SODIUM, POTASSIUM DISTRIBUTION IN KIDNEY DURING INDUCTION OF EXPERIMENTAL HYPERTENSION IN THE RAT

By

Marlin Hiyam Lutfi Atallah

"Submitted in partial fulfillment for the requirements of the degree of Master of Science in the Biology Department of the American University of Beirut Beirut, Lebanon" 1962
KIDNEY IN HYPERTENSION

Atallah
SODIUM, POTASSIUM DISTRIBUTION IN KIDNEY DURING INDUCTION OF EXPERIMENTAL HYPERTENSION IN THE RAT

By

Marlin Hiyam Lutfi Atallah

"Submitted in partial fulfillment for the requirements of the degree of Master of Science in the Biology Department of the American University of Beirut Beirut, Lebanon" 1962
ACKNOWLEDGMENT

The writer wishes to express a debt of gratitude to Dr. Fred N. White, Professor of Biology at the American University of Beirut, who suggested the problem and whose constant advice and help made this work possible. Thanks also go to the Biology Department for the materials and facilities provided.
<table>
<thead>
<tr>
<th>PART</th>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II.</td>
<td>HISTORICAL</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>A. Methods of Inducing Experimental Hypertension</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B. Theories of Genesis of Hypertension</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1. Renal Hypertension</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2. Renoprival Hypertension</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>3. Other Explanations</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>C. Sodium, Potassium and Extracellular Fluids</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>D. Changes in Water and Electrolytes in Experimental Hypertension</td>
<td>16</td>
</tr>
<tr>
<td>III.</td>
<td>MATERIALS AND METHODS</td>
<td>19</td>
</tr>
<tr>
<td>IV.</td>
<td>RESULTS</td>
<td>22</td>
</tr>
<tr>
<td>V.</td>
<td>DISCUSSION AND CONCLUSIONS</td>
<td>24</td>
</tr>
<tr>
<td>VI.</td>
<td>BIBLIOGRAPHY</td>
<td>26</td>
</tr>
</tbody>
</table>
Several forms of experimental hypertension show a common disturbance in sodium-potassium balance. Sodium retention and potassium depletion are observed in hypertensions caused by potassium deficiency diets, and DOCA or aldosterone administration. The ischemic technique for producing hypertension has not been evaluated as to electrolyte disturbance; however, several workers have demonstrated aldosterone release as a result of kidney ischemia. The present work has been undertaken to determine whether there is a disturbance in sodium-potassium balance of the kidney during renal ischemia produced by a figure-of-eight ligature.

Potassium deficiency in the absence of reduction in renal blood flow causes hypertension. A potassium deficiency as a result of reduction in renal blood flow would indicate a common feature between these two forms of hypertension. If a retention of sodium and a loss of cell potassium could be demonstrated, the various forms of hypertension would be linked by a similar electrolyte disturbance.

Progesterone is a hormone which also may promote sodium retention and potassium depletion. A preliminary investigation has been undertaken to determine whether or not potassium depletion occurs in the kidney under the influence of progesterone.
PART II

HISTORICAL

The basic idea that hypertension may frequently be of renal origin goes back to Richard Bright in the nineteenth century. He observed that cardiac hypertrophy (this would imply hypertension) was caused by primary renal disease, and he even attributed this to some chemical in the blood. This started the debate of whether the kidney was the victim, or the culprit in hypertension, and has led to many experimental investigations.

The following is a review of some of the literature dealing with this problem.

A. Methods of Inducing Experimental Hypertension

The first attempt, at producing experimental hypertension, was in 1879 when Gravitz and Israel demonstrated hypertrophy of the heart, attributed to hypertension, in rabbits as a result of partial nephrectomy.

In 1905, Passler and Heinke, using the same procedure, demonstrated a rise in blood pressure in dogs. Katzenstein, in the same year, tried the effect of constricting the main renal arteries in the dog with negative results. Bridgeman and Hirose 1918 repeated his experiment, but the results were unsatisfactory. It remained for Goldblatt and coworkers in 1934 to establish that the blood pressure in the dog and other animals could be elevated to permanent pathological levels by constricting one main renal artery and removing the other kidney. Other means of causing
experimental hypertension by kidney manipulation are: (1) constriction of both main renal arteries, (2) placing a silk, colloidin, or cloth capsule around the kidney (Page, 1939), (3) removal of both kidneys (Grollman), and (4) compressing the renal parenchyma with a figure-of-eight loop around the kidney (Grollman).

Ryland produced hypertension in rats by partially occluding the aorta proximal to one or both of the main renal arteries.

White, and Grollman obtained hypertension by subjecting rats at the time of their weaning to a choline free or potassium free diet. Hartcroft and Best also demonstrated hypertension in rats after one week choline deficiency in early life.

Friedman, Polley, and Friedman implanted desoxycorticosterone acetate pellets subcutaneously in rats and observed hypertension and cardiac hypertrophy. Skelton and Hyde also demonstrated the use of adrenal steroids in pellet form and microcrystalline suspension. Sodium chloride was needed in both these cases. Injections of aldosterone with sodium chloride in their drinking water, also caused hypertension in rats.

