 �(αN)1/2

Where zα is a standard normal variant with mean zero and variance one: zα ~ N(0,1)

Substituting Xα in equation 2.2.2, holding S0 and factorizing, we get:

��=�	 �1,	 �2,	 …,	 ��	 ;	 �;�	 =	 ��12	 �112+	 �212+	 …+	 ��12�����,	 0	 	 	 	 	 (2.2.3)

As mentioned before, modularization enables parallel work. To express parallel

experimentation, Baldwin and Clark supposed that each designer produces kj independent

design efforts in each of the J modules. When all these designs are accomplished, the

engineer chooses the best of these kj designs in each module. Q (k) is defined to be the

expected value of the highest realization of k independent designs and the distribution of

k is the distribution of the “maximum order statistic of a sample of size k”:

Q (k) = k0∞�(���−1����

11

where N(z) is a standard normal distribution and n(z) is the density function.

Equation 2.2.3 can be updated to accommodate the k designs as below:

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��,�	 ;�,	 �=	 ��12�=1���12����=1������	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (2.2.4)	 	 	

After establishing the economic value of a complex engineering system as a

function of α, k, �,	 and N, Baldwin and Clark concluded that modularity in design is

neither good nor bad but it is an extremely dangerous concept that need not to be ignored

by reminding us with the internet bubble crash where the world fall into extreme losses

after being in a highly innovated period.

 Design rules’ power in eliminating interdependency is used in our model where

investing in design rules is a decision variable and depends on some

modularity/integrality factor kij which will be explained later in the model. Baldwin and

Clark assumed that Design rules should always exist during the design stage of any

product while investing in the modules was assumed to be optional. On the contrary, our

model assumes that investing in design rules and in modules are optional decisions

depending on the performance of each module and its effect on total product

performance. So the designer can choose to invest only in modules and disregard design

rules thus taking into account the interdependencies between modules. To reduce such

dependencies, one can choose to invest in design rules and make the product modular in

design. Consequently investing in the modules in such a case does not demand an

attention to the interdependencies that existed originally (before investing in Design

rules) in the product. A mathematical model will be developed to explain the

12

performance of each module and design rules will be used in the process of maximizing

total product performance.

2.3. Problem – Solving Oscillations in Complex Engineering Projects

This paper targets complex product development projects which require frequent

and prosperous communications among project members to ensure the best performance

of each project. Complex products are composed of many inter-related sub-components

where each engineer is responsible of designing a certain component by taking into

consideration the status of other components present in the system as well. Mihm, et al.

(2003) have characterized the dynamic behavior of a complex system and have used

simulation to derive some managerial actions to improve performance dynamics.

Since complex products are composed of many sub-components, each engineer

was responsible of optimizing a local performance measure specific to his component.

Accordingly an aggregate system performance was defined as the sum of all local

performances of individual components where equal weights were assumed between

components. The notation Pi was used to denote the performance function of engineer i

for the component he is responsible for and P as total system performance. As a result,

we can write P as a function of all Pi :

�=���	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (2.3.1)

The performance of any component i depends on a weighted average of all

components in i denoted by the decision variable hi and other components j not present in

13

i denoted by the decision variable hj. Thus, Pi = f (hi, {hj}) (hi and hj are assumed to be

continuous). The other components effect {hj} were assumed to be constant and Pi

became a function of hi alone as shown in Fig. 2.3 and is represented by Pi = f (hi, {hj}).

 To simplify things, Pi was assumed to have only one optimum and a quadratic

function which includes the effect of other components as shown below:

��=�ℎ�,	 ℎ�	 =−��(ℎ�−	 �≠����,�ℎ�)2+	 1	 	 	 	 	 	 	 	 	 	 	 	 	 (2.3.2)

hj represents the most recent decision on component j which engineer i takes it as

given. The other decision makers j affect the performance of component i in two ways.

First they can influence the optimal choice of engineer i and can shift the optimal position

of hi. So the influence that hj has on Pi is represented by bi,j and the summation term

�≠����,�ℎ� captures the shift of the optimal hi. The second effect is the influence of

the decision makers’ j status on the optimal performance reached by designer i. The best

case scenario is when the decisions of components j do not affect at all the decision of

component i and allow it to reach its best performance and the worst case scenario is

when components j’s designs tighten component i’s performance and bring it to its

minimum value. In these extreme scenarios, a small change in hj will create a small

difference in Pi but in an intermediate scenario, a change in hj matters as shown in Fig.

2.4. To represent such twofold interactions, a performance constraint Iij was introduced

and it takes constant values at the extremes ci,j and a slope ai,j in the intermediate region.

The total performance Pi of component i was then obtained by multiplying the potential

performance Pi by performance constraint Iij :

14

	 	 	 	 	 	 	 	 	 	 	 	 	 ��=	 ��ℎ�	 ,	 	 ℎ�	 �≠���,�	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (2.3.3)

 Fig. 2.3: Own decision variable hi Fig. 2.4: Decision variable of others, hj

Fig. 2.3 shows how the position of the optimum shifts linearly with a change in

other decision maker’s status. It shows that the decision variable hj highly influence the

performance function of component i and a local optimum does not necessary lead to a

global optimum when the interactions of other components are taken into account.

Fig.2.4 shows how the decision variable hj which is represented by the gray circle

places a linear multiplicative constraint function on performance Pi. As discussed earlier,

as the influence of hj is relatively high on Pi it tightens the performance of component i

and this is represented by the dotted line. And as component j puts no restrictions on i, it

loosen the constraint Ii.j and allow component i to achieve higher performance. This is

represented by the solid line. The constraint Ii,j is mostly sensitive to middle values of hj

rather than the extremes and this is shown in the middle region of the figure where the

solid and the dotted lines intersect.

15

After defining the structure of the model, Mihm, Loch, and Huchzermeier have

used simulation to characterize the dynamic problem-solving behavior. They have

simulated a base- case scenario which was considered as a bench mark for comparing

other scenarios. Managerial actions were provided based on the results of the simulation.

The notion of communication between engineers and its effect on the engineer’s

performance have helped us in our model in defining an integral product where all

components are dependent on each other. In the absence of design rules, the designer

must allocate his budget between modules while taking into consideration the status of

related modules. That is any amount spent on any module will force the designer to spend

money on updating or re-designing related modules to accommodate for the changes and

remain compatible with the revised or improved module. We will consider in our model

the importance of taking other components’ status into consideration while trying to

improve the performance of any specific module but the influence of one components on

the others will not have equal weights as assumed in this model, rather a matrix showing

the fraction of re-work at each module will be developed.

2.4. Communities of Practice: Performance and Evolution

 Huberman and Hogg (1995) started their paper by presenting a brief definition of

community of practice. They explained that once informal networks exist within an

organization where communication between people becomes feasible, it creates unified

goals, norms and interaction activities, thus constituting a community of practice. A key

feature in this paper is about the dependency between the performance of any single

individual and the other members of the community. Information should always flow

16

across individuals and each member can choose to work on his own or exploits others’

help when it is useful. Huberman and Hogg (1995) tried to characterize the performance

of each member by being dependent on its own skills or on some interactions with other

members in the organization. Accordingly, they related the total performance of a

community of practice to the skills of individuals within the organization.

To quantify things, the overall performance of a community would be the sum of all

individual performances:

�=	 ���	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (2.4.1)	 	 	 	 	 	 	 	 	 	

where Pi is the performance of individual i

It is assumed that for each individual to finalize his work, he must pass by series of

steps. So the task is divided into several stages. As mentioned previously, at each stage

the individual can choose to do “self-work”, i.e. to work on his own and not use others’

help in the community or he can decide to make use of others’ information which is

called “hints”. As a result the notation pij was developed to express the probability of

individual i choosing to use a hint from individual j. When i = j, pii would then denotes

the probability of performing self-work. At each stage, the summation of all pij across j

should be equal to 1, ����=1.

It is assumed that all steps are completed asynchronously (all workers progress

and move together in time) at a rate r. Then the rate of individual i utilizing a hint form j

is rpij and the performance of any individual working on his own and does not use hints

is: ��	 =��

Each task accomplished whether being self-work or through the use of others’

help in the community should have a value. Huberman and Hogg assumed that all self-

17

work activities produce the same benefit denoted by s where as the quality of a new hint

sent from j to i is hij where individual j is assumed to be doing self-work in this case. If

the hint was useful, then hij will be greater than s. At each step, the member of the

community can do self-work and earn s or with probability pij he will use a hint and

produces hij. The hint may be useful thus hij will be greater than s or it may be useless

hence losing the opportunity of making s.

Hints are assumed to be produced at a rate w which is less than the rate r which

means that not at each step the member can develop a new hint. If r was too high, then

using hints repeatedly will carry no innovation and this will lead to a decrease in the hint

quality. For this reason, a new measure for the hint quality hij
eff is developed which

reflects the decline in hij in case of reusing old hints: ℎ�����=	 ℎ��1−	 �����

Making use of all information presented earlier, Huberman and Hogg defined

individual performance Pi while taking into account all the interactions with the

community as:

	 	 	 	 	 	 	 ��=�����ℎ�����	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (2.4.2)

After defining the performance of the community as being the sum of all

individual performances and after relating each member’s performance to the interactions

that existed in the community, Huberman and Hogg continued their work by examining

the changes in the community of practice upon varying the interaction structure. They

considered different cases as:

1- All members of the community act independently. There is no flow of

information between individuals, thus they cannot use hints.

18

2- All members have same probability of using hints thus having equal links to all

individuals in the community. This is known as flat community.

3- All members can choose hints from one single neighbor; usually the one with

the best hint quality.

4- All members can accept hints from several high quality hint sources.

Considering each case separately, Huberman and Hogg tried to define the

individual performance Pi starting with extreme cases (1 and 2) and reaching a more

generalized individual performance in case number 4. The highest Pi was that of case

number 4 which showed that increased size of the community and diversity in receiving

hints would lead to the optimal performance.

Similarly, in our model the optimal product performance is attained through

diversification. It is always optimal to invest your budget in different modules and not

limit yourself to the module with the highest performance as case number 3 since it will

not lead to a global optimum. This result was revealed as well in the previous paper

where Mihm, Loch, and Huchzermeier (2003) showed that a local optimum does not

necessarily lead to a global optimum.

In addition to that, our model measures the total performance of an architectural

product rather than a community of practice and the relation that exists between members

of the community exists in our work between modules. A similar notation to pij is used in

our representation where we defined fij to be the fraction of re-work to be applied to

Module j when changes are done to Module i. In contrary to pii, fii cannot exist.

2.5. New Modules Launch Planning For Evolving Modular Product Families

19

 Product family (PF) is a group of products manufactured by a firm and which share

a common platform. These products have similar characteristics, functions, uses and even

marketing requirements. They are also known as product line or product group. Allada

and Lan (2002) in their paper tried to develop a methodology to optimize an evolving

product family. They have developed a sequential decision process where they aimed to

maximize the total profit subject to a time horizon and interdependencies between

modules.

Allada and Lan (2002) used Dynamic programming (DP) for representing such

“stage-wise sequential decision process”. Similar to Baldwin and Clark (2004) who

transferred the evaluation of the performance of any product from the option of

evaluating the system as a whole to the option of evaluating each module independently,

Allada and Lan (2002) will proceed from optimizing the whole product family to

optimizing module groups within that product line. Accordingly, smaller DP optimization

problems will be developed. As in all dynamic programming problems, stages, states,

decision variables and objective function should be clearly defined. The stages in this

model are the “time points with equal intervals during the planning horizon” while the

states are the possible modules’ combination within one module group. The control

variable is the decision of whether adopting a certain module design and the objective

function is to maximize the profit change of a certain module group by taking into

consideration the interdependency assumption.

To formulate several smaller DP problems, “module groups” were defined to

group together all modules that depend and affect each other. In this way, any product

will be divided into several sub-module groups and the optimization problem would

20

target those characterized groups. Furthermore, Allada and Lan (2002) decreased the

state space by introducing the concept of “module cluster”. “A module cluster is defined

as a set of modules within a module group that are strictly inter-dependent on each other

in replacement actions” i.e. module i affects module j and module j in its turn affects

module i then these two module can be set together as one module i.j, since any changes

done to i affects j and vice versa. Consider the below four products:

Fig. 2.5: Product family architecture and module interdependency

Fig. 2.5 shows four products P1, P2, P3 and P4 that share a common platform (the

blue section) constituting of modules M1, M2, M3, M4 and M5. The arrow () shows

replacement dependence. To explain what is meant by replacement dependence, different

21

generations of the modules should be considered. Consider the notation M (A, j) which

represents module A at instance j. If module A was redesigned and been replaced by its

higher instance M (A, j+1), then the modules that depend on M (A, j) must be redesigned

and replaced to attain compatibility with module’s A changes: M (A, j+1). For example,

the decision of replacing module 7 depends on replacement action of module 6. Since a

module group is defined as “a group of interacting modules linked by the replacement

dependence relationships in a PF” then Fig. 2.5 is divided accordingly into eight module

groups:

Table 2.1: Module Group

Group 1 Module 1 and Module 2

Group 2 Module 3, Module 4, and Module 5

Group 3 Module 6 and Module 7

Group 4 Module 8

Group 5 Module 9, Module 10, and Module 11

Group 6 Module 12

Group 7 Module 13

Group 8 Module 14 and 15

As you notice some groups constitute only of one module (as groups 4, 6 and 7)

since they do not interact with other modules within the product line. Then redesigning

any module in the PF will not affect such groups and no updates are required.

