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INTRODUCTION

Problems of statistical inference involving
multi nomlal distributions are very commonly met in
practice. Many of these problems cannot readily be
solved by the use of standard procedures, on account of
the complicated form of the multinomial probability func tion,
and so for large samples approximating distributions are
used. There are a number of papers suggesting various
approximations that may be used in connection with finding
moments and testing the hypothesis of egual class proba=-
bilities. A summary of these results is given in Chapter I.
Another problem of importance is determination of
the appropriate sample size, so that we do not take a sa@ple
unnecessarily large and yet are confident that the sample
is large enough for our results to satisfy some specified
requirements. Such a problem is discussed by Bechhofer,
Elmaghraby, and Morse (1959) in which it is required to
select the event with the highest class probability such that
the probability of a correct selection is greater than or
equal to P whenever the true ratio of the largest to the second

*
largest of the class probabilities is greater than or equal to £,
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where P and t* have been specified by the experimenter.
It is this kind of problem that I intend to discuss in the
following pages. In Chapter II, I consider the problem

of determining the appropriate sample size for obtaining,
with a specified confidence coefficient, a confidence
region that has a volume less than or equal to some
prescribed number. In Chapter III, the problem is to
classify the events in a trinomigl population according

to their class probabilities. The approach taken is
analogous to that used by Bechhofer, Elmaghraby, and Morse
(1959)s Two numbers, t and P, are specified by the
experimenter and we wish to determine the sample size
necessary to guarantee that the probability of correct
classification is greater than or equal to P when the
ratio of two consecutive values of the ranked class
probabllities is greater than or equal to t. In obtaining
the smallest gample size that guarantees such a requirement
use is made of a property of the trinomial distribution the
proof of which is given in Chapter IV,



CHAPTER I
REVIEW OF REIATED LITERATURE

In most problems of statistical inference involving
multinomial distributions, we need to use some approximation,
since for large samples, computations using the multinomial
distribution become extremely laborious. There are several
papers that treat this problem.

One such approximation was obtained by Johnson (1960).
Considering a population of k classes with probagbilities
Pj (] =1, eee, k) and a sample of size N ylelding relative
frequencies fj (J =1, «ve, k), he obtains the approximating

density
k (N=1)ps=1 i
glf), seey £,) = [T(N-1) (£ ] (§-1)p )1,
1 X jEI J al P
k _n k
where jilpj =1, fj = Ni s, and jil nJ = N,

This approximation gives the correct first and
second moments and product moments for the joint distribu-
tion of the relative frequencies and the correct range of
variation. Also it i1s self-consistent in that distributions
of subsets of the relative frequencies and distributions of

sums of subsets of the relative frequencies derived from

-5-



-4 =

the. approximation are of the same form as the initigl
function g(fl, eeey £} ). However, the approximation has
some shortcomings. It does not give correct multinomial
moments of order higher than twoj; the self-consistency of
the approximation does not extend to the conditional
distributions of some relative frequencies given others;
and the maximum likelihood estimators of Pj in the exact
model and the approximation differ by as much as 1/(2N)'

With increasing sample size, the joint distribution
of the standardized multinomial variables tends to a dege=-
nerate multivariate normal distribution with zero means,
unit variances, and if p1= py = ... = p, = 1/} s covariance
equal to =1/(x.7). Therefore, an alternative approximation
would be to consider this approximate multivariate normal
distribution as the joint distribution of the standardized
deviates from the sample mean. This was done by Johnson
and Young (1960),

To test the equality of probabilities in a multi-
nomial distribution against the alternative that the largest
observed frequency is significant, using the multivariate
normal approximation to the multinomial, one gets the result
that the observed proportions are asymptotically distributed
with the multivariate normal distribution with means % ’
variances (k=1)/)2y and covariances -1/ﬁ2N' Ir ty (j = 1,000,k)
are the corresponding standardized variables, for the event

ty 2 t"where t™is sufficiently large:



F & k lt2
Pr [max ty2t 15 Ny {; e 2% gt

Korzelka (1956) has found that this gives a satisfactory
approximation even for small values of N, but that there
1s a decrease in accuracy for increasing k.

Johnson and Young (1960) suggest the eriteria
R=mnny ang w=max ny - min n; as alternatives to

max n N
the standard chi-square test for the hypothesis of equal

class probabilities. These ratios are simpler to calculate
than 1s chi-square, though they cannot be safely used if
the pj's are not equal. The authors use both of the above
mentioned approximations to the multinomial distribution to
derive approximate significance 1limits for these criteria.
Welss (1962) proposes a sequential test for the
hypothesis of equal class probabilities which at each stage
of the sampling process observes whether or not the obser-
vation falls in the set of categories that contain the largest
number of earlier observations. If the observation falls in
that set of categories at too many stages, it rejects the
hypothesis. A comparison of this sequential test with the
standard chi-square test for the binomial case shows that
when the hypothesis is true the sequential test requires
a smaller average number of observations than the fixed
sample size test.
There are several papers that investigate the problem

of moments in the multinomial distribution.
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Greenwood and Glasgow (1950) derive the mean and
variance for the mgximum and minimum observed frequencies
for the binomial case and the special trinomial case with
p1 = p2. However, generalization of thelr method for the
trinomial case in which Py» Py and Pz are not equal, seems
to be unsatisfactory.

Kozelka (1956) derives the mean and the variance of
the largest observed proportion for the general trinomial
case by making use of the moment generating function
technique, but he points out that an extension of this
technique even to the case k = 4 presents difficulties.