Schroeder and Vinton showed a marked hypertension in female rats and a tendency toward it in male rats by keeping the animals on a cadmium free diet and then giving them 5 ppm. of cadmium in their drinking water for 180-240 days after weaning.
Hypertension can be induced during salt intake. Sapirstein131 demonstrated this in normal rats drinking two per cent sodium chloride. Meneely \textit{et al.}86 showed in different groups of rats, with different concentrations of sodium chloride in the diet, that the arterial pressure went stepwise in proportion to sodium chloride concentration.

\textbf{B. Theories of Genesis of Hypertension}

1. Renal Hypertension.

This theory, supported by Goldblatt, states that the ischemic kidney releases a pressor substance into the blood stream which causes an elevated blood pressure.

Goldblatt's method involves the application of a silver clamp constricting one main renal artery.37 He observed hypertension in goats, sheep, rabbits, and rats; but in dogs the other kidney had to be removed to keep the blood pressure elevated. In those animals whose blood pressure returned to normal, the accessory circulation was blocked by a fish skin condom around the kidney. Kidney lesions were observed with greater constriction of the arteries. Moritz and Oldt in 1937 showed that the kidney was the only site of arteriolar sclerosis in hypertensive animals as compared with normal individuals.90

Hypertension, produced by Page with a cellophane membrane,100 was also due to renal ischemia. In this case it was caused by the compression of the renal parenchyma, and the development of a thick layer of connective tissue under the membrane.
Goldblatt did not get hypertension in bilaterally nephrectomized dogs, and so concluded that lack of renal excretory function by itself was not sufficient to cause hypertension. The first indirect evidence, that a renal humoral mechanism was present, was demonstrated by occluding both main renal veins as the renal arteries were constricted. This did not bring about the expected hypertension. Any part the liver may play was ruled out by shunting the venous blood in a dog with a renal artery constricted through the liver. This did not decrease or prevent the elevated blood pressure.41

When a kidney was transplanted to the neck or groin of a bilaterally nephrectomized dog or rabbit, the same pressor effect was noted when its renal artery was constricted. Transplanting an ischemic kidney into such an animal would also increase the blood pressure. Since these kidneys had no nervous connections, it was concluded that a chemical agent of renal origin was responsible for the hypertension.41

Tigerstedt and Bergman in 1898 had shown that an intravenous injection of a crude extract of a normal kidney, from one rabbit into another, had a pressor effect.41 This substance was called Renin which, however, had no direct vasoconstrictor properties on the blood vessels. Two groups of workers10, 101 in 1940 independently stated that renin was a key substance acting on a substrate in the blood to form a new substance which had the vasoconstrictor properties. This pressor substance was
called hypertensin by Braun-Menendez, Fasciolo, Leloir, and Munoz,10 and angiotonin by Page and Helmer.101 It has been agreed upon to refer to it as angiotensin.8

Taquini, Blaquer and Taquini Jr.128 found that, when kidneys of a chronic renal hypertensive dog were transplanted into the neck of a normal dog, the renin content increased before and while the blood pressure of the normal dog was increasing.

Taquini and Fasciolo129 in 1946 observed that the renin content, in the blood of hypertensive dogs with renal ischemia, was the same as that found in the controls.

Dexter and Haynes21 measuring the amount of renin in the systemic blood of hypertensive patients, observed renin only when the blood pressure was rising abruptly. In 1947, the same workers demonstrated the presence of renin in the blood of dogs at twenty-four hours after the renal artery constriction. This built up to a maximum at one week, but after three months they were unable to demonstrate it.59 Kahn, Skeggs, and Shumway28 demonstrated an excess of angiotensin in the blood of dogs during the early phase of renal hypertension. Since, however, repeated injections of renin renders the animal tachyphylactic to it79 it could not produce a sustained hypertension. Blackett, Depoorter, Pickering, Sellers, and Wilson4 in 1950 were able to maintain hypertension in rabbits for eighteen days with a slow injection of renin; however, the blood pressure decreased as soon as the
injections were stopped. Flasher and Drury26 maintained that in rabbits with early renal hypertension which were rendered tachyphylactic to renin, the blood pressure did not go down.

Pickering105 in 1945 showed a fall in blood pressure to normal after removing the single remaining clipped kidney of one week hypertensive rabbits. He could not demonstrate this in eight week hypertensive animals. Pritchard and McQuaid28 in 1954 confirmed these observations. This led to a general belief that there are two phases to renal hypertension; an early one, in which a renal pressor substance is secreted by the kidney and a late phase in which the elevated blood pressure appears to be maintained by some mechanism outside the kidney or what is referred to as an extra renal mechanism.

Kremen and Wakerlin73 1955 were the first to produce antirenin. By repeated injections of renin subcutaneously or intramuscularly antirenin was developed in the blood, and the blood pressure of a hypertensive dog came back to normal. Helmer60 1955 said that the antirenin, to injected dog renin, appeared in the sera of dogs with renal hypertension at the same time as the blood pressure was decreasing in both acute and chronic cases. He therefore maintained that renin plays an important role in both phases.