22

Further work can be done within a group by using the concept of module cluster.

As defined earlier, a module cluster is a set of modules that should be replaced together

once replacement actions take place. They strictly inter-depend on each other. For

example modules 14 and 15 constitute a module cluster and modules 4 and 5 as well.

Once redesigning module 14, one should accumulate for module’s 15 replacement action

and vice versa. Then modules 14 and 15 can be seen as one member in the DP

represented by MC14.15.

After defining the states, stages, control variables and objective function, Allada

and Lan (2002) indentified their transition probabilities and dynamic programming map

aiming to reach an optimal module replacement strategies. This was clearly shown

through a deterministic illustrative example after which they generalized their work by

developing a stochastic dynamic programming model.

Many ideas from this paper were used in structuring our model. For example, the

module group and module cluster scheme is used in our model where each product is

divided into groups and the size of the group is decreased by using the concept of module

cluster. Accordingly, instead of maximizing the total product performance as a whole, we

seek maximizing groups’ performances. Dynamic programming cannot be applied to our

model, since it bought up some complications especially that our system includes

continuous-stochastic formulation.

In addition to that, the notion of updating module j to accommodate the changes

of module i given that dependency exists between the two modules is used as well in our

work but expressed in different manner. As said earlier a data matrix which will show the

fraction of the rework that should be done once changes are applied to a certain module

23

and other relative data will be developed. In contrary to this paper, our model suggests

that the use of design rules decreases the interdependency between modules which is

considered in this paper to be fixed and previously known.

2.6. Dell Case-Study

New product development aspects offer various advancement opportunities for the

product’s performance but it may also add some challenges and riskiness to the product

development process. The notion of uncertainty was well described by Krishnan and

Bhattacharya (2002) through a Dell case example. Before illustrating their model with the

Dell portable computer example, Krishnan and Bhattacharya (2002) defined two

technological choices which the development team faces. A choice of proven technology

which provide limited but certain product improvement or a prospective technology

choice which is not yet fully proven but offers higher improvement level than a proven

technology. So a certain technology would yield a low but guaranteed development

where as the uncertain technology would yield high but not guaranteed development.

Thomke and Nigmade (1999) have prepared a detailed case example about “Product

Development at Dell Computer Corporation”. Dell in 1993 was considering issuing a

new portable product to be launched in a 12 month period. By that time, Dell was losing

some market share since it lacked portable product. So a high pressure was set on the

development team for choosing which feature to be considered as a differentiating

characteristic. Researches indicated that price, microprocessor choice, battery life, screen

resolution, reliability, weight and size are the respective high rated features in the minds

of laptop consumers. Since the company did not want to struggle on price nor on

24

processor speed, the battery life was then considered as the differentiating feature where

emphasis should take place while developing the laptop. By that time, NiHi was the used

battery which had memory problems and lasts for less than three hours. In contrast, LiOn

a new battery technology developed at Sony promised longer recharge lives but was still

under development thus considered to be a risky choice. So the team is now faced with

three options:

• Use a safe choice battery but which captures less market demand: NiHi

• Use a riskier battery which is still under development but is expected to have a

larger profit than the proven technology: LiOn

• Defer commitment to either technologies to a later stage and adopt one of these

Two approaches: parallel path approach or overdesigning approach

The defer commitment choice would mean that Dell will not engage neither to the

proven NiHi nor to the prospective LiOn but would wait for more information before

taking a choice of action. Waiting for more information might cause some delay in the

product lunching time. To reduce such delays, the team may consider to overdesign the

product so that it can accommodate either battery choices. Or the team may choose a

parallel path approach where two different products are pursued simultaneously one

using NiHi and the other using LiOn. The below table summarizes the advantages and

disadvantages of considering a certain option. NiHi was referred to as the safest choice

but lowest potential. LiOn was considered to give Dell unique product position but with a

high uncertainty level and the defer commitment choice was expected to give the largest

25

net profit but requires immediate money outlays and by that time Dell was considered to

be severely cash-constrained.

Table 2.2: Advantages and drawback of the three battery choices facing Dell

 Advantages Drawbacks

1- NiHi -‐ Safe choice
-‐ Dell cannot afford

another failure
-‐ Would validate new

structured process
(which seeks to protect
firm from further
setbacks)

-‐ Lowest upside potential
-‐ Does not allow significant market

differentiation with respect to
battery life.

2- LiOn -‐ Provides longest
battery life and would
give Dell unique
product position

-‐ Highest risk: technology is still
under development

-‐ Supply is uncertain if product is
very successful; Sony would be
single supplier

3- Defer

commitment

-‐ Highest expected net
margin

-‐ Limits downside
technology risk if LiOn
does not work by
qualification

-‐ Violates new process and may
becomes precedent for many
other decisions involving
uncertain outcomes

-‐ Not consistent with Dell
culture of commitment

-‐ Requires additional resources
-‐ May demoralize the team

involved with the option that is
dropped

Krishnan and Bhattacharya (2002) continued their paper by formulating specific

equations for each considered choice reflecting the respective expected profit or expected

net margins. A decision analysis situation was created for each of the three options and

results showed close profits amounts which made the decision hard and thus concluded

that no ultimate decision can be based solely on the quantitative calculations; instead

26

some non-monetary factors as morale, process and product strategy should be taken into

consideration.

Similar to Dell example, uncertain modules will exist in our model and are

generally expected to have higher performance than the certain modules and are

considered to be the top features of the product that can provide a higher market share.

Three kinds of decisions are available for the designer in our case as well:

1- Since the modules are uncertain and improvements are not definite, a risk

averter designer can choose to invest in the parts of the modules that are

independent of the uncertain module; such decision will certainly improve

the product performance but not with a significant volume. High product

performance values cannot be attained in such an investment.

2- Since the uncertain modules are more profitable for the company and

extremely important in the eye of the customer, a risk taker designer may

choose to solely invest in risky modules aiming to add value to the company

and capture most of market demand. Once investing in such risky modules,

the designer must allocate his time in a way to update the dependent modules

to attain compatibility with the uncertain module’s changes if those changes

were successful. In such a case, higher product performances can be attained

but not with certainty.

3- A designer, who is neither extremely risk taker nor enormously risk averter,

may choose to hedge against risk and eliminate the dependency between

modules through establishing design rules. Accordingly, once changes are

done to any module they will not affect others, as if modules were over

27

designed to accommodate all changes. So in such a case a designer may

chose to invest in the risky and certain module at the same time and then

decide which one to drop depending on the product performance.

28

 CHAPTER 3

MODEL FORMULATION

3.1. Overview

The methodology adopted in this thesis consists of developing a mathematical

model that reflects the performance of a given product. As discussed earlier some ideas

from other papers will be utilized in the process of defining an aggregate system

performance. Our work will be divided into two types of models: deterministic and

stochastic models which will be discussed in chapters 4 and 5 respectively. In this

chapter, the performance function of each module and its corresponding parameters will

be defined. Below is a table which summarizes all the parameters needed to formulate the

model.

29

Table 3.1: Parameters of the model

Parameter Definition

ST Total System Performance

Sg Performance of group g 1 ≤ g ≤ m

Pi
g Performance of module i in group g 1 ≤ i ≤ ng

fij Fraction of update applied to module j to become compatible with the
changes applied to module i in the absence of design rules

fij
` Fraction of update applied to module j to become compatible with the

changes applied to module i in the presence of design rules
kij Modularity score which defines the knowledge of the relationship that

exists between modules i and j
θij Amount invested in design rules between modules i and j

αi Percentage invested in module i

Ui Upper limit value for the performance function of module i

Ci Proxy for module i design’s complexity

ng Number of modules in group g

m Total number of groups

3.2. Defining Parameters

The main objective of this model is to achieve a global optimum performance for a

given product taking into consideration modularity and integrality effects between the

sub-components of the product. Any product is made of different modules where some

modules are dependent on others while some are totally independent. In this model, we

will group the modules that affect each other and we will be optimizing groups’

performances aiming to reach optimum system performance. Equation 3.2.1 denotes the

30

total system performance (ST) which can be expressed as the sum of m optimal

independent groups’ systems performances (Sg). Our main work will be on optimizing Sg:

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 � �=�=����	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (�.�.�)

The option-like property defined by Baldwin and Clark (2004) helped us in

moving from one total system decision to many sub-system group decision. As Allada

and Lan (2002), we will proceed from optimizing the whole system product to optimizing

module groups present in that product. Within a group we can check for module cluster

which is defined as “set of modules within a module group that are strictly inter-

dependent on each other” (Allada and Lan, 2002). A module cluster will be treated as one

module, since any changes done to any module in the cluster will affect all the remaining

in the cluster. Fig. 3.1 shows a product composed of eight modules which can be split up

into two groups: Group 1 containing modules 1, 2, 3, 4, 5, and 6 and Group 2 containing

modules 7 and 8. Groups 1 and 2 are totally independent and we will seek maximizing

groups’ 1 and 2 performances to reach an optimal total system performance. The double

headed arrow () between M3 and M4 indicates a module cluster in Group 1

composed of modules 3 and 4. Any changes to module 3 will affect module 4 and vice

versa. Then, modules 3 and 4 can be seen as one module M3-4 as shown in Fig. 3.2. The

one headed arrow () indicates dependence, i.e. any changes done to M7 will affect

M8. If M1 changes then M2, M5 and M3-4 are affected but not vice versa and once M2

changes, M6 will change as well.

31

Fig. 3.1: Modules’ Interdependencies

 To update a certain product, the designer seeks improvements to be done to the

modules whether in shape, size, quality etc… Improvements differ among modules.

Higher investments amounts will be usually allocated to those modules that are

considered to be the top features of the product causing a high market capturing rate.

Similar to Dell Case, uncertain modules are expected to have higher performance than

any other certain modules. Uncertain modules will be targeted in Chapter 5 of this thesis.

To improve performances of the modules present in the product, money should be

spent then in an optimized way. For that reason, companies specify budgets to be spent

on their products for the exerted efforts and invested resources. Each company specifies a

budget Bg for each group present in its product depending on the size of the group and

types of existing modules. Some groups will demand higher budget than others since they

will be composed of more complex modules or even more important or essential

modules. The budget will be used for improving the groups’ performances present in a

particular product and for establishing some design rules to reduce interdependencies

between modules. This model gives the option of investing in design rules, unlike

Fig. 3.2: Group 1 (n1=5) and Group 2 (n2 =2)

Group 1 Group 2

32

Baldwin’s and Clark’s (2004) model which assumes that design rules always exist. As

more effort is spent on design rules as much the modules tend to be independent. So if

two modules are dependent, then spending money on improving the first oblige us as well

to spend money on the second and redesign it to remain compatible with the first. But by

the excessive use of design rules, the two modules will tend to be totally independent.

Thus spending money on improving the first does not force the designer to spend money

on the second to attain compatibility.

Consider a product composed of two modules Mi and Mj only (i.e. one group

only) and a budget B which is assigned to improve the performance of this group whether

in investing in design rules or in modules. The dependency that exists between modules

is explained through fij; 0 ≤ fij ≤ 1. We will define for each group g a data matrix “Dg” (as

in Fig. 3.3) that shows the fraction or percentage of effect between modules i and j in a

certain group g (1 ≤ g ≤ m) and other parameters related to that group which will be

explained later in this chapter.

The data matrix “Dg” contains several notations. The diagonal reflects parameters

that are related to the unique structure of each module whereas other elements as MiMj

and MjMi reflect parameters that has to do with the relationship that exists between

modules. We will first start by explaining fij which indicates that (fij*100) % of Module j

must be redesigned when changes are done to Module i and (fji*100) % of Module i must

Fig. 3.3: Data matrix Fig. 3.4: A product composed of one group

33

be redesigned to become compatible with Module’s j changes. A zero fij or fji in the

matrix indicates no impact between modules, in our case fji should be equal to zero

indicating that Mj does not affect Mi and this is shown in Fig. 3.4 where the arrow

indicates only effect from Mi to Mj. As a result, and prior to spreading the budget

between the modules, a good understanding of the architecture of the product and the

relationship between modules is necessary.

So the notation fij will be used to specify the fraction of change that should be

applied on module j to become compatible with the changes applied to module i in

absence of design rules, and we will introduce the notation fij` to specify the fraction of

change that should be applied on module j to become compatible with the changes

applied to module i in the presence of design rules. Note that fij` ≤ fij since design rules

have the potential to decrease the interdependencies between modules. Any two modules

will be first related by fij, and after establishing some design rules and reducing

interdependency between them, they will be related by fij`. Note that each group has its

unique data matrix and unique parameters that is why the superscript g is used to

differentiate between parameters of different groups.

 Let θijB be the amount invested in design rules between Modules i and j. fij` is a

function of θij and λ (λ is an improvement rate parameter, λ ≥ 0) where fij` decreases as θij

increases 0 ≤ θij ≤ 1. Accordingly, we will assign a decreasing function for fij` and fij`

should be in general a function of λ, θij and kij: fij` = f (λ, θij, kij).

