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AN ABSTRACT OF THE PROJECT OF

Amer Kakish for Master of Science

Major: Engineering Management

Title: The Economic Lot Scheduling Problem: A Review

The Economic Lot Scheduling Problem (ELSP) has drawn much attention
during the past century. It stems from the fact that when the rate of production
exceeds the demand rate, production of a given product has to stop after its
inventory has reached a predetermined level. Demand will then be satisfied from
inventory, while the production facility can be used to produce other types of
products. The problem is then to determine the production quantity of each
product as well as the cycle time needed.

Numerous papers have appeared in the literature which dealt with the
problem of ELSP. A number of these papers were cited in this project, indicating
their working environment, the advantages of each, their limitations and how they
compare to other models. In addition, we will present a new two-product single-
facility problem that allows for shortages. We will prove that adopting a shortage

policy for the two product case is never optimal.
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CHAPTER ONE

INTRODUCTION

The Economic Lot Scheduling problem (ELSP) is encountered in many
industries, and has drawn much attention during the past half century. It stems
from the fact that when the rate of production exceeds the demand rate,
production of a certain product is going to be stopped after its inventory has
reached a prescribed level. The production facility is then used to produce other

products in order to maximize the utilization of the facility.

When two or more items compete for using the same facility, a well
known phenomenon of interference will occur. That is, eventually, the facility
will be required to produce more than one item at the same time, which is
physically impossible. Thus, the main issue in lot size scheduling is the
simultaneous determination of the batch sizes of the different items produced by
the facility, and the order in which the lot sizes will be produced. Batch sizing
arises due to the setup time and cost incurred when the machine switches from
one product to another. The cost may be due to scrap losses or cleaning while
adjusting the machine to produce the next product. On the other hand setup
times imply a down time during which the machine cannot produce, and

consequently implies a need to carry more inventory.



Numerous approaches have been developed that try to solve the ELSP. In
general, heuristic approaches are used and they sometimes provide very good
solutions. Analytical approaches are also used to solve a restricted version of the
ELSP, where restrictions are imposed on the cycle times, the number of times the
product is produced in each cycle, batch sizes and others. The main difficulty in
obtaining optimal solutions to the general ELSP is in the determination of
feasible schedules of the production runs. Researchers have shown that
feasibility testing is an NP-Hard problem. We note that feasibility is achieved
when no interference occurs and the schedule meets the demand requirements of

all products.

Since the feasibility of a schedule is of prime concern, most researchers
have focused on the analysis of some policies which facilitate the search for a
solution for this outstanding scheduling problem. Special attention has been
given to cyclic schedules where batches of the different items are produced in the

same sequence indefinitely.

The approaches commonly discussed in the literature can be classified into
three categories : (1) the Common Cycle (CC) which is also referred to as
Rotational Cycle approach, (2) the Basic Period (BP) approach, and (3) the

Dobson’s approach.

Define the product cycle time to be the time between successive

production batches of a given product. The common cycle approach restricts all



the product’s cycle time to be equal, and finds the optimal common products
cycle time. CC has the advantages of guaranteeing a feasible solution, and the

procedure itself is simple.

The BP approach allows different cycle times for different products.
However, it restricts each product’s cycle time to be an integer multiple of a
period of time called a basic period or a fundamental cycle. Furthermore, lots of
each item, within a cycle, should be of the same size. In general, this approach is
considered to give better solutions than the CC approach, but at a risk of

producing infeasible schedules.

Dobson’s approach is quite different than the two previously mentioned
approaches in the sense that it does not use a basic period of time, and it allows

lot sizes to vary over a cyclic schedule.

This project starts with a brief and rather broad review of the ELSP for the
case of deterministic systems and infinite time horizon. The discussion views the
same problem from the perspective of different research papers that appeared in
the literature since 1964. An analysis of a special version of the ELSP problem is

then presented, where only two products are involved with allowed shortages.

The chapters of the project are organized as follows. Chapter 2 presents a
problem definition along with a description of all the terminology used

throughout the project. Detailed discussion of the assumptions under which the



ELSP operates is also given. Chapters 3 and 4 present a “comprehensive”
literature review of the ELSP problem since the pioneering work of Maxwell in
1964. In Chapter 4, the review focuses more on the two product scenario and the
possible extensions. Chapter 5 introduces a new solution approach for the case
of two products with allowed shortages, and we conclude the project in Chapter

6.



CHAPTER TWO

WORKING ENVIRONMENT AND BASIC RESULTS

2.1 Problem definition

There are N products that need to be produced on the same facility. The
N items may have different but known production rates, demand rates, setup
costs, and inventory carrying costs. Given these parameters and the sequence-
dependent setup times, the problem can be stated as finding a feasible ‘optimal if
possible’ solution for scheduling these N products. Therefore, the problem is one

of lot size determination and scheduling for the N products.

Before we state the different assumptions used by different researchers we
have limited the scope of the problem by the following assumptions. First, the
production capacity is sufficient enough to meet the demand of all products.
Second, no more than one product can be produced at the same time. Third, the

time horizon is infinite, and fourth, there are no uncertainties in the problem.



2.2 Assumptions Used by Researchers

Several assumptions have been imposed by researchers to help find a
solution for the outstanding problem ELSP. These assumptions relate to different
aspects of the problem, such as, the setup time and cost, inventory accumulation,
cycle time used, the objective function used, and whether backordering is

allowed or not.

2.2.1 Setup time

Setup time is the time needed to switch from producing one product to
another. Some researchers assumed this time to be sequence dependent which
created a new problem in addition to the ELSP, that is, determining the best

sequence of switch. This problem is known as the traveling salesman problem.

In an attempt to make the problem easier, and due to the fact that some of
the modern production systems used are flexible (e.g., FMS systems), the setup
time is considered sequence independent. In some cases it is even considered

negligible.

2.2.2 Inventory

Due to the setup time and cost encountered in switching production and
the fact that no backordering is allowed, a sufficient level of inventory of each

product is needed. The question regarding inventories is, what should the initial



level of each product be in order to avoid shortages? Some researchers addressed

this question while others neglected it.

2.2.3 Cycle time

As defined earlier, the cycle time is the time between two consecutive
starts of a production run for a given product. Researchers developed three

different approaches in order to deal with cycle times.

1. The Common Cycle approach, which was first developed by Hanssman
in 1962, is a long enough cycle to accommodate the production of each item
exactly once. Using this cycle time, the solution is guaranteed to be feasible but

not necessarily optimal.

2. The Basic Period (BP) approach admits different cycles for the different
items, but restricts the cycle to be an integer multiple of a fundamental cycle or
a basic period. Moreover, this cycle should be long enough to accommodate
the production of all the items. Researchers made further assumptions
regarding the multipliers; some assumed the multipliers to be any positive

number while others restricted them to be in the order of 2.

3. The third approach is similar to the second with the additional property
that items are loaded on two BP’s simultaneously. In this case, the BP can
assume any value that is large enough to accommodate such simultaneous

loading.



2.2.4 Objective Function

Most of the researchers who dealt with the ELSP problem used the
criterion of minimizing the sum of the setup costs and holding costs for an
objective function. There are special cases, however, where the objective
function is different. For example, the criterion could be to minimize warehouse

capacity, material procurement, or maximum inventory level among others.

2.2.5 Backorders or Shortages

Backorder cost is the cost incurred when a demand occurs for a certain
product and there is not enough items in inventory in order to satisfy this
demand. As a result, two different scenarios may occur: either the customer will

be lost, or he will willingly wait (backorder) till his demand is satisfied.

Most researchers avoided dealing with backorders, by restricting the
inventory level to be greater than or equal to zero. This was a simplification

assumption since backordering would render the problem more difficult.

2.3 Notation
N total number of products to be produced

d; :demand rate in units per unit time for product

pi:production rate in units per unit time for product i



n,

- frequency of production for product i (7 = %)

9

- setup time in units of time per production lot to switch from

product i to product j. Subscript i will be deleted if the setup time

is sequence independent.

: : . d,
- ratio of demand rate to production rate of product i (o =—)

: total utilization factor (p= Zhl p <)
: production cycle for product
- the processing time per lot of producti ( 7 =pT1 )

: the total production time per lot i, this includes setup time and

processing time ( 8 = s, + 7, for the sequence independent case )

: multiplier for cycle 7/

: Common Cycle

: fundamental cycle

- setup cost of product i per production lot

- holding cost per unit of product 7/ per unit time



H,
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- the cost to produce one unit of product /

 the total cost function per unit time of product i

- the total cost function per unit time which includes setup and

holding costs of all N products ( ("= Zfl(.‘. )

2.4 Upper and Lower Bound Solution

For the case of sequence independent setup times, it is possible to

establish upper and lower bound solutions on the optimal solution.

2.4.1 Upper Bound

If we assume a cycle is long enough to include the production of each item
exactly once, a solution providing an upper bound for the objective function can
be obtained. The solution is considered an upper bound, since each product is
required to maintain a large inventory that is sufficient to satisfy the demand

during the production of other products.

common cycle CC approach.

It is clear that the total cost per unit time due to product / is given by

A T
=—+—hd(l-p).
13 (I-p)

1

G

This approach is referred to as the
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Therefore,
| 1 =N
Cz?Z,IA‘+EZ? hd(1-p) . 2.2)

Differentiating (2.2) with respect to 7, and setting the derivative equal to

zero, we get,

) 23" 4,
T = - = . (2:3)
\/lehd'(] —p')

which results in a total cost of

C = 23" Ahd(1-p,). (2.4)

The above approach can be extended by the use of Lagrange multipliers to
take into account various restrictions such as: a limit on the number of setup
hours expressed as a function of the cycle time 7i, a limit on the storage
capacity, a limit on the total average inventory, etc. However, these variations
are beyond the scope of this project. The interested reader is referred to Parsons

(1966).
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2.4.2 Lower Bound Solution

The lower bound is obtained by assuming that each product can be
manufactured independently of other products. That is, we assume that there
exist as many production facilities as the number of products. This approach is

referred to as the Independent Solution (IS) approach.

The average cost per unit time when item 7 is produced in cycles of length
T;is given by (2.1). By setting the derivative of (2.1) with respect to 7; equal to

zero, and solving for 7}, we get

2A
T = ’———— 2.5
hd(l-p) 23)

with a corresponding cost of

C=J2Ahd(1-p). (2.6)

Summing (2.6) over all i should provide a lower bound on C, which is the total

cost per unit time.

If the IS solution is a feasible solution, then it must be optimal since it acts
as a lower bound. But, because we treat products independently, there is no
guarantee that the problem of interference will be avoided, and hence no

guarantee on optimality. We note that feasibility testing of IS solutions has been
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shown to be NP-hard by Hsu (1983). While testing solution feasibility is a

difficult problem, it was found that interference is most likely to occur when:

1. The load on the facility exceeds capacity. Therefore overlap in the
schedule will appear to be necessary in order to satisfy output

requirements.

2. Initiating a production run for say product i, prior to the completion
of the preceding production run may be necessary in order to avoid a

stockout of product .

We should also mention that the IS approach provides a very useful
method to test the performance of heuristic procedures. That is, the criterion of
selecting a good heuristic algorithm could be based on its deviation from the IS

solution,

2.5 Testing the Validity of the Common Cycle approach

Unlike the Independent Solution, the Common Cycle schedule is always
feasible. The Common Cycle approach schedules only one lot of each product in
a time interval called “Rotational Cycle” or 7... This cycle repeats itself every

7T.. time units, and can be computed as follows:

T.=Max {T,T,.} 2.7)
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where 7" is as given in (2.3), and

N
i=1 T,

Tr:mt:__—N_-
I-2..p

(2.8)

Note that the concept behind using 7, is given by Maxwell (1964) and will be

discussed later.

Although the CC schedule is always feasible, it is not always optimal.
Inman and Jones (1989) have developed conditions under which the CC approach
can be used as a good approximation of the optimal cycle. We now briefly

discuss how these conditions have been developed.

Let (;sand (. denote the average total costs when IS and CC approaches

are used respectively, and let
];'IS —_ Max{ 7;" , T.Urn } (29)

where 7",' is as given in (2.5), and

T = S (2.10)
I-p
Then,
o A 7"'[.\‘ H.
Cu= X (Fhe+ 5 ). @.11)

where H =hd (1-p ), and
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Co=¥ (A+1) (2.12)

where 7. is obtained from (2.7). When 7., <7  and T*" < T , (2.11) and

(2.12) can be expressed as

Cs=Y ~\24H (2.13)

and

Co=2LL AT B | (2.14)

respectively. It is worthwhile to mention that in many real world situations the

CC schedules are nearly optimal. See Inman and Jones (1989) for more details.

2.5.1 When is the CC Schedule Optimal?

Inman and Jones (1989) have proposed the following lemma which
provides sufficient conditions for optimality when the CC approach is used. The

lemma is applicable only when the setup times are “relatively small”.

Lemma : If the following two conditions hold

A_A_ A
H H H,
2T ST

then the CC schedule is identical to the IS schedule and hence is optimal.



- E—

P S

16

Fortunately, the conditions above are frequently satisfied in industry.

2.5.2 Percentage Deviation from Optimal Solution

Given that the 4 H ratio’s for different products are almost the same, we
are interested in knowing how close is the CC solution to the optimal. To
simplify the problem, Inman and Jones examined only the case when setup times
are relatively small in order to satisfy the equalities: T,’S = T,-' and 7, = P, Let,

izl,—A—‘ fori=12,...N (2.15)

H, H,
where 0<A,< 1 and A, H, is the largest ratio among the N ratios calculated.

Since the optimum solution is not available, Inman and Jones studied how
the difference C.c—Cjs changes as a function of the A's. They have developed the
following results, which will be presented without proofs. For more details, the

interested reader is referred to the original paper.

Theorem: For the N product one machine ELSP with TS = 7 foralli; T..~ il

ComCi | [ZahH2 H (2.16)
Cis Z, |\/2” H-

Based on the above theorem, the following results can be stated, regarding

the same conditions.
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a2
CL—_C@:\/HQ:A_)__], (2.17)
Cis 24

where 4 = Min{4,}. Furthermore, for the two product scenario (2.17) reduces to

CamGs o |A+1_ (2.18)

CIS 2/1 -

If we further assume that /, H> > 1 or A;/A; <1 then (2.18) reduces to

Co —Css

15

=1+ (1)) -1, 2.19)

Moreover, for the two product case when H,H, = 1, the CC schedule is always

within 41.4% of the optimum value regardless of the value of 4.

