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INTRODUCTION

Signals travelling from a transmitter to a receiver, whether
over a wire or through the air, are altered by static, electrical
disturbances, and other uncontrollable perturbations which lumped
together are called "noise”. Various methods have been used to "sweep"
the noise from a signal, the most recent and probably the best of which
is reported in a research paper labled "Orthogonal Coding".l The first
part of this thesis is an explanation of the principles on which
orthogonal coding is based.

The electrical equipment used in the orthogonal coding method
is not formidable, but any reduction in such equipment is desirable.
The electrical engineers and mathematicians collaborating on the problem
were convinced that the circuitry involved could be reduced if a set of
orthogonal functions having particular additional properties could be
found. The second and third parts of this thesis are concerned with

the purely mathematical investigation of such sets of functions.

l"An Orthogonal Coding Technique for Communications™, G.A. Franco
and G, Lachs, General Dynamics/Electronics Research Division, Rochester,
1960.
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PART I

The transmission of messages by telegraph or teletype requires
twenty-six different signals, one for each letter of the alphabet, and
a few auxiliary signals for punctuation and special codes. Thirty-two
different signals are usually sufficient.

A radio wave or telephone signal is more complex. By virtue of
a powerful theorem in mathematics, however, from a continuous wave of
given bandwidth emitted by electrical equipment it is possible to extract
a series of pulses with the property that the complete wave is determined
by this series of pulses and can be obtained from 1t.2 Furthermore, let
each pulse be approximated by a pulse from a predetermined set of exactly
n levels. An approximation to the complete wave can then be obtained
from the series of approximation pulses. Exhaustive experiment has
shown that when n equals thirty-two, the difference between the original
wave and its approximation is indistinguishable to the human ear.3

The problem of transmitting a radio wave or a telephone signal
is therefore, essentially the same as that of sending a message by
telegraph or teletype; that is, a series of transmissions of one of a

set of thirty-two pulses or signals during consecutive intervals of time

2See Appendix I.

3See Appendix II.



(extremely brief intervals, to be sure!). Let us now turn our attention
to that simplified problem.

We make another modification. Since one pulse takes only a
fraction of its given time interval, then during most of that time
interval nothing is transmitted. Hence, let us fill up that interval
with one of a set of thirty-two functions which are in a one-to-one
correspondence with the original set of thirty-two pulses. Transmission
of the functions is equivalent to transmission of the pulses, and at
the receiver an incoming function identifies its corresponding pulse.4

Consider the transmission of one of a set of thirty-two signals
from one station to another where each signal is represented by a
real-valued function Si’ i=1,2,3,...,32. If one of the signals
(functions) Si is distorted during transmission by uncontrolled
interference - i.e., noise - then how can the distorted Si be distinguished

from the other thirty-one possible signals in §?

System I

To facilitate the identification we impose a condition on §.

Let S be a normalized orthogonal set over the interval (-a, +a), then

in S,

J

+a _le 341
J_asisj-{l joj for S ands

If the signal S, 1is transmitted and is distorted by noise, then the

i
received signal may be put in the form Si + N, where N 1is the noise

YSee Appendix II.



factor. Then let

o+fINs, 3 fi

.y = (Fa .
1,(3) = J2 (s M0,

1+ Sf: NS, =1

Hence, if the noise N 1is not tooc great; i.e., such that

+é_>5t:st>_-é. forj=l,2,3,---,32

then

+a +a . s
(1) =JIONS +1>-F+1 =8> N S5 = 1,(3) for j #1i.

The largest number among the Ii(j) for j=1,2,3,...,32 would
then be Ii(i). Thus, it could be determined that §, was the originally
transmitted signal. The schematic diagram in figure 1 illustrates
how electronic components may be used in this method.

Although System I is feasible, the amount of equipment is excessive.
A function generator is more complicated than a multiplier or an integrator,
and this method uses thirty-two such function generators. In the next
section a modification of System I is given which requires only four

function generators.

System 11

Let T = {Tl, Tys Tys Tyd be a set of four functions which are

normalized and orthogonal over (-a, +a). Let A = {ai j} be a matrix
bl



S,+N

Figure
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of coefficients having thirty-two rows and four columns, and form a set

S of thirty-two functions by setting:

= ¥
S;=a Ty +e T+ 3 T3%3 4,1y
Sp=ay it o Tatay T3+ a4 1,
S.,.= T +a T. % a.. T, .