34

We have chosen an exponential function for illustrating fij` but this is not the only

function that can be used to model fij`. If an exponential decreasing function is chosen,

then fij` will be expressed in the below equation:

 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 �	 ��	 `=	 λ�−�������; ;	 λ	 ≥	 0 	 	 	 	 	 	 	 	 	 	 	 	 	

(3.2.2)

When we choose not to invest in design rules, θij must be equal to zero and fij`

should be exactly equal to fij. In this case θij = 0 fij` = λ = fij therefore:

 	 � ��`=	 ����−���������	 	 	 	 	 	 	 	 	 	 	 	 	 kijg	 >	 0	 ;	 	 	 0	 ≤	 θij	 g	 ≤	 1	 ;	 	 0	 ≤	 fij	 g	 ≤	 1	 	 	 	 	 	 	 	 	 	 	

(3.2.3)	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
kij is a parameter that reflects the amount of decrease in fij with respect to an

increase in θij and is shown next to fij in the data matrix. Similarly for θij
g and kij

g, the

superscript g is used just for differentiating parameters among groups.

Fig. 3.5 below shows fij` versus changes in θij for kij = 10, 20, 30 and 40.

35

Fig. 3.5: fij` for different kij , θij and fij = 0.85

As you notice from Fig. 3.5, for a low kij, the drop in the curve is less than that for

a higher kij. Accordingly we will define kij as a score of Modularity i.e. kij will define a

measure of modularity between any two dependent modules and can take a score greater

than zero. In other words, kij defines then the knowledge of the relationship that exists

between two modules i and j and it increases with the increase of the designer’s

knowledge making the relationship more modular. This means that in a complex group

where designer doesn’t know much about the dependency between the modules,

investing in design rules has a lower impact on fij. By this we mean, that it will slightly

decrease the interdependencies between modules. Such kinds of complex groups are

assumed to be highly integral and demand a low score of Modularity as the red curve in

Fig. 3.5 where we notice that as kij gets closer to zero as the group’s integrality increases.

Concerning trivial or simple relationships between modules, where the designer

knows much about the architecture of the group, investing in design rules will make fij`

highly less than fij implying more decrease in the interdependencies between modules.

Such kind of uncomplicated relationships between modules are assumed to be highly

modular and demand a high score of modularity. Once the group is composed of more

than two modules, kij must be an indicator for the kind of relationship between any

module i and module j whether modular, integral or somewhere in between. We will have

in this case several kij. Referring back to Fig. 3.2, the designer should have knowledge of

four modular scores: k12, k15, k13-4, and k26.

As the product is more integral (kij is low), investing in design rules will not lead

to an optimal product performance since reducing interdependencies will demand a large

36

part of the budget. In such cases we are better off not investing in design rules. As the

product is less integral and more modular, as investing in design rules is necessary to

achieve total optimal product performance. As kij increases as amount invested in design

rules increases as well up to certain kij where beyond it θij attains approximately constant

level. This happens when kij become very large and the drops in fij to fij` become too

similar as shown in Figure 3.6.

As you notice from Figure 3.6, the three curves collapses approximately for

values of kij = 40, 50 and 60, thus the amount invested in design rules for such three

modularity/integrality relationships will be roughly equal even though kij are different.

This proves what have been said earlier about fij` becoming too similar when kij attains

large modular values. Accordingly, an upper limit for kij could be defined and it is equal

to M. Note that even when fij is different than 0.85 assumed in the Fig. 3.5 and Fig. 3.6,

the upper boundary of kij still holds.

37

Figure 3.6: fij in function of θij for high values for kij

3.3. Performance Function

Each module’s performance should be measured by a certain function and

differentiated from other modules by some parameters. Performance functions are

dependent on amount invested in each module. Some modules’ performances are highly

sensitive to dollar amount invested in improving the module whereas others are less

sensitive. We will define different types of modules’ performances all based on the same

performance function with different parameters and we will assume that the designer is

extremely knowledgeable about the module he is designing that he can specify in

advance the type of performance the module will attain by specifying the parameters Ui

and Ci discussed below. Accordingly the performance of any module should be a

function of Ui, Ci, and αi. Since our objective in the coming chapters is to introduce time

component and formulate a periodic investment model, then Pi = f (Ui, Ci, αi) should

increase at a decreasing rate by time. For illustration, we have chosen the following

function to express the performance of modules aiming to introduce time component in

the coming chapters:

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��=Ui1+e−CiαiBg−Ui2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (3.3.1)

Where Pi denotes the performance of module i (in units if Ui)

Ui = value of curve at upper limit for performance value (units of performance)

Ci = a proxy for module i design complexity, 0 ≤ Ci ≤ 1 (unit less)

αi : denotes percentage invested in module i, 0 ≤ αi ≤ 100 (unit less)

Bg : denotes budget of group g where i belongs to group g ($)

38

Note that in the model formulation all notations will include the superscript g as shown in

the data matrix above (Fig. 3.3) to differentiate between modules from one group to

another.

Ci can be a proxy for modules designs’ complexity, where a simple design

module, which we will assign for it a large Ci, will directly react upon investing in it a

small amount of the budget while a complex design module (small Ci) will demand a

higher investment amount than a simple module for attaining a similar performance.

Complex modules are assumed to be the most essential modules in the product and are

expected to have a higher upper limit value Ui than any other simple module and are

considered to be the top features of the product causing a high market capturing rate. The

parameter Ci is independent of kij the modularity factor where the first explains the type

of each module whether complex or simple, and the latter explains the relationship

between two dependent modules. Since each module has its specific Ui and Ci, then the

values of these two parameters are known in advance and shown on the diagonal of the

data marix.

αiBg is the fraction invested in module i (from a budget Bg). Then αi represent a

percentage of the budget Bg ; 0 ≤ αi ≤ 100. For every $ αiBg invested in module i, we need

to invest “$ fij` αi (Cj / Ci)Bg” in module j for module j to remain compatible with module

i where (Cj / Ci) is a scaling factor used to demonstrate the complexity of module j with

respect to module i. We should differentiate between investing αj % in module j where

our aim would be improving performance of module j and investing “(Cj / Ci) fij` αi %” in

module j as a result of investing αi % in module i and our aim in this case is to update

module j to accommodate module’s i changes. αj % is optional, i.e. a designer can choose

39

to invest in module j or not, but if the designer chose to invest αi % in module i, then he is

obliged to spend “(Cj / Ci) fij` αi %” in module j taking into consideration that module j

depends on module i.

We are assuming in our model that “(Cj / Ci) fij` αi %” invested in updating

module j is totally independent from αj % spent in improving module’s j performance.

But this is not always the case. Consider the below four scenarios shown in Fig. 3.7, 3.8,

3.9 and 3.10:

Fig. 3.7 shows that updating module j to attain compatibility with module i does

not influence the performance of module j where as Fig. 3.8 shows an intersection

Fig. 3.8 updating module j
intersects improving module j

Fig. 3.9: investing in module j
includes updating j with module’s i

changes

Fig. 3.10: updating module j with module’s
i changes includes improving j’s

performance

Fig. 3.7: updating module j and
improving j are totally independent

40

between these two acts where updating module j affects part of module’s j performance.

Fig. 3.9 shows that investing in module j and improving its performance will cover

achieving compatibility with module i as well while Fig. 3.10 shows the opposite;

updating module j will improve its performance also.

Similar to equation (3.3.1), the performance of each group Sg is the sum of all

modules’ performances present in that group:

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��=�=� �����	 	 	 	 	 	 	 	 	 ;	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1	 ≤	 g	 ≤	 m	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

(3.3.2)

where ng is the number of modules present in group g

	
Our objective is to maximize Sg subject to a budget constraint. We will develop an

optimization problem for maximizing each group’s performance and the total product

performance will be the sum of all the maximized Sg. We will target in our model those

groups with large number of modules where the optimal amount invested in modules or

in design rules is not quite simple or direct.

After defining all the parameters needed and before moving to Chapter 4 to

formulate the optimization problem under deterministic conditions, we will list the main

assumptions presumed in this chapter:

• kij has an upper limit of M

• Ci and kij are totally independent

• Investing module j and updating it are two independent acts

• Complex modules will have higher performance i.e. low Ci demands high Ui

41

CHAPTER 4

DETERMINISTIC MODEL

4.1. Overview

After defining all the parameters needed to formulate our optimization model, we

will target in this chapter certain modules where there upper limit value Ui is guaranteed.

In the next chapter, the notion of uncertainty will be introduced and we will see how the

optimal investments decisions would be affected once risky modules exist in a product.

This chapter will be divided into two main sections: the first will show one shot

investment and the second will show periodic investments decisions. In the multiple shots

decisions model, the time component will be introduced. Illustrative examples followed

by analysis will be provided to ensure full understanding of the deterministic model.

4.2. One-Time Investment Model

Consider a product composed of m groups and each group contains ng modules. Our

objective is to maximize total product performance using a single investment decision

(i.e. how much dollars to allocate to each module or design rule) at the beginning of the

development process; i.e., no time component is present. We are assuming that the

company makes a one-time decision about how much should each module acquire from

42

the budget for the re-design or improvement stage. We consider a normalized budget of

1 for each group: Bg = 1 for 1 ≤ g ≤ m.

Max	 ST=Max�=����

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 =	 Max�=� ��=� �����	 =	 Max�=� ��=� ��Uig	 	 1+e−Cigαig	 –	 Uig2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Subject	 to:	 �=1��=1�����	 +	 �,�(�≠�)������	 +	 �,� (�≠�) �����`� 	

���������]	 	 	 =	 1	

	 	 	 	 	 	 	 	 �=1��=1�����	 +	 �,�(�≠�)������	 +	 �,� (�≠�) ������(

�−� �����������)	 ���������	 	 =1	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0	 ≤	 αi	 ≤	 100,	 	 	 0	 ≤	 θij	 ≤	 1	 	 	

	

Since we are maximizing the objective function, it is necessary to check the

optimality conditions and test for the concavity of the maximized function and convexity

of the constraint. Let us first consider the objective function:

• Max	 ST=	 Max	 �=� ��=� ��Uig	 	 1+e−Cigαig	 –	 Uig2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Since any weighted sum of a concave function is concave, then it is enough to

show that Uig	 	 1+e−Cigαig	 –	 Uig2	 	 is concave for any αi
g by showing that second order

derivative with respect to αi
g is nonpositive. Taking the second derivative we get the

following:

𝜕2�(���)2Uig	 	 1+e−Cigαig	 –	 Uig2	 =UigCig2e−Cigαige−Cigαig−11+e−Cigαig3	 	

<0	 	 	 for all αi
g

Therefore, we can conclude that the objective function is concave for all αi

g.

43

Second we must consider the constraint and check as well its convexity, since any

concave function on a convex set should have a unique global optimal.

• �=1��=1�����	 +	 �,�(�≠�)������	 +	 �,� (�≠�) ������(

�−� �����������)	 ���������	 	

Taking each term by itself: �=1����� and �,�(�≠�)������ are convex and

concave for all αi
g and θij

g. Concerning the last term of the summation we have to prove

that (�−� �����������)	 ��� is convex where constants were omitted. To prove

convexity, we have to prove that the Eigen values for the Hessian matrix are always

positive or xTHx > 0 for all x where H denotes the hessian matrix.

Since the Taylor series expansions for exponential functions starts always with a

linear function (��=1+�+ x22!+…)	 then the assumed exponential function for fij
`g can

be converted to a linear version where �−� �����������=1−����	 ����	 ����

and the proof will target fij
g (1−����	 ����	 ���� αi

g (Cj
g/Ci

g) instead of ����(

�−� �����������)	 ��������� . Since constants can be omitted we will work

with (1- kij
gfij

g
 θij

g)αi
g only. The Hessian matrix associated with this function is the

below:

H=0−��������−��������0 and

xTHx=�1�20−��������−��������0�1�2

 =	 −2�1�2��������<0	 	 	 for all x	

≫�������

Therefore, we can conclude that the constraint is concave. But we know that if the

constraint g(x) was set to be < B and g(x) is concave, then –g(x) > -B is convex. That is,

44

taking the negative of a concave function will give us a convex function. Concave

function over a convex set allows for a global optimum.

After defining the model and testing the optimality conditions, we move next to

an illustrative example.

4.2.1. Illustrative Example

Consider a product composed of only one group (m=1). Within this group, we

have six modules (n1 =6) related together based on the below diagram:

From Fig. 4.1 we notice that modules six and five depends on module one and

modules four and three depends on module two which in its turn depends on module one.

Therefore, the designers of such a product should be well knowledgeable of the

relationships between modules and about the types of modules whether being complex or

simple so that he can specify the parameters accordingly.

Assume that module one is the most important feature of the product and module

four the least important. Based on that, module one should have the highest upper limit

Fig. 4.1: A product composed of
one group having six modules

45

value U1 and the lowest simplicity factor C1. One ultimate question would be: will the

highest investments amounts be allocated to the most complex modules with the highest

upper limit Ui ? A quick answer to this question would be: it depends.

 It depends on how much Ci is low and on how much Ui is high. This example

will show us that even though module one has the highest upper limit between all the

modules but it will take the smallest alpha and this is due to many reasons that will be

discussed in the analysis section. So we are better off investing a small amount in module

one.

Consider the data matrix “D” which summarizes all the information about the

architectural design of the modules and their interdependencies.