In hypertensive rats of two week duration, no fall occurred after total nephrectomy which implies an extra renal mechanism.28
Even though the baroreceptors would be reset at a higher level to maintain a higher blood pressure, they are not necessarily the cause. An irreversible narrowing of the arterioles might be implicated; however, no such narrowing was observed. Bryom and Dodson in 1949 also showed that in chronic hypertension of twelve weeks in rats removal of the clip restores the pressure to normal. This excludes any possibility of narrowing arterioles and the baroreceptor mechanism as the primary cause. Blackett and Sellers confirmed this in 1951.

Floyer in 1951 showed that in rats made hypertensive by constriction of one renal artery, the clipped kidney remained structurally normal while the untouched kidney showed marked vascular lesions. Removal of the clip reduced the blood pressure to normal. Removal of the clipped kidney kept the high blood pressure. Restoring the circulation to the kidney resulted in a decrease in pressure. This can be explained in that the kidney checks a pressor substance; the extra renal mechanism.

So the general trends in this theory point to a renal factor which causes an increase in the blood pressure.

2. Renoprival Hypertension.

This theory, according to Grollman, explains hypertension in that the kidney normally secretes a substance which is necessary for normal blood pressure. As soon as it disappears, is destroyed, or neutralized the blood pressure is elevated. Thus interference with kidney function gives rise to hypertension.
Grollman and Rule51 1943 demonstrated hypertension in parabiotic rats. Removing both kidneys of one rat caused hypertension while the other rat, with the intact kidneys, kept a normal blood pressure. Ledingham78 confirmed this in 1951. Grollman, Muirhead, and Vanatta50 1949, showed that dogs kept alive by peritoneal lavage, after total nephrectomy, developed hypertension and vascular lesions. Kolff and Page,71 1954, also produced hypertension by total nephrectomy in dogs and they demonstrated that the blood pressure returned to normal when the blood of the hypertensive animal was perfused through a normal kidney. Braun-Menendez and von Euler11 Floyer, Kolff and Page71 obtained hypertension after total nephrectomy in rats.

Grollman49 showed that the presence of the kidney, even though it is not excreting, is necessary for normal blood pressure. This he did by removing one kidney and transplanting the ureter of the other into the vena cava, thus having all urine coming back into the blood. No elevation in the blood pressure appeared. This was also demonstrated by Kolff, Page and Corcoran in 1954.

White, Sambhi & Grollman139 demonstrated that in rats, made hypertensive by low potassium diet, the kidney function remained normal. This shows that hypertension developed without renal ischemia, and without the presence of renal excretory insufficiency.

Grollman and Harrison45 prepared a renal extract which,
when given orally to hypertensive subjects, resulted in reductions of the blood pressures. This would support the idea that the absence of this principle causes hypertension. By supplying it the hypertension would be relieved.

Masson, Corcoran, and Page9 showed that parabiotic union of a hypertensive with a normal rat resulted in a reduced blood pressure of the hypertensive one. This did not occur if a normal rat was joined to another normal, or if a hypertensive rat was joined to a hypertensive one.

Muirhead, Stirman, Lesch, and Jones91 transplanted a kidney into the neck of a renoprival hypertensive dog and demonstrated a decline in pressure. Merril, Murray, and associates in 195689 transplanted a normal kidney from one brother to his hypertensive twin, and obtained a normalization of the blood pressure.

Grollman and Braun-Menendez agree that the depressor effect of the kidney might not be a substance as such but some action of the normal kidney.8

Leonard and Heosler44 1951, 52 attributed renoprival hypertension to water overload. Kolff, and Page and Kolff et al.28 observed that overhydration in rats and dogs accelerated the hypertension but that renoprival hypertension did occur in its absence.

Floyer 195128 tried to see the relationship between renal and renoprival hypertension. He thought that the renal mechanism, which operates in late renal hypertension, might be
the same as that causing an increase in blood pressure after a total nephrectomy. He demonstrated that both are abolished by the presence of a normal kidney in the circulation, and by adrenalectomy, and both are restored by giving salt. Ledingham observed similar electrolyte compositions in the fluid compartments of both hypertensions. Floyer in 1955 showed that the blood pressure after total nephrectomy took forty-eight hours to rise, which is a longer time than after renal constriction. So Floyer deduced that, if the two forms of hypertension have a different mechanism, removal of the only clipped kidney in a hypertensive rat should at first induce a reduction in blood pressure and, then after forty-eight hours, an increase as the renoprival hypertension takes over. This did not occur which means that the renoprival effect was there before.

Kolff and Page found that antirenin had no effect on renoprival hypertension. Wakerlin tried to explain the effect of antirenin on the reduction of blood pressure in the late phase of renal hypertension. He said that renin may act on the blood pressure regulating effect of the kidney, and that antirenin would neutralize it thus removing the interference.

Renal and renoprival hypertension differ in that removal of one kidney does not result in hypertension, while constriction of one renal artery does so in the presence of a normal kidney. Floyer 1957 suggested that the renin may be acting on the normal kidney neutralizing its effect. Hoobler states that a
normal kidney causes a decrease in the pressure in both types of hypertension by some protective function.