32” 332,111 * 232,22 * 332,373 * 332,414
That is,

= = + 4
s = {s;ls; = a; \T)*a; STyt oTg*a; 4Ty

and 1 =1,2,3,...,32f.
Also, for convenience call

Ay = {3y 15 35,00 35 35 35 4
Hence,

+a
j-a 857§ al31 1114y oTotay JTgtay T )(ay Titay ST tay oTytay ,T,)

- (ta 2 2 2
f ai,laj,lTl i 5@ 3, 2T +ay 3aj 3T3 +—ai 4aj’4T4

+ +
83,125,1 T 23,2850 % 33 38531 35 4254 J#
= <
2 2 2
#
N1 Tl o TE T g j=1i.




The problem is now to choose the matrix A so that as few

different numbers a; . as possible are used and so that
3

2 .2 .2 .2
+ + j
min(ay j+a} o*a) 5%y 4) > maxlay jay jtay oag oty g3y gtay 4254 A (1)

The following matrix, found by experiment, satisfies these require-
ments. Let every Ai be such that one of the four elements of Ai is
zero and the other three elements of Ai are either -1 or +l. The

elements a are chosen in this manner in order that each §, might

e % i
require an equal amount of power to be transmitted (see Summary and
Conclusion). The number of different Ai is 4(2? = 32, precisely the

number of Ai which are needed. The matrix can be ordered as follows:

84,0 4,2 21,3 %4
Ay 1 1 1 0
A, -l 1 1 0
Ay 1 -1 1 0
Ay 1 1 -1 0
Ag -1 -1 1 )
Ag -1 1 -1 0
A, 1 -1 | 0
Ag -1 -1 -1 0
Ag 1 1 0 1
A -l 1 0 1
Ay 1 =1 0 1
Ay, © . R
Ay, O -1 -1 -1



It can be seen from the table that

2 2 2 o .8 2 2 g
min(ai,l - ai,2 + ai,a + 31,4) % ai,l + ai,2 + ai’3 + ai,4 3

for all i = 1,2,3,...,32

and that

+ + + =
max(ai,l aj,l ah2 aj’2 ai,3 aj,3 ai’4 aj,4) 2

since if both a, and are one, then must

i,1 35,1 33,2 34,2 81,3 %3,3
be either minus one or zero. If 333 aj’3 is zero, then 31,4 aj,4

must be either minus one or zero. Therefore, condition (1) holds and

thus implies

j+a 52

+a
g 512 I_a §,S, +1 JAL.

i3

Now, if the signal Si 1s trans$mitted and is distorted by noise,
as in the first system call the incoming signal Si + N where N is
the noise factor.

Again let

[ +a +a
j_asisj +fNs

IA

o+
jS2+ SN s, JF1

+
1,(3) = I_:(sim)sj =

%7 + s,

.

3+ NS,

n
frs

If the noise N 1is such that

F>0T2Ns, > -3 for 5=1,2,3,...32 - (2)

b
then



1,(1) = fToNs, +3>-4+43 = 24 > fHo NS, +221,(3) forjFi.

The largest number among the Ii(j) for j =1,2,35044,32 would
then be Ii(i)’ indicating that Si was the originally transmitted
signal. The schematic diagram in figure _2 shows how Ii(i) could
be obtained electronically; note the use of only four multipliers, four
integrators and four function generators.

Thus, we have an effective method for determining which signal
out of a set of thirty-two possible signals was transmitted through

interference.

System III

Let us consider a modification and an improvement of System II.
The basic principle underlying System II is that when one of thirty-two

signals Si is transmitted through interference and is distorted into

a different signal Si+ N, then
Ii(i) will remain larger than every other Ii(j) for j ¥ i. (3)
Hence, S1 can be electronically identified from the other members of

S. Condition (3) depends on two variables, the size of N and the
relative differences between 5+a sisj for (J and 1) = 1,2,3,40¢,32,
If the minimum relative difference d between S i j i

for j #1i can be increased, then condition (3) will continue to hold

and St: S

true for bigger N; i.e., greater interference.
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Since, in System II

