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AN ABSTRACT OF THE THESIS OF

Rawia Hanna Chidiac  for Master of Engineering Management
Major: Engineering Management

Title: The Simultaneous Optimization of Products, Processes, and Teams in Product
Development Organizations

Organizations involved in product development (PD) constantly introduce new products using
mainly development teams within the organization. These teams carry out product
development activities using established development processes in order to produce a new
product. Traditionally, these domains (product, process, and team) are treated separately and
individual optimization occurs for each domain disregarding the other two domains. The
result is a group of three local optimal solutions instead of a single global optimal one. The
main goal of this research is to be able to formulate and solve a global optimal solution for the
product development organization problem. The inter- and intra-dependencies within and
between the three domains are captured using a matrix-based technique called the design
structure matrix (DSM). Then three relational rules that relate the domains together are
proposed to help formulate a global optimization objective function for the three domains.
However, as the domains grow in size, finding an optimal solution becomes computationally
prohibitive. Therefore, to overcome this difficulty, ten different methods were designed using
heuristics (constructive and improvement) and meta-heuristic (simulated annealing)
techniques. A software program using the JAVA language is designed to simulate the
approaches. Six hundred random test instances were analyzed using these ten methods in
order to recommend a single approach. The analysis showed the existence of a tradeoff
between cheap and dirty approaches versus more accurate but expensive ones.
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CHAPTER 1

INTRODUCTION
1.1. Problem Statement

Product development (PD) organizations continuously introduce new products
using mainly development teams within the organization. These teams carry out product
development activities using established development processes in order to produce a new
product. The problem addressed in this thesis is how to manage such organizations through
simultaneous optimization of the above-mentioned organizational domains: team, process

and product.

The current techniques target the optimization of the above domains separately and
in isolation, thus do not achieve a global optimal solution which is the core of the work.
The Design Structure Matrix (DSM) tool has successfully represented and analyzed the
architecture of a product, a process schedule and an organization, yet still it has treated the

three domains independently.

As a matter of fact, DSM models have been applied to perform either of the following:

(a) optimize the sequence of activities or tasks within a process or project;

(b) optimize the architecture of a product through increasing its modularity;

(c) form optimal product development (PD) teams.

These models have not been applied, however, to optimize all the three DSM

domains simultaneously in a single approach. The present thesis proposes a new DSM-



based method that allows for a simultaneous analysis and optimization of the three multi-
DSM domains as well as establishing rules to connect the said domains and get an optimal

solution collectively.

The achievement of this new DSM-based method is illustrated by (i) decomposing
the problem into significant subsystems and elements and (ii) collecting the domains
information using the help of the organizations expertise. The information required to
construct the three DSM domains will be collected either by interviewing experts from
various disciplines involved in PD, or by reviewing the design manuals and procedures of
the targeted organizations. Although applicable in small problem contexts, such new multi-
domain DSM-based method tends to be inapplicable in large organizations where
exhaustive searching for an optimal solution is computationally inefficient and expensive.
In this case, this method will be replaced by simulated annealing (SA) which is a meta-
heuristic technique distinguished from different search algorithms by its ability to accept

non-improving solutions as a means to avoid a local optimal solution.

In sum, as the domains grow in size, finding an optimal solution becomes
computationally prohibitive. Therefore, to overcome this difficulty, ten different methods
were designed using heuristics (constructive and improvement techniques) and meta-
heuristics (simulated annealing). Six hundred random test instances were analyzed using
these ten methods in order to recommend a single approach. The analyses showed the
existence of a tradeoff between cheap and dirty approaches versus more accurate but

expensive approaches.



1.2. Scope of work and Significance of Study

This thesis is directed towards PD managers in various size development
organizations while managing a PD process in running their organization. It provides them
with (i) a software solution to define and organize their product modules, (ii) the order of
the processes they have to follow, and (iii) the most possible adequate PD team across the

organization.

Engineering, business, and human resource expertise will all contribute to
collecting information/data needed for each of the three domains. Engineering experts
manage the product domain, project management experts manage the process domain, and
the organizational design experts manage the team domain. The JAVA tool is developed
through a friendly interface where the data collected are entered in an excel file according
to a predefined template (Appendix-A). This will give the above-mentioned experts the
ease of using the software to manage optimally the three domains simultaneously. The

optimal solution achieved will be shown finally in a new excel file.

CHAPTER 1 has stated the problem along with the scope of work and significance of
study. The literature review will be highlighted in CHAPTER 2 and CHAPTER 3
describing the design structure matrix and the existing optimization techniques using the
heuristic and meta-heuristic search methods and models CHAPTER 4 illustrates the work
to formulate the simultaneous optimization objective function of the three domains using a
multi-domain DSM model and represents the three relational rules of inter and intra
dependencies within and between the domains. Moreover, CHAPTER 5 describes the ten

hybrid methods combining heuristics and meta-heuristic techniques to solve large size

3



problems. The performance of these ten approaches is tested in CHAPTER 6 which
includes the analysis of six hundred random test instances. The most recommended method

shows a tradeoff between the quality of the solution and the required computational CPU

time.



CHAPTER 2

LITERATURE REVIEW

2.1. Introduction

Product development is a vital activity for organizations. The key factor for
determining the corporate health and profitability is the ability to launch quickly new
salable products into the market (Clark & Fujimoto, 1991). The difficulty of managing a
new product development process is due to, among others, increased global competition,
frequent consumer taste changes, and rapid advancements in science and technology. To

overcome these difficulties, a variety of tools is put to application.

2.2. Design Structure Matrix

One of the tools that help in the proper management of PD projects is the Design
Structure Matrix (DSM) which has proved efficient in representing and analyzing the
architecture of a process, a product, or a team (Danilovic & Browning, 2007). Unlike
traditional project management tools, such as PERT, Gantt and CPM methods, the DSM
can capture the dependency relationship between hundreds and thousands of elements and
can also provide means of analysis for feedback. The traditional management project tools
address work flows only, while the DSM focuses on representing the information flows
among its elements and characterizes the complex relations between tasks, members of
teams and components. The DSM is also able to determine sequences of tasks as well as to

group teams or products into modules (Yassine, 2004).
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(a) Directed graph (b) DSM model
Fig. 2.1.The DSM model and its underlying graph
The DSM representation illustrates the information flow captured in a directed
graph shown in Fig. 2.1.a. The DSM is actually a binary square matrix having, in the same
sequence, the same title headings in the rows and columns. This matrix input is illustrated
by either a 1 or a 0 and is meaningless on its diagonal. The diagonal mark could be either
blacked out as shown in Fig. 2.1.b or left empty. If any two elements are related such as
‘A’ and ‘B’, then this relation should be shown in the DSM. Hence, if element ‘i’ feeds
element j’, then the value of the element ‘i)’ (column 1, row j) is 1. Accordingly, by using a
design structure matrix, it is easy to represent information relations among (a) teams

concurrently working on a project, (b) activities, and (¢) components of a product.

2.2.1. Task Based Domain

The task based domain is represented by input/output relationships where a certain
task can be an input for another task, an output fed by other tasks, or a standalone task.
Hence, the task relations illustrated through the DSM may vary from parallel to sequential
to coupled relations. The DSM model in Fig. 2.1.b is a project composed of activities to be

executed in the following sequence: A, B, C, and D.



Parallel relation exists between A and B; no relational dependency exists between them.
“A” and “B” are executed concurrently. In the event C feeds B, the red ‘1’ shown in the
DSM model represents a feedback mark which means that the needed inputs for B are not
available the first time B is executed. This would require B to be re-executed once the
output of C becomes available and would increase the development lead time (Meier,
Yassine & Browning, 2007). The dependency exiting between B and C indicates also that a
coupled relationship joins both activities. Information cycle is thus presented between both
activities where each activity requires input from the other activity to be able to start
(Yassine, 2004). Yet, the relationship between C and D is sequential. D is dependent on

the result of C; this means that task D is fed by the result of C before its execution.

As a result, the execution arrangement of the tasks affects the solution given the
fact that the optimality of the task domain depends on reducing feedback mark, increasing
concurrent tasks and reducing the development lead times and cost (Meier et al., 2007).
Some of the methods used in analyzing and optimizing this domain are: Sorting,
Partitioning, Tearing, Banding, Simulation and Eigenvalue Analysis (Browning, 2001).

The Sorting and Partitioning methods will be later discussed in detail.

2.2.2. Team Based Domain

The team based domain is represented by person-to-person interface characteristics
and is mainly used in organizational design, interface management, and team integration.
In the team DSM, the rows and the columns of the matrix identify the individuals or groups

participating in a project.



The information of a team-based DSM is constructed by identifying the
communication skills and their factors. The following are taken into consideration: (i) the
level of detail (emails and documents sharing versus models or face to face
communication), (ii) the frequency of communication between members, and (iii) the
direction of the information flow (where one way or two way talks can happen) (Yassine,

2004).

The matrix built from the information acquired is then used for optimization by
applying the clustering techniques in order to gather highly interacting groups and
minimize scattered groups. In this way, the organization teams obtained represent a useful

structure for the organization where the communication needs of each member are justified.

2.2.3. Product Based Domain

The product based domain may be represented by multi-component relationships; it
is mainly used in system architecting, engineering and design. Such DSMs represent the
product architectures by pointing and analyzing relationships between subsystems and
components included in a product. Irrespective of the complexity of the product,
decomposition into smaller sub-problems (Eppinger, 1997) along with understanding the

interactions among components is quite essential.

Different product characteristics, being design requirements, product components or
design parameters, are represented in the DSM. They range from spatial (identifying the
need for adjacency between two elements) to energy (where two elements need to

exchange energy between them). Additionally, an information interaction will exist when



two elements share information or a material exchange interaction occurs between them.
Various clustering techniques are applied to maximize interactions between elements of the
same cluster and minimize interactions between clusters, thus resulting in cluster modules

which combine related products.

2.3. Domain Mapping Matrix (DMM) and Multi Domain Matrix (MDM)

Traditional project management techniques consider these three domains
independently. Sometimes, however, development of complex products exhibit
dependencies and conflicts among these domains. This has led to a shift in research
towards multi-project environments where complex products and their interdependencies
among different domains exist. The more the relations and interdependencies among
domains, the larger is the complexity and the more crucial is the reduction and analysis of

such complexity (Danilovic & Sandkull, 2005).

Complexity could stem from customer demands, functional requirements and
specifications; it could also originate from the technology world where the product design
is evolving and the tasks to solve technical problems are re-assigned. Diversity in personnel
skills and the way to organize teams may be deemed another source of complexity.
Management should thus consider, understand and solve such complexity sources
(Danilovic & Sandkull, 2005).

One of the two approaches can be applied:

(1) Closer consideration for subsets or system view extracted from the overall system:



This approach reduces complexity, but the analysis will not be that beneficial
because the analysis deals with only one subsystem (Lindemann et al., 2009). Actually, a
complex product or system can be divided into sub-systems or components illustrating the
design requirements, product components or design parameters. A complex process will be
subdivided as well into phases or sub-processes that will be decomposed later into tasks
and activities. The organization domain will be also divided into teams that will be further
divided into working groups and individual actors (Tang et al., 2010).

(i1) Consideration and analysis of abstract system level:

This approach leads to general findings given that a wide scope is considered and
details are neglected (Lindemann et al., 2009).

It is clear by now that product development is a multi project environment where
uncertainty is a fact to be embraced. The main source of such uncertainty is the limitations
put on the flow of information. These include, among others, limitations to understand the
kind of information required to choose the information source and to be sure of the
information availability when needed. As the uncertainty level increases, the assumption
level increases as well involving ambiguity in approaches and a high risk factor caused by
the creation of rework due to new knowledge or to change of requirements.

The understanding of the relations and the interdependencies between domains is
studied by applying the design structure matrix DSM (NxN) and the domain mapping
matrix DMM (NxM) (Danilovic & Sandkull, 2005). To show self-dependency of a certain
domain, the DSM illustration is used. Nevertheless, by applying the DMM, Danilovic
(2007) demonstrates the way one can study relations between two domains and how to

relate elements of one domain to another.

10



DMM is in fact a rectangular matrix relating two DSMs. Its analysis holds benefits
in capturing the dynamics of PD along with showing traceability of constraints and
providing transparency among domains. Decisions among domains are synchronized and
the sense of communication across domains is improved (Danilovic & Browning, 2007).

The analysis techniques used in the DMM are (i) the clustering algorithm (across
two domains i.e. not across its diagonal as used in the DSM) in addition to (ii) the
sequencing analysis technique. The combination of these techniques contributes in
reducing the uncertainty factor by visualizing the interdependencies and relations and by
exploring the need for information exchange (Danilovic & Browning, 2007). However,
information needed for the DMM is collected by using existing databases, modeling tools
or interviews. Still, the difficulty lies in the ability to collect efficient and high quality data
(Lindemann et al., 2009).

The dialogues and the meetings formed, while generating the DSM and the DMM,
create a strong responsibility and commitment to the organization as well as deep
understanding of the organization work. Dependencies among domains are moreover
deduced. These dependencies are represented using the MDM presentation (Lindemann et

al., 2009) as shown in Fig. 2.2 below:

—
%

T
s
213

a)  Multi domain matrix b) Dependencies inside and among domains
Fig. 2.2. MDM presentation
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MDM is actually a square matrix with row and column headings being the names of
the domains. The MDM shown in Fig. 2.2.a illustrates different combinations among
domains according to specific dependency types. Various types of dependencies are
displayed in the directed graph shown in Fig. 2.2.b. Dependencies between same domains
are shown in a blue arrows whereas dependencies among different domains are represented
by red arrows. Dependency types vary between information flow, change impact,
geometric and thermal dependencies (Lindemann et al., 2009).

The MDM can thus be divided into DSMs and DMMs according to inherent
domains. If a dependency connects elements from the same domain, such information will
be used in the DSM. If a dependency connects elements from a different domain,
dependency information will be used in the DMM.

These representations are helpful to analyze the domains and to dilute the uncertainty factor
existing among them (Lindemann et al., 2009).

Different papers tackle different methodologies to optimize multi-domain
architectures. Eppinger (1997), for example, discusses the possible relationship between
DSMs in the three domains: product, process and team. These papers show that there is a
one-to-one mapping between one domain and the other. A direct comparison is then
straightforward. On the other line of the spectrum, Dan Braha (2002) worked on the task
partitioning problem and tried to make the hard non-deterministic polynomial time
problem (NP hard problem) more lenient. Braha limited the number of tasks assigned to
teams as he considered that each team has a certain capacity limit, and that each task should

be performed by exactly one team.

12



2.4. DSM Analysis Techniques

Various techniques and approaches evolved in the product development system. In
this literature review, we will shed light in detail on just two: the sorting and partitioning
method used as an optimization technique in the process domain along with the clustering

technique used to get the best grouping in the team and product domains.

2.4.1. Sorting and Partitioning Method

The objective in optimizing the process domain is to reduce the number of feedback
marks which holds a negative connotation for the project in terms of time and cost due to
the potential of rework. For this reason, partitioning method is used where the sequence of
DSM rows and columns are reordered to try to get a new DSM arrangement with no
feedback marks. This method transforms the DSM into a lower triangular form unattainable
most of the time because of the complexity in relations among tasks in engineering systems

(Yassine, 2004).

Therefore, a modified approach known as block triangular is used in order to put the
feedback marks as close as possible to the diagonal. This approach decreases the iteration
cycle time and results in a faster development process. Fig. 2.3 below shows the result of

optimizing a 4x4 Process Matrix.