2.5.3 Extension to the Class of Easy ELSP

Through the use of a tighter lower bound that explicitly considers machine
capacity, Gallego (1990) extended the conditions under which the rotational
schedule is optimal. He was motivated by the results given by Inman and Jones,
and he further generalized their conclusions to include the case when the machine
capacity is binding. Moreover, he demonstrated how these results can be easily

extended to the case where backorders are allowed at a linear time weighted

costs.
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Gallego introduced a new sufficient condition for the CC to be optimal.
His proposition is stated as follows:

A sufficient condition for a CC to be optimal is that the ratios — and

i

— being independent of i.

2.5.4 Conclusion

The CC schedule has been shown to be near optimal for a wide range of
realistic situations. Simple bounds were obtained that guarantee the CC solution
to be within a specific percentage of optimality. We can further improve the CC
solution through the use of Group Technology (GT), which groups various parts
and products with similar design and/or production processes in order to increase

the efficiency of production.



CHAPTER THREE

LITERATURE REVIEW FOR THE ELSP

3.1 Introduction

An operational model extensively used in the analysis of inventory
problems and production systems, assumes that the demand is constant and
known with certainty, and the machine when operating produces at a constant
and known rates as well. Note that, these assumptions are the same assumptions
used in the derivation of the classical and well known Economic Order Quantity
(EOQ), which served as a basic model for analyzing the multiproduct case by a
number of researchers like Maxwell, Goyal, Gallego, Hsu and others.

As previously indicated in Chapter 1, the approaches proposed are
categorized into two categories. First, analytical approaches, which achieve an
optimal solution for a more restricted version of the ELSP problem. Second,
heuristic approaches, which achieve a near optimal solution for the ELSP. In this
chapter, we will examine the different procedures and approaches developed,
indicate the working environment of each, and try to compare between the results
available. In addition, we mention some of the different extensions available in

literature.
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3.2 Maxwell (1964)

One of the earliest papers that analyzed the one machine, multiproduct
case, is that of Maxwell (1964). Maxwell’s article established the foundation on
which other researchers built their algorithms and results.

Maxwell started his analysis by discussing the basic Economic Order
Quantity model (EOQ) developed for a single product. He then generalized the
model by including setup times in the formulation. He indicated that the
frequency of start ups (setups), may impose time requirements which may exceed
the time available (i.e., the inventory depletion time). In any arbitrary time
period 7, the time available for setup is

t,=T(1-p). (3.1)
With no shortages allowed, the setup time required cannot exceed the time

available, t,, Hence, a lot size ¢ must satisfy the inequality

ds
qg2—> (3.2)

I-p

and so, the complete solution for the single product case takes the form

N 2Ads ds
g = Max{ . }. (3.3)
Vh(1-p) 1= p

Note, that the setup cost A, was taken as a function of the setup time. Later on,

we will see that this assumption has been dropped out by most of the researchers.
Unfortunately, ¢ is not applicable for the multiproduct case because of

the implicit assumption in the formulation of the EMQ, which states that the



21

entire time of the machine is available for the production of that single product.
This statement implies that there exists an independence relation among the N
products needed to be produced, which is not the case.

Maxwell tried to test the feasibility of the ¢ obtained by the IS. He was
faced with the problem of how to avoid scheduling conflicts. That is, can the lot
sizes obtained be sequenced with no interference? The answer in general is
negative due to the reasons previously discussed.

Using the Common Cycle (CC) approach, the N-dimensional ELSP
problem will be reduced to a I-dimensional problem. This is achieved by
modeling the lot sizes as a function of the time interval between production
cycles. Assume that this time interval is fixed for all the N products in the
rotational cycle. The total cost of production can be easily determined, as in
section 2.5, to be

-3 2 5 halop) “2_ Bz, (3.4)
q:

where, g, can be expressed as ¢; ~ ;7". Thus, (3.4) can be rewritten as

.
C=-fz!A,s,+§z;,h,d,(l—p,). (3.5)

By the use of calculus the optimal cycle can be found to be

N
T _ 3Z‘=, A,'S,'
Z;:lhidi(] _pi) ‘

(3.6)



Again as in the single product case, the 7" should be adjusted to include
the restriction imposed by product saturation, in addition to the changeover

frequency saturation. Hence, the complete solution takes the form

22,\1 A'S' Zfls'
Sihd(1-p) 1-p

T" = max{ (3.7)

The importance of this result, as previously indicated in section 2.5, lies in
the ability of the CC approach in developing feasible solutions. It should be
noted here that the setup times were assumed to be sequence independent.
However, if the setup time is sequence dependent, we must first determine the
sequence in which the products are to be produced, after which we determine the
optimal production quantities. The first part of the problem is solved as a
traveling salesman problem in order to minimize the sum of the setup times, or
the changeover cost. After determining the sequence, 7° can be easily found
from (3.7).

Producing only one lot of each product in a rotational cycle, may not lead
to optimality for the following reasons. First, the imbalance in demand rates and
production rates that lead to different individual machine utilization. Second, the
setup time and cost are sequence dependent. Third, if most of the demand arises
from a small proportion of the products, one might suspect that more frequent
production of the highly demanded products, will decrease the inventory of the
products at the expense of increasing the inventory level of the other slow

moving products. Motivated by these reasons, Maxwell was able to introduce a
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general formulation for the ELSP that included most of the possible variations

that may be encountered.

3.2.1 Problem Definition

Maxwell assumed that setup times are sequence dependent, and it need not be
true that s;~ s;. Given the demand rates, production rates, changeover matrix
and the cost coefficients, Maxwell stated the problem to be:

In what sequence should the products be produced and for what length of
time should the machine continuously produce the product, in order to minimize
the sum of inventory carrying costs and changeover costs?

This problem statement served as a guideline for most of the succeeding
works. It is the first problem definition recorded in the literature that describe the
ELSP as an integration between a sequencing problem and a lot sizing problem.

In addition to the previous notation described in section 2.4, Maxwell
adopted the following notation.

g;; - the lot size of product i when it is produced for the /" time

7; © the production time of product / when it is produced for the ;" time

I;; - the starting inventory of product / when it is produced for the " time

; - idle time after the production of product / for the /' time

¢
i(k) - product i is the X product produced in the sequence

M, : the average inventory of product i

9, - the setup time of product / when it is produced for the f" time
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x; : the number of production runs of product / in a cycle of length 7

x : the total number of runs in a cycle of length 7

3.2.2 Model Development

Using the above notation, Maxwell was able to specify an operating
discipline by i(k) and either (g;, %), (97, ¢;) or (e, 7y I;). Among these, the
triplet (e, 7 /;), was the most convenient operating discipline. The model
presented by Maxwell (1964) is given below.

The model :
. ~ A U] N
Min C :?Z‘_l&;kmk-u'kz* 1h M (3.8)

Subject to :
1. Non-negativity constraints to ensure that no backorders are permitted,
and that idle time is restricted to be positive,
l,20,ande, 20 (3.9)
2. Sufficient production quantities to ensure that all the demand is satisfied

during depletion time,
2 u=pT. (3.10)
3. Cycle time equation
> 2 (Tte )+, Swanm=T. 3.11)

The relation between successive inventory levels of the same product i can be

expressed as,
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Law=1,+(p—-d)t,—d(S +7,+E,) (3.12)
where :
S, : the sum of the changeover times between the /" production and the
(j+1)* production run of product /.
E; : the sum of idle times between the /” production and the

(j+1)" production run of product i.

s,

7, : the sum of the production times for other products between the "

and (j+1)" production run of product i.
To get the remaining expression for the average inventory level M;, we examine
the general plot of inventory which is given in Figure 3.1. Close examination of
Figure 3.1 will reveal that

M = !
2d(1-p)T

St +(p-d)n)-1] (.13)

We note that the above model, not only introduces sequence dependent
setup times, but also expresses the setup cost as a function of time. Furthermore,
the model allows for unequal production times.

Despite all the generalizations, the solution of Maxwell’s model remained
complex for several reasons. First, there exist an infinite number of possible
combinations of the triplets (¢, 7, /;), for each possible order. And if we
further assume that the order is specified, the problem of picking the best values
of the variables, subject to this order is still difficult and time consuming,

Second, the objective function is not necessarily convex in the region bounded by
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the feasibility constraints, especially for the case of a given sequence with zero
idle times. Third, the use of idle times as parameters will complicate the model

further.

-

Quantity

llf

‘_ri‘, _'I i._fa.: _.I

Figure 3.1: The Inventory on Hand

3.2.3 Maxwell’s Solution

To Facilitate the obtaining of a solution, Maxwell introduced different
assumptions in addition to a number of implicit rules, each of which generates a
new version of the ELSP problem. These assumptions in addition to the possible
deviations, served as a guideline for most of the researchers in this field.

For a particular product, given the number of times it will be produced per
cycle, the best inventory picture would be one in which all lot sizes are equal and
production takes place at equidistant points in time. The inventory plot will take
the form of a series of identical triangular shapes. Any deviation in this shape

will result in higher inventory level, consequently a higher inventory cost. But
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we should keep in mind that higher inventory cost translates to a decrease in the
number of setups required, and eventually to a reduction in the setup cost.

Maxwell suggested a number of possible deviations from the standard
triangular shape.

1. Zero Switch rule, which states that the production of a certain product
cannot start until its inventory level reaches zero. This criterion will be discussed
in the next section.

2. Equal lot sizes, this rule restrict the lot size of each product i to remain
constant throughout the planning horizon.

3. Equal usage interval, this rule sets the starting inventory levels and lot
sizes so that for any particular product, the time intervals during which the
product is not produced are of equal lengths.

4. Maximum inventory rule, this rule states that, a change in the
production from product i to product j is only possible, if and only if, the
inventory level of / reaches a prescribed level.

5. Equal production interval rule, this rule restricts the time between the

production runs for product / to be constant.
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3.2.4 The Optimality of the Zero Switch Rule

One of the most important implicit rule Maxwell introduced, was the Zero
Switch Rule (ZSR), which restricts the production of a certain item to start only
when its inventory level hits zero. Matthews (1988) examined the conditions
under which ZSR is a necessary condition for optimality given a production
capacity equal to the aggregate demand. Matthews’ work can be regarded as an
extension of the earlier work of Cook et al. (1980). Cook et al.’s approach was
based on the concept of the fundamental cycle, in which each item is
manufactured at least once during a cycle. Matthews, proved that within the
context of the fundamental cycle, the ZSR is indeed a necessary condition for
optimality, given approximately equal inventory-holding costs for all items.

To prove the optimality of ZSR, Matthews formulated the problem as a
linear programming problem. The assumptions he used are the same as before,
with the added restrictions that the process capacity is to equal the aggregate
sales rate, and back to back production runs of the same item is not allowed. As
a result, the cycle cannot start and end with the same product.

Define

P;; : the duration of the /” run of item i (P; 0 for all i,j).

S, : the daily sales rates of item / (expressed as a fraction of the daily

capacity of the process).

Yio : the time duration from the start of the cycle until commencement of

the first run of item /.



I;(1) : the inventory level of item / at time /.
Y., : the time starting from the end of the /” run of item i until either the

start of its (j+ /)" run, or the end of the cycle if Y is the last run of the

item /.
Then,
1,(0)=SY, i=1,..,N, (3.14)
and forr = /,...n.,and 7~ I,...N,
L(0)+>  B2SY.+S8> (R+Y). (3.15)

The inequality (3.14) indicates that the item inventory must be adequate to
meet demand until the first production run of the item begins, while (3.15)
indicates, that the beginning item inventory plus production through the r < #;
must satisfy the sales until the (#+ /)" run.

Matthews proved that, when optimizing the model, (3.14) and (3.15) will
be binding. Hence, item inventories will always be zero at the beginning of

production.
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3.3 Bomberger (1966)

Bomberger (1966) published an excellent description for the ELSP
problem. His ten product one machine problem became a bench mark for testing
the various proposed solutions for the ELSP. Bomberger’s model is a dynamic
formulation in which restrictions on the cycle time of each product are imposed.
It was the first time, the cycle times were restricted to be integer multiples of a
fundamental cycle @. This is the approach that is referred to nowadays as the
Basic Cycle approach (BP).

Bomberger used two assumptions to assure achieving a feasible solution.
First, 7, = n;® , where n,is an integer. Second, the sum of the times required
to setup and produce a lot of each item is less than the fundamental cycle @. The
first condition is not restrictive if considered separately from the second. Within
any degree of accuracy, cycle times can be made integer multiples of some unit
cycle. However, forcing this cycle to be long enough to include the production
and setup times of all products is definitely restrictive. This assumption can be

stated as

Si(s+pT)<w, (3.16)

where we have used the identity 7, = p 7 .
Considering the two restrictions together, we find that the largest common
divisor of 7, 75....Tyv, must satisfy (3.16). This may inflate the cycle time

unduly and cause cost to escalate. Also, machine interference will be avoided,
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and the problem will be amenable to dynamic programming formulation. Finally,
the setup times were assumed to be sequence independent. This assumption was
adopted to again facilitate the use of dynamic programming, and to ease the

search for a valid solution.

3.3.1 Dynamic Programming Formulation

For some cycle @, suppose that product i=1,2,...k-1 have already been
scheduled, and their schedule required X production time units. Let C{a@-X, @),
denote the minimum cost of producing items & to N in the remaining time (@-X).

Hence, the cost of @ can be expressed as

vrs
C((u)zzll[ff+%d,(l—p)a)], (3.17)
while the cost of product / is given by

C',(n,,(u)=;{'(;+%h(l—p,)d,n(u. (3.18)

Moreover @ must satisfy the inequality

N / -X
2. (np +%)Swm . (3.19)

Using the principle of DP, we can rewrite (3.17), (3.18) and (3.19) as

Clo-X,w)= Min{Ck(n‘. w)+C(o-T-mpw— r‘.;a))} (3.20)

H'k.

where,
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o-T-1
P

0<n <

and
Cya(w-T,w)=0,
n 1s integer .

A backward approach using trial values was used to solve this set of
equations. These trial values were chosen at any stage by interpolating
(extrapolating) between the two prior estimates of @ corresponding to the two
lowest costs found.

Given a utilization factor of 90%, the Bomberger solution was found to
offer considerable savings over Hassmann (1962). Bomberger also conjectured
that the percentage difference between the DP solution and the optimal solution

will increase exponentially as the utilization factor increases.

