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ABSTRACT

A detailed study of a class of functions known as 'singular
functions of bounded variation' is the theme of this thesis, This class
of functions for the purpose of this study has been divided into four
subclasses as followst

1. Step Functions,

2, Jump Functions.

3. Strictly Increasing Singular Functions.

4, Non Monotonic Singular Functions,

To each of the above subclasses, one chapter has been devoted,

The thesis therefore comprises of five chapters, Chapter I being an
introduction to the subject.

The introduction chapter, namely Chapter I, deals with three
known definitions and some interesting properties of a singular function
of bounded variation. It also includes an article on various decompositions
of a function of bounded variation. At the end of the chapter, an
arithmetic method of defining a function is discussed.

In Chapter II, continuous step functions have been studied. This
chapter can be taken as a summary of all the work done on this topic from
the time of G. Cantor (1884) till today. Works of Cantor [1], Hille &
Tamarkin [1], T. Carleman [1], R.E, Gilman [1], H. Kober [2] and [4], have

been specially studied in this chapter.
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Chapter III is concerned with another class of singular functions,
namely Jump Functions, These are inverse functions of step functions,
and therefore the inverse of the functions mentioned in Chapter II have
been studied,

Chapter IV deals with that subclass of singular functions which
are strictly increasing functions defined by A. Denjoy [1], W. Sierpinski [1],
and §. Saks [1] have been studied., Lastly in Chapter V, existence of
non monotonic singular functions have been established and some interesting

properties of such functions have been studied.
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CHAPTER I

INTRODUCTION

The class of functions of bounded Variation(l) has played a very
important role in the development of the theory of functions of a real
variable. The classical Lebesgue decomposition (also known as Jordan's
decomposition) of a function of bounded variation into two monotonic
functions has proved to be a powerful tool in investigating a large number
of interesting and important properties of a function of a real variable.
With the development of Lebesgue's theory of measure, the importance of
a function of bounded variation increased all the more in the literature
of real functions.

Results like

"A function of bounded variation has finite differential
coefficient almost everywhere (p.p)"
are basic in Lebesgue's theory of integration.
In this thesis we have studied in some detail a subclass of

functions of bounded variation, namely the class of singular functions

(l)A function f(x) is said to be of bounded variation in (a,b),
if for any mode of division of (a,b)

a=xo<x1<oo.<xn‘b

n-1
the sum 3 |f(x ,)-f(x )| is bounded [see Titchmarsh [1], p.355].
v=0 b

1



of bounded variation. The earliest definition of a singular function
of bounded variation is the following:

A function f(x) (a2 € x < b) of bounded variation is said to
be a singular function is the differential coefficient is zero everywhere
except at a set of measure O.

Two other definitions of a singular function were given subsequently.
We shall deal with these in the following section.

Singular functions have been known for a long time, G, Cantor [1]
in 1884 gave an example of such a function, Later many examples of
singular functions were given and many properties were proved.

G. Cantor [1], L. Scheeffer [1], H. Lebesgue [1], W. Sierpinski [1],
H. Hahn [1], T. Carleman [1], E. Hille & J.D, Tamarkin [1], 0.D. Kellog [1],
G. Vitali [1], R.E. Gilman [1], H. Kober [1], [2], [3], [4] have all made
some investigations concerning singular functions,

In this thesis, we have classified the class of singular functions
into the following subclassest

1. Step functions

2. Jump functions

3, Strictly increasing (decreasing)singular functions
4, Non monotonic singular functions.

A singular step function can be defined to be a single valued
function which is constant on intervals of an open set whose measure is
equal to the length of the fundamental interval. A jump function is defined

to be the inverse of step function, Strictly increasing singular functions



are monotone non decreasing singular functions which are nowhere constant,
Non monotonic singular functions are singular functions, which are not
monotone in any subinterval, no matter how small, In this connection
it may be mentioned, that if a non monotonic function is continuous, then
it is an everywhere oscillating functi0523

In this chapter we discuss some general properties of singular
functions, and in the succeeding chapters we discuss in detail each of

the subclasses mentioned above.

81 On Singular Functions

The definition of a singular function given above assumes that
the differential coefficient exists almost everywhere., This limits the
applicability of the concept of a singular function. This led S. Saks [1]
to give the following definition of a2 singular function which coincides
with the original definitions whenever the differential coefficient exists
almost everywhere,
3)

(
I. A function f£(t) of VO,a

L
e > 0, there exists non overlapping interval (tk, tk) (k =1,...n) in

is said to be singular if given

(04a) such that,

2 (t- )< 4 3|t ¥
kfl o b)) <e an Zf(tk)—f(tk)|> Vo, f -

. function f£(x) is said to be everywhere oscillating in (a,b),
if it has an everywhere dense set of maxima and minima. See Hobson [1], pp.21y

4
3Jf(t; of Vo., Means that f(t) 1is of bounded variation in the
interval (0,a). .

(4)

Vo.,f denotes the total variation of £(t) in (0,a).
:



Later H. Kober [1] gave the following equivalent definitions

11. f(t) of V5 . is singular, if the length of the curve
]

y = £(t) Joining the points (0,£(0)) , la,f(a)) is

= a+
LO,af(t) a VO,af .

We shall state some well known results of the theory of functions
of a real variable, from which we can deduce some properties of a singular

function.

Theorem 1t 1f for a function f(x) (a £ x< b), £'(x) =0 p.p., and
if f£(x) 1is absolutely continuous in (a,b), then it follows that £(x)

is constant in (a,b).

Theorem 2t If f(x) 1is continuous and f'(x) = 0 everywhere except at

an enumerable set, then f(x) is constant in the fundamental interval.

From Theorem 1, it follows that any singular function f(x) cannot
be absolutely continuous (A.C.) except in the degenerate case where £(x)
is a constant, Theorem 2 tells us something about the set -e where
f'(x) # 0. This set, if £(x) 1is continuous, is unenumerable. Therefore,
it is impossible to construct continuous singular functions with f'(x) =0
everywhere except at an enumerable set. The following theorem tells us
more about this set, in the case where f(x) 1s a non decreasing singular

function:



Theorem é‘: If (1) y = f(t) (0<t<a) is a non decreasing singular
function not reducing to a constant and if (ii) the sum of its jumps
when there are any is smaller than VO,af = f(a) - f(0), then there
exists a non enumerable set E in (0,a) such that f'(t) =<0 for

t ¢ E,

The following theoremtb)is an important result.

Theorem 4: If y = f(t) is a non decreasing singular function not
reducing to a constant, then the inverse function t = g(y) is also
a singular function,

These step functions which are continuous and are constant on
the intervals of an open set having measure equal to the length of the
fundamental interval are an important subclass of singular functions
and these are said to be basic functions. The following theorem gives
us a necessary and sufficient condition for a function to be a singular
function,

Theorem 5: A function w(t) 1is a basic function if and only if it is
inverse of a jump function.

A jump function can be defined to be a function having points

of discontinuities of the first kind at an everywhere dense set.

$2 Decomposition of a Function of Bounded Variation and Contravariation

Functions
2,1 Decomposition of a function of bounded variation into an A.C.

function and a singular function,

X5ee H. Kober [1]

©)
‘See H, Kober [1].



Let f(x) be a function of bounded variation, then its

T
derivative f(x) exists almost everywhere. Let

Q(x) = f'(x) dx .

O ey 3¢

Because Q(x) 1is an integral Q(x) is an absclutely continuous
function.
Let

r(x) = f(x) - Q(x) .

By the so-called fundamental theorem of integral calculus

»

L qlx) = & § £lx) ax = £'(x) p-p-

[+1]

1 1 1
It follows that r (x) = f (x) - Q (x) =0 p.p., and therefore r(x)

is a singular function. Hence we get the decomposition

£f(x) = aQ(x) + r(x)

of a function of bounded variation into the sum of an A.C. function and
a singular function,

Here it is relevant to give the definition of Lusin condition, (N),
with which a necessary and sufficient condition is given for a continuous
function to be A.C.

A function f(x) is said to satisfy Lusin condition (N) on a
set E if [f[HJr1)= 0 for every set H E of measure zero,

With the help of this the following theorem can be proved,

o
By |f[H]|, is meant the measure of the image of H under f.



Theorem 6t 1In order that a function f(x) which is continuous and of
bounded variation on a bounded closed set be A.C. on E, it is

necessary and sufficient that f(x) fulfil the condition (N) on this

set.,
Let us show that the decomposition sbove is unique. Suppose
f(x) = Ql(x) + rl(X) = Qz(x) + r2(x)
where
Q, (x), Q,(x) are A.C.
and
rl(x), rz(x) are singular,
then
Q, (x) - Qy(x) = ry(x) - r (x) .
Let

Q(x) =Q,(x) - Qy(x),

we have Q(x) 1is an A.C. function and Q'(x) =0 p.p.

Hence it follows that Q(x) is a constant.

This proves that the decomposition of a function of bounded
variation inte an A.C. function and a singular function is unique up to
a constant.

By adding teo a function, a singular function, the differential
coefficient is the same almost everywhere, while the behaviour of the
function might be completely changed (for example different types of
singularities can be added to the function).

2.2 A function of bounded variation as the difference of two
monotone functions.,

It was mentioned, if f(x) is of B.V., then



f(x) = Ql(x) - Qz(x)

where Ql(x), Q2(x) are both monotone of the same nature.
This decomposition is very important and useful. However it has
one disadvantage  that it is not unique. This led H. Kober [3], to put

the following condition on Ql(x), Q2(x)’
V(O,X)f(XJ = V(O,X)Q2(x) + VO,X)Q].(X) = Ql(x) +Q2(X) .

With this condition Ql(x), Q2(x) are uniqpe, and he calls them contra-
variation functions (CAV's). We shall now give the formal definitionst

"Two functions g(t) and h(t) are said to be the contravariation
functions of f(t) if

(i) g(t) and h(t) are non decreasing

(i1) f£(t) = g(t) - h(t), and

(111) Vo,tf(t) = vo’tg(t) + Vo,th(t) = g(t) + h(t)".

He gave the following criterion for two functions to be contra-
variation functions.

"The functions g(t) and h(t) (0<t < 1) are (CAV's) if
and only if

(1) g(t), h(t) are non decreasing, g(0) = h(0) = 0,

(ii) given & > 0, there exists a finite set of disjoint closed

intervals < t , Tk > such that

k
z o(T) - oly)) >9(1) -¢,

= h(1) - h(y) <e.



A decomposition of a singular function is given by the following

theorem due to Kober [1].

