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Organizations involved in product development (PD) constantly introduce new products using 
mainly development teams within the organization. These teams carry out product 
development activities using established development processes in order to produce a new 
product. Traditionally, these domains (product, process, and team) are treated separately and 
individual optimization occurs for each domain disregarding the other two domains. The 
result is a group of three local optimal solutions instead of a single global optimal one. The 
main goal of this research is to be able to formulate and solve a global optimal solution for the 
product development organization problem. The inter- and intra-dependencies within and 
between the three domains are captured using a matrix-based technique called the design 
structure matrix (DSM). Then three relational rules that relate the domains together are 
proposed to help formulate a global optimization objective function for the three domains. 
However, as the domains grow in size, finding an optimal solution becomes computationally 
prohibitive. Therefore, to overcome this difficulty, ten different methods were designed using 
heuristics (constructive and improvement) and meta-heuristic (simulated annealing) 
techniques. A software program using the JAVA language is designed to simulate the 
approaches. Six hundred random test instances were analyzed using these ten methods in 
order to recommend a single approach. The analysis showed the existence of a tradeoff 
between cheap and dirty approaches versus more accurate but expensive ones. 
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CHAPTER 1                                               

INTRODUCTION 

1.1. Problem Statement 

  Product development (PD) organizations continuously introduce new products 

using mainly development teams within the organization. These teams carry out product 

development activities using established development processes in order to produce a new 

product. The problem addressed in this thesis is how to manage such organizations through 

simultaneous optimization of the above-mentioned organizational domains: team, process 

and product. 

  The current techniques target the optimization of the above domains separately and 

in isolation, thus do not achieve a global optimal solution which is the core of the work.  

The Design Structure Matrix (DSM) tool has successfully represented and analyzed the 

architecture of a product, a process schedule and an organization, yet still it has treated the 

three domains independently.  

 As a matter of fact, DSM models have been applied to perform either of the following: 

(a) optimize the sequence of activities or tasks within a process or project; 

(b) optimize the architecture of a product through increasing its modularity;  

(c) form optimal product development (PD) teams. 

   These models have not been applied, however, to optimize all the three DSM 

domains simultaneously in a single approach.  The present thesis proposes a new DSM-
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based method that allows for a simultaneous analysis and optimization of the three multi-

DSM domains as well as establishing rules to connect the said domains and get an optimal 

solution collectively.  

 The achievement of this new DSM-based method is illustrated by (i) decomposing 

the problem into significant subsystems and elements and (ii) collecting the domains 

information using the help of the organizations expertise. The information required to 

construct the three DSM domains will be collected either by interviewing experts from 

various disciplines involved in PD, or by reviewing the design manuals and procedures of 

the targeted organizations. Although applicable in small problem contexts, such new multi-

domain DSM-based method tends to be inapplicable in large organizations where 

exhaustive searching for an optimal solution is computationally inefficient and expensive. 

In this case, this method will be replaced by simulated annealing (SA) which is a meta-

heuristic technique distinguished from different search algorithms by its ability to accept 

non-improving solutions as a means to avoid a local optimal solution.  

In sum, as the domains grow in size, finding an optimal solution becomes 

computationally prohibitive. Therefore, to overcome this difficulty, ten different methods 

were designed using heuristics (constructive and improvement techniques) and meta-

heuristics (simulated annealing). Six hundred random test instances were analyzed using 

these ten methods in order to recommend a single approach. The analyses showed the 

existence of a tradeoff between cheap and dirty approaches versus more accurate but 

expensive approaches. 
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1.2. Scope of work and Significance of Study 

 This thesis is directed towards PD managers in various size development 

organizations while managing a PD process in running their organization. It provides them 

with (i) a software solution to define and organize their product modules, (ii) the order of 

the processes they have to follow, and (iii) the most possible adequate PD team across the 

organization.   

Engineering, business, and human resource expertise will all contribute to 

collecting information/data needed for each of the three domains. Engineering experts 

manage the product domain, project management experts manage the process domain, and 

the organizational design experts manage the team domain.  The JAVA tool is developed 

through a friendly interface where the data collected are entered in an excel file according 

to a predefined template (Appendix-A).  This will give the above-mentioned experts the 

ease of using the software to manage optimally the three domains simultaneously.  The 

optimal solution achieved will be shown finally in a new excel file.  

 CHAPTER 1 has stated the problem along with the scope of work and significance of 

study. The literature review will be highlighted in CHAPTER 2 and CHAPTER 3 

describing the design structure matrix and the existing optimization techniques using the 

heuristic and meta-heuristic search methods and models CHAPTER 4 illustrates the work 

to formulate the simultaneous optimization objective function of the three domains using a 

multi-domain DSM model and represents the three relational rules of inter and intra 

dependencies within and between the domains. Moreover, CHAPTER 5 describes the ten 

hybrid methods combining heuristics and meta-heuristic techniques to solve large size 
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problems. The performance of these ten approaches is tested in CHAPTER 6 which 

includes the analysis of six hundred random test instances. The most recommended method 

shows a tradeoff between the quality of the solution and the required computational CPU 

time.  
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 CHAPTER 2                                                  

        LITERATURE REVIEW  

2.1. Introduction 

 Product development is a vital activity for organizations.  The key factor for 

determining the corporate health and profitability is the ability to launch quickly new 

salable products into the market (Clark & Fujimoto, 1991). The difficulty of managing a 

new product development process is due to, among others, increased global competition, 

frequent consumer taste changes, and rapid advancements in science and technology. To 

overcome these difficulties, a variety of tools is put to application.    

 

2.2. Design Structure Matrix  

  One of the tools that help in the proper management of PD projects is the Design 

Structure Matrix (DSM) which has proved efficient in representing and analyzing the 

architecture of a process, a product, or a team (Danilovic & Browning, 2007). Unlike 

traditional project management tools, such as PERT, Gantt and CPM methods, the DSM 

can capture the dependency relationship between hundreds and thousands of elements and 

can also provide means of analysis for feedback. The traditional management project tools 

address work flows only, while the DSM focuses on representing the information flows 

among its elements and characterizes the complex relations between tasks, members of 

teams and components. The DSM is also able to determine sequences of tasks as well as to 

group teams or products into modules (Yassine, 2004). 
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         (a) Directed graph                                                                                    (b) DSM model  

Fig. 2.1.The DSM model and its underlying graph 

 The DSM representation illustrates the information flow captured in a directed 

graph shown in Fig. 2.1.a. The DSM is actually a binary square matrix having, in the same 

sequence, the same title headings in the rows and columns. This matrix input is illustrated 

by either a 1 or a 0 and is meaningless on its diagonal. The diagonal mark could be either 

blacked out as shown in Fig. 2.1.b or left empty. If any two elements are related such as 

‘A’ and ‘B’, then this relation should be shown in the DSM. Hence, if element ‘i’ feeds 

element ‘j’, then the value of the element ‘ij’ (column i, row j) is 1. Accordingly, by using a 

design structure matrix, it is easy to represent information relations among (a) teams 

concurrently working on a project, (b) activities, and (c) components of a product.  

 

2.2.1. Task Based Domain 

 The task based domain is represented by input/output relationships where a certain 

task can be an input for another task, an output fed by other tasks, or a standalone task. 

Hence, the task relations illustrated through the DSM may vary from parallel to sequential 

to coupled relations. The DSM model in Fig. 2.1.b is a project composed of activities to be 

executed in the following sequence: A, B, C, and D.   
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Parallel relation exists between A and B; no relational dependency exists between them.  

“A” and “B” are executed concurrently. In the event C feeds B, the red ‘1’ shown in the 

DSM model represents a feedback mark which  means that the needed inputs for B  are not 

available the first time B is executed. This would require B to be re-executed once the 

output of C becomes available and would increase the development lead time (Meier, 

Yassine & Browning, 2007). The dependency exiting between B and C indicates also that a 

coupled relationship joins both activities.  Information cycle is thus presented between both 

activities where each activity requires input from the other activity to be able to start 

(Yassine, 2004).  Yet, the relationship between C and D is sequential. D is dependent on 

the result of C; this means that task D is fed by the result of C before its execution. 

 As a result, the execution arrangement of the tasks affects the solution given the 

fact that the optimality of the task domain depends on reducing feedback mark, increasing 

concurrent tasks and reducing the development lead times and cost (Meier et al., 2007).  

Some of the methods used in analyzing and optimizing this domain are: Sorting, 

Partitioning, Tearing, Banding, Simulation and Eigenvalue Analysis (Browning, 2001).  

The Sorting and Partitioning methods will be later discussed in detail.  

 

2.2.2. Team Based Domain 

 The team based domain is represented by person-to-person interface characteristics 

and   is mainly used in organizational design, interface management, and team integration. 

In the team DSM, the rows and the columns of the matrix identify the individuals or groups 

participating in a project.  
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The information of a team-based DSM is constructed by identifying the 

communication skills and their factors. The following  are taken into consideration: (i)  the 

level of detail  (emails and  documents sharing versus  models or face to face 

communication), (ii)  the frequency of communication between members, and (iii)  the 

direction of the information flow (where one way or two way talks can happen) (Yassine, 

2004). 

 The matrix built from the information acquired is then used for optimization by 

applying the clustering techniques in order to gather highly interacting groups and 

minimize scattered groups. In this way, the organization teams obtained represent a useful 

structure for the organization where the communication needs of each member are justified.  

 

2.2.3. Product Based Domain 

The product based domain may be represented by multi-component relationships; it 

is mainly used in system architecting, engineering and design.  Such DSMs represent the 

product architectures by pointing and analyzing relationships between subsystems and 

components included in a product. Irrespective of the complexity of the product, 

decomposition into smaller sub-problems (Eppinger, 1997) along with understanding the 

interactions among components is quite essential.   

Different product characteristics, being design requirements, product components or 

design parameters, are represented in the DSM.  They range from spatial (identifying the 

need for adjacency between two elements) to energy (where two elements need to 

exchange energy between them).  Additionally, an information interaction will exist when 
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two elements share information or a material exchange interaction occurs between them.  

Various clustering techniques are applied to maximize interactions between elements of the 

same cluster and minimize interactions between clusters, thus resulting in cluster modules 

which combine related products.  

 

2.3. Domain Mapping Matrix (DMM) and Multi Domain Matrix (MDM) 

Traditional project management techniques consider these three domains 

independently.  Sometimes, however, development of complex products exhibit 

dependencies and conflicts among these domains. This has led to a shift in research 

towards multi-project environments where complex products and their interdependencies 

among different domains exist. The more the relations and interdependencies among 

domains, the larger is the complexity and the more crucial is the reduction and analysis of 

such complexity (Danilovic & Sandkull, 2005). 

 

  Complexity could stem from customer demands, functional requirements and 

specifications; it could also originate from the technology world where the product design 

is evolving and the tasks to solve technical problems are re-assigned. Diversity in personnel 

skills and the way to organize teams may be deemed another source of complexity. 

Management should thus consider, understand and solve such complexity sources 

(Danilovic & Sandkull, 2005).  

  One of the two approaches can be applied: 

(i)  Closer consideration for subsets or system view extracted from the overall system: 
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This approach reduces complexity, but the analysis will not be that beneficial 

because the analysis deals with only one subsystem (Lindemann et al., 2009). Actually, a 

complex product or system can be divided into sub-systems or components illustrating the 

design requirements, product components or design parameters.  A complex process will be 

subdivided as well into phases or sub-processes that will be decomposed later into tasks 

and activities. The organization domain will be also divided into teams that will be further 

divided into working groups and individual actors (Tang et al., 2010).  

(ii) Consideration and analysis of abstract system level:   

This approach leads to general findings given that a wide scope is considered and 

details are neglected (Lindemann et al., 2009).  

It is clear by now that product development is a multi project environment where 

uncertainty is a fact to be embraced. The main source of such uncertainty is the limitations 

put on the flow of information. These include, among others, limitations to understand the 

kind of information required to choose the information source and to be sure of the 

information availability when needed. As the uncertainty level increases, the assumption 

level increases as well  involving  ambiguity in approaches and a high risk factor caused by 

the creation of rework due to new knowledge or to change of requirements.  

The understanding of the relations and the interdependencies between domains is 

studied by applying the design structure matrix DSM (N×N) and the domain mapping 

matrix DMM (N×M) (Danilovic & Sandkull, 2005). To show self-dependency of a certain 

domain, the DSM illustration is used.  Nevertheless, by applying the DMM, Danilovic 

(2007) demonstrates the way one can study relations between two domains and how to 

relate elements of one domain to another.  
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DMM is in fact a rectangular matrix relating two DSMs. Its analysis holds benefits 

in capturing the dynamics of PD along with showing traceability of constraints and 

providing transparency among domains.  Decisions among domains are synchronized and 

the sense of communication across domains is improved (Danilovic & Browning, 2007). 