1 2 3 4 2 3 4 1
1 o 1 1 2 0O 0 O
zo-o 0 3 0 00
3 0 0 0 4 1 O 0
4010- 10 1 1

Fig. 2.3. Result of optimizing a 4x4 process matrix
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Manipulating large DSM is a hard task that takes a lot of time and consumes a lot of
computer memory. Algorithms are built to manipulate large DSMs in an easier and quicker
way. In 1976, Lawler developed an efficient and quick sorting algorithm to order a DSM
with no cyclic information if possible; otherwise, the partition method is applied (Yassine

etal., 1999).

2.4.1.1. DSM Sorting

Lawler algorithm starts by finding the sum of all rows of each task in the DSM. A
ranking of DSM is then made by putting the row with sum equal zero to be first in the
DSM. This row, along with all its connections, is removed from the DSM and the approach
is repeated till no more zero sum of row is found. Hence, if the approach ends with no
cyclic information, then the optimized solution is obtained; otherwise, partitioning of the

DSM is performed.

2.4.1.2. DSM Partitioning

The availability of cyclic information leads to terminate the sorting method and to
target a DSM block triangular form (instead of a lower triangular one) for a faster
development process. A block is the largest subset of a diagraph in which every subset has
a path to every other node in the subset (Yassine et al., 1999). Partitioning analysis is used
to identify the tasks in a loop and cluster them in a block along the diagonal of the DSM so

that all predecessors of a block appear somewhere before that block.
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There are different partitioning ways to identify a cycle where the elements
involved in it are diluted into one node and the process is repeated to find other cycles.
These cycles can be identified using either the path searching or the powers of the
adjacency matrix methods. The path searching is traced backward until a node is
encountered twice. The information cycle in this case constitutes the entire tasks that were
passed through in this cycle. The power of the adjacency matrix method raises the binary
DSM to a power n in order to trace which element can reach itself in n steps by looking to a

non-zero entry for the relevant task along the diagonal of the matrix (Yassine et al., 1999).

As mentioned, Fig. 2.3 above shows an optimization result of a 4x4 DSM example.
The independent task 2 and task 3 are sorted in the first rank of DSM and the other
feedback marks were partitioned in blocks near the diagonal giving an optimized matrix
with no feedbacks. The pseudocode of both procedures is shown in table (Yassine et al.,

1999).
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Table. 2.1. Sorting and partitioning pseudocode

Sorting
Step 1. (start: Find row-sum of tasks)
Set ;=¥ aij,i=1,...,n.
Set N={1,2,...,n}
Set m =1
Step 2. (detection of node with 0 in-degree)
Find & € N such that 7; =0. If there is no such £, stop; the digraph contains cycles.
Set Rank (k) =m
Setm=m+1
Set N=N-k
If N= @, stop; the computation is completed.
Step 3. (Revision of in-degrees)
Setl;=1-ayforallie N
Return to step 2.

Partitioning
Step 1. Determine all the circuits that exist in the DSM using either path searching or
powers of the matrix.
Step 2. Collapse all tasks within the same circuit into a single representative task.
Step 3. Order the remaining tasks using procedure 1. If a cycle is detected, then go to
step 1; otherwise, the procedure is complete.

2.4.2. Clustering Technique

By dealing with elements of DSM representing people in charge of (i) tasks or (ii)
sub-systems and components of a larger system, one may manipulate the DSM in order to
find subsets of DSM elements known as clusters. The foremost objective is to find subsets
mutually exclusive or minimally interacting. Other objectives are considered such as,
without limitation, minimizing cluster sizes, minimizing the size of the largest cluster, and
allowing overlapping clusters. Clustering algorithm is a helpful integration analysis
technique in this domain. Fig. 2.4.a shows a DSM example where the entries may
represent the frequency or intensity of communication exchanged between different

participants represented by person A, person B, etc.
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A B C D A C D B A C B
A 0 1 1 A m 1 A 0 1 |1
B O 0 O C 0 cj|o 0 JoO
cC 1 0 0 D h 0 D1 © 0
D1 1 0O B 1 1 0O B 1 110
a) Original DSM b) Clustered DSM ¢) Clustered DSM with overlapping

Fig. 2.4. Possible clustering solutions

The aim of clustering is to maximize interactions between elements of the same
cluster and minimize interactions among clusters (Browning, 2001). For this reason, if the
matrix is arranged in the following order: ACDB, the connections are clearly seen. As
shown in Fig. 2.4.b, the original DSM was rearranged to contain most of the interactions
within two separate blocks: ACD and B. The interactions, however, between clusters is not
zero; still one interaction exists. Another alternative overlapping clustering is shown in Fig.
2.4.c. To decide which cluster option to choose is related to the targeted domain and the

effect of its factors.

Yet, several computational clustering techniques that search for optimal solutions
are based on tradeoffs between the importance of capturing intra block dependencies versus
the importance of capturing inter block dependencies (Yassine et al., 1999). One such
algorithm was proposed by Thebeau (2001) as a continuation of the work done by Carlos
Fernanzed. This clustering algorithm calculates the cost of the proposed solution. The
objective is to find the solution of the lowest cost. There is a higher cost for interactions
occurring outside of clusters and a lower cost for interactions occurring within clusters.
There are also penalties assigned to the size of clusters in order to avoid a solution where

all elements are members of a single cluster.
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The results are highly dependent on the parameters passed to the algorithm which is as

follows: (Thebeau, 2001):

1. Place each element in its own cluster.
Coordination cost of the cluster matrix is calculated as indicated below:

Test whether any two elements are dependent. If yes, test if the two dependent
elements are in the same cluster. If both elements are in the same cluster of index y,
an IntraClusterCost is assigned:

IntraClusterCost =

(=DsM size=1 p] 7 =PSMSZe71(DSM(§, k) + DSM(k, §)) (Cluster Size(y))Po"e

If the elements are not dependent:

ExtraClusterCost
i=DSM size—1 j#i =DSM size—1
= Z Z (DSM( j, k)+ DSM(k, j)) (DSM size)P°wee

i=0 j=0
Where powcc 1is a cluster parameter assigned a priori.

2. Choose an element randomly.
3. Make bid calculation from all clusters for the selected element.

Check whether the elements existing in a certain cluster grouping have connection
with the element bid. This is done by checking the dependency of the DSM matrix
and assigning a cluster bid applying this formula:

(inout)Powdep

ClusterBid (k) = kfcluster number—1 _
(k) Lk=o (ClusterSize of k)powbid

k = cluster number

ClusterBid(k) = Bid from cluster k for the chosen element

inout = sum of DSM interactions of the chosen element with each of the elements in cluster k
powdep = exponential to emphasize interactions

powbid = exponential to penalize size of the cluster

4. Choose a number between 1 and rand_bid (algorithm parameter) randomly.
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5. Delete same clusters and then calculate the total coordination cost if the selected element
becomes a member of the cluster with highest bid (use second highest bid if step 5 is equal
to rand_bid)

6. Choose a number between 1 and rand_accept (algorithm parameter) randomly.

7. If the new coordination cost is lower than the old coordination cost or the number chosen
in step 6 is equal to rand_accept, make the change permanent; otherwise, make no changes.

8. Go back to step 2 for n times. In case of overlapping elements in clusters, reorder the
DSM before any calculations. Reordering adds the overlapping elements as if they were
new elements.

After highlightting in CHAPTER 2the literature review of the DSM and its use in
optimization techniques, we will discuss in CHAPTER 3 the heuristics and meta-heuristics

search techniques.
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CHAPTER 3

SEARCH TECHNIQUES AND HEURISTICS

3.1. Introduction

To solve optimization problems, various search methods are used. However, the
size of the problem search space affects the method considered. It is not always feasible to
obtain an optimal solution when dealing with NP-hard problems; this is because the large
search space of the latter type problems is limited by time and computer memory capacity

constraints.

This section provides a quick overview of the various search methods used in
optimization problems taking into account the size of the problem search space. The
exhaustive search method is a brute force technique applied to enumerate all possible
candidates from which the best solution would be certainly found. The computation and
time cost of this technique will increase as the search space increases. For this reason, this
technique is normally used for small search space problems or when heuristics can be used

to decrease the search space size according to specific problem criteria.

The branch and bound method is used to solve combinatorial and discrete global
optimization of mainly medium size problems. This method is based on two parts as
evident from its name. The first part (branch) is to divide the large problem into smaller
ones. The second part (bound) is to test whether the optimal solution can be found in this

branch. If not, the whole branch is discarded; otherwise, it should be saved. This algorithm
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is terminated when all smaller parts are tested. Yet, it yet will keep track of the best

solution and neglect unimproved solutions.

The branch and bound algorithm, however, will not yield satisfactory results in
case of large size problems (Clausen, 1999). As compromise between the time constraint
and the computer memory capacity constraint, other algorithms are found to achieve good
solutions instead of optimum solutions. Heuristics algorithms, such as branch and bound
variants, problem specific heuristics, pure random search, and controlled random search,
are efficient for these types of problems. Genetic algorithm (Chinneck, 2006), simulated
annealing and tabu search (Glover, 1993) are considered as controlled random search

methods.

In practical cases, a heuristic method is best used to generate good solutions at
minor computational expense and within a specific amount of time. The currently available
heuristics are classified as either constructive or improvement methods (Osman, 1989). A
constructive heuristic is actually a building of a solution from the data by examining the
characteristics of the problem to be solved. This construction is hard to figure out in
different applications whereas improvement heuristic initially starts with a random solution
and then endeavors to decrease the cost value of the objective function by allowing a series
of local changes. The quality of the final solution depends on the starting solution and the
rules used to generate neighboring solutions. A good approach, hence, is considered when

an improvement method is applied to the result obtained from the constructive heuristic.

An improvement method starts initially with a random solution and then endeavors
to decrease the cost value of the objective function by allowing a series of local changes.

Descent method is an example of the improvement method. In a descent method, only
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combinations which decrease the value of the objective function are accepted. Yet,
simulated annealing, which is a randomized improvement method, is used to accept
solutions with a certain probability, even in case of no improvement in the objective
function value. Descent method and simulated annealing will be discussed hereunder in

detail.

3.2. Descent Method

A descent method is an improvement heuristic method that repeatedly endeavors to
construct and improve a current solution starting initially from a current feasible solution.
Such current solution might be randomly generated or be a result of using a constructive

method that proved better results in less computational time (Osman, 1989).

The main part of the method is to be able to define a neighborhood in order to give
a new sequence or solution. Various researches tackle different neighborhood generators of
which the interchange neighborhood approach is considered. If the current sequence is the
following (g (1)..... o (n)), then a new sequence will be obtained by interchanging the
positions h and i where h <1, of the asequence (o (1) .. ... ot-1),0@G),cth~+1),...,
o(i-1),0(h),o(i+1)..... o(n)). There are n (n - 1)/2 neighbors possibilities for each

sequence.

It is then necessarily to specify the order in which neighbors are searched. All
possible values of h and i are considered in an ordered search after which the same cycle of
values is repeated. Thus, the order of (4,i) values will be as follows: (1,2),(1,3)..... (1,

n), (2,3)..... (n- 1, n). It is also possible to assign the values of (4,i) randomly.
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Accordingly, the descent method starts by a starting sequence o and then generates
further solutions using a neighboring generator which is a ¢’ sequence. For each sequence,

the objective function is evaluated, giving C (0 ) and C pax(a”).

If A= C nax(0") - C max(0 ) <0, then o' is accepted as the current sequence. Yet, if
A >0, then o is retained as the current sequence. In both cases, the generation of new
sequences is made and the process is repeated until all neighbors of the current sequence

are searched without improving the objective value.

The descent method can follow either the first improvement (FI) or the best
improvement (BI) method. These two approaches differ in the occasion where the best
solution is saved. BI method searches all neighborhood in a cycle and then saves the
combination with the best value, where as the FI method saves the first best combination
obtained even though not all the cycle was tested. In Fig. 3.1 the initial example with the

combination (1, 2, 3) and indexes (0, 1, 2) respectively is solved using the BI and FI

methods.
T
1 123 10 1 123 10
Cycle starts Cycle starts
2 0 1 213 8 2 0 1 213 8
3 0 2 321 10 3 0 2 21332312 10
4 1 2 132 7 4 1 2 213--—-»231 11
Improvement existed 7 < 8 Cycle has improvements
Cycle finishes: best was ofid =4 Saved indexh =0; h= 2
Restartcyele: 132
5 0 1 312 9 5 0 1 2132123 9
6 0 2 231 10 6 0 2 STOP (index = saved index) 10
71 2 123 8
No improvement No improvement
a) Best Improvement b) First Improvement

Fig. 3.1. Descent method solved example
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On one hand, although an improvement existed at ID = 2 stage, the BI method
continues the cycle generation without any save for the best solution. As the cycle finishes
(ID =4) the combination with the lowest solution is saved which is (1, 3, 2) in this case. A
new cycle is restarted targeting a better combination with a better OF. If a cycle finishes
without improvement the search stops. On the other hand, the FI method saves directly the
combination with a lower OF value (ID =2) and does not wait for the cycle to end, but
continues the indexing (h=0 and i =2) on the new saved combination (2, 1, 3) and not on
the initial solution (1 2 3). If a cycle finishes with improvement, a new cycle is generated

on the best solution saved with a reset for the indexing h and 1.

3.3. Simulated Annealing

Simulated annealing (SA) was first mentioned by Nicholas Metropolis in 1953 as a
solution for single or multi-objective, discrete or continuous, NP hard problems where the
computational time increases exponentially (Johnson et al., 1989). As its name indicates,
SA acts similarly to the physical heating process that involves heating the metal past its
melting point and then cooling it according to a specific cooling rate. The cooling rate is

preferred to be slow as quick cooling rate may lead to imperfections in the crystals formed.

SA was created mainly to avoid local optimum by accepting unimproved moves based on a
probabilistic acceptance criterion. It starts with a current solution where the energy value is
calculated and saved as the best solution attained at that time. A random or ordered
neighboring solution is then generated as a potential to replace the current solution if it
holds a lower objective function value. Otherwise, a certain acceptance probability
function is used to accept this solution even though it holds no improvement. It is assumed

that in early stages the probability of accepting unimproved solutions is high; as time
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passes, the temperature decreases and just improving solutions are accepted. According to
the acceptance probability, the system will either move to a neighboring state or will
remain in the same state. This iteration step will repeat until either a good enough steady

state solution for the application is reached or a time factor is expired (Chinneck, 2006).

Neighboring states are found by applying different generating methods that vary
from a random method to an ordered search method (shift process, interchange process,
etc.). Special attention must be put on generating neighbors which is found to be the core of

the solution result quality.

No general parameter functions may be applied to any kind of problems; each
problem should define wisely its own SA parameters: the acceptance probability, the
energy function, the candidate generator procedure, and the search space. An adequate
definition of the cooling schedule guarantees the identification of near optimal solutions for

many combinatorial problems (Osman, 1994).

3.3.1 Simulated Annealing Parameters

3.3.1.1 Acceptance Probability

The acceptance probability function P (+) is defined as = e="/T where A. A is the
absolute value of the change between the new solution S; and the initial solution Sy (Suman
&Kumar, 2005); Ty =1 Ti where r is the cooling parameter which indicates the slope of
decrease of the temperature T. Four parameters come along with the definition of the
acceptance probability: starting temperature, final temperature, temperature decrement and
a number of iterations to be performed at each temperature. The starting temperature

should be assigned high so that the move to other neighbors, whether improved or
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unimproved, is allowed easily as if a random search is first applied. As the temperature
cools, the acceptance of random solutions decreases. The starting temperature is assigned
in different ways of which two are described below. If the maximum cost difference
between two neighbors is predictable, then this difference will help assign the temperature.
Sait and Youssef state that T = - Afy) / In (Xo) where Afy is the average increase in the
objective function and X, is the ratio between the number of accepted moves and the
number of attempted moves (Suman &Kumar, 2005). Another simple way of initializing T
is to solve the formula T = A / (1-P) where P is chosen to be in range of 0.5 to 0.95 and A

is the maximum difference between any two neighbors.