3.4 Analytical Methods

Most often analytical approaches produce an optimal solution for a more
restricted ELSP problem. The most trivial solutions for the ELSP problem is that
of the Independent Solution and the Common Cycle. The IS approach is rather
crude in nature, since it ignores the most elementary feasibility restriction, which
states that the total setup and processing times should not exceed the available
time. That is,

] (3.21)
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Therefore, the most elementary approach to the ELSP is to guarantee feasibility
of the problem by imposing restrictions on the cycle times. Then the best
solution is achieved by optimizing the individual cycle durations, subject to the
imposed constraints.

Three procedures were cited in the literature with this approach in mind.
First, to assume a cycle long enough to accommodate the production of each
product exactly once (the common cycle approach). Second, to admit different
cycles for the different items, but restrict each 7; to be an integer multiple of a
basic period (fundamental cycle), which is long enough to accommodate the
production of all items. Third, Similar to the second approach, but “load” the
items on two BP’s simultaneously. Doing this we can relax the condition that the
fundamental cycle is long enough to accommodate such simultaneous loading.
Elmaghraby (1978) referred to this approach as the Extended Basic Period (EBP)
approach.

Researchers were unable to obtain an optimal solution analytically using
the Basic Period approach. However, this approach was extensively used in the
development of heuristics discussed in the next section. Furthermore, since the
CC approach does not provide an optimal solution to the original ELSP problem,
in addition to the analytical complexity encountered in the BP approach,
researchers started to impose restrictions on the sequence, number of products,
etc., in an attempt to make the problem easier. A number of these restrictions

will be examined next.
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3.4.1 The Basic Period Approach
In this approach one permits varying cycle times 7; = n,e, but impose the
feasibility constraint that,
S'[s +pnolco. (3.22)
This immediately facilitates the use of a dynamic programming formulation. The

DP approach was developed by Bomberger (1966), and was discussed in section

3.3,

3.4.2 The Extended Basic Period Approach

This approach is similar to that of Bomberger, except for the method used
in loading the items. If items /,2,....k-/ have already been loaded they would
occupy @; and w; units of time in the two BP’s, @;, @, 20 and @, + @, = :0'..
This leaves a residual capacity of @,~7-w, and @,=7-w, in the two BP’s
respectively.  Let Fy(w, @, denote the minimum cost of producing items

k.k+1,...,N, when the residual capacities are @, and @,. Then

C,,(ﬂx,T)'F F;»l(a)] _O'k.(o'.‘)r
F,,(a),,(u:)=niin Ci(n,T)+ F.(o,0,-0:) ifn. even, (3.23)
Ci(n.,T)+ F.(w -0, — o) ifn odd,

where, the first expression in the right-hand side of (3.23) is used when
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(01 - S‘-
1€m £ —,
pT
the second expression is used when,
(1)3 = Sk
s &8——,
pT

and the last expression is used when

1<n <min{Z—%, il 2]
pT  pT

Cy(m, T) is given as in (3.18); m is an integer and Fy.,(**) = 0. If n; is even,
then item k can be produced in only one of the BP’s, so we have the choice

where to load it. However, if n; is odd, then it must be loaded in both BP’s.

3.4.3 Linear Programming Formulation

Hodgson and Nuttle (1986) where able to model the ELSP problem using
linear programming. They focused there attention on determining the run lengths
for the N products given a known sequence. Furthermore, they were able to relax
the two commonly used assumptions stating that, each product is to be produced
on a regular invariant cycle, and that the inventory level at the outset of each
production run is zero.

Hodgson and Nuttle proved that if all runs for a given product are equal,
while production may start before inventory is exhausted, then the optimal cycle

and run lengths may be determined using linear programming methods.



Furthermore, if a sequence generating procedure was used in conjunction with
the above result, an optimal solution for this version of the ELSP is easily found.
The model described corresponds to that of Maxwell (1964), where equal
production runs are used and idle time between the production runs is permitted.
Let, X;:denote the product run start time 0 <X;<7, j=1,2....L,

a; : denote the number of production runs of product / per cycle ,

i; - denote the product to be processed during run j, j=1,2,...,L

J - denote the given sequence { is....i....irk i € {1,2,....N},
L:d ! ber of i itions (L=
, - denote the number of sequencing positions (L = 21 a ),

¢; - denote the idle time following production run j.
For a given sequence J, all production runs for product / are required to yield
d,T/a, units. This implies a run length of d.7'/p,c, time units.

The objective function can be expressed as minimizing the total cost
(which consist of setup costs and inventory costs), subject to, meeting all demand
constraints. The relation between start times, idle times and cycle length is

expressed as,

1. . :
X, +80 ve+s,=X. j=12,.,L-1, (3.24)
;)"a:.
and
, T
p" afr,

where X; = 85 .
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Let Z; be the index of the next production run of product i; after production
J, and /; the inventory level of j; at the beginning of run j. Then, forj=1,2,...,L,

d,T
a

I +25 —d (X, -X,)=1, (3.26)

L]

Since no backorders are allowed, /; should be greater than or equal to zero (/;2 0).
If the /;’s are allowed to be positive, this implies that production of a product may
begin before the current supply is exhausted. Also, if the /;'s are restricted to be
zero, this will imply the use of the zero switch rule.

Since the production schedule is repeated every 7' time units, the increase

in carrying cost for product / per unit time may be calculated as
hy, Zal[[, / a'f]. Note that this increase is linearly dependent on the minimum

inventory levels. Therefore, the total cost function can be expressed as,

Z'\_I O’TA, Mm{h[ L C,(l _p‘)g+ il CI,]J

1 1

(3.27)

The LP problem then, is to minimize (3.27), subject to the constraints (3.24),
(3.25), (3.26) and the non-negativity constraints.

From an implementation point of view, the following should be noted.
First, the production quantities associated with the optimal value of 7" may be
impractical and a need for rounding or specifying a workable number of days
may be required. Second, the problem is solved only if the sequence of

production is predetermined.
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3.5 Heuristic Procedures

Given the difficulty of the ELSP problem, it is only natural that a large
number of heuristic procedures will be developed. While many heuristics yield
near optimal solutions, the common drawback in these procedures is that they
lack a systematic way for testing the feasibility of the solutions they provide. In
addition, they do not usually provide a direction to move from an infeasible
solution to a feasible one.

In this section we will examine some of the heuristic procedure developed.
A number of these heuristics, due to their importance, will be examined in full

detail, while others will only be briefly summarized.

3.5.1 Madigan (1968)

Madigan’s procedure would first compute the optimal production
quantities using the IS approach. He then uses the CC solution to determine the
common cycle, and to evaluate the corresponding individual item costs C;. Then
using ;" of the 1S, Madigan selects the product for which the difference
C, =, 2 0 is “rather significant.” Modification for these lot sizes is performed
in integer multiples or integer fractions, in an attempt to bring cost “more in line”
with its optimal value (", A check on feasibility is made at each selection of
multipliers. If the multipliers are infeasible, they are modified until feasibility is

achieved. Given a set of multipliers {»;}, the corresponding BP can be found to

be
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" L . 3.28
10) S hdn(l-p) (3.28)

Madigan’s procedure suffers from several drawbacks. First, there is no
guide to the selection of the items whose cycles are to be modified, and the lack
of a systematic way for modifying them. Second, no guide was given to the
amount of change of multipliers in each iteration. Third, the objective function
used by Madigan is only applicable under the assumption of having cyclic
production. Finally, modification is only performed on the multipliers, while the
basic period (found using the CC approach), remains constant throughout the

procedure.

3.5.2 Stankard and Gupta (1969)

Stankard and Gupta (1969) divided the set of products in groups
G,G(,...,G" in which (5 has cycle time 7, and the rest of the groups have cycle
time n7. Then they checked for the feasibility of the proposed grouping. The
importance of Stankard and Gupta’s work lies in demonstrating the restriction of
Bomberger’s condition on the BP, i.e., that the sum of the times required to setup
and produce a lot of each item is less than the BP. However, the heuristic
proposed was criticized by a lot of researchers due to the restriction on the
multipliers, which are either specified in group / or 2. Second, the grouping

technique used is arbitrary, so a numerous amount of grouping exists.
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3.5.3 Doll and Whybark (1973)

Doll and Whybark (1973) made use of an iterative procedure that
determines the individual multiplier together with the BP. Thus eliminating the
restriction imposed on the multipliers by Stankard and Gupta (1973). Their
procedure consists of five steps.

Step 1: Determine the IS cycle 7, and set @ = Min {7,}

Step 2: For all i, find E , rounding the quotient up to yield »;” and

down to yield n; .
Step 3: Evaluate the corresponding cost associated with n; and n;, and
set n; equal to the multiplier that yields the minimum cost, using

C(n)=i+%hd.(]—p,)

nw

Step 4: Using the set of multipliers found in step 3, compute

>

= : ' .
>, hd (1=p)n

Step 5: With the new set ( @:n),n,,...,ny) return to step 2. Stop when the

set is repeated.

Note, that the equation used in step 4 is the same used by Madigan (1968).

The procedure was considered as a distinct improvement over Stankard and
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Gupta (1969), since it eliminated the restriction imposed on the multipliers. Yet,
this heuristic has two serious drawbacks. First, if one decided, rightly or
wrongly, on @ and the set of multipliers to be infeasible, the procedure does not
give a guide for escaping from infeasibility. Second, if one succeeded in
escaping from infeasibility, the author’s procedure may lead to oscillatory

behavior where convergence is never achieved.

3.5.4 Goyal (1975)

Goyal (1975) was able to develop a new approach based on the results by
Maxwell (1964) and Bomberger (1968). Goyal reported that an optimal schedule
is possible without altering the optimal manufacturing frequencies, or cycle times
for individual products. This is only achieved under the following conditions: (1)
low machine utilization (<25%), (2) optimal frequencies for individual products
that do not cause interference and, (3) the total production time is free of overlap
(i.e., no part of the production time of a product overlaps with any part of the
production time of the other products). Unfortunately, in practice such
conditions are rarely met. Furthermore, the complexity of the problem increases
if machine utilization is high (>70%), and if the ratio of optimal frequency of one
product to another is not an integer or inverse of an integer.

Goyal examined the complicating factors and found out that in the first
scenario, the complexity increases by the decrease of available time for

conducting desirable changes. While for the second case, it was noted that the
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chance of interference greatly increases if there are some products manufactured
4 times and 6 times in a cycle , 8 and 9 times in a cycle and so on. To overcome
this problem, Goyal imposed a restriction that a product can be manufactured 2
times in a cycle where k = 0,1,2,3,..., or k = -1, -2, -3,... . This assumption was
also used by Bomberger (1968) and Maxwell (1964). This assumption simplified
the problem of obtaining a feasible schedule and the method is very likely to
yield the optimal schedule when, (1) machine utilization is high (> 80%), (2)
number of products is more than eight, and (3) the ratio between maximum and
minimum value of the optimal manufacturing frequency is less than eight.

In addition to the assumptions stated in Chapter Two, Goyal assumed that
each product can be produced in every manufacturing cycle, twice, four times,
eight times, and so on, or once in every two, four, eight,... , manufacturing cycles
depending on the its holding costs. Furthermore, he assumed that setup costs are
sequence independent.

Let & denote the holding cost per year per unit of investment in stock.
Hence, if we have m equally spaced manufacturing cycles per year, then the total

variable cost per year for the /" product will be

C(mk )=sm2" +thdc(1-p)

- (3.29)

m?2
Goyal verified that the above function is convex in k;, so a local minimum exists

at say k, = k,(m) provided that,

C(mk,(m))<Min{C (mk(m)+1),C(mk(m)-1)}. (3.30)
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We can reduce (3.30) to

Q3Hm)-] <&:_ el (3.31)
n
where
RZ — hC,dn .(]_.—p‘) .

28

Hence, using this result (3.29) can be expressed as,

C(m)=my, A2""+ ZLZ,V11“'d' (1-p )25, (3.32)
’ m

Differentiating (3.32) with respect to m, and equating the answer to zero we

obtain the minimum value of m, say m, where,

%Z,\"dllt(l"’p;)z-“%)
m, = . (3.33)

N kime )
Zl =1 A‘ 2

Unfortunately, m, cannot be determined unless k;(m,) is known for each

product, which in turn cannot be determined unless m, is known. To overcome

this obstacle, Goyal developed a procedure for determining m,,.

Notes on Goyal's method:
* Unlike the method proposed by Maxwell (1964), Bomberger (1968), and

others, Goyal assumed that setup times are sequence independent.
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* Goyal did not take into account the initial on hand inventory, and as noted
by Elmaghraby (1978), the initial conditions are of great importance in analyzing
a system of m periods.

" Schweitzer and Silver (1983) have indicated that no restriction was
imposed on 7' to prevent it from becoming too small. Such a constraint arises in

real problems due to the presence of setup times.

The above comments demonstrate the importance of a good and clear
definition in constructing and stating the constraints, which translate into a well-
posed statements of the mathematical problem involved. Goyal’s procedure may
be criticized from at least three points. As before, there is no systematic way to
escape from infeasibility, and the procedure may “cycle” under a given heuristic.
Also, we may end up with different answers if we start with a trial value of @

instead of a set of multipliers.

Effect of using the Powers-of-Two

Maxwell and Singh (1983) tried to examine how well the commonly used
power-of-two, introduced by Goyal (1975), perform. They, showed that from an
economical view point, this restricted the solution space to be very close to an
optimal solution in a certain sense.

In their model, both the batch size for each product, and the time interval

between the start of successive batches were limited to a single value.
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Consequently, the inventory plot will be in the form of a sawtooth. The cost can

be expressed in terms of 7; as,

C(Z‘)z%ﬁhd,(l—p.)l". (3.34)

As discussed in Chapter Two, a least cost (lower bound) is obtained by choosing
optimal values of 7;" for each product using,

T = __24 . (3.35)
hd(1-p)

We can relate the cost incurred if 7;" is used to the optimal cost by,

cr)_11-, T
C _7(T T)

(3.36)
Unfortunately, using 7 is not always possible. Some experiments revealed the
existence of an empirical pattern of the form 7,=m@. This pattern was
extensively used by many authors, as a necessary condition in the scheduling
problem.

Goyal (1975), Elmaghraby (1978) and Haessler (1979) among others, have
proposed that the minimum used cycle time is some value @, the maximum used
cycle time is some value 2", and the other cycle times used are always 2*w, for

k=1,2,... . Maxwell and Singh (1983), proved that the results obtained by using

the powers-of-two, correspond to an increase of 6.1% relative to the lower

bound.
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Maxwell and Singh also proposed an easy way to measure the cycle times
for the N products needed to be manufactured, through the use of a
predetermined set of the form @, wk’, @k’,... , justified from a cost point of view.
Using this set they eliminated the need for precise values of demand rates,
production rates, setup costs, etc. Also, the product classification scheme is easy

to understand.