3. Other explanations.

Braun-Menendez\(^9\) put forth the renotrophin hypothesis. He hypothesized that the normal kidney size and functional capacity depends upon the substances in the blood it has to eliminate. This he referred to as renotrophin or the renal growth factor. A decrease in the functional renal mass leads to disbalance with more renotrophin which causes hypertension. Since animals are made hypertensive by a reduction in renal mass, he suggested that hypertension was due to the resulting renal growth factor. Page and Sweet in 1937\(^{104}\) demonstrated that hypophysectomy caused a reduction in blood pressure of hypertensive dogs. Ogden, Page and Anderson\(^{95}\) 1944, 46 and Salgadro\(^{118}\) 1955 demonstrated the same in rats. The presence of the anterior lobe of the hypophysis seemed to be indispensable, yet previous hypophysectomy did not prevent hypertension. Braun-Menendez explained this on the basis of the renotrophic factor. Hypophysectomy would decrease the rate of producing renotrophin and thus lowers the blood pressure. In a normal animal hypophysectomy would decrease renotrophin and functional renal mass. This is then further reduced by kidney manipulation, thus causing more renotrophin and a higher blood pressure.

Handler and Bernheim\(^9\) in 1950 showed that protein restriction acts in the same way as a hypophysectomy in that
an animal on a severe low protein diet has no functioning anterior hypophysis.

Fregly and Gonzales30 show that in treatments that prevent or reduce the activity of the thyroid both renal and sodium chloride induced hypertensions were reduced. Thyroid administration increases the renotrophin and therefore increases blood pressure.

Removal of both adrenals interfered with the development of renal hypertension. Page98 1938 showed that the adrenal cortex plays an important role in experimental hypertension. In the absence of the adrenals, administration of adrenal cortical extract and addition of salt are necessary. Goldblatt showed this in 1937.39 Wilgram and Ingle15 showed that hypertension and early nephrosclerosis appeared with salt in the absence of adrenal cortex, so they concluded that the adrenal steroids are not pathogenic agents, but enhance the damaging effect of the high sodium load. Friedman, Sombhi and Oppenheimer22 suggest that the action of the adrenal is in sensitizing the blood vessels to the 'pressor' agent from the body. The adrenal cortex secretes, among other things, aldosterone. Aldosterone acts on the renal tubules to promote sodium reabsorption and excretion of potassium.62 In patients with aldosteronism an increase in blood pressure is observed.111 Administration of aldosterone to animals caused an increase in pressure.136 Laragh74 and coworkers found that the secretion rate of aldosterone
was higher in hypertensive subjects than in normal ones. In 1951 Deane and Masson74 found that injecting renin or producing renal hypertension brought about a hypertrophy in the glomerulosa zone of the adrenal cortex. This is the site of aldosterone production.

Renin is associated with the juxtaglomerular apparatus in the kidney.131 These cells are sensory receptors in the wall of the afferent arteriole. The amount of extractable renin from the kidney was related to the degree of granulation. Tobian131 showed that the granularity of the juxtaglomerular cells increases in the clipped kidney of renal hypertension, and decreases in the opposite normal kidney. Administration of DOCA led to a decrease in granularity, and adrenalectomy caused an increase.

Evidence points to an aldosterone stimulating hormone released from the kidney. Aldosterone secretion decreased in nephrectomized hypophysectomized dogs. Hyperaldosteronism was consistently associated with experimental hypertension. Crude extracts of kidney tissue resulted in an increased aldosterone production. The fact that both renin and angiotensin administration caused an increase in aldosterone, and that renin induces hypertrophy in the zona glomerulosa suggest that the aldosterone stimulating hormone of the kidney might be renin itself.20

C. Sodium, Potassium and Extracellular Fluid.

The mammalian kidney normally adjusts the amount of
sodium and extracellular fluid in the body. Retention or loss of sodium, will lead to a retention or loss of water, and therefore, to an increase or a decrease in the extracellular fluid volume. The excretion rate of sodium is affected by the filtration rate, the plasma sodium concentration, the antidiuretic hormone, and the adrenal cortical hormones. Adrenal insufficiency leads to a loss of sodium and water from the body, and therefore to a decreased extracellular fluid volume. Administration of DOCA or aldosterone leads to a sodium and water retention and an increased potassium excretion. In extreme cases this will result in a decreased plasma potassium.126

Meneely and Ball86 showed that rats altered their fluid intake as to the sodium chloride in the diet. They also showed that at sodium chloride levels of 2.8 - 9.8 per cent hypertension was present with an increase in heart, kidney, and adrenal weights.

Sodium is mainly extracellular and potassium intracellular. Their relationship is of importance. Potassium deficiency or an upset in the normal $\text{Na} : \text{K}$ ratio results in muscle weakness. Pathological lesions produced by potassium deficiency are augmented by addition of sodium. Changing the concentration of potassium can affect the autonomic nervous system and thus can cause hypertension and hypotension.62 The loss of potassium is directly related to the urine volume. When sodium replaces potassium in the cells it has a toxic effect inhibiting many of the enzymatic reactions.62
In 1937 Schrader, Prickett and Salmon119 showed lesions in renal tubular epithelium of rats fed on a low potassium diet. These lesions caused in weanling rats by White, Sambhi and Grollman may have something to do with the hypertension developed in these animals later.

The role of salt in hypertension has been investigated. In 1940 Grollman, Harrison and William49 demonstrated that the various sterols are hypertensigenic only if sodium chloride was added. Grollman showed that the main usefulness of the Kempner diet, used for the treatment of hypertension, was in its low sodium content.