McCarthy (1947) considers a certain class of box
problems which is equivalent to the following. In a multi-
nomial population of k classes we are interested in sampling
until we obtain for the first time at least Ny, observations
from the Jlth class, at least njz observations from Jzth
class, «ss, and at least Nyg observations from the jsth class,
where jl, j2, ..., js represent the numbers of that set of
s classes (1 < s < k) which first satisfy the stated condition.
The total number of observations to be taken is a random
variable Nglny(py), «.., np(p,)] the distribution of which
assumes a very complicated multinomial form for k > 2., The
author finds the exact moments of Ny[n,(p,), ny(p,)] and
N2[n1(p1), n,(p,)] and using these moments he derives
approximate values for the mean and variance for any k and

any set of nj's and pj's when s = 1 or s = k., He also derives
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an approximate formula for the mean of this random variable

for any k and 2 < s < k - 1, when Py = /s ny = n (3 =1 0w usk)e
Since it is very difficult to obtain exact values, there is

no effective analytic approach to evaluate errors. A few
isolated cases are considered by a combination of computa-
tional, graphical, and analytical methods and some precau=

tions are given in order to minimize the error.

The problem of cumulants of multinomial distributions
has been investigated by Wishart (1949). In his paper, he
derives cumulant recurrence relstions for the general
multinomial form and for the corresponding form that is
derived as a generalization of the negative binomial.

Rao (1957-58 and 1958) has two papers about maximum
likelihood estimation for the multinomigl distribution. He
first proves the consistency of the maximum likelihood
estimates for the hypothetical frequencies of the multinomial
distribution and then establishes the consistency of the
maximum likelihood estimate for a parameter occurring in
the specification of the hypothetical frequencies. He also
discusses properties of the "maximum likelihood equation
estimates" which he defines as those roots of the likelihood
equation that provide the maximum of f £y log pj(m) where
£y denote the observed relative frequencies and pJ(m) are
the hypothetical frequencies, when the paremeter m 1is

restricted to the roots of 5 _1 Py = 0. In the first
Py dp



-Sﬂ

paper (1957=58) he considers the finite multinomial
distribution and in the second paper (1958) he extends
those results to the case of a multinomial distribution
with an infinite number of cells.

Finally, there is a paper by Bechhofer, Elmaghraby,
and Morse (1959) which describes a single-sample multiple=
decision procedure for selecting the multinomial event that
is assoclated with the largest class probability. It is

required to have
> > P
Prlcorrect selection | tk,k 3 t]

= 4
where tk,k-l Eﬁ:; 5 97 S G5 = eee 2 qQy denoting the

ranked probabilities of the k categories and where t(> 1)
and P have been specified by the experimenter such that t
is the samllest value of the ratio tk,k—l that is consi=-
dered worth detecting and P 1is the smallest acceptable
value of the probability of correct selection.

The authors derive a large sample approximation to
the probability of a correct selection in what they call

"the least favorable configuration",l where

1

= = see = = ——— = ——_—t
Hh % -1 7 Treer 0 % .

t+k=1

1
Kesten and Morse (1959) prove that the probability
of a correct selection in the configuration given by %§ =t
is less than or equal to the probability of a
correct selection when 3k > ¢t (j = 1, ..., k=1).
aj
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The approximation turns out to be a (k=1)=variate normal
distribution for which tables are available. They also
indicate the smallest value of sample size which will

guarantee a specified probability of a correct selection

for a particular value of t.



CHAPTER II

CHOICE OF SAMPLE SIZE FOR A CONFIDENCE
REGION OF PRESCRIBED VOLUME

In problems of interval estimation, with a fixed
confidence coefficient, the confidence interval can be made
shorter by using a larger sample. Thus if the length of the
desired confidence interval is determined ahead of the sampling
process, we may be able to decide what sample size to take
in order to obtain a confidence interval of length less than
or equal to the prescribed length.

When the distribution involves several parameters,
it would be desirable if we could prescribe the length of
the confidence interval for each parameter separately and
then find the smallest sample size that satisfies these
requirements simultaneously. To do this in general, for
the case of a multinomial population of k+l1 classes, we
would need an expression for each of the k semi-gxes of
the confldence ellipsoid in terms of the class probabilities
P, (1 =1, .., k) and sample size N, say fJ(N, P1s eees pk),
j=1, «ses, k. We would then require that fJ(N, Pys eses Py)
= 8y (] =1, «.e, k) where the aj; are the prescribed num-
bers. If for the j®P inequality (j =1, ..., k), the

- 10 =
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maximum value of the smallest sample size that satisfies
the inequality, N:, is found corresponding to the different

possible sets of pi's, we would then obtain

Ni, Ns, LI Y Nl‘; .

Then N = max N3 (] =1, eee, k) would guarantee that all
the conditions given by fj(N; Pys sees pk) = ay (1 =1, ecopsk)
are satisfied for any possible set of class probabilities.
But the expressions fJ(N, Dy eees pk) turn out to be
complicated functions of Pys ee+es Py eVen for the case
of k =3 and there does not seem to be any straightforward
way of getting such expressions for cases where we have more
than three parameters. However, if we have no special interest
in making one confidence interval shorter than any other, as
1s the case in most problems, we can use as will be shown
below the lengths of the confidence intervals to guide us
in the determination of a desirable volume of the confidence
region. Having decided on such a volume we can determine
what sample size to take to guarantee that with a given con=-
fidence coefficient our confidence region will be smaller
than or equal to the desired size of the region.
It is a known fact (Mood, 1950) that the maximum

likelihood estimators

ﬁi = ;iq @.= l, «eey k where N1 are the number of
occurrences of the event Ei) for the parameters p; of a

multinomial distribution of k + 1 classes from samples of
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size N are, for large samples, approximately distributed
by the multivariate normal distribution with means p; and

with coefficients Ngij of the quadratic form where

Oij =_6.li+—i'— 1’.1 = 1, e 0y k
Py Prwa
6,, =1 if 1 =j and 61j=0 ir 1 #

1]
Hence, the approximate large-sample distribution of the

estimators is given by: g(ﬁl, eoes Py)

k/2 1y
. 1 N "-2 5 —1— s - a -
( = ) o ¢ ° 3 ng N(I_)_i_i - Pk+1)(pi pi)(pJ pj)

glpi

and the large sample variances and covariances are given by
%i(l - pi) and -E%EJ respectively which are also the
exact variances and covariances for any sample size.