The analysis techniques used in the DMM are (i) the clustering algorithm (across 

two domains i.e. not across its diagonal as used in the DSM) in addition to (ii) the 

sequencing analysis technique. The combination of these techniques contributes in 

reducing the uncertainty factor by visualizing the interdependencies and relations and by 

exploring the need for information exchange (Danilovic & Browning, 2007). However, 

information needed for the DMM is collected by using existing databases, modeling tools 

or interviews. Still, the difficulty lies in the ability to collect efficient and high quality data 

(Lindemann et al., 2009).  

The dialogues and the meetings formed, while generating the DSM and the DMM, 

create a strong responsibility and commitment to the organization as well as deep 

understanding of the organization work.  Dependencies among domains are moreover 

deduced. These dependencies are represented using the MDM presentation (Lindemann et 

al., 2009) as shown in Fig. 2.2 below:  

            

a) Multi domain matrix                                                      b) Dependencies inside and among domains 

Fig. 2.2. MDM presentation  
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MDM is actually a square matrix with row and column headings being the names of 

the domains. The MDM shown in Fig. 2.2.a illustrates different combinations among 

domains according to specific dependency types.   Various types of dependencies are 

displayed in the directed graph shown in Fig. 2.2.b. Dependencies between same domains 

are shown in a blue arrows whereas dependencies among different domains are represented 

by red arrows. Dependency types vary between information flow, change impact, 

geometric and thermal dependencies (Lindemann et al., 2009).  

 The MDM can thus be divided into DSMs and DMMs according to inherent 

domains. If a dependency connects elements from the same domain, such information will 

be used in the DSM.  If a dependency connects elements from a different domain, 

dependency information will be used in the DMM.                                                                                             

These representations are helpful to analyze the domains and to dilute the uncertainty factor 

existing among them (Lindemann et al., 2009).   

Different papers tackle different methodologies to optimize multi-domain 

architectures. Eppinger (1997), for example, discusses the possible relationship between 

DSMs in the three domains: product, process and team.  These papers   show that there is a 

one-to-one mapping between one domain and the other. A direct comparison is then 

straightforward.  On the other line of the spectrum, Dan Braha (2002) worked on the task 

partitioning problem and  tried to make the hard non-deterministic polynomial time 

problem (NP hard problem) more lenient. Braha limited the number of tasks assigned to 

teams as he considered that each team has a certain capacity limit, and that each task should 

be performed by exactly one team.  
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2.4. DSM Analysis Techniques  

 Various techniques and approaches evolved in the product development system. In 

this literature review, we will shed light in detail on just two:  the sorting and partitioning 

method used as an optimization technique in the process domain along with the clustering 

technique used to get the best grouping in the team and product domains. 

2.4.1. Sorting and Partitioning Method 

 The objective in optimizing the process domain is to reduce the number of feedback 

marks which holds a negative connotation for the project in terms of time and cost due to 

the potential of rework. For this reason, partitioning method is used where the sequence of 

DSM rows and columns are reordered to try to get a new DSM arrangement with no 

feedback marks. This method transforms the DSM into a lower triangular form unattainable 

most of the time because of the complexity in relations among tasks in engineering systems 

(Yassine, 2004). 

Therefore, a modified approach known as block triangular is used in order to put the 

feedback marks as close as possible to the diagonal. This approach decreases the iteration 

cycle time and results in a faster development process. Fig. 2.3 below shows the result of 

optimizing a 4×4 Process Matrix.  

 

                    

        

               Fig. 2.3. Result of optimizing a 4×4 process matrix 

  1  2  3  4 
1     0  1  1 
2  0     0  0 
3  0  0     0 
 4  0  1  0    

  2 3 4 1
2   0 0 0
3 0   0 0
4 1 0   0
 1 0 1 1  
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Manipulating large DSM is a hard task that takes a lot of time and consumes a lot of 

computer memory. Algorithms are built to manipulate large DSMs in an easier and quicker 

way.  In 1976, Lawler developed an efficient and quick sorting algorithm to order a DSM 

with no cyclic information if possible; otherwise, the partition method is applied (Yassine 

et al., 1999). 

 

2.4.1.1. DSM Sorting 

Lawler algorithm starts by finding the sum of all rows of each task in the DSM.  A 

ranking of DSM is then made by putting the row with sum equal zero to be first in the 

DSM. This row, along with all its connections, is removed from the DSM and the approach 

is repeated till no more zero sum of row is found. Hence, if the approach ends with no 

cyclic information, then the optimized solution is obtained; otherwise, partitioning of the 

DSM is performed.  

 

2.4.1.2. DSM Partitioning 

The availability of cyclic information leads to terminate the sorting method and to 

target a DSM block triangular form (instead of a lower triangular one) for a faster 

development process. A block is the largest subset of a diagraph in which every subset has 

a path to every other node in the subset (Yassine et al., 1999). Partitioning analysis is used 

to identify the tasks in a loop and cluster them in a block along the diagonal of the DSM so 

that all predecessors of a block appear somewhere before that block.  



15 
 

There are different partitioning ways to identify a cycle where the elements 

involved in it are diluted into one node and the process is repeated to find other cycles. 

These cycles can be identified using either the path searching or the powers of the 

adjacency matrix methods. The path searching is traced backward until a node is 

encountered twice. The information cycle in this case constitutes the entire tasks that were 

passed through in this cycle. The power of the adjacency matrix method raises the binary 

DSM to a power n in order to trace which element can reach itself in n steps by looking to a 

non-zero entry for the relevant task along the diagonal of the matrix (Yassine et al., 1999). 

As mentioned, Fig. 2.3 above shows an optimization result of a 4×4 DSM example. 

The independent task 2 and task 3 are sorted in the first rank of DSM and the other 

feedback marks were partitioned in blocks near the diagonal giving an optimized matrix 

with no feedbacks. The pseudocode of both procedures is shown in table (Yassine et al., 

1999). 
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Table. 2.1. Sorting and partitioning pseudocode 

Sorting 
Step 1. (start: Find row-sum of tasks) 

Set Ii = ∑ ݆ܽ݅௡
௝ୀଵ , i = 1, . . . , n. 

 Set N= {1, 2, . . . , n} 
 Set m =1 

Step 2. (detection of node with 0 in-degree) 
Find k є N such that Ik =0. If there is no such k, stop; the digraph contains cycles. 
Set Rank (k) = m 
Set m = m + 1 
Set N= N- k 
If N= Ø , stop; the computation is completed. 

Step 3. (Revision of in-degrees) 
Set Ii = Ii - aik for all i є N 
Return to step 2. 

 
Partitioning 
Step 1. Determine all the circuits that exist in the DSM using either path searching or    

powers of the matrix. 
Step 2. Collapse all tasks within the same circuit into a single representative task. 
Step 3. Order the remaining tasks using procedure 1. If a cycle is detected, then go to 
            step 1; otherwise, the procedure is complete. 

 

 

 2.4.2. Clustering Technique 

  By dealing with elements of DSM representing people in charge of (i) tasks or (ii) 

sub-systems and components of a larger system, one may manipulate the DSM in order to 

find subsets of DSM elements known as clusters. The foremost objective is to find subsets 

mutually exclusive or minimally interacting. Other objectives are considered such as, 

without limitation, minimizing cluster sizes, minimizing the size of the largest cluster, and 

allowing overlapping clusters.  Clustering algorithm is a helpful integration analysis 

technique in this domain.  Fig. 2.4.a shows a DSM example where the entries may 

represent the frequency or intensity of communication exchanged between different 

participants represented by person A, person B, etc. 
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a) Original DSM                       b)    Clustered DSM               c)    Clustered DSM with overlapping 

                                                           Fig. 2.4. Possible clustering solutions 

 The aim of clustering is to maximize interactions between elements of the same 

cluster and minimize interactions among clusters (Browning, 2001). For this reason, if the 

matrix is arranged in the following order: ACDB, the connections are clearly seen. As 

shown in Fig. 2.4.b, the original DSM was rearranged to contain most of the interactions 

within two separate blocks: ACD and B.  The interactions, however, between clusters is not 

zero; still one interaction exists. Another alternative overlapping clustering is shown in Fig. 

2.4.c. To decide which cluster option to choose is related to the targeted domain and the 

effect of its factors.   

Yet, several computational clustering techniques that search for optimal solutions 

are based on tradeoffs between the importance of capturing intra block dependencies versus 

the importance of capturing inter block dependencies (Yassine et al., 1999). One such 

algorithm was proposed by Thebeau (2001) as a continuation of the work done by Carlos 

Fernanzed. This clustering algorithm calculates the cost of the proposed solution. The 

objective is to find the solution of the lowest cost. There is a higher cost for interactions 

occurring outside of clusters and a lower cost for interactions occurring within clusters. 

There are also penalties assigned to the size of clusters in order to avoid a solution where 

all elements are members of a single cluster.  

  A  B  C  D 
A     0  1  1 
B  0     0  0 
C  1  0     0 
 D  1  1  0    

  A C D B

A   0 1 1
 C 0   0 0
D 1 0   0

 B 1 1 0  

  A  C  D  B

A    0  1  1
 C 0     0  0

D 1  0     0

 B 1  1  0   
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The results are highly dependent on the parameters passed to the algorithm which is as 

follows: (Thebeau, 2001): 

1.  Place each element in its own cluster. 

 Coordination cost of the cluster matrix is calculated as indicated below:  

Test whether any two elements are dependent.  If yes, test if the two  dependent 
elements are in the same cluster. If both elements are in the same cluster of index y, 
an IntraClusterCost is assigned:         
ܜܛܗ۱ܚ܍ܜܛܝܔ۱܉ܚܜܖ۷     ൌ
∑ ∑ ൫DSMሺ j, kሻ൅ DSMሺk, jሻ൯௝ஷ௜ ୀ஽ௌெ ௦௜௭௘ିଵ

௝ୀ଴ ሺCluster Sizeሺyሻሻ௣௢௪௖௖    ௜ୀ஽ௌெ ௦௜௭௘ିଵ
௜ୀ଴  

 

 If the elements are not dependent: 

 ܜܛܗ۱ܚ܍ܜܛܝܔ۱܉ܚܜܠ۳

ൌ ෍ ෍ ൫DSMሺ j, kሻ൅ DSMሺk, jሻ൯
௝ஷ௜ ୀ஽ௌெ ௦௜௭௘ିଵ

௝ୀ଴

ሺDSM sizeሻ௣௢௪௖௖ 
௜ୀ஽ௌெ ௦௜௭௘ିଵ

௜ୀ଴

 

Where powcc  is a cluster parameter assigned a priori.  

2. Choose an element randomly. 
   3. Make bid calculation from all clusters for the selected element. 

Check whether the elements existing in a certain cluster grouping have connection 
with the element bid. This is done by checking the dependency of the DSM matrix 
and assigning a cluster bid applying this formula:  

ሺ࢑ሻ ࢊ࢏࡮࢘ࢋ࢚࢙࢛࢒࡯             ൌ ∑ ሺ௜௡௢௨௧ሻ೛೚ೢ೏೐೛ 
ሺ஼௟௨௦௧௘௥ௌ௜௭௘ ௢௙ ௞ሻ೛೚ೢ್೔೏ 

௞ୀ௖௟௨௦௧௘௥ ௡௨௠௕௘௥ିଵ
௞ୀ଴  

 k = cluster number 

ClusterBid(k) = Bid from cluster k for the chosen element 

inout = sum of DSM interactions of the chosen element with each of the elements in cluster k 

powdep = exponential to emphasize interactions 

powbid = exponential to penalize size of the cluster 

4. Choose a number between 1 and rand_bid (algorithm parameter) randomly. 
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5. Delete same clusters and then calculate the total coordination cost if the selected element 
becomes a member of the cluster with highest bid (use second highest bid if step 5 is equal 
to rand_bid) 

6.  Choose a number between 1 and rand_accept (algorithm parameter) randomly. 

7. If the new coordination cost is lower than the old coordination cost or the number chosen 
in step 6 is equal to rand_accept, make the change permanent; otherwise, make no changes. 

8. Go back to  step 2 for n times. In case of overlapping elements in clusters, reorder the 
DSM before any calculations. Reordering adds the overlapping elements as if they were 
new elements. 

 

After highlight ting in CHAPTER 2the literature review of the DSM and its use in 

optimization techniques, we will discuss in CHAPTER 3 the heuristics and meta-heuristics 

search techniques.    
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       CHAPTER 3                                                  

                         SEARCH TECHNIQUES AND HEURISTICS 

 

3.1. Introduction 

To solve optimization problems, various search methods are used. However, the 

size of the problem search space affects the method considered.  It is not always feasible to 

obtain an optimal solution when dealing with NP-hard problems; this is because the large 

search space of the latter type problems is limited by time and computer memory capacity 

constraints. 

 This section provides a quick overview of the various search methods used in 

optimization problems taking into account the size of the problem search space.  The 

exhaustive search method is a brute force technique applied to enumerate all possible 

candidates from which the best solution would be certainly found.  The computation and 

time cost of this technique will increase as the search space increases. For this reason, this 

technique is normally used for small search space problems or when heuristics can be used 

to decrease the search space size according to specific problem criteria.  