Theorem 63 If f(t) eV is singular, then there exists a jump function

0,a
j(t) e v, ., and given e > 0, a basic function w(t) e V and a
0,a 0,2

continuous function h(t) 3 V(h) < ¢ and
£(t) = 3(t) + w(t) + h(t) .

If f(t) 1is non decreasing, then so are j(t), w(t) and h(t).

&3 Arithmetic Representations of Numbers, Sets, and Functions

Arithmetic representation of numbers, sets and functions has played

a very important part in the definition of functions with certain peculiarities

such as singularities and certain specified properties of the function or
its derivative at points of a certain set. Arithmetic representation has
the advantage over other representation (geometric, by series) that itis
comparatively easy to study the behaviour of the function at particular
points, while it is extremely difficult to find the behaviour of the function
at particular points when it is defined geometrically or as a series of
functions,

Radix representation of numbers. Let a be a +ve integer greater

than 2, Then we can represent a point in (0,1) as follows:

(1)  Eetanih A £ AT ok 0 TR a; = 0,1,...(a"1)
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A special case of this, is when a = 10, and in that case we
get the usual decimal system.

We can group the points in (0,1) into two classes:

Class (i) consists of all points in which from and after some
place all a's are zero or all are (a-1).

Class (i1i) consists of all points in (0,1) in which not all
a's are zero or all a's are (a-1), after a certain place.

Points belonging to class (i) are called primary points and points
representable only as in class (ii) are called secondary points.

Primary points have double representation. Let x be a primary

point, then

a a
b e b ;TR - P

+ 2 + LI + n + n+.l + n+2 + . s e -
a [+ 4 a a

This is equal to

a

N -

L +2+lll+ .
a

Primary points are enumerable and form an everywhere dense set in
(0,1), and hence form a set of the first category. From this it follows
that the set of secondary points is a residual set.

Because the points of class (i) are everywhere dense, then we
can define a function f(x) at all the primary points. Then by applying
the principle of continuity we can extend the definition to all points
in (0,1). However, this can be done only when the resulting function is
continuous, This method of constructing continuous functions has been

used by various mathematicians (e.g. see Broden [1]).
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Radix representation of numbers can be generalized as follows:
Let [kng be an increasing sequence of integers, then we can

represent all points in (0,1) as follows:

a
2 n
LR ] + + -
1% kykgeodk,

where a = 0,l,... k -1 (n=1,2,...).

This representation corresponds to a division of the interval (0,1)
first into kl parts, then each of these parts into k2 parts and so on.
This method of representation of numbers has been used by A.N, Singh [1]
to give a general method to construct perfect sets of positive measure.

Let k,, ko5 «4+ k_, ... be a sequence of odd integers such that
17 72 n

the series 2 Ei is convergent, then the set of all points x where
n
c c c
1 1 2 n
xu8&(c +==+=Smt,, , 4+ ¥ wa)
2 ' k1 klk2 kle"'kn
k. -1
¢g=0orl cn*=-n—2 0<c <kl (n=1,2,...)

can be shown to be a non dense perfect set of positive measure equal to
1[(1-]1;_).
n

We now give a representation of numbers which is powerful to construct
functions with some kind of singularities at an everywhere dense set of the
first category which is of +ve measure, and even of measure equal to the

length of the fundamental interval,
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This method works by using any non dense perfect set, but for
simplification, we shall use Cantor's non dense perfect set in (0,1).

The set of points x, where

c
X = il +-—i% + ... t -lﬁ t oaes where Cip =0or 2
3 3 3

is Cantor's set in (0,l1).
1 "
Let the contiguous intervals be given by (£ ,£ ) where

‘ c c

11 12 o 2 2
E =_+ + '.l+ +_+-.-+I¢l
3 32 3n 3n+1 3n+2
c c
S-A+_1§+..l +.1--r_1
3 3 3
c C
E" =-!~_+ é2+ LN +a_.n -
3 3 3

If in all such contiguous intervals we again set up Cantor's
perfect set, and again in the contiguous intervals obtained, we set up
Cantor's perfect set. If this process is carried on indefinitely many

times, we get a set, whose points admit of the following representation:

c [+ G {
L B R
3 3 3 3 g 5 e g
[+
(oon + =2 4 = (XL 4 rg TORNE Y (S

%=1 M1 3 3

where the number of brackets may be finite or infinite. In case the number
of brackets is finite we get the primary points, and where the number of

brackets is infinite we get the secondary points.
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A point x representing a primary point can have double

representation,
c c & e
x=(ed2s L (A2 L
3 3 31 31 3 3 32
c c
1 2
(boe v 2— e (Hh 22, | 42 )
3r-1 31 3 3 3
x can also be represented as follows:
c c c c
x=("‘1‘l'+ l§+..‘+_-:;_+ ]],-] (21+%+000+:1+_%T----
3 3 31 31 3 3 32 32
1 1 ‘n, Sr2 1 Ly 2.2
(aoe + 2= 4 = (= +—r—2+,_,+-—+-—-(—5+—2+
3"r-1 3"-1 3 3 " 3" 3

This representation of numbers has been used to define functions
with certain singularities at a set of positive measure. U.K. Shukla [1]
has used this representation of numbers to define a singular function which

is non monotcnic in every subinterval.



CHAPTER II

ON STEP FUNCTIONS

In this chapter we shall discuss a class of functions known
as step functions. A single valued real function f(x) is said to be
a step function, if in every interval of the fundamental interval, there
exists a subinterval in which the function takes a constant value,
Intervals in which a step function is constant are called lines of
invariability. Clearly at every point of a line of invariability of
the function, the differential coefficient is zero. 1In this chapter
we will discuss step functions which are continuous and have zero
differential coefficient almost everywhere,

Cantor [1] (1884) defined a general class of functions, which
for a special case reduces to the classical example of a step function,
known as Cantor's step function. Cantor's step function was studied by
Scheeffer [1] (1884), and again studied in detail by Hille & Tamarkin [1]
(1929). Cantor's step function was generalized by Carleman [1] (1923),
then was further gene;alized by Gilman [1] (1931). All these functions,
however are special cases of a class of functions defined by Kober [3]
(1947).

In & 1 we study the works of G. Cantor on step functions, In

§2 we give an analysis of step functions that was given by E. Hille and

14
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J. Tamarkin, &3 gives Carleman's generalization of Cantor's step
function and & 4 gives E. Gilman's generalization of Cantor's step
function., Finally &5 gives a study of step function from a different

angle and that is the one given by Kober,

él Works of G. Cantor

Cantor defines a class of step functions as follows:

Let P be any non dense perfect set defined in (0,1). Using the
fact that C(P) is made up of open intervals (contiguous to P) which are
at most enumerable, arrange the contiguous intervals of P (call them un)
in order of magnitude of their lengths. In case, some intervals are of
equal length, then their order is immaterial, since there can be only a
finite number of them,

Let this arrangement be

Ul, u2, sen y un “aw

where u = (a,b), a,b eP and (an, bn) e c(P).

n

The end points a bn not only belong to P, but determine P

n?
completely, since P consists of such points plus their limiting points
(call them g).
We classify the points of P in the following three classes:
Class 1 consists of points which are left end points of
contiguous intervals . We denote the set of all such
points by P,
Class 2 consists of points which are right end peints of

contiguous intervals. We denote the set of all such

peints by ﬁ+.
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Class 3 consists of points which are limiting points of P~
or of P but are not points of P~ ar of PT. We
denote the set of all such points by Po.

To define the function let §¢ng be any sequence of points
everywhere dense in (0,1), such that 1¢n§ does not contain the
pointeor the point 1, We shall set up a 1-1 correspondence between
the contiguous intervals iung and the points §¢ﬁg in the following
way?

To wu,, let there correspond any point ¢_. Put o =14..
1 n n 1

To u, let there correspond a point P, s such that n, is the smallest
2

integer for which the following is trues

if u, 1is to the left of u then P <9

]
1 2

2 n

1

if wu, is to the right of U, then ?, >0

2 2

N

Put 9 =4,
n, 2
To Ugs let there correspond a L such that ny is the smallest
3
index for which

if uy is to the left of Uy OF U, then Pn < ®n. OT O, L0,
3 2 3 1
and
if Uy is to the right of u, or u,, then ® > ®, ©OT @ > ®n
3 2 3 1
i.e. @ 1is that point in the sequence §¢“§ with the smallest index,
3
such that ¢_ has the same position in (0,1) relative to iw and o _,
"3 N2 "
as  ug has relative to u, and u .
Put Qn = ¢3l

2
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In general, to Uss let there correspond a point ?, = ¢3
such that ng is the smallest integer for which P has the same

]

position relative to ¢l, wae W as the position of ug relative

s-1’
to ul, S us-l'

We can see that such a correspondence is possible since both the
set of contiguous intervals as well as the set of points i¢n§ are
everywhere dense in (0,1).

Now we shall extend this correspondence to all points of the
perfect set P as well as to all points in (0,1) in the following
wayt

Let ge Po, then there will exist a sequence of points of P+
or of P denote it by \gn] such that lim 9, = 9. Form the sequence
jhng where h is that point of the seqSence ﬂ@ng which is the
correspondent of 9, as has been defined above, Define h = lim hn
to be the correspondent of g, We know that this limit will egist and
will be unique, since this sequence has the same relative position in
(0,1) as the sequence g 3, and because the sequence 99,3 converges,
it must necessarily follow that {h } converges,

Since the derived set of fa}, {b } is the set P, and the
derived set of i?ni is the set of all points in (0,1), then this
correspondence will have an extension to all points of P and all points
in (0,1).

Now we shall define f(x) in the following way:
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If u is a contiguous interval of P with end points a_, b

n’ n
then
if xeu i.e. x ea_, b )
then f(x) = f(an) = f(bn) = ¢n
0
and for xe P x = lim 9,

where hn is the correspondent of g .
This defines a single valued function, which is continuous and
constant in all contiguous intervals of P. This functien f(x) is

singular only if P is of measure O.