It is also known that the quadratic form of a k-varliate
normal distribution has the chil-square distribution with k
degrees of freedom and that the dccuracy of our approximation
is not impaired by substituting the maximum likelihood estimates
for the parameters in the coefficients of the quadratic form.
That 1s, for the case ofamultinomial distribution, the quantity

v = 121 .ng N(g_ij_+ 5;—;-1-) (py = pi)(f’j - py)

is approximately distributed like chi=square with k degrees

of freedoms Thus, 1if Ks is the upper € point of the

2K



chi-square distribution corresponding to a confidence

coefficient 1 - € and k degrees of freedom,
Prlv < Kg ()l =1-c¢

determines a confidence region in the parameter space the
boundary of which is given by the equation of an ellipsoid
in a k-dimensional space with 1ts center at (ﬁl, ¥ g ﬁk).
Thus, the equation of the ellipsoid is given by
k k

It is possible to determine the sample size such
that the volume of the confidence region we set up will be
smaller than or equal to some preassigned number. While
limiting the volume does not 1limit the length of each
confidence interval separately, it does 1imit the product
of their lengths and thus provides a kind of control on
the over=-all precision of the estimating process. Since
our parameters in the multinomial distribution are all
population proportions, one would usually desire the same
precision in the estimation of each parameter, as measured
by the length of its confidence interval. Thus we shall
choose the sample size in order that the wvolume of the
confidence region we get may be less than or equal to that
of the sphere whose diameter is the average length of the
confidence intervals we expect.

Cramér (1946) proves that the k-dimensional volume



of the domain bounded by the ellipsoid Q = c2, where @Q
represents a definite positive quadratic form of matrix
A, is glven by

Ttk/2 k

where A 1s the determinant |4].

In our problem, it is clear from g(ﬁl, ceny By)

NK
that A = L Thus,
121 Py
k/2 k (k*l. \1/2
= %?i:—). s (gglpi) where c¢2 = Ke,k
z'1 NK/2

Now, if Vo represents the desired volume, we would like to

know what sample size to take so that

k/2 k (k+1 A 11/2

Te%;——- ¢ 44 p
(%2 N¥/2 =1

Since the Bi depend on the sample, we cannot predict what

these will be, but if we would like to choose N so that
the above inequality will be satisfied no matter what the
maximum likelihood estimates turn out to be, we can consider
those values of ﬁi which would require the largest N and
then we would be sure that the same sample size would satisfy
the ineguality for any other values of ﬁi'

Thus we wish to find those values of ﬁi which would

maximize gt ﬁi and thus demand the largest value of N,

i=1
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k+1l k+1
Since Z p, =1 1is fixed, 7 p will be maximized when
1=1 1 i=1 1
all the ﬁi are equal to E%T « And so we must choose N
such that
k
Nk/z z nk/Q ;+ ’
+
(k+1)—1; vor'(ggg,
or g 5 -
- il
(1) (vl (E2) )2/
where cZ = Ke » k¥ * 1 1s the number of classes, and V,
»

is the desired volume,

As an example, consider a trinomial distribution
where we would like to estimate Pq and Py with confidence
coefficient 0.95,and where we wish to have the product of

the lengths of the two confidence intervals < % « Thus

we want to determine sample size such that the area of the

ellipse < %g . We have

2 = =
c = K0.05’2 5.99
k=2
v

= R =
o % 36 °

Therefore, N > n(5.99)

(3)3/2, % rfg)'

or N > 41,47
Now, 1f we take a sample of size 42, using the maximum like=-
lihood estimates, we can set up a confidence region of area

< %g with confidence coefficient 0,95,



CHAPTER TIII

CLASSIFYING TRINOMIAL EVENTS ACCORDING TO
THEIR CLASS PROBABILITIES

In certain problems on multinomial populations
we may not be interested in estimates of the class
probabilities but only in the ranks of the class
probabilities. In this chapter a single-sample
procedure for classifying the events in a trinomial
population is considered.

Let KJ = (le, X555 Xz4) be independent vector
observations from a trinomial population with an unknown
probability vector p = (pys Py ps), where 3pi is the
2

probability of the event E;, 0 < p; =1, 12, P53 = 1,

and X,, =1 1f the event E, occurs on the jth

ij i

observation and xij = 0 1f it does not (i1 =1, 2, 3;

J =1, esey; N where N 1s the number of vector observations).
Let q, < q2 < 9z denote the ranked probabili;iea Pys Pys Pa
nd T = Q T = 93 . =

the number of observations falling in the 1th

class
(1 =1, 2, 3); let Uy < Uy < uz denote the ranked values
of YiN and F1 be the event assoclated with Uy

The problem is to associate each event, Ei’ with



one of the ranked probabilities, Qg e Before experimenta=
tien starts, the experimenter should specify the smallest
value, t, of the ratios To,1 and Tz,2 that is worth
detecting and the smallest acceptable value, P, of the
probability of correctly classifying the events when

T2,1 and Tz o are greater than or equal to t. That

is, it is required that
Prcorrect classification | Ty ka1 2 t1 2P (k = 2,3)
]

To achieve the gbove goal, take a random sample of
N vector observations and compute Uy, Uy, and ugz.

(1) 1Ir Uy < Uy < u; associate each F; with s
(1=1, 2, 3)0

(2) If Uy < u, but u, = u; , associate F, with
q; and use a random device to select one of F2 and Fgz
to be associated with a5 and the other with Az

(3) Use a similar procedure if u; = u, and

< ..

