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An Abstract of the Thesis of

Nader Rabih El-Zarif for Master of Engineering

Major: Electrical and Computer Engineering

Title:Ordinally Optimized Evolutionary Scheduler

With the emergence of OFDMA-based wireless standards such as

the 3GPP Long Term Evolution (LTE) and the IEEE 802.16 (WiMAX), the

number of users requesting higher data rates and lower delays has drastically

increased. The satisfaction of such Quality of Service (QoS) requirements

mandates an e�cient allocation of the resources among active users.

In particular, this thesis addresses the problem of downlink resource

allocation in OFDMA-based networks. While most existing work relied on

mathematical optimization and game theory, this work uses a novel combi-

nation of ordinal optimization (OO) and the well-known genetic algorithm

(GA) to develop e�cient downlink resource allocation schemes. OO tech-

nique is used to select the initial GA population and stopping criteria for

more reliable convergence. The number of possible carrier allocation is al-

vi



most in�nite; to sample from such a large space, OO is modi�ed to handle

more than 1000 samples. The formulated GA problem proposes a new �tness

function that aims at maximizing throughput while providing priorities for

real-time users and considering previous allocation outcomes to ensure long-

term fairness among users. GA parameters such as the initial population and

the stopping criteria are determined using OO techniques.

The comparison between the proposed �Ordinaly Optimized� evo-

lutionary scheduler and existing work shows improved fairness while main-

taining the overall throughput at an acceptable level for di�erent simulated

channel conditions.
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Chapter 1

Introduction

The need for bandwidth is increasing exponentially. According to

Cisco forecasting, mobile data tra�c is doubling year to year through 2014,

and between 2009 and 2014 it would have increased by 39 times. Today,

smartphones generate as much tra�c as 24 basic-feature phones in view

of the introduction of mobile services, such as video streaming, video call,

mobile TV, and video conferencing [1]. Thus a network optimized for mobile

voice only, won't be able to e�ciently handle high numbers of mobile internet

users without high speed data communication capabilities. Of course wired

access such as xDSL and �ber optics can achieve data rate of several gigabits

per second without su�ering from radio signal attenuation, fading, scattering,

re�ection, interference as wireless access does. However the high cost to pay

is the lack of mobility, which in modern life is not easily accepted.

Orthogonal frequency division multiplexing (OFDM) is a promising

solution that provides high speed wireless connection. By dividing the orig-

inal stream into several parallel streams, OFDM can combat inter-symbol
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interference (ISI) and frequency selective fading. OFDM can prove very use-

ful when combined with multiple input multiple output (MIMO) technology.

Note that OFDM is a modulation scheme that can only support single user

for a speci�c symbol duration; on the other hand, orthogonal frequency di-

vision multiple access (OFDMA) is used to make OFDM a multiple access

scheme that supports mobility. The OFDM/OFDMA technology presents a

signi�cant advantage to wireless media such as WiMAX, WiFi, LTE (down-

link) and many more. However, in spite of the advantage of OFDM and

OFDMA, their major limitation is that their waveforms have high peak-to-

average power ratio.

In wireless access radio resources are scarce and the throughput is

upper bounded by Shannon limit. It is becoming nearly impossible to meet

all users demands as the penetration rate among population increases. The

area where optimization plays a key role is in data scheduling. In a typi-

cal wireless system, there are multiple mobile stations (MSs) that request

services with di�erent quality of service (QoS) requirements. The base sta-

tion (BS) needs to have a scheduling policy that takes into consideration the

di�erent QoS requirements such as data rate, latency and error rate. The

packets could also result from di�erent types of applications: video stream-

ing, voice over IP (VOIP), web browsing, emails and �le transfer protocol

(FTP). The QoS for these applications are quite di�erent. The scheduler

needs to allocate these packets di�erently so their QoS requirements can be

met while taking into account the power and throughput constraints. Be-

cause wired scheduling algorithms are not e�cient in wireless medium, as

they don't take into account channel characteristics, the wireless standard
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is left open for novel resource allocation and scheduling approaches, which

makes scheduling and resource allocation a hot research topic.

In this thesis we propose investigating a scheduling and resource

allocation algorithm for a congested downlink OFDMA scenario, where ev-

ery user has di�erent service requirements and di�erent channel conditions.

We propose combining OO & GA into an �ordinaly optimized� evolution-

ary scheduler (OOES) to serve two classes of users: the real-time and the

non-real-time users. We presume that during each frame period, the base

station BS will receive the requests and the channel state information (CSI)

from the users; and since the radio resources are scarce, the BS will perform

scheduling and allocate resources to the MS by satisfying the requested QoS

while maximizing fairness in service.

In the published work, most of the literature on scheduling in OFDMA

system that used GA assumed that we have real time and non-real time users

without di�erentiating users' priority within the same service class. In ad-

dition, most of the publications didn't compensate for under-served users.

To solve these problems, we introduce a �tness function to incorporate two

parameters: �time to service� and �residue�. The �time to service� parameter

stores the �maximum remaining time� for each real time user to get serviced

before degradation on the requested service occurs. Thereby, some real time

users will have more priority over others depending on the service used. The

�residue� parameter stores the di�erence between the requested throughput

and the obtained data rate for each user, in order to compensate the under-

allocation as soon as possible. The main problem in carrier allocation in

OFDMA systems is that the search space of the system is exponential with
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the number of users or the number of carriers, and the number of �good� car-

rier allocation is very narrow. A combination of OO and GA is used to help

in achieving better carrier allocation. Note that OO was never used before

in scheduling in OFDMA systems. The combined OO-GA solution was used

by [2] to solve a �ow shop scheduling problem. However OOES uses OO to

determine the initial population of GA in addition to the stopping criteria

instead of just the stopping criteria.

The following chapters describe our proposed approach to the subject

matter at hand. The literature review and background concepts on OO, GA,

OFDM and scheduling in wireless systems are presented in chapter 2. The

problem formulation and work-�ow are tackled in chapter 3. Analysis of the

proposed algorithm are presented through simulation in chapter 4. Finally,

in chapter 5, research conclusions are emphasized.
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Chapter 2

Background Concepts and

Literature Review

The following chapter o�ers background concepts on OO, GA, Ham-

mersley sampling, OFDM and OFDMA. The purpose of the literature review

is to o�er a review of currently used OO and GA methods and techniques

with emphasis on how they managed to improve their performance.

2.1 Background Concepts

2.1.1 Ordinal Optimization

The concept of OO was explained in [3, 4]. Its main idea is that,

instead of searching for the best solution, a good enough solution with high

probability is sought. Its main advantage is the convergence time while

maintaining a prede�ned level of con�dence in the result. Before detailing

the OO procedure, let's de�ne the following terminologies:
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Figure 2.1: OO Basic Principle [5].

• Θ: The search space, which is considered to be a very large �nite set.

• N: The number of designs uniformly chosen in Θ.

• G: The good enough set, usually the top-g elements in the design space.

• S: The selected designs in N.

• K: The alignment level.

• AP: The alignment probability = Prob [G ∩ S ≥ K /N,C, σ2].

• σ2: Noise level.

• Order performance curve (OPC): Plot of the value of the performance

as a function of the order of performance.

• C: Class of OPC for the problem shown in �gure 2.2.

• Universal alignment probability (UAP) =Prob [G ∩ S ≥ K /N,C, σ2]

• Selection rule: The method that is used to select the subset S.

The selection rules can be categorized into two main categories: blind

pick (BP) and horse race (HR). In BP scenario we have no idea about the
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actual performance; in other words, the observed performance is assumed to

have in�nite noise variance. The alignment probability for BP is:

AP =

min(G,S)∑
i=K

 G

S


 N −G

S − i


 N

S


(2.1)

if a given alignment probability, as well as size of the good enough set and

alignment level are known, one can randomly pick S designs from N, after

determining the size of the selected subsets.

In HR selection rule the noise level is not in�nite and hence, the

selected subset S is not chosen at random anymore. The procedures of HR

selection rule is as follows:

1. Sample N designs from Θ uniformly and randomly.

2. Use a crude model to estimate the performance of these N designs.

3. Specify G and K.

4. Estimate the most appropriate OPC class of the problem shown in

�gure 2.2 and the noise level of the crude model (low, medium or high).