Meneely, Tucker, Darby and Auerbach88 demonstrated a positive correlation between blood pressure and concentration of sodium in the diet. The administration of sea salt resulted in a greater hypertension than sodium chloride alone, so there may be some other factor involved. Renal tubular cells need an adequate supply of potassium to keep their integrity. Steroids deplete the body of electrolytes and so might damage the kidney. Freed29 and Meneely and Ball86 showed that potassium chloride has a protective function when added together with the sodium chloride increasing the survival of the animals. Therefore, inter-relationship between sodium and potassium may affect the development of hypertension and vascular disease.

D. Changes in Water and Electrolytes in Experimental Hypertension.

Experimental hypertension has been linked with changes in tissue electrolytes and fluid compartments.
Grollman in 1953 showed that overloading with saline and water showed no difference in blood pressure when expansion of ECF volume was not very great. Laramore and Grollman showed that in the early stages of hypertension, there is little change in total water content of tissues; however, in later stages the water content was greater. Shapiro and Grollman observed an increase in ECF space in hypertensive animals. Grollman suggested that a deviation from the normal electrolyte and water metabolism occurs in hypertension.

Tobian and Binion showed larger amounts of sodium and water in the renal artery of hypertensive rats than in that from normal rats. There was also an increase in sodium, potassium and water of the aorta in rats made hypertensive by the renal method or by DOCA administration. Haight and Weller 1961 demonstrated the changes in the aorta. They also showed that the potassium decreased in the aorta as the blood pressure decreased after the administration of reserpine. Tobian and Redleaf suggested that if the same changes as in the aorta occur in the arterioles, they may be important in the altered peripheral vascular resistance which characterizes hypertension.

Grollman observed that adrenalectomy depletes the cells of their potassium and moves sodium into cells. Nephrectomy accentuates these changes. In various tissues of the
hypertensive animal (blood, brain, heart, liver, gut, muscle, skin and spleen) Grollman demonstrated an increase in sodium and a decrease in potassium. Holley and Holland63 from their experiments concluded that the serum sodium in hypertensive rats was slightly above normal. Kao65 showed that in normal rats the serum sodium and potassium were not changed after injections of progesterone or estrogen. Fregly, Yates and Landis31 showed no change in serum sodium of some hypertensive animals, and a change in others. The old rats maintained the level of their serum ions within normal limits, while the young rats showed an increase. Greene and Sapirstein43 showed in hypertensive rats (by subtotal nephrectomy) an increase in total body sodium, while the level in the plasma was maintained at the expense of the intracellular compartment.

Ezrow and Sapirstein23 showed that water excretion is greater in hypertensives than in normotensives so that the hypertensive rats had a larger sodium load. Cottier, Weller and Hoobler17 also demonstrated that hypertensive patients excreted more water, sodium and chloride than the normal when given sodium chloride. Green et al.42 showed that water and sodium excretion is in direct relationship with the blood pressure. There is an increase in most tissues sodium content in hypertensive animals.

Whether the electrolyte changes are the result or the cause of hypertension, or whether there is no causal relationship, has not been determined yet.
PART III

MATERIALS AND METHODS

Albino rats of the Br46 strain were used throughout the experiment. Rats were made hypertensive by figure-of-eight ligatures around both kidneys and the administration of one per cent sodium chloride in their drinking water. Systolic blood pressures were measured in the caudal artery by a plethysmographic manometer in the unanesthetized, heated rat.138

The following groups of rats were set up and then sacrificed: (An equal number of female and male rats were used for number 1-8. For numbers 9 & 10 young female rats were used).

1. Ligations for forty-eight hours.
2. Ligations for forty-eight hours plus one per cent sodium chloride for ninety-six hours.
3. Ligations for ninety-six hours.
4. Ligations for ninety-six hours plus one per cent sodium chloride.
5. One per cent sodium chloride for ninety-six hours.
6. Ligations for two weeks.
7. Ligations for two weeks plus one per cent sodium chloride.
8. One per cent sodium chloride for two weeks.
9. Daily subcutaneous injections of 0.25 mg. progesterone in 0.5 cc. of corn oil for two weeks.
10. The same as in (9) plus one per cent sodium chloride.
Blood, serum, and whole kidney were analyzed for sodium and potassium using a Baird Flame Photometer. The kidneys were weighed and dried in an oven at eighty degrees centigrade for 24 - 30 hours. They were then homogenized (using a glass homogenizer) in twenty times their dry weight of one normal HNO$_3$ and left overnight. The next day they were centrifuged and the supernatant analyzed.

The sodium and potassium in the red blood cells per liter of cell water was calculated from the hematocrit and the serum sodium and potassium. Sixty five per cent of the RBC was taken to be water. The other values for the kidney tissue were calculated according to Manery and Hastings as follows:

$$C = \text{Cells, } T = \text{Whole tissue, } S = \text{Serum, } E = \text{Extracellular phase}$$

() = meq or gm. per kg. tissue.

[] = meq per kg. water.

c = gm. per kg. cells.