3.5.5 Elmaghraby (1978)

Elmaghraby reviewed most of the articles published prior to 1978. He
found out, that the analytical and heuristic approaches proposed for the ELSP
clearly underscores the nub of the ELSP, which is the question of feasibility and
all its ramifications. Elmaghraby’s contributions can be summarized by, first,
introducing a test procedure which identifies the solution to be either feasible or
infeasible. Second, develop an approach for escaping from infeasibility once
infeasibility is encountered.

The test procedure proposed takes the form of integer programming, in
which a set of multipliers n,n,,...,ny is tested to see whether it satisfies the
developed feasibility equation or not. The approach proposed for escaping from
infeasibility is akin to Doll and Whybark (1973), but avoids the pitfalls of cycling
and vagueness in the manipulation of the multipliers, that plague the other

heuristic procedures previously discussed.
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3.5.6 Park and Yun (1984)

Park and Yun developed a new heuristic approach to test the feasibility of
the solution obtained. The heuristic relaxes the sufficient feasibility constraints
used in the earlier heuristic, by considering all the basic periods in the total cycle
simultaneously.

Park and Yun used a stepwise partial enumeration algorithm. This
algorithm determines the repeatable total cycle time and the frequency (number
of setups of each product in a total cycle time), instead of determining the basic
period and multipliers. In addition to the assumption stated in Chapter Two, Park
and Yun added a new restriction on the quantities produced to be equal, and
considering only repeatable schedules.

The total cost per unit time when each product is produced in cycles of
length 7; is given by summing (3.34) over all N. The lower bound is then found
as in section 2.5. Unfortunately, it is not always possible to produce each
product according to its optimal frequency due to machine interference. To keep
the schedule simple, we define a total cycle 7" and modify the product cycles to

be integer fractions (1/7,) of the total cycle 7, and

T ==, (3.37)

The problem is then reduced to finding the values of 7"and #; such that the cost is

minimized. To do so, let /. denote the least common multiple of the set {7;}, and
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let the basic period @ = T/L. Next, we can express each cycle in terms of the

basic period as,

I'=nw, (3.38)
where
n = l : (3.39)
n

The cyclical pattern of production over a repeating total cycle can be
determined by finding the first production period of each product. Note that the
first period 1, must not be later than n,, since each product must recur exactly 7,
times during the total cycle.

The test for feasibility of a given set of scheduling parameters (7,n)
requires that the scheduling scheme attempt to equalize the load of each basic
period, consequently, minimizing the peak load. In order to ensure a feasible
schedule, Park and Yun relied on the theorem that addressed the necessary and
sufficient condition for feasibility by,

w=Y" L, (3.40)
where k denotes the number of partitions made for the product set, L; denotes
the minimum peak load of the subset & made for the product set, given that only
the products belonging to that subset are scheduled independently of the other
product subsets.

Calculating 1, is difficult, and so, Park and Yun introduced a search

procedure that generates [, . The test they suggested, is much closer to the
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original problem than any other analytical approach. This stems from the fact
that no restrictions were imposed on the multipliers, and that all the basic periods
in the total cycle were considered simultaneously, instead of considering only
two consecutive periods at a time.

Park and Yun proposed an enumeration procedure that generates a
workable schedule for the N products needed to be produced. In every iteration
step three types of schedule parameter sets were generated, starting from the local
schedule parameter set [7,n 7(n)] obtained in the previous step. The procedure
can be summarized as follows:

Step 1 : Determine 7, for each product using,

re |24
hd (1-p )

Start schedule parameter set [7°, n(7°)], with the CC solution.
Setk =1,
Step 2 . Change schedule parameters set to [27%7, 25(T*)] (this is the
upper bound schedule parameter set of this solution).
Step 3 : Determine lower bound schedule parameter set [27"", r]'(T“)]
using the following:
i. for each product divide 27*/ by 7;".
ii. round the quantity down to yield the integer [7;] and
up to yield [ 7] +1.

iii. determine which multiplier yields the least cost.
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Step 4 : Enumerate 1 within the two bounds [ (27T%"), n(T*")]
in order to generate new sets of schedule parameters. For each of
the schedule parameters, determine the local minimum schedule

parameter set. This is accomplished by the use of

c =\/2(}:,“__} ATl )X hd (1 —p.)#).

Compute the local optimal total cycle time minimizing

v A d(1-p)T
C(T.n(r))=2.__.[nr+h (2 np L]

then, calculate e using

[ 25 an
> hd(1-p)/nf

Check for the feasibility of the parameters obtained.
Step 5 : Evaluate (*. If (*'=(* < ¢ ; &> 0, terminate the

iteration; otherwise, set k=k+ / and go to step 2.

3.5.7 Singh and Foster (1987)

One major disadvantage which most ELSP heuristics suffer from, is that
the cycle generating procedure is performed separately and without considering
the management planning horizon. Singh and Foster (1987) developed a heuristic
with two important features. First, the user is allowed to specify a planning

horizon and has the guarantee that the schedule will repeat after the end of that
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horizon. Second, the heuristic will always achieve a feasible solution, given that
the solution exists, regardless of the utilization factor.

Several tests were used to validate the heuristic. It was found that the
solution obtained will not vary more than 5% from the best value found by Fujita
(1978) and Haessler (1979). Moreover, this procedure has the advantage that
when there is “ample” production capacity, the solution will tend to have equal
lot sizes, and as the capacity decreases, the procedure will move away from
symmetrical solutions in order to reach feasibility.

The problem Singh and Foster solved, was to determine a schedule for the
N products which minimizes the sum of the inventory costs and setup cost, given
that the schedule is repeated after H periods. Singh and Foster ignored initial
inventories and backorders, because the model was mainly used for planning
purposes. Furthermore, the solution was regarded feasible, as long as the total
setup and production time required does not exceed the available time on the
machine.

The setup times and costs were assumed to be sequence dependent.
However, this assumption did not affect the feasibility of the solution due to three
major reasons. First, the setup times consist of less than 10% of the total
machine time, and usually machines are scheduled for a utilization factor not
exceeding 90%. Second, the sequence dependent component of a product’s setup

is small enough to be neglected. Finally, there are significant amounts of time
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allocated for each machine (about 5%) for testing and experimental purposes.

So, any small deviations in setup times can be adjusted within these limits.

The heuristic developed breaks the problem into three different stages as

follows:

Stage 1: Computes the number of setups required for each product.

1.

Ii.

Using the common EOQ, compute the minimum inventory and
setup costs.

Compute the minimum changeover cost for each product .

iii. Using the traveling salesman problem (TSP), determine the

Stage 2 .

Stage 3 :

production sequence in which the N products are to be
scheduled.

The heuristic iterates between the EOQ and the TSP until it
converges. Convergence is obtained if EOQ setup costs and TSP
average setup costs become approximately the same or the
number of iterations reaches a user defined maximum.

Allocates the setups by forming partial sequences, which is
similar to Haessler’s (1979) method. These partial sequences

are then recorded to decrease change over costs.

Adjusts the run length of the setup so that production runs

only start when the inventory of each product reaches exactly
zero. Similar to the Zero Switch Rule (ZSR) developed by

Maxwell (1964).
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The heuristic is structured so that a feasible solution is always obtained, if
there is enough production capacity to setup and run every product at least once
in the horizon. This procedure was found to work well in practical situations,
and provides a feasible solution if one exists. Yet, the solution is not necessarily

optimal.

3.5.8 Larraneta and Onieva (1988)

Based on the results obtained by Goyal (1975), Bomberger (1968) and
Maxwell (1964), Larraneta and Onieva (1988) were able to develop a new
heuristic rule to solve the ELSP. The assumptions adopted were essentially
similar to Goyal’s (1975).

The policy used regarding the fundamental period, is the same one used in
Bomberger (1968). So the cycle time was restricted to be an integer multiple of
some basic cycle, i.e.,7'=n®. Moreover, the heuristic rule developed relies

heavily on the concept of economic time 77, where

TE, = ﬁ, (3.41)
hn,

is calculated for each item.
Unlike the way Goyal expressed the total cost, Larraneta and Onieva
expressed it per unit time of a single policy of the fundamental period @ and

multipliers »,, so,
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C((u.n,)z(luzl'\'l%+%thj,n,hd, : (3.42)

The values of n; used, are identical to the ones obtained by Goyal (1975) and
Doll and Whybark (1973). The multipliers n; were selected so that the interval

n;@ between two successive orders for item 7 is close to its economic 7E;. That is

n,(n,—l)shiA':Sn,(n,+]), (3.43)

(0

and hence,

(3.44)

Note that, the multipliers »; are chosen to be the closest integers to the
fraction values, that represent the relation between the economic time TE; of the

item and the fundamental period . Feasibility conditions are expressed as,

> p <l (3.45)

and

]=<t. (3.46)

Z.\' [S, + /),7,‘

A

The second condition is not sufficient since the setup times are not divisible.
Elmaghraby (1978) and Hsu (1983) indicated that there is no analytical
expression that provides a necessary and sufficient condition for feasibility.

Bomberger (1968), expressed this condition as discussed earlier in section 3.3 as
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S (s +npo)<o, (3.47)

indicating that the fundamental cycle is long enough to include the production of

all the N items. The overall problem is then stated as

| N A. (i

v
Min —3" 24925 nhd
n L3 ALOS

st Y (s+npw)<w
n=l,
n; is integer.
Relaxing the integrality constraints, and by the use of Kuhn-Tucker
conditions, the following observations are evident. First, the feasibility
constraints hold, if there exists a fundamental cycle @, smaller than the shortest

of the economic times 77, and the items are manufactured according to their

natural production lots, hence,

n= (3.48)

@
Second, for @ 71, the solution becomes complex. Third, we can distinguish
two cases: (1) n; - / indicating that product 7 is replenished in intervals n,0<TE,,
and (2) n;= 1 indicating that the products belonging to this set may depend on the

values of p,.
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In order to guarantee feasibility, the procedure proposed is based on the
idea of identifying the smaller group of items manufactured every fundamental

cycle,

T (m)= (3.49)

where n; =1 for i=1,...m, and n; = '['E,—*T.(m) fori=m+1,...N.

The first m items, whose multipliers are fixed to be one, are manufactured
every cycle and define the fundamental period 7°(m). While the rest are
manufactured in their natural production lots found using the IS approach. The
sequence is then solved for increasing m until 7°(m) satisfies the feasibility
restriction. The aim is to select the smallest subgroup of items to be included in
every manufacturing order, so that the resulting fundamental period 7' is feasible.

Several notes can be stated regarding the results obtained. First, the
solution is similar to that obtained by Bomberger (1968). Second, the solution
seems sound, since it satisfies some reasonable properties. Third, as TE;
decreases, item i will be manufactured more often. Finally, the fundamental
period is approximately equal the economic time of the subgroup of items

manufactured every time period.
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3.5.9 Geng and Vickson (1988a)

Geng and Vickson (1988a) presented two heuristics which guarantee a
feasible schedule given that the problem itself is feasible. Both algorithms use
the same intuitive procedures in the search for a feasible schedule. Whenever the
procedures fail in finding a feasible schedule, both of the approaches adjust the
values of @ and »; according to the same rules. However, the main difference
between the two algorithms lies in the use of two different initial starting values
of @ and n,, which consequently implies achieving different sets of answers.

The first algorithm is the ELSPHU which was developed by Geng, and the
second algorithm is the ELSPDW, which was developed by Vickson. Note that
the, ELSPDW is a modified version of Doll and Whybark (1973) algorithm.

Both the ELSPHU and the ELSPDW make use of the upper (UB) and
lower (LB) bounds discussed in Chapter Two, in forming a new performance
index &,

_HU- LB

&= UB—- LB’

(3.50)

where HU/ is the average cost obtained using the heuristic procedure. This
measure yields more insight into the performance of the heuristic, than does the

more common measure,

HU - LB
e=—,

3.51
1B (3.51)
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The reason behind this is that £ is invariant under rescaling of the input data,
while ¢ is not. Also, & pinpoints and measures the performance compared to the
two bounds (/B and LB, while ¢ measures it with respect to only the lower bound
(LB).
The ELSPHU Algorithm
The algorithm is composed of seven steps (with some steps repeated). At
each step the algorithm alters the values of @ and »; to the smallest extent
necessary, while moving toward feasibility. The multiplier »; is restricted to
powers of 2. This will: (1) guarantee that the new cost will not deviate from the
LB by more than 6% (see Goyal (1975)), and (2) increase the likelihood of
obtaining a feasible schedule when all multipliers are even.
Step 1 : Determination of the initial multipliers.
i. Find Min{7;"} by solving the IS problem
ii. Adjust »,” to be integer-valued powers of two,
1. for each / find j such that 2’ < n <2/
2182 = > n =27, letn=2, else n=2"""
Step 2 - Determine the number of BP’s in a complete cycle.

G = Max {n, }is the number of BP’s in a complete cycle. If

(=1 go to step 6.

Step 3 : Find the best BP by solving,

X
w=,—,
Y



where,
v A
X = —,
b
and
Y=>" pn .

Step 4: Form a production sequence. The main idea in the procedure is
to assign a product to a period such that the time currently
assigned to this period is minimal.

Step 5: Check the feasibility of w and {n,}.

Step 6 : Compute the optimal CC solution, compute 7" using,
" =Max{.,3Y" ——}
= Max /., 2, L

Step 7 : Compute the average cost of BP solution using,

X
C=—+Yw.
@

ELSPDW Algorithm :

The heuristic outlined by Doll and Whybark (1973) is an iterative
procedure. It starts with the same @ and », as in the ELSPHU, and then iterates
back and forth between new values of @ and {#,}, until no further improvement
can be found. However, due to the iterative nature of the procedure, different
starting values of @ and {n;} can lead to different final values as indicated by

Elmaghraby (1978). The contribution of Geng and Vickson lied in adding the
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calculation of the total cost before and after each iteration, in an attempt to

prevent possible cycling,

3.5.10 Dobson (1987)

In an attempt to convert every production sequence obtained into a
feasible schedule and to obtain a more uniform utilization of the factory, Dobson
(1987) introduced a new formulation for the ELSP. The model Dobson
developed, provides feasible schedules by allowing the lot sizes as well as the
cycle times of each product to vary over time, taking into account setup times.