1.1 Cantor's step function. As a special case of the class of

functions defined in §1, Cantor considers the following example:
Let P be Cantor's ternary set. Then P will be the set of all

points x having the following representation:

e ®n
x =3 ¥ = + yeas P . + aea ay =Q0or 2.
3 3

The set P+ will consist of points which have the following

representation:

a a 2
x=—L+ # + -
3 3 3"

I'\DIM

The set P will consist of points x which have the following

representation:



19

a d
1, 2% 0 2 ., _2
x=—-+-—+...+—+li—t——+-——4———l+...
3 32 3N 3n+1 3n+2
a a
et R
3 3 3

and the set P0 will consist of points x which have a representation

in which there exists an infinite number of an's equal to 2 and an

infinite number equal to O, i.e.

i i .
x= I + 3 A, #p, for all i,J
=1 M ga1 g =
and a, =0 a, =2,

Ay T

A contiguous interval u_ = (a_,p ) will be of length ke J
n n’*n 3"

and its end points will be equal to

a a

1 2 0 2 2
a =—+—=+ ,, T+ ==+ —5 + ...

n 3 32 3n 3n+1 3n+2
a a
1 2 2

ﬂn = + 2 + - + n -

3 3 3

This is a non dense perfect set. Now define f(x) in the

following way?

a a a
if xe P, i.e. x = i S -% * wau ¥ -ﬁ & R a; = Oor 2
3 3 3
b b a
then f(x)= - -% * see F -ﬁ * uai b1 = 31 i
2 2 2

1f x#P, xe (o,p ), then define
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b b 2
1 2 0] 1 1 i
f{x)=f(a)=_+ﬂ-+_"+._+_.._.._+ = — b, = —
n 2 22 o 2n+1 2n+2 i 2
b
1 2 1
= —= 4 —= tt-+—=f(ﬁ)-
o 22 n n

Thus we have defined a single valued function in (0,1) constant

in all intervals contiguous to Cantor's ternary set.

&2 Works of E., Hille & J. Tamarkin

Hille & Tamarkin have analysed Cantor's step functionj they have
proved the following properties:
(i) f(x) is monotone, and increases from O to 1 as x goes
from O to 1, the intervals of deletion being intervals of constancy.
[Note: We shall denote the intervals of deletion

at the pth stage by Sp , and the remaining

h
intervals by n_ . The length of & will be
Ph Ph
AE , there being P of them, the length of
3
n_ will be &=, there being 2P of them.]
Ph 3P

(ii) f(x) 1is continuous but not absolutely continuous continuity
at interior points of deleted intervals is apparent, since the function
of such points takes on a constant value. Therefore we have to show

continuity at points of P. Let x e P~ then

a a
1 2 (6] 2 2
x=_+_+-'-+—+_+_+'..
4 32 3n 3n+1 3n+2

Continuity from right is obvious.
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To prove continuity from left, let & be a point to the left of x,

then
a a
g=de 2+ e
3 3 3 3

where some terms equal to 2 have been replaced by O, a, being such

a one. We have

o
o

f(x)=-;l+2—g+...+%+ﬁ+2rl‘+2 ...+;v+
f(l:)=21+b—§+...+°—n+...+°—v+...
2 2 . 2
f(r) - f(x) = i; + ... terms of order greater 2 '
as [ —x, il.e. Voo f(E) - >f(x)

therefore continuity from right at the point x.

Similarly, we can prove continuity at all points of P. To show
that f(x) is not absolutely continuous, let us find the variation over

the remaining intervals Bp 9 after the pth stage.

2
= 3 3P=(%)P.

By taking P arbitrarily large, the length of the remaining intervals

can be made arbitrarily small, while the variation over them is always 1.



This proves that f(x) 1is not absolutely continuous.

(iii) f(x) 1is a singular function.

Since f'(x) = 0 at all points of contiguous intervals of P ,
and m(P) = 0 it follows that f'(x) =0 p p. Hence f(x) 1is a singular

function,

(iv) The function f(x) satisfies a Lipschitz condition of order

a = log 2/109 39 i.e.
lu(x + h) - w(x)] < A|R]® .

(v) Define
o (x) = f(x + h) - £(x) .

Let T(h) be the variation of ¢ (x) over (0,1) and let
z = max T(h) 0<h<Lz,

then 2z is constant and is equal to 2.

The importance of this function lies in the fact that a necessary
and sufficient condition for a function f(x) to be absoclutely continuous

is that T(h)-» 0 as h-» 0. This has been proved by A. Plessner.

§3 Works of T, Carleman

Carleman defined a class of step functions which includes Cantor's

step function as a special case.
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Let a be any positive integer. Let P be the set of all points

xe(0,1) having the following representation:

a a a
n
X = —l'+ —% ¥ wanw F - + saw where ai =0 or a-1.
a a a

Then P 1is a non dense perfect set. A contiguous interval pf P has
T L
end points E , £ , where

o 0 ,a-l a-1
E = + 2+ooo+ n+ n+1+ n_'_2+-o|
a a a a a
and
w @ a
-k g o2 a-l
E = + > * ... F - .
a a a
Define f(x) as follows:
a a a
if xe P, i.e. x = A4 25 cee 2+ L a, =0 or ag-1
2 n i
a a a
then
b b b a
f(x) = ot et S ees ¥ —ﬁ + ene where bi s
2 2 2 a-l
for
1 "
xfPy, xel(E ,E)
then

f(x) = £(¢) = £(£) .

This defines the function f(x) for all points in (0,1). Then

setting a = 3, f(x) reduces to Cantor's step function.
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§ 4 Works of E. Gilman

The technique Gilman follows in constructing a class of step
functions, is that he first constructs a class of non dense perfect sets
of zero measure in the interval (0,1). Then using the fact that all
perfect sets have the power of the continuum and that the contiguous
intervals are enumerable, he sets up a 1-1 correspondence between the
contiguous intervals and the rationals in (0,1), and between the set of
limiting points and the set of irrationals in (0,1).

Therefore we shall first turn to a discussion of the class of

perfect sets:

§ 4,1 A class of perfect sets. Let a be any positive integer,

represent all points in (0,1) in radix representation to the base a.
for all x e (0,1) let

a a

a
s _n
xm=S4Sd b=+ o (1)
a a a
Let
a -1=q(p-1) . q2 2, p22
Now let a-1 = q(p.1) , 922, p22

and hold B, q fixed, then define Pu to be the set of points in (0,1)

5P
having the above representation with the an's being multiples of q,

i.e. pa B consists of all points x3
)
a a a
D ° 2 n
X——'+—§+...+-"n+..- WhE.re ai=qbi -
a a a
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We will show that P 1is a non dense perfect set of measure O.
c(P) is an everywhere dense set of intervals, a typical interval of

] Ll
c(P) will have left and right end points E , £ , where

e ’n, e-1, -l
E = + 5 * e F f + ntl + 2 + oees
a a a a a
a) a, an+1
===+ - + oaee t - where all a; = qbi and in
a a a
particular a = gb,
and w3 s an+q
E === +—5+ ... s ~sl
a a a

These end points of contiguous intervals belong to P and P will
consist of such points and their limiting points. Because of this property,
P 1is closed and because every point is a limiting point, P is perfect.

The classification of points of P into sets P, P, P° will

be

1
P consists of points £ having the following representation

' a a
s S i ) . & =
£ " +5t e ¥ o + ] + a“+2 + ... 3y = aby (i=1,~n)

+ "
P consists of points & having the following representation
" a a a_+q
1 2 n
E mERE=EE ou BEEL a; = qbi (i=1,..n)

a a a
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P~ consists of points having the following representation
a, a a
x ='-l-+—% E gue +"'-: + ... where Jan infinity of an's
a a a

different from a-1 and O.

To show that P 1is of measure O, first the length of a contiguous

interval at the n®" stage is 9:% . At first stage we have (p-1)
a
contiguous intervals, at second stage B(ﬁ-l) contiguous intervals and

th n'l(

in general at the n stage B p-1) contiguous interval, hence total

length of contiguous intervals is

(p-1) L 4 p(po1) dal=l) 4 p2(po) dasl)
a a a

“ee

+ " (e Lol 4
a

= 3
n=1

ﬁn—l(ﬁ_l)lg:%l - {g-1)(g-1) ) (%)n
a a n=0

B-1)(a-1) _a _ (8-1)(g-1) _g-1-p+l _,
a (a-p) (a=p) a-p

Hence m(p) = O.

Now we will define the class of step function.

§ 4.2 A class of step function. Define w_ _(x) in the following

a,p
way. When
xeP
a,p
i.e. 5 & i
x = - -% + sae t —ﬁ + e where a, = qbi
a a a
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then
b b b
Wu E(X) - _l+~'§-+ e + —E + . -
H
B B B

| "
Hence if E , E are end points of some contiguous interval

a
ks 0, _g-l a-1 -
E =gt vt g e 3 = ab;
a a a a
-1 = .-l
. o8y 2 +g (a-1) = q(p-1)
A R e R RTTE -
a a a
then
( by . By Pn . g1, g-1, (p-1)
w E)=_+_+ ---+-—-+ + * +lll
a 2 n ntl n+2 n+3
P BB " B B p
b b b
=—.].'.+.-%+...+-—-WT'-1=WGB(E) 5
B B B ’
] n
For x £ P, x ¢ a contiguous intervals (£ , £ ) then we shall
define

(") .

"a,a(x) = wu’ﬂ(E') 2

o8

We can state the definition in a somewhat different manner, Let

all points in (0,1) have representation (1). If

a
x=d4e24 D4, a, = ab,
a a a
then
b b b
w . (x) =—1-+—2+...+—"+...
u’ﬂ ﬁ ﬂ2 ﬁn

and if a # gb, (where a_  1is the first such term) then



b b h a
wo(x) = gl g gD where b = [-9] +1
a,p B B2 51'\ n q

The following properties are easy to prove:

(i) The function wu’ﬂ(x) is monotone increasing, with the
contiguous intervals of P being intervals of invariability.

(i1) wu,B(x) is continuous but not absolutely continuous
continuity at all points of C(P) 1is apparent, we shall prove continuity
at only right end points of P, since for other points of P the proof

is exactly the same.

Let x ¢ P+
a a a
ik 4wl -n =
X = + > +oaas t n ay qbi
a a a

continuity from left is obvious since the function there takes a constant

' A
value, Hence that a point x > x such that x e P

1 f.l 32 an :
X = +=£ 4+ . +2+0.,.. +—2 where a_ 1is first
2 n v v
a a a a

non zero digit

wn,ﬁ(x') - wu,ﬂ(x) =—'§ + vae

B
and
1i ' £ (x) (x) is 1i ’y 0
mas X —»X 0 - W X S m =— = .
3 wﬁ;ﬁ . a,p v ﬁV

L |
To show non absolute continuity, w ﬁ(x) = 0 almost everywhere
2

but the function is not a constant, hence by a well known theorem wo (x)

2B

is not absolutely continuous.

(i1i) The function w__(x) satisfies a Lipschitz condition of

a,p

order



u o p B = ot

- log a ?
the Lipschitz coefficient, being not greater than
¢ =p(g-1)7"
and the best value of p possible, i.e. the inequality

A L Y

Qy

will not hold good for ko 2 u  even though o < c.