The final temperature is aimed to reach 0 theoretically. Yet, practically, this is not

an obligation; it is enough to get close to zero or not higher than a certain low probability.

The temperature decrement function affects the success of the algorithm. In
practice, either a simple linear method (T =T-1) or a geometric decrement method (T = Ta
where a could be an exponential or logarithmic expression normally < 1) (Suman &

Kumar, 2005) is used. As a increases, the number of iteration increases.

The final parameter set is the number of iterations at each temperature.
Theoretically, it is preferred to do as much iterations as possible on each temperature for
the system to stabilize on that specific temperature. Large number of iterations should thus
be performed and usually such number grows exponentially with the problem size. A trivial
way is to set the number of iterations to 1 or to a specific constant. Another option is to
vary the number of iterations with the change of temperature. This means that the number
of iterations should increase as the temperature cools so that the local optimum can be

entirely achieved.
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3.3.1.2. Energy Function

The energy function is the cost value of a certain problem solution candidate. Such
value is used to evaluate the difference between the current and the neighborhood
solutions. It could be helpful in this case to have a threshold value where solutions can be
neglected directly due to some problem constraints. Hard and soft constraints could be
defined subject to the problem needs where different weights are assigned thus affecting
the function cost (Johnson et al., 1989). Weights can be assigned dynamically as the
process progresses. This leads to say that hard constraints can be violated at the beginning

but not at the end.

3.3.1.3. Candidate Generator Procedure

An important criterion is how to move from one state to the other. Swapping,
permutation or finding combinations are possible ways to generate neighbor candidates.
Some results showed that the move should meet a symmetric criterion (Abdelsalm & Bao,
2006); if the move is from state 1 to state 2, for example, then there must be a way to move

from state 2 to state 1.

3.3.1.4. Search Space

The smaller the search space is, the higher is the possibility to achieve optimal
solutions. If the objective function definition accepts infeasible solutions, then the search

space will increase accordingly. It is thus preferred to cut off large search spaces and keep
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the neighborhood as small as possible (Johnson et al., 1989). This will lead to a fast search

but with low remarkable improvements.

3.3.2. Simulated Annealing Enhancement

While solving an optimization problem using the simulated annealing technique,
contradictory interests are found. Such interests could be enhanced to improve the quality
of the solution obtained in minimum amount of time. The contradiction found in simulated
annealing could be reflected in the attempt to have simultaneously a quick, simple and
adequate objective function in order to model the problem objective function or decrease

the solution search space without restricting the search.

Given that simulated annealing may accept bad solutions, it is possible that the final
solution might be worse than the best solution (Suman & Kumar, 2005). In this case,
simulated annealing technique is merged with tabu search where the best results are saved
to be set as the final solution in case the final solution was not the best. In addition, the
candidate generator procedure can change along the algorithm progress and accordingly
promise better solutions. The acceptance probability function can be replaced by a less
expensive computational equation (Johnson et.al., 1989). This means that the exponential
used is approximated by P(6) = 1 — &/t thus enhancing the time of calculation without
altering the quality of solution. Such approximation is proven to speed the calculation by

33% (Johnson et al., 1989).

It should be known, in sum, that simulated annealing is more an approach where

parameters are set uniquely for specific problems rather than a generic algorithm to be
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followed. The best way to achieve optimal solutions is by long running simulated

annealing, if feasible, instead of taking the best of time equivalent collector of smaller runs.

3.3.3. SA Cooling Schedule Models

The literature was able to define the SA parameters by considering each problem
alone. Hence, identification of models to define the cooling schedule parameters took great
effort especially when the theoretical annealing schedules could not guarantee convergence
to near optimal solution in practical cases. The temperature reduction schemes are
classified into three categories as shown below in a pictorial representation (Fig. 3.2) where

the cooling schedule is based upon theoretical derivations and successful practical results.

Iterations

a @ Stepwise lemperature reduction scheme.
b Continuous remperature reduction scheme.
[ N['II'I-II!lII]l'I[llI]IL' |l.’l'll[ll.'|'il|l]!'l: reduction '\'L'I'IL’IIII.'.

Fig. 3.2. Three temperature reduction schemes (Osman, 1994)
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3.3.3.1. Stepwise Temperature Reduction Scheme

A Markov chain model is used in this category to specify the SA cooling schedule.
Finite sequence of homogeneous Markov chains with finite length are generated at
monotonic decreasing values of the temperature (Osman, 1994). A fixed or a predefined
value is used to define the length L, of the k™ Markov chain. L can be assigned to the
number of accepted moves (iterations) at the corresponding Ty value of the temperature.
This simple cooling schedule matches the cooling schedule definition of Kirkpartick et al.
(1983), Johnson et al. (1989), White (1984), Aarts & Van Laarhoven (1985), and Huang et

al. (1986).

The initial temperature Ts is predefined by monitoring a separate run of m moves of
the problem before the real optimization process starts. The equation below is used where
m is the number of random moves, m+ is the number of cost increase, A" is the average

cost increase over the moves, and y is an acceptance ratio, 0 <y < 1.

m+

yXm' —(1—y) X (m—m")

-1
Ts = A* X (In )
The decrement rule is determined by a small constant decrement value ¢ and the

standard deviation &, of the objective function values generated at the k™ Markov chain as

follows:

T xIn(1+ 6371

ER

Tyer = T X {1+

The stopping criterion is so defined to depend on the difference between the

average objective value at the k™ Markov chain and the average of objective value of the

optimal solution. The search terminates when this value is determined as small & .
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3.3.3.2. Continuous Temperature Reduction Schemes

This category includes the work on the cooling schedules by Hajek (1988) and
Lundy & Mees (1986) which specifies a finite sequence of inhomogeneous Markov
chains. The Ly in this case is equal to one iteration where the temperature decrement rule is
applied to each iteration using the equation below (T is set to a value so that T =» Lf where

U is an upper bound on Apy):

T
Torr = b —
k+l (1+8 =Ty

B is defined as shown for a given T, T if the total number of iterations to terminate the

search is predefined:

B = T:—Tf
M xTs xTF

3.3.3.3. Non-monotonic Temperature Reduction Scheme

This category initially includes the work of Conolly (1990; 1992) and a new cooling
schedule established by Osman and Christofides (1989). The philosophy of this category is
not just decreasing the temperature along the way, but occasionally increasing or resetting
the temperature whenever a special cycle is found. A special cycle is determined when a
complete search of the neighborhood for an improved solution is unachievable. Conolly
introduced the philosophy of this category by decrementing the temperature until a

specified number of rejected moves occurs. At this stage, T is set to Tgung Where the best
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solution was found, f is set to zero and the search completes the rest of the iterations using

Tfound-

Osman and Christofides new cooling schedule came as an attempt to solve issues
found in the previous annealing schemes and as a generalization of Connolly’s simulated
annealing scheme. This schedule solved the trap of having an optimal solution existing in
some neighborhoods as the previous methods generate initially random solutions and may
miss the optimal solution or take a longer time to achieve it. Moreover, a waste of time
occurs as the value of the temperature is initially high and finally low. This is because the
high temperature leads to a high acceptance of bad solutions thus destroying good initial
ones, and the final low temperature neglects worse solutions and accepts improved ones.
The core of our work is to decrease the time wasted at the beginning and the end of the
search and increase it in between. The cooling schedule will then vary and will use an

updated value of T and 3 at each iteration.
The cooling schedule parameters are illustrated below as follows:

The initial and final temperature values are to be set to the maximum Ap,y and to the
minimum Ay, differences in the objective function values respectively. The initial value
is set to a small value in the event the initial solution is considered a good heuristic start to

avoid waste of time in the early stages.

The decrement rule applies after each iteration, £ where the temperature and the parameter

Bk are updated according to the following equation:

T
T, = — %
kil {1+ 8p= Ty )

As k increases, Pk decreases and the temperature is then decreased more slowly with £.

32



Bi= Ts—TF
(@+y %xvk) xTs xTF

In the above equation, & and y are constants and determined experimentally in terms of
problem characteristics. If ¥ = 0, then Py is a constant independent of k, and T and  will

have the same form of the continuous temperature reduction schemes.

o Occasional temperature increase occurs whenever a cycle is determined. The
increase should not be very high to escape from the local minimum and should not deviate
much as when a total new random sequence is restarting.

The temperature value is modified as follows:

1. Initially: Treet = T
If a cycle is detected:
2.1 Treset = Treset/2
2.2 Testif: Treset > Tk,
Yes: Titt = Treset
No: Tk+1 = Ttouna

After this reset, the decrement and the occasional reset rules are used until the algorithm
stops.

e The stopping criterion must be a controlled parameter to be a trade-off between the quality
of solution and the computation time. The algorithm stops either when the algorithm runs
for predefined number of iterations or after a predefined number of temperature resets R is
reached without solution improvement.

The pseudocode of the new cooling schedule is shown in Table 3.1.
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Table. 3.1. New cooling schedule pseudocode

Step 1: 1.1 Assign values for Tinitial, Tfinal, and the decrement value; change flag set to
true, # of reheat times = 2 and # of max consecutive unchanged cycle = 2.
1.2 A random solution of process is generated; each elements of the product and
team domain is put in a separate cluster. This combination is named X.
1.3 The OF value of the above initialized solution is calculated and saved as the
best saved solution.

Step 2: While stopping criteria are not achieved, (T > Tfinal or # of reheat times # max # of
reheat times)
do
2.1 If change flag is false
Yes:
2.1.a #of consecutive unchanged cycle++
2.1.b If #of consecutive unchanged cycle reached max # of consecutive
unchanged cycle
Yes:
2.1.b.1 Reheat the value of temperature
1. Initially: Treset = Ts
2. Ifacycle is detected:
2.1 Treset = Treset/2
2.2 Test if: Treset > Tk
Yes: Tii1 = Treset
No: Tk+1 = Tround
2.1.b.2 Increase # of reheat times
No: Continue loop
No: Continue loop
2.1.1 Perform the following loop for each of the three domains and reset change
flag.
2.1.1.1 Applying the interchange swap to the three domains, three
neighboring solutions (X’) are executed for each iteration.
2.1.1.2 Compute A = fAX’) — iIX)
2.1.1.3 If A < 0 or worse solution was acceptable, then the combination is
saved as the best attribute and change flag = true. (X = X")
2.1.1.4 Temperature decrement by factor of a between 0.5 and 1.
2.1.2 Back to step 2

Step 3: Return X.

After discussing the search techniques and heuristics in CHAPTER 3, we will

handle in CHAPTER 4 below the optimization of the three domains simultaneously.

34




CHAPTER 4

OPTIMIZING THE THREE DOMAINS
SIMULTANEOUSLY

4.1. Convention of DSM Annotation

During product development, managers are faced with the following
problems/queries: What is the best way to organize individual resources into teams? What
is the best way to combine product elements/components into modules? In which order the

various development tasks should be executed?

Before tackling these questions, the notions adopted while representing each of the
domains need to be agreed upon. In the team domain, capital letters are used to represent a
member in the team. The analysis technique used to optimize this domain is the clustering
algorithm. The clusters obtained represent teams in an organization. In the process domain,
numbers are used to represent tasks to be executed. The analysis technique used to
optimize this domain is the partitioning approach to minimize feedbacks which in turn
reduces rework. In the product domain, small letters are used to represent physical elements
or components. The analysis technique used to optimize this domain is also the clustering

algorithm. The clusters obtained represent product modules.

The network of the three domains is defined in the beginning where DSM/MDM of
the following is built. People/people DSM indicating the relations among people in a team.
Who works with whom? Who addresses whom? Who sits next to whom? Task/task DSM
indicates the relations of the tasks. What are the tasks available in order to execute a
certain task? For which tasks is the output of a task an input? The last DSM is the
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component /component DSM where the physical relation among the components is
entered. Which component is physically located next to other components? The DMM built
are process/team to indicate who are the people that are responsible of which tasks, and the
component/task structure is also built to identify the tasks that are executed in the design

and development of the components.

4.2. Optimizing the Process Design Structure Matrix (DSM)

In the design structure matrix, feedbacks between tasks are presented by marks
above the diagonal. If task n and task m are in feedback, then task m must wait for task n
accomplishment to start its work. Because the feedback represents inefficiency in the PD
process, the task dependencies must be arranged under the diagonal to reach an optimized

solution.

To start with any process, DSM is analyzed as follows. The DSM in Fig. 4.1 shows
the sequence of the process yet without any relations between the tasks. All the tasks can
be processed in parallel. The marks shown in Fig. 4.2 indicate the relations dependency
between the tasks. Task 1 cannot be accomplished without the completion of task 3
because the result of task 3 may result in a rework of task 1. Whereas the dependency
marks between task 2 and task 1 are considered smooth given that task 2 starts when task 1

finishes without any possibility of rework.
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1 1 1

2 2 1

3 3

Fig. 4.1. Process DSM without marks Fig. 4.2. Process DSM with marks

Therefore, the rule is to minimize the marks above the diagonal. A penalty factor is
applied to differentiate the feedback marks according to their distance from the diagonal.

The penalty equation is elaborated below applying the above DSM in Fig. 4.2.

Given the fact that this example is of a small size, enumerating all the possibilities
exhaustively is appropriate; (DSM size)! = 3! = 6 possible distinct arrangements are thus
available. The DSM matrix resulted from the above ordering are shown below in Fig. 4.3
where n demonstrates the number of marks above the diagonal and penalty is calculated

using the below formula:

n=#pof foeedback marks

Process Penalty = Z Column Index — Row Index
n=10
1 2 3 1 3 2
1 1 1 1 2 1 3
2 1 3 2 1
3 2 1 1 1
3

n=1 n=1 n=2
p=1x2=2 p=1x1 p=(1x1) x2=2
2 1 3 3
3 11 2 1
1 1 2 1 1 1

n:l n=0 n=1

p=1x2 =2 p=0 p=1x1=1

Fig. 4.3. Result of all possible solutions of a Process Matrix
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The analysis of the six possible solutions shows that the sequence of the fifth case
(3, 1, 2) is the best solution where no above diagonal marks exist. The task process goes
smoothly. Comparing the second solution with the last solution and assuming that the time
for each task accomplishment is the same, we find that the penalty value for both is equal

because the time loss of 1 waiting 3 is the same as 2 waiting 1.

As the existence of feedback marks hold negative effect on the process domain, the
aim of the objective function is to decrease the number of feedback marks. Hence, a simple

number of the feedback marks will be considered instead of the penalty factor calculation.

4.3. Optimizing the Team and Product Design Structure Matrix (DSM)

The crucial work of managers is to find appropriate ways to organize people and
assign them work over time by enabling communication and synchronization actions.
Team coordination and formation is indeed a crucial activity for any organization. How to
package products into modules is another issue the manager should think of. The aim is to
find all combinations of clusters that could be generated and choose the best DSM

arrangement.

Let us first calculate the number of possible combinations. How many clustering
arrangements are possible? Consider a 3x3 DSM i.e. a matrix with 3 elements: A, B, and

C. A listing of 8 distinct combinations is shown in Fig. 4.4.

Overlapping clusters in teams is justified since it is possible for a person to belong
to multiple teams. This overlap, however, should not exceed a certain limit due to cognitive
and time capacity limitations of a person. Yet, in the product domain, clusters are defined

by the physical existence of their product parts; it is thus impossible to have products
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existing physically in two different cluster modules. Symmetrical information is justified
and is a must in both the team and the product domains. If a member is in contact with
another team member, this relation is shared and hence the relation is in vice versa.
Similarly with the product domain, if a component ‘a’ is physically related to another

component ‘b’, then the inverse also holds true.