Na$_S \times 0.95$ = [Na]$_E$ meq/kg H$_2$O.

$$\frac{(Na)_T \times 1000}{[Na]_E} = (H_2O)_E \text{ gm/kg tissue.}$$

$$\frac{(H_2O)_T - (H_2O)_E}{(H_2O)_E - 0.99} = (H_2O)_C \text{ gm/kg tissue.}$$

$$1000 - (E) = (E) \text{ gm/kg tissue.}$$

$$1000 \times \frac{(H_2O)_C}{(C)} = (H_2O)_C \text{ gm/kg cells}$$
\[\frac{K_S \times 0.95}{[K]_E \times (H_2O)_E} \]
\[(K)_T - \frac{\Sigma (K)_E}{(H_2O)_C} \]
\[1000 \times \frac{\Sigma (K)_C}{(H_2O)_C} \]

\[= [K]_E \text{ meq/kg } H_2O \]
\[= \Sigma (K)_E \text{ meq/kg tissue} \]
\[= \Sigma (K)_C \text{ meq/kg tissue} \]
\[= k_c \text{ meq/kg cells} \]
PART IV

RESULTS

The rats, with figure-of-eight ligatures and the intake of one per cent sodium chloride in their drinking water, showed an increase in blood pressure after six months. The blood pressure values are given in Table 1.

Table 1. Systolic Blood Pressures of Normal and Hypertensive Rats.

<table>
<thead>
<tr>
<th>Normal rat</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sys.B.P.</td>
<td>107.8</td>
<td>108.5</td>
<td>105.7</td>
<td>107.8</td>
<td>106</td>
<td>105</td>
<td>100</td>
<td>100</td>
<td>105</td>
<td>105 +1.0*</td>
</tr>
<tr>
<td>Hyper. rat 6 months after Lig. +NaCl</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Sys.B.P.</td>
<td>151.7</td>
<td>151.6</td>
<td>149.3</td>
<td>151.8</td>
<td>152.2</td>
<td>163</td>
<td>163</td>
<td>141</td>
<td>150</td>
<td>154.8+3.9*</td>
</tr>
</tbody>
</table>

*Standard error was computed as to Burn 13

The results of the analyses of the tissues are found in Table 2. We note a decrease in the hematocrit in all the rats with kidney manipulation and in the rats on progesterone and sodium chloride. No such decrease is observed in rats with the injections of progesterone or the intake of sodium chloride alone.