4
S =z a . Tl i = -1-,2,3’...’32

and
& 4
§228:8; it A PR F 1
4
+a o2 2
§-a 8y e P

-
one way to allow for more latitude among the 5_: Sisj is to increase
the number of terms in each Si' Let Si in general be given by

n

where the a are either plus one, minus one, or zero.5 Also,

i,]

d=min [§7%2 - (55 | mmin| 2 a2,- Za .a for j £ 1
B e 1 | i M T S T Y I R

Although no theoretical demonstration was found indicating that under
the above conditions d could be maximized, by extensive experiment the

following system was found to be most satisfactory: Let each Si contain

eight terms
8

Za T
j=1 i’j j

S. =

A 1= 1,2,3,00.,32

589e Summary and Conclusion at the end of the Thesis,
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such that every Ai contains exactly two zero elements. The matrix

A was chosen by experiment such that

8

Tal, = 6 for all 1 =1,2,3,...,32
—, i,k
k=1
and
8
kflai’k aj,k <4 for j f i.
Therefore, if
1> 13N S;> -1 for § =1,2,3,u0.,32 (4)
with respect to a distorted signal Si+ N, then
_ tan2 +a _ +a e
(1) = s +J NS, =6+ NS, >6-1=5

and

_ (ta +a +a o
1,(3) = S_asisj + JoN S, 4+ ST 5, < 4+1=5,

and we obtain the desired result
Ii(i) > Ii(j) for all j # i.

Since the inequality (4) is less restrictive than the inequality (2)
upon the amount of noise N through which the system can operate, System III,
as we shall call the above system, is much improved over System II. However,
the amount of electronic equipment required for System III includes eight

function generators and is nearly double the amount required for System II,
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PART II

As can be seen from figure 2 , the set of orthogonal functions

T={T,, T T3, T4} must be generated each time the function S, + N

17 22
is processed. Since it is much easier electronically to generate one
function and its three derivatives rather than four unrelated functions,

let us investigate the possibility of a set of four, five or even eight

orthogonal functions such that fhe set is of the form

T = {Tn| T, =f, T, =1, T, = . LN,

2 3

Definition: A set T of functions which is orthogonal over the interval
-1
(a,b) and is of the form T = {Tn| Ty =f, Ty =, T = ¢(P )}

will be called p-step orthogonal over (a,b). In short, we say that

the function f is p-step orthogonal over (a,b).

The following theorem was soon apparent and forms the basis of
most of the work that follows it. One should first note that if a set
T is p-step orthogonal over (a,b), then a subset of T is also g-step

orthogonal over (a,b) for every q < p.

Theorem I: There is no p-step orthogonal set of functions over (a,b)

for p 2 5.

Proofs
1. It suffices to show that there is no 5-step orthogenal set

over (a,b). Assume the contrary. Thence,
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b

2. jgf(")f(n+l) = g(f(“))z} =0 forn=0,1,2,3.
a

£(b)° = £(a)2  £'¢(b)2 = £17(a)?
(1)
fl(b)2= f‘(a)2 flll(b)2 =f"'(a)2
Integrating by parts,

3, S:f(n)f(n+2) = f(“)f(“+l)]b " jg(f(“+l))2 =0; n=0,1,2.
a

£(b)£'(b) - £(a)f*(a) = fP(£1)?
£1(b)£" " (b)-£"(a)£" " (a)= [P(£1)? (2)

£17(b)ET  (b)-£f'"(a)f ' (a) = ;:(f...)Z

4. MM () (w21 b (et (ni2)

=0; n=0,l,
a
f(b)f''(b) = f(a)f'*(a)

(3)

f'(b)fltl(b)= fl(a)ftli(a)

b
5. fPres(1v) o f"'Ja - fPererrr 2 g

£(b)£'' "' (b) = £(a)f'"'(a). (4)

6. By (1) either f(b) = f(a) or f£(b) = -f(a). If £(b) = f(a),

then by (2) £'(b) = -f'(a); otherwise, £'(b) = f'(a) by (1) and this
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implies S:(f')2 =0 by (2). Similarly, f''(b) = f''(a) and
f"}(b) = -f'""'(a). However, by (4) f(b) = f(a) implies that

f'*"'(b) = f'*'*(a). Hence, we have a contradiction.

7. If f(b) = -f(a), then by reasoning similar to the above
f'(b) = £'(a), f''(b) = -f*'''(a), and f'''(b) = £f'''(a). However,
by (4) f(b) = -f(a) implies that f'''(b) = -f'''(a). This

contradiction establishes the theorem.
qleld'

However, there do exist four-step orthogonal functions. The

first such function was found in the following manner: consider the

set {f, f', f'', £'''}. Let us place one condition on f - let f
be an even function (a similar argument would follow if f were an

odd function). Then f' is an odd function since f 1is even implies

f(x + h) - f(x) _ _ f(-x -h) - f(-x)
h -h

which implies

£1(x) = lim f(x + hﬁ = £(x) | 14y £lx -hzh- £(-x) _

h-0 h-20

-f'(-x).