8 distinct cases

Fig. 4.4. Distinct cluster combinations of a 3x3 DSM

The different numbers of combinations can be obtained by using the Stirling
number of the second kind denoted by S(n, k), which is the number of ways to partition n
distinct objects into k nonempty subsets (Mohr, 2009). The numbers presented here were
calculated using the following well-known recurrence: S (n, k) =S(n-1,k- 1)+ k * S(n -
1, k) . Applying the formula below, the following possibilities are shown without allowing

for overlapping.

S(n,k) == 2, (-1 (%) (k- D)°

3 4 5 6 7 8 30
~ 10730
5 15 52 203 877 4140 (cannot be
calculated)

Fig. 4.5. Number of possible combinations
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Given that it is common in an enterprise to have more than 30 employees or
products, the calculation made in Fig.4.5 proves the impossible use of the exhaustive
method and the need for a meta-heuristic search method instead. With overlapping, the
number of possible combinations will increase.

The objective is to find the cluster combination with the lowest cost. In prior
research, Thebeau (2001) considered that the cost of interactions for outside clusters is
higher than the cost of interactions inside the clusters. In this thesis, the interactions of
outside clusters and the missing interactions in a structured team are both penalized.
Having two persons in different teams who must communicate together is as worse as
having members of the same team not communicating together. This means that we shall
not have scattered marks, and, as a second level, we shall not have teams or modules with

elements not connected or related.

The cost is then divided into outside cost and inside cost. Since we have assumed a
symmetrical DSM, the upper part of the DSM is just treated in the calculations. The total
cost is the sum of the number of scattered interfaces multiplied by the DSM size and the
number of marks multiplied by the cluster size. The outside cost equals the outside number
of feedback marks multiplied by DSM size; the inside cost equals the unavailable marks in

a cluster multiplied by its size.

Symmetrical matrices are used for the team and product domains where overlapping

elements are discarded for the sake of simplicity.
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4.4. Relational Rules among the Three Domains

After having elaborated on the meaning of the cost of each domain in addition to
the way we used to calculate such cost, and in view of our studying the three domains
simultaneously, we present the model below to illustrate the rules connecting the three
domains together. The relational rules deduced from the domains will in turn improve the
objective function and thus provide more precise optimal solutions. In the process domain,
the persons in charge of each of the processes along with the tasks performed on each of
the products are entered. The relations between the three domains are illustrated in Fig. 4.6

hereunder as an anticlockwise navigation.

We note that the navigation among the domains can take different forms as declared
by Tyson Browning (2001) who indicates the dual direction among the three domains. The
below arguments defend our choice in our thesis. The structure of the organization is
related to the structure of the development process where process with coupled activities
requires integrated executable team. Furthermore, the product architecture can influence
the team structure given the fact that the team is in charge of building the organizational
products. In addition, a relation exists between the process and the product domain where

the legacy development process overly constrains the design of unprecedented products.
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PROCESS

PRODUCT

Fig. 4.6. Rules relating the three domains

4.4.1. The Effect of the Team Domain on the Process Domain (Rule 1)

If a feedback exists between two different tasks where the latter is performed by the
same resource or by resources that belong to the same team, then the feedback penalty must
be reduced or removed completely. This penalty is reduced as the rework is done with less
time because the resource (being the same or being in the same team) will have ease of
communication and understanding of the problem faced. The feedback loop will be also
done with less time. Nevertheless, if the persons involved are in different teams, then the
rework due to feedback mark will consume further time to be noticed, understood and
executed. This means that problem solving is easily done when individuals have a face-to-

face or a direct contact (Braha, 2002).
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Such feedback mark will be therefore maintained in the calculation to determine
its negative effect on the system. This rule is defended in the literature. Tyson Browning
(2001) states that “[w]hen a process contains coupled activities, the organizational teams
with responsibility for executing those activities require integration.” In addition, Braha
(2002) mentions that tasks that are strongly related must be assigned to the same team for
an effective overall cycle. People linked together must work on the same activities.

(Lindemann, et al., 2009)

4.4.2. The Effect of the Process Domain on the Product Domain (Rule 2)

If an interface (i.e. a dependency between two components from different modules)
exists between two components, and the tasks corresponding to these components are
sequential (i.e. not involved in feedback), then the module interface penalty must be
reduced or removed completely. The components on which feedback tasks are executed
must be put together to blockade the rework in one module. Tang et al., (2009) consider
that if a component is changed, the effect would be propagated to other modules. Hence the
aim of this rule is to reduce this effect and limit it to one module. For example, if an
interface joins component ‘a’ and component ‘b’ (each being in different modules), and the
process corresponding to each of the components is sequential, then this interface will be

diluted because the said components are not related by the task executed on them.

4.4.3. The Effect of the Product Domain on the Team Domain (Rule 3)

If two or more persons work on common product clusters or work on one or more
modules in common, then the interface penalty between these persons/teams is maintained

and its existence is justified. For example, if person A communicates with person B
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without being in the same team, we test whether these two persons work on same modules.
If they do, then the interface is maintained and justified because persons working on the
same products need to communicate and thus be in the same team. If, however, they work
on different modules, the interface mark must be diluted given that there will be no reason
for these two persons to communicate as long as they are not working on the same
products. Lindemann, et al., (2009) defend this rule stating that people must cooperate in

the same team if they are working on the same interrelated components.

Traditionally, the three domains were treated separately and individually where a
local optimization exists for each domain alone regardless of the others. Our aim is to

formulate a global optimal solution for the product development organizational problem.

4.5. Overall Objective Function Calculation

The objective function of the Product development organizational product is to
minimize the sum of the team, product and process cost. The three relational rules relating

the domains together are used in the OF calculation.
Overall Objective Function = ) Cost of domains......................o.ee. (eq.4.1)
The following notations are used

Nx N = DSM size

D =# of DSM marks of the process domain excluding the diagonal marks

F = total # of feedback marks

F' = Adjusted number of feedback marks due to the dilution effect of rule #1. The dilution
factor depends on a ratio between 0 and 1. This ratio is multiplied by the adjusted
feedback marks. So, a ratio of 0 represents a complete dilution of the mark where as a
ratio of 1 represents no impact of the rule.

Ci = Cluster size of cluster i where 1<i1<C
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di =# of marks in cluster i. Note that this number represents half of the matrix because the
product and team matrix considered contains symmetrical data.
I =+# of interface marks between clusters (outside cluster boundaries)

I' = Adjusted interface marks according to Rule 2(for product matrices) or Rule 3(for team
matrices). Note that the dilution ratio discussed above is applied in the above
mentioned two cases.

The cost value of the process domain is an interpretation of the existing feedback
marks. As mentioned earlier, optimizing the process domain is a simple minimization of
the number of feedbacks between the tasks. This is because the feedback between tasks
leads to rework, and an extended time to accomplish the overall task is required
accordingly. Yet, if a feedback exists between two members in the same team, then a
dilution of the feedback mark is considered because the repetitive work is done easily

among the same team members. The process cost is illustrated in equation (4.2) below:

F

Process Cost = EI ..................................................... (eq.4.2)

If a feedback mark exists between two tasks executed by members in the same
team, then this feedback mark is diluted (Rule 1). This means that the value of justified
feedback marks F'is equal to the number of feedback marks decreased by the number of
marks diluted. In other words, if all the existing feedback marks are justified, i.e. executed

by members in different teams, then the process domain cost will be 100%.

In optimizing the product domain cost, we aim to gather all the components
dependencies in cluster modules and decrease the interface scattered marks existing among
clusters. Each component must be assigned to exactly one module cluster. Less scattered
marks lead to better results as long as the modules formulated contain related components.

The interrelation between the process and the product affects the product cost in whether or
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not the interface between components should be diluted (Rule 2). If an interface exists
between two components where the tasks performed on these two components are in
feedback, then the existing interface is justified. In the event the tasks are in sequence, then
the interface mark should be diluted. This applies similarly to the team domain. Yet, in this
case, the impact of the product on the team domain is considered (Rule 3). If an interface
exists between two members (not in the same team) working on different module
components, then the interface is diluted. In the event the unrelated team members work

on the same module, then the interface mark should be justified.

Therefore, the target is to minimize scattered marks and maximize the inside
connections. This is illustrated best in the equation 4.3 below. The maximum possible cost
existing in a certain combination is formulated by equation 4.4 and the current cost is
illustrated in equation 4.5. This calculation targets half the matrix since the product and the

team domains should be symmetrical matrices.

current cost
Product Cost or Team Cost = T T T T TR (eq. 4.3)
maximum cost

maximum cost = Y.{_; a (L:_l) Ci + (N(A;_l) - ¥, a (C;_l)) X N... (eq.4.4)
current cost = Y{_{ ey Ai}Ci+ TN (eq. 4.5)

2

The number of justified interfaces I'equals the number of interfaces that excludes
the interfaces diluted due to the effect of the process on the product domain or the effect of
the product on the team domain. Given that the cost in each domain is illustrated as a
percentage value, the objective function cost ranges between 0 and 300. The importance of
normalizing each of the domain cost using a percentage representation for each domain is

justified since it is the sum of the process, product and team cost of the three domains
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together. Hence, we cannot add the cost of the three different domains that are generated
from different meaning and calculation. A cost of value 50 in the process domain has a
different meaning in the product or process domain. Moreover, if the size of one of the
domains was larger compared to the other domains, then the calculation of the other
domains will be negligible. Hence, the cost of the larger size domain will be leading the

calculation diminishing the cost effect of the other two domains.

The below three domains of Fig. 4.7 illustrate the team, process and product domain
respectively. The “1” mark reflects the connection among the elements of the above DSM.
The calculation of the OF for the following combination; team [A][B[C][D]; process [1 2 3

4 5]; and product [a][b][c][d], is shown below.

A B C D a b ¢ d Process
A 1 a 3
B 2 b 2,3
C 3 c 1
D 4 d 4.5
5
{a) Team (b} Process { c) Product

Fig. 4.7. Three domain example

As per equation 4.2, the process cost equals 1/6, i.e. 16.667%. The number of
justified feedback is equal to the number of feedback decreased by one (2 - 1). The
feedback mark existing between task 4 and task 5 is diluted since it is executed by the same
resource A, but the feedback mark existing between task 2 and task 5 is counted since the
resources in charge of these tasks are not in the same team.

As per equation 4.4 on the team domain, the maximum cost is 24 = 0 + 6x4. The
current cost as per equation 4.5 is calculated by referring to the team/product DMM in

Fig.4.8. The interfaces existing between “A” and “B, C, D” are diluted because they do not
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work on the same component modules. As an example, Fig.4.8 shows that person “A”
works on component “d” and person “B” works on component “c” where components “c”
and “d” are not in the same module. Therefore, the interface between “A” and “B” shown

in Fig. 4.7.a is diluted according to Rule 3.

e B T - - I
=1

Fig. 4.8. Team/product DMM

However, the interface existing between “C” and “D” is not diluted since they both
work on same component “b” as evident in Fig.4.8. The current cost is equal to 0 + 1x4,
The team cost as per equation 4.5 is 4/24 = 16.667%.

Similar calculations are applied for the product cost calculation. As per equation
4.4, the maximum cost is 0 + 6 x4 = 24, The current cost reflects the existing of scattered
marks and nonrelated elements in a cluster. In this case, there exist just scattered interface
marks. I’ is subjected to Rule#2. The interface between “a” and “b” is diluted since the
tasks performed on these components are not involved in feedback. Dilution also exists
between “a” and “d” since task 3 does not involve a feedback with tasks 4 and/ or
5.Similarly for the interface between “c” and “d”. The product domain equals 0 /24, i.e.
0%

As per equation 4.1, the overall cost equals 16.667 + 16.667 + 0, i.e. 33.334%
The problem is then solved either by optimization in isolation or by simultaneous
optimization of the three domains together. The solution of optimizing in isolation is shown

in Fig.4.9.

48



1 5 2 3 4 Team a b ¢ d Process

A 1 B 3
B 5 1 A 2,3
C 211 C 1
D 3 1 1 D 4.5
4 1 1 A
Team Cost = 0% Process Cost=16% Product Cost =0%

Fig. 4.9. Solution of optimization in isolation

In this solution, it can be shown that in the team domain, member “A” and “B” are
in the same team, similarly for “C” and “D”. However, it is true that there are two
interfaces marks existing in the team domain but their negative effect is diluted the fact that
“A” and “C” as well as “A” and “D” work on different modules. This is shown on Fig 4.8.
Hence, the importance of these members to be in the same team is not recommended
anymore due to the effect of the product structure. This result with a team cost of 0.

In the process domain, the two feedback marks were decreased to one feedback
mark with the following order of sequence: 1, 5, 2, 3, 4. This feedback mark is not diluted
the fact that “A” and “C” are different teams. This means that the rework requires more
time to be realized and the cost is 16%.

In the product domain, component “a” and “b” are in the same module; similarly,
for components “c” and “d”. The interface mark existing between “a” and “d” is diluted the
fact that the processes in charge are sequential hence, there is no rework on the module and
these two parts could be in separate modules. This results with a product cost of 0.

Is there another organizational structure that might lead to a lower cost? The answer

is positive and it is the solution of the simultaneous optimization shown in Fig. 4.10.
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B A C D a b ¢ d Process
B 1 5 2,3
All 1 1 1 3
C 1 2 1
D h 3 4,5
4

Cost=0 Cost=0 Cost=0
Fig. 4.10. Solution of simultaneous optimization

In simultaneous optimization, a zero cost structure of the three domains is obtained.
In the team domain all members are in the same team except for member “B”. The exiting
interface between “B” and “A” is diluted the fact that these two members work on totally
different tasks and modules. Thus, there is no need to have them in the same team, knowing
that it is preferable to have team members working on related tasks or same modules.

In the process domain, one feedback mark exists but the rework effect is diluted the
fact that the rework occurs within the same team members (“A” and “C”’). However, the
fact that there is a coupled dependency between task 2 and task 5, this means that there is
no possible order with zero feedback.

In the product domain, a different distribution of components is structured where
“c” and “d” are preferred to be in separate modules. Where the effect of the interfaces
existing is diluted the fact that the processes in charge are sequential. This means that there
is no need to have these components in the same module.

After handling in CHAPTER 4 the formulation of optimizing the three domains
simultaneously, we will display in CHAPTER 5 the implementation of the various search

techniques.
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CHAPTER 5

IMPLEMENTING THE SEARCH TECHNIQUES

5.1. Search Technique Used in Simultaneously Optimizing the Three Domains

Optimizing the product, process, and team domains simultaneously is not a trivial
matter, as all possible combinations must be enumerated and evaluated (i.e. exhaustive
search) to guarantee getting the optimal solution. Computing all possible combinations is
computationally prohibitive because it is restricted by time and computer memory. In this
chapter, we propose a hybrid algorithm composed of heuristic and meta-heuristic
techniques will improve the search technique and achieve, in less time, good solutions, if
not optimal ones.