L} L}
Proof: Let x > x and first let x, x e P

L
be the first term which is different from 2 then

Let ay
' L ', -h by od -h, _-h
wa’ﬂ(x )- wu’ﬂ(x) = bh-bh(g +i=§+l(bi-bi)ﬁ < (p-1)p +p
-h
<p™ = pa
and
' ', -h "o-i -h
x -x=(a-a)e + = (a,-a,) 2> (g-1) .
h™®h e B =
Hence
' -h
la -x]* > (g-1)a ¥
and '
W (x ) -w _(x) B
——\L———E-lﬁ_ < —
Ix x| Tl



L] L ]
: I -
Iwa,ﬂ(x ) wu,ﬁ(x)l < 5 |x - x|* .
L]
Now if x or x € C(P), let Ey be the left end point of interval
|
containing x and El right end point of interval containing x , then

g 00 = g gD =g p(E) = ()] < elmt ¥ < ek

Now we shall turn to a study of the derivatives of w(x). We first
shall prove the following theorems which deal with derivatives at points
of P, P  and C(P).

A
Theorem 1: For (i) x & C(P) w (x) exists and w (x) =0
(i1) x e p D+w(x) = +00 D wix) =0
(1ii) x ¢ P D'w(x) =0 D w(x) = +op

Proof: The first statement is obvious. We shall prove only the second
statement since the third one is derivable from the second and by the
transformation x' =1~ X

That D w(x) = 0 1is clear since the function to the left of a

+
point P is a constant.

Let X E P+
then
3 3 “n
X=—+‘—2+ “ee +_n ai =qbi(i=l""n)'
a a a

T 1
Take a point x to the right of x, i.e. x > x
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a a a a
x =+4+24 L +DL L, .
2 n v
a a a . a
then
L bV -
wix ) - w(x) = —~ + -+ terms of order greater p° 2
p
and
i a a
., ) vl
x =x=-7+.. < ol
a a
b
Hence -4
]
wix ) - w(x) gy _ by (fg)v
] -
X - X v+l %vh P
v
and “
m v @V, oo
v a B :
v+l
Hence

D+W(x) = 400,

We shall now study the behaviour of the derivatives of w(x)
points of Po. We shall need to use the following notation:

Let

let

O = avh to Pp = bv # 9

(we assume avh $ a-1, and Vel = Vs $1),

L]
let x designate the variable point going into x, and

Q(x.) - wix ) - w(x)

[ ] 2
X =X

o

W

<|<

at
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let
n Vi
x, = Zaa a sequence of right end points
h=1
approaching x,
and
n-1 vy an-q+l
¥, ™ z aa + = a sequence of left end points
=) =R going into x,
and let

Sn : [xn-l’ xn]

and let sn denote the number of non zero digits between av and a

n Y+l
i.e.
Sngvnﬂ_vn -1
and let
S
r =—
n v
n
and let e My denote two sequences of -+ve numberss
€ 0] Mn 0 ean vnun <M where M is a +ve
constant,
and let

=4 _1]=400a
B log P

We now prove the following lemmas:
A}
Lemma 1t When x —» x on the sequence X, » then

Q()':n) > un+l+1 B



Proof:

and

Hence

Lemma 2:

and

Hence

-V

wix) - w(x') = = PhP B Bty P

]

h=n+1

-V

h
X-x = I aa < (a_,,+1l)a
hen+l =

w(x) - wix)

v, +1

h

X - X

]
For x

aly ) <

n

q-1

a

Pt g
[CRREN

Por1™ Yo Voh

wly ) - wix)

aly ) =

n

wiy,) - w(x) = hz BB
=n

Yy -x =X
n h=n

Y.-X

n

= I PP

h=n+1

q

Yh

= an-q+l

aa
v

an-q+l

v

Vhtl

h+l

approaching x on the sequence Ys

+ 1

< By t1)B

Vit
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r
Lemma 3: When x ¢ o =[xn_l, xnl

then

B v._ -V
at) > e "> L aly,).

A}
Proof: Since Xn-1 < x <K Xn

then
wix ;) < wix') < w(x )
therefore
' Vil
wix) = wix ) > w(x) - w(xn) > P B (Lemma 1)
while

' “Va
x=x <x=x < (un+l) a .

Hence applying Lemma 2, we have
1 -
x) s Brri'l(q 1) 5=k
qéyn; (a #1)(B 4, *1) ~ap

We will give now a necessary and sufficient coefficient for the

existence of a derivative in the left of a point belonging to PO. This

is contained in the following theorem,

Theorem 2t A necessary and sufficient condition that at a point x e PO,

w(x) have a derivative in the left is that

Q(yn) —»00 85 N w300 .
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The derivative is equal to + 9 if it exists at all.
Proof: The necessity of the condition follows from the fact that
Q(xn)—ao% hence if the derivative exists then 1lim Q(yn) = lim Q(xn).
Hence if the derivative exists at all Q(yn)-gan. The sufficiency of
the condition follows from Lemma 3. For if Q(yn)-qnﬂ, then from

]
Lemma 3 follows that Q(x ) -~> and from Lemma 1 Q(xn)_qqo. Therefore
]
lim Q(xn) = 1im Q(yn) = 1lim Q(x ) = +00 ,

Hence the derivative will be equal to 490,
]
By using the transformation x = l1-x we get similar information

| t
about the derivative from the left, since £ > x F < x , where
T
E=l‘E.
We shall give now more definite results which are contained in

this theorem.,

Theorem 3t If x & P°

and r < \-e  for n>N that is for all values

- n —

greater than a certain N, then the function w(x) has a

derivative on the left equal to +00. If however, we have

r, > A\-€_ for infinitely many values of n then w(x)

has no derivative on the left,

(Same results for derivative on right).
Now we can classify the point in (0,1) according to the behaviour

of the derivative of the function w(x)
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(1) D+w(x) =D w(x) =0 for x e C(P)
(1i) DYw(x) = +90 Dw(x) = 0 for x e P
(111) D'w(x) =0 Dw(x) = +0 xeP

+9 D w(x) not defined

(iv) D+w(x)

(v) D+h(x) does not exist D w(x) = +o00

e e N s
=
m
o

(vi) D'w(x) =D w(x) = +

(vii) D+ﬁ(x) does not exist

D w(x) does not exist.

§ 5 Works of Kober

Kober defined a class of continuous step functions w(r',a,p),
P an integer and a > B 2 2, which includes all the step functions
already mentioned as special cases. For a =3, B =2 we obtain Cantor's
step function, B =2, and a any positive integer gives us the class of
functions defined by Carleman, and for a, B any positive integers, we
obtain the class of functions that was defined by Gilman.

Kober deals with this class of function from two points of view

as followss:

1
1) w(r ,a,p) is defined as the inverse function of the function

r = G(y) defined as follows:

t
r=G(y) =q = Sa
m>-oo n=1
-m
ng <y
=q Z a a "
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(where q = %f% 0<y< 3§ m>- log ufiog ﬂ) $

where the dash indicates that the summation should not include n's which
are multiples of B, and am,y is the number of positive integers n
such that mrﬁ, and given g, n<y ;3m.
As the function defined by (1) is a jump function with discontinuities
at all rational points, the study of w(t’,a,ﬂ) as the inverse of G(y)

will be taken up in the chapter on jump functions.

]
2) The function w(t ,a,p) can be defined uniquely by the following

equations:
w(0) =0 w(l) =1
1
) wtrgd = gt
w W 1 ! =
w(t + L) w(t) +g . (Ostsl'%ﬂl'n(ﬁ-l))

Kober has proved that the equations(A) determine w(t) completely

and this is a consequence of the following theorem.

]
Theorem 1t If a function (t ,a,p) (i) does not decrease in any interval

0<t<s and (ii) satisfies the equations then it is

1
identical with w(t ,a,p) defined in (1).

This follows from

Theorem 2: The Fourier-Stieltjes transform F(x) = IO olxt d (t) of a
function (t) satisfying the conditions in Theorem (1) is

given by
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ix -n -1
2 -
F(x) = e / g 3in 28 A . where A = 12

n=0 B sin(x a " A/2) p-1

That is the conditions of Theorem (1), determine the Fourier-
transform of the function uniquely, hence by a known uniqueness theorem,

the function defined by the conditions of Theorem (1), is unique.



CHAPTER III

ON JUMP FUNCTIONS

In this chapter we discuss the class of singular functions known
as jump functions. It has been proved in Chapter I that if y = f(t)
is a non decreasing singular function, then the inverse function t = g(y)
is singular. In case f(t) is a step function then the function g(y)
is a jump function.

In 81, we study the jump function which is the inverse of Cantor's
step function. & 2 and 3 deal with the jump functions which are inverse
functions of Carleman's and Gilman's step functions respectively. 1In§ 4

we study Kober's works on jump functions.

§ 1 Inverse of Cantor's Step Function

Let f(x) denote Cantor's step function defined in (0,1). Then

b b, b
£lx) w4, F R,
2 2 2"
when
a a a
X = e | +'—% * saw ¥ -2 + v a1 =0or 2
3 3 3 ay
and bi = E—
and
b. b b
fx) =L+ 2+ .., 42
2 2 2"

39



when
- °n
e o (L, e L a_ =1 and a,(i<n) = 0 or 2
2 n n i
3 3 3 ag
and bi e (i<n)
antl
b, = —
2
The inverse function x = f-l(y) = g(y) will be given by:
by by Py
if y=—+% 5 ¥ oees =4 i.e. whenever y has finite
2 2 2"
radix representation to
the base 2,
then
b b b
2
x=gly) =202+ 5+ .., +-D)
3 3 3
If y has infinite representation only i.e.
b b b
y==2+-24 . +-04 .
2 2 g"
then
b b b
oy) =2(F+5+ . +Du ),
3 3

Since y = f(x) has an everywhere dense set of intervals where
the function is constant, then f-l(y) will have an everywhere dense
set of points of discontinuities. In fact f_l(y) is discontinuous at
all peints y having finite radix representation to the base 2. Let

y be such a point, then

o
o

1

~ b
2

n

+

Mol

y=

N
N
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Let Y'(y
then
b b
' 1 2 0 1 1 1
Y=—+—+COO+ +_—'+_—'—+...+.—
2 “ gt Ml e oV
we have
b b
1 2 i b
gly) =202+ =2+ ., +7=)
3 3 g
and
' bl };)2 o ;i 4
g(Y)=2(_+—+...+";+-—n_fl' 4—\!)
3 3 3 3 3
' 1
lim g(y)-g(y ) = lim [ (= + sy L
Y'Y v 3 3 3 3

Hence g(y) 1is discontinuous from left at all points with finite
representation, the measure of the discontinuity being i; . At such

points however g(y) 1is continuous from the right.