5. Calculate the size of the selected set according to equation 2.2 and

�gure 2.3.

6. Select the observed top S designs in N.
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Figure 2.2: Five types of the OPC classes [5].

According to [4], by the use of statistical methods and regression the

size of the selected subset is:

S = Z(G,K) = eZ1KZ2GZ3 + Z4 (2.2)

Z1, Z2, Z3 and Z4 are constants of regression that depend on the OPC class

and noise level. Their values can be found according to �gure 2.3. Note that

the size of the selected subset in HR rule is upper bounded by the BP [5].
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Figure 2.3: Regressed values of Z1, Z2, Z3 and Z4 [5].

2.1.2 Genetic Algorithm

GA was formally introduced in [6]; it works very well on mixed com-

binatorial problems. It is less susceptible to getting 'stuck' at local optima

than gradient search methods, but tends to be computationally expensive.

The main challenges in applying GA to real life problems is selection of the

�tness function, the transition from the phenotype to the genotype, and �-

nally the parameter settings for the genetic operators (selection, mutation

and crossover). The problem parameters need to be encoded inside each

chromosome so that every chromosome represent a possible solution. Then,

by applying genetic operators such as mutation and crossover, and with the

o�spring, the population of chromosomes evolves to eventually converge to

9



Figure 2.4: Mutation operator

the desired solution. The steps required in GA are the following:

1. Encode the chromosomes: An individual is characterized by a set of

parameters: genes. The chromosome contains all information needed

to construct the �tness or performance. To construct a chromosome,

�feasible� solutions are encoded into genes. Which are joined into a

string: encoded chromosome.

2. Select the initial population: Usually random data within the search

space is encoded into chromosomes to generate the initial population.

3. Perform mutation: Mutation is when the value of the selected gene is

randomly changed as shown in �gure 2.4. Each gene has a prede�ned

probability of mutation. Mutation is used to explore possible solutions

in di�erent areas of the search space.

4. Perform crossover: In crossover, chunks of the chromosomes are ex-

changed as shown in �gure 2.5. The purpose of crossover is to generate

better chromosomes by swapping �bad� genes with �good� ones.

10



Figure 2.5: Single point crossover

5. Perform chromosome selection: In this stage the selected genes are cho-

sen for the next generation. In roulette wheel selections, the probability

of the chromosome to be selected is proportional to its performance as

shown in �gure 2.6.

Figure 2.6: Roulette wheel selection

6. Repetition until objective is met: The process is repeated until when

of the following criteria is met:

(a) GA converges to the desired solution

11



Figure 2.7: GA �owchart

(b) There is no more change in performance for a speci�ed number of

generations.

(c) The time limit expires.

(d) The error drops to a certain limit.

These conditions are di�cult to estimate in a problem where there is

no prior knowledge.

The �owchart of GA is shown in �gure 2.7.

2.1.3 Hammersley Sampling

Halton and Hammersley points are useful methods to uniformly sam-

ple data points. According to [7] every positive integer k can be expanded

using a prime base p:

k = a0 + a1p+ a2p
2 + a3p

3 + · · ·+ arp
r (2.3)

where each ai is an integer in [0, p− 1]. Function Φp (k) is de�ned as:
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Figure 2.8: E�ect of p on Hammersley points [7]

Φp (k) =
a0
p

+
a1
p2

+
a2
p3

+ · · ·+ ar
pr+1

(2.4)

For a d dimensional data one can have p1, p2, · · · , pd−1, then one can compute

their corresponding sequence Φp1 (k) ,Φp2 (k) , · · ·Φpd−1
(k), �nally a set of n

Hammersley points is obtained:

(
k

n
,Φp1 (k) ,Φp2 (k) , · · ·Φpd−1

(k)

)
for k = 0, 1, 2, · · ·n− 1 (2.5)

The main problem in Hammersley points is that with the increasing

value of p, the points will align as shown in �gure 2.8.

From �gure 2.8, it is noticeable that random points are dense in

13



Figure 2.9: Multicarrier modulation [9]

some areas and non-existent in other, while Hammersley points look more

uniform with lower variance. The Halton sampling technique is similar to

Hammersley's, but the generated points will have higher variance and will

not su�er from the alignment problem. The main application of both of

these techniques is image reconstruction. In addition, Halton points are also

utilized in [8] for direct illumination.

2.1.4 OFDM And OFDMA

The idea of OFDM is based on multicarrier modulation. That is the

original stream is divided into several parallel sub-streams with low data rate,

instead of transmitting it directly. The number of sub-streams is chosen to

ensure that each sub-channel has a bandwidth less than the coherence band-

width of the channel, so the sub-channels experience relatively �at fading [9]

as shown in �gure 2.9 .

Figure 2.9 shows that by dividing the original stream into L par-

allel streams, the channel response looks more �at, which in turn can help

14



Figure 2.10: Perfect synchronization and synchronization error [9]

to remove the ISI. The additional advantage of OFDM is that the carriers

are overlapping instead of being spaced apart, which in turn can save band-

width. However, the carriers must be orthogonal and perfectly aligned and

synchronized in order to prevent them from a�ecting each other performance

as shown in �gure 2.10. That is when the amplitude for one of the carriers

is maximized while it must be zero for all other carriers.

2.2 Literature Review

2.2.1 Scheduling in OFDM Systems

In the following literature we provide an overview of the previous

research that studied scheduling in wireless system. The most relevant work

is presented addressing constraints scheduling as proposed by [10]. Authors

in [10] reported that schedulers must be consistent with WiMAX system,

meet the fairness among users, satisfy the QoS requirement of each service

class, maximize system throughput, minimize power consumption, and be

15



as simple as possible. As contradictory and somewhat redundant as these

constraints seem, these goals must be met to ensure scalability.

The �rst issue is how to achieve fairness among users. The authors

in [11] proposed a two-stage fair and e�ective queueing (FEQ) algorithm:

the �rst stage used weighted round robin to provide minimum rate required

(MRR) for each user, while the second phase utilized earliest deadline �rst

for the remaining bandwidth to minimize the packet dropping rate. Despite

the fact that fairness is a very important issue, the algorithm didn't take CSI

into consideration. Indeed, a user with a bad channel condition will consume

a larger proportion of the available bandwidth to achieve its MRR, which

decreases the throughput of the system.

The second issue is how to mitigate the channel e�ect while meet-

ing the QoS requirement for real-time polling service (rtPS) users. G. Arul

Prasath et al. [12] proposed a solution based on introducing a parameter α

that is used to control the bandwidth division between real-time and non-

real-time tra�c. As the distance between BS and MS increases, the delay

increases, and hence the QoS of real-time tra�c decreases; as a result, α

varies to give higher priority to real-time tra�c to increase its QoS without

causing congestion for the non-real-time polling service (nrtPS) bu�er.

Another approach to throughput maximization and maintaining the

QoS was performed in [13]. The authors formulated a scheduling algorithm

that consists of combining temporary removal scheduler with modi�ed maxi-

mum signal to interference ratio (mmSIR). Their result showed that mmSIR

has similar performance as mSIR in terms of overall system throughput and

number of served subscriber stations (SS) per frame, and an improvement

16



in terms of mean sojourn time which helps to meet the QoS requirement

of rtPS users. To reduce the frame occupation ratio, authors in [14] pro-

posed an algorithm based on channel learning, although it is designed for

WiMAX classes, the algorithm didn't take the queueing delay into consider-

ation. To meet the QoS requirements of service classes while maintaining the

system throughput, and to increase the overall transmission control protocol

throughput while achieving fairness among users, the authors in [15] pro-

posed joint optimization between link adaptation, automatic repeat request

for scheduling algorithms.