Dobson’s approach is quite different than most of the ones previously
described. First, the idea of a basic period was not used. Second, he allowed lot
sizes to vary over the cycle. Third, Dobson succeeded in handling the difficulties
caused by accounting for setup times. The approach is similar to that of Maxwell
(1964) and to Delporte and Thomas (1977), in the sense of handling setup costs.
The solution obtained is sensible in the short run.

The model Dobson developed can be viewed as deciding on a cycle 7, and
a production sequence f},f5...f, , (m denotes the number of production runs of all
N products in a cycle). The production sequence is established in the chosen
cycle length, the cycle can be repeated indefinitely, demand is met, and inventory
and setup costs per unit time are minimized.

Dobson used the superscript to refer to the data related to the part

produced at the j” position in the sequence, e.g., p’. d’, h’, A”, s/, Let ®be the
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set of all possible finite sequence of parts, #” is the idle time for position j and 7/

is the production time of the ;" position. Then the number of parts produced is

pr’, all of which are demanded in the time interval [o,v]. Hence,v = p’7’'/d".

Therefore, the highest inventory level is (p’ —d’ )7, and the total inventory cost
for the production of part f is

C'=ih'(p' -d’ )p (7). (3.52)

Let .J; be the positions in a given sequence where part i is produced, and

Ly be the position in a given sequence from k (where f; is produced), up to but not

including the position in the sequence where part f; 1s produced again. Then the

overall model can be written as,

] 2 .
inf Min {$(Z”%h"(p’—d’)p’(f) +37 A7), (3.53)

T o

st. Y. pr=dT i=1,..,N, (3.54)
S(r+s+u')=r'7 k=1,.,m, (3.55)
Do (T+s+u)=T . (3.56)

The interpretation of the constraints are as follows. Constraint (3.54) means that
enough time for each product / is allocated to meet its demand d;7" over the cycle.
Constraint (3.55) means that enough stock of product i must be produced each
time in order to last until the next period of production. Moreover, the

assumption that inventory is zero at the beginning is still enforced. It is clear that
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the above formulation contains two stages. In the first stage the sequence f is
determined, while in the second stage, we determine the production time and idle
time.

Dobson stated the feasibility constraint used was stated in the form of a
theorem.
Theorem: Let [ be a given sequence, fix the idle time u 2 0. Then

there exists a feasible set of production times t if and only if

Z\Ip <].

The heuristic proposed by Dobson consisted of two major steps. First,
adjusting the frequencies of production of the products in order to be spaced
symmetrically. Second, use the new frequencies obtained to produce an actual
sequence.

Dobson’s contribution lies in the ability of solving problems with setup
costs equal to zero. The usual heuristics are either not applicable under this
condition, or they have extreme difficulty in finding feasible solutions. However,
Dobson’s heuristic failed in solving the eternality problem that large batches
impose on others. Eternality is defined as imposing a constraint that other parts
must be produced in large quantities in order to build a sufficient inventory

during the production of the troublesome part.
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3.6 Extensions

Several extensions for the ELSP problem were cited. These extensions
were used either to generalize the common ELSP, such as assuming the setup
times are sequence dependent, or to include a new variation in the problem, such
as warehouse capacity. In this section, some of the major extensions will be

discussed.

3.6.1 The Finite Planning Horizon

Elmaghraby (1968), presented two models whose formulation springs
from the cardinal assumption that the length of the planning horizon is finite. He
also addressed the importance of the initial state (initial inventory level), which
was neglected by most of the researchers prior to 1968.

The importance of the inventory level is prevailed by considering two
cases. Case one, if no inventory is available for any item at the beginning of the
planning horizon, then no matter what is done some items will be short for a
period of time. So, the condition of satisfying all future demand is violated at the
start of the problem. Case two, if an appropriate level of inventory for each item
is guaranteed at the start of the planning horizon, then the cost of such a state
should be taken into account, else the cost of any solution does not reflect the
real optimal cost. Some investigators neglected the initial condition, or they

assumed that its effect will disappear. However, this is incorrect, since unlike
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stochastic systems, deterministic systems are heavily influenced by the initial
conditions, whose effect never dies out.

According to Elmaghraby, limiting the horizon to a finite length is more
practical and may actually be better if it leads to answering our objective. That
is, to determine an optimal workable sequence for scheduling the N products on
one machine. Elmaghraby (1968), presented two different types of approaches,
which modeled the ELSP under the assumption of finite planning horizon. These
approaches are, the Linear Programming modeling technique and the Dynamic

Programming technique.

Linear Programming

The linear programming model was used to satisfy two objectives. First, it
is always helpful to construct a formal model of the problem on hand. Second,
integer LP’s where at that time under intensive research, consequently, increasing
the possibility of obtaining a solution. The model can be viewed as, minimizing
the sum of the setup and holding costs, subject to non-negativity and non-
interference constraints.

Needless to say that at that time, the LP formulation is by no means
modest in size. For example, given 5 different products, a planning horizon of 20
time periods, and that no more than 7 lots of each product is produced, the

resulting LP model has around 5630 constraints. However, with the advances
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made in linear programming since then, it is now much easier to solve such

problems.

A Dynamic Programming Model

Elmaghraby modeled the ELSP using the DP approach. He assumed that
each product will be produced at most once. Furthermore, he introduced a
fictitious product ( N+/ ) which denotes the do nothing for one time unit. So, if

N-+1 1s not produced at all, the time horizon of length H (H =Z:!5, ) permits

the production of one lot of each product. This can be thought of as introducing
a delay in the cycle, which decreases the levels of inventory needed. This
concept was also used by Maxwell (1964). Using this concept, the problem is
similar to that, of sequencing N jobs on a single facility, treated by Elmaghraby
(1968Db).

Consider product i with initial inventory /,,, and suppose that its first
appearance in the sequence occurred at position k. Then the elapsed time E, can

be expressed as
E= Z": 5, . (3.57)

The continuous demand causes the inventory at time 1 = Ej; + s, given a
demand rate of d,, to be /;; - d;, (which is unrestricted in sign). The costs up to
time 7 can be thought of as storage cost, a penalty cost for backordering if any, in

addition to setup cost. We denote these costs as y,. Considering the time span,
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between fand 7 + 7;, we encounter two types of costs, the cost of production, and
the cost of holding the products in inventory. We will denote these costs by ..
By definition, a sequence has i produced only once, the interval between 1 + 7
and H witness the depletion of inventory at the rate of d, with unrestricted
inventory levels. Two types of costs are encountered, the inventory carrying cost
and backordering cost. These costs are denoted by ;. Let j denote the product
in position /, and N’is the number of sequencing position, where N’ > N due to
the insertion of N+/ in several locations of the planning horizon. Then the

overall model can be viewed as,

Min 3' C,, (3.58)
s.t. >.,.& SH, (3.59)
where
Ciir = Z:, Vis
and

o, if product i is in position

501 =10 otherwise

The above formulation is almost a knapsack problem, except that the cost
(; is dependent on all other products in sequence [/] through [j-7].
Unfortunately, due to the computational complexity inherent in the two models

presented, an optimal solution could not be reached.
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3.6.2 Effect of Reducing Production Rates

Management may be interested in reducing the production rates in order to
avoid the rapid accumulation of inventories, i.e., to reduce the holding cost or the
warehouse capacity needed at peak production times. Moreover, if we allow
production rates to be reduced from the current or nominal production rates, a
better solution can be obtained.

Several researchers have studied this procedure. Their work can be
divided into two different categories. Category 1 (flexible case), allows the
production rate to be changed within the production run. Category II (rigid case),
fixes the production rate during the run, but the production rate is adjusted at the
start of the run and remains constant throughout the run.

The flexible case holds when setups are only incurred when switching
from one item to another, but not after idling and resuming the production of the
same item. On the other hand, the rigid case arises in situations where the
materials handling system feeds the raw materials at rates that can be adjusted

only at the beginning of the run, but not during the production run itself.

Sheldon (1987 )

Sheldon studied the problem of inserting arbitrary idle times to reduce the
effective production rate in facilities where setups are time consuming. He
considered the flexible case and suggested an idle time insertion strategy, that

divides the production runs into two parts. The first part consists of inserting idle
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time uniformly to produce at the demand rate, then resuming at the nominal rate

with no further idle time insertion.

Silver (1990 )

Silver studied the rigid case by imposing a Common Cycle interval for all
items. He showed that at most one item should have its production rate reduced.
Silver obtained a closed form solution for the optimal cycle length in addition to

the optimal production rates

Inman and Jones ( 1989 )

Inman and Jones were motivated by an actual industrial problem where the
flexible case applies. Drawing upon Silver’s (1990) results for the rigid case,
Inman and Jones determined new production rates by solving a non-linear
program. The resulting schedule was not based on the CC approach, but instead
items have their production rates determined by inserting idle times uniformly

throughout the production run.

Moon, Gallego and Simchilevi ( 1991 )
Moon et al. (1991) studied the flexible case. The CC approach was used
to ensure a flexible solution. The problem discussed is a generalized form of

Silver’s (1990) problem. Their approach can be viewed as follows:
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1. Redefine the units A, d, p; such that demand rates are 1, (this procedure

will ease manipulation).

| o 1| d
d=2%; p=P: pB=hd; p= — =2 .
d, p P

2. Define, k =1 —¢e’p, where ¢ denotes a vector of ones.

Then, using the results from Dobson (1987), the authors were able to
develop three different propositions which facilitated the search for the solution.
But before discussing these propositions, it is of great importance to examine the
assumptions used.

First, a cycle is made through the entire family every 7" years. Second,
production rates can be adjusted at the beginning of the production run and

during the production run. Third,

v hi(1=p)
h < ZFIT . (3.60)

the last assumption was used in the proof of the existence of a global minimum.
Proposition 1 : The optimal schedule that allows the production rates to be
changed during the production runs (schedule 1) has costs at most as high as the
optimal schedule that allows the reduction only at the beginning of the
production run (schedule 2).
Referring to Figure 3.2 and by the use of proposition 1, we can formulate

the problem as follows:
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X, L Time
———  ——g¢
-, ———»
Figure 3.2: Time Varying Production
| _ 2
Min ?ZII(A,+HI,/)(T—-.X,)), (3.61)
N S N OX,
St Z,,;+Z,._.%,—Sk- (3.62)

Proposition 2 : The optimal solution of (3.61) satisfies (3.62) as an equality,
Proposition 3 : The objective function of (3.61) is strictly convex in (x,T).

Even though proposition 3 applies, a finite solution may not be attained.
Furthermore, Moon et al. proved the existence of a unique global minimum for
the objective function. An algorithm was established for solving the above
model, in addition to an extension that allows backorders to be included in the

formulation.
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Moon (1991)

Moon, used the CC approach in analyzing the flexible case. He proved
that the insertion strategy suggested by Sheldon (1987) is optimal, and reported
savings almost twice as large relative to the strategy that inserts idle times

uniformly throughout the production runs.

Gallego (1993)

Gallego studied both the flexible and rigid cases. He provided an efficient
test that identifies the items, typically the slowest, with potential for production
rate reduction, and decides whether a reduction of the production rate is
profitable. Furthermore, Gallego also offered a solution for the flexible case,
where the production runs consist of two periods; a period of non-negative length
in which production takes place at the demand rate, and a period of positive
length, in which the production takes place at maximum rate. These results

generalize those of Silver (1990).

3.6.3 Allowing Backorders

Most of the researchers who examined the ELSP problem usually assume
that no backorders are allowed. As far as we know, the only paper available
prior to 1990 that analyzes backorder situations is that of Krone (1964). The
motivation behind studying such a problem were due to two limitations the ELSP

models suffer from. The economical restrictions, and the lack of scheduling
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approaches applicable in real time, i.e., when demands are random or the facility
is subject to sudden failure.

Two major contributions were recorded in the literature that analyze the
backorder case. One of Gupta (1992) and the other of Gallego and Roundy

(1992).

Gupta (1992)

Gupta examined the ELSP by allowing backorders and suggested a closed
form solution for it, using the CC approach. The CC approach was used since it
always provides a feasible workable schedule. In some cases discussed by Inman
and Jones (1989), the total cost per unit time using the CC lot sizes is not
significantly higher than that of the IS approach (lower bound).

Gupta presented a complete solution to the ELSP given that two types of
shortage costs are incurred. Namely, occurrence dependent and occurrence and
duration dependent shortage costs. That i1s, Gupta allowed for backorders at a

cost of 7; per unit short, and 7°; per unit short per unit time.

Solution limits

Lower Bound:
Using the IS Gupta obtains the following results:

Case 1 :1f 2Ah > md,(1-p ) then,
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h+7 24 w
"= - , 3.63
\/ 7 \rd(1-p) WhE] oo
and
_md+\/2Ag?l(_lz+)?r.)_d@n$
b'=(1-p) sl o G (3.64)

(h+7)

where b is the backordered quantity.

Case Il : 1f 2 Ah, £ xld. (1 - p, )then,

5= I_L, (3.65)
hd(1-p,)

and b° = 0. Hence, the lower bound cost (7, equals

C.=Y C(T°b°), (3.66)
where,
7:61, 1"" i _blo ’ _I' blo : i lo
(b )= L BIA(-p)-B] +7(b') | mb . (3.67)
A 21%d (1-p,) I°
and g’ =77°d, .
Upper Bound :

The CC solution can be considered to be the Upper bound solution. The

problem can be written as

[z‘LJrh(Taf.(l-;0.)—112)2+7’fr-b.2

Min C(7.6)= 3" [ 27d,(1-p,)

b,
+ , (3.68
7 ] 368

N

S.t. — &=l >0 (3.69)

T._.
1->"p
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b =0 vVi=1,2,..,N. (3.70)
The constraint (3.69) ensures feasibility under the CC approach else, if we want
to deviate from the CC approach, we have to add N-/ constraints similar to
(3.69). Note that these constraints are necessary but not sufficient for feasibility.

Moreover, the function ('(7,5) is not necessarily convex. However, Gupta

proved that ('(7,b) is pseudoconvex. He also showed that, for 7" > T, then

. T
by > 0and T >—, where

h
b,:d(l“ﬂ)(fh—ﬂ,), .
h+T
Z.\sza+27r,lz+b’ﬁ(7r‘+.h)
. i - (3.72)
Z. |h'd'(l_[),)
and
T-Y"¢
e Z'{lt (3.73)

T,
Else, if T < E then b, 0.