The best improvement and first improvement of the descent approach are used as a
heuristic technique for one or for all of the three domains simultaneously. Moreover, two
different cooling schedules of the meta-heuristic SA technique are used for all the three
domains simultaneously. Note however, that SA is used in this paper instead of other meta-
heuristic techniques such as GA or Tabu search which did well in some areas, since this
thesis includes a sequencing problem that SA showed successful results for many
sequencing problems. Sample tests will be performed with and without simulated annealing
in order to test the importance of using SA in retrieving the optimal solution without being
trapped in local optimum. The cooling schedules of the simulated annealing adopted in our
testing are discussed in detail. The first cooling schedule is that described by Osman and

Christofides (1989) and known as the “New Cooling Schedule” (Osman, 1994).
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The second suggested schedule is an extension for the New Cooling Schedule
where the idea of increasing the temperature is based on the fact that there are no benefits
out of decreasing temperature further as a cycle occurs. The model shown in Fig 5.1 is a
suggested modified model of Osman and Christofides where the temperature is updated at
the end of each cycle and not at every iteration. The term used to describe the new
suggested model is “Modified Sequence Chain Length of the New Cooling Schedule.” The
factor of update of temperature will stay the same as implemented in the New Cooling
Schedule. As a cycle is done without improvement, the temperature value is reheated
according to the following rule. If the temperature value, as the cycle finishes, is greater
than half the initial temperature, the temperature is reset to a value where the latest
improvement is recorded. However, if the temperature value at the end of the cycle is less
than half of the temperature, the temperature is reheated to half the initial temperature. The
temperature reheating technique will ameliorate the search process and will stop the
unnecessary temperature decrease when there is no improvement in a certain cycle.
Reheating is allowed twice, and as two consecutive cycles hold no improvement the search

is stopped.
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T T found

1773 P s i

L 2

Fig. 5.1. Modified sequence of the Osman and Christofides cooling schedule

The pseudocode of the “Modified New New Cooling Schedule” (Table 5.1) is
similar to that of the New Cooling Schedule with the difference on the occurrence of the

update temperature.
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Table. 5.1. Modified New Cooling Schedule Model

Step 1: 1.1 Assign values for Tinitial, Tfinal, decrement value, Change flag set to true, # of reheat
times =2 and # of max consecutive unchanged cycle =2.
1.2 A random solution of process is generated, each elements of the product and team
domain is put in a separate cluster. This combination is named X.
1.3 The OF value of the above initialized solution is calculated and saved as the best saved
solution.
Step 2: While stopping criteria are not achieved, (T > Tfinal or # of no change consecutive cycle # #
of max allowable no change consecutive cycle)
Do
2.1 If no improvement is recorded in a full cycle
Yes:
2.1.a If maximum number of reheating times is reached, stop step2.
Else: Increment the number of consecutive unchanged cycle attribute
Reheat the value of temperature
1. Initially: Tyeses = T's
2. A cycle is detected:
Treset = Treset/ 2
Test if: Tyeget > T
Yes: Tk+1 = Treset
No: T+t = Trouna
Increment number of reheat time occurrence
No: Go to step 2.1.1
No: Go to step 2.1.1
2.1.1 Perform the loop for each of the three domains and set Change flag to false initially
2.1.1.1 Using the interchange swap on the three domains, three neighboring
solutions (X’) is executed for each iteration
2.1.1.2 Compute A = fAX’) — AX)
2.1.1.3 If A < 0 or worse solution was accepted, then the combination is saved as
the best attribute and change flag = true. (X =X")
2.1.1.4 Back to 2.1.1 till the loop finishes.
2.1.2 Temperature decrement by factor of a = 0.85.
Back to step 2
Step 3: Return X.

While applying one of the SA cooling schedules, the parameters of the SA are calculated in

the following way:

- The variables of the probability function P =1 - A /T are assigned in the following way.
A is achieved by getting the average of the OF value by running a separate run of the

problem for a 20,000 number of iterations. The separate run uses the best improvement
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descent approach of all the three domains simultaneously. With an assumption of

probability 0.85 and the value of A calculated, the T value is then obtained. Given the fact

that A is in range of 0 to 300 for all size problems, the temperature is then multiplied by

the sizes of all three domains. In this way, the temperature shows the problems

characteristics.

Number of reheating times = 2

Number of unchanged consecutive cycles = 2

Final temperature must be greater than 1

The neighborhood generation is executed using the swapping method as shown below:
Neighboring Swap: The cycle size of (n)(n-1)/2 ways where n is the size of the domain.

1) In the process domain: Select a neighboring S;” € N(Sq) = { Sq° by exchanging i
and j positions and looping on the indexes iand j where i <j and 1i: 1 till size -1
and j =1 +1 till size}.

Let us consider 1, 2, 3 are the jobs to be executed. The swapping sequences cycle
will be:
(213),(321)and (13 2).

2) In the team/product domain: consider each element in a cluster by itself then the
cycle starts by swapping each element in the other set. For instance, if a team of 4
members A, B, C, D is considered, every element is initially set in a separate cluster
[A][B][C][D]. The neighboring generator proceeds then as follows: [AB][C][D],
[AC][B][D], [AD][B][C], [A][BC][D], [A][BD][C] and [A][B][CD]

If [AC][B][D] is found to have the lowest OF, then the two elements are merged as

if they were one element and the cycle restarts again.

55



10.

Ten different promising heuristic and/or meta-heuristic approaches are defined for
optimizing simultaneously the three domains. The performance of each approach is tested
by comparing its results to the optimal result obtained by the exhaustive search method

described below.

. BIC: Applying the best improvement descent method on the process domain while

constructing the team and the product domain.

FIC: Applying the first improvement descent method on the process domain while
constructing the team and the product domain.

BICSAEC: Applying the best improvement descent method on the process domain while
constructing the team and the product domain implementing SA modified new cooling
schedule.

FICSAEC: Applying the first improvement descent method on the process domain while
constructing the team and the product domain implementing SA modified new cooling
schedule.

3DBI: Applying the best improvement descent method on the three domains.

3DFI: Applying the first improvement descent method on the three domains.
3DBISAEC: Applying the best improvement descent method on the three domains using
SA new modified cooling schedule.

3DFISAEC: Applying the first improvement descent method on the three domains using
SA new modified cooling schedule.

3DBISAEI: Applying the best improvement descent method on the three domains using
SA new cooling schedule.

3DFISAEIL: Applying the first improvement descent method on the three domains using

SA new cooling schedule.
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The characteristic of each of the 10 approaches is shown clearly in Table 5.1.

Table. 5.2. Various Characteristic of the 10 different approaches used in the analysis

Varying
. one
First Best SA (Osman SA Varyln.g3 domain
& o domains
Improvement | Improvement . . modified | . and
Christofide) simultaneously s

building
other

3DFISAEI v v v

3DBISAEI v v v

3DFISAEC v v v

3DBISAEC v v v

3DFI v v

3DBI v v

BI v v

FI v v

BISAEC v v v’

FISAEC v v v

The approaches adopted are discussed in detail where the example of Fig.5.2 is referred to

through defining the search methods:

Process
1

2
3

1

3 Team
AB
1 C
A

Fig. 5.2. Three domain example used to describe ten approaches

5.1.1. Exhaustively Evaluating all Possible Combinations of the Three Domains

Simultaneously

Process

Three lists of all possible combinations of each domain are enumerated. The

process list contains DSM size! Ways. In the java code a combinatorial library is used to
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enumerate them all. The process in Fig. 5.2 is of size 3; there are 3! = 6 different ways for
the tasks to be executed. The product and the team domain list size are computed using the
Stirling equation. If Team T is of size 3, then there exist 5 distinct partitions; if product
PDT is of size 4, then there exist 15 distinct partitions. The partitions of the combinations
of the team and product domain are obtained in Fig. 5.3 in the last horizontal line for a
domain of n = 3 elements.
The partitioning approach of set S = {T1, T2, T3..Tk} must satisfy simultaneously

the following three conditions (Nijenhuis, 1978):

DTl Tj=2 (% j)

Uk, Ti=5

3) Ti# 0(@G=1,.....k)

(?) =0

(1)

(1)2) (1,2)

‘ ‘. : _ | . n=3
(1)(2)3) (1,3)(2) (1)(2,3) (1,2,3) (1,2)(3)

Fig. 5.3. All possible partitions of a set of size 3

The above diagram shows how the partitions are formulated for a given n element
example. The tree is first divided into n+1 levels where the first level is empty by default.
Each level is made of k sets and each set is made of p partitions. In each level from each
set, a p+1 descendants are formed. The descendant is built by adding the n+1 element value

to each of the sets and to the already existing partitions and to a separate partition each one
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at a time, i.e. at level n=2, there are two sets (1)(2) and (1,2) which are made of 2 and 1
partitions respectively. The descendants of the set (1)(2), which is made of 2 partitions, are
3 sets where the value n=3 is added to each of the sets. The sets of the n" level hold all the
possible combinations of the domain.

The exhaustive search tackles the problem using the search approach shown in Fig.

5.4 where the number of computations done is equal to:

If domains T, S and PDT of example 5.2 are considered, then the size of all possible
computations is 450. For each combination, the objective function is evaluated and a cost
value is assigned. Combinations with the lowest cost are saved as being the optimal and are

referred to in evaluating the effectiveness of the approaches assumed.

TEAM 3 x3 PRODUCT4 x 4 PROCESS3x 3
TLABC) — gDTl dabe d}j"" = 514123)—=T1,PDTL,51
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Fig. 5.4. Exhaustive search of all possibilities
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5.1.2. Applying the Best Improvement Descent Method on the Process Domain while
Constructing the Team and the Product Domain (BIC)

The descent approach is used to improve the solution heuristically as illustrated in Fig. 5.5.

Generate a random sequence of From the task sequence, Calculate OF
tasks/ result of a constructive heuristically construct the team
) 3 of the
solution domain and from the team q
following

Initially:
Current Value

Current solution = Best domain construct the product = best cost
Sequence domain

combination

Test if OF
value < best
cost

Interchange the tasks

Current of the best sequence Save sequence
seguence = If Flag = true of positions and best cost
best sequence h and | (h<i}) Set Flag = true

Best
Combination with
the least cost is
accepted

Fig. 5.5. BIC flowchart

The descent approach is applied to the process domain where the neighboring
generator has used the swapping technique already defined. Initially, the following should

be performed:

Step 1: Generate a random sequence (Sg) of the process. (Ex. 1 3 2)
Step 2: Construct an associated solution of the Team domain Ta (sq) and Product domain
Pa (Ta ,Sq)-
The constructive heuristic of the cluster of the team domain is done as follows:
1. Consider every element of the team a cluster by itself.
2. Check for feedback marks in the upper triangle of the process matrix.
2.a When a feedback mark is detected, check the team members corresponding to
this task.
2.a.1 If number of team members > 1, then assign team members in the
same cluster.
2.a.2 Repeat step 2 till no more feedbacks are detected.
3. Delete common clusters.
4. The cluster matrix obtained should be made of a maximum of T size clusters.
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After constructing the team domain according to a specific sequence of processes,
the product domain is constructed.
DMM team/product domain is represented from the beginning as shown below:

TEAM/PRODUCT A B C D
A 1 1 |1
B 1 1

C 1 1

1. Analyze the team cluster combination and group the products accordingly. If A and
B are in the same cluster, then the products corresponding to A and B must be in the
same module. This is implemented by ORing the row of A by row of B. The result
of (101 1)or(1010)is (101 1). This means that the first cluster of the product
contains components a, ¢ and d altogether.

2. Repeat step 1 until all the clusters of team domain are tested.
3. Delete common module clusters.

Step 3: Compute the total current cost f(S) of the overall objective function of
(SqU T, U Py);
Step 4: Save the current solution as the best solution obtained; S, = S. (executed initially)
Step 5: Generate neighboring tasks by using the interchange improvement method until all
the cycle is executed.
Select a neighboring Sy # N(Sq) = { Sq° by exchanging i and j positions and
looping on the indexes iand j where i <jand i: 1 till size -1 and j=1+1 till size}.
Let us consider 1, 2, 3 are the jobs to be executed. The swapping sequences will be:
(213),(321)and (1 32). These are three ways to be considered.
Step 6: Construct T, (Sq’) and P, (T, Sy).
Step 7: Compute £ (S” =S, U P, U T;).
Step 8: If £ (Sq”) < (Sc),
Yes: Accept Sy, set Sc = Sq’, update the best solution, save the best sequence
accordingly, set the change flag, and go back to step 5.
No: Back to step 5
Step 9: Test if an improvement change occurred in a specific cycle:
Yes: Step 10 Update current sequence with the best sequence
Change flag = false, back to step 4 to reinitialize a new cycle with the
combination of the best improvement.
No: Step 11 The best value combination is achieved

This constructing method started by applying the descent improvement on the

process domain while constructing the team and the product domain accordingly. However,

through computations, if the descent improvement method started by the team or the
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product domain and constructed the other accordingly, the results obtained were similar.
Thus, the choice of the initial domain holds no difference on the quality of solution.
Moreover, the initial solution was generated randomly abiding with the literature review
findings of Osman (1989) where the random search shown to give surprisingly good

results.

5.1.3. Applying the First Improvement Descent Method on the Process Domain while
Constructing the Team and the Product Domain (FIC)

Generate a random sequence of From the task sequence,
tasks/ result of a constructive heuristically construct the team
solution domain and from the team
Current solution = Best domain construct the product
Sequence domain

Calculate OF Initially:
of the Current Value
following =
combination best cost
Indeces h=i=0

Test if OF
value < best
cost

Cycle not finsihed Current
Interchange the tasks sequence =
of the saved sequence best sequence

of positions Set Flag =true
h and i (h<i) Best value =
and value
saved indeces are not reacheg Save indeces

f cycle finish and
Flag = true

Best
Combination with
the least cost is
accepted

Fig. 5.6. FIC flowchart

The difference between the FIC and the BIC is that the first improvement descent
approach is considered a greedy method that accepts directly the first best solution

obtained. The flowchart in Fig. 5.6 illustrates the steps of this method. There is no need to
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continue a specific cycle when an improvement is detected. This approach is considered
cheaper where less iterations are made.

An example of a process of size 4 is considered. If the random sequence is (1 3 2 4)
with an OF cost value = 61, then the indexing will first start with i=0 and j =1 i.e. by
swapping 1 and 3. The new arrangement will be (3 1 2 4) with an OF cost value =41 which
improves the result as 41<61. The new arrangement is accordingly saved with the indexes
in order to continue the swapping from this arrangement without repeating already testing
indexes. The new swapping will occur with i=0 and j=2 on the improved arrangement
which is (3 1 2 4) and not (1 3 2 4). Therefore, the next arrangement will be (2 1 3 4). The
steps of this method will go similarly as the previous one except for the indexing and the

generation of sequences.

5.1.4. Applying the Best/ First Improvement Descent Method on the Process Domain
while Constructing the Team and the Product Domain Implementing SA Modified
New Cooling Schedule (BISAEC & FISAEC)

The modified schedule of the New Cooling Schedule suggested by Osman and
Christofides is adopted in this approach. Fig. 5.7 below illustrates in detail the flowchart of

the modified new cooling schedule.
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If no change
for ‘n’ cycles

Accept solution X’
Start new cycle If Save temperature value
Generate new

- — "n_ Set change flag = true

neighbour and A=fX)-AX) <0

calculate f(X’) Reset no change for # of
cycles

If cycle

finishes Go Step 1

Retain solution X
Rand < e(—A/T) and search for
neighbors
Update
temperature
flag = falsg Go Step 1

Accept solution X’
Save temperature value
Set change flag = true
Reset no change for # of If # of reheat not

cycles reached max

Update Temp
Increment # Of Reheat
Increment no change for # of
cycles

Go Step 1

Fig. 5.7. Simulated Annealing flowchart of the modified cooling schedule

Recalculation of the new neighboring candidates of the three domains X’ is done
and the result is compared to the best solution saved. The three neighboring candidate is
obtained through applying the first/best improvement heuristic descent method on the
process domain and heuristically building the team and product domain. If the move to the
three generated neighborhood gives a better objective function value (less than the best
saved value) where A = f(X*)—£(X) is < 0, then the move is always acceptable and the
neighborhood generated is saved as the best combination with a new best cost value. Yet,
if an increase in the objective function (A >0) is found and the new cost is greater than the
best cost value, then the solution will be accepted with a probability function P=1-A /T
allowing the move to avoid a trap in a local optimum. T is a temperature parameter that
varies from a relatively large value to a small value close to zero with occasional

temperature increase when a cycle with no improvement is determined. The number of
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iterations k, to be performed at each temperature, represents the number of swaps
performed on the process domain and differs with the process size and data.