The issue of ensuring fairness while satisfying the QoS requirement

of each service class, was tackled by R. Jayaparvathy et al. [16] from a dif-

ferent point of view. The authors suggested an approach based on dynamic

weight adjustment scheduling algorithm derived from Nash equilibrium. Ev-

ery SS supports four classes of tra�c: unsolicited grant service , rtPS, nrtPS

and best e�ort (BE). As each class has its own queue and its own weight,

they compete for the bandwidth provided. The weights depend on the QoS

speci�cation and congestion. As nrtPS tra�c increases, its weight rises, and

hence, the QoS of rtPS and BE tra�c drops accordingly. Although the link

budget is used in the simulation, the modulation order is not taken into

consideration. However, this approach fails short of resolving the issue of

maximizing throughput and minimizing power consumption.

Other game-theoretical based approaches were introduced by [17,

18, 19] to solve the issue of throughput maximization and improvement of

resource allocation among users. The authors proposed game theoretical

channel-aware schedulers using di�erent games. In [17] the scheduling is per-
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formed in two steps: inter-class and intra-class scheduling. In the former

class, the users sort their packets in decreasing order of utility, while in the

latter, the scheduler divide the available resources among the users by using

the principle of game theory. Their result showed that the Nash solution

provides a good fairness among the users with high resource utilization. In

[19], [20] Nash bargaining solution is used where the BS enforce coopera-

tion among the users. The BS chooses the users whose rate maximizes the

summation of utilities, where the utility function is linear [19] or logarith-

mic [20] to ensure proportional fairness among users vs. relative throughput

maximization. The authors in [19] showed that the Nash bargaining solution

(NBS) ensures synchronized fairness and high sum-rate. However, as the

number of connections increases, the sum-rate decreases to nearly proximate

the max-min fairness solution, and the fairness variance decays to zero. In

[20] the results were simulated and it was shown that NBS is just another

version of proportional fairness.

A di�erent game theoretical approach in [18] is based on a non-

cooperative game which proposes to solve the scheduling problem by corre-

lating call admission and bandwidth allocation among users. This correlation

makes sure that the QoS doesn't drop below a certain prede�ned threshold.

For real-time applications, the QoS is the delay, as for non-real-time appli-

cation the QoS is the throughput.
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2.2.2 Scheduling In OFDMA System Using GA

Other authors chose GA to solve the scheduling problem. The au-

thors in [21] performed joint optimization between the scheduling and link

adaptation using GA, disregarding the delay and QoS requirements of each

service class. Y. Teng et. al [22] proposed improved complexity reduced ge-

netic algorithm (CRGA) to achieve fairness among real-time tra�c users and

non-real-time tra�c users while maximizing the system utility. In CRGA the

chromosome data is not binary anymore (a vector is used to note user index

for each carrier) which reduces the chromosome size making the crossover

operation much simpler. Because of that, CRGA converges much faster than

the traditional GA. The algorithm allocates more carriers to the real-time

users when the channel condition is bad, and increases the data rate of non-

real-time users when the channel is good. However, the algorithm does not

compensate for users who receive low data rate during the scheduling period.

The resource allocation objective is to allocate subcarriers, bit and

power dynamically according to the instantaneous channel condition for ev-

ery user. To maximize the system throughput the authors in [23] proposed

water�lling algorithm as �tness function for GA to allocate carriers to the

users. A random initial population is created then a good individual is added;

this individual will help GA to converge faster and to obtain a better solu-

tion. However, the proposed algorithm does not take into account real-time

users.

To mitigate the long convergence time of GA, the authors in [24]

proposed an algorithm that combines Karush-Kuhn-Tucke (KKT) conditions
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[25] with GA to perform resource allocation in wireless mesh networks. The

algorithm proposed in [24] simply compares KKT-driven approach with GA

after 10 iterations, and then chooses the best one. If GA was favored during

the scheduling, it will continue to reach 25000 iterations. Therefore, the

performance of combined KKT-GA is lower-bounded by KKT and upper-

bounded with GA with relatively low order complexity. Simulations were

done to prove this fact.

Another way to achieve fairness among users while maximizing the

utility is proposed by the authors in [26] who conceived a joint optimization

based on GA. The stochastic approximation was used to control the param-

eters in scheduling, and GA was utilized to improve the carrier allocation

among the users. Simulations showed that the proposed algorithm outper-

formed M_LWDF in terms of average delay and packet loss rate. Even

though the delay was reduced, which makes the algorithm suitable for real-

time services, the author didn't show how the data rate is improved. From

their part, Mehrjo et al. [27] proposed the use of GA to allocate carriers to

real time and non-real time users where the former has a sigmoid-like utility

and the latter has a logarithmic utility.

Finally, to meet the QoS requirement of IEEE 802.16 users, Y. Chiu

et. al in [28] suggested the use of GA with subscriber station (SS) grouping

resource-allocation (GGRA). Since most of 802.16 tra�c is delay-sensitive,

the authors in [28] used the notation of residual life-time to increase the

priority of the users that did not receive allocation during frame period, in

the way the QoS of all user classes are met. The algorithm �rst aggregate

highly correlated SSs together by the means of virtual MIMO system, and
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then assigns each SS from the same group to di�erent slots to prevent high

mutual interference and minimize the number of genes in GA, which in turn

performs allocation based on the increasing order of residual life-time. The

result showed that GGRA outperformed maximum largest weighted delay

�rst (MLWDF), and e�cient and fair scheduling (EFS) in terms of system

throughput, ratio of unsatis�ed hypertext transfer protocol (HTTP) users

and FTP throughput. Even though the GGRA run-time was higher than

that of EFS, it was able to provide the allocation within the 5-ms frame

duration requirement.

2.2.3 Published Fitnesses and Objective Functions

Fitness 1

Authors in [23] proposed the water�lling algorithm as an objective

function, that is to maximize the total transmitted power:

Objective = argmaxPtotal
bk,n

=

NC∑
n=1

K∑
k=1

(
f (bk,n)

α2
k,n

)
(2.6)

where bk,n is the number of bits allocated to user k using subcarrier n, and

αk,n is the channel gain of user k using subcarrier n.

f (bk,n) =
N0

3

[
Q−1

(
BERn

4

)]2 (
2bk,n − 1

)
(2.7)

where BERn is the bit error rate for subcarrier n, Q−1 is the inverse Q

function, and N0 is the noise power spectral density.
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Fitness 2

Authors in [27] assumed a model of K number of users of which K ′

are real time users. Their objective is to maximize the utility as shown below:

Objective = max

(
k=K∑
k=1

Uk (rk)

)
(2.8)

Where rk is the data rate allocated to user k. The utility is given by:

Ureal =


0 r ≤ l1

sink
(
π
2
× r−l1

l2−l1

)
l1 < r ≤ l2

1 r > l2

(2.9)

Unon_real =


log (1 + 10−6r) r ≤ l3

1 r > l3

(2.10)

Where l1 = 250Kbps, l2 = 5Mbps, l3 = 9Mbps.

Fitness 3

Authors in [22] assumed a model of K number of users of which K ′

are real time users. Their objective is to maximize the utility as shown below:

Objective = max

(
k=K′∑
k=1

Uk (rk) + λ×
k=K∑

k=K′+1

Uk (rk)

)
(2.11)

Where λ is a parameter that is used to vary the weight of real-time users,

and rk is the total number of bits allocated to user k. Note that if the overall

channel is bad, λ should change to give more weight for real time users. λ is

de�ned by:

λ =

∑k=K′

k=1 Uk (rk)∑k=K
k=K′+1 Uk (rk)

(2.12)
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The utility is given by:

Ureal =


0 r ≤ 20

1

1+e
1

10−0.08r
20 < r < 200

1 r ≥ 200

(2.13)

Unon_real =


0.5 log10 (1 + 10−2r) r < 638

1 r ≥ 638

(2.14)

2.2.4 GA and OO

In the following, we state some of the works that tried to improve the

performance of GA and OO. First, to improve the performance of GA, the

author in [29] developed an adaptive real code genetic algorithm (ARGA).

The algorithm �rst speci�es the key parameters in GA such as: crossover

probability, mutation probability, selection size, and population size; then it

classi�es the parameters into important parameters which greatly a�ect the

performance of GA, and unimportant one that have very little e�ect on GA.