Let
L]
Yy >y
b, b
]
y=-‘l+'—§+,,,+l—+ g+l+,..+'—o':'i-+l"—
2 2 2" o 2V 2v
' 2
gly ) ~oly) ==
3
' 2
lim g(y ) - g(y) = lim = %0,
T Y v 3

At all other points in (0,1), i.e. at all points y that have

infinite radix representation only to the base 2, the function is
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continuous, Let y be such a peint, then

b1 b2 bn
y=—=+==+ .. +—=+... infinite number of b_'"s =1
2 2 2 .
infinite number of bn‘s =0
let
1
y >y, then
)
1 b b bv'
y =—-L+—§+_,_+-—-+,.. where b =0 and
2 2 2 i

b'v =1

1 ]
i.e. to get y we replace some bv s which are zeros by 1's., Then

{ ] ]
gly ) - aly) = 2(9;! + ... terms of higher order)

3

! b'v
lim g(y ) - gly) = lim 2(5= + ... )
Y'—,Y V 00 3

=10 .

Similarly at such points g(y) is continuous from the left. 1In
fact g(y) 1is an example of a function discontinuous at an enumerable
dense set, and continuous elsewhere, Since g(y) is monotone then its
differential coefficients exist almost everywhere, and almost everywhere

it will be equal to zero.

Let y be a point that has infinite representation only, then

e By
y= A5t b4 . infinite number of b '"s=1
2 2 2" 1
Infinite number of bn's=0
_ bki Egj_ A, ¥ py for all 1i,j
= Z _). * 3 3 i 3
i oM 3 o

byj=1 b ;=0
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1
To find progressive derivative, let y >y, then

I, T
=3 ==+ ; '. =
Y 2k1 T auj buJ A
Hence
' )
gly ) - aly) =23 3
and
bt,
2}:—‘%
g(y'):g(v)= j=v 3*
bl
Y =¥ y -
J=v 21‘Lj
2y = o, L
=V 3”j 3"
= <
s L = 2
j=v 2% ¥
v
S%.z_{_
at 2

+ i e I“L
Dg(y)=y,1.’$ aly')-a(y) ., 1m _2 2

] —
y -y V 00 3p.v 2

Because g(y) is monotone D+g(y) 20 . Hence
+
D'g(y) =0 .

I 1
To find D g(y), let y <y, then

]
b1

0



b, ,
fhen ' 2 =2 —9 2 = 'il'i'
aly) - a(y ) _ __i=vil 3" 4=v41 3
. s
y- v byi 1
T A X |
f=y+l 2 j=y+] 2
1
‘ 3?w+l
-— 2 .
2)w+l
- o 1 Av+l
Dg(y)=l}mﬂﬂ—q-s-y—l,<_”_’.“w2 . E— -0
Y Y y-y . 3 2
Dgly) =D g(y) =0 .

Because the points which have finite representation are enumerable,
the differential coefficient exists and is equal to zero almost everywhere,
namely everywhere except at points having finite representation,

Let us now study the behaviour of the derivatives at points having
finite representation. Since g(y) 1is discontinuous from the left at
such points, the regressive derivative will be infinite; To compute the
progressive derivative, let y be a point having finite radix representation

to the base 2, then

b b
y==+24 4L
2 2 2
let
Y' >y,



and
g(y') - gly) =2 (l; + ... terms of higher order)
2
and
22+ ..) 2 y
aly') - a(y) ___ 3 < &£ . 3
: - 1 = 2 " \3
Y -y < el e
2 2

D'aly) = 1m alyl)-aly) o lim 2V

J '

Yoy Yy -y = v-oaw3

pgly) = o.

These properties of the derivative are true of the class of
functions which are inverse functions of Carleman's, Gilman's, Kober's

functions.

§2 Inverse Function of Carleman's Functions

Carleman's class of functions which include Cantor's function

as a special case was defined in Chapter @ as follows:

Let a be any positive integer, then represent all points in

(0,1) in radix representation to the base a, then

b b b a
1 2 n i
y=f(x) ===+5+ .., +-2+ b, = ——
2 22 2n i a=-1
when
a a a
X = L + -% G +--§ + cau a; = 0 or a -1
o a a



f(x) = -5 —% e F i;
2 2 2
when a, a a
X RS i M e a, (1 <n) =0o0r a1
a a a

x = gly) = £ y)

will be given as follows:

For a point having finite representation,

b b
y= S+Z+ .41
2 2 2
then
b b
- R o
gly) = (e-1)[~=* + 5 + «ai =] s
a a a
For points that have infinite representation only
b b b
y = —L+—§+...+-—I’:+...
2 2 2
then
b b b
1 2
gly) = (a-1)[=+ 5 + .oo +D+ ...]
a a a

As was shown in § 1, similarly it can be shown that g(y) defines
a strictly increasing function, discontinuous at all points having finite
radix representation to the base 2, continuous at remaining points,at
such points the differential coefficient exists and is equal to zero.
For a =3, this reduces to the jump function discussed in §1, namely

the inverse function of Cantor's step function. A more general class of
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functions having these properties will be discussed in the following

section,

&3 Inverse Function of Gilman's Function

Gilman's functions were defined as follows:
Representing all points in (0,1) in radix representation to

the base a and letting a-1 = q(p-1), then

b b b

f(x) == + =24+ ,., +-—2+...
i B p

whenever
a a a
. e | _n -
X - * 2+o-- + n+ s ai = qbi

a a a

and if a is the first term which is not a multiple of g, then

a
b, b 21 41
f(x)=_}'.+._2+.-.+£9]n—.
PP P

a a
where [*E] denotes the greatest integer in Eﬂ .

The inverse function will be given by

b. b b
x = gly) = £1(y) =q(-'l-+-§+ +—:)
a a a

whenever y has finite radix representation to the base a. 1i.e. whenever

b, b b
y=-l-+—§+. .+—:
BB P
and
b, b b
x = g(y) =q(—+—§+... -4 R
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whenever y has infinite representation only.
We will prove that the properties mentioned above are satisfied
by this class of functions. We first discuss the continuity of x = g(y).

Let y be a point having finite representation

b b b
y="2+24+.. +-2
p p B
let y'<y, then
b, b b -1 p-1 .
Y'= L+ —% U s = ) * den T Vl
P P p P P
then
b b -1
- e o (=B - B . bicl Bl
aly) - aly') = q [ == o [ # g b B
a a a a
= g [ - (B=L g-1
-4 [un ( il T owes ¥ uv)]

lim g(y) - g(y') = lim q[t-a - (;ﬁnﬁ ¥ oo+ By

y'—;y v —>00

At such points, the function is discontinuous from the left,
however, at such points it is continuous from the right.

Let y' >y, then

b, b b b
R R TR
p p P p P

then

b
aly) - g(y*) = g + ...) =0

b Va0 e
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Similarly we can show that at points having infinite represen-
tation only g(y) is continuous. Moreover we will show that at such
points the differential coefficient exists and is equal to zero,

Let y be a point having infinite representation only and let

y' >y then
b b b
Y“'_l+"%+..-+_‘s+...
P P B
b, b b .
yr=deSa D e Yy b'v > b,
P p P p
then
b'v-b,
g( |2 - E( ) [ uv * no-]
1 =q Tv-bv
y -y [L—"V +oel]
3
b'v-bv
v v
b'v-b
L=t TR ) 0
b v-Svgh b'v-by .y ¥ o s
P
Hence D+g = 0.
To find D' g let y' <y, then
b, b b ,
v'=—l+—g‘+...+—2+...+5’-—§+... b'v < b
P p p p
then
b'v
QE_"'"'] v ' e
aly)-a(y") _ %V qbvbv b gti-b, B
! blv " v v
YY [Bv+'..] a ﬁ V—’im.

Therefore D g = 0.



Hence the differential coefficient exists and is equal to zero

almost everywhere. This proves that g(y) is a singular function,

& 4 Kober's Works on Jump Functions

Kober in 1948 defined a class of jump functions t = G(y) which
includes all the functions previously mentioned as special cases. t = G(y)

is defined as follows

] - -
(1) t=G(y) =q =T Z a"=gq = amyum
m > n=1 m>-oo
ng ™"y

(0<y<e0; m> - log Y/iee f;)
where pB is an integer, a > B2 2, q= (a—ﬁ)(ﬂ-l)_l, and where the dash
means that summation does not include n's which are multiples of B3 and
.y is the number of +ve integers n which are not divisible by
such that given m, n<y Bm. From this we obtain the inverse of Cantor's
step function by setting a =3, B = 2, the inverse of Carleman's function
for B = 2, a any integer, and the inverse of Gilman's function by putting
y £1 and a integral.

The relation (1) t = G(y) defines a function with discontinuities

at all points of the form y  =n ﬂ-m (n X p) for, letting
2

_ - -m
G('rm’n_) G(vm’n) ™ Ean qmgoo by S
then
1 -m
G(Ym,m) q ‘_E.ma iy
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'
where an v is the number of +ve integers n's 3r1¥p and n < yﬁm,
b

and therefore a' - a = 1, In other words
m,y m,y

G(ym,n+) = G(Ym,n) *qfqm =ty pt 9 m

From the definition of G(y) we can deduce the following

properties:

(1) Gly/p) == Gly)

a

: (11) G(o) =0 @G(1) =1
(111) Gly + §) = 6(y) + L3 0<y<1-2.
Proof of (i!
‘Let G(y/p) =q = a a @
w-s0 WY
and
G(y) =q = ay PR
m= - 60 Y

a m a' « 2
my ° m,y m,y

denotes the number of integers nj3 n { B and given m, n<y ﬁm‘l

We shall find the relation between

and a; y denotes the number of integers n§ n { B and given

]

m, n<y Bm.

Proof of (ii)

G(o) =0 This is apparent,
-m
G(l) = zZ a
(1) 92 ny®

where a, y is the number of +ve integers ny n f B and n < ﬂm

’

a £ pm ‘_ ﬁm’l - ﬂm-l(ﬁ'l)

m,y
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G(l)xq[%+m;—é)-+

B2l n+ @)+ B2+ B

Proof of(iii)

We want to show that

G(y +-;-) - G(y) =2 |

G(Y+%)‘G(Y)=q _z' la"m—q s
K yg mp <y
=q by 1 B
y<ng"y+ B
If we consider 0 <y < 1- L 5 then m >0 since y + %-5 1.