Yo 3

(4) Ir u =, = Uy select as the event associated
with qQ, one of Fl’ F2, and Fz, and associated with a,
one of the remaining two events, always using a random
device,

With this procedure for classifying the three events,
our problem reduces to the proper choice of sample size so

that the probability of a correct classification > P for

all possible q < 9y £ gz for which Tk,k-l >t (k=2, 3),
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Thus we consider that set of probabilities 915 95s 9z
which for any given N and t minimizes the probability
of a correct classification when T, k=12t (k =2, 3).
This will be called the least favorable configuration of
the qy's. It is proved in the next chapter that the legst
favorable configuration of the qi's in a trinomial
distribution is given by Ty,k-1 = t (k =2, 3), That is,

93 = 95 = t gnd since + + = 1
q.g q,% ql q2 Q3 ’

2
e i g, = t . e B t
1 1 +¢+¢t2° 2 1+ t + t2 S 1+ t + te

This means that if we choose N large enough to make the
probability of correct classification with the least
favorable configuration greater than or equal to P, we
wlll be sure of at least that probability for any configu-
ration of the qi's with Tk,k-l >t (k=2, 3),

For any fixed N the exact probability of correct
classification is given by

Ni
ul 1112 !us !

Q= Qlay, gy, 9,) = 2 Sluy, vy, u,). q;"1 g, q;"3

where the summation 1s taken over all vectors Uy = (ul,ue,us)

3
such that 1§1 uy =N and uj; 2 u < uz , and

I

1
Z 1f w) <u; and wuy = ug; or uy = ug

and U2 < uS-

ir u, = Uy = ugze

"
O
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is considered correct.

any two

qq's are equal, either way of classifying then

Similarly, if all three qi’s

are

equal, any way of classification is considered correct,

Table 1 gives exact probabilities of correct

classification with the least favorable configuration for

t = 1.1(,1)1.4(,2)2.0(.5)3,0

TABLE 1

eand N = 1(1)30,

EXACT PROBABILITY OF CORRECT CLASSIFICA‘I‘ION1

N | t=1.1 | t=1.2 | t=1.3 | t=1.4 | t=1.6 | t=1.8 | t=2.0 | t=2.5 | t=3.0
1 10.1828 10,1978 |0,2118 |0.2248 |0,2481 |0.2682 |0.2857 |0.3205 [0.3462
2 | #1883 | 42087 | 2277 | .2454 | .2769 | .3037 | .3265 | .3698 | .3995
S | #1937 | .2216 | .2480 | .2632 | .3198 | .3609 | .3965 | .4646 | .5100
4 | +1986 | 42300 | .2602 | .2893 | .3415 | .3873 | .4265 | .5005 | .5488
5 | 2028 | .2387 [ .2736 | 3070 | .3686 | .4223 | .4681 | .5546 | .7166
6 | .2066 | .2459 { .2857 | .3232 | .3916 | .4505 | ,4999 | .5896 | .7556
7 | +2100 | .2536 | .2964 | .3373 | .4121 | .4763 | .5300 | .6262 | .8511
8 | .2083 | .2604 .3067 | .,3511 | ,4318 | .4998 . 5660 | .6540 | ,8760
9 | +2164 | .2670 | .3169 | .3646 | .4508 | .5231 | .5820 | .6227 | ;061
10 | .2188 | .2730 | .3332 | .3764 | .4675 | .5449 | .6032 | .7052 | .9046
11 | .2221 | .2790 | .3341 | .3880 | .4816 | .5627 | .6251 | 7275 | .9106
12 ) .2248 | .2847 | .3434 | .3998 | .4965 | .5811 | .6448 | .7462 99117
15 | .2274 | .2901 | .3517 | .4104 | .5110 | ,5980 | .6628 | .7642 | .9129
14 10.2299 | 0.2954 | 0.3599 | 4210 | 0.5256 |pe6142 | 0.6818 |0.7799 |o.9111




TABLE 1 - Continued.

N t=1l.1 t=1.2 t=1.3 t=1.4 t=1.6 t=1.8 t=2.0 t=2.5 t=3.0
15 |0,2323 |0,3005 |0,3677 |0.,4410 |0,5395 [0.6285 |0.6865 0.7921 |0,9080
16 «2347 «3056 3754 «4412 «5535 « 6440 - 7086 «3078 «9162
37 2254 «2994 « 3730 «4426 «0614 «6548 « 7217 .3198 .9181
18 «2358 « 3123 « 3877 «4583 «0781 «6665 . 7362 «3316 «9251
19 «2329 « 3116 « 3897 «4631 « 5875 6819 «7482 «8415 « 9303
20 « 2327 «3166 «3978 « 4735 « 6008 6954 «7614 «35816 «2380
21 « 2356 «3190 «4014 « 4785 .6090 .7048 7714 «3603 94453
22 «2395 3253 +4102 «4895 «6206 . 7170 « 7831 8688 « 9531
23 02355 « 3221 «4101 .4918 .6186 7247 «7906 «8762 «2576
24 2426 3321 <4219 « 5064 « 6406 7375 8151 .8839 « 9683
25 «2417 «3325 «4250 «5093 « 6452 «7436 «8078 «3904 « 9743
26 2424 « 3365 «4294 «5160 «6562 « 7646 .8148 «3961 «9820
27 « 2456 « 3410 4347 «5223 « 6634 7730 «82560 «9040 « 9899
28 «2481 « 5458 «4423 « 5306 «6718 7813 «38318 .9072 .9946
29 «2469 » 3468 «4439 «5348 « 6787 « 7954 038375 «9122 |0.9985
30 10,2504 |0.3526 [0,4517 |0,5440 |0,6833 |0.8049 0.8449 [0.,9075 |1.0000

For a given value of t, with increasing
expect to get higher probabilities of
There are a number of entries contradi

possible mistakes in computation.

prevented re~computing these probabilities.