Finally, it classi�es the important parameters into sensitive (have di�erent

e�ect on GA at di�erent stages) and robust (have similar e�ect on GA at dif-

ferent stages). By identifying sensitive parameters, the algorithm can modify

them throughout the process whenever it is necessary. The performance of

ARGA is validated through simulations. Second, to improve the performance

of OO, the authors in [30] used iterative OO to solve a stochastic optimiza-

tion problem. Their idea is to narrow the search into subsets, and then favor

the good subsets of the search space through limited sampling. The process

is repeated iteratively in order to obtain a much smaller subspace of in which
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we can �nd the solution. The algorithm is also applied to the Witsenhausen

problem (1968) -which is a multidimensional problem- and managed to �nd

a �good enough" solution for it.

The authors in [31] and [2] proposed an algorithm that combines the

features of OO and GA to solve mixed integer programming (MIP) and �ow

shop scheduling respectively. The MIP and �ow shop scheduling are problems

that usually belong to non-deterministic polynomial time (NP) class. To

solve such problems, OO is used to determine the number of iterations for

GA given the required performance of the solution and the con�dence level.

The number of generations in GA is proportional to the number of iterations

provided by OO and inversely proportional to the chromosome size. After

determining the size of the initial population and the number of generations,

the authors need to determine a suitable mutation operator. In [31] the

mutations are done by using triangular distribution since the data is integer

not binary; then, in the �nal stage the MIP problem will be transformed to

linear programming (LP) problem which can be easily solved; while, in [2]

two stages of mutations are used to improve the obtained result. Simulations

were done in production planning and scheduling in batches and in �ow shop

to validate the proposed models.
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Chapter 3

Proposed Work�ow

In this chapter, the proposed methods to perform scheduling in

OFDMA system are explained. First, problem formulation and the proposed

�tness function is presented with its details. Second, the search space is

sampled to select the initial chromosome population. Two types of sampling

techniques are proposed: direct sampling and two-level sampling. Third,

di�erent GA operators such as the initial population, the number of genera-

tions, and the mutation operator are modi�ed in order to generate a �feasible�

carrier allocation.

3.1 Proposed Fitness and Objective Function

Before we go through problem formulation, we introduce the following ter-

minologies let:

1. K, N and P represent the total number of users, total number of

carriers and maximum available transmitted power at the base station
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respectively.

2. pk,n,t be the transmit power allocated to user k on subcarrier n and

scheduling frame t.

3. ck,n,t be the allocation of user k on subcarrier n and scheduling frame

t.

4. γk,n,t be the channel quality of user k on subcarrier n and scheduling

frame t.

5. Mk,n,t be a parameter that is proportional to the number of bits per

subcarrier n for user k at scheduling frame t.

6. ρ(.) be the data rate which can be achieved with the transmit power

pk,n,t.

7. Hk,n,t be the channel gain of subcarrier n if user k is using subcarrier

n at scheduling frame t.

8. N be the noise power spectral density.

9. SNRk,n,t be the received signal to noise ratio at user k if it is using

carrier n at a scheduling frame t.

10. Nk,t be the desired data rate to user k at scheduling frame t.

11. Tk,t be the maximum time for the user to get serviced after a scheduling

frame t.

12. Tf be the frame duration.
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13. Xk,t be the maximum number of frames for the user to get serviced

after a scheduling frame t.

14. Dk,t be the demand of user k at scheduling frame t.

15. Uk,t be utility of user k at scheduling frame t.

16. Rk,t be the dissatisfaction with the service for user k at a scheduling

frame t.

The objective is to �nd the carrier allocation ck,n,t that maximizes

the total sum of di�erence between the users utility and the dissatisfaction

with the service from the previous carrier allocation.

arg max
ck,n,t

K∑
k=1

(Uk,t(ck,n,t)−Rk,t) (3.1)

subject to the following constraints:

1. For a given frame, a carrier can only be allocated to one user.
K∑
k=1

ck,n,t = 1 ∀n ∈ [1, N ], ∀t (3.2)

2. For all frames, the number of carriers allocated to all users cannot

exceed the total number of carriers.
K∑
k=1

N∑
n=1

ck,n,t ≤ N ∀t (3.3)

3. The transmitted power cannot exceed the total base station power.
K∑
k=1

N∑
n=1

pk,n,t ≤ P ∀t (3.4)

From which we infer that:

Xk,t =

⌊
Tk,t
Tf

⌋
(3.5)
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The user demand is the throughput for non-real-time service, and it is the

throughput and queueing delay for real-time-users. The user demand should

be proportional to the throughput and inversely proportional to the delay.

We de�ne it to be:

Dk,t = Nk,t

(
A+

B

Xk,t + 1

)
(3.6)

As Xk,t decreases, the demand of the user is higher because it needs the

allocation before a degradation of the quality of service occurs. A and B are

parameters that can be tuned in order to modify the priority of real-time

applications. For non-real-time users Xk,t is ∞. +1 is added to Xk,t because

we don't want Dk,t → ∞ as Xk,t → 0; if that happens, user k will be given

the priority forever which will negatively a�ect the scheduler.

Uk,t should have a similar form as Dk,t. To achieve fairness, we propose to

add a parameter to increase the utility of those that did not receive enough

carriers to meet their requested QoS in the last frame. If the BS knows

the requested data rate of the user, and due to poor channel conditions or

congestion, the MS would not be assigned enough carriers to achieve its QoS;

then the BS will store the di�erence and include it in the residue term -or

dissatisfaction with the service- (Rk,t−1) during the next scheduling frame.

Uk,t =

[
Mk,t

(
A+

B

Xk,t + 1

)]
−Rk,t−1 (3.7)

If the user is in a bad channel conditions, he might not receive enough carriers

to meet the requested service QoS requirements. The minus sign is used

because, by decreasing the utility, we are forcing the scheduler to give more

priority for users that did not receive enough scheduling in the previous

frame.
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Mk is a parameter that is proportional to the data rate of each user

Mk,t =
n=N∑
n=1

Ck,n,tMk,n,t (3.8)

where 
Ck,n,t = 1 if user k is allocated carrier n

Ck,n,t = 0 Otherwise

(3.9)

and 

Mk,n,t = 1 4−QAM R = 1/2

Mk,n,t = 1.5 4−QAM R = 3/4

Mk,n,t = 2 16−QAM R = 1/2

Mk,n,t = 3 16−QAM R = 3/4

Mk,n,t = 4 64−QAM R = 2/3

Mk,n,t = 4.5 64−QAM R = 3/4

(3.10)

Note that the value of Mk,n,t depends on the channel condition of user k

using carrier n at a scheduling time t. To know the modulation order of

the receiver, the received signal power or the received signal to noise ratio is

found using:

SNRk,n,t = pk,n,t ×
|Hk,n,t|2

Nk,n,t

(3.11)

A suitable formulation of the residue is one that stores the di�erence between

the demand and the utility only if the demand is greater than the utility. In

other words we want to compensate for the users who did not receive enough
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scheduling, rather than punish those that did.

Rk,t =


Dk,t − Uk,t Dk,t − Uk,t > 0

0 Otherwise

(3.12)

3.2 Sampling

The traditional GA uses random initial population which may limit

its performance. In this section multiple techniques to select the initial popu-

lation based on sampling are proposed. The search space Θ contains billions

of possibilities. A system with 10 users and 1024 carriers has 101024 possible

carrier allocations, which make it very hard to uniformly sample from such

space. The techniques used in the sampling process are divided into two

categories: direct sampling and two-level sampling.

3.2.1 Direct Sampling

The direct sampling techniques are those that are directly able to

sample from the search space no matter how large it is; these are the modi�ed

random start (MRS) and the Hammersley approximation.