The serum sodium increase in all. However, the values were higher for ligations and sodium chloride than for ligations or sodium alone. They were also higher for progesterone plus sodium chloride than for progesterone. The largest increase was observed in the forty-
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>41.5</td>
<td>135.2</td>
<td>4.2</td>
<td>83.5</td>
<td>48</td>
<td>169.4</td>
<td>69.6</td>
<td>61.7</td>
<td>1.14</td>
<td>765.8</td>
<td>128.4</td>
<td>541.8</td>
<td>223.9</td>
<td>540.8</td>
<td>459.1</td>
<td>486.1</td>
<td>4.0</td>
<td>2.1</td>
<td>59.6</td>
</tr>
<tr>
<td>(6)</td>
<td>± 4.5</td>
<td>4.4</td>
<td>± 0.18</td>
<td>1.4</td>
<td>± 2.6</td>
<td>± 5.9</td>
<td>± 2.1</td>
<td>± 7.0</td>
<td>± 0.16</td>
<td>± 7.2</td>
<td>± 1.3</td>
<td>± 20.9</td>
<td>± 15.02</td>
<td>± 20.9</td>
<td>± 17.1</td>
<td>± 18.3</td>
<td>± 0.2</td>
<td>± 0.1</td>
<td>± 5.0</td>
</tr>
<tr>
<td>48 hrs.</td>
<td>36.8</td>
<td>143.6</td>
<td>3.9</td>
<td>88.8</td>
<td>47</td>
<td>146.8</td>
<td>70.5</td>
<td>62.6</td>
<td>1.14</td>
<td>791.8</td>
<td>136.4</td>
<td>514.7</td>
<td>277.1</td>
<td>513.7</td>
<td>486.3</td>
<td>561.2</td>
<td>3.7</td>
<td>1.9</td>
<td>60.7</td>
</tr>
<tr>
<td>Lig.</td>
<td>37.9</td>
<td>142.0</td>
<td>5.5</td>
<td>89.9</td>
<td>47</td>
<td>146.8</td>
<td>71.7</td>
<td>64.7</td>
<td>1.14</td>
<td>798.5</td>
<td>142.5</td>
<td>510.7</td>
<td>288.2</td>
<td>509.7</td>
<td>490.3</td>
<td>584.1</td>
<td>3.4</td>
<td>1.7</td>
<td>63.0</td>
</tr>
<tr>
<td>48 hrs.</td>
<td>37.4</td>
<td>150.1</td>
<td>3.6</td>
<td>95.8</td>
<td>47.2</td>
<td>181.8</td>
<td>72.8</td>
<td>64.7</td>
<td>1.14</td>
<td>802.7</td>
<td>135.8</td>
<td>519.9</td>
<td>282.9</td>
<td>518.9</td>
<td>481.2</td>
<td>578.1</td>
<td>3.9</td>
<td>2.0</td>
<td>65.3</td>
</tr>
<tr>
<td>Lig.+NaCl (6)</td>
<td>35.5</td>
<td>143</td>
<td>4.2</td>
<td>90.8</td>
<td>43.2</td>
<td>146.8</td>
<td>70.6</td>
<td>65.5</td>
<td>1.10</td>
<td>802.1</td>
<td>135.9</td>
<td>519.9</td>
<td>282.9</td>
<td>518.9</td>
<td>481.2</td>
<td>578.1</td>
<td>3.9</td>
<td>2.0</td>
<td>65.3</td>
</tr>
<tr>
<td>96 hrs.</td>
<td>37.4</td>
<td>150.1</td>
<td>3.6</td>
<td>95.8</td>
<td>47.2</td>
<td>181.8</td>
<td>72.8</td>
<td>64.7</td>
<td>1.14</td>
<td>825.4</td>
<td>144.2</td>
<td>575.2</td>
<td>245.1</td>
<td>574.2</td>
<td>425.8</td>
<td>575.6</td>
<td>3.3</td>
<td>2.0</td>
<td>61.8</td>
</tr>
<tr>
<td>Lig.+NaCl (6)</td>
<td>37.4</td>
<td>150.1</td>
<td>3.6</td>
<td>95.8</td>
<td>47.2</td>
<td>181.8</td>
<td>72.8</td>
<td>64.7</td>
<td>1.14</td>
<td>825.4</td>
<td>144.2</td>
<td>575.2</td>
<td>245.1</td>
<td>574.2</td>
<td>425.8</td>
<td>575.6</td>
<td>3.3</td>
<td>2.0</td>
<td>61.8</td>
</tr>
<tr>
<td>96 hrs.</td>
<td>35.5</td>
<td>143</td>
<td>4.2</td>
<td>90.8</td>
<td>43.2</td>
<td>146.8</td>
<td>70.6</td>
<td>65.5</td>
<td>1.10</td>
<td>802.1</td>
<td>135.9</td>
<td>519.9</td>
<td>282.9</td>
<td>518.9</td>
<td>481.2</td>
<td>578.1</td>
<td>3.9</td>
<td>2.0</td>
<td>65.3</td>
</tr>
<tr>
<td>NaCl (6)</td>
<td>41.3</td>
<td>141.8</td>
<td>3.8</td>
<td>87.7</td>
<td>42.0</td>
<td>148</td>
<td>74.5</td>
<td>62.1</td>
<td>1.20</td>
<td>760.2</td>
<td>134.7</td>
<td>546.7</td>
<td>213.5</td>
<td>545.7</td>
<td>454.3</td>
<td>492.1</td>
<td>3.9</td>
<td>2.1</td>
<td>60.1</td>
</tr>
<tr>
<td>96 hrs.</td>
<td>37.7</td>
<td>137.4</td>
<td>3.6</td>
<td>87.7</td>
<td>45.7</td>
<td>171</td>
<td>63.4</td>
<td>72.4</td>
<td>0.98</td>
<td>780.5</td>
<td>130.5</td>
<td>488.0</td>
<td>310.8</td>
<td>487.0</td>
<td>513.0</td>
<td>563.3</td>
<td>3.5</td>
<td>1.7</td>
<td>70.7</td>
</tr>
<tr>
<td>2 weeks</td>
<td>37.7</td>
<td>137.4</td>
<td>3.6</td>
<td>87.7</td>
<td>45.7</td>
<td>171</td>
<td>63.4</td>
<td>72.4</td>
<td>0.98</td>
<td>780.5</td>
<td>130.5</td>
<td>488.0</td>
<td>310.8</td>
<td>487.0</td>
<td>513.0</td>
<td>563.3</td>
<td>3.5</td>
<td>1.7</td>
<td>70.7</td>
</tr>
<tr>
<td>Lig.+NaCl (6)</td>
<td>35.5</td>
<td>143</td>
<td>4.2</td>
<td>90.8</td>
<td>43.2</td>
<td>146.8</td>
<td>70.6</td>
<td>65.5</td>
<td>1.10</td>
<td>802.1</td>
<td>135.9</td>
<td>519.9</td>
<td>282.9</td>
<td>518.9</td>
<td>481.2</td>
<td>578.1</td>
<td>3.9</td>
<td>2.0</td>
<td>65.3</td>
</tr>
<tr>
<td>2 weeks</td>
<td>35.5</td>
<td>143</td>
<td>4.2</td>
<td>90.8</td>
<td>43.2</td>
<td>146.8</td>
<td>70.6</td>
<td>65.5</td>
<td>1.10</td>
<td>802.1</td>
<td>135.9</td>
<td>519.9</td>
<td>282.9</td>
<td>518.9</td>
<td>481.2</td>
<td>578.1</td>
<td>3.9</td>
<td>2.0</td>
<td>65.3</td>
</tr>
<tr>
<td>NaCl (6)</td>
<td>40.5</td>
<td>137.9</td>
<td>4.4</td>
<td>82.6</td>
<td>52.3</td>
<td>170.6</td>
<td>77.0</td>
<td>62.2</td>
<td>1.25</td>
<td>773.9</td>
<td>131.0</td>
<td>588.8</td>
<td>185.1</td>
<td>587.8</td>
<td>413.2</td>
<td>443.2</td>
<td>4.2</td>
<td>2.5</td>
<td>59.6</td>
</tr>
<tr>
<td>2 weeks</td>
<td>37.5</td>
<td>143.4</td>
<td>5.3</td>
<td>88.5</td>
<td>47.8</td>
<td>185.5</td>
<td>82.2</td>
<td>59.3</td>
<td>1.49</td>
<td>780.4</td>
<td>136.2</td>
<td>599.2</td>
<td>201.3</td>
<td>598.2</td>
<td>402.8</td>
<td>436.9</td>
<td>5.2</td>
<td>3.1</td>
<td>56.2</td>
</tr>
<tr>
<td>Prog.+NaCl (5)</td>
<td>37.5</td>
<td>143.4</td>
<td>5.3</td>
<td>88.5</td>
<td>47.8</td>
<td>185.5</td>
<td>82.2</td>
<td>59.3</td>
<td>1.49</td>
<td>780.4</td>
<td>136.2</td>
<td>599.2</td>
<td>201.3</td>
<td>598.2</td>
<td>402.8</td>
<td>436.9</td>
<td>5.2</td>
<td>3.1</td>
<td>56.2</td>
</tr>
<tr>
<td>2 weeks</td>
<td>37.5</td>
<td>143.4</td>
<td>5.3</td>
<td>88.5</td>
<td>47.8</td>
<td>185.5</td>
<td>82.2</td>
<td>59.3</td>
<td>1.49</td>
<td>780.4</td>
<td>136.2</td>
<td>599.2</td>
<td>201.3</td>
<td>598.2</td>
<td>402.8</td>
<td>436.9</td>
<td>5.2</td>
<td>3.1</td>
<td>56.2</td>
</tr>
</tbody>
</table>