The branch and bound method is used to solve combinatorial and discrete global 

optimization of mainly medium size problems.  This method is based on two parts as 

evident from its name. The first part (branch) is to divide the large problem into smaller 

ones. The second part (bound) is to test whether the optimal solution can be found in this 

branch.  If not, the whole branch is discarded; otherwise, it should be saved. This algorithm 
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is terminated when all smaller parts are tested. Yet, it yet will keep track of the best 

solution and neglect unimproved solutions.  

 The branch and bound algorithm, however, will not yield satisfactory results in 

case of large size problems (Clausen, 1999). As compromise between the time constraint 

and the computer memory capacity constraint, other algorithms are found to achieve good 

solutions instead of optimum solutions. Heuristics algorithms, such as branch and bound 

variants, problem specific heuristics, pure random search, and controlled random search, 

are efficient for these types of problems.  Genetic algorithm (Chinneck, 2006), simulated 

annealing and tabu search (Glover, 1993) are considered as controlled random search 

methods.  

In practical cases, a heuristic method is best used to generate good solutions at 

minor computational expense and within a specific amount of time. The currently available 

heuristics are classified as either constructive or improvement methods (Osman, 1989). A 

constructive heuristic is actually a building of a solution from the data by examining the 

characteristics of the problem to be solved. This construction is hard to figure out in 

different applications whereas improvement heuristic initially starts with a random solution 

and then endeavors to decrease the cost value of the objective function by allowing a series 

of local changes. The quality of the final solution depends on the starting solution and the 

rules used to generate neighboring solutions. A good approach, hence, is considered when 

an improvement method is applied to the result obtained from the constructive heuristic.  

An improvement method starts initially with a random solution and then endeavors 

to decrease the cost value of the objective function by allowing a series of local changes. 

Descent method is an example of the improvement method. In a descent method, only 
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combinations which decrease the value of the objective function are accepted. Yet, 

simulated annealing, which is a randomized improvement method, is used to accept 

solutions with a certain probability, even in case of no improvement in the objective 

function value. Descent method and simulated annealing will be discussed hereunder in 

detail. 

3.2. Descent Method 

A descent method is an improvement heuristic method that repeatedly endeavors to 

construct and improve a current solution starting initially from a current feasible solution.  

Such current solution might be randomly generated or be a result of using a constructive 

method that proved better results in less computational time (Osman, 1989). 

 The main part of the method is to be able to define a neighborhood in order to give 

a new sequence or solution. Various researches tackle different neighborhood generators of 

which the interchange neighborhood approach is considered. If the current sequence  is the 

following  (ߪ . . . . . (1) ߪ (n)), then a new sequence  will be obtained by interchanging the 

positions h and i where h < i, of the ߪsequence (ߪ . . . . . (1) ߪ (h- 1), ߪ (i), ߪ (h + 1), . . . , 

 There are n (n - 1)/2 neighbors possibilities for each .((n)ߪ . . . . . (i + 1)ߪ ,(h)ߪ ,(i - 1) ߪ

sequence.  

It is then necessarily to specify the order in which neighbors are searched. All 

possible values of h and i are considered in an ordered search after which the same cycle of 

values is repeated. Thus, the order of (h,i) values will be as follows:  (1,2), (1, 3) . . . . . (1, 

n), (2, 3) . . . . . (n - 1, n). It is also possible to assign the values of (h,i) randomly. 
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Accordingly, the descent method starts by a starting sequence ߪ and then generates 

further solutions using a neighboring generator which is a ߪԢ sequence. For each sequence, 

the objective function is evaluated, giving C max(ߪ ) and C max(ߪԢ).  

If ∆ = C max(ߪԢ) - C max(ߪ )  < 0, then ߪ' is accepted as the current sequence. Yet, if 

∆ ≥ 0, then ߪ is retained as the current sequence. In both cases, the generation of new 

sequences is made and the process is repeated until all neighbors of the current sequence 

are searched without improving the objective value.   

The descent method can follow either the first improvement (FI) or the best 

improvement (BI) method. These two approaches differ in the occasion where the best 

solution is saved. BI method searches all neighborhood in a cycle and then saves the 

combination with the best value, where as the FI method saves the first best combination 

obtained even though not all the cycle was tested. In Fig. 3.1 the initial example with the 

combination (1, 2, 3) and indexes (0, 1, 2) respectively is solved using the BI and FI 

methods.

                       a) Best Improvement                                                       b) First Improvement                                                              

Fig. 3.1. Descent method solved example 
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On one hand, although an improvement existed at ID = 2 stage, the BI method 

continues the cycle generation without any save for the best solution. As the cycle finishes 

(ID =4) the combination with the lowest solution is saved which is (1, 3, 2) in this case. A 

new cycle is restarted targeting a better combination with a better OF. If a cycle finishes 

without improvement the search stops. On the other hand, the FI method saves directly the 

combination with a lower OF value (ID =2) and does not wait for the cycle to end, but 

continues the indexing (h=0 and i =2) on the new saved combination (2, 1, 3) and not on 

the initial solution (1 2 3). If a cycle finishes with improvement, a new cycle is generated 

on the best solution saved with a reset for the indexing h and i.  

3.3. Simulated Annealing 

Simulated annealing (SA) was first mentioned by Nicholas Metropolis in 1953 as a 

solution for single or multi-objective, discrete or continuous, NP hard problems where the 

computational time increases exponentially (Johnson et al., 1989). As its name indicates, 

SA acts similarly to the physical heating process that involves heating the metal past its 

melting point and then cooling it according to a specific cooling rate. The cooling rate is 

preferred to be slow as quick cooling rate may lead to imperfections in the crystals formed.  

SA was created mainly to avoid local optimum by accepting unimproved moves based on a 

probabilistic acceptance criterion. It starts with a current solution where the energy value is 

calculated and saved as the best solution attained at that time.  A random or ordered 

neighboring solution is then generated as a potential to replace the current solution if it 

holds a lower objective function value.  Otherwise, a certain acceptance probability 

function is used to accept this solution even though it holds no improvement. It is assumed 

that in early stages the probability of accepting unimproved solutions is high; as time 
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passes, the temperature decreases and just improving solutions are accepted.   According to 

the acceptance probability, the system will either move to a neighboring state or will 

remain in the same state. This iteration step will repeat until either a good enough steady 

state solution for the application is reached or a time factor is expired (Chinneck, 2006). 

Neighboring states are found by applying different generating methods that vary 

from a random method to an ordered search method (shift process, interchange process, 

etc.). Special attention must be put on generating neighbors which is found to be the core of 

the solution result quality.  

No general parameter functions may be applied to any kind of problems; each 

problem should define wisely its own SA parameters: the acceptance probability, the 

energy function, the candidate generator procedure, and the search space.  An adequate 

definition of the cooling schedule guarantees the identification of near optimal solutions for 

many combinatorial problems (Osman, 1994). 

3.3.1 Simulated Annealing Parameters 

3.3.1.1 Acceptance Probability  

The acceptance probability function P (*) is defined as = ݁ି∆
்ൗ  where ∆. ∆ is the 

absolute value of the change between the new solution S1 and the initial solution S0 (Suman 

&Kumar, 2005); Tt+1 = r Tt where r is the cooling parameter which indicates the slope of 

decrease of the temperature T. Four parameters come along with the definition of the 

acceptance probability: starting temperature, final temperature, temperature decrement and 

a number of iterations to be performed at each temperature.  The starting temperature 

should be assigned high so that the move to other neighbors, whether improved or 
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unimproved, is allowed easily as if a random search is first applied. As the temperature 

cools, the acceptance of random solutions decreases.  The starting temperature is assigned 

in different ways of which two are described below. If the maximum cost difference 

between two neighbors is predictable, then this difference will help assign the temperature. 

Sait and Youssef   state that T = - ∆f0 / ln (X0) where ∆f0  is the average increase in the 

objective function and X0 is the ratio between the number of accepted moves and the 

number of attempted moves (Suman &Kumar, 2005). Another simple way of initializing T 

is to solve the formula T = ∆ / (1-P) where P is chosen to be   in range of 0.5 to 0.95 and ∆ 

is the maximum difference between any two neighbors.  

The final temperature is aimed to reach 0 theoretically. Yet, practically, this is not 

an obligation; it is enough to get close to zero or not higher than a certain low probability. 

 The temperature decrement function affects the success of the algorithm. In 

practice, either a simple linear method (T =T-1) or a geometric decrement method (T = Tα 

where α could be an exponential or logarithmic expression normally < 1) (Suman & 

Kumar, 2005) is used.  As α increases, the number of iteration increases. 

The final parameter set is the number of iterations at each temperature. 

Theoretically, it is preferred to do as much iterations as possible on each temperature for 

the system to stabilize on that specific temperature.  Large number of iterations should thus 

be performed and usually such number grows exponentially with the problem size. A trivial 

way is to set the number of iterations to 1 or to a specific constant. Another option is to 

vary the number of iterations with the change of temperature. This means that the number 

of iterations should increase as the temperature cools so that the local optimum can be 

entirely achieved.  
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3.3.1.2. Energy Function 

The energy function is the cost value of a certain problem solution candidate.  Such 

value is used to evaluate the difference between the current and the neighborhood 

solutions. It could be helpful in this case to have a threshold value where solutions can be 

neglected directly due to some problem constraints. Hard and soft constraints could be 

defined subject to the problem needs where different weights are assigned thus affecting 

the function cost (Johnson et al., 1989). Weights can be assigned dynamically as the 

process progresses. This leads to say that hard constraints can be violated at the beginning 

but not at the end. 

 

3.3.1.3. Candidate Generator Procedure 

 An important criterion is how to move from one state to the other. Swapping, 

permutation or finding combinations are possible ways to generate neighbor candidates. 

Some results showed that the move should meet a symmetric criterion (Abdelsalm & Bao, 

2006); if the move is from state 1 to state 2, for example, then there must  be a way to move 

from state 2 to state 1.  

 

3.3.1.4. Search Space 

The smaller the search space is, the higher is the possibility to achieve optimal 

solutions.  If the objective function definition accepts infeasible solutions, then the search 

space will increase accordingly. It is thus preferred to cut off large search spaces and keep 
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the neighborhood as small as possible (Johnson et al., 1989). This will lead to a fast search 

but with low remarkable improvements.  

 

3.3.2. Simulated Annealing Enhancement 

 While solving an optimization problem using the simulated annealing technique, 

contradictory interests are found. Such interests could be enhanced to improve the quality 

of the solution obtained in minimum amount of time. The contradiction found in simulated 

annealing could be reflected in the attempt to have simultaneously a quick, simple and 

adequate objective function in order to model the problem objective function or decrease 

the solution search space without restricting the search.  

Given that simulated annealing may accept bad solutions, it is possible that the final 

solution might be worse than the best solution (Suman & Kumar, 2005). In this case, 

simulated annealing technique is merged with tabu search where the best results are saved 

to be set as the final solution in case the final solution was not the best. In addition, the 

candidate generator procedure can change along the algorithm progress and accordingly 

promise better solutions. The acceptance probability function can be replaced by a less 

expensive computational equation (Johnson et.al., 1989). This means that the exponential 

used is approximated by P(δ) = 1 – δ/t thus enhancing  the time of calculation without 

altering the quality of solution. Such approximation is proven to speed the calculation by 

33% (Johnson et al., 1989). 

It should be known, in sum, that simulated annealing is more an approach where 

parameters are set uniquely for specific problems rather than a generic algorithm to be 
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followed. The best way to achieve optimal solutions is by long running simulated 

annealing, if feasible, instead of taking the best of time equivalent collector of smaller runs.  

 

3.3.3. SA Cooling Schedule Models 

The literature was able to define the SA parameters by considering each problem 

alone. Hence, identification of models to define the cooling schedule parameters took great 

effort especially when the theoretical annealing schedules could not guarantee convergence 

to near optimal solution in practical cases.  The temperature reduction schemes are 

classified into three categories as shown below in a pictorial representation (Fig. 3.2) where 

the cooling schedule is based upon theoretical derivations and successful practical results. 

                      

 Fig. 3.2. Three temperature reduction schemes  (Osman, 1994) 
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3.3.3.1. Stepwise Temperature Reduction Scheme  

A Markov chain model is used in this category to specify the SA cooling schedule. 

Finite sequence of homogeneous Markov chains with finite length are generated at 

monotonic decreasing values of the temperature (Osman, 1994). A fixed or a predefined 

value is used to define the length Lk of the kth Markov chain. Lk can be assigned to the 

number of accepted moves (iterations) at the corresponding Tk value of the temperature. 

This simple cooling schedule matches the cooling schedule definition of Kirkpartick et al. 

(1983), Johnson et al. (1989), White (1984), Aarts  & Van Laarhoven (1985), and Huang et 

al. (1986).   