MRS

The main idea of MRS is to generate the initial population using

randomization. It is considered as a sampling technique because the gener-

ated solution is a sample from the search space. The MRS algorithm is as

follows:
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Algorithm 3.1 Modi�ed Random Start

Get the number of carriers (Ncarriers).
Get the number of users (Nusers).
Get the requested throughput for each user.
for n = 1→ Ncarriers do

Calculate the received throughput for every user.
if If all the users receive throughput more than they requested then
Allocate all the remaining carriers to the users at random.

end if

Allocate carrier n to a random user given that he didn't receive enough
throughput.

end for

Hammersley Approximation

Hammersley approximation is another method used to directly gen-

erate the initial population. For a two dimensional data, Hammersley points

are represented as follows:
(
k
n
,Φp1 (k)

)
. We propose to make the sequence of

Φpx (k) indicate the carrier allocation of chromosome x. The set of Hammers-

ley points obtained in the previous section are uniform but they are bounded

between [0, 1]. By multiplying Φp (k) by K (recall that K is the number of

users), one can obtain uniformly sampled points between [0, k]. Since the

resultant value is not an integer, a �oor function is needed to make the value

represent the user indexes. Therefore, the �Hammersley approximation� re-

sults to:


user index = bΦp (k)×Kc

carrier index = k

(3.13)

Note that the following result is for a given prime base p, and it represents a

single chromosome. To generate the initial population the process is repeated

31



Nchromosomes times for di�erent base values. WhereNchromosomes is the number

of chromosomes in the initial population.

3.2.2 Two Level Sampling

In this section two techniques that are based on the spirit of ordinal

optimization are presented, those are the uniform sampling inspired method

(USIM) and the ordinal optimization inspired method (OOIM). Since the size

of the proposed system is far beyond the range of ordinal optimization, uni-

form sampling from a large space will take forever. In the two level sampling

technique, sampling is done in two levels: �rst, uniform sampling is done for

a much simpler search space, then the obtained samples are expanded for the

larger search space.

USIM

For the reason stated above, USIM can't sample directly form the

search space, instead it will use the result from uniform sampling for small

system space, and then the result is generalized to get the initial carrier

allocation.

Uniform Sampling For Small System Space In this model the num-

ber of users and the number of carriers are selected to be 4 and 16 re-

spectively. The reduced search space has a total number of possibilities of

416 = 4294967296, which is within the range of OO. To uniformly sample

from such population algorithm 3.2 is proposed.
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Algorithm 3.2 Uniform Sampling

Select the number of samples NSamples {The number should be around
1000}
Set the value of K {In this case K = 4}
Set the value of N {In this case N = 16}
Generate an empty array V of length NS

for j = 1→ NS do

Get the index i = KN

j
+ ε {Where ε is an added random number much

less than KN

j
}

transform index i to base K
V [j]← i
j ← j + 1

end for

The obtained result is an array of length NSamples, each element

contains 16 digits: d1d2 · · · d16. Those digits signify that carrier 1 is allocated

to user d1 and carrier 2 is allocated to user d2 and so on and so forth.

Sampling For The Original System Space To sample from a search

space of size 101024 (K = 10 and N = 1024), algorithm 3.3 is proposed.

The obtained result represents a feasible solution. It can be im-

proved if GA is added to it. Note that all the steps above are only for one

chromosome, the process is repeated Nchromosomes times to generate the initial

population for GA. Note that the smaller model (16 carriers and 4 users) is

because we are assuming that the obtained result will have a similar distribu-

tion as the original search space. USIM can easily extrapolate for more users

and for more carriers since the selection is random. However the number of

carriers must be a multiple of 16, which is the size of each sub-chromosome.
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Algorithm 3.3 Uniform Sampling Inspired Method
Get the requested throughput for each user.
Create dynamic vector u of length K, containing all the numbers from 1
to K in random order.
Generate the array v from algorithm 3.2 {v contains 1000 uniform sam-
ples}.
Create an empty array w of length 4.
NS−Ch ← N

16

for o = 1→ NS−Ch do

for n = 1→ NCh do

Randomly shu�e v and store its �rst four values in w
for m = 1→ length(v) do
A[m] = v[m] {A[m] contains 16 digits. The value every one of them
is either 0, 1, 2 or 3}.
Replace the digits of A[m] valued 0, 1, 2 and 3 by w[0], w[1], w[2]
or w[3] respectively. {A[m] now contains 16 digits d1, d16, . . . d15.
The value every one of them is either w[0], w[1], w[2] or w[3]. This
signify that carrier 1 is allocated to user d1 and carrier 2 is allocated
to user d2 and so on and so forth}.

end for

Select the value of A[m] that result to the highest throughput. Then
allocate the carriers to users indicated by A by storing the result in
chromosome n.
Calculate the received throughput for every user.
if If all the users receive throughput more than they requested then
Reset the value of u {To contain all intergers from 1 to K}

else

Remove the entries from u that has the values of user ID who receive
throughput more than they requested

end if

while length(u) ≤ 4 do
Select at random a value from u. Add another entry for u equal to
the selected value.

end while

end for

end for
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OOIM

Like USIM, OOIM also uses uniform sampling for small system space

to obtain the initial carrier allocation. From algorithm 3.3, the chromo-

some of length 1024 is divided into 64 sub-chromosomes. Only the best

sub-chromosomes are selected. The purpose of OOIM is to generate S chro-

mosomes from only one chromosome. That is from the 64 sub-chromosomes,

the top S combination is selected. Each sub-chromosome has 416 possibili-

ties, if the top 2 designs from each sub-chromosome are selected; the obtained

result will have 264 possibilities. Choosing the top S design form them is very

time consuming. To select the top S designs the approximate algorithm 3.4

is presented:

Note that the obtained method is less computationally expensive

than USIM because all the obtained chromosomes are derived from only one

chromosome.

3.3 Ordinaly Optimized Evolutionary Scheduler

The steps of the evolutionary scheduler are the same as regular ge-

netic algorithm. It is called Ordinaly Optimized because the initial popu-

lation and the stopping criteria can be determined by the use of OO. The

structure of �Ordinaly Optimized� evolutionary scheduler (OOES) and of

OO-GA algorithm are shown in �gures 3.2, and 3.3 respectively. Note that

OOES and OO-GA have the same work�ow, with only di�erence in selecting

the initial population. OOES uses OOIM as initial population sampling al-

gorithm, while OO-GA uses all other initial population sampling algorithms.
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Algorithm 3.4 Ordinal Optimization Inspired Method
Get the requested throughput for each user.
Create dynamic vector u, same vector presented in algorithm 4.3
Generate the array v from algorithm 4.2
Create an empty array w of length 4.
NS−Ch ← N

16

Create an array x of length NS−Ch which has three entries valued as 1
while the others are zeros.
for l = 1→ NCh do

Randomly shu�e x.
y[l][:]← x[:]

end for

for n = 1→ NS−Ch do

Randomly shu�e v and store its �rst four values in w
for m = 1→ length(v) do
A[m] = v[m]
Replace the digits of A[m] valued 0, 1, 2 and 3 by w[0], w[1], w[2] or
w[3] respectively.

end for

for l = 1→ NCh do

if y[l][n] = 0 then
Select the value of A[m] that results to the highest throughput.

else

Select the value of A[m] that results to the second highest through-
put.

end if

Allocate the carriers to users indicated by A, and store the result into
chromosome l.

end for

Calculate the received throughput for every user.
if If all the users receive throughput more than they requested then
Reset the value of u {To contain all intergers from 1 to K}

else

Remove the entries from u that has the values of user ID who receive
throughput more than they requested

end if

while length(u) ≤ 4 do
Select at random a value from u. Add another entry for u equal to
the selected value.

end while

end for
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Figure 3.1: Chromosome structure

The chromosome structure is shown in �gure 3.1. The chromosome length is

equal to the number of carriers. The index value is the carrier ID while the

value pointed by the index is the user ID. As long as the user ID is ε [1, K],

the chromosome will always generate a solution inside the search space.

3.3.1 Initial Selection

The initial population is chosen by using one of the techniques pre-

sented in section 3.2.

3.3.2 Mutation

Two methods of mutation are proposed:

1. The mutation occurs for each element in the chromosome with a mu-

tation probability Pm.

2. The mutation is a swap between two user indexes for two carriers. The

swap occur only if it bene�ts both sides.