Lig. = Figure-of-eight ligatures
Prog. = Progesterone
NaCl = 1% NaCl in drinking water

Standard error computed as to Burn (13).

Table 2. Analyses of Serum, Blood and Kidneys
eight and ninety-six hour ligations and sodium chloride. The serum potassium increased slightly in the progesterone and sodium chloride rats.

The sodium values in whole blood increased in all except the two week sodium chloride rats. Again, the largest increase was in the forty-eight and ninety-six hour ligations and sodium chloride.

There is a marked decrease in the cellular potassium K_c in the forty-eight and ninety-six hour manipulated kidneys. No such decrease is observed in the red blood cell potassium content. In the manipulated kidneys, there is an increase in the kidney water content, which is found to be cellular. There is a decrease in the extracellular phase and an increase in the intracellular phase.

The assumption that the water increment, in the forty-eight and ninety-six hour manipulated kidneys, is primarily intracellular seems valid on the basis that the total sodium in these kidneys remained the same. Since the extracellular sodium is in equilibrium with the serum sodium, if the water increment were extracellular, the total sodium would have to increase in proportion. It follows that intracellular dilution has occurred.
Experimental hypertension is associated with an increased extracellular fluid volume of the body.44, 52, 141 Such an increase is indicated in the results by the reduced hematocrits in those rats with ligated kidneys.

The results also show an increase in the kidney sodium and water of the figure-of-eight ligated rats. The water increase is calculated to be in the intracellular space together with a decrease in the intracellular potassium. These changes are most marked in the shorter term ligations. In these early ligations the changes appear without the sodium chloride loading; however, sodium chloride by itself did not cause potassium depletion or an increase in the intracellular water.

No cellular potassium depletion was observed in the progesterone injected rats. This may be due to the dosage level used. Higher levels might be needed to effect the changes.

Renin production is known to be at its maximum in the early ischemic kidney.21, 28, 41 This would fit in with the time of maximum changes observed. Angiotonin and crude kidney extracts have been shown to increase aldosterone secretion34, 74. Renin itself caused a hypertrophy in the zona glomerulosa and has been described as the possible aldosterone stimulating hormone of the kidney.20 Aldosterone acts on the renal tubules to promote sodium chloride reabsorption and potassium excretion.63
Aldosterone, DOCA, and potassium deficiency diets cause an intracellular potassium depletion, and a retention of water as the result of sodium retention143, 132,134. These changes are observed in the figure-of-eight ligated kidneys.

Injections of aldosterone increase the blood pressure136 probably by aldosterone's effect on the electrolyte balance74. Ligating the kidneys might cause hypertension by effecting these changes. The electrolyte disturbance of the kidney observed in aldosterone DOCA, and potassium deficiency hypertensions is also found in hypertension produced by renal ischemia due to figure-of-eight ligature.

In all of these forms of experimental hypertension potassium depletion appears to be a common underlying feature, whether induced by reduction in renal blood flow, operating through the renin-angiotonin-aldosterone mechanism, aldosterone or DOCA administration, or simple potassium deficiency. The fact that intracellular potassium deficiency appears in ischemic kidneys offers a ground for a unified concept for experimental hypertension. The mechanism by which altered sodium-potassium balance produces hypertension remains obscure.
PART VI

BIBLIOGRAPHY

115. ____________, ____________, The Role of Renal Metabolism in Hypertension and Uremia. J. Exp. Med. 73: 357, 1941.

* No author given.