The initial temperature Ts is predefined by monitoring a separate run of m moves of 

the problem before the real optimization process starts. The equation below  is used  where 

m is the number of random moves, m+ is the number of cost increase, ∆+ is the average 

cost increase over the moves, and χ is an acceptance ratio,  0 < χ < 1.    

                           ௌܶ   ൌ  ∆ା  × (ln ௠+  
χ  ൈ ୫+ ି ሺଵି χሻ ൈ ሺ୫ ି ୫+ሻ

 ) -1 

The decrement rule is determined by a small constant decrement value and the 

standard deviation  of the objective function values generated at the kth Markov chain as 

follows:    

                                ×  

             The stopping criterion is so defined to depend on the difference between the 

average objective value at the kth Markov chain and the average of objective value of the 

optimal solution. The search terminates when this value is determined as small .  
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3.3.3.2. Continuous Temperature Reduction Schemes  

This category includes the work on the cooling schedules by Hajek (1988) and 

Lundy & Mees (1986)  which specifies a finite sequence of inhomogeneous Markov 

chains. The Lk in this case is equal to one iteration where the temperature decrement rule is 

applied to each iteration using the equation below (Ts is set to a value so that Ts  where 

U is an upper bound on ∆max):  

                                                    

 β  is defined as shown for a given Ts.Tf if the total number of iterations to terminate the 

search is predefined:   

                                                     β =  

 

3.3.3.3. Non-monotonic Temperature Reduction Scheme 

  This category initially includes the work of Conolly (1990; 1992) and a new cooling 

schedule established by Osman and Christofides (1989). The philosophy of this category is 

not just decreasing the temperature along the way, but occasionally increasing or resetting 

the temperature whenever a special cycle is found. A special cycle is determined when a 

complete search of the neighborhood for an improved solution is unachievable. Conolly 

introduced the philosophy of this category by decrementing the temperature until a 

specified number of rejected moves occurs. At this stage, T is set to Tfound where the best 
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solution was found, β is set to zero and the search completes the rest of the iterations using 

Tfound. 

Osman and Christofides new cooling schedule came as an attempt to solve issues 

found in the previous annealing schemes and as a generalization of Connolly’s simulated 

annealing scheme. This schedule solved the trap of having an optimal solution existing in 

some neighborhoods as the previous methods generate initially random solutions and may 

miss the optimal solution or take a longer time to achieve it. Moreover, a waste of time 

occurs as the value of the temperature is initially high and finally low. This is because the 

high temperature leads to a high acceptance of bad solutions thus destroying good initial 

ones, and the final low temperature neglects worse solutions and accepts improved ones. 

The core of our work is to decrease the time wasted at the beginning and the end of the 

search and increase it in between.  The cooling schedule will then vary and will use an 

updated value of T and β at each iteration. 

The cooling schedule parameters are illustrated below as follows: 

• The initial and final temperature values are to be set to the maximum ∆max and to the 

minimum ∆min differences in the objective function values respectively.  The initial value 

is set to a small value in the event the initial solution is considered a good heuristic start to 

avoid waste of time in the early stages.  

 
• The decrement rule applies after each iteration, k where the temperature and the parameter 

βk are updated according to the following equation:  

                                                              

 As k increases, βk decreases and the temperature is then decreased more slowly with k. 
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                                                   βk =  

In the above equation,  are constants and determined experimentally in terms of 

problem characteristics.  If  = 0, then βk is a constant independent of k, and T and β will 

have the same form of the continuous temperature reduction schemes. 

 
• Occasional temperature increase occurs whenever a cycle is determined. The 

increase should not be very high to escape from the local minimum and should not deviate 

much as when a total new random sequence is restarting.  

The temperature value is modified as follows:  
 
1. Initially: Treset = Ts 
2. If a cycle is detected:  

2.1 Treset = Treset/2 
2.2 Test if: Treset > Tk,  

Yes:  Tk+1 = Treset 
             No:  Tk+1 = Tfound 
 

 After this reset, the decrement and the occasional reset rules are used until the algorithm 
stops.  

 
• The stopping criterion must be a controlled parameter to be a trade-off between the quality 

of solution and the computation time. The algorithm stops either when the algorithm runs 

for predefined number of iterations or after a predefined number of temperature resets R is 

reached without solution improvement.   

The pseudocode of the new cooling schedule is shown in Table 3.1.  
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Table. 3.1. New cooling schedule pseudocode 
 

Step 1: 1.1 Assign values for Tinitial, Tfinal, and the decrement value;  change flag set to 
true, # of reheat times = 2 and  # of max consecutive unchanged cycle = 2. 

1.2 A random solution of process is generated; each elements of the product and 
team domain is put in a separate cluster. This combination is named X. 

            1.3 The OF value of the above initialized solution is calculated and saved as the 
best saved solution. 
 

Step 2: While stopping criteria are not achieved, (T > Tfinal or # of reheat times ≠ max # of 
reheat times) 

           do  
            2.1 If change flag is false 
              Yes: 
                    2.1.a #of consecutive unchanged cycle++ 
                   2.1.b If #of consecutive unchanged cycle reached max # of consecutive 
unchanged cycle 
                    Yes: 

                  2.1.b.1 Reheat the value of temperature 
1. Initially: Treset = Ts 
2. If a cycle is detected:  

2.1 Treset = Treset/2 
2.2 Test if: Treset > Tk,  

Yes:  Tk+1 = Treset 
             No:  Tk+1  = Tfound 

                   2.1.b.2 Increase # of reheat times 
             No: Continue loop 

               No: Continue loop  
            2.1.1 Perform the following loop for each of the three domains and reset change 
flag. 

2.1.1.1 Applying the interchange swap to the three domains, three 
neighboring solutions (X’) are executed for each iteration.  

2.1.1.2 Compute ∆ = f(X’) − f(X) 
2.1.1.3 If ∆ < 0 or worse solution was acceptable, then the combination is 
saved as the best attribute and change flag = true. (X = X’) 
2.1.1.4 Temperature decrement by factor of α between 0.5 and 1. 

2.1.2 Back to step 2 
           
Step 3: Return X. 

 

After discussing the search techniques and heuristics in CHAPTER 3, we will 

handle in CHAPTER 4 below the optimization of the three domains simultaneously.           
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CHAPTER 4 

                     OPTIMIZING THE THREE DOMAINS 
                                    SIMULTANEOUSLY 
 
4.1. Convention of DSM Annotation 

 During product development, managers are faced with the following 

problems/queries: What is the best way to organize individual resources into teams? What 

is the best way to combine product elements/components into modules? In which order the 

various development tasks should be executed?   

Before tackling these questions, the notions adopted while representing each of the 

domains need to be agreed upon. In the team domain, capital letters are used to represent a 

member in the team. The analysis technique used to optimize this domain is the clustering 

algorithm. The clusters obtained represent teams in an organization. In the process domain, 

numbers are used to represent tasks to be executed.  The analysis technique used to 

optimize this domain is the partitioning approach to minimize feedbacks which in turn 

reduces rework. In the product domain, small letters are used to represent physical elements 

or components. The analysis technique used to optimize this domain is also the clustering 

algorithm. The clusters obtained represent product modules. 

 The network of the three domains is defined in the beginning where DSM/MDM of 

the following is built. People/people DSM indicating the relations among people in a team. 

Who works with whom? Who addresses whom? Who sits next to whom?  Task/task DSM 

indicates the relations of the tasks.  What are the tasks available in order to execute a 

certain task? For which tasks is the output of a task an input?   The last DSM is the 
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component /component DSM where the physical relation among the components is 

entered. Which component is physically located next to other components? The DMM built 

are process/team to indicate who are the people that are responsible of which tasks, and the   

component/task structure is also built to identify the tasks that are executed in the design 

and development of the components.  

 

4.2. Optimizing the Process Design Structure Matrix (DSM) 

 In the design structure matrix, feedbacks between tasks are presented by marks 

above the diagonal. If task n and task m are in feedback, then task m must wait for task n 

accomplishment to start its work.  Because the feedback represents inefficiency in the PD 

process, the task dependencies must be arranged under the diagonal to reach an optimized 

solution.  

To start with any process, DSM is analyzed as follows. The DSM in Fig. 4.1 shows 

the sequence of the process yet without any relations between the tasks.  All the tasks can 

be processed in parallel.  The marks shown in Fig. 4.2 indicate the relations dependency 

between the tasks.  Task 1 cannot be accomplished without the completion of task 3 

because the result of task 3 may result in a rework of task 1. Whereas the dependency 

marks between task 2 and task 1 are considered smooth given that task 2 starts when task 1 

finishes without any possibility of rework.   
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 Fig. 4.1. Process DSM without marks                                           Fig. 4.2. Process DSM with marks 

Therefore, the rule is to minimize the marks above the diagonal. A penalty factor is 

applied to differentiate the feedback marks according to their distance from the diagonal. 

The penalty equation is elaborated below applying the above DSM in Fig. 4.2. 

Given the fact that this example is of a small size, enumerating all the possibilities 

exhaustively is appropriate; (DSM size)! = 3! = 6 possible distinct arrangements are thus 

available. The DSM matrix resulted from the above ordering are shown below in Fig. 4.3 

where n demonstrates the number of marks above the diagonal and penalty is calculated 

using the below formula: 

1 

        

               

 

n =1         n=1          n=2     
p = 1×2 = 2      p = 1×1        p=(1×1) ×2=2 

  

   

 

  n=1          n=0          n=1    
   p= 1×2 =2       p=0          p = 1×1 =1

Fig. 4.3. Result of all possible solutions of a Process Matrix 

  1  2  3 
1        
2        
3        

  1 2 3
1     1
2 1    
3      

  1  2  3 
1       1 
2  1      
3        

  1  3 2
1     1  
3       
2  1     

  2 1 3
2   1  
1     1
3      

  2  3  1 
2       1 
3        
1    1    

  3  1 2
3        
1  1      
2    1  

  3 2 1
3      
2     1
1 1    
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 The analysis of the six possible solutions shows that the sequence of the fifth case 

(3, 1, 2) is the best solution where no above diagonal marks exist. The task process goes 

smoothly. Comparing the second solution with the last solution and assuming that the time 

for each task accomplishment is the same, we find that the penalty value for both is equal 

because the time loss of 1 waiting 3 is the same as 2 waiting 1.  

As the existence of feedback marks hold negative effect on the process domain, the 

aim of the objective function is to decrease the number of feedback marks. Hence, a simple 

number of the feedback marks will be considered instead of the penalty factor calculation. 

 

4.3. Optimizing the Team and Product Design Structure Matrix (DSM) 

 The crucial work of managers is to find appropriate ways to organize people and 

assign them work over time by enabling communication and synchronization actions.   

Team coordination and formation is indeed a crucial activity for any organization.  How to 

package products into modules is another issue the manager should think of. The aim is to 

find all combinations of clusters that could be generated and choose the best DSM 

arrangement. 

 Let us first calculate the number of possible combinations.  How many clustering 

arrangements are possible? Consider a 3×3 DSM i.e. a matrix with 3 elements: A, B, and 

C. A listing of 8 distinct combinations is shown in Fig. 4.4.  

Overlapping clusters in teams is justified since it is possible for a person to belong 

to multiple teams. This overlap, however, should not exceed a certain limit due to cognitive 

and time capacity limitations of a person. Yet, in the product domain, clusters are defined 

by the physical existence of their product parts; it is thus impossible to have products 
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existing physically in two different cluster modules. Symmetrical information is justified 

and is a must in both the team and the product domains. If a member is in contact with 

another team member, this relation is shared and hence the relation is in vice versa. 

Similarly with the product domain, if a component ‘a’ is physically related to another 

component ‘b’, then the inverse also holds true.  

  The options of ABC   
1  A  B  C
2  ABC     
3  A  BC   
4  B  AC   
5  C  AB   
6  AB  AC   
7  AB  BC   
8  AC  BC   
8 distinct cases     

 

Fig. 4.4. Distinct cluster combinations of a 3×3 DSM  

The different numbers of combinations can be obtained by using the Stirling 

number of the second kind denoted by S(n, k), which is the number of ways to partition n 

distinct objects into k nonempty subsets (Mohr, 2009). The numbers presented here were 

calculated using the following well-known recurrence: S (n, k) = S(n - 1, k - 1) + k * S(n - 

1, k) . Applying the formula below, the following possibilities are shown without allowing 

for overlapping.  

    

DSM size  3  4  5  6  7  8  ….  30 

# of all 
possible 

combinations 
5  15  52  203  877  4140  … 

~ 10^30 
(cannot be 
calculated) 

Fig. 4.5. Number of possible combinations  
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Given that it is common in an enterprise to have more than 30 employees or 

products, the calculation made in Fig.4.5 proves the impossible use of the exhaustive 

method and the need for a meta-heuristic search method instead.  With overlapping, the 

number of possible combinations will increase. 