The number of n's not divisible by B such that

v < n < yp™ + g™ 1s p™lp™ 2 - g2(p.y),

Hence m-2
Gyt 3) - Gly) = qk + 8L 2leddd 8 fo=l)

a a Q

Hence

Gy +3) - 6ly) = TL .
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To see that G(y) is actually a jump function, it is necessary
to show that the inverse function is a step function. Denoting the
inverse function by y = w(t) =G (t), then since the points Ym,n of
discontinuities of G(y) are everywhere dense, then w(t) will have

an everywhere dense set of intervals of constancy. In fact if
G(Vm,n) - tm,n

then for all points tj

-m

t <ttt +qa
m,n = = “m,n

w(t) is constant and takes the value L na-m. Such intervals would
3

be called of order m, there being p" - am—l of them. Therefore

total length of intervals on which w(t) is constant is

m-1
® qa™E™ - p"Y) = q(p1) T B4
m=1 m=l @

n

gL By B2 L By L

1.

;
i

Therefore the function w(t) is a step function, the set of its
intervals of constant has measure equal to the length of the fundamental
interval, and therefore w(t) defines a singular function, from which
we can tonclude that G(y) the inverse function is a jump function

which is singular.
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From the relations mentioned above of G(y), we see that

w(t) satisfies the following relations:
(1) w(o) =0 w(l) =1
1I (11) w(t/a) = % w(t)

(111) w(t + %l) = w(t) +-é S

As was seen in Chapter II, any non decreasing function w(t)
satisfying the above relations, is the function w(t) defined in (I).
That is these relations II, with the fact that the function is non
decreasing define the function uniquely.

Kober has proved the following inequalities concerning the function

w(t).
(1) w(t +7) < w(t) + w(T)
A
111 (11) w(t) < t* and w(t) > (ﬁ-:% t) (x = %%g—%; 0 < t <)
(111) 0 < w(t + h) - w(t) < h* . (0< t €03 0< h <)

It is easy to see that the inequality (III) follows immediately

from (I) and (II).
w(t +h) - w(t) < w(h) <0

and this shows that the function w(t) satisfies a Lipschitz condition.
. Due to the complicated form of w(t), the proofs tend to be long

and rather difficult, However, in a later paper Kober has improved on

See I, p. 31,79
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this by generalizing the function w(t) and putting it in a simple and
more compact form,

Let B be any real number greater than one, and 0 £ x <®9,
Define

Y(X) = T(X:U;B) T °E° u-m [Bmx] = z a-m [Bmx]
= -oq m>log x/log B

and

- i
8 = 1im Y(l g)

where [u] denotes the greatest integer in u.

Set
(1) t=g(x) = cu,ﬁv(x)
(11) A(t) = At a,) = x = g5 (t) . 0<t<oo
In the case that B 1is an integer, then % B will reduce to
b}
L“ﬁ%%é?fll » since in that case

lim 1 @ m.m
c = - =1
a,f e=0 Ytl-a5 mio a (p7-1)

m
.-y -(3—‘1-l=-£___n_,=.(_4a.(ﬁll_7
m=0 ~e a-p a-1 a~1lj)ip-1) °

It is easy to see that in that case, t = cu,ﬁy(x) reduces to
the function w(t) mentioned above, and g(x) generalizes the function
G(y). a(x) is a jump function and is discontinuous at all points of the
form R Y (p = 1850009 ¥ =0, tl, tﬁ,...) which are everywhere

dense in (0,00).
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Let
=t
g(xl’-:"’) BV
then
-v
- = X - = -E
g(xp,v ) =gl o ) = g(pp )
-m m-v m
= Z (kB B - €]
1
tp.,v B
Therefore the function A(t) = g-l(t) is constant in all intervals
(t - = t ) which are everywhere dense, and therefore is a step

Bov @l ? Tp,v
function, Many of the properties of G(x) and w(t) hold for the general

case, For example, it is easy to see that the following relations are

satisfied:
g(0) = A(0) =0 g(1) =1 = A1)
o(x) = a 9(3) A(t) = B AGD) .



CHAPTER IV

ON STRICTLY INCREASING SINGULAR FUNCTIONS

A. Denjoy [1] has given a method to construct continuous
singular functions which are strictly increasing. Subsequently many
examples of such functions were given, In § 1 we shall discuss
Denjoy's method. 1In § 2 we apply this method to obtain a continuous
strictly increasing singular function, § 3 deals with a function
given by W. Sierpinski [1], Lastly §4 deals with a function given by
S. Saks [1] to illustrate a certain property of functions which are
absolutely continuous generalized (A.C.G.;?} This function happens

to be a singular function.

§1 Denjoy's Works

To define the function Denjoy sets up a 1-1 correspondence
between two sets which are everywhere dense, and by the principle of
continuity extends this to all points in the interval.

Consider two intervals (a,b) and (a,p). Define in(a,b) a

(VI
A function f(x) is said to be A.C.G. on E, if f is
continuous on €, and if E is the sum of a finite or enumerable
sequence of sets E_  on each of which f(x) 1is A.C. See Saks [1],
p.223.

57
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non dense perfect set Pl of points x, having positive measure
m(Pl) =@ >0, and a non dense perfect set Lo of points f,
such that m(nl) = 0.

on (a,b) define a continuous function f(x) which is
cgnstant in all intervals contiguous to Pl’ increasing otherwise,
such that the range of f(x) 1is the interval (0,1). Similarly on
(ayp) define a continuous functioéahg(g) which is constant in all
intervals contiguous to L) increasing otherwise, and having as
range the interval (0,1). [In fact, let the values of f(x) and
g(r) at end points of contiguous intervals of Pl and L5 respectively,
be points of a preassigned sequence [kng which is everywhere dense in
(0,1), but includes neither of the points 0 and 1].

P

Denote the contiguous intervals of P1 by Uy i IE R [ SR, 1

since these are enumerable, arrange them in a certain order

i
ul, ul,...ul’... -
Let the contiguous intervals of =, be w; (P =
We establish a 1-1 correspondence between uf and w
following way:

If

Lamiie v

P P
= (al, bf) and Wy = (nf, 35)

then
corresponds to wf if and only if

Ll <

2y
% Clearly f(x) and g(£) are continuous step functions.



59

£(a) = g(a]) and £(8)) = g(gD).

Similarly we establish a 1-1 correspondence between the points of Pl

and those of T, as follows:

x, € P} corresponds to & e m if and only if f(xl) = g(cl).

1 1

Moreover, left end points of contiguous intervals have to go into left end
points, and right end points have to go inte right end points., This defines
the correspondence uniquely.

Since both f(x) and g(¥) are monotone non decreasing functions,

it follows that

if < d (3)
: & x1 x2 an xl “—> El

X2 “«> 52

then El < 52'

Consider two intervals, u?, w?, contiguous to Pl and to L5

respectively, such that they correspond to each other under the correspondence

defined above,

Let
n n .n
u; (al, bl)
n n _n
wy = (ay, By)-
n n n n n
Place a non dense perfect set P, in u; such that m(P2) = G(b1 - al)
and a non dense perfect set ng in w? such that m(ng) =0, In u?

ta}By xl"’gl we mean El is the correspondent of X|e



Recalling the equivalent definition of a singular function given by
Kober [1]

"A function f£(x) 1is singular in (a,b), if given e >0, 4
non-overlapping intervals (xk, x;) (k =1,2,...n) in (a,b) such
that
; (x; - xk) < e g lf(x;) - f(xk)l > Vg f-e

k=1 k=1
where V:f denotes the total variation of f(x) in (a,b)".
It immediately follows that f(x) defined above is a singular

function,

€2 An Application of Denjoy's Method

Here we apply the method given in § 1, to obtain an example
of a strictly increasing singular function,

Consider the interval (0,1). Construct in it the following
perfect sets, T of zero measure and P, of positive measure, defined

i
in the following ways:

n{q is the set of all points ¢ e(0,1) such that
a,” a a

E=_l+—2+-la+—ﬂ+oa- where a, =0 or 2
3 32 3n i

and P, is the set of all points x ¢(0,1), such that

a a a 1
x=%('—l+'—g+--- +—-E+...) where a, =2 +3or 0.
Y 4 Yy

mul is Cantor's ternary set.
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define a step function fg(x) constant in all intervals contiguous to

Pn, increasing otherwise, and a function gg(x), such that both functions

2

have the same range,

As before, we set up a 1-1 correspondence between the points of

Pg and those of ng. This will be as follows:
x. ¢ P7 corresponds to . e m. if fo(x) = g'(x), with the
2° "2 P 9. &%y 2 9\ X/s

condition that left end points of contiguous intervals of Pg, go into

left end points of contiguous intervals of .

2
Denote the contiguous intervals of Pg

by

nl n2 n3 n
u2,u2,u2 3 ses ,u2p “ss

and those of 12 by

nl n2 onp
w2 N w2 3 see w2 “aw
where
n nP nP
“2p = (ay75 by)

nP _ , nP _nP
wy = lays By ) o

nP nP n, nP n, nP
Let u correspond to w, if fz(a2 ) = 92(u2 )

N

£2(b37) = g(pn’).

Set

P, =P + u, P

2 1 2

n, =% + u, o
Thus we have set up a 1-1 correspondence between points of P,
and those of Loy and between contiguous intervals of P2 and those of

4 Repeating this process infinitely many times, we get sets

2l
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Pl, P2, LR pn, L

ﬂl’ 12, LR ﬂn, L

where

Plc P2CP3C -‘-CPnC “ea
'ﬂl cﬁ2clac "'C‘Knc esa -

Moreover a l-1 correspondence has been defined between the points
of P~ and those of L

Let P & m be the outer limiting sets, then

P = UP,
i

= Uni .

P & n are everywhere dense and are sets of the first category.
Moreover, there exists a 1-1 correspondence between them which we shall

state as follows:
If xeP Eemn, then r = f(x).

Since f(x) 1is a strictly increasing function and the sets P
and m are everywhere dense in (a,b) and (a,p) respectively, then
by the principle of continuity, the correspondence can be extended to all
points in (a,b) and (a,p).