The diagonal of the data matrix “D” shows the complexity factor Ci and the upper

limit value Ui for the performance of each module. As you notice module one is the most

important module in the product which has the highest performance reflected by the

Fig. 4.2: Data matrix for a product composed of six modules

46

upper limit U1 = 70 and it is the most complicated module in the product having the

lowest simplicity factor C1 = 0.01. Module six is the second important module in the

product having a U6 = 55 which is less than U1 but the design of module six is less

complex than that of module one and it is reflected by a higher C6 = 0.2. The least

complex module is module four. Its complexity factor C4 = 1 implying no complexity at

all. From the other side, being too simple will not result in a high performance where U4

= 8.

On the other hand, the diagonal entries, M1M2 for example shows an f12 = 0.3

and k12 = 5 which means that 30 % of module two must be re-designed to attain

compatibility when changes are applied to module one and the modularity factor k12

shows an integral relationship between the two modules. This implies that the designer

does not know much about the interdependency between module one and two.

Remember that once kij is small then we will not see a sharp drop from f12 to f12`. We

expect in such a highly integral case no investments in design rules to take place between

module one and two. M2M4 shows the highest modularity/integrality factor where k24 =

40 which shows full designer’s knowledge of the architectural link between modules two

and four. If the amount invested in module two was among the highest alphas then we are

better of investing in design rules to reduce interdependency especially that 90% of

module four must be re-designed once updating module two. In addition to that, the

designer is extremely knowledgeable about the relation of these two modules, so

investing in design rules can directly decrease f12 to a relatively small f12`. In such a case,

we expect that the designer to make use of this high k24 to reduce amount needed to

update module four: α2f24`(C4/C2). The data matrix contains five non-diagonal entries:

47

M1M5, M1M6, M1M2, M2M3 and M2M4 which clearly explain all the links present in

Fig. 4.1.

4.2.1.1. Excel Solver Results

 Using Excel-Solver, we optimized the above mentioned example which is

composed of one group only made of six modules and we got an optimal total product

performance of 69.78 and the optimal investments amounts in design rules and modules

are shown in the below table:

Table 4.1: Decision variables values after optimization

α1 0.36% θ12 0%

α2 12% θ15 5.27%

α 3 8.09% θ16 0%

α 4 6.56% θ23 4.12%

α 5 9.21% θ24 4.66%

α 6 27%

 From Table 4.1 we notice that around 63.23% (�=16��) of the budget went to

re-designing modules, 14.06% (�,�=1 �≠� 6���) for developing design rules and the

22.71%	 (�,�=1 �≠� 6���`��(����)) left is for updating modules to attain

compatibility with the changes done. We notice as well that re-designing module six

demanded 27% from the budget followed by module two where 12% of the budget was

48

allocated for its development work. Modules five, three and four took from the budget

9.21%, 8.09% and 6.56% respectively. The lowest alpha is that of module one where

only 0.36% of the budget should be spent in re-designing it. Concerning design rules, no

work should be done to reduce the interdependency between modules one and two and

one and six. 5.27% of the budget must be spent on developing design rules between

modules one and five, 4.66% and 4.12% must be spent respectively to decrease the

dependency between modules two and four and between modules two and three.

 Other important results which are of a high benefit to us in the analysis are the

reduction in the fraction of updates from fij to fij` and the amounts that should be spent to

update module j once changes are applied to module i: αi fij` (Cj / Ci).

Table 4.2: fij vs fij` and αi fij` (Cj / Ci)

Mi Mj M1 M2 M1 M5 M1 M6 M2 M3 M2 M4

fij 0.3 0.7 0.4 0.85 0.9

fij` 0.3 0.19 0.4 0.22 0.17

αi fij` (Cj / Ci) 8.37% 5.78% 2.86% 3.10% 2.59%

 Table 4.2 shows that fij`= fij in the absence of design rules where θ15 and θ16 = 0.

We notice a huge decrease in the fraction of update between modules two and four,

where prior of investing in design rules, 90% (= f24) of module four must be re-designed

to attain compatibility with module’s two changes while only 17% (= f24`) now must be

re-designed after spending part of the budget on developing design rules which clearly

49

decreased the dependency between these two modules. The fraction of re-work between

modules one and five decreased from 70% to 19% and that of modules two and three

decreased from 85% to 22%. The last row in Table 4.2 shows the percentages of the

budget that should be assigned to update the dependent modules after investing the

optimal alphas amounts in improving the modules’ performances.

4.2.1.2. Analysis

 In the analysis section we will start first by sorting the optimal alphas in a

descending order where the first listed alpha refers to the highest amount invested in a

certain module and the last listed alpha refers to the least amount of investment between

the modules. The sorted alphas are as follows: α6, α2, α5, α3, α4, and α1. The highest

investment amount went to module six which has the second highest upper limit U6 = 55

and the lowest investment amount went to module one which has the highest upper limit

U1 = 70. One usually expects that the highest αi goes to the module with the highest Ui.

This can be the case in our example if module one was disregarded and the rest of the

modules were sorted by their upper limit in a descending order. By this we mean, if we

sort modules two, three, four, five and six by their Uis from the largest to the smallest we

get: U6, U2, U5, U3, and U4 which is a clear indication for the optimal investments

amounts (αi) without α1 sorted from highest to lowest. In contrary if we don’t disregard

U1, then the correct sorting of the modules by their Uis from the largest to the smallest is:

U1, U6, U2, U5, U3 and U4 which cannot be used as an indication for the highest alphas

since it assumes that module one having the largest upper limit should have the largest

alpha which totally contradicts our optimal findings.

50

Accordingly, one could conclude that the complexity factor Ci is affecting the

optimal results. Remember that a high Ci implies that the module is too simple in design

and reaching its optimal performance does not demand a large part of the budget. A low

Ci refers to a very complex module where improving such a module demands a huge

amount of the budget. Such modules are usually the most important modules in the

product.

A good comparison here would be between optimal alpha and maximum alpha.

By maximum alpha we mean the investment amount which helps the module reaches its

highest performance. Consider the below table:

Table 4.3: Maximum αi vs optimal αi

Module Maximum αi Optimal αi

M1 100% 0.36%

M2 12% 12%

M3 10% 8.09%

M4 8% 6.56%

M5 10% 9.21%

M6 47% 27%

 Inspecting Table 4.3 we notice that module one needs all the budget to attain its

highest performance that’s why we are better off not investing the largest amount in

module one. This clearly proves that module one is too complex and this is due to the

51

high complexity factor C1 assigned to it. The next complex module is M6 where C6 = 0.2

and the maximum alpha which will make module six reaches its highest performance is

47% of the budget which is less than the optimal amount assigned to it where α6 = 27%.

Note that if maximum alphas were assigned as optimal alphas then easily we will violate

our budget constraint. That is why most of the optimal alphas should be much less than

maximum alphas. In addition to that, remember that the budget also should be spread

among updating modules to attain compatibility rather than just improving modules. We

do not benefit if we spend higher amounts on improving each module’s performance

separately but once combining all the modules of the product they will not fit to each

other. In this case, money would be spent and modules’ performances are improved but

the total product performance would remain equal to the same value before those

investments.

 Going back to Table 4.3, we notice that only module two has same value for

maximum and optimal α2, whereas all other modules have a maximum αi less than

optimal αi.

 Let us consider some sensitivity analysis on the value of C1 to understand the

relationship between the module’s complexity and its optimal investment amount α1. The

below table shows: different values for the complexity of module one, its correspondent

optimal investment amount and its rank between the modules.

	 	

Table 4.4: Sensitivity on C1

C1 0.01 0.05 0.06 0.07 0.15 0.2 0.3

52

α1 0.36% 4.06% 5.3% 6.53% 13.59% 15% 15.03%

Rank 6 6 4 2 2 2 2

 Since module one has the highest upper limit U1 = 70 then it is assumed to be the

most complex module having the lowest Ci. From Table 4.4 we notice that for C1 = 0.05,

α1 is still the smallest between all the modules and ranked the last. When C1 was

increased to 0.06, α1’s rank increased to four and when C1 was assigned a value larger or

equal to 0.07, α1 was ranked the second highest between the six available modules. Note

that module one cannot take a value of complexity larger or equal to 0.2 since module six

has the second largest upper limit value of 55 and a C6 of 0.2. So module one cannot have

a larger upper limit and a larger simplicity factor at the same time. The two last columns

were introduced to say that even though module one became less complex then module

six and even though module’s one upper limit is larger than that of module six, still M6 is

taking the largest optimal invested amount. In all the above cases, α6 was the largest. We

can conclude that α1 increased with the increase in C1 but would stabilize for high values

of C1 (simple designs). This explains that assigning optimal alphas depends on both the

complexity factor and the upper limit and foreshadows for some other elements

interfering in making the optimal solution as such.

 If we reconsider Fig. 4.1, we can notice that modules two, five and six depends on

module one. So any amount α1 spent on module one, α1f12`(C2/C1)% will be spent on

module two, α1f15`(C5/C1)% will be spent on module five, and α1f16`(C6/C1)% will be

spent on module six. And since module one is the most complex module having the

smallest Ci and since its maximum alpha is 100%, then one could expect that module one

53

should not take the largest investment amount. If α1 was the largest then a huge amount

of the budget will go to update modules two, five and six. In addition to that, even though

C1 was close to C6 (as shown in Table 4.4), the largest alpha still goes to module six and

this is due to the fact that re-designing module six will not demand any updates to other

modules. In Fig. 4.1 we notice that none of the module is related to module six so we can

say that module six is not visible to any other modules as opposed to module one which

is visible to modules two, five and six. These results build upon the concept of

“visibility” discussed by Baldwin and Clark (1999). Accordingly, one could expect that a

module with a high upper limit and no other modules depending on it should take the

largest percent of the budget for its performance improvement.

 Rather than the optimal alphas, one should also pay attention to the analysis of the

optimal θij. From Table 4.1 we knew that it is optimally to spend money on developing

design rules between modules one and five, two and three, and two and four. No advice

on spending money on the design rules between module one and six and one and two

since their respective fijs are initially small, thus spending money on decreasing them

further is of no use. In addition to that, k12 and k16 are the smallest between all the kij,

which implies the highest integrality factor and the lowest drop from fij to fij`. If we didn’t

allocate money for developing the design rules between M1M5, M2M3 and M2M4 then

higher amounts would go for updating the modules due to the interdependencies between

them. Consider Table 4.5 which shows the amount of money to update the modules in the

absence of design rules i.e. when fij` = fij:

Table 4.5: αi fij` (Cj / Ci) % in absence of design rules

Mi Mj M1 M2 M1 M5 M1 M6 M2 M3 M2 M4

54

fij = fij` 0.3 0.7 0.4 0.85 0.9

αi fij` (Cj / Ci) 8.37% 21.04% 2.86% 11.77% 13.85%

As you notice from Table 4.5, larger amounts are needed to update the modules in

the absence of design rules where 57.89% of the budget (more than half of the budget)

will go to updating the modules and the rest will go for improving the performance of the

modules. On the other hand, in the presence of design rules, 22.7% (refer to Table 4.2) of

the budget is needed for updating the modules and 14.05% (refer to table 4.1) of the

budget for developing design rules which makes a total of 36.75% (22.7% + 14.05%)

which is less than the 57.89% in the absence of design rules. We can conclude that the

amount of updates in the absence of design rules is always greater than the amount of

updates plus the amount spent on developing design rules.

4.3. Periodic Investments Model

In the previous section, we assumed that the time component does not exist. The

implicit assumption here is that the assigned budget for a specific module will be spent

within the development time line at the same rate. If the company wants to investigate

further its allocation decision as to how much dollars must be invested on a module at

different intervals of time during the development time line (Burn rate), then a time

component must be added to the earlier model.

In this section we will assume that the development process is divided into T

periods and the PD (product development) managers make these periodic allocation

decisions at the beginning of the process. By this we mean that, at t = 0 the designer

55

makes in advance αi(1), αi(2), …, αi(T) and θij(1), θij(2), …, θij(T) where αi(t) and θij(t)

denote optimal amount invested in the modules and design rules respectively for module i

at time t where 0 ≤ t ≤ T. Accordingly, the performance function of module i at time t

will be denoted by Pi (t) i.e. performance per period and not total performance of the

module. The performance function of module i at time t, Pi (t), will be have some

additional terms reflecting the time component that was not present in the function used

previously. Many researchers believe that product development performance follow an S-

shaped curve (Foster, 1986) where performance build up starts slow then picks up rather

quickly in the middle and then finally slows down and stabilizes for large t. Accordingly,

we will assume that the performance of any product increases with time but at a

decreasing rate. That is, higher levels of performance can be attained in the early periods

of development than in the later periods. So αi(t) will decrease with time for all the

modules starting with a high αi(1) and reaching zero for αi(∞). This implies that the total

product performance increases at a decreasing rate in time and then stabilizes for large

values of t. Accordingly Pi (t) which denotes the increment in the performance at time t

will have the below functional form:

	 � �(t)=Ui1+e−Ci(αi(t)Bg)−	 Ui2	 e−t (4.3.1)

	
Two main objectives are achieved by this performance exponential smoothing.

The first desired behavior achieved is the fact that spending a dollar on development

earlier is better than later as more design freedom is still available and re-work costs are

low. Second, spending a dollar over a larger development time is better than spending it

over a shorter period. This reflects the crunch of time (with more time, designers can

56

perform more experiments and tasks) and less likelihood of making errors (with less time,

designers are prone to make more design errors).