 The objective is to find the cluster combination with the lowest cost. In prior 

research, Thebeau (2001) considered that the cost of interactions for outside clusters is 

higher than the cost of interactions inside the clusters. In this thesis, the interactions of 

outside clusters and the missing interactions in a structured team are both penalized. 

Having two persons in different teams who must communicate together is as worse as 

having members of the same team not communicating together.  This means that we shall 

not have scattered marks, and, as a second level, we shall not have teams or modules with 

elements not connected or related.  

The cost is then divided into outside cost and inside cost. Since we have assumed a 

symmetrical DSM, the upper part of the DSM is just treated in the calculations. The total 

cost is the sum of the number of scattered interfaces multiplied by the DSM size and the 

number of marks multiplied by the cluster size. The outside cost equals the outside number 

of feedback marks multiplied by DSM size; the inside cost equals the unavailable marks in 

a cluster multiplied by its size.  

Symmetrical matrices are used for the team and product domains where overlapping 

elements are discarded for the sake of simplicity. 
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4.4. Relational Rules among the Three Domains 

 After having elaborated on the meaning of the cost of each domain in addition to 

the way we used to calculate such cost, and in view of our studying the three domains 

simultaneously, we present the model below to illustrate the rules connecting the three 

domains together. The relational rules deduced from the domains will in turn improve the 

objective function and thus provide more precise optimal solutions. In the process domain, 

the persons in charge of each of the processes along with the tasks performed on each of 

the products are entered. The relations between the three domains are illustrated in Fig. 4.6 

hereunder as an anticlockwise navigation.  

 

We note that the navigation among the domains can take different forms as declared 

by Tyson Browning (2001) who indicates the dual direction among the three domains. The 

below arguments defend our choice in our thesis. The structure of the organization is 

related to the structure of the development process where process with coupled activities 

requires integrated executable team.  Furthermore, the product architecture can influence 

the team structure given the fact that the team is in charge of building the organizational 

products. In addition, a relation exists between the process and the product domain where 

the legacy development process overly constrains the design of unprecedented products.  
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Fig. 4.6. Rules relating the three domains 

 

4.4.1. The Effect of the Team Domain on the Process Domain (Rule 1) 

If a feedback exists between two different tasks where the latter is performed by the 

same resource or by resources that belong to the same team, then the feedback penalty must 

be reduced or removed completely. This penalty is reduced as the rework is done with less 

time because the resource (being the same or being in the same team) will have ease of 

communication and understanding of the problem faced.  The feedback loop will be also 

done with less time.  Nevertheless, if the persons involved are in different teams, then the 

rework due to feedback mark will consume further time to be noticed, understood and 

executed. This means that problem solving is easily done when individuals have a face-to-

face or a direct contact (Braha, 2002). 
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  Such feedback mark will be therefore maintained in the calculation to determine 

its negative effect on the system. This rule is defended in the literature.   Tyson Browning 

(2001) states that “[w]hen a process contains coupled activities, the organizational teams 

with responsibility for executing those activities require integration.” In addition, Braha  

(2002)  mentions that tasks that are strongly related must be assigned to the same team for 

an effective  overall cycle. People linked together must work on the same activities. 

(Lindemann, et al., 2009)  

4.4.2. The Effect of the Process Domain on the Product Domain (Rule 2) 

If an interface (i.e. a dependency between two components from different modules) 

exists between two components, and the tasks corresponding to these components are 

sequential (i.e. not involved in feedback), then the module interface penalty must be 

reduced or removed completely. The components on which feedback tasks are executed 

must be put together to blockade the rework in one module. Tang et al., (2009) consider 

that if a component is changed, the effect would be propagated to other modules. Hence the 

aim of this rule is to reduce this effect and limit it to one module.  For example, if an 

interface joins component ‘a’ and component ‘b’ (each being in different modules), and the 

process corresponding to each of the components is sequential, then this interface will be 

diluted because the said components are not related by the task executed on them. 

4.4.3. The Effect of the Product Domain on the Team Domain (Rule 3) 

If two or more persons work on common product clusters or work on one or more 

modules in common, then the interface penalty between these persons/teams is maintained 

and its existence is justified.  For example, if person A communicates with person B 
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without being in the same team, we test whether these two persons work on same modules.  

If they do, then the interface is maintained and justified because persons working on the 

same products need to communicate and thus be in the same team.  If, however, they work 

on different modules, the interface mark must be diluted given that there will be no reason 

for these two persons to communicate as long as they are not working on the same 

products. Lindemann, et al., (2009) defend this rule stating that people must cooperate in 

the same team if they are working on the same interrelated components.  

Traditionally, the three domains were treated separately and individually where a 

local optimization exists for each domain alone regardless of the others.  Our aim is to 

formulate a global optimal solution for the product development organizational problem. 

 

4.5. Overall Objective Function Calculation 

The objective function of the Product development organizational product is to 

minimize the sum of the team, product and process cost. The three relational rules relating 

the domains together are used in the OF calculation.  

               Overall Objective Function = ∑ Cost of domains……………………….. (eq.4.1) 

The following notations are used 

N× N = DSM size 
D  = # of DSM marks of the process domain excluding the diagonal marks 
F   = total # of feedback marks 
 Ԣ = Adjusted number of feedback marks due to the dilution effect of rule #1. The dilutionܨ

factor depends on a ratio between 0 and 1. This ratio is multiplied by the adjusted 
feedback marks. So, a ratio of 0 represents a complete dilution of the mark where as a 
ratio of 1 represents no impact of the rule.  

Ci  = Cluster size of cluster i where   1 ≤ i ≤ C 
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di  = # of marks in cluster i. Note that this number represents half of the matrix because the          
product and team matrix considered contains symmetrical data. 

I    = # of interface marks between clusters (outside cluster boundaries) 
 Ԣ  = Adjusted interface marks according to Rule 2(for product matrices) or Rule 3(for teamܫ

matrices). Note that the dilution ratio discussed above is applied in the above 
mentioned two cases. 

 

The cost value of the process domain is an interpretation of the existing feedback 

marks. As mentioned earlier, optimizing the process domain is a simple minimization of 

the number of feedbacks between the tasks. This is because the feedback between tasks 

leads to rework, and an extended time to accomplish the overall task is required 

accordingly. Yet, if a feedback exists between two members in the same team, then a 

dilution of the feedback mark is considered because the repetitive work is done easily 

among the same team members. The process cost is illustrated in equation (4.2) below:  

Process Cost = 
ிᇱ
஽

……………………………………………..  (eq.4.2)  

If a feedback mark exists between two tasks executed by members in the same 

team, then this feedback mark is diluted (Rule 1). This means that the value of justified 

feedback marks ܨᇱis equal to the number of feedback marks decreased by the number of 

marks diluted. In other words, if all the existing feedback marks are justified, i.e. executed 

by members in different teams, then the process domain cost will be 100%.  

       In optimizing the product domain cost, we aim to gather all the components 

dependencies in cluster modules and decrease the interface scattered marks existing among 

clusters. Each component must be assigned to exactly one module cluster. Less scattered 

marks lead to better results as long as the modules formulated contain related components. 

The interrelation between the process and the product affects the product cost in whether or 
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not the interface between components should be diluted (Rule 2). If an interface exists 

between two components where the tasks performed on these two components are in 

feedback, then the existing interface is justified.  In the event the tasks are in sequence, then 

the interface mark should be diluted. This applies similarly to the team domain. Yet, in this 

case, the impact of the product on the team domain is considered (Rule 3). If an interface 

exists between two members (not in the same team) working on different module 

components, then the interface is diluted.  In the event the unrelated team members work 

on the same module, then the interface mark should be justified. 

 Therefore, the target is to minimize scattered marks and maximize the inside 

connections. This is illustrated best in the equation 4.3 below. The maximum possible cost 

existing in a certain combination is formulated by equation 4.4 and the current cost is 

illustrated in equation 4.5.  This calculation targets half the matrix since the product and the 

team domains should be symmetrical matrices.  

Product Cost or Team Cost = ௖௨௥௥௘௡௧ ௖௢௦௧
௠௔௫௜௠௨௠ ௖௢௦௧

  …………………..   (eq. 4.3)    

maximum cost = ∑ ஼௜ ሺ஼௜ିଵሻ
ଶ

௖݅ܥ 
௜ୀଵ ൅ ሺ ேሺேିଵሻ

ଶ
െ   ∑ ஼௜ ሺ஼௜ିଵሻ

ଶ
ሻ  ൈ ܰ௖

௜ୀଵ …  (eq. 4.4)    

            current cost = ∑ ሼ ஼௜ ሺ஼௜ିଵሻ
ଶ

௖
௜ୀଵ  – ݀݅ሽ݅ܥ ൅  Ԣܰ……………………………. (eq. 4.5)ܫ

 The number of justified interfaces ܫᇱequals the number of interfaces that excludes 

the interfaces diluted due to the effect of the process on the product domain or the effect of 

the product on the team domain. Given that the cost in each domain is illustrated as a 

percentage value, the objective function cost ranges between 0 and 300.  The importance of 

normalizing each of the domain cost using a percentage representation for each domain is 

justified since it is the sum of the process, product and team cost of the three domains 
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together. Hence, we cannot add the cost of the three different domains that are generated 

from different meaning and calculation. A cost of value 50 in the process domain has a 

different meaning in the product or process domain. Moreover, if the size of one of the 

domains was larger compared to the other domains, then the calculation of the other 

domains will be negligible. Hence, the cost of the larger size domain will be leading the 

calculation diminishing the cost effect of the other two domains.  

The below three domains of Fig. 4.7 illustrate the team, process and product domain 

respectively. The “1” mark reflects the connection among the elements of the above DSM. 

The calculation of the OF for the following combination; team [A][B[C][D]; process [1 2 3 

4 5]; and product [a][b][c][d], is shown below. 

 

Fig. 4.7. Three domain example 

 As per equation 4.2, the process cost equals 1/6, i.e. 16.667%.  The number of 

justified feedback is equal to the number of feedback decreased by one (2 - 1). The 

feedback mark existing between task 4 and task 5 is diluted since it is executed by the same 

resource A, but the feedback mark existing between task 2 and task 5 is counted since the 

resources in charge of these tasks are not in the same team.  

As per equation 4.4 on the team domain, the maximum cost is 24 = 0 + 6×4. The 

current cost as per equation 4.5 is calculated by referring to the team/product DMM in 

Fig.4.8. The interfaces existing between “A” and “B, C, D” are diluted because they do not 
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work on the same component modules. As an example, Fig.4.8 shows that person “A” 

works on component “d” and person “B” works on component “c” where components “c” 

and “d” are not in the same module. Therefore, the interface between “A” and “B” shown 

in Fig. 4.7.a is diluted according to Rule 3. 

 

Fig. 4.8. Team/product DMM  

 However, the interface existing between “C” and “D” is not diluted since they both 

work on same component “b” as evident in Fig.4.8. The current cost is equal to 0 + 1×4. 

The team cost as per equation 4.5 is 4/24 = 16.667%.  

Similar calculations are applied for the product cost calculation. As per equation 

4.4, the maximum cost is 0 + 6 ×4 = 24. The current cost reflects the existing of scattered 

marks and nonrelated elements in a cluster. In this case, there exist just scattered interface 

marks. ܫԢ is subjected to Rule#2. The interface between “a” and “b” is diluted since the 

tasks performed on these components are not involved in feedback. Dilution also exists 

between “a” and “d” since task 3 does not involve a feedback with tasks 4 and/ or 

5.Similarly for the interface between “c” and “d”.   The product domain equals 0 /24, i.e. 

0% 

As per equation 4.1, the overall cost equals 16.667 + 16.667 + 0, i.e.  33.334% 

 The problem is then solved either by optimization in isolation or by simultaneous 

optimization of the three domains together. The solution of optimizing in isolation is shown 

in Fig.4.9. 

 



49 
 

 

 

Fig. 4.9. Solution of optimization in isolation 

 In this solution, it can be shown that in the team domain, member “A” and “B” are 

in the same team, similarly for “C” and “D”. However, it is true that there are two 

interfaces marks existing in the team domain but their negative effect is diluted the fact that 

“A” and “C” as well as “A” and “D” work on different modules. This is shown on Fig 4.8. 

Hence, the importance of these members to be in the same team is not recommended 

anymore due to the effect of the product structure.  This result with a team cost of 0. 

 In the process domain, the two feedback marks were decreased to one feedback 

mark with the following order of sequence: 1, 5, 2, 3, 4. This feedback mark is not diluted 

the fact that “A” and “C” are different teams. This means that the rework requires more 

time to be realized and the cost is 16%. 

In the product domain, component “a” and “b” are in the same module; similarly, 

for components “c” and “d”. The interface mark existing between “a” and “d” is diluted the 

fact that the processes in charge are sequential hence, there is no rework on the module and 

these two parts could be in separate modules. This results with a product cost of 0. 