Thus we have defined a strictly increasing function f(x) in
(a,b) having (a,p) as its range. To see that f(x) is a singular
function, we note that f(x) transforms a set P of full measure (equal

to the length of the fundamental interval) into a set = of zero measure.
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We have seen in Chapter I that T has zero measure. To
see that Pl has measure equal to %, denote contiguous intervals

| "
of P, by u = (x , x ), then

' a a ntl nt2

x =p(EeSa, 4L 21,23,
y ooy T y
a a n

= %(-i + —% + e + 2—El)
y Y Y4
and

a a n

x = %(—l + -% *+ you F g—ig).
y Y L]

(n-1)

Therefore length of u_ is iﬁ ; there being 2 such intervals.

n
Hence the measure of C(Pl) is equal to

2"t L.

n=1 o

T
N =

from which it follows that m(P,) = O.
To apply Denjoy's method, we now have to place perfect sets
P?, n?, of the same nature in each of the contiguous intervals u

n
and wo of P and m respectively. Letting P, =P, +—upl,

n, = + uu;, then P2 and %, are perfect non dense sets with
o P =
m(P,) 5+ o and m(x,) = 0.
Also if x ¢ PQ, then

o A(okd 242
& 2( * 2 ML ny qn;

n a
+2_‘_t1.+_l..(..2l+f.2%+m+a_2ﬂ+
TR 4

n

4 oy 4

< 0J
where aij 2°43 or O
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a a a a a
E=_l._+._.1_§+".+_.L1.+_1..§(_.2_1+-22+“_+L2+.“)

3 3 g 3 3 3 3
where aij =0 or 2,

Again, we have to place perfect sets of the same nature in each
of the contiguous intervals of P2 and Ty respectively, and if this
process is repeated infinitely many times, then we will get two sets

P and m each of the first category such that
+ g0 =1 and m(m) = 0.

If x is a point of P, then x admits of the following

representations
x:%(iu+3l%+.._ +2—n§1}-+-—;l{r(22i+—a%+.., +L2+é-
Yy u oo™y oy Y
S e ' SRR T
n2 LN L] LR

Yooy

3
where aiJ = 0 or 2°+3
and the number of brackets is finite. According to such representation,

we can classify the points of (0,1) into three classes.

Class 1 consists of all points x, whose representation has finite

number of brackets, last series being finite, i,e.
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a a nl nr-1 a
3 wReRk i s, o+ St b (pul e # ST Gl
u ooy ™oy 4 Y \
a
+—r%+ ceu + r:) vou)
b y
where a., = 0 or 23+3
ij
(1 =1,...n)

]
(j = 1,0.0 n2+l)'
Class 2 consists of all points x, whose representation has finite
number of brackets, but last series is infinite, i.e.

1

a n a
x=g(H 224 a2 LAy (24
Yy Yy y Yy y by
a a
i,
0 Y Yy Y

Class 1 and class 2 constitute all the points of P. The set of points
of class 1 is an enumerable set, while the set of points of class 2 has

positive measure equal to 1.

Class 3 consists of all points x, whose representation can have

infinite number of brackets only,

a a nl nr-1
| 5] 151 u Yy
a
e EL e Goee (aen
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Such points constitute the points of C(P) which is a residual
set having measure O,
Representing now the points of (0,1) in radix representation

to the base 3, again we can classify the points in (0,1) into 3 classest

Class 1 consists of all points x 1in (0,1) which can have the following

representation:
a a a a
e T - e T e 1 et
3 3 g~ > 3 3 3 3
a a a
sl (He a2 ).
g 3 3 3

The representation of such points has finite number of brackets, last

series being also finite.

Class 2 consists of all points x, whose representation has finite
number of brackets, last series being infinite,
a a

a a a

x=—‘1—l+-l—§+ +._111I+_1{.E(A+ S e o) +"ElTI(""r—l+—§g
3 3 3 3 3 - 3 3
aI‘S
+ oree F== 4 s0.)u..) where a,., = 0 or 2.
3 13

Class 3 consists of all points x, whose representation can have infinite

number of brackets only,

a a a a
X‘=—J‘l+'l—§+ “-se +_§l—+—%'T(A+ou-(-l-(-—niTl (-z-l."' 'nn(noo(oo.(na.
3 3 3 3 3 3 3

aij =0 or 2,
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The points of class 1 and class 2 constitute the points of the
set = which is everywhere dense having zero measure, and the points
of class 3 constitute the points of C(n) which is a residual set and

has measure equal to 1.

To define the function, take a2 peint x in (0,1) such that

x e Por x e C(P), then

a a nl a & 3
x=%(¢+—l%+ ses +—2nIl-+-Lnl(—lg+..- (.--(o-."]'—n'h(-—r-;-.'.%_‘_...
L 4 Y Y v y ooy

aij =0 or 2j+3
where the number of brackets may be finite or infinite.
Then
b b b b b
() =t e t2y L edog b (A LBy 1l s 1 R
b
*looalene nl-l (424 _E% e
T 3 3
= f =
where bij 0o i 244 ()
= - B
bij 2 when 3 4 2743 ,

This defines a single valued continuous function f(x) which transforms
a set P having measure equal to 1, into a set = having zero measure, and
conversely a set of zero measure C(P), into a set C(x) having measure
equal to 1. Also because f(x) is a monotone (strictly increasing) function,
f(x) 1is of bounded variation and its differential coefficient exists almost
everywhere., To show that f(x) is a singular function, it is sufficient

to show that one of the derivatives is zero almost everywhere,
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To do this, let

a a nl nr
x = % (.H + -Il_g + LN ] + 2 n;_]. ——i-l- (... (... + LI + 2 n;il +
y ooy gy 4
a a
s (R Ey L+ EB )
¥} u y u
where a_ =0 a,. =0 or 29+3
rs ij *

Such points form a set of measure equal to 1. Let us compute

one of the right derivatives at such points,

Let
a a nl nr-1 a a
1 11 2 2 "+ 1 2 + 2
E‘E(—+_L§+!--+—E%+'_I;I(l-l(-u- +-nr_1—l+ ni"—l(r1+—£-
4 u u u 4 Y 4
a‘
ana + r: +l.-)
Y
' s
where Boa ™ 2743
then
i 1 9
£(z)-f(x) it (== + ... terms of higher order)
P ge
and

2
£()-£(x) _ ;ﬁ%:r (33 + terms of higher order)
E-X

s
%["A:I (24§§ + terms of higher order)
4 Y

L4
nr-1(Tg * eee)
(2—.*.;3. + )
us L

nr-1 1 nr-1 3
r 1
e <o 4

B 2(§) 38-1 o8

o}
<ol @ —o

as § »0
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Hence lim f!g)-ffx) =0
E-—>X E-x :

Therefore we have proved that one of the derivatives is zero
almost everywhere, which shows that the differential coefficient is

zero almost everywhere, That is, f(x) 1is a singular function.

& 3 Sierpinski's Works

W, Sierpinski [1] defined a strictly increasing singular function
using different techniques. By giving two recurrence formulas, he defines
f(x) for all points x in (0,1) of the form i; (1 =0,1,...3"), and
by the principle of continuity, he extends the de?inition to all points
in (0,1).

Let

(1) f(Q) =0 f(1) =1.

Astume for a given integer n, f(x) 1is defined for all numbers

of the form 2_1 where h *= 0,1,2,... 3n—1, then let
3
3h+l 1 h h+l 1
f(==) == [£( ) # fle) = =]
3n 2 3n 1 3n 1 35n
(2)
+!
f(At2) o Lopehoy 4oty 4 Ly
3n 2 3n : 3n 1 35n

Since f(x) 1s defined for n = 1, by induction the function

will be defined for all numbers of the form *= (n =0,1,2,..., k =0,1,...3".
3



70

Before extending the definition to all points in (0,1), we
have to show that it is possible to apply the principle of continuity.

To do this we have to give some relations. The following are apparent.

- - - -
(3) f(%?) . f(i‘;-*;}) =$

(R - £

1 h+1 h 1

$ L300y ~ flp) < 5] s
2 3f 1 3" 1 35n

By induction on n we can prove the following inequality:

(4) = s f(%—t) $ f(i;) < i;‘ m = 0,1,2,...

RS, P O

Proof: For m = 0 the inequality is true.

Assume it is true for m = n-1, then

aidsl, h+1 h o n-1
Ssn_ss f( f( 1) S n 1 1 o,l,-.. 3 -1.

We will show it is true for m =n

X
;é;<%[;5‘},_—5-;-n] (M)-f(h-Mi-
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But
By oy Ly o
3 3 3 2
1 1 1 1 3h+3 3h+2 1
== {2 [zmp =—5=] 4 # 1 = A=) A=
35n 2 35n 5 35n 3n 3n on

This proves

1 h+1 h 1
e S. f(........) - f(.-....) S. s,
35n 3n 3n o

Now we will show that f(x) as defined for the points of the

form 5; is a strictly increasing function. That is,
3

k_
n

if <

5 |

1 ~h
then f(an) < f(3m) .

w

3

Denote by r max (m,n), and write

' 1

T ]
= K; and b; = h; where h > k .
3 3 3

(.0:, IX

We have, dn applying (4)

] L}
Ll Ll
f(-';;) < ey < s(BE2) ¢ L <oy
3 3 3
which gives

h
f(?) < f(;;) .

Since the points 5; (n=0,1y...3 h = 1,...3") are everywhere
3

dense in the interval (0,1), and f(x) is strictly increasing on these
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points, we can apply the principle of continuity to define f(x) for
the remaining points in (0,1). Such points cannot be represented in the

form BH’ but can be expressed in infinite radix representation to the
3
base 3.

Let x be such a point, then

a a

a
£ - % —% + oead ¥ —E + vos o
3 3 3

Define f(x) as followst:
£(x) = lim £( aj,ap,.002)) .
n —co
That this limit exists and is unique follows from the fact that

f(. a ...an) is a monotone bounded sequence.

1%
Thus we have defined f£(x) for all points in (0,1). This
function is continuous and strictly increasing in (0,1) and can be

drawn to be a singular function.

& 4 Saks Works
Saks gave an example of a continuous function f(x) increasing
in Jg = [0,1], which has its lower right hand derivative at every
point of a set E, without being A.C.G. on E. This function happens
to be a strictly increasing singular function.
To define the function, let us first denote by H(x), a function
defined in an interval I = [a,b], such that H(x) is continuous and

monotone non decreasing, and it satisfies the following conditions.
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(1) H(x) 1is constant in intervals of a sequence I such

that the total length of these intervals is equal to the length of the

interval I, i.e. EIIhI = Ilrs and for all k ]Ihl < III/Z'

(i1) H(x) - H(a) £ x-a H(b) - H(x) £ b-x for all x & I.

Now we define a sequence of functions fn(x) in the following

wayi
(n) (n) (h)
n = L3y s by

sequence of intervals of f (x) for each I(h), we define a function
n h

Given f(x) defined in Jo, let I be the

Hﬁn)(x) satisfying the above condition and is defined in Iﬁ").

Define fn+l(x) as follows:

fn+l(x) = f(x)[ﬂgn)(bgn)) - Hgn)(agn))] for x & JD - f Iﬁn)
™ () - 1M (a{M) + f(*)[ugn)(bgn)) - 1™ (a{P)y;
for x ¢ Iﬁn).