Note that the �rst method may lead to unbalanced carrier allocation

which can be bene�cial if the user demand is unbalanced, while the second

method will increase the �tness for sure, however every user will have the
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same number of carriers provided from the initial allocation if there is no

crossover.

3.3.3 Crossover

A single point crossover is proposed, where the crossover point is

selected at random for every generation and every chromosome.

3.3.4 Selection

The selection criteria chosen is the roulette wheel selection based

on the highest �tness. Only the selected chromosomes are chosen for the

next generation. Note that the �tness function is the same as the objective

presented in section 3.1.

3.3.5 Stopping Criteria

For the stopping criteria, the algorithm presented in [31] is used.

If the size of the selected set S is known, it can determine the size of the

initial population (Sinitial) or the stopping criteriaNgenerations by the following

equation:

S = Sinitial ×Ngenerations (3.14)

The value of S is equal to the value returned by OO.
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Figure 3.2: OOES structure

3.3.6 O�spring

The process repeats until convergence occurs or the number of it-

erations reached its limits. The main idea behind this process is that OO

alone has a 95% of con�dence. By adding GA to it, the selected population

is expected to improve.
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Figure 3.3: OO-GA algorithm
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Chapter 4

Simulation

In this chapter, simulation is done to validate the usefulness of the

work provided in the previous chapters. First, the system parameters that

are used in the simulation are presented in section 4.1. Second, the proposed

�tness function is compared against those that were suggested in [23, 27, 22]

by using di�erent GA operators such as initial population, mutation and

crossover. Finally, complexity analysis is used to determine which algorithms

are more complex than others.

4.1 System Parameters

In this section, all systems parameters that are used in the simulation are

presented. First, in section 4.1.1, the system assumptions show the users

demand and their requested QoS requirement. Second, di�erent channel

models are derived in section 4.1.2. Third, in section 4.1.3, OO is used

to determine the number of iterations. Finally, the parameter setting are
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summarized in section 4.1.4.

4.1.1 System Assumptions

We consider a single cell downlink OFDMA system with 10 users

and 1024 subcarriers. The users are divided into two classes: real-time and

non-real-time users. The BS must perform scheduling and carrier allocation

to the users by satisfying the following design speci�cations:

• Maximize the system throughout.

• Meet the QoS for all types of services.

• Maintain fairness among users.

• Minimize power consumption.

• Be as simple as possible (We must be able to perform scheduling within

the frame period).

In the proposed system model we will assume the following parameters:

Number of users 10
OFDMA symbol duration 125 µs
OFDMA frame duration 5 ms

Number of data subcarriers 1024

Table 4.1: OFDMA parameters

The data rate is obtained by using the following formula:

Rate = Numbits/OFDMA symbol ×Numsymbols/frame ×Numframes/second (4.1)
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User id 1 2 3 4 5
Distance from base station in m 100 200 300 400 500
Requested throughput in Mbps 8 1.2 0.96 0.96 0.8
Service class (1:real-time
0:non-real-time )

0 0 0 0 0

User id 6 7 8 9 10
Distance from base station in m 100 200 300 400 500
Requested throughput in Mbps 6.4 3.2 2.32 0.88 0.88
Service class (1:real-time
0:non-real-time )

1 1 1 1 1

Table 4.2: Assumed user required rate

Number of bits per OFDMA symbol =
∑

Number of bits per subcarrier

(4.2)

The data rate requested from each user is shown in table 4.2

According to [32] these data rates are more than enough rates for FTP, web

browsing, enhanced web browsing and email for non-real-time users, as well

as for audio conferencing, video conferencing and voice over IP.

4.1.2 Channel Model

For the OFDMA channel model we will use the modi�ed IEEE

802.16d proposed in [33] where:

43



PLM−IEEE 802.16d =


20 log10

(
4πd

λ

)
d ≤ d′0

20 log10

(
4πd′0
λ

)
+ 10γ log10

(
d

d0

)
+ Cf + CRX d > d′0

(4.3)

With d0 is the reference distance which is 100m.

d′0 is the new reference distance which is given by:

d′0 = d0 × 10−
CF+CRX

10γ (4.4)

CF is the correlation coe�cient for the carrier frequency fc[MHz] and it is

given by:

CF = 6 log10

(
fc

2000

)
(4.5)

CRX is the correlation coe�cient for the receive antenna:

CRX =


−10.8 log10 (hRX/2) for Type A and B

−20 log10 (hRX/2) for Type C

(4.6)

Where A, B and C are the terrain type which are shown in table 4.3.

γ is pathloss coe�cient:

γ = a− bhTX + c/hTX (4.7)

The values of a, b and c can be taken from table 4.4, given the terrain type.

The pathloss model is shown in the �gure 4.1

As we can see, the graph is continuous. For more details and explanations

44



Table 4.3: Type of terrains [33].

Table 4.4: a, b and c parameters for the pathloss coe�cient [33].

Figure 4.1: Pathloss in [dB] as a function of distance
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on this path loss model please refer to [33].

We add the shadowing e�ect to the subcarriers in order to get a more realistic

channel e�ect. We assume that the CSI is known at the receiver in order to

perform scheduling.

4.1.3 OO

In this section OO is used to determine the number of iterations in GA.

Uniform Sampling

To uniformly sample from the smaller system, the algorithm pre-

sented in 3.2.2 is used.

Crude Model

The crude model chosen in this case is the throughput. The carrier

allocation from before is fed to the model.

crude model =
n=N∑
n=1

k=K∑
k=1

Ck,n,tMk,n,t (4.8)

Design Parameters

The size of the good enough set chosen is G = 10 and the alignment

level K = 2

Order Performance Curve

The obtained curves are shown in �gures 4.2 and 4.3:
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Figure 4.2: Throughput vs. number of occurrences
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Figure 4.3: Order performance curve
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Note that to get a clear look of the OPC, one million samples are

chosen; in practice the number of samples chosen is around 1000.

Selected Set Size

From the OPC obtained, the most suitable curve from �gure 2.2 is

bell shaped (many mediocre designs). For a Bell OPC with medium noise

level according to �gure 2.3:

Z1 = 8.5988

Z2 = 1.4089

Z3 = �1.6789

Z4 = 9.00

By applying equation 2.2, one can obtain:

S = eZ1KZ2GZ3 + Z4 = e8.5988 ∗ 21.4089 ∗ 10−1.6789 + 9 = 310

If the size of the initial population is selected to be 10, according to

equation 2.2 the number of generations is 31.

4.1.4 Parameter Settings

The rest of the simulation are done using the data from table 4.2, which

is the case of heavy unbalanced demand between users. Unless mentioned

otherwise the GA parameters are those presented in table 4.5. The simulation

was done under bad channel conditions. Note that water�lling algorithm and

�tness 1 are used interchangeably for the rest of simulation. Also note that

all the results are averaged over 1000 runs.
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Mutation operator Swap if better
Random Mutation

probability
0.5

�Swap if better�
mutation probability

>�>1 (Some carriers may mutate more than
once)

Crossover operator Single point, position changes randomly
Crossover probability 0.3
Selection operator Roulette wheel

Number of generations 31
Initial population 10
Fitness function Proposed �tness function (section 3.1,

equation 3.1)

Table 4.5: GA parameters

4.2 E�ect of GA Operators

In this section, the e�ect of GA operators such as �tness function,

mutation, crossover and initial population on the carrier allocation will be

tested. The average results for 1000 runs are reported in tables 4.6, 4.7 and

4.8 and �gures 4.4, 4.5, 4.6 and 4.7 under bad channel conditions. Note that

for the rest of the simulation, �tnesses 1, 2 and 3 refer to equations 2.6, 2.8

and 2.11 respectively.

4.2.1 E�ect of Mutation Operator

In this section the e�ect of mutation operator is tested for GA, with

di�erent initial population, and di�erent �tness functions under bad channel

conditions.