And it also follows that f'' will be an even function and f''' an

odd function., Therefore,

+
5_:f(“)f(“+l) =0 for n=0,1,2,

and
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§ g1 2 0
—a .

Thus, we have established the following theorems

Theorem II: If and only if a function f is an even function (or an

odd function), and

$2::)2 fo forn=0,1,2,3 (5)
fate =0 (6)
Mk A AL (7)

then will f be a four-step orthogonal function over (-a, +a).

In view of the foregoing theorem, let us make the definition:

Definitiont A function which is either an odd or an even function will

be called a signed function.

Now, let us examine polynomial functions which are also signed
functions., A signed polynomial function f which is four-step orthogonal
must contain at least three terms, If f has only two terms and is of
the form f(x) = pxm + qxn, then the conditions of equations (6) and
(7) imply that P=4q=0 in contradiction to the conditions of equations
(5). On the other hand, if f contains more than three terms, then

there are superfluous terms which unnecessarily complicate calculatiohs



L7

(this will soon become clear). The signed polynomial function of three
terms and of lowest degree which satisfies equations (5), (6) and (7)

is an even function of degree four:

Example 1:
f(x) = px4 + qx2 + r
. _ 3
£f'(x) = 4px” + 2qgx
T = 2
f''(x) = 12px° + 2q
£110(x) = 24px

where p, q, and r are constants. Solving for p, q, and rj

equation (6),
jf:fiflll =0,

implies

+a
24r(2)(2px5 +-qu3] =0
5 2
3
2 5
2(Sa"p + %—q) =0

22 .1 _
58 P + 2q = 0

and a solution to the equation is
.5
P=7

@

q=-6



18

Next, equatien (7),

4
(T ¢ v = 0,

implies
2
+
754x7 _ logx5 4 15r 2183 x3 - 3rx ]+a -0
7a 5a 3a 2
_15 2
r 7a.
Therefore,

f(x) = 25 x - 6x" + i% a
a

is a four-step orthogonal function over (-a, +a).

In particular,

f(x) = 35xT - 42a2x° + 1534,

and in general,

£(x) = k(% - 6x2 +

a

a2)

<G

for any constant k % O are four-step orthogonal functions over (-a, +a).

Another class of four-step orthogonal functions can be found using

the same technique.

Example 2t
_ _.2n 2
f(x) = px= +gx“ +r

where n 1is an integer such that n 2> 2, and p, q and r are parameters
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depending upon n and a (but not x). As wa

determine from equation (6)

q = —2n2 +n .,

Hence, equation (7) implies that

s done above, we can

2

" 3n -

w

- [5n2 - 16n + 18 - 9(8n-1)

For example, when

(4n - 1)(2n + 1)

a .

5 15 2

n=2; p= = 4= -6, r = = a
a
9 79 2

n=3; p= 29 /= =19, » = —7 @
a

n. 21 " L 2

n=6; p-= o 9° -66, r = 73.76a” approximately.

a

In the foregoing examples, only one of

the three terms of f was

of degree greater than two. However, to construct a four-step orthogonal

function from a signed polynomial where two terms are of degree greater

than two is complicated. The most simple of such polynomials is the

following example over the interval (-l, +1):



Example 3:
f(x) = px6 + qx4 +r
f'(x) = 6px5 + 4qx3
£*'(x) = 30px4 + 12qx2

fr1(x) = l?Dpx3 + 24qx .
From equation (6)
175p2 + 195pq + 42q2 =0 ,

Solving for r in equation (7), we obtain

1 152,71 .62
I = 34aqiP T 3Pat )

Although there are no integral values of p, q and r which satisfy

the above equations, approximate solutions are given by p = .20,

q=-1.00 and r = - .25,

Similarly, example 3 can be generalized.

Example 4:

f(x) = px2n * qx2m + P

where n > m 2 2, Any function of this form can be made four-step
orthogonal by proper choice of p, q and r., Also, p, q and r

be real-valued.

will
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Notice that in example 3 the solution of equation (6) does not
involve the parameter r. This is also true in example 4, The reason
behiﬁd this fact is that the third term of f in both examples 3 and

4 is a constant term.
The next example of a four-step signed polynomial presents more
difficult equations in p, q and r. Notice that the following function

has degree five, and it contains no constant term.