Is there another organizational structure that might lead to a lower cost? The answer 

is positive and it is the solution of the simultaneous optimization shown in Fig. 4.10. 
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 Fig. 4.10. Solution of simultaneous optimization  

In simultaneous optimization, a zero cost structure of the three domains is obtained. 

In the team domain all members are in the same team except for member “B”.  The exiting 

interface between “B” and “A” is diluted the fact that these two members work on totally 

different tasks and modules. Thus, there is no need to have them in the same team, knowing 

that it is preferable to have team members working on related tasks or same modules.  

In the process domain, one feedback mark exists but the rework effect is diluted the 

fact that the rework occurs within the same team members (“A” and “C”). However, the 

fact that there is a coupled dependency between task 2 and task 5, this means that there is 

no possible order with zero feedback.  

In the product domain, a different distribution of components is structured where 

“c” and “d” are preferred to be in separate modules. Where the effect of the interfaces 

existing is diluted the fact that the processes in charge are sequential. This means that there 

is no need to have these components in the same module.  

After handling in CHAPTER 4 the formulation of optimizing the three domains 

simultaneously, we will display in CHAPTER 5 the implementation of the various search 

techniques.            
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CHAPTER 5  

   IMPLEMENTING THE SEARCH TECHNIQUES 

 

5.1. Search Technique Used in Simultaneously Optimizing the Three Domains 

          Optimizing the product, process, and team domains simultaneously is not a trivial 

matter, as all possible combinations must be enumerated and evaluated (i.e. exhaustive 

search) to guarantee getting the optimal solution. Computing all possible combinations is 

computationally prohibitive because it is restricted by time and computer memory. In this 

chapter, we propose a hybrid algorithm composed of heuristic and meta-heuristic 

techniques  will improve the search technique and  achieve, in less time, good solutions, if 

not optimal ones.  

           The best improvement and first improvement of the descent approach are used as a 

heuristic technique for one or for all of the three domains simultaneously. Moreover, two 

different cooling schedules of the meta-heuristic SA technique are used for all the three 

domains simultaneously. Note however, that SA is used in this paper instead of other meta-

heuristic techniques such as GA or Tabu search which did well in some areas, since this 

thesis includes a sequencing problem that SA showed successful results for many 

sequencing problems. Sample tests will be performed with and without simulated annealing 

in order to test the importance of using SA in retrieving the optimal solution without being 

trapped in local optimum. The cooling schedules of the simulated annealing adopted in our 

testing are discussed in detail. The first cooling schedule is that described by Osman and 

Christofides (1989) and known as the “New Cooling Schedule” (Osman, 1994). 
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             The second suggested schedule is an extension for the New Cooling Schedule 

where the idea of increasing the temperature is based on the fact that there are no benefits 

out of decreasing temperature further as a cycle occurs.  The model shown in Fig 5.1 is a 

suggested modified model of Osman and Christofides where the temperature is updated at 

the end of each cycle and not at every iteration. The term used to describe the new 

suggested model is “Modified Sequence Chain Length of the New Cooling Schedule.” The 

factor of update of temperature will stay the same as implemented in the New Cooling 

Schedule. As a cycle is done without improvement, the temperature value is reheated 

according to the following rule. If the temperature value, as the cycle finishes, is greater 

than half the initial temperature, the temperature is reset to a value where the latest 

improvement is recorded. However, if the temperature value at the end of the cycle is less 

than half of the temperature, the temperature is reheated to half the initial temperature. The 

temperature reheating technique will ameliorate the search process and will stop the 

unnecessary temperature decrease when there is no improvement in a certain cycle. 

Reheating is allowed twice, and as two consecutive cycles hold no improvement the search 

is stopped. 
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Fig. 5.1. Modified sequence of the Osman and Christofides cooling schedule 

 

The pseudocode of the “Modified New New Cooling Schedule” (Table 5.1) is 

similar to that of the New Cooling Schedule with the difference on the occurrence of the 

update temperature.  
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Table. 5.1. Modified New Cooling Schedule Model 

Step 1: 1.1 Assign values for Tinitial, Tfinal, decrement value, Change flag set to true, # of reheat 
times = 2 and  # of max consecutive unchanged cycle =2. 

            1.2 A random solution of process is generated, each elements of the product and team 
domain is put in a separate cluster. This combination is named X. 
            1.3 The OF value of the above initialized solution is calculated and saved as the best saved 
solution. 

Step 2: While stopping criteria are not achieved, (T > Tfinal or # of no change consecutive cycle ≠ # 
of max allowable no change consecutive cycle) 

           Do  
            2.1 If no improvement is recorded in a full cycle 
              Yes: 
                   2.1.a If maximum number of reheating times is reached, stop step2.   
                            Else: Increment the number of consecutive unchanged cycle attribute 

        Reheat the value of temperature 
                                           1. Initially: Treset = Ts 
                                           2. A cycle is detected:  
                                                        Treset = Treset/2 
                                                        Test if: Treset > Tk,  

                                                                         Yes:  Tk+1 = Treset 
  No:  Tk+1 = Tfound 

         Increment number of reheat time occurrence 
   No: Go to step 2.1.1 

               No: Go to step 2.1.1 
            2.1.1 Perform the loop for each of the three domains and set Change flag to false initially 

2.1.1.1 Using the interchange swap on the three domains, three neighboring 
solutions (X’) is executed for each iteration 

2.1.1.2 Compute ∆ = f(X’) − f(X) 
2.1.1.3 If ∆ < 0 or worse solution was accepted, then the combination is saved as 
the best attribute and change flag = true. (X = X’) 
2.1.1.4 Back to 2.1.1 till the loop finishes.  

2.1.2 Temperature decrement by factor of α = 0.85. 
          Back to step 2 
Step 3: Return X. 
 

 

While applying one of the SA cooling schedules, the parameters of the SA are calculated in 

the following way: 

 

- The variables of the probability function P = 1 - ∆ /T are assigned in the following way. 

∆ is achieved by getting the average of the OF value by running a separate run of the 

problem for a 20,000 number of iterations. The separate run uses the best improvement 
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descent approach of all the three domains simultaneously. With an assumption of 

probability 0.85 and the value of ∆ calculated, the T value is then obtained. Given the fact 

that ∆ is in range of 0 to 300 for all size problems, the temperature is then multiplied by 

the sizes of all three domains. In this way, the temperature shows the problems 

characteristics. 

- Number of reheating times = 2 

- Number of unchanged consecutive cycles = 2 

- Final temperature must be greater than 1  

- The neighborhood generation is executed using the swapping method as shown below:  

Neighboring Swap: The cycle size of (n)(n-1)/2 ways where n is the size of the domain. 

1) In the process domain: Select a neighboring Sq’    N(Sq) = { Sq’ by exchanging i 

and j positions  and looping on the indexes  i and j where i < j and  i: 1 till size -1  

and j = i +1 till size}. 

 Let us consider 1, 2, 3 are the jobs to be executed. The swapping sequences cycle 

will be:  

 (2 1 3), (3 2 1) and (1 3 2).  

2) In the team/product domain: consider each element in a cluster by itself then the 

cycle starts by swapping each element in the other set. For instance, if a team of 4 

members A, B, C, D is considered, every element is initially set in a separate cluster 

[A][B][C][D]. The neighboring generator proceeds then as follows: [AB][C][D], 

[AC][B][D], [AD][B][C], [A][BC][D], [A][BD][C] and [A][B][CD] 

If [AC][B][D] is found to have the lowest OF, then the two elements are merged as 

if they were one element and the cycle restarts again. 
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  Ten different promising heuristic and/or meta-heuristic approaches are defined for 

optimizing simultaneously the three domains. The performance of each approach is tested 

by comparing its results to the optimal result obtained by the exhaustive search method 

described below.  

1. BIC: Applying the best improvement descent method on the process domain while 

constructing the team and the product domain. 

2. FIC: Applying the first improvement descent method on the process domain while 

constructing the team and the product domain. 

3. BICSAEC: Applying the best improvement descent method on the process domain while 

constructing the team and the product domain implementing SA modified new cooling 

schedule.  

4. FICSAEC: Applying the first improvement descent method on the process domain while 

constructing the team and the product domain implementing SA modified new cooling 

schedule.  

5. 3DBI: Applying the best improvement descent method on the three domains. 

6. 3DFI: Applying the first improvement descent method on the three domains. 

7. 3DBISAEC: Applying the best improvement descent method on the three domains using 

SA new modified cooling schedule. 

8. 3DFISAEC: Applying the first improvement descent method on the three domains using 

SA new modified cooling schedule. 

9. 3DBISAEI: Applying the best improvement descent method on the three domains using 

SA new cooling schedule. 

10. 3DFISAEI: Applying the first improvement descent method on the three domains using 

SA new cooling schedule. 
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The characteristic of each of the 10 approaches is shown clearly in Table 5.1. 
Table. 5.2. Various Characteristic of the 10 different approaches used in the analysis 

 

 

The approaches adopted are discussed in detail where the example of Fig.5.2 is referred to 

through defining the search methods: 

Fig. 5.2. Three domain example used to describe ten approaches 

 

5.1.1. Exhaustively Evaluating all Possible Combinations of the Three Domains 

Simultaneously 

Three lists of all possible combinations of each domain are enumerated. The 

process list contains DSM size! Ways.  In the java code a combinatorial library is used to 



58 
 

enumerate them all. The process in Fig. 5.2 is of size 3; there are 3! = 6 different ways for 

the tasks to be executed. The product and the team domain list size are computed using the 

Stirling equation. If Team T is of size 3, then there exist 5 distinct partitions; if product 

PDT is of size 4, then there exist 15 distinct partitions. The partitions of the combinations 

of the team and product domain are obtained in Fig. 5.3 in the last horizontal line for a 

domain of n = 3 elements. 

The partitioning approach of set S = {T1, T2, T3..Tk} must satisfy simultaneously 

the following three conditions (Nijenhuis, 1978): 

  1) Ti  Tj =   (i  j) 

  2)  

  3)  Ti  (i=1,…..,k) 

   

Fig. 5.3. All possible partitions of a set of size 3 

The above diagram shows how the partitions are formulated for a given n element 

example. The tree is first divided into n+1 levels where the first level is empty by default. 

Each level is made of k sets and each set is made of p partitions. In each level from each 

set, a p+1 descendants are formed. The descendant is built by adding the n+1 element value 

to each  of the sets and to the already existing partitions and to a separate partition each one 
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at a time, i.e. at level n=2, there are two sets (1)(2) and (1,2)  which are made of 2 and 1 

partitions respectively. The descendants of the set (1)(2), which is made of 2 partitions, are 

3 sets where the value n=3 is added to each of the  sets. The sets of the nth level hold all the 

possible combinations of the domain.  

 The exhaustive search tackles the problem using the search approach shown in Fig. 

5.4 where the number of computations done is equal to:  

 

If domains T, S and PDT of example 5.2 are considered, then the size of all possible 

computations is 450. For each combination, the objective function is evaluated and a cost 

value is assigned. Combinations with the lowest cost are saved as being the optimal and are 

referred to in evaluating the effectiveness of the approaches assumed. 

 

Fig. 5.4. Exhaustive search of all possibilities 

 



60 
 

5.1.2. Applying the Best Improvement Descent Method on the Process Domain while 

Constructing the Team and the Product Domain (BIC) 

 The descent approach is used to improve the solution heuristically as illustrated in Fig. 5.5. 

                Fig. 5.5. BIC flowchart 

 

The descent approach is applied to the process domain where the neighboring 

generator has used the swapping technique already defined. Initially, the following should 

be performed:  

Step 1: Generate a random sequence (Sq) of the process. (Ex. 1 3 2)  
Step 2: Construct an associated solution of the Team domain Ta (Sq) and Product domain 
Pa (Ta ,Sq).   

The constructive heuristic of the cluster of the team domain is done as follows:   
1. Consider every element of the team a cluster by itself. 
2. Check for feedback marks in the upper triangle of the process matrix. 

2.a When a feedback mark is detected, check the team members corresponding to 
this task. 

2.a.1 If   number of team members > 1, then assign team members in the 
same cluster. 

2.a.2  Repeat step 2 till no more feedbacks are detected. 
      3.    Delete common clusters. 
      4.    The cluster matrix obtained should be made of a maximum of T size clusters.  
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After constructing the team domain according to a specific sequence of processes, 
the product domain is constructed. 
DMM team/product domain is represented from the beginning as shown below: 

 

 

 
 

 
1. Analyze the team cluster combination and group the products accordingly. If A and 

B are in the same cluster, then the products corresponding to A and B must be in the 
same module. This is implemented by ORing the row of A by row of B. The result 
of (1 0 1 1) or (1 0 1 0) is ( 1 0 1 1). This means that the first cluster of the product 
contains components a, c and d altogether. 
 