To understand more equation 4.3.1, consider an available budget of $10, a

duration of three periods (T=3), upper limit = 20, complexity factor = 0.3 and only one

module to invest in. The below table shows different combinations for spreading the

budget along the three periods (αi (t) is shown in dollar and not in percentage), the

performance Pi(t) per period and the overall performance (Pi(1) + Pi(2) + Pi(3)) for each

arrangement.

Table 4.6: Spreading $10 among one module along three periods

αi (1) αi (2) αi (3) Pi(1) Pi(2) Pi(3) Overall Performance

3.33 3.33 3.33 1.7 0.6254 0.6254 2.9508

10 0 0 3.3299 0.0000 0.0000 3.3299

57

0 10 0 0.0000 1.2250 0.0000 1.2250

0 0 10 0.0000 0.0000 0.4506 0.4506

1 9 0 0.5477 1.1829 0.000 1.7306

9 1 0 3.2155 0.2015 0.0000 3.4170

0 9 1 0.0000 1.1829 0.0741 1.2570

4 6 0 1.9757 0.9694 0.0000 2.9451

6 4 0 2.6351 1.9757 0.0000 4.6108

6 0 4 2.6531 0.0000 0.2674 2.6040

0 6 4 0.0000 2.6351 0.3162 2.9513

5 4 1 2.3366 1.9757 0.0741 4.3864

As you notice from Table 4.6 the highest total performance goes for those

combinations which have alphas that decrease by time. The lowest overall performance

goes for the combinations that start with αi (1) = 0. For example (10, 0, 0) gave a total

performance of 3.33 whereas (0, 10, 0) gave a total performance of 1.22 and this is due to

time pressure where investing a $10 in the first period will give a higher performance

(due to the availability of more time) then a $10 spent in the second or in the last period.

Ulrich and Eppinger (2008) explained that behavior by the below graph which indicates

that design freedom for any product decreases with time where as the cost of change

increases with time.

58

Fig. 4.3: Time pressure affecting Cost of Change and Design Freedom

Fig. 4.3 shows that the freedom of re-designing a certain module decreases with

time while its respective cost increases with time. Accordingly we have chosen to

multiply our performance function by e-t to reflect time pressure. That is, investing a

certain amount during the first few periods will have a higher performance than investing

the same amount during the last periods where we have a significant cost of change and a

minimal freedom of designing.

Consequently, even though the same amount of alpha (= 10) is spent in both

arrangements but the factor e-t in the performance function is shifting the result where e-1

= 0.37 and e-2 = 0.14 when Ui1+e−Ci(αi(t)−	 Ui2 = 9.0515 in both cases. Accordingly, it

is not optimal to miss the opportunity of investing in the first period, thus missing 37%

(e-1) from the performance. Moreover, since e-t is always greater than e-(t+1) then in order

to maximize the performance of a certain module, αi(t) should be greater than αi(t+1).

Accordingly one can conclude that once αi(t) becomes zero, then αi(t+1), αi(t+2), etc…

59

are equal to zero as well. In addition to that, Table 4.6 shows that dividing your budget

among periods is better than investing the whole amount in a one period. For example,

spending $5 in the first period, $4 in the second period and $1 in the last period is much

better than spending the whole $10 in the first period. You will be able to spend your

whole budget in a one period but you will not guarantee an optimal total performance.

In the periodic investment model, the fraction of update between modules is a

recursive formula expressed by:

	 	 	 	 	 	 	 	 	 	 	 	 	 fij`t=	 fij`t−1e−θijtfij`t−1kij	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (4.3.2)

where the decrease in the fraction of update in period t, fij`(t), depends on amount of

update reached in the previous period fij`(t-1).

To simplify representations, we will introduce the superscript “Ov” denoting

“overall” sum whether for performance, amount invested, design rules or fraction of

updates as follows:

 PiOv	 =	 �=1���(�) 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (4.3.3)

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 αiOv	 =	 �=1���(�) 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (4.3.4)	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 θijOv	 =	 �=1����(�) 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (4.3.5)	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 fij`αiCjCiOv=t=1Tfij`tαi(t)CjCi	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (4.3.6)	

where 1 ≤ i ≤ ng and 1 ≤ g ≤ m

The optimization problem for the periodic investments model where we consider

a product composed of m groups, each group contains ng modules, T periods exist,

60

normalized budget of 1 for each group, and an objective of maximizing total product

performance in a multiple shot investments all known in advance will be as follows:

Max	 ST	 =	 Max	 g=1mSg	 	 	 	 =	 Max	 g=1mi=1ngPigOv	 	 	 	 	 	 =	 Max	 �=� ��=� ��t=1TPig(t)

	 =	 Max	 �=� ��=� ��t=1T(Uig1+e−Cigαig(t)	 −	 Uig2)	 ∗ 	 e−t	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
Subject	 to:	 �=��i=1ng(αig)Ov+	 i,j(i≠j)ng(θijg)Ov	 +	 i,j(i≠j)ngfij`gαigCjgCigOv	 = 1

g=1mi=1ng�=1����(�) 	 +	 i,j(i≠j)ng�=1�����(�) 	 +	

i,j(i≠j)ng�=1�fij`g(t)αig(t)CjgCig=1 g=1mi=1ng�=1����(�) 	 +	 i,j(i≠j)ng�=1�����(�) 	 +	

i,ji≠jng�=1�fij`gt−1e−θijgtfij`gt−1kijgαig(t)CjgCig=1

	
0	 ≤	 αi	 ≤	 100,	 	 	 0	 ≤	 θij	 ≤	 1	 	 	

Similar to the previous section, we should check the optimality conditions and test

for the concavity of the maximized function. Let us first consider the objective function:

• Max	 ST=	 Max	 �=� ��=� ��t=1T(Uig1+e−Cigαig(t)	 −	 Uig2)	 ∗	 e−t	 	 	 	

Adding the time component will not affect the results of concavity derived earlier.

Even though the second derivative in this case will be with respect to αig(t) rather than

αig but still the second derivative is the same and still < 0 for allαig(t), implying a

concave objective function.

Second we must consider the constraint and check as well its convexity, since any

concave function on a convex set should have a unique global optimal.

61

• g=1mi=1ng�=1����(�) 	 +	 i,j(i≠j)ng�=1�����(�) 	 +	

i,ji≠jng�=1�fij`gt−1e−θijgtfij`gt−1kijgαig(t)CjgCig

Considering each term by itself we get: i=1ng�=1����(�) and

i,j(i≠j)ng�=1�����(�) are both convex and concave for all αi
g(t) and θij

g(t)

respectively. To prove convexity for the last term of the summation we adopt the linear

version discussed in the previous section and we assume that T=2 and by induction

convexity applies for all values of T especially that we have a recursive equation of

fij`g(t).

 For T = 2 and the linear version assumption we have:

fij`gt=1αig(t=1)CjgCig+fij`gt=2αig(t=2)CjgCig

⇒����1−kijgfijgθijg(t=1)αig(t=1)CjgCig+fij`g(t=1)1−kijgfijgθijg(t=2)αig(t=2)CjgCig

We take again each term separately. The first term (when t=1) is already proven

concave in the one shot investment, then we are rest with proving concavity for the

second term and then multiplying the whole constraint with a negative sign to obtain a

convex constraint.

fij`g(t=1)1−kijgfijgθijg(t=2αig(t=2)CjgCig=fijg1−fijgkijgθijg(t=1)1−fijgkijgθijg(t=2)αi

g(t=2)CjgCig	

Dropping out the constants, and deriving with respect to: αig(t=2)CjgCig ,

θijg(t=1), and θijg(t=2) we get the below 3x3 Hessian matrix.

H = 	 0−��������+	 ��������2����(�=2) ��������+	

��������2����(�=1) −��������+	

62

��������2����(�=2) 0��������2���(�=2) ��������+	

��������2����(�=1) ��������2���(�=2) 0	

and xTHx = �1�2�3H�1�2�3=	 2�1�2−��������+	 ��������2�����=2+	

2�1�3��������+	 ��������2�����=1+	 2�2�3��������2����=2>0	 	 	 for	 all	 x	

≫������

xTHx being greater than zero, it implies convexity. Therefore, we can conclude

that part of the periodic constraint is concave and part is convex. Since decision variables

exist in both parts, no comparison or further work can be done.

4.3.1. Illustrative Example

Consider the same product in the previous example which was composed of only

one group and six modules related together based on Fig. 4.1 and based on the data

matrix of Fig. 4.2. We will assume in this example that T=3, i.e. we have three periods of

investments and we are seeking optimal investments decisions in advance of the three

periods.

4.3.1.1. Excel Solver Results

 Using Excel-Solver, we optimized the above mentioned example during three

time periods and we got an optimal total product performance of 96.76 and the optimal

investments amounts in design rules and modules are shown in the below table:

63

Table 4.7: Decision variables values after optimization

 t = 1 t = 2 t = 3

α1 (t) 0 % 0 % 0 %

α 2 (t) 5.87 % 4.42 % 2.85 %

α 3 (t) 4.45 % 3.14 % 1.77 %

α 4 (t) 3.38 % 2.15 % 1.03 %

α 5 (t) 4.93 % 3.54 % 2.06 %

α 6 (t) 15.14% 15.14% 15.14%

θ12 (t) 0 % 0 % 0 %

θ15 (t) 0 % 0 % 0 %

θ16 (t) 0 % 0 % 0 %

θ23 (t) 4.42% 0 % 0 %

θ24 (t) 4.72% 0 % 0 %

 From Table 4.7 we notice that around 85% of the budget went to re-designing

modules, 9.14% for developing design rules and the 5.86% left are for updating modules

to attain compatibility with the changes done. We notice as well that module’s six

investments were the highest between all the modules among all the periods where

15.14% from the budget each period should be spent on improving module’s six

performance. On the contrary, the lowest alphas are that of module one where none of the

money should be spent in re-designing it. Concerning the rest of the modules (two, three,

four, and five), all their alphas decrease by time and this is due to the performance

function Pi (t) assumed in the previous section. If we sum the alphas for each module

64

along t, we see that 45.42% of the budget is invested in module six, around 13% in

module 2, 10.5%, 9.35%, 6.55% and 0% in modules five, three, four and one

respectively.

 Concerning design rules, since no investments plans are advised for module one

along the periods, then no efforts should be exerted to reduce the interdependency

between modules one and two, one and five, and one and six. 4.72% of the budget must

be spent on developing design rules between modules two and four, and 4.42% must be

spent to decrease the dependency between modules two and three.

To emphasize the importance of the design rules, the reduction in the fraction of

updates from fij to fij`(t) and the amounts that should be spent to update module j (αi fij`(t)

(Cj / Ci)) once changes are applied to module i should be taken into consideration.

Consider the below table:

Table 4.8: fij(t) vs fij`(t) and αi fij`(t) (Cj / Ci)

Mi Mj M1 M2 M1 M5 M1 M6 M2 M3 M2 M4

fij 0.3 0.7 0.4 0.85 0.9

fij` (t=1) 0.3 0.7 0.4 0.2 0.16

fij` (t=2) 0.3 0.7 0.4 0.2 0.16

65

fij` (t=3) 0.3 0.7 0.4 0.2 0.16

αi fij`(t=1) (Cj / Ci) 0 % 0 % 0 % 1.38 % 1.24 %

αi fij`(t=2) (Cj / Ci) 0 % 0 % 0 % 1.04 % 0.93 %

αi fij`(t=3) (Cj / Ci) 0 % 0 % 0 % 0.67% 0.6 %

 Table 4.8 shows that fij`(t)= fij in the absence of design rules where θ12, θ15 and θ16

= 0. We notice a huge decrease in the fraction of update between modules two and four,

where prior of investing in design rules, 90% (= f24) of module four must be re-designed

to attain compatibility with module’s two changes while only 16% (= f24`) now must be

re-designed after spending part of the budget on developing design rules which clearly

decreased the dependency between these two modules. The fraction of re-work between

modules two and three decreased from 85% to 20%. Since no investments in design rules

is witnessed in periods two and three then: fij`(3) = fij`(2) = fij`(1). The last three rows in

Table 4.8 show the percentages of the budget that should be assigned to update the

dependent modules after investing the optimal alphas amounts in improving the modules’

performances. Since the alphas are decreasing by time, then definitely the updates’

amounts will diminish as well even though the fraction of re-works of periods two and

three are the same as that of period one. Moreover, since α1 is zero, then all updates

related to module one are zero as well.

4.3.1.2. Analysis

Similar to the previous analysis section, we will start first by sorting the optimal

alphas in a descending order where the first listed alpha refers to the highest amount

66

invested in a certain module and the last listed alpha refers to the least amount of

investment between the modules. Since we did not change the data matrix nor the

architecture of the product between the two examples, then one could expect to get the

same order of alphas we previously obtained even though the amounts of performances

and investments differ (this is due to time component introduction). The sorted alphas are

as follows: α6, α2, α5, α3, α4, and α1 and they are exactly the same as example 4.2.1. The

highest investment amount went to module six which has the second highest upper limit

U6 = 55 and the lowest investment amount went to module one which has the highest

upper limit U1 = 70. The same conclusion applies here, which highlights the cause on the

complexity factor Ci which is affecting the optimal results.