Example 5¢ Over the interval (-1, +1), let

f(x) = px5 + qx3 + rx
f'(x) = 5px4 + 3qx2 +r
1t - 3

f''(x) = 0px~ + 6qgx

fri1(x) = 60px2 + 6q

equations (6) and (7) imply

2
_5% Ly 109r3+ 38° 4 o =0

2
10 2 4 03 pq+ WO 4 0 g,

9P +=p

As evident, it would be difficult to find real values for p, q and r

(if they exist) from the above equations,
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Generalizing the result of example 5, given any signed function

of the form

£(x) = px" + gx" + 38

where m > n > k 2 2, it would be quite difficult to find real values
for p, q and r such that f 1is a four-step orthogonal function over
(-1, +1).

There are also signed polynomial functions of more than three
terms which are four-step orthogonal. However, these functions are
unduly complicated.

Functions other than polynomials which are four-step orthogonal

exist., For example,

and
g(x) =p cos x + q cos 2x + r cos 3x over (- % g +,%)

are four-step orthogonal functions for the proper choice of the parameters
p, 9 and r, However, the calculation of p,q and r in f and g
would involve equations as difficult to solve as those in examples 3 and

5 respectively.
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PART III

As seen from the closing remarks of Part I, it would be

desirable to have a set T of eight orthogonal functions such that

However, there is no eight-step orthogonal function, and there is not
even a five-step orthogonal function as was shown in Theorem I.

If there were a five-step orthogonal function f, such that
(V) - g

1 f' = Tos eens then how useful would be the set

53

5
§, = = ?

175 M T

A system of interference reduction using such Si would be an improvement
over System II although not as powerful as System III. Compared with
System II, the extra term in each Si would allow more latitude in

choosing the matrix A, and it would be possible to incorporate a redundancy
check in the system.6 Thence, a five-step orthogonal function (if it

existed) would be quite useful.

6Fazlollah M. Reza's, An Introduction to Information Theory,

McGraw-Hill.
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On the other hand, an examination of condition (1) of Part I
shows that it is not really necessary that the set T be an orthogonal

sets —i.e.,

ffar 1, =4 1 for (1 & j) = 1,2,3,... .

An alternate condition would be that the set T 1is almost ortho onal ;

l.0.,

ffarp =q 1 for (1 & 3) = 1,2,3,... ,

where min(Mi) is significantly larger than max(ei j).
L ]

The remainder of the thesis concerns five-step almost orthogonal
functions. The basis of the discussion is the following conjecture

(the proof of which would conclude the thesis):

Conjecture: There is no five-step almost orthogonal function.

Evidence:

From now on let us assume that all functions f are signed

functions. Then
+a_(n) (ntl) (n),27"@
1. frarisiy = 3£\ ] =0  forn=0,1,2,3,
-a

Hence,
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+a
+a,.(n) (n+2) _ .(n)_ (n+1) _(ta (ntl),2 _ _
B e Aol = f\Mg ]-a T2 ) = ey nep  for n=0,1,2.
Therefore,
(n) (nt+1) _ _ -
247 (a) £ () - M 4 = e mo for n = 0,1,2.
o, (n) (099)_ o(n) (n+2)]+a _ 5+a f(n+l)f(n+2)= . for n=0,1.
3, j_gf Nig = £\ _, -a n,n+3
Therefore,
O - eni1,nt2 = ®n,nta?
hence,
en,n+3=0 for n = 0,1.
4, Finally, a
+a (iv) = n':l _(Macaerrr _
e = gl = J L FE . €,4*

Therefore,

2f(a) £'''(a) - e

5. In summary, let f be a signed function. Then over the interval

(-a, +a)
TR TR Sl Tl T T, O Bl Y Bt
and
M, + eo’2 = 2f(a) f'(a) (1)
My + e o= 2f'(a)f""(a) (2)
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e T Tr
M, + Wi 2f'*{a) F**"(a) (2)
- 1y
e1,3%%0,4 2f(a) f£'''(a) (4)
6. Dividing the product of (1) and (3) by (2), we obtain
My teg o) Mates 0)  26(a) £7(a) 287" (a) £'7" (a)
- 1 [
(M2 + 91,3) 2f'(a) f''(a)
= 2f(a) f''"(a)
= 91,3 + q3,4 .
T« I1f %0,2’ ei’3 and e2’4 were very small compared to Ml, M2 and
M3, then
(Myteg o) Mgtes o)  MiMgten Myter My %0 2.4
My + ey 5) M,(1+ ZLa3) (M te) 3)
M
2
b Yoo o | B W (elﬁ) 4
My M, g My

which is approximately
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8. Hence, under the foregoing conditions,