In order to obtain a fast solution and to ease the procedure manipulation,
Gupta (1992) developed an iterative procedure. However, this approach is

beyond the scope of our project, and for more details, refer to Gupta (1992).
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Gallego and Roundy (1992)

Gallego and Roundy (1992) analyzed the situation were customers do not
need immediate delivery, and considerable savings can be achieved by
backordering. In many manufacturing systems where the items are used to feed
production lines, the cost of a temporary stockout is considered to be finite. Lost
production at the line is often recovered either by working faster or longer.

In order to measure the amount of savings including backorder costs,
Gallego and Roundy (1992) assumed that backorder cost rate is K times larger
than the holding cost rate. Given this, it is possible to find feasible schedules
with an average cost not larger than \/K(K +1)*100%, compared to an average
cost of a schedule with infinite backorder cost rate.

The ELSP literature so far assumes that cyclic schedules can be repeated.
This is only possible under the conditions that, (1) the initial inventories are in
agreement with the schedule proposed, (2) the facilities are perfectly reliable, (3)
setup consumes a constant amount of time, and (4) the demand rates are constant.
Any significant amount of randomness in the system will eventually force
deviation from the cyclic schedule and make stockouts inevitable. Gallego and
Roundy’s work can be categorized as follows:

I. Computing an optimal or near optimal cyclic schedule for the case of

backorders.



76

2. Solving an optimal control problem to adjust the length of the

production runs of the target schedule in response to disruption in

expected inventories.

3. Determining appropriate levels of safety stocks, to achieve the

serviceability level.

The results of Gallego and Roundy represent a key for the development of
a real-time scheduling tool, capable of managing a multiproduct one machine

system under more realistic assumptions.

3.6.4 Multiprocessor Case

Carreno (1990), was the first investigator who analyzed the multiprocessor
case. He referred to this problem as the multiprocessor ELSP, since he regarded
the existence of several identical parallel processors. The problem goes beyond
the scope of finding the lot sizes of each product, to determining a feasible
schedule for the production of these lots on each production line. Both functions
have to be integrated, so that when one determines the lot sizes, scheduling
considerations are also taken into account. Carreno’s approach, decomposes the
problem into two different sets of problems: an allocation problem, and a lot
sizing problem. Carreno’s approach, solves the two problems in an alternating
fashion, where improvement is performed on one part at a time while the other is

held constant.
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In 1993, another attempt to solve the multiprocessor scenario was
recorded by Najdawi and Kleindorfer (1993). In their research, they provided an
optimizing framework of the Common Cycle scheduling problem for the
multistage, multiproduct, flow-shop environment under deterministic and
stationary conditions. Najdawi and Kleindorfer assumed that a fixed sequence is
maintained across all processing stages. The framework considers the costs of
work-in-process inventory and determines a jointly optimal common cycle time
and production schedule for this type of problems.

[t is important to note that in the multiprocessor case, the problem has the
advantage of allocating the products to different processors (Grouping
Technology). So, one can make use of grouping the products according to a pre
defined criterion such as, equal processing time, equal setup time, similar
processing steps and others. This grouping was found to offer better results than

random allocation to the machines.

3.6.5 Warehouse Restriction

Most of the ELSP problems examined use the cost as an objective
function. Geng and Vickson (1988b) altered this, by using the storage space
required as an objective function and optimized on the space available. In other
words, to minimize the maximum storage required by the machine’s output. This
problem is referred to as the “Warehouse Restricted Lot Scheduling Problem,” or

WRLSP.
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The WRLSP is similar to the ELSP in the sense that we need to determine
a sequence for producing the N products on the same facility. Geng and Vickson
used in their analysis the concept of the common cycle in order to obtain a
feasible solution more easily. The problem can be stated as follows:

Determine the sequence in which the N products are to be produced in
addition to the lot sizes used (using the CC approach), given constant production
and demand rates, sequence independent setup times, in addition to the
warehouse restriction, namely, all products share the same storage space.

The WRLSP is strongly NP-hard, hence, an exact solution cannot be
found analytically. Geng and Vickson (1988b) approached this problem by
making use of the potentially explosive combinatorial approach, such as branch
and bound procedures. We should point out that the solution procedure was

applied to a specific problem in an automobile factory in China.

3.6.6 Setup Reduction and Quality Improvement

Classical ELSP models assume that setup costs, setup times and quality
levels are fixed and uncontrollable at the optimal level. However, this is not
always true. The success of the JIT manufacturing systems, is partly based on
the beliefs that setups and quality are controllable factors, and can be improved
through various efforts.  Shorter setups result in smaller lot sizes and

consequently low inventory holding costs. Which implies a higher production
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capacity, and a high quality. High quality reduces rework, repair and loss of
goodwill.

To improve quality and reduce setups, sustainable efforts have to be made.
Moreover, capital investments are needed for the setup reduction and quality
improvements. When a single facility produces multiple products, setup times
become more important. Setup times determine the production capacity of the
system. When setup times are short, more time can be devoted to actually
producing products.

Hwang, Kim and Kim (1993) used the multiproduct capacity EOQ Model
of Spence and Proteus (1987). They included additional features to the problem
by introducing the concept of setup reduction for the case in which, setup costs
are proportional to the setup time and overtime is allowed. Furthermore, they
extended their model by allowing defective items to be produced in addition to
the use of power form investment functions.

The relevant problem is to determine the optimal lot sizes, setup cost,
setup time and quality level simultaneously with an objective of minimizing the
total cost. That is, the sum of setup costs, inventory holding costs, production
costs, costs related to defective items and finally the investment cost for setup
reduction and quality improvement. Finally, a closed form solution for the
WRLSP was obtained, using the common cycle approach in parallel with a

geometric programming formulation.
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3.7 Testing Several Heuristic Approaches

A large number of heuristic procedures were proposed and recorded in the
literature. Comparing the performance of these procedures is difficult due to
several reasons. First, there is not enough empirical evidence in the form of
detailed case-studies to allow comparison of like-with-like. Not denying the fact
that an optimal solution is not available as well, and the only available data is the
lower bound obtained by the Independent Solution approach (IS). Second, it is
too much to hope that a given plant could be subjected to alternative control
systems in sequence to provide a consistent framework for measurement
purposes. If such a plant is available, the introduction of a new package is
accomplished by a reorganization of the plant and a complete change in
managerial attitudes and style. Hence, it is impossible to determine what
proportion of the dramatic improvement is due to the algorithmic process and
success of the package itself, and how much is due to the corresponding
managerial attitudes and reorientation.

Consequently, the only available tool for testing, is to use a set of a
predetermined problems as a base for comparison between the various algorithms
available. Perhaps the most quoted test problem in the literature for the ELSP is
that of Bomberger dating back to 1966. Although, earlier test problems existed,
such as the test of Eilon (1957) and Rogers (1958), the ten-product one-machine

problem of Bomberger remained as the most used test in the field of ELSP.
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Eilon (1985), addressed a serious pitfall in the Bomberger problem.
Namely, that the total production time (excluding setup) required to produce the
specified product range amounts to only 22% of the demand time. Consequently
this creates a lot of space for maneuvering. Moreover, some of the product, with
low-setup costs, may be scheduled frequently in small batches, with little regard
to the capacity availability. In fact, with such a low level of capacity utilization,
additional products (other than the ten products Bomberger used) can be
manufactured.

Despite all the disadvantages and faults in Bomberger’s test problem, his
problem remains as a bench mark in the test of any heuristic procedure proposed.
Finally, most of the heuristic models cited lack a systematic way to test the
feasibility of a given set of parameters, and do not provide a procedure for
escaping from infeasibility once it is encountered. These two criticisms were
outlined in detail by Elmaghraby (1978).

Yazitzoglou (1987), set out to compare the results of nine heuristic
procedures, being those of Bomberger (1966), Doll and whybark (1973), Eilon
(1962, and 1985), Goyal (1973), Haessler (1971), Hanssman (1962), Hodgson
(1970), Madigan (1968) and Stankard and Gupta (1969). Details of these
heuristics were discussed in the previous sections.

Virtually, all nine heuristics (with the exception of Bomberger’s method)
start either with computing the optimal batch sizes for the individual products, or

with finding an overall production cycle time and then proceed to finding the



batch sizes. Moreover, most of these heuristics take advantage explicitly or
implicitly of the fact that the cost function for each product is quite flat around
the optimum solution. Consequently, deviations from the individual optimum
solutions can be tolerated with only moderate cost penalties.

We are going to discuss only the results based on Bomberger’s problem
due to its importance. Bomberger’s problem consists of ten products with very
low inventory holding costs, and a very low utilization factor of only 22%. The
costs and other parameters for the ten products, are tabulated in Table 3.1. Note
that for three out of the ten products the rate of production exceeds the demand
rate by a factor of at least 300, and half the products required very low setup
costs (between $5 and $50), and rather low set-up times (from 1 to 8 time units).
The high level of over capacity provides a great deal of flexibility for scheduling

purposes,

Table 3.1 : Bomberger’s Problem

T Broduction |Produch;
umbe Cost
1 15 0.0065 1
2 20 0.1175 1
3 30 0.1275 2
4 10 0.1000 1
5 110 2.7850 4
8 50 0.2675 2
7 310 1.5000 8
LA 130 5.9000 4
e 200 0.9000 )
10 5 0.0400 1
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so that products can be produced frequently in small batches within a given
production cycle, and this means that many low-cost solutions can be easily
determined.

In order to increase the number of test problems, Yazitzoglou proceeded
by scaling the demand rates. Thus as stated earlier, the original problem involves
a utilization factor of 22%. So, doubling the demand rates for the products while
leaving the other data intact, the utilization factor increases to 44%. Using this
procedure, Yazitzoglou was able to produce five sets of the problem. The results
for these five test problems are tabulated in Table 3.2. Furthermore, these results

are summarized in Table 3.3.

Table 3.2 : Solutions for Bomberger's Problem

Lowerbound | 16.87 23.33 27.91

Bomberger 17.01 0.80 24.42 470 29.90 7.10

Doll & Whybark 17.18 1 1.80 23.71 160 12832 ¢ 150

Ellon: = 17.17 1.80 23.82 2.10 28.32 1.30

Goyal 17.16 1.70 23.86 230 28.33 1.50

Haessler 17.19 1.90 23.74 1.80 36.68 1.50

Hanssman 2250 | 3340 | 3090 32.40 28.25 3140 |40.96| 3040
Hodgson 17.18 1.80 23.71 1.60 28.56 120 |3386| 7.80
Madigan 17.29 250 23.90 2.40 30.48 230 |3373| 7.40
Stankard & Gupta | 17.47 360 25.51 9.30 27.91 920 |36.29| 1550

Examining Table 3.3, we can see that four of the nine heuristic methods

do not seem to perform very well. All the other five, namely those by Doll and
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Whybark, Eilon, Goyal, Haesslar and Hodgson, came within 2% of the lower

bound.

Table 3.3 : Frequency of achieving good results

o
&
&

___Author(s)
Bomberger
Doll & Whybark
Eilon

Goyal

Haessler
Hanssman
Hodgson
Madigan
Stankard & Gupta

cowow-&-#&-n‘.ﬁ;

olo|lo|loc|o|lo|o|o|=|=

QIO|WO|W|W|W|&~

According to Eilon (1978), comparing the results of heuristics for the
Bomberger problem led him “to the realization that we have come to the end of
the road, as far as multi-product batch production is concerned, and any further
theoretical refinements of what we already have can only result in very marginal
improvement.”  This conclusion is confirmed by the results obtained in Table

3.3,



CHAPTER FOUR

THE TWO PRODUCT VERSION OF THE ELSP

4.1 Introduction

In this chapter we will examine the various approaches proposed in the
literature, that dealt with the two-product version of the ELSP. One of the first
attempts to solve the two-product scenario can be found by Deloporte and
Thomas (1976). Deloporte and Thomas suggested a mixture of heuristics and
mathematical programming methods. The formulation permits the use of unequal
lot sizes for the more frequently manufactured products, consequently increasing

the possibility of getting a lower total cost.

Vemuganti (1978) derived a necessary and sufficient condition for
feasibility which facilitated the search for an optimal answer. Saipe (1977)
presented the optimal solution for the two-product case under the assumption
that; the number of setups of a given product is restricted to be an integer
multiple of the other. Another approach which also provides an optimal solution
is that of Boctor (1982). Boctor assumed that the number of setups over a certain

time period for both products are positive integers.

85
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All the above approaches inherently assume that the two products are
produced cyclically. Under certain conditions, this assumption may cause
significant errors in the solutions obtained. Recently, two more approaches were
cited in the literature, one of Goyal (1984) and the other of Lee and Danusaputro
(1989). In both approaches an assumption on the number of setups was made.
Namely, the number of setups is an integer multiple of the other. Yet both

allowed for unequal cycle times for the most frequently manufactured product.

Before we discuss in detail the various proposed approaches to the two-
product ELSP problem, we first state the most common assumptions used. These
are: (a) only one product can be manufactured at a time; (b) demand rates and
production rates are deterministic; (c) stockouts are not allowed; (d) we have an
infinite time horizon; and (e) the criterion of optimality is cost minimization.

Unless otherwise stated, these assumptions apply for the discussion below.

4.2 Discussion of Approaches Proposed

In this section we will discuss the approaches of Saipe, Boctor, Goyal and
Lee and Danusaputro. The discussion will include, the approach proposed,
validity of answers obtained, and the working environment under which the

approach provides the best solutions.
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4.2.1 Saip (1977)

In 1977, Saipe presented an optimal solution for the two product scenario.
His model served as a basis for the development of a general heuristic which
solves the multiproduct case. In his analysis, Saipe adopted the assumption that
setup times are negligible, and that the number of production runs of product one

is an integer multiple of the number of runs of product two.

To discuss Saip’s model, we first introduce the notation to be used. Let, X
denote the number of production days, [J; denote the annual demand for product
i, s;denote the fixed cost of a run of product 7, and »; denote the number of equal-
sized runs of product / in one year ( not necessarily integer ). There are two
necessary conditions that should be met in order to guarantee a feasible schedule.

These are:

1. Let products be numbered such that H,<H,, where

h

H, =—d.(1-p ). Assuming there are n; runs of product i in one year, then
S
M = my. So, in order to obtain a feasible solution it is necessary that
n, = kn, for k=1,23.. . 4.1)

If this condition is violated then we have machine interference.
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2. The depletion time of product two’s inventory should be at least as long

as the production time in a production depletion cycle of product one. That is,

Dg (] — [)3) D]
B (4.2)
n-d» mp -’
which is equivalent to
X X
—(1-p:)2=p . (4.3)
n n,
Hence, we can express (4.3) as
n(l=p.)znp, . (4.4)
Then by combining (4.2) and (4.4), we obtain
|
k<—(1-p.). (4.5)

One might think that another equation is needed to impose the condition for the
opposite case, i.e., restricting the depletion time of product one to be as large as

the production time of product two. However, this condition reduces to

k> L2 Bu
I = pi l—p|

is always guaranteed to be less than or equal to one,

and so, this assumption is redundant.