As can be seen from table 4.6, the carrier allocation with a �swap if

better� mutation always leads to higher throughput than the carrier alloca-

tion with random mutation. On the other hand, the carrier allocation with
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Fitness, algorithm, Mutation Total
Throughput

Standard
deviation

Proposed, OOES (OOIM), Swap 28734398 235880
Proposed, OO-GA (USIM), Swap 28948992 343683
Proposed, OO-GA (MRS), Swap 28041552 176759

Proposed, OO-GA (Hammersley), Swap 27638444 156096
Fitness 1, OOES (OOIM), Swap 28537976 260879
Fitness 1, OO-GA (USIM), Swap 28578508 355359
Fitness 1, OO-GA (MRS), Swap 27800932 224705
Fitness 2, OOES (OOIM), Swap 27440704 205793
Fitness 2, OO-GA (USIM), Swap 27443284 209967
Fitness 2, OO-GA (MRS), Swap 27448924 204772
Fitness 3, OOES (OOIM), Swap 28507716 258984
Fitness 3, OO-GA (USIM), Swap 27432144 212115
Fitness 3, OO-GA (MRS), Swap 27716384 225948

Proposed, OOES (OOIM), Random 26306792 175811
Proposed, OO-GA (USIM), Random 26319244 165225
Proposed, OO-GA (MRS), Random 25280816 73250
Fitness 1, OOES (OOIM), Random 23179900 104948
Fitness 1, OO-GA (USIM), Random 23183204 102639
Fitness 1, OO-GA (MRS), Random 23184792 102317
Fitness 2, OOES (OOIM), Random 22724812 177086
Fitness 2, OO-GA (USIM), Random 22722504 175824
Fitness 2, OO-GA (MRS), Random 22721848 173804
Fitness 3, OOES (OOIM), Random 22912244 177983
Fitness 3, OO-GA (USIM), Random 22899004 173734
Fitness 3, OO-GA (MRS), Random 22897264 175200

Table 4.6: E�ect of �tness function, initial population and mutation operator
on the total throughput in bps under bad channel conditions, for mutation
probability >�>1.
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Fitness, Selection, Mutation % of under-
allocated
users

Standard
deviation

Proposed, OOES (OOIM), Swap 10.25 6.82
Proposed, OO-GA (USIM), Swap 10.97 8.40
Proposed, OO-GA (MRS), Swap 10.12 8.05

Proposed, OO-GA (Hammersley), Swap 18.48 7.93
Fitness 1, OOES (OOIM), Swap 17.25 8.09
Fitness 1, OO-GA (USIM), Swap 19.67 8.64
Fitness 1, OO-GA (MRS), Swap 20.26 7.84
Fitness 2, OOES (OOIM), Swap 25.74 7.55
Fitness 2, OO-GA (USIM), Swap 25.18 7.68
Fitness 2, OO-GA (MRS), Swap 25.57 7.62
Fitness 3, OOES (OOIM), Swap 17.59 8.47
Fitness 3, OO-GA (USIM), Swap 25.55 7.16
Fitness 3, OO-GA (MRS), Swap 21.71 7.93

Proposed, OOES (OOIM), Random 20.67 10.28
Proposed, OO-GA (USIM), Random 14.81 4.99
Proposed, OO-GA (MRS), Random 29.43 2.31
Fitness 1, OOES (OOIM), Random 41.68 4.62
Fitness 1, OO-GA (USIM), Random 42.05 4.55
Fitness 1, OO-GA (MRS), Random 41.91 4.78
Fitness 2, OOES (OOIM), Random 33.37 5.43
Fitness 2, OO-GA (USIM), Random 33.49 5.43
Fitness 2, OO-GA (MRS), Random 33.25 5.28
Fitness 3, OOES (OOIM), Random 38.92 3.85
Fitness 3, OO-GA (USIM), Random 38.67 4.09
Fitness 3, OO-GA (MRS), Random 38.71 3.85

Table 4.7: E�ect of �tness function, initial population and mutation operator
on the percentage of under-allocated users under bad channel conditions, for
mutation probability >�>1.
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Fitness, Selection, Mutation % of users
under-

allocated by
>10%

Standard
deviation

Proposed, OOES (OOIM), Swap 2.76 5.42
Proposed, OO-GA (USIM), Swap 1.83 4.11
Proposed, OO-GA (MRS), Swap 0.44 2.05

Proposed, OO-GA (Hammersley), Swap 2.33 4.25
Fitness 1, OOES (OOIM), Swap 4.63 5.73
Fitness 1, OO-GA (USIM), Swap 6.69 6.99
Fitness 1, OO-GA (MRS), Swap 4.16 5.75
Fitness 2, OOES (OOIM), Swap 6.08 6.51
Fitness 2, OO-GA (USIM), Swap 5.82 6.44
Fitness 2, OO-GA (MRS), Swap 6.06 6.68
Fitness 3, OOES (OOIM), Swap 4.54 5.56
Fitness 3, OO-GA (USIM), Swap 5.77 6.29
Fitness 3, OO-GA (MRS), Swap 4.21 5.67

Proposed, OOES (OOIM), Random 11.87 4.42
Proposed, OO-GA (USIM), Random 9.42 3.50
Proposed, OO-GA (MRS), Random 7.05 4.56
Fitness 1, OOES (OOIM), Random 28.33 5.99
Fitness 1, OO-GA (USIM), Random 28.6 6.20
Fitness 1, OO-GA (MRS), Random 28.69 5.76
Fitness 2, OOES (OOIM), Random 27.96 4.08
Fitness 2, OO-GA (USIM), Random 28.39 3.81
Fitness 2, OO-GA (MRS), Random 28.26 3.97
Fitness 3, OOES (OOIM), Random 28.13 5.08
Fitness 3, OO-GA (USIM), Random 27.93 5.00
Fitness 3, OO-GA (MRS), Random 28.16 5.20

Table 4.8: E�ect of �tness function, initial population and mutation oper-
ator on the percentage of highly under-allocated users under bad channel
conditions, for mutation probability >�>1.
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Figure 4.4: E�ect of initial population and crossover probability on the total
throughput, for the proposed �tness using �swap if better� mutation, under
bad channel conditions, for mutation probability = 0.5.

Figure 4.5: E�ect of initial population and crossover probability on the per-
centage of under-allocated users, for the proposed �tness using �swap if bet-
ter� mutation, under bad channel conditions, for mutation probability = 0.5.
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Figure 4.6: E�ect of initial population and crossover probability on the total
throughput, for the proposed �tness using �swap if better� mutation, under
bad channel conditions, for mutation probability >�>1.

Figure 4.7: E�ect of initial population and crossover probability on the per-
centage of under-allocated users, for the proposed �tness using �swap if bet-
ter� mutation, under bad channel conditions, for mutation probability >�>
1.
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random mutation has lower standard deviation. In terms of the percentage

of under-allocated users and highly under-allocated users, as shown in tables

4.7 and 4.8, the �swap if better� mutation has lower percentage of users who

didn't receive their requested QoS. Overall, the �swap if better� mutation

leads to a better carrier allocation than the random mutation if they are

tested under the same conditions.

4.2.2 E�ect of Fitness Function

In this section the e�ect of �tness function is tested for GA with dif-

ferent initial population, and di�erent mutation operators under bad channel

condition.

In the case of �swap if better� mutation, in terms of total through-

put, as can be seen from table 4.6, the proposed �tness function reached

the highest throughput under all initial population algorithms while �tness

1 allocate with the second highest throughput. In terms of the percentage of

under-allocated users the proposed �tness carrier allocation leads to the least

percentage of dissatis�ed users under all initial population algorithms, which

is about 10%. The other algorithms under-allocate at least 17% of the users

for di�erent initial population algorithms. In terms of the percentage of the

users who were under-allocated by more than 10%, the proposed �tness car-

rier allocation leads to the least percentage of high dissatis�ed users under all

initial population algorithms, which is less than 2.8%. The other algorithms

carrier allocation leads to at least 4.2% of highly dissatis�ed users for di�erent

initial population algorithms. Overall, the proposed �tness function carrier
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allocation leads to higher throughput and less percentage of under-allocated

users than other �tness functions if it is tested under the same conditions.