2. Repeat step 1 until all the clusters of team domain are tested. 
 

3. Delete common module clusters. 
 

 Step 3: Compute the total current cost f(S) of the overall objective function of  
             (Sq U Ta U Pa);  
Step 4: Save the current solution as the best solution obtained; Sc = S. (executed initially)  
Step 5:  Generate neighboring tasks by using the interchange improvement method until all 
the cycle is executed. 

Select a neighboring Sq’   N(Sq) = { Sq’ by exchanging i and j positions  and 
looping on the indexes  i and j where i < j and  i: 1 till size -1  and j = i +1 till size}. 
 Let us consider 1, 2, 3 are the jobs to be executed. The swapping sequences will be:  
 (2 1 3), (3 2 1) and (1 3 2). These are three ways to be considered.   

Step 6: Construct Tr (Sq’) and Pr (Ta ,Sq).   
Step 7: Compute f (S’ = Sq’ U Pr U Tr ). 
Step 8: If f (Sq’) < f (Sc),  
            Yes: Accept Sq’, set Sc = Sq’, update the best solution, save the best sequence 
accordingly, set the change flag, and go back to step 5. 
            No: Back to step 5 
Step 9: Test if an improvement change occurred in a specific cycle:  
            Yes: Step 10 Update current sequence with the best sequence  
                     Change flag = false, back to step 4 to reinitialize a new cycle with the 
combination of the best improvement.  
            No:  Step 11 The best value combination is achieved 

 

This constructing method started by applying the descent improvement on the 

process domain while constructing the team and the product domain accordingly. However, 

through computations, if the descent improvement method started by the team or the 

TEAM/PRODUCT  A  B  C  D 
A  1    1   1 
B  1    1     
C  1   1      
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product domain and constructed the other accordingly, the results obtained were similar. 

Thus, the choice of the initial domain holds no difference on the quality of solution. 

Moreover, the initial solution was generated randomly abiding with the literature review 

findings of Osman (1989) where the random search shown to give surprisingly good 

results.  

 
 
 

5.1.3. Applying the First Improvement Descent Method on the Process Domain while 

Constructing the Team and the Product Domain (FIC) 

 

Fig. 5.6. FIC flowchart 
 

The difference between the FIC and the BIC is that the first improvement descent 

approach is considered a greedy method that accepts directly the first best solution 

obtained.  The flowchart in Fig. 5.6 illustrates the steps of this method. There is no need to 
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continue a specific cycle when an improvement is detected. This approach is considered 

cheaper where less iterations are made. 

 An example of a process of size 4 is considered. If the random sequence is (1 3 2 4) 

with an OF cost value = 61, then the indexing will first start with i=0 and j =1 i.e. by 

swapping 1 and 3. The new arrangement will be (3 1 2 4) with an OF cost value = 41 which 

improves the result as 41<61.  The new arrangement is accordingly saved with the indexes 

in order to continue the swapping from this arrangement without repeating already testing 

indexes.  The new swapping will occur with i=0 and j=2 on the improved arrangement 

which is (3 1 2 4) and not (1 3 2 4).  Therefore, the next arrangement will be (2 1 3 4).  The 

steps of this method will go similarly as the previous one except for the indexing and the 

generation of sequences. 

 

5.1.4. Applying the Best/ First Improvement Descent Method on the Process Domain 

while Constructing the Team and the Product Domain Implementing SA Modified 

New Cooling Schedule (BISAEC & FISAEC) 

 

The modified schedule of the New Cooling Schedule suggested by Osman and 

Christofides is adopted in this approach. Fig. 5.7 below illustrates in detail the flowchart of 

the modified new cooling schedule. 
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Fig. 5.7. Simulated Annealing flowchart of the modified cooling schedule 

 

Recalculation of the new neighboring candidates of the three domains X’ is done 

and the result is compared to the best solution saved. The three neighboring candidate is 

obtained through applying the first/best improvement heuristic descent method on the 

process domain and heuristically building the team and product domain. If the move to the 

three generated neighborhood gives a better objective function value (less  than the best 

saved value) where  ∆ = f(X’)−f(X) is < 0, then the move is always acceptable and the 

neighborhood generated  is saved as the best combination with a new best cost value. Yet, 

if an increase in the objective function (∆ >0) is found and the new cost is greater than the 

best cost value, then the solution will be accepted with a probability function P = 1 - ∆ /T 

allowing the move to avoid a trap in a local optimum. T is a temperature parameter that 

varies from a relatively large value to a small value close to zero with occasional 

temperature increase when a cycle with no improvement is determined. The number of 
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iterations k, to be performed at each temperature, represents the number of swaps 

performed on the process domain and differs with the process size and data. 

The reheating temperature increase should not be that high in order not to escape 

from the local minimum and not to deviate much as if a total new random sequence is 

restarting. Note that the number of iterations in this case is high given the fact that the 

temperature is updated whenever a cycle finishes. Still, two stopping scenarios are taken 

into account as a trade-off between the quality of the solution and the computation time: (i) 

when no improvement occurs for two consecutive cycles of k iterations or (ii) when two 

reheatings of the temperature occur. 

 

5.1.5. Applying the Best /First Improvement Descent Method on the Three Domains (3DBI 

& 3DFI) 

What differs in this approach is that the descent approach is applied to the three 

domains simultaneously. Hence, there exists three cycles simultaneously for the three domains 

as shown in Fig. 5.8.Initially, the OF of the following combination is calculated where the 

sequence process is executed randomly and each element of the product and team domain is in 

a separate cluster. The value calculated is retained as the temporary best answer.  

Then, the loop of generating neighborhood in the three domains starts by the 

process domain then team and product domains respectively. The flowchart of Fig.5.8 shows 

the steps of the loop in detail.  The three cycles function simultaneously, as the cycle of the 

process runs the cycle of the team, and then the cycle of the product proceeds.  As the cycle of 

the product finishes without any improvement, the team cycle proceeds. And then if the team 

cycle finishes without any improvement, the process cycle continues. However, at any stage, 

if an improvement occurs in a cycle, then the cycle restarts from the best improvement 
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combination recorded. At each iteration, the OF is calculated and compared to the best 

solution attained. As the cycle comes to an end, the best combination is saved and will hold, if 

not the optimal, the near optimal solution.  

The above-mentioned steps are applied in the best improvement descent method.  

The first improvement method, however, follows the same steps with the difference that as an 

improvement is caught, the cycle continues on the latest improved solution.  

  Fig. 5.8. Flowchart descent approach on the three domains simultaneously 

 

Applying the best/ first improvement descent method on the three domains using 

SA new modified cooling schedule. (3DBISAEC & 3DFISAEC) or using SA new cooling 

schedule (3DBISAEI & 3DFISAEI) follows the above detailed procedure with the 

temperature being updated at every iteration for the new cooling schedule and after each 

whole cycle for the modified new cooling schedule.  
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After handling in CHAPTER 5 the details of the ten implementation techniques 

used in the optimization of the three domains simultaneously, CHAPTER 6 shows the 

analysis of six hundred random test instances using these ten methods in order to 

recommend a single approach.        
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CHAPTER 6 

   COMPUTATIONAL RESULTS 

6.1. Overview  

Chapter 6 assesses the effectiveness of the developed approaches and sheds light on 

the performance of each approach. We start by describing the data set used for testing the 

ten approaches. Then an analysis of performance is presented in terms of the percent 

deviation of each approach compared to the best known solution and to the CPU time 

needed to run each approach. Other analyses are also presented to help choose the best 

method for solving this NP hard problem.  

 

6.2. Data Generation 

Table 6.1 shows the 15 different size problems used in the testing process where 4 

different instances of each size is generated and each instance is run 10 times. This results 

in 40 runs for a specific size example and a total of 600 (40 ×15) different runs.  

The DSM data (i.e. size and density) of these examples were generated randomly 

where the size of each was generated between 2 and 20. The examples were thus classified 

into small (sum < 15), medium (sum < 30) and large (sum ≥ 30) types according to the sum 

of the sizes of the three domains. The density of each DSM domain (team, process and 

product) was also randomly generated as shown in Table 6.1. The overall percentage 

shown is the average of the domain density percentages: team, process, and product. The 

value of this percentage is used to classify the examples into low, average and high density 

types according to the following percentage intervals: [0, 50[, [50, 75[and [75, 100]. 
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The percentage density is the ratio of the number of existing marks to the maximum 

possible marks. Moreover, the resource allocation in the process domain is the average of 

the number of teams allocated on the four instances of a specific size. Hence, if a 3×3×4 

example (team size × process size × product size) is considered, the average of the number 

of teams on the process domain of the four instances {3×3×4 (1), 3×3×4 (2), 3×3×4 (4), 

and 3×3×4 (4)} corresponds to the value  displayed in the column of resource allocation.  

Similar calculation is used for the process allocation on components.   

 

Table. 6.1. Input Data 
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6.3. Optimization of Domain in Isolation versus Simultaneous Optimization 

 Before delving into the analysis of the selection of the best approach, it is necessary 

to visualize the range of the effectiveness of the calculation derived. Is the solution 

retrieved by optimizing each domain alone worse or better than optimizing the three 

domains simultaneously?  

The 60 different examples of 15 different sizes were run using two methodologies. 

First, the optimization in isolation procedure included the partitioning and sorting method 

for optimizing the process domain; Thebeau (2001) approach was used in optimizing the 

team and the product domain. However, the overlapping criterion was not adopted in this 

case given that overlapping is not justified in our calculations. Second, the 10 approaches 

developed were simulated for the 60 examples, and the best answer achieved was recorded 

and compared to the solution of optimization in isolation.  

                            

Fig. 6.1. Performance percentage of simultaneous optimization versus optimization in isolation 
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As shown in Fig.6.1, the simultaneous optimization performs better than the 

optimization in isolation for 78% of the time, while the other 10% gave equal results, and 

just for 12% the optimization in isolation recorded better outcomes.  This signifies the 

importance of the method developed, but the question remains: which of the 10 approaches 

should be selected? 

 

6.4. Factors of Analysis  

The effectiveness of the approaches developed is tested by the following factors as 

discussed below: 

(i) Relative deviation ratio of the best, worst and average solution; 

(ii) Required CPU time; 

(iii) Size of the problem (team, process and product domain); and 

(iv) Density of data generated. 

 

6.4.1. Relative Deviation Ratio (RD) 

To measure the effectiveness of each method and its performance the RD ratio is 

used.  The formula applied to calculate this ratio is:  

                     RD = ൝
௩௔௟௨௘ି௢௣௧௜௠௔௟

௢௣௧௜௠௔௟
           ሺ݈ܽ݉݅ݐ݌݋ ് 0ሻ

݁ݑ݈ܽݒ െ ݈ܽ݉݅ݐ݌݋ ሺ  ݈ܽ݉݅ݐ݌݋ ൌ 0ሻ
 

 The optimal value is the reference to which the best, worst or average solution is 

compared to. This value is equal to the best solution found throughout the simulation of the 

10 approaches.  

If the value is equal to the optimal, then the RD = 0, and this is the best result 

obtained. However, as the RD increases, the quality of solution decreases, reflecting the 
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high deviation from the optimal solution.  This ratio, nevertheless, could be greater than 1 

since for zero value optimal the deviation of the result is considered instead of the ratio. 

Appendix-B1 shows the average RD of the best, worst and average solutions of 15 sets, 

made of 4 different instances each and run for 40 times on 10 different approaches.  A 

graphical solution of the RD is shown in Fig.6.2. 

 

Fig. 6.2. RD ratio of the 10 approaches  

 

As a first glance on this graph, it is clear from the data shown that the “3DBISAEC” 

holds the most promising solution. This is because it has the lowest RD values for the best 

(0.08), worst (3.65) and average (1.4) solutions. 

Yet, the descent approach gives further promising results than the constructive 

methods. This is because the RD values of the first six methods upon using the 

improvement heuristic are less than the RD values of constructive approaches. This was not 
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surprising given that the constructive method is hard to formulate although a cheap and 

quick approach.  

Simulated annealing enhanced the result of the improvement methods approaches 

while worsening the solution of constructive method approaches. This is shown by 

comparing the RD of the 3DBI or 3DFI approaches to the other four methods using either 

the SA cooling schedule of Osman and Christofides or the Suggested Cooling Schedule in 

this thesis.  

Table 6.2 shows the ranking of the approaches according to their RD.  The lowest 

RD values are recorded first by “3DBISAEC” and second by “3DBISAEI”. This indicates 

the high quality solution of these approaches.  

 

Table. 6.2. Ranking approaches according to RD 

 

 

6.4.2. Required CPU Time 

The target of our work is not just a quality of the solution but rather a tradeoff 

between the quality and the CPU time required. The CPU time is measured by the number 

of iterations needed for each approach. The average of the 40 runs of each set of the 15 
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examples is shown for each approach in the rows of the table in Appendix-C1. The average 

of all the 600 runs is displayed in Fig. 6.3.  

 

 

Fig. 6.3. Average of the number of iterations of 600 runs 

 

The highest number of iterations is recorded by the “3DBISAEC” which showed 

the best approach for the previous criterion. This high value, which is higher from the 

second higher iteration by about 99.5% limits the choice of this approach.  