The reheating temperature increase should not be that high in order not to escape
from the local minimum and not to deviate much as if a total new random sequence is
restarting. Note that the number of iterations in this case is high given the fact that the
temperature is updated whenever a cycle finishes. Still, two stopping scenarios are taken
into account as a trade-off between the quality of the solution and the computation time: (i)
when no improvement occurs for two consecutive cycles of k iterations or (ii) when two

reheatings of the temperature occur.

5.1.5. Applying the Best /First Improvement Descent Method on the Three Domains (3DBI
& 3DFI)

What differs in this approach is that the descent approach is applied to the three
domains simultaneously. Hence, there exists three cycles simultaneously for the three domains
as shown in Fig. 5.8.Initially, the OF of the following combination is calculated where the
sequence process is executed randomly and each element of the product and team domain is in
a separate cluster. The value calculated is retained as the temporary best answer.

Then, the loop of generating neighborhood in the three domains starts by the
process domain then team and product domains respectively. The flowchart of Fig.5.8 shows
the steps of the loop in detail. The three cycles function simultaneously, as the cycle of the
process runs the cycle of the team, and then the cycle of the product proceeds. As the cycle of
the product finishes without any improvement, the team cycle proceeds. And then if the team
cycle finishes without any improvement, the process cycle continues. However, at any stage,

if an improvement occurs in a cycle, then the cycle restarts from the best improvement
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combination recorded. At each iteration, the OF is calculated and compared to the best
solution attained. As the cycle comes to an end, the best combination is saved and will hold, if
not the optimal, the near optimal solution.

The above-mentioned steps are applied in the best improvement descent method.
The first improvement method, however, follows the same steps with the difference that as an

improvement is caught, the cycle continues on the latest improved solution.

If process flag Set flag Set flag
true = false = false

f process flag
= true

PR =Generate ycle of tea _ Cycle of PDT= Generate
. T= Generate
process status is (T G D product status product
neighbor running 9 is running neighbor

1

Cycle of process
status is running

Set flag
= false

Process Flag = true

If Team flag = Team Flag = true
true Product Flag = true
Save combination

f f(X)<f(X) Calculate
Save OF(X’=
ombinationg PR,T,PDT)

Fig. 5.8. Flowchart descent approach on the three domains simultaneously

Applying the best/ first improvement descent method on the three domains using
SA new modified cooling schedule. (3DBISAEC & 3DFISAEC) or using SA new cooling
schedule (3DBISAEI & 3DFISAEI) follows the above detailed procedure with the
temperature being updated at every iteration for the new cooling schedule and after each

whole cycle for the modified new cooling schedule.
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After handling in CHAPTER 5 the details of the ten implementation techniques
used in the optimization of the three domains simultaneously, CHAPTER 6 shows the
analysis of six hundred random test instances using these ten methods in order to

recommend a single approach.
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CHAPTER 6

COMPUTATIONAL RESULTS

6.1. Overview

Chapter 6 assesses the effectiveness of the developed approaches and sheds light on
the performance of each approach. We start by describing the data set used for testing the
ten approaches. Then an analysis of performance is presented in terms of the percent
deviation of each approach compared to the best known solution and to the CPU time
needed to run each approach. Other analyses are also presented to help choose the best

method for solving this NP hard problem.

6.2. Data Generation

Table 6.1 shows the 15 different size problems used in the testing process where 4
different instances of each size is generated and each instance is run 10 times. This results
in 40 runs for a specific size example and a total of 600 (40 x15) different runs.

The DSM data (i.e. size and density) of these examples were generated randomly
where the size of each was generated between 2 and 20. The examples were thus classified
into small (sum < 15), medium (sum < 30) and large (sum > 30) types according to the sum
of the sizes of the three domains. The density of each DSM domain (team, process and
product) was also randomly generated as shown in Table 6.1. The overall percentage
shown is the average of the domain density percentages: team, process, and product. The
value of this percentage is used to classify the examples into low, average and high density

types according to the following percentage intervals: [0, 50[, [50, 75[and [75, 100].
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The percentage density is the ratio of the number of existing marks to the maximum

possible marks. Moreover, the resource allocation in the process domain is the average of

the number of teams allocated on the four instances of a specific size. Hence, if a 3x3x4

example (team size X process size x product size) is considered, the average of the number

of teams on the process domain of the four instances {3x3x4 (1), 3x3x4 (2), 3x3x4 (4),

and 3x3x4 (4)} corresponds to the value displayed in the column of resource allocation.

Similar calculation is used for the process allocation on components.

Table. 6.1. Input Data
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Team Size Resource Process
* Team Process | Product | Overall . . .
. Density Allocation | Allocation
ProcessSize | Type “ % % % Tvpe numbers | numbers
* Density | Density | Density | Density yp
. Average Average
Product Size
1 Ix3xd Smmall 74.75 66.50 S&.00 56.42 Loww 4.00 4.00
2 AxGxd Small 100.00 858.88 83.25 90.71 High 7.00 .00
3 Ax5x5 Small 66.25 76.33 82.50 75.03 High 7.00 2.00
a L b Medium 40.00 T72.25 74.50 62.25 Average 6.00 9.00
5 LxGxE Medium 40.00 569.80 74.50 51.43 Average 5.00 S.00
B BxExE Medium 63.00 68.17 45,00 58.72 Average G.00 G.00
7 BxT=6 Medium 80.00 63.57 38.00 60.52 Average 11.00 9.00
B bx8x6 mMedium 78.25 59.94 42,75 60.31 Average 11.00 10.00
9 Tx8xb Medium 72.00 57.67 41.25 56.97 Average 14.00 9.00
10 Ox10x8 Medium 66.50 55.00 55.50 59.00 Average 14.00 16.00
11 11=6x8 Mediumn 59.75 54.98 53.00 55.91 Average 12.00 13.00
12 10=10=10 Large 26.00 5317 70.25 A49.81 Loww 15.00 32.00
13 12x<10=x9 Large 36.00 51.590 F2.00 53.30 Average 13.00 17.00
14 13x8x0 Large 33.00 50.73 50.75 44 .83 Loww S.00 17.00
1% 13x17=8 Large 24.75 48.73 57.50 A43.66 Low 18.00 40.00




6.3. Optimization of Domain in Isolation versus Simultaneous Optimization

Before delving into the analysis of the selection of the best approach, it is necessary
to visualize the range of the effectiveness of the calculation derived. Is the solution
retrieved by optimizing each domain alone worse or better than optimizing the three
domains simultaneously?

The 60 different examples of 15 different sizes were run using two methodologies.
First, the optimization in isolation procedure included the partitioning and sorting method
for optimizing the process domain; Thebeau (2001) approach was used in optimizing the
team and the product domain. However, the overlapping criterion was not adopted in this
case given that overlapping is not justified in our calculations. Second, the 10 approaches
developed were simulated for the 60 examples, and the best answer achieved was recorded

and compared to the solution of optimization in isolation.

Il Better BWorse [OSame

Fig. 6.1. Performance percentage of simultaneous optimization versus optimization in isolation
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As shown in Fig.6.1, the simultaneous optimization performs better than the
optimization in isolation for 78% of the time, while the other 10% gave equal results, and
just for 12% the optimization in isolation recorded better outcomes. This signifies the
importance of the method developed, but the question remains: which of the 10 approaches

should be selected?

6.4. Factors of Analysis

The effectiveness of the approaches developed is tested by the following factors as
discussed below:

(1) Relative deviation ratio of the best, worst and average solution;

(i1))  Required CPU time;

(iii))  Size of the problem (team, process and product domain); and

(iv)  Density of data generated.

6.4.1. Relative Deviation Ratio (RD)
To measure the effectiveness of each method and its performance the RD ratio is

used. The formula applied to calculate this ratio is:

value—optimal
RD = optimal
value — optimal (optimal = 0)

(optimal # 0)

The optimal value is the reference to which the best, worst or average solution is
compared to. This value is equal to the best solution found throughout the simulation of the
10 approaches.

If the value is equal to the optimal, then the RD = 0, and this is the best result

obtained. However, as the RD increases, the quality of solution decreases, reflecting the
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high deviation from the optimal solution. This ratio, nevertheless, could be greater than 1
since for zero value optimal the deviation of the result is considered instead of the ratio.
Appendix-B1 shows the average RD of the best, worst and average solutions of 15 sets,
made of 4 different instances each and run for 40 times on 10 different approaches. A

graphical solution of the RD is shown in Fig.6.2.

30.00 - 28.82

25.00

20000 A

14.77 14.8617-3

15.00

10.00 A

5.00

Q.00 -

B Best B Worst B Average

Fig. 6.2. RD ratio of the 10 approaches

As a first glance on this graph, it is clear from the data shown that the “3DBISAEC”
holds the most promising solution. This is because it has the lowest RD values for the best
(0.08), worst (3.65) and average (1.4) solutions.

Yet, the descent approach gives further promising results than the constructive
methods. This is because the RD values of the first six methods upon using the

improvement heuristic are less than the RD values of constructive approaches. This was not

72



surprising given that the constructive method is hard to formulate although a cheap and
quick approach.

Simulated annealing enhanced the result of the improvement methods approaches
while worsening the solution of constructive method approaches. This is shown by
comparing the RD of the 3DBI or 3DFI approaches to the other four methods using either
the SA cooling schedule of Osman and Christofides or the Suggested Cooling Schedule in
this thesis.

Table 6.2 shows the ranking of the approaches according to their RD. The lowest
RD values are recorded first by “3DBISAEC” and second by “3DBISAEI”. This indicates

the high quality solution of these approaches.

Table. 6.2. Ranking approaches according to RD

BEST  WORST AVERAGE
IDFISAEI 3 4
[ 3DBISAEI
3DFISAEC
[3pBISAEC
3DFI
3DBI
BI
FI
BISAEC
FISAEC

W] o o@m fa = ln s
o o~ b= = Jw k|0

=
=]
=
Rl =1
=
oo

6.4.2. Required CPU Time
The target of our work is not just a quality of the solution but rather a tradeoff
between the quality and the CPU time required. The CPU time is measured by the number

of iterations needed for each approach. The average of the 40 runs of each set of the 15
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examples is shown for each approach in the rows of the table in Appendix-C1. The average

of all the 600 runs is displayed in Fig. 6.3.

61,074,639

100,000,000

10,000,000

1,000,000 323,135
127,428

100,000 218,868

10,000 | 67600

1,000

100 154

45

10

1
3DFISAEI 3DBISAEI 3DFISAEC 3DBISAEC  3DFI 3D8I BI K BISAEC  FISAEC

—a— Number Of iterations

Fig. 6.3. Average of the number of iterations of 600 runs

The highest number of iterations is recorded by the “3DBISAEC” which showed
the best approach for the previous criterion. This high value, which is higher from the

second higher iteration by about 99.5% limits the choice of this approach.

6.4.3. Size of the Problem

Does the size of the problem affect the solution and thus the choice of the approach
to be selected? The problems handled are divided into three categories: small, medium, and
large. The analysis of the solution quality from the RD view and the CPU time is repeated

taking the size of the problem into consideration.
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The ranking of the approaches is repeated for the three different categories and the
result is shown in the Table 6.3. The results match perfectly with the overall solution. The
fact that the first two methods selected are still “3DBISAEC”and “3DBISAEI” for the three

categories, indicates that the approach selected is irrespective of the size of the problem.

Table. 6.3. RD ranking approaches according to problem size

Small Medium Large
JDFISAEI 3 or4 4 4
[3pBISAEI 2 2 2 |
3DFISAEC 3 0rd 3 3
[30BISAEC 1 1 1|
IDFI Sore B Sore
3IDBI Soré 5 8
BI 7 8 7
FI 8 7 50r6
BISAEC 10 10 10
FISAEC 9 9 9

*The “or” indicates the same ranking for approaches

Does the CPU time vary with the size of the problem? As per Appendix-C1, the
number of iterations varies with the size of the problem.

Table 6.4 shows that as the size increases, the number of iterations increases with
approximately the same percentage distribution. Hence, the “3DBISAEC” and

“3DBISAEI” ranks the first and second place respectively with a high difference between

them.
Table. 6.4. Percentage average of iterations according to size type
size Type | 30Fi1sael| 3peisabl |3prsaec|speisaec] 3pr | 3poe | s | A | sisaec | misaec
small 0.58 3.22 128 9265  0.64 1.19 0.01 0.01 0.21 0.21
Medium | 0.23 1.19 0.62 9719 0.6 0.44 0.00 0.00 0.02 0.00
Large 0.10 0.49 0.34 9878 011 0.19 0.00 0.00 0.00 0.00
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6.4.4. Density of Data Generated

According to Table 6.1, the categorization of the 15 examples into high, low or
average density (as shown in the last column) is taken into account to check whether the
density of problems affects the approach selected.

The average of RD of each category is shown in Appendix-B3. However, a similar

ranking of the approaches is calculated, and the result is shown in Table 6.5.

Table. 6.5. RD ranking approaches according to density type

High Low  Average
IDFISAEl 4 3 3
[3pBISAEI 2 2 2 |
IDFISAEC 3 6 6
[30BISAEC 1 1 1|
3DFI 6 5 5
3DBI 5 a 3
BI 7 7 7
FI 8 8 7
BISAEC 10 9 9
FISAEC 9 10 10

From the information at hand, it can be deduced that the data density of the
problem holds the same result and analysis as the size criterion, thus does not affect the
approach selection of the best two methods.

It can be shown, moreover, from Table 6.6 that the number of iterations varies in
the same percentage from one approach to the other. The ranking of the approaches
remained the same. “3DBISAEC” has the highest average percentage of iterations followed
by "3DBISAEI”.

Therefore, it can be deduced that the density of data is not related to the number of

iterations performed on each approach.
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Table. 6.6. Percentage average of iterations according to density data type

6.5. Selected Approach

Is the benefit of the value obtained by “3DBISAEC” at the cost of the time and,

accordingly, the number of iterations?

To answer this question, various tests are done. Set 6x7x6 of the third instance is
used as n example. This choice is justified because the “3DBISAEC” approach scored in
that case the best solution that neither of the other methods could reach. The number of

iterations of each approach is shown in the second column. The average iterations of 10

runs of the 6x7x6 set of the third instance is as displayed in Appendix-C2.