Note that the same conclusions can be drawn if the comparison is done for

random mutation.

4.2.3 E�ect of Initial Population

In this section the e�ect of initial population is tested for GA using

the proposed �tness with di�erent initial population, with �swap if better�

mutation under bad channel condition. In terms of total throughput the

USIM algorithm attained the highest throughput of 28948992 bps while the

Hammersley algorithm reached the lowest throughput of 27638444 bps. In

terms of standard deviation the MRS allocation leads to the lowest through-

put standard deviation of 156096 while the USIM leads to the highest stan-

dard deviation of 343683 bps. In terms of user under-allocation, except

for Hammersley approximation, all algorithms performed similarly by under-

allocating about 10% of the users. In terms of users who were under-allocated

by more than 10% all algorithms under-allocate less than 3% of the users.

In addition, the percentage of users who were under-allocated by more than

10% using MRS are near zero. To conclude, the MRS performed better than

other algorithms because it is much simpler than USIM and OOIM.

Another way to test the e�ect of initial population on the proposed

�tness function is to lower the probability of �swap if better� mutation to 50%.

The reason behind it is to avoid getting �good solution� from hill climbing. In

this way the e�ect of initial population is better tested. The results are shown
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in �gures 4.4 and 4.5. From �gure 4.5, it is noticeable that USIM is much

better than MRS and OOIM in terms of the percentage of under-allocated

users since it acheives under-allocation percentage less than 9%. Regarding

total throughput, OOES attained the highest throughput of 28297808 bps

while Hammersley attained the lowest of throughput of 26778996 bps.

4.2.4 E�ect of Crossover

In this section the e�ect of crossover is tested for GA using the

proposed �tness, di�erent initial population, di�erent mutation probability,

and using �swap if better� mutation under bad channel condition. The results

are shown in �gures 4.4, 4.5, 4.6 and 4.7. By examining �gures 4.4 and 4.6,

it can be noticed that the crossover probability has very little e�ect on the

the total throughput whether is the mutation probability is high (�gure 4.6)

or low (�gure 4.4). On the other hand, the e�ect of crossover is very clear

by examining �gures 4.5 and 4.7. The percentage of under-allocated users

increases for GA using di�erent initial population by the increase of crossover

probability. This is because of the following: If the initial population selection

algorithm allocates �good� number of carriers for each user, the �swap if

better� mutation operator will generate better results while the number of

carriers for each user remains the same; then, the crossover operator will

modify the number of carriers allocated for each user. This change will

negatively a�ect the percentage of under-allocated users.
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4.3 Complexity Analysis

In addition to the performance of the scheduling algorithms, com-

plexity analysis is also very important. It determines if the increase in com-

plexity would lead to much better results or the increase in performance

would be so small that a simpler algorithm would behave similarly with

much less time. To perform the complexity analysis, a �C pro�ler� tool is

needed. The simulation is done by using Intel centrino 2 processor with 3GB

RAM. The most important outcomes of the C pro�ler are:

1. ms/Call: it represents the total time required to execute the function

(including all the nested functions)

2. # of calls: it indicates the number of time the functions was called

during the execution of the program

3. % Time: it indicates the percentage of time it takes to run the speci�ed

function.

By examining table 4.9, it can be noticed that except for USIM,

the �swap if better� mutation is taking the highest amount of time to com-

pute. That is because of the large probability of mutation. If the mutation

probability is decreased, the algorithm will take less time. Since USIM is

very complex it is therefore an unpractical solution from computation time

perspective. Although OOIM is less complex, it still is computationally ex-

pensive: if parallel implementation is performed OOIM would perform much

better. Hammersley and MRS are relatively simple to implement, therefore

they are practical. The main drawback of MRS and Hammersley from is that
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Function ms/Call # of calls % Time

OOIM 224.93 1 39.25
�Swap if better� mutation (OOIM) ' 0 15500000 42.24

Total time (OOES) 0.573
USIM 128.35 10 78.02

�Swap if better� mutation (USIM) ' 0 15500000 16.29
Total time (GA+USIM) 1.645

MRS 0.02 10 ' 0
�Swap if better� mutation (MRS) ' 0 15500000 74.87

Total time (GA+MRS) 0.35
OO-GA (Hammersley) 0.1 10 ' 0

�Swap if better� mutation (Hammersley) ' 0 15500000 79.45
Total time (GA+Hammersley) 0.394

Table 4.9: Complexity analysis of the initial population selection algorithms
and the �swap if better� mutation, under bad channel conditions, and for
very high probability of mutation.

Function Total time for OO-GA (MRS) in ms

Proposed 30
Fitness 1 25
Fitness 2 21
Fitness 3 16

Table 4.10: Complexity analysis of OO-GA (MRS) using di�erent �tness
functions with low probability of mutation

they are sequential, therefore parallel implementation will not speed up these

algorithms. Note that with the high probability of mutation all algorithms

fail to meet the 20ms time constraints.

By examining table 4.10, it can be noticed that with 50% probability

of mutation, the algorithms are taking much less time to compute. Fitness

3 is the only one that is able to meet the 20 ms time constraints. Fitness

2 is very close to satisfy those constraints. While the proposed �tness and

�tness 1 are a little far. Note that if a higher-performance processor is used,
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all algorithms would be able to meet the time constraints. Otherwise, �tness

3 would be the only feasible solution.
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Chapter 5

Conclusions

In this thesis, a solution for the scheduling and resource allocation

problem in the downlink of OFDMA system is proposed by the use of OO-GA

and OOES. The extremely large space is sampled by the use of approximation

to obtain a good initial population. Then by the use of evolution, a better

carrier allocation can be obtained. The proposed �tness used the throughput

and delay as metrics. It also added a compensation factor for users who did

not achieve enough carriers in the current scheduling frame. In that way it

can maximize the fairness while not jeopardizing the total throughput. The

simulation leads to the following conclusions:

• The use of ordinal optimization can generate a good solution. The

carrier allocation can be further optimized if OO is combined with GA.

• The use of �swap if better� mutation can bene�t GA to achieve better

allocation.

• The initial population is the parameter that has the highest e�ect on
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GA. It presents a tradeo� between performance and complexity.

• OOES performed similar to OO-GA with USBM, even-though the for-

mer is much simpler.

• The crossover operation can be bene�cial in some cases and harmful in

others. It depends on the algorithm used to sample the initial popula-

tion.

• Fitness function has a major impact on scheduling. It o�ers tradeo�

between throughput maximization and meeting the QoS requirements.

For future work we will consider the following:

• Parallel implementation of the proposed algorithm to see if it can man-

age to perform scheduling before the time duration expires.

• Optimize the �tness function to be able to meet the QoS requirements

for all users under bad channel condition. This might be done by adding

another compensation factor, but this time from between generations

and not from frame to frame.

• Modify the OOES to make it suitable for uplink.

• Test the proposed method on standardized system such as WiMAX or

LTE with MIMO, and on a real user scenario by simulate the channel

model using dedicated software tool.

• Test the e�ect of modifying the GA operators, such as mutation proba-

bility, crossover operator and selection criteria using the following mod-

i�cations: �rst by making the mutation probability variable in function
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of number of iteration instead of a prede�ned static value, second by

using di�erent crossover operators, and �nally by utilizing selection

criteria other than roulette wheel.
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Appendix A

Abbreviations

3GPP Third Generation Partnership Project

BP Blind Pick

BS Base Station

CSI Channel State Information

GA Genetic Algorithm

HR Horse Race

ISI Intersymbol Interference

LTE Long-Term Evolution

MIMO Multiple Input Multiple Output

MRS Modi�ed Random Start

MS Mobile Station

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

OO Ordinal Optimization

OOES Ordinaly Optimized Evolutionary Scheduler
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OOIM Ordinal Optimization Inspired Method

OPC Order Performance Curve

QoS Quality of Service

SNR Signal-to-Noise Ratio

SS Subscriber Station

UAP Universal Alignment Probability

USIM Uniform Sampling Inspired Method

VOIP Voice Over IP

WiMAX Worldwide interoperability for Microwave Access
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