- 80 =

sample size we
correct classification.
ctory to this, indicating

Lack of time and funds has



Even for moderately large values of N, computing the exact
probabllity of classification becomes extremely laborious,
Thus, we consider next an approximation to the probability
of correct classification.

Using an approach analogous to that used by
Bechhofer, Elmaghraby, and Morse (1959) in their paper
"A Single=Sample Multiple=Decision Procedure for Selecting
the Multinomial Event Which Has The Highest Probability",

we let

W, = 2 arcsin Vui + i7N - 2 arcsin Vui /N 1=1, 2
The probability of correct classification is given by
e 1 -

*% Prlu; - u, =0, up - u3 > 0] +

ol L

D) PI‘[U.S - Uy =0, Up = uj= ol.

Because of the equality signs, the last three terms become

nezligible for large N and @Q can be approximated by

Q® = Prlug = u, 2 0, u, = u; 2 0]

or Q° Pr[Wl > 0, W, > 0].

2

We need to find E(W,), V(W,) and Cov(W;, Wy) 1n the
least favorable configuration.
If we expand 2 arcsin vhi?N around the point

By
 calke qy, We obtain
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2
2 aresin Vu17N = f; * r1(§l -q) + % f;(;i ~ q4)

1
+ s oph(ly _ 3 1 eiveuy _ 4 1
6 T1'(GE = qy)° + o1y (F = )" + o(5)
where fy, = 2 arcsin ti
£ = L
f“ - 2qi = 1
i =
2
£ = Sq1 -84y ¥ 3
5
iv 2
t, = 3(2q; - 1)(8qj - 8q; + 5)
7 -
Bti(l qi):
We find
E(2 arecsin Vu17N) = fi + r; qi(l ; 1) + f;l qi(l-qi;él-eqll
2 6

4 fiv[QE(l - 9;)% , a3(1 - q4)(1 - 6qy + 6q3)

1 + o(&y)
8N2 giﬁ3 EI

Since E(W,) = E(2 arcsin Vuy 4 1/F) - E(2 arcsin Vuy/N) (1=1,2),
we find, in the least favorable configuration,

- a
E(Wy) = a) + 22 + 0(%2)

her = 2 arcsin Y t -2 csin 1
where al l+t+t2 ar Vl-l'tci-tg

= =(1 -t + t2 - l=t -t°
4/t(1 + t2) 4/t(1 * t)
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E(wz) = a

a4 i
3+_N__+ o(NE)

2

]

-2 arcsin'w t

where a
° 1+t + 2

2 arcsin'v
1+t + t°

g ==+t -t2) . 1.4+ 2
4 4t V1 + ¢ Z—;ﬁﬁiifi%T
The variance of W, (1 =1, 2) 1s given by
V(Wi) = V(2 arcsin v@GfEf;:ﬁi) + V(2 aresin VG;7ﬁ)
- 2 Cov(2 aresin Vu; 4+ 1/, 2 arcsin Vﬁz7ﬁ)

But V(2 arcsin Vu;/N) = E(2 aresin Vui/N)z - [E(2 arcsinVu17N)]2

)
49y - 4qy + 5] + 0(&)
8qi(l-qi) NS

=l+!-.
¥ w2 i

and

Cov(2 arcsin Vuy;/N, 2 arcsin VuJ7N)
E[(2 arcsin Vu;/N)(2 arcsin VuJ7N)] - E(2 arcsin Vu17N)

E(2 aresin VhJ/N)

= < 2 d; 44 P 94 qj_(qu-l)(Bq.i-l)
N NB[ 3
Vajq4(1-q4)(1-q5) BVhqu(l-q17311-qj)

+ 9ya4(2qy = 1)2 + 9135(2q - 1)2
o/ a5(1-a3)3(1=a;)  4/a4a3(1-q5)(1-q;)3

- QJ(QEE - 8qy + 3 qi(gqi — qugf 3) 1
= o ] + 0(==)
BVhiqj(l-qifs(l-qJ) quiqj(l-qi)(l-qj)a N°
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Thus, in the least favorable configuration,
)
V(W,) = P1 + P2 & o)
I R

where 'b1 =2 + 2
V(1+t) (1+t<)

b o= (1+H6+62)2 (o4+4+42) + (1-£-£2) (1-£+£2)
4t(1+8) (1+82) V(1+t) (1+¢7)

3(1+t+42)2 (o+£+t2) _
* 8t (1+6) (1¥t2) 1

1
and V(W ) = P3 + Pg + o(&)
2) N W NS
2
where b5 =2 + 2t

Vi (1+t) (1+t2)

b, = LA¥E+t2)2 (Aterer?) - t2(1+e-t2) 1-6+42)
4(1+t) (1+t2) Ve (1+t) (1482)
+ B(1+6+£2)2 (1+p+p82) _
8t2(1+t) (1+£2)

Finally,
Covfwl,we)

E(Wl w2) - E(Wl) E(Wg)

Cov(2 arcsin Vu27N, 2 arcsin Vu57N)

V(2 arcsin Vuy,/N)=-Cov(2 arcsin Vu17N,
2 arcsin Vu,/N)

+ Cov(2 aresin Vu17N, 2 arcsin Vu27N)

which in the least favorable configuration gives the result:



Cov(Wl, ”2) = %l + %% * O(ig)
Y —T— .
h = -1 =t B (3
where c4 YT(1+e) (1762) Y(1+t)(l+t2) 1+t

o, = £2(1-t+t2) (1+-t2) - (1+t+£2)2(1+t+2t2)
® e(1+42)(1+¢) Ve (1+62) (1+5)

(1=t=t2) (1=t+t2) + (1+£+£2)2 (o+t+t2)
8t (1+t2) (1+t) V(1+t2) (1+t )