Note that we cannot directly compare the periodic model to the one shot model

due to the difference in the objective function; however, we can have a relative

comparison. As you see from Table 4.9, there is difference in the total product

performance between the two types of investments and this due to α6 being 45.42% in the

periodic investments as opposed to 27% in the one-shot model. This is due to that fact

that we are multiplying Pi by e-1, e-2 and e-3 thus more investment amounts are needed to

achieve the same performance of the deterministic model. Since module six is the most

important module, more dollars were assigned to that module as opposed to approximate

same amounts of dollars to the other modules. The important fact is that the sorting of

alphas is the same between the two models but only the amount invested in module six

differs. There is no much benefit from having multiple investment time points since we

can perfectly predict the performance estimation of modules.

67

Table 4.9: Comparison between one-shot and periodic investments

 One- Shot Investment Periodic Investments

α1 / P1 0.36% -- 0.06 0% -- 0

α 2 / P2 12% -- 19 13% -- 10.02

α 3 / P3 8.09% -- 8.49 9.35% -- 4.31

α 4 / P4 6.56% -- 3.99 6.55% -- 1.89

α 5 / P5 9.21% -- 10.99 10.5% -- 5.64

α 6 / P6 27% -- 27.35 45.42% -- 74.88

ST 69.78% 96.76

�=16��	 63.23% 85%

�,�=1 �≠� 6���	 14.06% 9.14%

�,�=1 �≠� 6���`��(����	

)	

22.71% 5.86%

Similar studies concerning sensitivity on Ci and comparison between optimal and

maximum alphas could be done and will lead to the same result derived earlier which

states that a module with a high upper limit and no other modules depending on it is

expected to take the largest percent of the budget for its performance improvement. Being

highly complex, module one will demand the entire budget to attain its maximum alpha

and will require a high percentage of the budget for updating modules two, five and six.

One can conclude then, that three factors must be taken into consideration once deciding

68

on investing in a certain module: the upper limit, complexity factor and architectural link

between modules.

In addition to that, one should also pay attention to the analysis of the optimal θij.

From Table 4.7 we knew that it is optimal to spend money on developing design rules

between modules two and three, and two and four. However, it is not optimal to spend

money on the design rules between modules one and two, one and six and one and five.

Since it is not optimal to invest in module one (α1 = 0) so no need to update any modules

dependent on it. If we did not allocate money for developing the design rules between

M2M3 and M2M4 then higher amounts would go for upgrading the modules due to the

interdependencies between them. Consider Table 4.10 which shows the amount of money

to update the modules in the absence of design rules i.e. when fij`(t) = fij:

Table 4.10: αi fij`(t) (Cj / Ci) % in absence of design rules

Mi Mj M1 M2 M1 M5 M1 M6 M2 M3 M2 M4

fij = fij`(t) 0.3 0.7 0.4 0.85 0.9

αi fij`(t=1) (Cj / Ci) 0 % 0 % 0 % 5.76 % 6.77 %

αi fij`(t=2) (Cj / Ci) 0 % 0 % 0 % 4.34 % 5.11 %

αi fij`(t=3) (Cj / Ci) 0 % 0 % 0 % 2.8 % 3.29 %

As you notice from Table 4.10, larger amounts are needed to update the modules

in the absence of design rules where 28.07% of the budget will go to updating the

modules and the rest will go for improving the performance of the modules. On the other

hand, in the presence of design rules, 5.86% (refer to Table 4.8) of the budget is needed

69

for updating the modules and 9.14% (refer to table 4.7) of the budget for developing

design rules which makes a total of 15% (5.86% + 9.14%) which is less than the 28.07 %

in the absence of design rules.

 Concerning the total product performance, at t=1 we have a total performance of

40.12, at t=2 we have an increment of 30.17 making the total performance at time two

equals to 70.28, and at t=3, we have an increment of 26.48 making the cumulative total

product performance equals 96.76. As discussed in the previous section, the product

performance will evolve at a decreasing rate where for a large T we expect minimal

increments, thus stabilization for product performance and no more improvements.

Consider the below two graphs which show the growth of the modules’ performances and

total product performance as a function of time for the above three periods’ example:

70

Fig.4.4: Modules’ performances in function of time

Fig. 4.4 shows the performances of modules one to five as a function of time. As

you notice the performance of any module will increase with time. The product highly

reacts in the first period and then enters a steady state once t gets larger. The below graph

shows: the total product performance and the performance of module six as a function of

time. Since module six affects mostly the total performance, it is better to group them in

one figure.

Fig. 4.5 below shows the Total product performance increasing at a decreasing

rate and shows as well the performance of module six how it is constantly increasing

depending on the optimal equal alphas invested in each period.

71

Fig. 4.5: Total product and module’s six performances in function of time

After establishing the deterministic model through two types of investments (one

shot and periodic), we will move next to develop the stochastic model in those two

investments strategies as well. The only assumption made in this chapter was that

concerning the periodic investments model where the performance was assumed to

increase at a decreasing rate.

72

CHAPTER 5

STOCHASTIC MODEL

5.1. Overview

As discussed previously, uncertain modules may exist in a given product and are

expected to have a higher performance than any other certain module for the same amount

of investment. Thus they are considered to be the top features of the product causing a high

market capturing rate. In this chapter, the notion of uncertainty will be introduced into the

two types of investments: one shot investment and periodic investments. Similar to the

earlier chapter, illustrative examples followed by analysis will be provided to ensure full

knowledge of stochastic events.

5.2. One Shot Investment Model

In the last chapter, all modules whether complex or simple in design had a

deterministic and fixed known Ui denoting the upper limit value the performance function

can attain. But as we saw in the Dell case-study, not all modules have proven technologies

where they provide limited but guaranteed performance. Some modules are considered to

be a prospective technology choice where they offer high but risky performance

improvement. So “certain” modules would yield low but guaranteed performance

improvement where as “uncertain” modules would yield high but not guaranteed

improvements. Since complex design modules having low Cis are assumed to achieve

higher Uis, complex modules then are the ones which likely hold uncertainty in their

73

performances. Simple modules cannot be uncertain, because the designer would definitely

not choose to spend money on re-designing a low and uncertain Ui.

For uncertain modules, we will assume that Ui will vary based on a known

probability distribution. In this thesis we will assume a Uniform distribution function: U~

(ai, bi) where ai and bi are the minimum and maximum values for the upper limit value Ui

of module i. Accordingly, the performance of any group would be the sum of all expected

Pis present in that group:

��=�=� ���(��)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (5.2.1)

	
 For example, if module i was considered to be a risky module having an upper

limit Ui where Ui is a Uniform random variable: U(ai,bi), then an expected value of the

upper limit Ui of module i will be used and it is equal to (ai+bi)/2. Note that module i has

the same chance of attaining ai, bi or any value in between that’s why uncertain modules

are risky: as they can attain larger performances than certain modules, they are equally

probable to behave worse and attain lower performances.

 �	 ��=�	 Ui	 	 1+e−Ciαi	 –	 Ui2	 	 =	 EUi	 	 1+e−Ciαi	 –	 EUi2

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 =	 (ai+bi)2	 	 1+e−Ciαi	 –	 (ai+bi)22	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

(5.2.2)	

Note that if module i is a deterministic module then E (Pi) = Pi. Note as well that

kij can be stochastic also, where the designer’s knowledge of the relationship between the

modules can vary uniformly between (kij
low, kij

high) as well thus E (fij`) can be used which

is equal to: E	 (fij`)=fijg(e−θijgfijgE(kijg)). E(kij) is equal to (kij
low + kij

high) /2.

74

In the stochastic model, our objective will not only be maximizing total product

performance but rather as well minimizing the variability. The notation Vg will be used to

denote the variance of group g and Vi to denote the variance of module i. We assume that

groups are independent of each other, then no correlation exists between various groups

in the system. Within a certain group, modules do depend on each other but we also

assume that no correlation exists between the upper limits of the modules. Thus the

variance of a certain group will be the sum of all the modules’ variances only.

The variance of group g and variance of module i will be expressed as follows where 1 ≤

g ≤ m and 1 ≤ i ≤ ng:

��=	 �=1����	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (5.2.3)	

��=�	 ��2−[�	 ��]2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (5.2.4)	

	
where E (Ui) = (ai + bi)/2 and E (Ui

2) = [(bi – ai)2/12] + [(ai + bi) /2]2

 For formulating the optimization problem, we will consider a product composed

of m groups and each group contains ng modules some of them certain and others risky

with a Ui ~ U(ai, bi). Our objective is to maximize total product performance and

minimize the variance in a one shot investment where no time component is present. For

the objective function to have a unique performance unite, the standard deviation

multiplied by a weight wi will be subtracted from each modules’ performance instead of

the variance. The designer can choose wi (0 ≤ wi ≤ 1) depending on his preferences where

wi = 0 cancels the objective of minimizing variability and wi = 1 ensures full

minimization of risk (standard deviation is a measure of risk). Then the standard

75

deviation of a certain group will be the sum of all standard deviations multiplied by their

respective weights for all the modules present in that group:

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ��.���.= ��=	 �=1����	 ��	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (5.2.4)	

 A normalized budget of 1 for each group is considered: Bg = 1 for 1 ≤ g ≤ m.

Since some modules are uncertain then E (Pi) is always used. Remember that the

superscript g will be used to differentiate between the modules’ parameters among

various groups:

	

Max	 ST	 =	 Max	 g=1mSg−	 Vg	 =	 Max	 �=� �Vigwig	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 =	 Max�=� �E	 (Pig)2−[E	 Pig]2wig

	
Let	 ��+�−������−��=���	 	 	 then:

• ���=�����+�−������−��=	 ������	 	 	

• ����=	 ���+����	 ���	 	 	

• 	 �	 (���)2=	 ���−	 ���212+���+���22���2	

• [�	 ���]2=	 ���+���22���2	

	

Replacing all the above in the objective function we get:

	 	 	 	 	 	 	 	 Max	 ST	 =	 Max	 �=� ��=� �����+�������−���−�����������	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

=	 Max�=� ��=� ����������−����+����+����

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 =	 Max�=� �	 ��+��−������−������−����+����+����	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 Subject	 to:	 �=1�i=1ngαig	 +	 i,j(i≠j)ngθijg	 +	 i,j(i≠j)ngfij`g	 αigCjgCig	 =1	

76

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 �=1�i=1ngαig	 +	 i,j(i≠j)ngθijg	 +	 i,j(i≠j)ngfijg(e−θijgfijgkijg)	 αigCjgCig	

=1	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0	 ≤	 αi	 ≤	 100,	 	 	 0	 ≤	 θij	 ≤	 1	 	 	

	

Note that for a certain module, ai = bi = Ui and no variability exists (wi = 0), that is:

��+��−������−������−����+����+����

=������+��−������−��=�����+�−������−��=���

Since we are maximizing the objective function, it is of vital importance to check the

optimality conditions and test for the concavity of the maximized function and convexity of

constraint. Let us first consider the objective function:

• Max	 ST=	 Max�=� �	 ��+��−������−������−����+����+����

Since any weighted sum of a concave function is concave, then after omitting the

constants, it is enough to show that 1	 	 2+2e−Cigαig	 	 	 is concave for any αi
g by showing

that second order derivative with respect to αi
g is nonpositive. Taking the second

derivative we get the following:

�2�(���)21	 	 2+2e−Cigαig	 	 =Cig2e−Cigαige−Cigαig−121+e−Cigαig3	 	 <0	 	 	 for

all αi
g

Therefore, we can conclude that the objective function is concave for all αi

g.

Concerning the constraint, the same proof of the one shot investment model

applies here and implies a concave constraint.

77

After defining the model and testing the optimality conditions, we move next to

an illustrative example.

5.2.1. Illustrative Example

We will consider the same example of chapter 4, the product which is composed

of only one group having six modules. The modules are dependent on each other based

on the architectural diagram provided earlier (Fig. 4.1). The data matrix of the previous

chapter still hold as well except for the upper limit of modules one and six which are

assumed to be uncertain having uniform distributions: U1~ U (40, 120) and U6 ~ (30, 85).

Since only complex modules can have risky performances, then the other modules (two,

three, four and five) are certain and have the same upper limit defined previously (Fig.

4.2). We will assume that the designer’s objective is to maximize total product

performance and fully minimize the variability in one shot investment. Accordingly we

will set w1 = w6 = 1.

5.2.1.1. Excel Solver Results

 Using Excel-Solver, we optimized the above mentioned example based on the

formulation provided in the earlier section where uncertainty and reducing variability

were taken into account. We got an optimal total product performance of 63.30 and the

optimal investments amounts in design rules and modules are shown in the below table:

Table 5.1: Decision variables values after optimization

α1 0.02% θ12 0%

78

α2 11.95% θ15 0 %

α 3 10.07% θ16 0%

α 4 8.43% θ23 4.12%

α 5 10.99% θ24 4.45%

α 6 42.25%

 From Table 5.1 we notice that around 83.71% of the budget went to re-designing

modules, 8.57% for developing design rules and the 7.72% left are for updating modules

to attain compatibility with the changes done. We notice as well that re-designing

module six demanded 42.25% from the budget followed by module two where 11.95%

of the budget was allocated for its performance improvement work. Modules five, three

and four took from the budget 10.99%, 10.07% and 8.43% respectively. The lowest

alpha is that of module one where only 0.02% of the budget should be spent in re-

designing it which is a very minimal amount and can be omitted. Concerning design

rules, no work should be done to reduce the interdependency between modules that are

linked to module one as modules two, five and six. 4.45% of the budget must be spent

on developing design rules between modules two and four, and 4.12% must be spent to

decrease the dependency between modules two and three.