 

6.4.3. Size of the Problem 

Does the size of the problem affect the solution and thus the choice of the approach 

to be selected? The problems handled are divided into three categories: small, medium, and 

large. The analysis of the solution quality from the RD view and the CPU time is repeated 

taking the size of the problem into consideration. 
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The ranking of the approaches is repeated for the three different categories and the 

result is shown in the Table 6.3. The results match perfectly with the overall solution.  The 

fact that the first two methods selected are still “3DBISAEC”and “3DBISAEI” for the three 

categories, indicates that the approach selected is irrespective of the size of the problem.  

                      Table. 6.3. RD ranking approaches according to problem size 

 

    *The “or” indicates the same ranking for approaches 

 

Does the CPU time vary with the size of the problem? As per Appendix-C1,   the 

number of iterations varies with the size of the problem. 

Table 6.4 shows that as the size increases, the number of iterations increases with 

approximately the same percentage distribution.  Hence, the “3DBISAEC” and 

“3DBISAEI” ranks the first and second place respectively with a high difference between 

them. 

Table. 6.4. Percentage average of iterations according to size type 
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6.4.4. Density of Data Generated 

According to Table 6.1, the categorization of the 15 examples into high, low or 

average density (as shown in the last column) is taken into account to check whether the 

density of problems affects the approach selected. 

The average of RD of each category is shown in Appendix-B3. However, a similar 

ranking of the approaches is calculated, and the result is shown in Table 6.5. 

Table. 6.5. RD ranking approaches according to density type                                             

 

 

 From the information at hand, it can be deduced that the data density of the 

problem holds the same result and analysis as the size criterion, thus does not affect the 

approach selection of the best two methods. 

 It can be shown, moreover, from Table 6.6 that the number of iterations varies in 

the same percentage from one approach to the other. The ranking of the approaches 

remained the same. “3DBISAEC” has the highest average percentage of iterations followed 

by "3DBISAEI”.  

 Therefore, it can be deduced that the density of data is not related to the number of 

iterations performed on each approach. 
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Table. 6.6. Percentage average of iterations according to density data type 

 

 

6.5. Selected Approach 

 Is the benefit of the value obtained by “3DBISAEC” at the cost of the time and, 

accordingly, the number of iterations? 

To answer this question, various tests are done. Set 6×7×6 of the third instance is 

used as n example. This choice is justified because the “3DBISAEC” approach scored in 

that case the best solution that neither of the other methods could reach. The number of 

iterations of each approach is shown in the second column. The average iterations of 10 

runs of the 6×7×6 set of the third instance is as displayed in Appendix-C2. 

Equal time for all approaches is assigned, and a normalization of the other 9 

approaches with respect to “3DBISAEC” is made where the running time for each is set 

forth in the second column of Table 6.7.  
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Table. 6.7. Normalizing the time factor of the 10 approaches for the 6×7×6 (3) example 

 

 The results show that the constructive methods were never able to achieve the best 

found result. This is another indicator proving that the constructive approach is not efficient 

in optimizing the three domains simultaneously.  It is thus considered a dirty and cheap 

method. 

However, improvement approaches, whether with or without simulated annealing, 

are able to achieve the best found result for more several times as shown in the frequency 

column in Table 6.7. The highest frequency was nevertheless recorded by the “3DFI” 

approach.   

In addition,   it is necessary to visualize the effect of the number of iterations on the 

quality of the solution. 
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                 Fig. 6.8.The effect of number of iterations on the quality of solution 

 

 Fig. 6.8 shows that the approach with the highest number of iterations leads to 

better results except for the “BISAEC” and “FISAEC” approaches where the simulated 

annealing applied did not enhance the quality of the solution.  This was due to the low 

number of iterations of the constructive method where worse solutions were accepted 

highly in the early stages hence in most of the iterations.  

Fig. 6.9 shows the overlapping of the exponential trend line of both figures. The 

exponential trend line of the number of iterations shows that the improvement approaches 

record higher than the constructive approaches. The “3DBISAEC” records the highest 

value down till “FI”.  The exponential trend line of the relative deviations shows that the 

best solution achieved is the most expensive approach, i.e. “3DBISAEC” in this case. The 

approaches are displayed from left to right showing the decrease in the quality of solution.  
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The intersection point demonstrates that the “3DFI” approach was chosen to be a tradeoff 

between cheap and dirty approaches versus more accurate but expensive approaches. 

 The quality of solution achieved by one“3DFI”run is less than “3DBISAEC”, 

“3DBISAEI” and others. Still, if this approach were run for equal time as in the most 

expensive method, it would find the solution of 33 times. This indicates that approximately 

10% (338/33) of the time run by “3DBISAEC”would guarantee the best found solution to 

be achieved by the “3DFI” approach and with less number of iterations and less time. 

 

            Fig. 6.9.The recommended trade off approach 

Finally, simulated annealing showed benefits in improvement heuristic approaches 

but still did not do well. This might be due to a miss of the best solution when worse 

solutions were accepted and due to the absence of parallel memory savings. Thus, the 

combination of simulated annealing with other artificial intelligence heuristics (such as 

tabu search or genetic algorithm which are beneficial in individual optimization [Osman, 

1994]) might as well enhance the solution quality of a global optimization.   
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CHAPTER 7 

                CONCLUSION 

7.1. Summary 

 Organizations are defined by their team structure and their ability to execute product 

development processes in a certain sequence to produce salable products to meet the 

market needs and growth. Up to this point of time, organizations seek an individual and 

isolated optimization of each of the product, process and team domains.  The main goal of 

this thesis, however, as shown in CHAPTER 1, is to formulate a global optimal solution for 

the product development organization problem. CHAPTER 2 includes a literature review 

of the design structure matrix and the existing optimization techniques used. Moreover, 

CHAPTER 3 describes the heuristic and meta-heuristic search methods and models used in 

the literature as well. 

 CHAPTER 4 illustrates the work to formulate the simultaneous optimization of the 

three domains using a multi-domain DSM model and to build three relational rules of inter 

and intra dependencies within and between the domains. Moreover, CHAPTER 5 describes 

the ten hybrid methods combining heuristics and meta-heuristic techniques to solve large 

size problems. The performance of these ten approaches is tested in CHAPTER 6 which 

includes the analysis of six hundred random test instances with the most recommended 

method being the “3DFI”. This method shows a tradeoff between the quality of the solution 

and the required computational CPU time. Constructive approaches are shown to be less 

performing than the improvement descent ones where the latter results are enhanced by the 

use of simulated annealing. Finally, a software code using JAVA is designed in a user 
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friendly interface to compute the results achieved by the ten different approaches in an 

excel format file. 

7.2. Limitations and Weaknesses  

Several limitations might be faced while implementing the global optimal solution. 

These are, among others: The required data for the three domains may be unreachable or 

inaccurately collected;  

1. The relational rules among the three domains are   not detailed; and 

2. The dilution of interface and feedback marks is over estimated.  

The weaknesses faced while simultaneously optimizing the three domains include, 

without limitation:  

1. The analysis is performed over a limited size range examples (0, 20). 

2. The recommended approach is based on the result of one testing instance example 

due to time limitation. 

3. Data are randomly generated and do not reflect real case situations. 

 7.3. Recommendations for Future Work 

The following steps are recommended:  

1. An added value option in the software should be developed to retrieve the 

information directly from the organizational database to   minimize the error margin 

in collecting data and decrease data time collection. 
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2. The amount of dilution of the relational rules is entered as a number between 0 and 

1. Hence, this amount should be tested and assigned in later research.  

3. The relational rules should consider penalty on the size and number of the clusters 

formed as well as on the number of resources and processes mapped to the process 

and product domains respectively.  

4. More rules should be formulated through extensive analysis of the inter and intra 

dependencies among the three domains. 

5. More examples of larger sizes (> 20) should be tested to guarantee the correctness 

of the selected approach. 

6. Real case example should be tested to acquire the real work benefit. 

7. Further testing should be done on the way the initial solution of the three domains is 

generated; this is because few examples are tested with an initial solution equal to 

the optimal solution retrieved by optimizing each domain separately and resulted in 

placing all elements in one cluster. Due to the fact that the initial optimal solution is 

mainly consisted of high cluster formation and the neighbourhood generation 

method used in this thesis tries to build clusters rather than to destroy. Refer to 

Appendix-E for details.  

8. Parallel implementation of several meta-heuristics approaches should be 

implemented, such as combining both simulated annealing and tabu search. 

9.  Improving and/or promoting the appearance of the software interface to show the 

result in matrix rather than in English form. 
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 APPENDIX 

 

APPENDIX - A 
 
SOFTWARE MANUAL 
 

1. Run the .bat file. 

2. The below window is shown. Click for a simulatneous optimization of your 
organization structure. 

 

 

 

3.  Browse your excel file and click on next. 
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• Note that just excel file is accepted, the next button is frozen in case other 

file extension is chosen. 

 

The format of the excel file should have 3 sheets in the following ORDER: Team, Process 

and Product respectively. The file sheet should start entering the data from the first column 

using the first cell A1 to weight the domian between 0 and 1. The titles should be added 

horizantally and vertically. The additional information in the process (specifiying the team 

member for each task)and the product domain (specifying the task to be executed on this 

component) should be added accurately where the data entered must be an existing element 

in the problem. No extra information should be added in the sheet else an error occurs.  

 
Here is a snapshot of team process and product excel sheets: 

 
Fig. A.1: Team Excel Sheet 
 
 

 
Fig. A.2 Process Excel Sheet 
 

 
Fig. A.3: Product Excel Sheet 
 

Note that the higher weight of the team (1) than the weight of process and product 

(0.5) indicates that the effect of the rules on the team domain is reduced compleletey 

while other rules are reduced by half. 
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4. Select one or more of the approaches described and click on optimize button. 

 

 
• Select all applies all the methods including the exhaustive method 

 

5. If the information was entered correctly a window is shown indicating that  an excel 

file with the naming:DSM Optimization Result of “fileNameExported”+time in 

millisecomds.xls is created in the location where the software is found.  

 

This file includes the input data of the process, product and team domains with sheet for 

every method selected. This sheet contains the optimal solution cost and combination 

achieved for every selected approach. The result is shown in an  english plain text instead 

of a matrix model. The “;”  enumerates the elements of a cluster where as “:” announces a 

new cluster formation. For example, if the optimal solution for the team domain was 
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[A;B;E:C], this means there are two cluster teams. The first includes A, B and  E and the 

second has just member “C”.  

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 
 

APPENDIX- B 

AVERAGE RELATIVE DEVIATION 
 

APPENDIX- B1 

High Level Data 
 

 
*Average Relative Deviation of the best, worse and average solutions of 15 examples 

*Each example is the average of four instances which is simulated 10 times.  
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APPENDIX- B2 

Detailed Level Data 
 

* Average Relative Deviation (RD) of the best, worse and average solutions of 60 examples 

*  Each example is run 10 times 
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* Average Relative Deviation of the best, worse and average solutions of 60 examples 

    * Each example is run 10 times 

 

 

APPENDIX- B3 

RD Classified by Size and Density 

 
* Average RD classified by size and density of 60 examples. 
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APPENDIX- C 

AVERAGE ITERATIONS 
 

APPENDIX- C1 

 High Level Data 
 

 
         * Average of iterations of 15 different examples on 10 different approaches 
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APPENDIX- C2 

Detailed Level Data 
 

 
 

* Average of iterations of 60 different examples (for 10 runs) on 10 different approaches 
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 * Average of iterations of 60 different examples (for 10 runs) on 10 different approaches 
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APPENDIX- D   

VARIOUS SOLUTIONS OF A ROBOT CODE  
 

APPENDIX- D1 

DSM Domains Structure 
 

 
    Fig.D1.1: Organization structure DSM 

 

 
      Fig.D1.2: Product structure DSM with the corresponding processes 
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     Fig.D1.3: Process structure DSM with the corresponding teams 

 

 

 

APPENDIX- D2 

Starting from an Optimal Initial Solution 

 
Fig.D2.a: Optimal team domain (Optimal initial solution) 

 

 

 

 



96 
 

 
Fig.D2.b: Optimal product domain (Optimal initial solution) 

 

 

 
Fig.D2.c: Optimal process domain (Optimal initial solution) 
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APPENDIX- D3 

Starting from a Random Initial Solution 

 
Fig.D3.a: Optimal team domain (random initial solution) 

 

 

 
Fig.D3.b: Optimal product domain (random initial solution) 
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Fig.D3.c: Optimal process domain (random initial solution) 

 

 

 

APPENDIX- D4 

Optimization in Isolation 
 

 
 

 Fig.D4.a: Optimal team domain (Isolated optimization solution) 
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Fig.D4.b: Optimal product domain (Isolated optimization solution) 

 

 

 

 
Fig.D4.c: Optimal process domain (Isolated optimization solution) 
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