1;3 _
—_L__e +90,4,

approximately. (5)
9. If the function f were five-step almost orthogonal, then condition
(5) would be implied. Condition (5) can be interpreted as meaning that
the size of M, = jtz(f")Q must be of a degree three times as great

2

as the degree of size of
+ 1)2 + 1112
(MMy) = [5_:& )} [ ¢ )] :

The foregoing line of attack was not carried any further.
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The following procedure was adapted to check for a counter-
example to the conjecture. Let us take a function which is four-step

orthogonal and extend it into a five-step almost orthogonal function.

For illustration, the function f(x) = 5x" - 6x° + l% is four-step

orthogonal over (-1, +1).

Case 1l:
£(x) = 5x" - 6x° +1—:?,
f'(x) = Wx> < 12x

f''(x) = 60x2 - 12

£'77(x) = 120x
and also,

f(i")(x) = 120 .

Now

5+lf'f(iv) = S+lf”'f(iv) =0
-4 -4
since f' and f'''" are odd functions and f(iv)

Then

+, (iv)_ +lo 4 2 15\ _ {;g;g_ 2 _
f_lf f =120 f_1(5x 6x + 7)dx = 2(120) 5" 3 - 7] = 2745 = q0,4

Stif"f(iv)=12(120)§ti(5x2—1)dx= 2(12)(120)(% -J) =190 =, , .

However, by (1)

My o= 26(1)7(1) = 2(5 - 6 +22)(20 - 12) = -

is an even function.
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Obviously, M, is not significantly bigger than either

1

or e

‘0,4 2,45

thus, the function f 1is not a counterexample to the conjecture.

_ There is one other way of extending the function f - by

integration. Consider the function g where

g(x) = F(x) = x> - 2x° + l—gx such that F' = f
gt lx) = Bl = Bx" = Bn= % —
[ ] = L] ~— 3
g''(x) = f'(x) = 20x~ - 12x
8 Ml § -~ L ] i 2
g''""(x) = £'"(x) = 60x" - 12

g(iv)(X) = f''"(x) = 120x

Now
+1

e
S-lg g' = S_lg g'” =0 .

But

[ g o)1 5*1 By 15x)dx = 2(120)(l §+§) = 1092 = o

However, by (2)

= 29'(1) g''(1) = 2(5-6+ L2

Since M2

not a counterexample to the conjecture.

(20 12) -18% .

is not significantly bigger than € .4° the function g is
- |

That is, neither the function

f nor the function g where g' = f are five-step almost orthogonal

functions,



This same extension procedure was tried on other more general
four-step orthogonal functions. The following is an example of the

results:

Case 2t

f(x) = p 220 4 q N (where the values of p,q and r

are given on page 19.)

over the interval (-a, +a) and such that n > 2. This is a more
general example which includes case 1 as the special case when n =2

and a = 1,

First of all, when a =1 and n 2> 2, we have

M =2 £f(1) £*(1) and e =2 £(1) £*vv(1)

such that My > implies that either

90,4

f(1) >0 and £t{1) > £'2%(1)
or

f(1) <0 and £'{1) < £'*7(1) .

But assuming
£'(1) = 2np + 2q > 2n(2n-1)(2n-2)p = £'''(1)
implies that

n(4n-3) + (~2n2+n) > n(2n-1)(2n-2)(4n-3)

1 > (2n-1)(4n-3)
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or

0> en® - 10n + 3 = h(n). for n > 2

However,

h(2) >0 and h'(n) > 0 for n > 2
which is a contradiction.
Hence, M, > e0,4 implies that f(1) < O which means
p+tq+r<0

which can also be shown to lead to a contradiction (in a complicated
proof). Therefore, f is not a five-step almost orthogonal function

when a =1 and n 2 2.