P22 (oes®)(ree?) o 1o 3Qepe?)?
8t(1l+t ]

8(1+t)° V& 2 gt(1+t2)

As M=, it will be shown below, that the joint
distribution of the standardized variables approaches a
bivariate normal distribution with zero means, unit
variances, and a correlation coefficient equal to

Cov(Wy, Wo)
VW WATTH,)

It 1s shown by Cramer (1946, pp. 418-419) that in

the 1limit the variables given by

z, =4 = Ngy (1 =1, 2, 3)

1
'\!Nqi

have a singular normal distribution, with zero means and

covariance matrix

l-a; =Vaa, =g,
Vaa, 1l-a, Vazag

-Vaa;  -aa, 1-gq,
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Thus, as M=, the distribution of M1 Y2, U3 gapproaches
a, N N N
N(p , E) where p = qp | and
q3
9y (1-q,) "9 ~%393
N N N
< - |2%2% p(1-ap)  -ggas
B, N N N
=q,43 “dpQz q5(1'q;5)
N N N

Now, since Hl and W2 are continuous functions of

24 (1 =1, 2, 3) and have continuous first partial
N
derivatives in the open interval O < %l < 1, and since

as N+= the probability that %é =0 or ;l: 1

approaches zero, we can apply the lemma given by Rao

(1952, p.207) to conclude that as MN** the distribution
of Wy approaches that of N(a;, 21) and the distribution
of WB approaches that of N(ag, %g). Again using the
lemma, we can conclude that any linear combination of Wl
and WQ approaches a normal distribution as N»=, Now,

by a theorem given by Anderson (1958, p.37) we conclude

that wl, Wg have, in the limit, a bhivariate normal

E(W,)
distribution with mean vector ( 1 ) and covarlance
V(W) Cov(wyWy))  \E(Wp)

matrix
Cov(WyWy)  V(Wy)

Therefore, for given t and N, an approximation
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to the probability of correct classification 1s obtained by

o - >
Q {: / £(ty,t,) at at,
V& B
- a2
where A = a, + i

¢ ¥
¢c=2214+0
N N°
D=P§_+b4
N N2
c c
E=_1+ 2
N N2

and g(tl,tg) 1s the bivariate normal density function

with zero means, unit variances, and correlation

Since =A gng =B happen to be negative numbers,

VD

the approximate probability of correct classification can
be found using the fact that

@ =Flp + P + (A By oy

VD V€ b

3 2
where F(x) = /z e Q dz 1s the area under the standardized

g

normal curve
and F'(x,y) = 43 {:'g(tl, ts5) dt, dt, 1s the volume under
a bivariate normal surface (Elderton et al.1930).
Table 2 gives such approximate probabilities of correct
classification with the least favorable configuration for
t =1.1(.1)1.4(.2)2.0(45)3.0) and N = 5(5)50(10)100(25)
250(50)500(100)1600(200)2000(500)5000, 6000(2000)12000,



TABLE 2

APPROXTMATE PROBABILITIES OF CORRECT CLASSIFICATI ON

N t=1.1 | t=1.2 | t=1.3 | t=1.4 | t=1.6 | t=1.8 | t=2.0 | t=2.5 | t=3.0
5 10.2018 |0.2399 [0,2746 [0.3111 |0.3738 |0.4278 |0.4718 |0.5535 10.6075
10 | .2209 | .2746 | .3272 | .3767 | .4696 | .5436 | .6051 | .7030 | .7545
15 | 2327 | 43004 | .3684 | .4305 | ,5435 | .6292 | .6951 | .7917 | .e382
20 | o2422 [ 3273 [ .4021 | .4787 | .6081 | 6946 | .7592 | .2490 | .ess5
25 | 42544 | ,3463 | .4333 | .5178 | .6502 | .7446 | .8088 | .8870 | .0162
30 | <2619 | .3685 | 4646 | .5533 | .6922 | 7872 | .8444 | .9144 | 9377
85 | 2720 | .3854 | .4928 | .5859 | .7293 | .8200 | .8753 | .9330 | .9531
40 | .2798 | .4022 | ,5180 | .6143 | .7610 | .8471 | .8959 | .c477 | .9642
45 | +2901 | .4193 | .5374 | .6421 | ,7866 | .8683 | .9145 | .9584 | .9790
50 | 2053 | .4334 | .5590 [ ,6661 | .8088 | .8863 | .9286 | .9678 | .97a1
60 | 3084 | .4618 | .5992 | .7053 | .8463 | .,9168 | .9509 | .9788 | .9871
70 | «3219 | 4874 | 6323 | 7415 | .8769 | .9369 | .9643 | .9862 | .9918
BO | <3354 | .5125 | .6595 | .7746 | ,9000 | ,9525 | .9743 | .9908 | .9951
90 | +3463 | 5349 | .6878 | ,7994 | ,9174 | .9631 | .9812 | .9940 | .9968
100 | 3574 | .5567 | .7125 | .8228 | .9327 | .9716 | .9863 | .9859 | .9979
1256 | 43825 | .6047 | .7658 | .8678 | .9572 | .9845 | 0934 | .9982 | .0993
150 | .4050 | ,6403 | 8071 | .8996 [ .9728 | .9917 | .99628 | .9994 | .999s
175 | 4249 | .6790 | .8384 | .0237 | .eses <9953 | .9984 | .9998 | 0.9999
200 | .4476 | ,7085 | .8646 | .9411 | .9888 | ,9973 | .9992 | 0.9999 |1.0000
225 | 4674 | 7364 | .8861 | .9554 | .9927 | .9985 | .9996 | 1.0000 |.e....
250 | +4844 | ,7607 [ .9052 | ,9659 | 49952 | .9991 | +9998 [ eeveee fuoeuns
300 [ .5181 [ .8029 [ .9314 | .9789 [ .9977 | .9997 | 049999 | vovvus luuunns
350 [ 0,5485 | 0.8349 [0,9504 [0,9869 | 0,9990 [ 0,9999 | 1.0000 | veveee | covens
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TABLE 2 = Continued

t=1.2

t=1.3

t=1.4

t=1.8

t=2.5

t=3.0.