The cost function can be expressed as
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sH, sH,
C(n,n, )= ns + n.s; et (4.6)
2n, 2n,
Therefore, the overall problem can be stated as
Min C(n,,n.)
|
st. k<—(1-p) 4.7)
ol
n-
k=—
n
Using the second constraint, we can reformulate (4.7) as follows:
: | H
Min C(n,mk)=n(c +ck)+— (e H + 222
2n k
|
s.t. k<—(1-p.) fork=1223.. (4.8)
ol

n >0

which is a two-dimensional optimization problem. For a fixed value of &, the

optimal value of n, is,

nf(k)=\/%(c1H.+c—3£—{i)(cl+czk), (4.9)
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and a corresponding cost of

C(n' k)= \[2(0, +ek)(oH + 92k ) . (4.10)
Next, we find the optimal value of &, which is determined by solving the

problem ,

Min C(n k)
1
st. k<—(1-p.) for k=12,...
P

The unconstrained minimization of ('(n,"k) over k may be accomplished

by rewriting C(n," k) as
C(n k)=+Jah(k)+b (4.11)

H. . .
where, h(k )= Hk + 7 a=2ss.,and b = s5°H, + s, H,. This is equivalent
to minimizing A(k), since

H,
h(k)=h(k=1)=H-—=— |
(k)-h(k-1)=H TRy (4.12)

Hence, k" is the largest integer such that,

H,
k(k—=1)<—. .
( )<H (4.13)
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This justifies the numbering conventions previously adopted. Thus the solution

for k' is the largest integer, k , such that (4.5) and (4.13) are satisfied.
The following procedure summarizes the solution method used in Saipe (1977):
Step 1: Calculate the value of k using equation (4.5)
Step 2: Calculate the value of n," using equation (4.9)
Step 3: Calculate the value of ny” using equation (4.1)
Step 4: Calculate the value of C(n ,‘.k‘_) using equation (4.10)

We note that the solution outlined in Saipe (1977) does not allow the lot sizes to
vary over time. Furthermore, if p, + p, = 1, then k should be less than or equal

to one. This implies that the common cycle will produce an optimal solution.
4.2.2 Boctor ( 1982 )

Boctor relied heavily on the assumption that the two products are
produced cyclically. He further assumed that 70 = m@ and . = n,@ for some
basic cycle @ 0 and with g.c.d. of (n;, n;) = 1. n,and n, are the multipliers of

the basic cycle w. To ensure feasibility, Boctor imposed that the condition

pripsl.

Given ny, n; and @ the cost function can be written as,
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A A
o

H, ",
C(n,n,w)= s .
w+ n H, + n. H,

(4.14)

where 4 =%d.h(l—p.) for i=1,2. Differentiating (4.14) with respect to @ and

setting the derivative to zero, yields

T'(n,n,)= (4.15)
at a cost of
Cin,n)=2 [{%+{%—][n.H. +n.H. | (4.16)
A necessary condition addressed is to guarantee that,
wzs+s.+p(nl)+p.(nl). (4.17)

That is, @ should be long enough to incorporate the production and setup times

for the two products. Equivalently,

i t5 18/ (4.18)

Cl-np-np.

Since ;15> 1s positive, (4.16) reduces to

l—np -np >0. (4.19)
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Based on the above, a finite combination of n; and n, that provide a
feasible @; and w, exist. For each feasible pair satisfying (4.19), an optimal

cycle time and cost can be obtained by

W (n,n)= Max{w(m,n;).%} (4.20)
and
+
C'(n,m)= ("' ”‘) 4.21)

@ +(nH +nH )o

respectively. To obtain the optimal multipliers, we enumerate all possible

combinations (n; , n,), and choose the combination that yields the minimum cost.
Boctor’s algorithm can be summarized as follows:
Step 1 : Enumerate all possible combinations (1, , n,) such that
{1,2 =4 ] i
me,2,.. =% and n. € —[l = n.p,] , where [x] is the
- p:

nearest integer to x. For each pair of multipliers, if the g.c.d. (n;, ny)~1,
increment #15; otherwise, compute @' (n;,n) and C'(n,,n,) using (4.20) and

(4.21) respectively.

Step 2 : Compare the solutions obtained in step 1, and find the optimal set of

multipliers that minimizes cost.
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We note that Boctor’s solution is optimal whenever the number of setups

over a certain period for both products are positive integers.
4.2.3 Goyal (1984)

Goyal (1984) implemented a search procedure in which unequal batch
quantities for the more frequently manufactured product is permitted. Assuming
that there are X repetitive cycles per unit time, the total cost for the two products

can be written as

C=3, C{X) (4.22)

where,

_ dh(l-p)
C(X)= XA+ T

Using the basic EMQ model, the economic frequency of manufacturing

setups can be found to be
Ui [' (4.23)
= ¢ v .

However, this is only possible under the independence assumption (IS) between
the two products, which is not the case. To overcome this obstacle, Goyal used

the results of Doll and Whybark (1973) which states; the nearly optimal



production quantities can be obtained if the product for which H, /A, s

largest, and is manufactured the maximum number of times in a repetitive cycle.

Goyal denoted the product with the highest H,/A, to be the “First
product” and is manufactured the maximum number of times. While the other
product is referred to as the “Second product” and is manufactured only once per
repetitive cycle. That is, the “Second product” is manufactured X times with a

repetitive cycle of /X . While the “First product™ is manufactured nX times in
the same period. This translates into an interval of //nX between successive

setups.

Suppose there is no delay between the end of the production cycle of the
first product and the start of second product setup, and that the first production
run of the “First product” starts at time zero. Then, total time required to produce
one batch of the First and Second products is 7+ 7; +[p /n + p. ]/ X. To ensure
feasibility of the production schedule, Goyal restricted the time between two
successive setups of the “First product” to be long enough for setting up and

producing both products. Hence,

n< . (4.24)

Arguing that setup times occupy relatively small span of time relative to

the production times, Goyal neglected setup times. Under this assumption, the



96

feasibility restriction will be reduced to n < p,(1—p, )= ¢. In order to ensure
a feasible solution, we restrict the value of £ to be equal or greater than one. If
n < ¢ is not satisfied for any value of », then the holding cost of the first product
can be minimized by processing the first setup at the beginning of the

manufacturing cycle, and the second setup after an interval of 7/X{ time units.

|
Hence, setup covers a span of ——————, and the remaining (n-/) setups will be
P P XMin(n,¢) g (n-1) P

Quantity ¢

d:(I—P:)/X

di(1-pr )/ X4

l

v

| R—— d _
— 1/ X LIRS Time

Figure4.1: n < ¢, plot for n=2

Quantity w

r]

difl=p )/ X¢

|

dg(] _p:)/-‘"

di(l-p)(¢-1)]/X¢{(n-1)

~

UXE _J I":'y-fif"""| Time

I/ X

-

Figure 4.2: n > ¢, plot for n=3



{ Min(n,¢) -1}

undertaken at equal time intervals, covering a time span of

{ XMin(n,§)} -

Figures 4.1 and 4.2, show possible realizations of such problems.
Let a = XMin(n,{), a, =Minfn-¢{)-1, and H, =+dh(1-p ). Then the
variable cost of the first product can be expressed as,

C(Xn)= X[ns, + H,(ijz + H:(’]—)(ﬁ)z] ; (4.25)
a n-1"" a

Therefore, the total variable cost ('(X,£), given that product 1 is manufactured Xn
times and the second product is manufactured X times per unit time, can be

expressed as

= v o L HOHMinm)-13)
C(X,¢{) ‘”’”'“‘HX[(n—l){Min(n.g')}’+Hz]' (4.26)

Due to the multidimensionality of (4.26), Goyal developed the following
search routine for determining the economic policy for scheduling the two

products.
Search procedure:

Step 1: Find A;'s; ratio, and arrange them in descending order. Recall that the

second product is manufactured once in every repetitive cycle.

Step 2: (1) Determine the integer value of the multiplier n — a such that
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a(a—l)sgﬁg(aﬂ)

28
(i1) Determine the integer value of » = b such that
bsp(l-p)<b+1
(11) Let ¥ = Min(a,h)

Step 3: Find C'(n) for Y <n <a using equation (4.26). The search is terminated

when C'(n+1) 2C(n), where n - n .

Step 4: The economic policy is determined by

Aot A1. 1 +1+{M1n;(n7,Q~1£
{ Min(n",{) ) n —1
5 +sn

X(n )=

The economic production quantity for the second product is given by

dy” X(n'), while the first run for the first product is given by

d,

—————_and the rest of the n'-/ runs are
X(n )Min(n ()

d\ [ Min(n,{)—1]
(" =1)X(n" )Min(n',{)
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4.2.4 Lee and Danusaputro (1989)

Lee and Danusaputro have extended the problem that Goyal (1984) solved
by including the setup times. The algorithm developed can be regarded as an

extension to Boctor’s algorithm.

To test the validity of the proposed algorithm, Lee and Danusaputro first
calculated the lower bound solution (IS). This is done by setting the setup times
to zero. Consequently, the optimal cycle time and cost can be expressed as

=y A/H, ,and C, =2y AH, respectively. Without loss of generality it is

assumed that 7, =7, . In order to demonstrate how the algorithm functions, we
first present the used notation. Let, X denote the largest integer less than or equal
to 77T, , and K is the largest integer such that

JKK=1) <& < JK(K+1) . (4.27)

A

Lee and Danusaputro were particularly interested in analyzing the pair of
multipliers (/,K); i.e.. n; = I, n; = K. Then, using Boctor’s approach we can

express the cycle time and the feasibility equations as,

T(1,K)= (4.28)

l-p—np. >0, (4.29)

and
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r,K)zL5¥s) (4.30)
1-p —np,

The authors presented two theorems which can be used to reduce the complexity

of obtaining a solution.

Theorem 1. (i) If both (4.29) and (4.30) are satisfied then, C(n;,ny) 2C(1,K)

. n. n
for any feasible 7, and n,, such that = > X or — < X +1.
ﬂ| nj

(ii) Let ( n,",n") be the optimal multipliers, then n'<ny .

(iii) n," ~ 1 and ny" <K if at least one of the feasibility equations

were not satisfied.

Theorem 2 1f (4.29) and (4.30) are satisfied then,('(1,K) < LO15(C +C, ).
That is, the increase in cost encountered is by no means greater

than 1.5% of the IS ( lower bound ).

Using Goyal’s results, product 2 will be produced once per cycle and
product 1 will be produced more frequently with unequal cycle times inside
product 2’s cycles. The concept behind the Lee and Danusaputro algorithm, can

be discussed as follows:

i. Given the multiplier » and neglecting the feasibility conditions, both
products will be produced cyclically. If we assume a cycle 7 for product one,

then the total cost can be expressed as,
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C(n,T)=n—Al;—A:+(%+Sz)T. 4.31)

The optimal cycle for products 1 and 2 can then be written as,

7?(n)=n\/(A, +%)(H,+nH:) , (4.32)

and

T.(n)= n\[(nA. + A, )(i’f- +H,) . (4.33)

respectively. Substituting (4.32) and (4.33) in (4.31), yields the corresponding

minimum cost, i.e.,

C(nT(n))= 2\/(nAl +a )i p,) (434)
ii. Based on the results in part one, we can respectively rewrite (4.29) and
(4.30) as
l-p—np. >0, (4.35)
and

T(n)> S+ 8,
n  l-p-np.

(4.36)

Then, given the multipliers ( /, K ), the optimal feasible cycle times for products
1 and 2 are 7(n)'n and 7(n) respectively. Note that, in this case both products are

produced cyclically, with a corresponding cost given by (4.34).



iii. If equation (4.35) is not satisfied, the problem is solved by defining a

new function y(7) such that

T e i al, (4.37)
1-p
and
l-p <np, . (4.38)

Under this condition, it is impossible for product 1 to be produced cyclically n
times within a time interval of 7. Therefore, for product 1 we use a cycle of
length y(7) only once, while the remaining 7'- y(7) time units are divided into n-/
cycles. This approach is similar to Goyal’s procedure. For more information

refer to Figure 4.3. The total cost in this case is given by

(nA + A.)

C'(n,T)= +HA+H.T, (4.39)

where

X =141y
£ |

The optimal 7" is found by differentiating (4.39) with respect to 7" and

T'(n)= \/T—Z : 4.40
n) B (4.40)

equating to zero. Hence,

where
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a=Hn(s +s. ) +(nA+A)1-p )(n-1),
and
B=H|(1-p-p.) +p (n=1)|+ H.(1-p ' (n—1).

The same scenario applies if (4.36) is not satisfied, with only small

changes in the cycle time and cost. That is,

T™(n)= —————, (4.41)
I-p-p
and
nA + 4. S ) y(T"(n))
C"(n)= +H\( J(n-1)+ ——+HT" n). (4.42)
Quantity ,"‘ :

‘—l 1-2 IQ-—.;—W

. 7

Figure 4.3: Plot of the Time Varying Lot Sizes
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More formally, the algorithm can be written as follows.
Step I: Find K using (4.29)

Step 2: Find T(n) using (4.33). If (4.35) and (4.36) are satisfied then 7"(n)=T(n)

and " (n)=C(n), and go to step 4. Otherwise, go to step 3.

Step 3: Find T'(n) using (4.40). 1f T(n) ~ (ns,+s3)/(1-pi-pz) then T"(n)=T" (n)
and C"(n)=C"(n) using (4.39) and (4.40) respectively. Otherwise, set

T'(m)=T"(n) and C"(n)=C "n) using (4.41) and (4.42) respectively. Go

to step 4.

Step 4:1f n = 1 or both (4.35) and (4.36) are satisfied, then find the optimal

solution among all solutions that have been found. That is, find

C"' = Min{C(i);n<i< K} and find the corresponding 7" .
Else set n= n -1 and go to step 2.

We should note, that the above algorithm has a tendency to produce better

results than that of Boctor’s.
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4.3 Extensions in the Two Product Scenario

Several attempts were cited in the literature that deviate from the
traditional two product ELSP. Two different attempts will be summarized in this

section.