In the general case when a is arbitrary and n 2 2, we have

M, = 2 f(a) £'(a), q0’4 =2 f(a) £'*'"(a),

and

f(a) = pa2n + q32 +r= a2f(l) > 0.

implies that f'(a) > f'''(a), or

Thus, “1 > 90’4

2n-1 2n-3

2npa + 2qa > 2n(2n - 1)(2n - 2)pa

or

a2 > (2n - 1)(4n - 3). (6)
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Also

- sz [(2n)2(2n-1)2(2n_2)2(2n_3)2p2] An-8y

=
1

= Kp 47  here K = 2n(2n-1)(2n-2)(2n-3)
and

]
|

+
04 = j_: [2n(2n-1)p x
s

Z2n-1 4n 5 2n 3

4n 5 2n 3

{1

4n 3 = ] 21"1-3
4n-5 ~ 2n-34 @ .

L

2(2n)(2n-1)Kkp [7—=

Thus, M4 > 92,4 implies that

2

4n 5 - 2n-3] P

Kp 2n 4 8n -22n+14
ne7 & > 2n(2n-1) [55(2n-3))

2n(2n- 1)(2n-21[ n-3)(4n-3) > 2n(2n-1) !4n-7;§§n-2; 8
4n-5 n-3

a (4n-7)
Simplifying the inequality,

(2n -3.,2
4n- 7

{4n-3) (4n-5) > a2 . (7)

Combining conditions (6) and (7) we obtain
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(%2—:3)2(4n—3)(4n~5) > (2n-1)(4n-3)

2n-3,2 2n-1
(4n-7) > (4n-5)

(note that the inequality fails to hold true for n = 2, Using the

inequality
Zn-1 S 2n-3
4n-5 4n-3
we find
— 2° 4ni5
(4n-7)
and

Bn® - 22n + 15 > 16n° - 56n + 49

0> 4n° - 17n + 17 = h(n) .

But notice that h(3) > 0 and that h'(n) >0 for n > 3. This
contradiction establishes that the function f 1is not a five-step

almost orthogonal function.
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SUMMARY AND CONCLUSION

Let us see how well the four-step orthogonal functions and the
improbable five-step almost orthogonal functions satisfy the requirements
of the interference reduction systems, There is one other important
condition that now must be imposed on the Si of Part I. For electronic
reasons, each of the functicns Si must take an equal amount of power
to be transmitted.

To satisfy this requirement, we impose two conditions on Si'

Since

= and h
one condition if that each Ai {ai,l’ ai,2, ai,3""’ai,n} contain only 1 ee0, andhave
the same number,of non-zero elements (as indicated in Part I). The
second condition is that each Tj be such that

+a .2 "
S_a Ty =K for j = 1,2,...,n

where K 1is a non-zero constant. In practice,

T2j-l = sin(j)

T2j cos(j)
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over the interval (-x, +x) worked quite satisfactorily.

The foregoing two conditions imply that

n
+a_.2 _ (ta 2 _ (ta 2 2 2 2 2
I 5-a(j§lai,jTj) 5 ( A Ty Ao Tot e vay (T
and thus,
+
5_: sf = 1K . for 1 = 1,2,...,n

Therefore, each Si takes an equal amount of transmission power.

However, if a function f = T1 were a five-step almost orthogonal
function (assuming that one does exist), then f would not satisfy the
equal power requirement. Condition (5) of Part III is in direct contra-

diction to such a requirement.

Finally, let us see which four-step orthogonal functions satisfy

the equal power requirement. Take example 1 of Part II

f(x) = px4 + qx2 +r

where

_(tag 4, 2 2@ 0,3, 10 10, 2 5
MO S_a(px +qx“+r)dx =2( 9 L4 4 Ash - Sp 4 )

M, =2 £(a) £'(a) = 2(—)(8) = 182 a°
M, =2 £'(a) £''(a) = 2(8)(60-122 = 768 a
My = I+8(24px) dx = 2 218 576 ad gggg .

3a
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Evidently, no value of the parameter a will make the Mi close in

size.

Example 2 of Part II behaves in a similar manner.

£(x) = px " + qx2 + r

where

=
I

= jt:(anxznpl - 2qx)2dx

n

2 2
8n2[(4n-3} -0 §4n-3](2n—12 4 !2n;12 ] a3

4n-1 2ntl

2 ¥'{a) #**(a)

=
]

64n2(n-l)2(2n-1) a

=2 f'"(a) f'''(a) - e

=
|

2,4

2
32n%(n-1)%(2n-1)? 40230 5 1

We already know that for n =2 the M, are not close in size for any

i

value of a. By direct substitution, the same is found to be true for

n=3 and n = 4, For bigger values of n, notice that M, has degree

1

0 has degree 5, and M3 has degree 7. Hence, the bigger

the value that n takes, the more do the Mi diverge in size.