 Other important results are the reduction in the fraction of updates from fij to fij`

and the amounts that should be spent to update module j once changes are applied to

module i: αi fij` (Cj / Ci).

Table 5.2: fij vs fij` and αi fij` (Cj / Ci)

79

Mi Mj M1 M2 M1 M5 M1 M6 M2 M3 M2 M4

fij 0.3 0.7 0.4 0.85 0.9

fij` 0.3 0.7 0.4 0.22 0.18

αi fij` (Cj / Ci) 0.48% 1.2% 0.16% 3.10% 2.78%

Table 5.2 shows that fij`= fij in the absence of design rules where θ12, θ15 and θ16 =

0. We notice a huge decrease in the fraction of update between modules two and four,

where prior of investing in design rules, 90% (= f24) of module four must be re-designed

to attain compatibility with module’s two changes while only 18% (= f24`) now must be

re-designed after spending part of the budget on developing design rules which clearly

decreased the dependency between these two modules. The fraction of re-work between

modules two and three decreased from 85% to 22%. The last row in Table 5.2 shows the

percentages of the budget that should be assigned to update the dependent modules after

investing the optimal alphas amounts in improving the modules’ performances.

5.2.1.2. Analysis

Similar to the previous chapter, if we want to sort the optimal alphas in a

descending order then we will get the same order of alphas we previously obtained even

though the upper limit U1 and U6 changed. What is different in this model is the huge

amount assigned to re-designing the modules where 83.71% of the budget was allocated

for investments compared to 63.23% for the deterministic model. When the upper limit

U1 varied uniformly between 50 and 120, no advice was given to invest in such a risky

80

module especially that it has a high complexity factor and many architectural links with

other modules. In contradiction to module one, when its upper limit U6 varied uniformly

between 30 and 85 more budget was allocated for the investments in module six. When

module six was certain, it was optimal to invest in it 27% of the budget, and when it

became risky the optimal amount increased to 42.25%. In the deterministic module, since

none of the modules depend on module six, and since U6 was large in value it was

advisable to invest the largest part of the budget in re-designing module six. Now in the

stochastic model, we notice that even though module six became uncertain more money

was allocated to such a module. The reason for that lies also in the non-existence of

modules depending on module six but moreover on the upper limit of module six where it

is equally probable to attain any value between 30 and 85 with an expected value of 57.5,

the second largest between all the modules and larger than U6 of the deterministic case.

Accordingly more budget will go to module six and less for module one which implies

less for design rules and updates since most of the modules depend on module one.

Consider the below table which shows a comparison between the deterministic and the

stochastic one-shot model results:

Table 5.3: Comparison between deterministic and stochastic one-shot model

 Deterministic One- Shot

Investment

Stochastic One-Shot

Investment

α1 0.36% 0.02%

α 2 12% 11.95%

α 3 8.09% 10.07%

α 4 6.56% 8.43%

81

α 5 9.21% 10.99%

α 6 27% 42.25%

ST 69.78 63.30

�=16��	 63.23% 83.71%

�,�=1 �≠� 6���	 14.06% 8.57%

�,�=1 �≠� 6���`��(����	

)	

22.71% 7.72%

If we compare the total product performance between the deterministic and the

stochastic model from Table 5.3 we notice that the deterministic attained larger total

product performance even though less investments amounts were allocated to its

modules. This can be explained by the fact that we are minimizing variability in the

stochastic model which implies subtracting the weighted standard deviation from each

module’s performance. More money went to modules’ re-design stage but less total

product performance reached. The difference is not huge (69.78 vs. 63.30) but still

significant if the amount spent on the modules was taken into consideration.

Similar table to that of the previous chapter can be drawn to compare the optimal

and maximum alphas. All maximum alphas in Table 4.3 hold except for that of module

six, where its maximum alpha now equals 44 and optimal alpha 42.25. We notice that in

this model all the optimal alphas were approximately equal to their maximum alphas

except for module one. And this is due to the lack of investment in module one which

increases the available budget for the others modules. Remember that if we did not invest

82

in module one, then we will not need to spend much money on developing design rules

and updating modules for attaining compatibility.

Similar sensitivity study on the value of C1 can be done, and same results will be

obtained; where for C1 ≥ 0.07, module one will be ranked the second largest between all

the alphas. But as said previously, module one cannot decrease in complexity (C1

increases) and still attain the same high upper limit U1.

Rather than the analysis of the optimal alphas, we can pay attention as well to the

analysis of the optimal θij. From Table 5.1 we knew that it is optimally to spend money

on developing design rules only between modules two and three, and two and four. No

advice on spending money on the design rules related to module one since it is not

optimal to invest in the risky module one at all. If we didn’t allocate money for

developing the design rules between M2M3 and M2M4 then higher amounts would go

for updating the modules due to the interdependencies between them. Consider Table 5.4

which shows the amount of money to update the modules in the absence of design rules

i.e. when fij` = fij:

Table 5.4: αi fij` (Cj / Ci) % in absence of design rules

Mi Mj M1 M2 M1 M5 M1 M6 M2 M3 M2 M4

fij = fij` 0.3 0.7 0.4 0.85 0.9

αi fij` (Cj / Ci) 0.48% 1.2% 0.16% 11.72% 13.79%

 As you notice from Table 5.4, larger amounts are needed to update the modules in

the absence of design rules where 27.35% of the budget will go to updating the modules

83

and the rest will go for improving the performance of the modules. On the other hand, in

the presence of design rules, 7.72% (refer to Table 5.2) of the budget is needed for

updating the modules and 8.57% (refer to table 5.1) of the budget for developing design

rules which makes a total of 16.29% (7.72% + 8.57%) which is less than the 27.35% in

the absence of design rules. One more time the power of design rules in decreasing the

amount spent on upgrading modules and increasing the available budget for investments

in the modules is being shown. By comparing these results to that of the deterministic

model, we notice that the role of the design rules is extremely important in the

deterministic example and less important in the stochastic one and this due to omitting

investments in the uncertain module (M1) thus omitting developing design rules (M1M2,

M1M5, and M1M6).

 After illustrating the one shot stochastic model, similar work will done to the

periodic model presented in the below section.

5.3. Periodic Investments Model

In this section both time and uncertainty components will be introduced to our

model. It will be assumed that T periods exist in the development process and the

designer must be aware of all his periodic optimal investments decisions prior to starting

re-designing his modules. All the equations derived in section 4.3 concerning Pi (t), fij`

(t), Pi
Ov, αi

Ov, θij
Ov, and (fij

`αiCj/Ci)Ov hold. Concerning uncertainty, it is still assumed that

only complex modules can be risky in performance where Ui will vary based on a

Uniform distribution function: U~ (ai, bi) where ai and bi are the minimum and maximum

values for the upper limit value Ui of module i.

84

Our objective in this section will be to maximize total product performance and

minimize variability in multiple investments periods. The optimization problem for the

stochastic periodic investments model where we consider a product composed of m

groups, each group contains ng modules some of them certain and others risky with a Ui ~

U (ai, bi), T periods exist, normalized budget of 1 for each group, and an objective of

maximizing total product performance and minimizing weighted standard deviation in

multiple shots investments all known in advance will be as follows:

MaxST=Max�=� �(=Max�=� ��=� ��t=1T�	 (���Vigtwig(t)

	 	 	 	 	 	 	 	 	 	 	 	 =Max	 �=� ��=� ��t=1T	 E	 (Pig(t))2−[E	 Pig(t)]2	 	 	 	

Let	 ��+�−������−	 ��=	 ���	 	 	 then:	

• ���=	 �����+�−������(�)−	 ���−�=	 �������−�

• ����=	 ���+����	 ����−�	

• 	 �	 (���)2=	 ���−	 ���212+���+���22����−�2	

• �	 ���2=	 ���+���22����−�2	

	
Replacing all the above in the objective function we get:

Max	 ST	 =	 Max�=� ����+����	 ����−�−���−	 ����	 ����−�����	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 =	 Max�=� �����−������−����+���	 �+����	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 =	 Max�=� ��−���+��−������(�)−	 ������−����+���	 �+����

Subject	 to:	 �=��i=1ng(αig)Ov+	 i,j(i≠j)ng(θijg)Ov	 +	 i,j(i≠j)ngfij`gαigCjgCigOv	 = 1	

85

�=1�i=1ng�=1����(�) 	 +	 i,j(i≠j)ng�=1�����(�) 	 +	

i,j(i≠j)ng�=1�fij`g(t)αig(t)CjgCig=1 �=1�i=1ng�=1����(�) 	 +	 i,j(i≠j)ng�=1�����(�) 	 +	

i,ji≠jng�=1�fij`gt−1e−θijgtfij`gt−1kijgαig(t)CjgCig= 1

0	 ≤	 αi	 ≤	 100,	 	 	 0	 ≤	 θij	 ≤	 1	 	

Similarly to the previous section, we should check the optimality conditions and test

for the concavity of the maximized function and constraint. Let us first consider the

objective function:

• Max	 ST=	 Max�=� ��−���+��−������(�)−	 ������−����+���	 �+����

Adding the time component will not affect the results of concavity derived earlier.

Even though the second derivative in this case will be with respect to αig(t) rather than

αig but still the second derivative is the same and still < 0 for allαig(t), implying a

concave objective function.

Concerning the constraint, the same proof of the periodic deterministic investments

model applies here.

After defining the model and testing the optimality conditions, we move next to an

illustrative example.

5.3.1. Illustrative Example

We will continue with the same example of the product composed of only one

group and six modules related together based on Fig. 4.1. The data matrix of the previous

chapter still hold as well except for the upper limit of modules one and six which were

86

assumed in the previous section to be uncertain having uniform distributions: U1~ U (40,

120) and U6 ~ (30, 85). Since only complex modules can have risky performances, then

the other modules (two, three, four and five) are certain and have the same upper limit

defined previously (Fig. 4.2). We will assume that the designer’s objective is to

maximize total product performance and fully minimize the variability in one shot

investment. Accordingly we will set w1 = w6 = 1.We will assume that T=3, i.e. we have

three periods of investments and we are seeking optimal investments decisions in

advance for the three periods.

5.3.1.1. Excel Solver Results

 Using Excel-Solver, we optimized the above mentioned example during three

time periods where uncertainty and minimizing variability where taken into

consideration. An optimal total product performance of 32.79 was obtained and the

optimal investments amounts in design rules and modules are shown in the below table:

87

Table 5.5: Decision variables values after optimization

 t = 1 t = 2 t = 3

α1 (t) 0 % 0 % 0 %

α 2 (t) 6.05 % 4.73 % 3.33 %

α 3 (t) 4.89 % 3.73 % 2.47 %

α 4 (t) 3.73 % 2.64 % 1.29 %

α 5 (t) 5.47 % 4.24 % 2.92 %

α 6 (t) 18.85% 13.44% 6.8%

θ12 (t) 0 % 0 % 0 %

θ15 (t) 0 % 0 % 0 %

θ16 (t) 0 % 0 % 0 %

θ23 (t) 4.64% 0 % 0 %

θ24 (t) 4.91% 0 % 0 %

From Table 5.5 we notice that around 84.58% of the budget went to re-designing

modules, 9.55% for developing design rules and the 5.87% left are for updating modules

to attain compatibility with the changes done. We notice as well that module’s six

investments were the highest between all the modules among all the periods where

approximately 39% from the budget was allocated for improving module’s six

performance. On the contrary, the lowest alphas are that of module one where none of the

88

money should be spent in re-designing it. Concerning the rest of the modules (two, three,

four, and five), all their alphas decrease by time and this is due to the performance

function Pi (t) assumed in the earlier chapter. If we sum the alphas for these modules

along t, we see that around 14.11% should be spent on re-designing module 2, 12.63%,

11.09%, and 7.66% modules five, three, and four respectively.

 Concerning design rules, since no investments plans are advised for module one

along the periods, then no efforts should be exerted to reduce the interdependency

between modules one and two, one and five, and one and six. 4.91% of the budget must

be spent on developing design rules between modules two and four, and 4.64% must be

spent to decrease the dependency between modules two and three.

Similar to other sections, we will show, the reduction in the fraction of updates

from fij to fij`(t) and the amounts that should be spent to update module j (αi fij`(t) (Cj / Ci))

once changes are applied to module i. Consider the below table:

Table 5.6: fij(t) vs fij`(t) and αi fij`(t) (Cj / Ci)

Mi Mj M1 M2 M1 M5 M1 M6 M2 M3 M2 M4

fij 0.3 0.7 0.4 0.85 0.9

fij` (t=1) 0.3 0.7 0.4 0.19 0.15

fij` (t=2) 0.3 0.7 0.4 0.19 0.15

fij` (t=3) 0.3 0.7 0.4 0.19 0.15

αi fij`(t=1) (Cj / Ci) 0 % 0 % 0 % 1.33 % 1.19 %

αi fij`(t=2) (Cj / Ci) 0 % 0 % 0 % 1.04 % 0.93 %

89

αi fij`(t=3) (Cj / Ci) 0 % 0 % 0 % 0.73% 0.65 %

Table 5.6 shows that fij`(t)= fij in the absence of design rules where θ12, θ15 and θ16

= 0. We notice a huge decrease in the fraction of update between modules two and four,

where prior of investing in design rules, 90% (= f24) of module four must be re-designed

to attain compatibility with module’s two changes while only 15% (= f24`) now must be

re-designed after spending part of the budget on developing design rules which clearly

decreased the dependency between these two modules. The fraction of re-work between

modules two and three decreased from 85% to 19%. Since no investments in design rules

is witnessed in periods two and three then: fij`(3) = fij`(2) = fij`(1). The last three rows in

Table 5.5 show the percentages of the budget that should be assigned to update the

dependent modules after investing the optimal alphas amounts in improving the modules’

performances. Since the alphas are decreasing by time, then definitely the updates’

amounts will diminish as well even though the fraction of re-works of periods two and

three are the same as that of period one.