4.3.1 Hwang and Moon (1991)

Most of the models explicitly assume that the raw material required to
manufacture the products had been procured in the most economical manner. No
extra cost in the objective function (total cost function) is added to account for
the cost of ordering materials. However, it is impossible to procure the raw
materials in an optimal manner without knowing the production batch sizes of the

product under discussion.

Hwang and Moon (1991) developed a model that integrates the production
planning problem of the two product case with the inventory replenishment
model. It is an iterative heuristic model that provides a near optimal production
and raw material policies to minimize total system cost. In their study, they
assumed that both the production sequence as well as the replenishment time is
known and constant throughout the planning horizon. No assurance for
providing an optimal solution is given, but the heuristic was found to have a

tendency of providing a feasible solution most of the time.
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4.3.2 Ibrahim and Thomas (1991)

[brahim and Thomas implemented the super production cycle approach on
the two product one machine problem with limited storage capacity. The
problem they solved can be viewed as a traditional two product scenario of the

ELSP in addition to a new constraint on the amount of items that can be stored.

The super production approach assumes, that there is a super cycle, within
which there are exactly », production runs of product one, and »;, production runs
for product two. The problem then is to find a minimum cost schedule for
producing the two types of products, given that there is a limit on the total
amount of finished products that can be stored prior to delivery. The algorithm
outlined gives the optimal schedule among all possible production schedules.
Moreover, it addresses a possible extension for solving the more general case

(multiproduct case).



CHAPTER FIVE

THE TWO PRODUCT CASE WITH ALLOWED SHORTAGES

5.1 Introduction

In the previous chapter, we examined the two product scenario of the
ELSP. It was assumed throughout the discussion that the demand should be
satisfied during the planning horizon, with the exception of few papers that allow
for backorders. However, no contributions were cited that examine the shortage
scenario. In this chapter, we will discuss the case where shortages are allowed,
in an attempt to examine their effects on both the annual cost and the quantity
produced.

Researchers often referred to shortages as lost sales case. Hadley and
Whitin (1963) defined shortages as the demand which occurs when the system is
out of stock and this demand is lost forever. However, we will adopt a different
definition, and define shortages as the demand which occurs when the system is

out of stock and which has to be satisfied at a higher cost.

5.2 Why Do Shortages Occur?

Adopting the second definition of shortages, we can identify a number of
situations under which shortages may occur. First, the case were demand has to

be met, while the capacity of the firm is not sufficient. For example, if a

107



108

manufacturer has a monopoly on the market, or he has an agreement for
supplying a certain amount of items while his firm capacity is not sufficient for
meeting this demand, so he may choose to order some items, from an outside
vender or supplier at a higher cost. Second, if backordering cost is too high
which makes it impractical for the firm to adopt backordering strategy. Third,
when holding cost is high relative to shortage cost, consequently the firm may
adopt a strategy that allows shortages, in an attempt to decrease the holding cost.
Fourth, when the firm has a preventive maintenance policy which has to be
implemented. Finally, if setup times occupy a long period of time, and this time
is not negligible relative to the production time, then no matter what level of

inventory is maintained some items will be short.

5.3 The One Product Case

Before we discuss the two product case, it is of great importance to
identify how shortages affect the solution of the one product case. If demand is
occurring when the system is out of stock is supplied from an outside supplier, it
is no longer true that the annual revenues received will be independent of the
operating policy. On the contrary, they will depend on the length of time for
which the system is out of stock, and hence on the operating policy used. Thus,
we cannot immediately conclude that maximizing the average annual profit, will
yield the same operating policy as that minimizing the average annual cost.

However, with a proper definition of the shortage (stockout) cost, minimizing the
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average annual cost will yield the same result as maximizing the average annual

profit.

T

Inventory
Level

(1 —¥+—, —F J

Figure 5.1: The One Product Case

Let X; be the unit selling price of the item, 7, the additional cost incurred
when purchasing the item from an outside supplier (excluding lost profit), X, the
selling price of the outside supplier (7,~ X; - X,). Then, if f, is the fraction of

time during which the system is out of stock, we can express the average annual

profit as
Profit =d(X. - u)(1- f,) - n.df,
—ordering and carrying cost . -1
We can rewrite (5.1) as,
Profit =d( X, - pu)-(n + X, - u)df, (5.2)

— ordering and carrying cost .
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To obtain the optimal lot size, we differentiate (5.5), with respect to #; and

g, equate the derivations to zero, and solve the two equations simultaneously.

That is,
& - md't+ hd(1- plgt+ Sh(1-p)g =0, (56)
and
§=_d2,4-ghq2(1-p)d+ d’q =0. (5.7)

Solving (5.7) in terms of ¢ yields,

d m ,  2dA
q—h(l-p)i\/(h(l—p)) h(1-p)

If 77d <2Ah(1-p), then no valid solution exists for ¢ that satisfies

(5.8)

(5.8), while if 7°d =2 Ah(1- p), then there exists a unique positive value of g
that satisfies (5.8). Finally if 7°d >2 Ah(1— p), there are two positive values

of ¢ which satisfy (5.12), since in this case,

7d d ’ 2dA
—_— S - s 59
h(l1-p) \/(h(l-p)) h(1-p) .

In the event that there is no real ¢, there is no /5, such that 0 < t, < oo, which will

yield a minimum cost; hence the optimal value of 7; must be zero or infinity.
However, 7°d <2 Ah(1- p) implies that incurring a shortage cost all the time

is cheaper than producing. Consequently, the optimal value of #; should be

infinity.



On the other hand, for the case where either one or two positive g satisfy
(5.8), it was found by substituting (5.8) in (5.6) that the optimal #; does not lie in
the interval 0 < ¢, < . In this case, the optimal value of f; is zero, since
wd=22Ah(1-p), ie., the cost of running the system and producing all the
time is cheaper than running the system with allowed shortages.

In conclusion, for the one product case, it is never optimal to incur any

shortages.

5.4 The Two Product Case

In analyzing the two product case, we will assume that setup times are
negligible. That is, no allowance is added to compensate for the setup time.
Furthermore, we will assume that no idle times are allowed, the machine is either
producing product 1 or product 2. The average annual cost can then be expressed

: / 2
in terms of q,, ¢, t;°, and 1;°, as

cap[ B4 M __ mhhy gy

q +dt; 2(q.+dt.) q +dt
where, A'=h(1-p,) and t; is the shortage time of product i. See Figure 5.2
for more details.
According to the results obtained in the previous section, the lower bound

solution can be found using the IS approach presented in Chapter Two. Using

this
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approach we can express the cycle time of each item and the corresponding cost

as,
2A
s = J22L 5.11
dh (5.11)
and
IS N A' I
Cc*=Y" [=+irdT"], (5.12)

7:‘.!5'

respectively. While assuming no shortages the upper bound can be established

using the Common Cycle procedure, where the cycle time and the corresponding

cost are,
T = (5.13)
and
e 2 A 1 Iyt e

c =3 [ ] 519

Inventory
Level
4_”1' e f_a’ = + 13, =N , I.;'? Time
[ —————————e [ He

Figure 5.2 : The Two Product Case, with Allowed Shortages
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5.4.1 The Common Cycle Approach

Assuming a Common Cycle, we can express ¢, in terms of g, as,

QI
q:="—+d(t: -t ), (5.15)
B

where S=d,/d.. The interpretation of (5.15) means that the production period

of product 1 is long enough to incorporate the consumption period of product 2,
in addition to a possible shortage period for that product. This is shown in Figure

5.2. Substituting (5.15) in (5.10) yields,

C = "_']— {d|A' + ﬂ-gdﬁtl + a’ﬂ:t: +M+ﬂ+h;dgq|t1 "“h;dqutz
g, +dit, 2 2
+ L i, + P (5.16)
2 2

where, a=dd,, A'= A + A,,and t, =, .
To find the optimal operating policy, we differentiate (5.16) with respect

to gy, 15, and 1, and equate the derivatives to zero. The results obtained are as

follows,
% = an —d,hlq, — ahit, + ahit, =0, (5.17)
and
§ = _dle' + 7I.df£]| - aﬂ':dlt: = h:dlql. -+ hzdzqf 4 a’h:dltl
“ . 2 2 5.18
ahld.t: (5.18)
+ ahg'[,q. - e’ = O’

and finally,
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, o g
£ =—-d A — nd't, — ant, h'q |’d1q1t1 + 4 hig.t,
a, it ot (5.19)
oty 't
+ oyt - L2 _ GG
2 2

These equations can be solved, by substituting (5.17) in both (5.18) and (5.19),

and after several steps we obtain,

2d, A' an
— = 5.20
\/( L) r h’h; , (5.20)

and

qihh + art - 2d, A'H
2”:’(7-'!]6{:2 _qlhi'dl) .

(5.21)

By symmetry, we find similar expressions for ¢, and 5.
Examining (5.20), we notice that a feasible solution is obtained if and only
if,

d:h'r.
h!

md, + >2A'h/, (5.22)

is satisfied. However if (5.22) is not satisfied, there is no 1;, 0<t, <o, which

yields a minimum cost; hence the optimal value of 7, must be zero or infinity.

d.h'

.’

The optimal value is infinity since mid, + <2A h! implies that

incurring the shortage cost all the time is cheaper than producing the item in the

facility. Therefore, no inventory system exists for product 1.
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In the event that (5.22) is satisfied as an equality, there exists a unique
positive solution for g, that satisfies (5.20). However, this solution is not valid,
since the corresponding value of 1, associated with it is infinity, i.e., the cost of
shortage is less than the cost of production. Finally, for the case where (5.22) is
satisfied, there exists two values of ¢, that satisfy (5.22). But for the solution to
be feasible, the corresponding value of 7, should lie within the interval 0 <1, < o0,
which translates to satisfying the inequality

md, > qh . (5.23)
Else, if (5.23) is not satisfied, the corresponding value of 1, will be infinity. Also,

it can be shown that for 7> = 0, equation (5.20) will reduce to (5.8), meaning that

product 2 will not be produced, while product 1 is produced according to (5.1 1).

Close examination of (5.23) together with (5.20), yields the following.

T

First, (5.23) implies that ¢, <——, so in order to obtain a feasible q1, only the

’

(!
. L . md, .
negative sign in (5.20) must be used. Second, given g, < _f_lf_ a feasible g,

exists if and only if,

2h A’
< . (5.24)
d.
. 2d. A"  am
Third, given the fact that > L , then it can be shown that,
h' hh!
rd, ., 2dA ar
(—)>——-2 (5.25)
h h Wh
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Using (5.25), we can obtain a range of feasible values for 7;. Two

2hiA'

-
£

extreme cases will be examined, 7>=0and 7. = . For the first case, it

follows that

7> =nd (5.26)

1

However, as discussed in section 5.3, it is never optimal to allow for shortages

2h!A’

when the machine is idle. For the second case, i.e, 7, = , we conclude

2

that 77; > 0, which is redundant in the presence of (5.26). The same argument

can be made if we examine ¢ along with 1, i.e, for a valid solution to exist

> 2h4 and m < il \ (5.27)
d, d,
and
m < 2HA and 7 > 2hA , (5.28)
d, d.

which is impossible. That is, neither product one nor product two should be

allowed to have shortages.
In order to demonstrate these two arguments, we developed a set of

problems by varying the values of 7, and 7. The break points were set to equal

2h'A’

. The resulting five cases were examined and the results are tabulated in
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Table 5.1. Examining Table 5.1, we notice that for the five different cases, a
valid solution was never obtained. This emphasizes the arguments previously
discussed.

The overall solution then is, to produce product 1 alone according to
(5.11), produce product 2 alone according to (5.11), or to produce products 1 and
2 together but without allowing for shortages. The decision is based on the

economical benefits of each strategy. The following procedure was suggested .

Table 5.2: The Effect of Varying the Value of 7

200
500
0.005
0.035 | 0.018 | 0.005 | 0.020 { 0.040 | 0.005
0.400 | 0.500 | 0400 | 0500 | 0400 | 0500
0.002 | 0.001 | 0002 | 0.001 | 0002 | 0001
14142127386 | 200 | 3000 | 1600 | 750 | 200
0.0324 | 0.0263 | -463.32| 17155 | 757.39 | 881.72| NIA
3.5353 | 6.8465 | 18.723 | -4.3984 | -2.8344 | 23.637

Procedure
Step 1: Compute ('} and ', using (5.12)
Step 2 :1f C* > md, and CI* > m.d., then do not produce products 1 and
2. While If C* < 7d, and C* > 7.d., then produce product 1

only, and vice versa. Finally if C < md, and C* < md,, then
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produce the two products using (5.13) or any other alternative

method examined in Chapter Four.

5.4.2 The Two Product Case with Non-Negligible Setup Times

In many industries such as the glass, ceramic and chemical industries,
setup times occupy a high proportion of time relative to production times. So,
neglecting the setup times will affect the quality of the solution obtained.

In this section we will examine the case where setup times are not
negligible. We will further assume that shortages are going to occur during the
setup times,

Referring to Figure 5.3, the cycle time 7 can be written as

T=t+t+t+s. GivenT the total cost can then be expressed as,

1A hg”  mdx
C= — 3 5.29

where X, = £; +.5, . The overall problem can then be written as,
Min C (5.30)

sf. X 28 . fori=12
However, based on the results obtained in the previous section, we
conclude that if product 1 and product 2 are to be produced, their corresponding

values of x; will tend to converge to s, i.e., no extra shortage will be needed.
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Figure 5.3 : Two Product Case with Non-negligible Setup Times
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CHAPTER SIX

CONCLUSION

Numerous approaches were developed that try to solve the outstanding
ELSP problem. In the previous chapters we examined a number of these
approaches and pointed out their working environment, limitations and
advantages. In general, heuristic approaches were used and they sometimes
provide very good solutions. Analytical approaches are also used to solve
restricted versions of the ELSP.

The main difficulty encountered in solving the problem lies in testing the
feasibility of the proposed schedule. Researchers have shown that feasibility
testing is an NP-hard problem. Moreover, we were able to classify the
techniques used in solving the problem into three major categories, (1) Common
Cycle Approach, (2) Basic Period, and (3) the Dobson’s approaches.

The Upper and lower bound solutions were established. And it was
noticed that in the worst case scenario, the upper bound exceeds the lower bound
by 41.2%. However, in many realistic cases this percentage decreases
dramatically if the ratios of setup cost to holding cost are approximately equal.

In the last chapter we proved that allowing shortages in the two product
case is never optimal. This implies, that the facility either produces the parts or

purchase them. That is, for the two product case, the mix between these two
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extreme strategies is never optimal. A possible extension was addressed that

examine the non negligible set up times.
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