4 in n, M

Furthermore, none of the other examples of four-step orthogonal

functions examined in Part II satisfy the equal power requirement. Thus,
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the usefulness of such functions in system II is of a small degree.

As yet, no other applications of the use of four-step orthogonal functions

is known to the author.
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APPENDIX T

Consider a communications signal in the form of a continuous
function G such that G has a finite bandwidth and hence, contains
no frequencies greater than some constant W. Then G is completely
determined by the set of ordinates of G taken at intervals of length
%ﬁ , the set extending throughout the whole time domain.7 If the time

domain is (- o, + ®), then an analytical expression for G in terms

of the values of G at the sampling points is

g iy sin(2xWt - ix) Lt i
G(t) = = Glgy e TT— =1=z_‘nc(§i) Sa(2nxWt - ix)

= L.+ G(o)ﬁlﬂl@ﬁ!&l +G(§%) Eiﬂigﬂﬂﬁ:ll + G(E%) sin(2xWt - 251 %

o 2nWt 2qWt-n 27Wt - 2x e
where the function Sa(x) = 51: X is called the sampling function (see

figure 3 ).

As an example of the behavior of the expansion of G, let us
examine the three terms in the expansion corresponding to n = 0,1,2

where each of the three terms is represented graphically in figure 4 .

TThis is a theorem known as the sampling theorem in the time
domain. The proof of this theorem along with all the other material
presented in Appendix I can be found in Stanford Goldman's Book,
Information Theory, Prentice-Hall, Inc., New York, 1953; pp.67-71.
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7~ N\

The Sampling Function

Figure 3

sin x

Sa(x) = ”
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G(O) sin £23Wt]

2qWt

G(;_) sin (2nWt - x)
2w 2nWt - =«

G(2_) sin (QIWt s 21{_)
2W 2uWt - 2x

Figure 4
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b
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n=
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Aec a result of the rapid attenuation of the sampling function, the
effects of any term in the expansion of G will be of consequence

only witﬁin a relatively small number of intervals from that term.

This can be seen in figure 4; the term corresponding to n = 2

has a diminished effect on the term corresponding to n = 0. Therefore,
the function G in a neighborhood of the sampling point Eﬁ) is
almost completely determined by the value of G at (5%) and by a

few values at sampling points on either side of (5%). It is this

last property of the expansion of G that makes the sampling theorem

so useful.
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APPENDIX II

Let a communications signal be considered as a continuous
function G. By the preceding appendix, if G contains no frequencies
higher than W, then G 1is completely determined by values of G

-1 12 - Gg(=x
taken at intervals ..., g 5 0, Sy s Sy o *=+ Let p, = G(2W

for 1 = vu., -1,0, 1, 2, ... (see figure 5). Call each ordinate

p; @ pulse.

Let each pulse Py be approximated in the following manner:
I1f the amplitude of Py is less than or equal to n units of amplitude
and greater than n-1 units of amplitude, then let us say that Py is
approximately equal to a pulse level of n - 4 units of amplitude
denoted by Pn. In practice, the range of G 1is divided into thirty-two
units such that the set of all possible Pn contains no more than

thirty-two members corresponding to n = 1,2,...,31, 32 (see figure 6).

Finally, let there be established a one-to-one correspondence
between the set of Pn and the set of thirty-two functions Sn described
in the main text such that Pn-v Sn for n=1,2,...,31, 32. Hence,
if the functions Sn identified with the pulses Pn replace the
communications signal G, then the total time interval is filled with

the S_ (see figure 7).
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Consider the reverse problem, the method of obtaining the signal
G from the series of functions Sn. Each Sn identifies a pulse

level Pn. Form the series

. = sin 2xWt sin(2gWt-x) sin(2xWt-2x)
G*(t) o) T2t TP T ontex * P, T omWt-2x
+
_ 5 p &sin (ogWt - ix)

o - Py 2t - in

where the pulse level Pn. was obtained from the pulse Py- By the
sampling theorem of Appenaix I, G' will be an approximation to the
signal G, the degree of accuracy of the approximation depending on
the number of values that n takes. As stated before, extensive

research has shown that when n takes thirty-two values, the difference

between G' and G is inaudible to the human ear.