4.3.1.2. Analysis

Similar to the previous analysis sections, if we want to sort the optimal alphas in a

descending order then we will get the same order of alphas we previously obtained even

though the upper limit U1 and U6 changed and periodic investment is assumed.

We notice in this chapter that the amounts allocated to re-designing the modules,

investing in design rules and updating the dependent modules are approximately the same

as the deterministic periodic model but with less total product performance. Consider the

90

below table which compares the periodic investments between the deterministic and the

stochastic model.

Table 5.7: Comparison between deterministic and stochastic investments

 Deterministic Periodic

Investments

Stochastic Periodic

Investments

α1 0% 0%

α 2 13% 14.11%

α 3 9.35% 11.09%

α 4 6.55% 7.66%

α 5 10.5% 12.63%

α 6 45.42% 39%

ST 96.76 32.79

�=16��	 85% 84.58%

�,�=1 �≠� 6���	 9.14% 9.55%

�,�=1 �≠� 6���`��(����	

)	

5.86% 5.87%

 If we compare the total product performance between the deterministic and the

stochastic model for the periodic type investments, we notice that the deterministic

attained a significant larger total product performance (96.76) compared to the stochastic

model (32.79) even though identical investments amounts were allocated to the modules.

This can be explained first by the fact that we are minimizing variability in the stochastic

model which implies subtracting the weighted standard deviation from each module’s

91

performance. Remember that w6 was assumed to be equal to 1 which resulted in a total

performance for module six equal to 10.38 compared to 74.88 in the deterministic case.

Second in the stochastic model, U6 can vary between 30 and 85 with equal probability

compared to certain upper limit of 55 in the deterministic case. Accordingly when the

same amount of money is spent on developing and updating the modules, the

deterministic model (in our example assumed) attained larger total product performance.

Similar studies concerning sensitivity on Ci and comparison between optimal and

maximum alphas could be done and will lead us to the same result derived earlier which

states that a module with a high upper limit and no other modules depending on it is

expected to take the largest percent of the budget for its performance improvement. Being

highly complex and uncertain, module one will demand the entire budget to attain its

maximum alpha and will require a high percentage of the budget for updating modules

two, five and six. One can conclude then, that four factors must be taken into

consideration once deciding on investing in a certain module: the upper limit, complexity

factor, uncertainty and architectural link between modules.

We can as well demonstrate the power of design rules by deriving a very similar

table to that of Table 4.8 where identical results will be shown: larger amounts are needed

to update the modules in the absence of design rules where 28.52% of the budget will go

to updating the modules and the rest will go for improving the performance of the

modules. On the other hand, in the presence of design rules, 5.87% (refer to Table 5.5) of

the budget is needed for updating the modules and 9.23% (refer to table 5.4) of the

budget for developing design rules which makes a total of 15.1% (5.87% + 9.23%) which

is less than the 28.52 % in the absence of design rules.

92

Concerning the total product performance, at t=1 we have a total performance of

22.6, at t=2 we have an increment of 7.85 making the total performance at time two

equals to 30.85, and at t=3, we have an increment of 2.34 making the cumulative total

product performance equals 32.79. As discussed in the previous section, the product

performance will evolve at a decreasing rate where for a large T we expect minimal

increments, thus stabilization for product performance and no more improvements. We

notice that in the stochastic model, the increments are too low foreshadowing an early

steady state faster than that of the deterministic. Consider the below two graphs which

show the growth of the product as a function of time in the stochastic and deterministic

case:

Fig. 5.1: Total product and module’s six performances in function of time

From Figure 5.1 we notice how both functions increase at a decreasing rate and

how the deterministic model in our example reached higher performance amount than the

93

stochastic one. It shows as well how the stochastic function stabilizes faster than the

deterministic due to the less amounts of increments taking place.

CHAPTER 6

MANAGERIAL INSIGHTS

6.1. Overview

After defining the deterministic and stochastic model, and after establishing a

methodology to measure product’s performance, we come to identify some managerial

guidelines which can give quick hints about investments strategies. Those insights will be

based upon the results derived earlier and upon the analysis work and sensitivity studies

done in the previous sections. Below are some guidelines for understanding the

architecture of the product and some investments hints that can be utilized prior to

optimizing the total product performance.

6.2. Guidelines

• Understand the architecture of the product.

Before investing in any module, it is important for the designer to understand the

architecture of the product. The designer should clearly understand the data matrix which

shows all the characteristics of the modules and explains the relationships between them.

The designer should check the upper limits of all the modules and see which modules

have the highest Ui. The designer should examine as well the links between the modules

94

i.e. which columns in the data matrix are approximately fully filled. Such columns show

which modules have many interdependencies relationships that demand from the rest of

the modules present in the product some updates once changes are applied to them. In

addition the designer should look for the most complicated or integral interdependency

relationship by searching for the lowest kij. Moreover, the designer should check the

fraction of updates; see by how much the modules are being affected with others’

changes. By completely understanding the data matrix, the designer can have a good feel

for the proper investments in design rules and modules, as discussed next

• Invest large amounts in high upper limits modules having no modules

depending on them.

When a module has a very low Ci (usually accompanied by a high Ui), and having many

modules depending on it then we are better not investing in such a module. Such

modules, being highly complex, demand a huge amount of the budget for their re-design

work. If such a large amount was assigned for performance’s improvement, then a large

amount would go for updates. So in such a case, we will exceed the budget and we will

not obtain an optimal product performance. Consider the performance function of module

i:

��=Ui1+e−CiαiBg−Ui2

As you notice, when Ci is too low we need a very large αi to decrease the denominator

(1+e−CiαiBg) thus increasing Pi especially that the upper limit Ui is large when the

module is complex (low Ci).

95

• Do not develop design rules if the relationship between the modules is

extremely integral and the initial fraction of update is low.

When kij is small (integral relationship) and fij is small as well, we need a very large θij

(close to 1) to decrease fij to fij`. By this we mean, for fij` to be less than fij in the presence

of integral module relationship and minimal updating requirements, the power of the

exponential function in ���`=����−��������� should be high implying large θij.

In such a scenario, most of the budget will go to developing design rules rather than

improving product performance. Accordingly, we better off not investing in design rules.

• Do not spend large investments amounts on simple modules.

Modules that are simple in designs i.e. have high Ci, do not require a huge amount of the

budget for their performance improvement. The maximum alphas of such modules are

small and very close to their optimal alphas as opposed to complex modules where their

optimal alphas are much smaller than their maximum alphas and this due to their design

complexity which demands a very large alpha for attaining maximum performance.

• If you decided on investing in a certain module, then invest as well in

developing its respective design rules (if dependency exists) if the fraction of

updates were noticeable (i.e. not too small).

As we saw in the example we used in the previous chapters, always the amount of

updates in the absence of design rules is greater than both the amount of updates plus the

amount spent on developing design rules.

96

As we know, fij` (���`=����−���������) is less than fij thus the amount of update

after developing design rules is less than that without design

rules:����−���������������<	 ���������.

And when kij is not too small i.e. simple relationships exist between modules then the

drop from fij to fij` would be huge making ����−��������������� much less

than ��������� and leading to the result that amount spent on developing design

rules θij and amount spent on updating the modules is less than amount spent on updating

the modules in the absence of design rules: ����−���������������+���<

���������	 	

• If the complexity of a certain module was decreased, then the amount invested

in that module increases or stabilizes but never decreases.

For the complexity to decrease, Ci must increase and since our objective is to maximize

performance i.e. increase Pi thus we have to decrease the denominator of Pi.

	
��=Ui1+e−Ciαi−Ui2	
	

To increase Pi we have to decrease 1+e−Ciαi thus decreasinge−Ciαi. To do so we have to

increase Ciαi . As Ci increases, αi increases too or stabilizes but never decreases. This was

proven in the previous chapters once sensitivity analysis on the complexity of module

one was provided. As the module tends to become simpler as its respective αi increases to

a certain limit and then stabilizes. Remember that modules that are too simple design do

not require large amounts of investments.

97

CHATER 7

CONCLUSION

7.1. Summary

The main objective listed in Chapter 1 was to develop a mathematical model which

maximizes total product performance and suggest optimal investments decisions. Such

decisions can target either the modules by themselves or the design rules that describe the

link between the dependent modules. As we saw in the preceding chapters, a systematic

methodology to optimize the performance of any architectural product was suggested.

Given a certain budget, the model proposes optimal investments strategies.

This thesis have offered two kinds of models; one is deterministic where the

performance of any module is guaranteed and the other is stochastic where some modules

behave in a risky way where their upper limits fluctuate based on a uniform distribution

function thus resulting in an uncertain return on investments.

In each model we have introduced two types of investments: one shot investment

and periodic investments. Since all the decisions are assumed to take place at t=0 i.e.

prior to investing in any module, the periodic model did not show any change in the

results from that of one shot model. Only time component was introduced and such

model can be useful if the budget was not fully given at t=0 rather parts of the budget are

given each period. Accordingly the periodic model suggests optimal investments amounts

per period which were decreasing per time leading to an increasing total product

performance but at a decreasing rate. As it was assumed to performance of any product

will increase by time and stabilizes as t tends to infinity.

98

Finally managerial guidelines were provided which gives quick hints about

investments strategies. Those insights were based upon results, analysis work and

sensitivity studies done in the previous chapters. Such guidelines are extremely important

for any product development process.

7.2. Recommendations for Future Studies

Extensions of our model are possible in several directions:

• It may be productive to put more efforts on the periodic type investments

whether in the deterministic or stochastic model. It would be beneficial if

investment decisions can be updated throughout the development process i.e. in

each period we optimize our total performance and we update our product based

on investments done in previous period. No more all decisions are taken at t=0,

but rather decisions should be taken in each period separately. Accordingly, the

design complexity of each module should decrease by time and investment

decisions are updated accordingly.

• It may be fruitful to assess uncertainty of the performance in the stochastic

model with other measures (rather than uniform distribution) and would be

interesting if we can take into consideration from period to period the real

performance attained since at the end of each period the designer would know

for certain the performance reached and such knowledge would affect the

decisions of the next period.

99

REFERENCES

Allada, V., Lan, J. (2002). New Modules Launch Planning For Evolving Modular

Product Families. Journal of Intelligent Manufacturing , 19 (2), 131-148.

Baldwin, C., Clark, K. (1999). Design Rules: The Power of Modularity. Cambridge, MA,

USA: MIT Press

Button, R. M., Soeder, J. F. (2004). Future Concepts for Modular, Intelligent Aerospace

Power Systems. Soeder,NASA Glenn Research Center, Cleveland, OH, 44135.

Eppinger, S., Ulrich. K. (2008). Product Design and Development. New York, NY:

McGraw-Hill/Irwin.

Foster, R. (1986). The S-curve: A New Forecasting Tool. Chapter 4 in Innovation, The

Attacker's Advantage. New York, NY: Summit Books, Simon and Schuster.

Huberman, B. A., Loch C. H. (1996). Collaboration, Motivation, and the size of

Organizations. Journal of Organizational Computing and Electronic Commerce, 6,
109 – 130.

Huberman, B. A., Hogg T. (1995). Communities of Practice: Performance and Evolution.

Journal of Computational and Mathematical Organization Theory, 1, 73-92.

Kashtan, N., Parter, M., Dekel, E., Mayo, A. E., Alon, U. (2009). Extinctions in

Heterogeneous Environments and the Evolution of Modularity. The Society for the
Study of Evolution, 63 (8), 1964-1975.

Krishnan, V., Bhattacharya, S. (2002). Technology Selection and Commitment in New

Product Development: The Role of Uncertainty and Design Flexibility. Journal of
Management Science, 48 (3), 313-327.

Mihm, J., Lock, C., Huchzermeier, A. (2003). Problem-Solving Oscillations in Complex

Engineering Projects. Journal of Management Science, 49 (6), 733-750.

Samuels, R. (1998).Evolutionary Psychology and the Massive Modularity Hypothesis.

The British Journal for the Philosophy of Science, 49(4), 575-602.

Sullivan, K. J., Griswold, W. G., Cai, Y., Hallen, B. (2001). The Structure and Value of

Modularity in Software Design. ACM SIG SOFT Software Engineering Notes, 26 (5).

Thomke, S., Nimgade, A. (1999). Product Development at Dell Computer Corporation –

Teaching Note. Harvard Business School, HBS No. 9-699-010.

100

Ulrich, K., (1995). The Role of Product Architecture in the Manufacturing Firm. Journal
of Research Policy, 24, 419-440