400
450
500
600
700
800
900
1000
1200
1400
1600
1800
2000
2500
3000
3500
4000
4500
5000
6000
8000
10000
12000

0,5728
«5993
«6225
«6645
6993
« 7300
« 7565
.7812
«8207
«85631
.8788
8998
«9166
« 9469
« 9656
« 9775
« 9851
« 9902
« 9934
« 9970
« 2004

0,9999

1.0000

0.8630
. 8838
«9021
«9301
« 9502
« 2633
« 9738
« 9806
« 9894
« 9942
« 92968
« 9082
« 2989
« 9998

0.9999

1.0000

0,9642
« 9739
« 9805
« 9897
. 9042
« 2967
« 9982
. 9989
« 2997

0.9999

1.0000

LR )
L I
ees e 0
LRI
LI
L L )
L
® 000
LU Y
*® s s 80
L

0.9918
« 9949
« 9968
« 9987
« 99904
« 9998

0.9999

1.0000

LB
L
L
LB
L
L
L L
L L
L L I
L )
L L B
LU B
L )
L A

L L

0.9995

« 9998
0.92999
1.0000

1.0000

. e o0
L L
L B
L B I ]
L L L
L L
L L
. e e 0
L )
LU
L L
L B
L
L B N
e s 80
L B
L B
. e s a0
LB
e e 8 a0
L BB ]

LU

* s s

L I

L B

L

L L BN ]

L B

L L

.o "0 00

o & s an

L L B A

L ]

L

L B I

L

L B A

® 8800

L B

e 800

LB

L B

S e o0

L L

L L I

L ]

- e 80

"o e 0

LU L

L
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Thus, in a problem where we wish to classify
trinomial events according to their class probabilities
such that the probability of correct classification 1s
greater than or equal to P when the true ratio 9k
(x = 2,3) 1is greater than or equal to t, where e
P and t are specified by the experimenter, to determine
the sample size that will guarantee thls requirement, we
consult one of the above two tables. If the values of
P and t that have been specified are found in the table
of the exact probabilities of correct classification we
certainly use that table. Otherwise we make use of the
table of the approximate probabilities of correct clas-
sification.

To illustrate the use of these tables consider a
trinomial population in which we are interested in clas~-
sifying the events such that

Prlcorrect classification | Tk,k-l'z 1.6] > 0,90 (k=2,3)
We would like to know what sample size to take to achleve
this goal. Table 2 indicates that with a sample of size
80 we will be sure of at least that probability. Thus
we take a sample of size 80 and compute w4y, Uy, and Uge
Using the procedure described at the beginning of this
chapter, we can now assoclate each F; with one of
ay (1 =1, 2, 3)s Since q; = 9y = qz Wwe have thus
classified the events according to their class probabili-

ties.



Table 3 compares the approximate and the exact

probabilities of correct classification for N = 5(5)30,.

COMPARISON OF EXACT AND APPROXIMATE PROBABILITIES OF

TABIE 3

CORRECT CLASSIFICATION

N t=1.1 |t=1.2 [t=1.3 |t=1.4 [t=1.6 |t=1.8 |t=2.0 [t=2.5 |[t=3.0
Exact [0.203 |0.239 |0,274 |0,307 |[0,369 |0.,422 |0,468 |0.555 |0,717
ApproxJ0.202 |0,240 (0,275 |0.311 [0.374 |0.,428 |0.472 [0.554 |0.608
Exact |0.219 [0,273 [0.333 |0.376 [0.468 [0.545 |0,603 |0,705 0,905

1 Approx{0.221 [0,275 |0.327 |0.377 [0.470 [0.544 |0.605 |0.703 |0.,754
Exact |0.232 |0.,300 |0,.368 |0,441 |0,540 |0.628 |0.686 |0,792-]0,908
0 Approx|0,233 |0,300 |0,368 |0,430 |0.,544 |0.629 |0.695 |0.792 0,838
Exact |0.233 [0.317 |0.398 |0.474 |0,601 [0.695 |O0,761 [0.,852 (0,938
20 Approx|0.242 (0,327 |0.402 |0.479 [0,608 |0.695 |0.759 [0.849 [0.886
Exact |0.242 |0.332 |0.,425 |0.509 (0,645 |O0,744 (0,808 (0,890 |0,974
° Approx{0.254 |0,346 |0.433 |0.518 [0.650 0,745 [0.809 10.887 |0,916
Exact |0.250 |0.353 |0.452 |0.544 |0O.688 |0,805 |0.845 |0,908 |1.000
T Approxd 0,262 |0.368 |0.465 |0.553 |0.692 |0.,787 [0.844 |0,914 0.938
We would expect our approximation te improve with

larger values of

N, However, even though comparison of

the exact and the approximate probabilities of correct

classification indicates satisfactory results in general,

it fails to show.consistont improvement of the approximatien



with increasing sample size. This is probably due to
mistakes in computation which time does not permit to
check.

Use of the same approach for cases where we have
more than three classes will lead to similar approximstions,
but since the variables Wi are not identically distributed,
lack of appropriate tables of the multivariate normal dis-
tribution prevents the possibility of making similar tables
for the probability of correct classification for given

values of t and N,



CHAPTER IV

THE CONFIGURATION OF CLASS PROBABILITIES
LEAST FAVORABLE TO CORRECT
CLASSIFICATION

Let q1 < q2 < q3 denote the ranked class probabi=-
1ities in a trinomial population and let Q = Q(ql,qz,qs)

be the probability of correct classification of the events
while using the procedure described in the previous chapter.
We will show that among all configurations of q = (ql,qe,qs)
for which Ty 3 2 t where Ty y_j = ‘_;.l_li_:l (k = 2,3) the

one that minimizes the probability of correct classification

is given by Tk,k-l =t j that is, qgz = tq2 and q; = tql
The method of proof to be used is analogous to that used
in a paper by Kesten and Morse (1959) where they find that
configuration of the q4's which minimizes the probability
of correct selection of the event with the highest class
probability.