Equal time for all approaches is assigned, and a normalization of the other 9

approaches with respect to “3DBISAEC” is made where the running time for each is set

forth in the second column of Table 6.7.
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Density Type| 3DFIsaEI| 3DBISAEI |3DFIsaEc|3pBisaEc]  3DFI 3DBI Bl Fl | misaec | Fisaec
High 0.57 3.16 129 9280  0.63 117 0.01 0.01 0.20 0.16
Low 0.09 0.46 034  98.82  0.10 0.19 0.00 0.00 0.00 0.00

Average 0.15 0.70 039 9831 017 0.26 0.00 0.00 0.01 0.00



Table. 6.7. Normalizing the time factor of the 10 approaches for the 6x7x6 (3) example

# of
6x7x6 (3) Avg # of Running | Frequency
Iterations| _.
Times
3DFISAEI 5615 352 26
3DBISAEI| 33469 59 20
3DFISAEC| 18058 110 14
3DBISAEC 1977356
3DFI 5852 338 33
3DBI 11133 178 14
BI 64 30896 0
FI 33 59920 0
BISAEC 1236 1600 0
FISAEC 76 26155 0

The results show that the constructive methods were never able to achieve the best
found result. This is another indicator proving that the constructive approach is not efficient
in optimizing the three domains simultaneously. It is thus considered a dirty and cheap
method.

However, improvement approaches, whether with or without simulated annealing,
are able to achieve the best found result for more several times as shown in the frequency
column in Table 6.7. The highest frequency was nevertheless recorded by the “3DFI”
approach.

In addition, it is necessary to visualize the effect of the number of iterations on the

quality of the solution.
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Fig. 6.8.The effect of number of iterations on the quality of solution

Fig. 6.8 shows that the approach with the highest number of iterations leads to
better results except for the “BISAEC” and “FISAEC” approaches where the simulated
annealing applied did not enhance the quality of the solution. This was due to the low
number of iterations of the constructive method where worse solutions were accepted
highly in the early stages hence in most of the iterations.

Fig. 6.9 shows the overlapping of the exponential trend line of both figures. The
exponential trend line of the number of iterations shows that the improvement approaches
record higher than the constructive approaches. The “3DBISAEC” records the highest
value down till “FI”. The exponential trend line of the relative deviations shows that the
best solution achieved is the most expensive approach, i.e. “3DBISAEC” in this case. The

approaches are displayed from left to right showing the decrease in the quality of solution.
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The intersection point demonstrates that the “3DFI” approach was chosen to be a tradeoff
between cheap and dirty approaches versus more accurate but expensive approaches.

The quality of solution achieved by one“3DFI”run is less than “3DBISAEC”,
“3DBISAEI” and others. Still, if this approach were run for equal time as in the most
expensive method, it would find the solution of 33 times. This indicates that approximately
10% (338/33) of the time run by “3DBISAEC”would guarantee the best found solution to

be achieved by the “3DFI” approach and with less number of iterations and less time.
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Fig. 6.9.The recommended trade off approach

Finally, simulated annealing showed benefits in improvement heuristic approaches
but still did not do well. This might be due to a miss of the best solution when worse
solutions were accepted and due to the absence of parallel memory savings. Thus, the
combination of simulated annealing with other artificial intelligence heuristics (such as
tabu search or genetic algorithm which are beneficial in individual optimization [Osman,

1994]) might as well enhance the solution quality of a global optimization.
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CHAPTER 7

CONCLUSION

7.1. Summary

Organizations are defined by their team structure and their ability to execute product
development processes in a certain sequence to produce salable products to meet the
market needs and growth. Up to this point of time, organizations seek an individual and
isolated optimization of each of the product, process and team domains. The main goal of
this thesis, however, as shown in CHAPTER 1, is to formulate a global optimal solution for
the product development organization problem. CHAPTER 2 includes a literature review
of the design structure matrix and the existing optimization techniques used. Moreover,
CHAPTER 3 describes the heuristic and meta-heuristic search methods and models used in
the literature as well.

CHAPTER 4 illustrates the work to formulate the simultaneous optimization of the
three domains using a multi-domain DSM model and to build three relational rules of inter
and intra dependencies within and between the domains. Moreover, CHAPTER 5 describes
the ten hybrid methods combining heuristics and meta-heuristic techniques to solve large
size problems. The performance of these ten approaches is tested in CHAPTER 6 which
includes the analysis of six hundred random test instances with the most recommended
method being the “3DFI”. This method shows a tradeoff between the quality of the solution
and the required computational CPU time. Constructive approaches are shown to be less
performing than the improvement descent ones where the latter results are enhanced by the

use of simulated annealing. Finally, a software code using JAVA is designed in a user
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friendly interface to compute the results achieved by the ten different approaches in an

excel format file.

7.2. Limitations and Weaknesses
Several limitations might be faced while implementing the global optimal solution.
These are, among others: The required data for the three domains may be unreachable or

inaccurately collected;

1. The relational rules among the three domains are not detailed; and

2. The dilution of interface and feedback marks is over estimated.

The weaknesses faced while simultaneously optimizing the three domains include,

without limitation:

1. The analysis is performed over a limited size range examples (0, 20).

2. The recommended approach is based on the result of one testing instance example

due to time limitation.

3. Data are randomly generated and do not reflect real case situations.

7.3. Recommendations for Future Work

The following steps are recommended:

1. An added value option in the software should be developed to retrieve the
information directly from the organizational database to minimize the error margin

in collecting data and decrease data time collection.
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The amount of dilution of the relational rules is entered as a number between 0 and

1. Hence, this amount should be tested and assigned in later research.

The relational rules should consider penalty on the size and number of the clusters
formed as well as on the number of resources and processes mapped to the process

and product domains respectively.

More rules should be formulated through extensive analysis of the inter and intra

dependencies among the three domains.

More examples of larger sizes (> 20) should be tested to guarantee the correctness

of the selected approach.

Real case example should be tested to acquire the real work benefit.

Further testing should be done on the way the initial solution of the three domains is
generated; this is because few examples are tested with an initial solution equal to
the optimal solution retrieved by optimizing each domain separately and resulted in
placing all elements in one cluster. Due to the fact that the initial optimal solution is
mainly consisted of high cluster formation and the neighbourhood generation
method used in this thesis tries to build clusters rather than to destroy. Refer to

Appendix-E for details.

Parallel implementation of several meta-heuristics approaches should be

implemented, such as combining both simulated annealing and tabu search.

Improving and/or promoting the appearance of the software interface to show the

result in matrix rather than in English form.
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APPENDIX

APPENDIX - A

SOFTWARE MANUAL

1. Run the .bat file.

2. The below window is shown. Click for a simulatneous optimization of your
organization structure.

Dptimization Software x|

o T
g "ot
» (,/,

el
.

Py

3. Browse your excel file and click on next.

Export Excel File

. Bluetooth .' fy Scans .}(ilisnﬂ Corporation
- Downloads .' My Shapes ‘ 33N ws

. My eBooks .' iy Wideos ‘ examples.bd
. hty hLSic .' QJOsoft Corporation

- Wy Pictures .' OneMote Motebooks

. My Received Files .' refuorks




e Note that just excel file is accepted, the next button is frozen in case other

file extension is chosen.

The format of the excel file should have 3 sheets in the following ORDER: Team, Process
and Product respectively. The file sheet should start entering the data from the first column
using the first cell A1 to weight the domian between 0 and 1. The titles should be added
horizantally and vertically. The additional information in the process (specifiying the team
member for each task)and the product domain (specifying the task to be executed on this
component) should be added accurately where the data entered must be an existing element

in the problem. No extra information should be added in the sheet else an error occurs.

Here is a snapshot of team process and product excel sheets:

A B E D E
1A B c D
2 |A 1 1 1 1
3 B 1 1 1 1
4 |C 1 1 1 1
5 E 1 1 1 1
Fig. A.1: Team Excel Sheet

A B C D E F G
1 0.5 1 2 3 4 b
2 1 1 1 1 1 1A8B
3 2 1 1 1 1 1C
4 3 1 1 1 1 1AB
5 4 1 1 1 1 10
B 5 1 1 1 1 10

Fig. A.2 Process Excel Sheet

A B C D E E
1 05 a b C d
2 |a 1 1 1 11.2
3 b 1 1 1 125
4 |c 1 1 1 11.4
5 d 1 1 1 13

Fig. A.3: Product Excel Sheet

Note that the higher weight of the team (1) than the weight of process and product
(0.5) indicates that the effect of the rules on the team domain is reduced compleletey

while other rules are reduced by half.
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4. Select one or more of the approaches described and click on optimize button.

x|
Constructive Methods +/-(SA)

Descent Methods +/-(SA)

OPTIMIZE

e Select all applies all the methods including the exhaustive method

5. [If the information was entered correctly a window is shown indicating that an excel
file with the naming:DSM Optimization Result of “fileNameExported”+time in

millisecomds.xIs is created in the location where the software is found.

B optimization Software

Congratulations! You got the excel file 'DSM Optimization Result of 334(2)20110228224642.xIs" with the solution!!

This file includes the input data of the process, product and team domains with sheet for
every method selected. This sheet contains the optimal solution cost and combination
achieved for every selected approach. The result is shown in an english plain text instead

of a matrix model. The “;” enumerates the elements of a cluster where as ““:”” announces a

new cluster formation. For example, if the optimal solution for the team domain was
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[A;B;E:C], this means there are two cluster teams. The first includes A, B and E and the

second has just member “C”.
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APPENDIX- B
AVERAGE RELATIVE DEVIATION

APPENDIX- B1
High Level Data

3DFISAE 3DBISAEI 3DFISAEC 3DBISAEC 3D 3DBI Bl Fl BISAEC

B W A B W A B W A B W A B W A B W A B W B B W A B W

33:4 1 000 B47 4% 000 000 000 B35 912 BBZ 000 B2 115 625 G5 625 625 625 615 947 2825 2074 947 1B U4 BAU BD
4«5¢4 | 3300 3700 3480 2300 3650 3135 1100 1650 1208 000 3100 1235 2950 6150 4100 3500 39.00 38.20 3075 4575 4075 3075 4575 4075 4550 4700
4x3x5 | 450 3775 1840 450 000 1785 2650 4575 3350 000 350 140 225 2600 1355 450 4175 1385 1425 3875 2845 1425 3650 29.10 4250 17775
S«4%6 | 008 392 276 292 304 257 013 1393 1170 033 303 108 317 375 334 252 399 322 542 683 600 583 683 623 B45 906
545%6 | 000 472 188 011 075 033 014 503 050 018 080 040 034 355 119 011 258 079 380 41% 411 351 415 413 47 3530
6+5:5 | 011 295 127 020 241 0587 018 146 078 009 078 028 020 281 160 020 224 073 470 487 478 434 479 488 516 539
6<7<6 | 023 556 271 013 508 230 0B85 651 1% 003 05% 018 008 405 184 (13 718 184 1142 2374 1726 1315 2400 2054 24%0 2678
6«B<6 | 077 926 559 06% 601 300 13% 628 248 016 164 0581 106 B34 517 (63 BS2 380 2152 2436 2211 1826 2348 27 BH 7717
T«Bx6 | 066 547 268 142 507 281 066 523 209 010 108 038 176 420 310 (92 382 243 3813 1001 %01 664 979 854 1081 4782
10 9x10«8| 050 277 161 050 266 131 055 285 117 000 075 033 075 264 138 092 278 170 405 466 437 417 466 443 326 537
11 11«6«B] 012 128 076 043 0% 066 013 105 067 028 043 035 017 170 0% 042 150 0% 164 1% 178 169 220 1B9 23 1414
1210«10=1Q 043 212 136 041 182 109 047 214 074 007 052 036 020 473 181 047 355 163 132 285 19 128 220 1Bl 274 388
13 12«10:9) 050 212 117 047 166 087 027 157 054 000 058 030 063 174 117 071 302 178 151 154 168 155 201 174 138 n
14 13«8x3) 030 231 114 033 180 126 033 180 081 000 140 044 016 168 075 0lp 206 094 485 674 589 483 648 608 718 900
15 13x17«B] 091 273 157 049 247 162 034 165 06 000 037 012 06 537 212 077 259 157 1499 1669 1629 1506 2179 1734 1919 2271
Average| 281 B36 551 237 468 458 341 BO8 526 008 365 140 315 923 568 361 B75 531 419 1477 1234 G071 1485 1287 1555 2882

o A L T

* Average Relative Deviation of the best, worse and average solutions of 15 examples

*Each example is the average of four instances which is simulated 10 times.
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APPENDIX- B2
Detailed Level Data
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APPENDIX- B3
RD Classified by Size and Density
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w
12.2
3.24
1.54
18.3
1.52
3.07

Bl
w
37.6
10.1
7.06
42.3
13.6
9.18

A
16.4
1.81
1.23
24.7
0.99
171

B
30
8.68
6.45
34.6
11.2
7.9

15.3
0.5
0.35
18.8
2.35
0.48

B
18.2
7.25

5.7
22.5
7.68
6.62

3DFISAEC

w
23.8
5.29
1.89
311
3.68
4.92

w
36.8
9.99
8.12
41.1
14.7
9.11

A
18.1
.72

0.7
22.8
.77
248

Fl

A
314
8.97
6.74
34.9
12.4
8.16

* Average RD classified by size and density of 60 examples.
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0.15
0.02

0.02
0.12

38.7
10.7
7.85

14.3
9.76

3DBISAEC

w A
143 5.3
1.14 0.45
0.72 0.31
17.3 6.88
2.63 0.77
1.08 0.47
BISA

EC

w B
84.3 39.8
17.6 11.2
9.58 7.%4
112 453

16 144

16 10.2

12.7
0.34
0.41
15.9
1.82
0.91

3DFI

w
1.2
3.9
3.38
43.8
4.51
3.66

FISAEC

w
30.4
14.83
13.7
61.5
19.7
13.6

A
44.2
12.8

1
52.3
17.2
11.8

A
20.3
2.32
1.46
27.3
2.73
2.19

44.2
12.8
11
52.3
17.2
11.8

A
1.7
21
7.8
16

29
1.3
26
31

6.5
21
23
22

21
75

3.3
14

B
2
24
7.4
14

22
14
26
31

6.7

27
21

24
63

54
15

FISA

w
27

20
28

44
27
48
45

98
28
43
28

117
6.9
23

22
27
13

23

29
19
37
39

76
24
35
249

27
o4
6.2
19



APPENDIX- C
AVERAGE ITERATIONS

APPENDIX- C1
High Level Data

* Average of iterations of 15 different examples on 10 different approaches
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3DFIsAEI | 3DBISAEI | 3DFisaEc | 3peisaec | 3pml spel | B | m | eisaec|rsaec|

1] 3x3x4 | 99.65 582.10 132,90 1161115  111.90 19170 4.45 4.00 6470 168.55
2| axsa | so0.95 316820 151855  66502.65  532.50  964.05 14.00 11.00 27.25 378.50
3| axsxs | 103050 526260  1926.25 18142270  1157.70 2164.20 20.50 13.00 496.40 40.55
a| sxax6 | 152745 701075  2500.80  349639.90 1651.65 2479.10 10.30 8.05 193.90 125.10
5| 5xsx6 | 215488 1200827 434481 556006.99  2613.12 4268.68 16.33 12.08 473.28 26.44
6| 6x5x5 | 203815 1175595  6534.90  509147.05 2117.85 3858.80 21.00 12.50 397.50 129.80
7] 6x7x6 | 6523.65 34703.80  17505.75 2096492.00 7254.55 12342.30 37.75 29.45 1198.00 68.70
8| 6x8x6 | 9018.20 4991345  23728.05  2763923.45 9080.20 1796225 62.60 42.40 1751.00 98.75
9| 7x8x6 | 1371613 6745718 3968426 417696162 14449.72 28144.63 84.16 41.22 1702.23 100.44
10| 9x10x8 | 89619.50 238022.40 175730.55 32058136.00 76260.20 122609.10 124.75 66.35 3020.65 169.80
11| 11x6x8 | 42648.55 189499.78 98297.48 19739625.42 73622.03 75242.80 39.63 28.43 738.60 58.70
12[10x10x10| 132414.83  661307.93 291264.78 88746712.50 13574190 257449.45 150.63 69.00 2909.13 159.20
13| 122109 | 168304.31 821669.10 488864.15 151514831.72 177671.80 296662.90 175.38 75.05 2965.38 171.05
14| 13x8x9 |128666.83 592906.75 376182.10 111962646.70 139201.50 255286.10 80.10 46.43 1527.70 103.68
15| 13x17x8 |415737.90 2051556.35 1754808.30 501385922.22 415984.65 831797.25 721.80 218.25 9249.00 506.40
Average | 67600.10 323134.97 218868.24 61074638.80 70496.75 127428.22 104.22 45.15 1780.98 153.71