The sum ng) being extended over all iy bgn) £ X 4

Now define f(x) as followst
f(x) = E fn(x)/2n 5

Saks proved that the function f(x) defined as above is a

continuous, strictly increasing singular function.

u”By |1] we mean the measure of I (in this case the length of I),



CHAPTER V

NON MONOTONIC SINGULAR FUNCTIONS

This chapter deals with a study of singular functions which
are non monotoﬁic in every subinterval of the fundamental interval.

"A function is said to be non monotonic everywhere in (a,b)
if there exists no subinterval (a,p) in which the functien is
monotone".

The existence of such functions has been established by
U.K. Shukla [1], by actually defining such a function. In § 1, we
give the definition of the function. & 2 deals with some properties of
the CAV's of a non monotonic singular function. In § 3 we use the
results proved in §2 to show that the function defined in §1 is

a non monotonic singular function,

§1 A Non Monotonic Sinqular Function

We first give the geometrical representation of two functions
Nfl(x),vlz(x), where these functions are the CAV's of the non monotonic

singular function f(x). Therefore we have
f(x) ‘VI(X) -V2(x)‘

74
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The definition of the functions Iyl(x),‘(b(x) is based on the
following geometrical operations:

We shall first make the following notations:

Let

P =

N =

[ (1 +=2=) +1]
r=n 8.2

1 I
N-*[j{(l"‘ )"1]
n ‘ T=n B.Qr
and

M= (l+2+3+...+n). 5 =0

1 1

Given a segment AB of +ve gradient such that the vertical

distance between A and B is
-—--——-.—-——n.'_r =) ﬂ“?l or e. 2“‘1

Then we shall transform the segment AB, into the enclosed polygon
AB,CA,B as followst

Let ab be the projection of AB on the x-axis. Let al’bl’cl

b

be points on ab such that ¢ a, b,

(1)
and Ialb1\= liel .

Now draw the points BlclA1 such that blclal are their projections

on the axis respectively, and their vertical position is given as follows.

1 is the midpoint of ab and of

gy |ab| we mean the length of ab.
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Vertical distance between A and Bl is

Vertical distance between A and Cl is e

Vertical distance between A and Al is a3

Starting with A = (0,0) B = (1,1), and repeating this process
infinitely many times for ABl, Blc, CAl, AlB, we will get a graphical
representation of \(l(x) (see figure I).

Similarly we can get a graphical representation for \Jz(x), if
the Pn's and the Cn's are interchanged in the above operations.

From this graphical representation we can work out step by step
the arithmetic definition of \Jl(x), wé(x). We get the following results.

Let m (\ = 0,1,...) denote +ve integers and m; =0 and

r
M = Z m - = =0
, " I Mg = mg
Define
)('d N X" as followst
T I ,00
Py+1 P42 Py_+h
Ky gy ¥ yaa ¥ + vee
ryo0 4T+l 442 4 T4h
where
P, . =0 or 2" 43 (h = 1,2,...)
Hr+h Pt R

and



né6a

iy
5
/
“An,
W
0F </
1
B% Sy Ql =

Fic I

GRAPHICAL  REPRESENTATION OF (x) (neb to scale)
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+1 +2 M
X ® r-1 -2 + + T
+ LN

Mr 4Mr--1+l 4 -1 @ 4Mr
where

Pu_+k =0 or & 43
and

Py = P41 or 2N 42,

T

Using the above notations, we can represent all points in (0,1)

as followss
X =-(xM+2(xM+... —(xM+... PPN o

where the number of brackets may be finite or infinite. Corresponding to

such an x, we define \Jl(x) and \Fz(x).

V (x)=(U +a (U +o--(-.-(...+u (U +|||(.--(.--
X Ml Ml MQ Iﬂr-l Mr
and
V (x) = (V + a (v + ..l(‘ll(.‘l +B (v + l..(lll(l.‘
2 NN M1 M,
where
a1 P e2 Pu_
Ay s UH y VM corresponding to xM TR + M 12 teeot e
s T 3 3 T -1 r-1 ‘5
4 4 4
are given by
M m
uM=8.2r-l if p“=2r+1
T T
m
=1 if er-2’+2

and
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S 2 ol | SM +2 SM
U - r-1 + -1 + + T
M M+l Mp 33 Mr I R ) z"'
T o8 "g*l 221 g T, 2%
and
t +1 t +2 tH
v - r-1 + r l + 5
M o+ My %1 u M 1#2 " oo ur W
r grl Tk 221 g T+2%1
where
M__ +h =M, *h
Zl denotes I n .
n=1
Similarly to , there will correspond U and
xMr-l,ou Mr-l’r’o
v
Mr_l,oo. The values SM +h and tM +h? SH 3 T“ depend on
r-1 r-1 T T
PM and on whether
r-1
[ E P”x + (r-1)]3

\s even or odd. For simplicity, they will be given by the following tables
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TABLE I

TR+ (r-1)]
[=2 p, + (r-1 S t
A=l M)\ Mr-l-ch Mz--l-'-k Mr-l+k
0 0 (o}
Mr_l+k Mr_l+k
8.2 : PM +k 8.2 'NM +k
r-1 r-1
Even 2k+3
+ N + P
Mr_l"'k Mr—l+k
0 0 0
Mr_l+k Mr-1+k
8‘2 - NM +k 8.2 QPM +k
h r-1 r-1
0dd 243
+ P + N
+
Mr—l k Mr_l+k
r-1
[ 2P, + (r-1)] Py Sy ty
A=l r T T
m!‘
2 “+1 15'u NM
T T
Even mr Mr Mr
2 “+2 B.2 %, PM 8.2 ., NM
T T
m
2 "+l NM li’M
Odd _ r T
mr Mr M
2 T42 8.2 T, N, 8.2 T, Py
| T T




Now f(x) will be given by
-HX)=YﬂX)-V2U).

In the following sections we show that \Jl(x),\ﬂz(x) are the
contravariation functions, and using this fact with some results given
in the following section we shall prove that f(x) 1is a non monotonic

singular function.

& 2 Contravariation Functions

In accordance with the definition given by Kober [lj2) two
functions g(x) and h(x) (a < x < b) are said to be the contravariation

functions (CAV's) of f(x) if

f(x) = g(x) - h(x)
and
V2 £(x) = V2 g(x) + V2 h(x) = g(b) + h(b)

g(a), h(a) are assumed to be zero.

The problem of determining whether two functions g(t) and h(t)
are contravariation functions, or not has been solved partly by Kober [3].
He has given the following criterion:

The function g(t) and h(t) are CAV's in (0 < t<1) if

and only if

(Z)See Chapter 1, p.
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(1) g(t) and h(t) are monotone non decreasing and
g(0) = h(0) = 0.
(i1) Given & > 0, 3 a finite set of disjoint closed intervals

< tl(’ TK) such that

z o(T) - olty) >g(1) - e
and

;) h(TK) - h(tx) < g

It may be noted here that since g(t) and h(t) are monotone,
then g(1), h(1) are the total variation of g(t) and h(t) respectively
in (0,1).

The CAV's of a non monotonic singular function have interesting

properties., The following results have been proved by Shukla .

Theorem 1t A necessary and sufficient condition that a function of bounded

variation be a singular function is that its contravariation functions are

themselves singular.

Theorem 231 A necessary and sufficient condition that a function of bounded
variation be non monotonic in every subinterval is that its both contravariation

functions are strictly increasing functions.

From these two theorems, it follows that to have F(x) a non
monotonic singular function, it is necessary and sufficient that its

contravariation functions are strictly increasing singular functions.
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83 f(x) is a Non Monotonic Singular Function

It can be shown that \fl(x),ﬂvz(x) are the contravariation
functions of f(x), by actually finding disjoint intervals (tK’T;;) -
which satisfy the criterion given by Kober., Using this fact, we now
prove that f(x) 1is a non monotonic singular function by showing that

\yl(x),\#2(x) are strictly increasing singular functions,

Wvl(x)ﬂﬂé(x) are strictly increasing

Let x have the representation

X =% (xll+% (x"2+ W - +% (xMr+ P

where
Pu_+1 Pu_42 Pu__.a
N e’ + r-1 + & r-1 +
L " S U T AL LI I W
T, r-1 4 r-1 4 r-1

1 L]
Let x > x, themn x 1is given by

v 1 P T
x =2(X, + (X, + seeloae +2(X, + seeloealens
2"»11 2 u, 2xur
where
|
, T Pu_
R L T, e <. S
-l+l -.e H-1+X .-
r 41' 41‘
where
P > P
M__ M__

We can easily see from the table that

Sy “ > Sy

r-1 ¥a

r-1
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which proves that

¥, (<) >y ().

Similarly we can show for x > x
'
Vo (x ) >W,(x).

From this it follows that f(x) =1J1(x) -\Jz(x) is non monotonic,
and is of bounded variation. To show that f(x) is singular it is sufficient
to show that one of its derivatives is zero almost everywhere. For this

purpose, let x have the following representation,

x = 4K, 200+ ciiloes #3500, 0 )eel)
1 A r-1

where
P P P
M_ .+l M +2 M_ .\
r-1 4Mr.1+l 4 -1 4 r-1
where P, =0 or 2k+3
Mr_l+l -

Such points form a set whose measure is 1.
We will show that one of the left derivatives is zerc at such

]
points. Let x < x then d

1 1 1 1y."*
x = E(XM1+ E(XM2+ poe * Lgae & E(xur—foo ) eee )

where 2
P P P
M_ .+l M_ .+2 M_
x; = r-l + r—l +"l +—.¥‘_-l-—+|l.
_l,co M _1+1 Mr_1+2 M _1+i
T a4t 4 a4t
L A
where PH " = 0 whereas PH - 2743,
r-1 -1
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We have
1
1] q q +
Ftx) =fix = ((1 = )[ MI“'1+)\ - M
] e + 4+ +
X - X Ml Mr-l BMr-l A 22¥I'1 A r— A 2EM
where q = 8§ -t
Mr-l+k Mr-l+h Mr-l+k
M.._1H\ M__.*th
B S COP T | C BT O
= f(x) -f(x ) _ 1 r-1
el M_ .\ )
X = X g r-1 .QETr-l [_(2x+3)]

T
lim f!x[-f!x 1 lim f‘x)—f!x !
X ¥ X 2 o x' = 5 o5

x] 1 2+3+}\]

This shows that f£'(x) = O everywhere except possibly on a set of

zero measure. Hence we have shown that f(x) is a non monotonic singular

function,
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