We shall first consider the simpler case of a
binomial population. Using the same notation as above we
wish to show that among all configurations of q = (ql,qz)

for which Tg 3 = %g,g t, the one that minimizes the

1
probability of correct classification is given by qQ = tql.
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For any fixed sample size N, the probabllity of

correct classification is given by
2 S(u,, u,) (8,) q "1 ¢, 2
1 V! M1/ 91~ 9

where aq + qQ = 1, and the summation is taken over all
vectors 1uy = (uy, up) such that u; *+u, = N and
Uy Z Uy, and

S(uy, ug) =1 if uy < uy

1 if u, = use
) 1 2

Since the sum is empty for u; = u,, the sum above represents

Prlu; < u,) + F Pr [u) = wl.

For uy = u, , define
ug

N X
2° qz) = xéo (x) q a

N=x

flu -

which can be rewritten as the incomplete beta function

(Rao, 1952),

= N} 2 N-uo=-1 - ug
fluy, q,) o1 (Feuy=11] gq x (1 - x) “ax

Thus, f(ug, ay) 1s an increasing function of qg.
Now, the probability of correct classification can

be written as
i - + 1
$ flu, - 1, qg) 5 flu,, q,)

which is the sum of two terms each of which is anincreasing

functiom of dg» and so the probability of correct classification
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is minimized by minimizing qg. Thus in the binomial case,

among all configurations of q = (qj, q5) for which

g% > t, the configuration that minimizes Qp, namely
ap = tqy, will minimize the probability of correct classi-

fication. Applying the condition that aq + 9 =1 glves

1
1+t

the result that Q, = and q = e &

1+t

In a trinomial population, the probability of

correctly classifying the events can be written as

= N} uy ug ugz
Q=2 S(uy,u,, ug) T, ! Q; ~ 9 ¢ agz
Ug

- Ni ujtu u (uqy+u=)! (42 L |
= 3 ( + ) ] 2. 3 u L

(ul+u3)lu21 9 9 % uj=o uli usl (Q:L q5) *

a3 Us
(ql+q5) - 8(uy, uy, ug)

where the outer summation is over all [(u1 *ug), uyl

such that uy) + ug + uz = N and u; < up < uz, and

S(ul, u,, us) =1 if u <uy <ug

= % if uy < u, but Uy, = uz j also
if uy = u2 and u2 < U,

- A = =

= 5 it u1 u2 ua.

Ir a, is held fixed, Q, + Az is also fixed.
Therefore @ can be considered as a function of only one

variable. Considering it first as a function of q, we



will show that this probability is a non=-increasing function
of aq» and so the probability of correct classification is
minimized by maximizing q- On the other hand, considering
Q@ as a function of Qzs We find that it 1s an inereasing
function of qs. Thus the probability of correct classi=-
fication is minimized by minimizing az - Now, since we
should have 92 >t and 93 > t, we can maximize q; by

a1 Qs
putting qQ; = %a and we can minimize qz by putting
qQz = qzt. Since we must also have q; * gp + qz = 1, the

three conditions:
9 T 9/t
Qz = Qb
+ -
Q) Y t a3 =1

give us the values of 415 9o and qz in terms of t.
The values of the a4 that we so find represent that
configuration of q = (qy, a5, qz), among all configurations

in which 9k >t (k= 2,3), which minimizes the proba-
k=1
bility of correct classification. This will be called

the least favorable configuration.

It 1s sufficient to prove that the inside sum in
the expression for Q above 1s a non-increasing function
of aq and an increasing function of qz since the
probability of correct classification consists of the sum

of terms each of which is proved to be a non=-inecreasing
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function of a, and an increasing functlon of Qze
Consider the inner sum for fixed P and some
fixed value of u,, say a. Thus uy + Uz = N =-a 1is

also fixed. Now, define

a Neg=x
= 3 (N - a)l 1 -p) 8% X
gla) x=0 xM}N - g = x) ( r ¥
where r= _% .

q * 93
This can be rewritten as the incomplete beta function

(Rao, 1952):

-r - s
fl xN 2a=1 (1 - x)%ax

gla) = (N - a)l
al (N - 2a = 1)} ©
This is an increasing function of 1 - r = 93 and so

Q,%q
an increasing function of qz, but it is a non-increasing

function of r and therefore a non-increasing function

of qqe
(1) If the fixed value of u, 1is given by a =

=

»

the inside sum in @ c¢an be written as

Pr(u, < al] + %‘- Pr[u1 = a] = 42— gla = 1) + %- gla)e

(2) If a < %, we have

Priu, < al + -2]: Prlu; = al = % gla = 1) +% gla).

(3) If a >% » We have

1

Prlu; < N-2a] + 3 Prlu; = N - 2a] = % g(N - 2a = 1)+ % g(N=-2a).

2
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Therefore, if we use values of q; and qz that
minimize g, we will be minimizing the inner sum and so
each term of the sum involved in the probability of correct
classification, as we vary Ugs will have been minimized.

This condition together with qQq + Ao + qQz = 1
gives the result that the least favorable configuration 1s

given by
p— - iy d - EF
9 = Tre+e? % T iEeer 0 Y BT TrpEr—

It is this configuration of the qi's that has
been used in the preparation of the tables of the previous
chapter that give the exact and the approximate probabilities

of correct classification for various values of t and N,
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