APPENDIX- C2

Detailed Level Data

SIZE

Ix3xd

Axhxd

LEL L

Sxdxb

SuGxb

o g e PRI S o o e o o e

oW e

3DFISAEl 3DBISAEI 3DFISAEC 3DBISAEC

Cpu time Cputime Cputime Cputime Cputime Cputime Cputime Cputime Cputime Cputime

119.6
83.8
116.2
79

500.8
501.6
501.6
439.8

879.8
1343

933.4
965.8

1400
1449.8
1453.8
1806.2

2109.8
2616.6

1934.556 12337.67 4465.350

19558.4

604.8
574.8
571
577.8

3058.6
3256

3299.6

3058.6

5013.6
5541
5496

4999.8

7326.8
7532.2
7013
6171

11414.2
13196.2

11885

152
121
137.6
121

1504.8
1504.4
1559.8
1505.4

1875.6

1508.8

2017.6
15903

2436
2308
2860.8
2338.4

4295.2
4318.6

4300

12699.8
10333.2
13301.4
10110.2

62247
69365.2
74169
60229.4

144796.2
132023.6
171738.4
217132.6

368035.3
295268.8
385155.4
350099.6

2530406.6
555562.4
564978.8
553080.2

3DFI 3DBI Bl FI BISAEC  FISAEC
111.4 186.6 4 4 237.4 163.6
6.4 185.6 4 4 6.8 109.6
112 186.2 5.8 4 7.6 145
137.8 208.4 4 4 7 256
530 1027 13 11 30 173
552.2 667 17 11 29 323
517.8 1135.2 11 11 21 845
530 1027 15 11 29 173
980.2 1640.8 15 12,2 637 22.8
1410.2 2684.4 23 15.4 501 32
1224.8 2683.8 27 12.3 424.6 83
1015.6 1647.8 17 11.6 423 24.4
1447.8 2382.4 7 7.8 235 12.4
2015.8 2402.8 16.6 10 331 17.4
1256 2450.2 7 7 13 457
1887 2681 10.6 7.4 190.6 13.6
2014 3782.2 21 11 501 27.6
3109 5039.4 13 12,2 473 26

2386.889 4412.333 14.33333 12.33333 4321111 27.77778

2942.6

3840.8

17

12.3

437

244

* Average of iterations of 60 different examples (for 10 runs) on 10 different approaches
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3DFISAElI 3DBISAElI 3DFISAEC 3DBISAEC  3DFI 3DBI Bl Fl BISAEC  FISAEC

SIZE Cpu time Cputime Cputime Cputime Cputime Cputime Cputime Cputime Cputime Cputime
1 2301.6 11759.4 6245.4 476158.4 2278.2 3912 25 13.6 585 34.8
bx5x5 2 1950.8 12181 6212.6 565038.4 19854 3893 25 14 525 33.6
3 1939.6 11326.4 e606.4 515709.4 1963.2 3783 15 11.4 449 29.8
4 1960.6 11757 7075.2 479682 22446 3847.2 19 11 31 421
1 7610.6 36997.8 17280.8 2165317 82144 13545.4 26.2 30.6 1256.8 78
bxTx6 2 7l44.4 332924 17418.4 2224898 7548 12260.8 30.4 28.6 1156 68.6
3 5615 33469.4 18057.8 1977356 5351.8 11133.2 64 33 1235.8 75.6
4 3724.6 35055.6 17266 2018197 7404 12429.8 30.4 25.6 1143.4 52.6
1 10503.4 50147.6  23421.6 2911942 9707.6 16492.8 45.8 43.6 1653 93.6
bxBxb 2 9122.8 45840.6 23682 2489628 9756.2 19568.8 73.4 43.8 1809.8 106
3 8526 34814.4 24325.8 2701476 8117 20989.4 37 37.2 1837.8 99.2
4 7920.6  48851.2 23482.8 2952647 8740 14798 68.2 45 1703.4 96.2
1 10393.6 613664 47077.6 4093935 11125.2 28181.8 111.4 44.4 1882.6 103.4
TxBx6 2 15871.33 68512.33 3742444 4264832 16555.89 27266.33 B83.22222 31.66667 1830.333 100.5556
3 132169.4 64728.6 36410.6 3799947 129954 262274 73.4 43.6 1459.8 96.4
4 15424.2  75221.4 378244 4549132 171224 30903 62.6 45.2 1636.2 101.4
1 69674.6 3568404 176423.8 33670426 70329.8 128633.2 145 58.2 2818 167.2
9 =10 =8 2 74593.4 345558.6 171374.2 32688083 79959.8 147521.8 136 69.8 3115 171
3 58037.4 308362.6 173439.6 33069371 38644 B4828.8 145 77.6 3016.6 175
4 156172.6 341328 181684.6 28804664 66107.2 129452.6 73 59.8 3133 166
1 38069 180979.7 100865.6 20673492 172333 60946.7 29.5 21.2 751.3 46.3
11x6x 8 2 43549.6 181232.2 98436.4 19888839 464468 T2684.2 a0 23 716.2 54.6
3 47849  200766.6 96424 19086741 34136 93941.2 46 41.8 707.4 52.4
4 41126.6 195020.6 97463.9 19309431 41572.3 73399.1 43 27.7 F79.5 81.5
1 114776.7 5790329 240536.9 B3164829 135174.4 193557.8 122.5 58.6 2921.5 160.8
10% 10x10 2 132870.8 018698 307473.0 79808631 153740 19318B3.8 190 B85 3070 152
3 140108.2 665004 317068.2 93006545 141655.4 351968.4 118 72.8 2692 155.2
4 141903.6 722496.8 299980.4 99006845 112397.8 291087.8 172 59.6 2953 168.8
1 149213.8 795892.8 471591.4 1.63E+08 1707531 226825.2 127 69 2935 162.6
12x 10x 9 2 198485.6 818354 483167.4 L1.32E+08 204509.8 3287901.82 217 78.4 2953 174.6
3 178255.4 B91607.4 520768.8 L.53E+08 186374.6 296385.2 130 77 2989 174
4 1472624 T80822.2 479929 1.58E+08 149051.8 2755394 167.5 75.8 2984.5 173
1 143640.7 587564.2 366118.8 L.07E+08 141726.1 237171.2 37.4 43.7 1303 104.3
13x8x 0 2 135626.4 660005.8 401377 L.ABE+08 138757.6 322406.6 96.2 43.8 1619.4 104.6
3 108721.6 608797.6 360440.8 98360777 151627.7 285723.6 90.6 51.6 1714.6 106.4
4 126678.6 514659.4 376791.8 1.24E+08 124694.6 175843 96.2 46.6 1473.8 99.4
1 465219.6 2193578 1911503 5.22E+08 413234.8 1128806 6381 209.2 8759.4 524.4
13x17x 8 2 477697.8 2198386 1792275 4.89E+08 506001.2 B883810.2 463.4 174.6 8106.6 446
3 354899.4 1875073 1739656 4.73E+08 430884.2 B£25861.6 398.6 253.8 10119.4 531.6
4 365134.8 1939188 1575799 5.2E+H08 313818.4 688711.6 844.2 235.4 10010.6 523.6

* Average of iterations of 60 different examples (for 10 runs) on 10 different approaches
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APPENDIX- D
VARIOUS SOLUTIONS OF A ROBOT CODE

APPENDIX- D1

DSM Domains Structure

A B CDTETFGHTI J KL

Person 1 A 1 1 1 1 1
Person 2 B 1 1 1 1 1 1 1 1
Person 3 C 1 1 1 1 1
Perzon 4 D 1 1
Perzon 5 E 1 1 1 1
Perzon 6 F 1 1 1 1 1
Person 7 G 1 1 1 1 1 1 1
Person 8 H 1 1 1 1 1 1
Person 9 I 1 1 1
Person 10 J 1 1 1 1 1
Person 11 K 1 1 1 1 1 1
Perszon 12 L 1 1 1 1
Fig.D1.1: Organization structure DSM
a b ¢ d e f g h i j K 1 m n o p gq r Process
main a 1 1 1 1 1 1 1234356
hattle B 1 1 1 1 1 1 1 1 346
battlefield c 1 1 1 1 1 1 1,23
hattleview d 1 1 1 1 3
control e 1 1 1 1 1 345
dialog f 1 1 1 1 1 1 1 1 3436
editor g 1 1 46
exception h 1 1 1 3
gix i 1 1 1 1 1 1 1 34
io i 11 1 1 1 1 1 1 1 1 1 1 1 12436
manager E 1 1 1 1 1 1 1 1 1 1 1 1 123456
packager 1 1 1 1 1 343
peer m 1 1 1 1 1 1 1 1 1 12346
repository n 1 1 1 1 1 1 1 345
security e 1 1 1 1 1 1 1 1 4
sound p 1 1 1 1 1236
text q 1 1 1 1 345
util r 1 1 1 1 1 1 1 12456

Fig.D1.2: Product structure DSM with the corresponding processes
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1T 2 3 4 5 6 Teams
Idea Generation 1 1 1 1 EHK
Requirement Analysis 2 1 1 1 1 1 A EHK
Design 311 1 1 1 ABDEHJL
Programming 4 1 1 1 ABDFGILEL
Testing 5 1 1 1 1 B.CDJK
Implementation B 1 1 ADEFHK

Fig.D1.3: Process structure DSM with the corresponding teams

APPENDIX- D2

Starting from an Optimal Initial Solution

A B CDETF G HTI J KL

Person 1 All 1 1 1 1

Person 2 Bl 1 1 1 1 1 1 1
Person 3 C 1 1 1 1 1
Person 4 DJl1 1

Person 5 E 1 1 1 1
Person 6 F 1 1 1 1 1
Person 7 G|1 1 1 1 1 1 1

Person 8 H 1 1 1 1 1 1

Person 9 I 1 1 1
Person 10 J 1 1 1 1 1

Person 11 K 1 1 1 1 1 1
Person 12 L 1 1 1 1

Fig.D2.a: Optimal team domain (Optimal initial solution)
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a b ¢ d e f g h i j kK 1 m 0 q r Process
main a|l 1 1 1 1 1 123436
hattle Bl1 1 1 1 1 1 1 346
hattlefield c 1 1 1 1 1 123
hattleview d 1 1 1 1 3
control e 1 1 1 1 1 345
dialog fl1 1 1 1 1 1 1 1 34586
editor g 1 1 X3
exception h |1 1 1 3
gix i 1 1 1 1 1 1 1 i4
io i 1 1 1 1 1 1 1 1 1 1 1 12436
manager k|1 1 1 1 1 1 1 1 1 1 123456
packager 1 1 1 1 1 343
peer m|1l 1 1 1 1 1 1 1 12346
repository n 1 1 1 1 1 1 343
security o |1 1 1 1 1 1 1 1 4
sound pll 1 1 1.2.3.6
text q 1 1 1 1 3456
util r|1l 1 1 1 1 1 1 12436
Fig.D2.b: Optimal product domain (Optimal initial solution)
3 6 2 Teams
Design 31 1 1 ABDEHJL
Implementation 6 1 ADEFHK
Idea Generation 11 1 EHK
Testing 5 1 1 B.C.D JK
Programming 4 ABDFGIKL
Requirement Analysis 2 1 1 EHK

Fig.D2.c: Optimal process domain (Optimal initial solution)
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APPENDIX- D3

Starting from a Random Initial Solution

A B CDTETFGHTI J KL

Person 1 All 1 | 1 1

Person 2 Bl 1 1 1 1 1 1 1
Person 3 C 1 1 1 1 1
Person 4 D1 1

Person 5 E 1 1 1 1
Person 6 F 1 1 1 1 1
Person 7 G|1 1 1 1 1 1 1

Person 8 H 1 1 1 1 1 1

Person 9 I 1 1 1
Person 10 J 1 1 1 1 1

Person 11 K 1 1 1 1 1 1
Person 12 L 1 1 1 1

Fig.D3.a: Optimal team domain (random initial solution)

a b ¢ d e f g h i j kK | mn o p g r Process
man  a [ 1] 1 11 1 1 123456
battle B 1] 1 1 1 1 1 1 1 3.4.6
battlefield «c 1 1] 1 1 1 1,23
battleview d 1 1 1 1 ]
control e 1 1 1 1 1 345
dialog o1 11| 1] o 1 3456
editor q 1 1 46
exception h 1 1 1 5
gfx i 1 1 11 1 1 1 34
io i 11 11 1 Ml 1 1 1 1 1 1 12456
manager k 1 1 11 1 1 il 1 1 1 1 1 123456
packager | 1 1l 1 1 3.4.5
peer m 1 1 1 1 1 1 1 1 1 1.2.3.4.6
repository n 11 11 1 1] 1 345
security o 1 1 11 1 1 1 1 4
sound P11 1 1 1.23.6
text q 1 1 1 1 3456
util roo1o19 11 1 1 [ 4] 12456

Fig.D3.b: Optimal product domain (random initial solution)
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6 4 1 2 5 3 Teams
Implementation 6 1 ADEFHK
Programming 4 1 1 1 ABDFGIKL
Idea Generation 1 1 1 1 EHK
Requirement Analysis 2 1 1 EHK
Testing 51 1 1 B.C.D.JK
Design 31 1 1 1 1 ABDEHJL

Fig.D3.c: Optimal process domain (random initial solution)

APPENDIX- D4

Optimization in Isolation

Person 4
Person 9@
Person 10

Person 1

Person 3
Person 7
Person 11
Person 2

[,
[

[ N o L
[,
[,

[ e —

Person 5

[
b ek ek ek ek
(=

Person 12

Person &

== I i - e N el

Person 8

Fig.D4.a: Optimal team domain (Isolated optimization solution)
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b e h k a ¢ f j 1 m n o i g d P T Process
hattle |1 1 1 1 1 1 1 346
control e 1 1 1 1 1 345
exception h 1 1 1 3
manager k|1 1 1)1 1 1 1 1 1 1 1 123456
main a 1 1 1 1 1 1 123436
hattlefield e 1 1 1 1 1 1 123
dialeg f 1 1 111 1 1 1 3456
io i 1 1 111 1 1 1 1 1 1]1 1 124586
packager 1 1 1 1 1 4.3
peer m 1 111 1 1 1 1 1 1 12345
repository n 1 1 1 1 1 1 1 345
security e 1 1 1|1 1 1 1 1 4
gix i 1 1 1 1 1 1 id
text g 1 1 1 1 3456
hattleview d 1 1 1 1 3
editor 4 1 446
sound ] 1 1 1 1 1.2.3.6
util ro 1 11 1 1 1 1 12456
Fig.D4.b: Optimal product domain (Isolated optimization solution)
6 5 4 3 2 Teams
Implementation 6 1 ADEFHK
Testing 51 1 B.C.D,J K
Programming 4 1 1 1 ABDFGIKL
Design 3 1 1 1 1 ABDEHJL
Requirement Analysis 2 1 1 EHK
Idea Generation 1 1 1 EHK

Fig.D4.c: Optimal process domain (Isolated optimization solution)
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