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ABSTRACT

The thesis is concerned with the discussion of the
unique factorization theorem in different systems, mainly
in the imaginary quadratic fields of the form R(y/m) where
m is a square free negative integer, and R denotes the
real numbers. A quadratic fleld is cglled simple if the
unique factorization theorem holds in that system.
Necessary conditions are given for which R(ym) 1s simple.

A short discussion of the unique factorization for
polynomials and permutations 1s given.

Some systems are not simple. One such example is
R(V/=5). Te ideal theory is introduced to restore uniqueness
of factorization in such fields. Some examples are given
to show how this can be done by shifting the emphasis from
factorization into prime factors to that of factorization

into prime ideals.
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CHAPTER I

INTRODUCTION

1., Definitions.

a)

b)

e)

d)

Divisibility: An integer a is said to be divisible

by an integer b if there exists an integer ¢ such
that

a = be.,

We write bla, and say that b divides a or a 1s
a multiple of b.

Primes: A non zero integer p other than + 1 is
called a prime 1f its only divisers are + 1 and
Y p.

Later we shall see why we exclude 1 from the
primes.

Algebraic integers: An algebraic integer is g

number which satisfies an equation of the form:

x°2 + +a =0

n n=1
X +an-l X * 311-2 R o

where the ajy's are rational integers.

Units and primes in the ring of algebraicintegers:

€ is a unit if it divides 1.
An algebraic integer o is prime if it is not
zero or a unit and if any factorization
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ot:ﬁY into algebraic integers implies that either
(3 or Y 1is a unit.

o and 3 are associates if & = eﬁ .

2. Statement of the problem.

The fundamental theorem of arithmetic states that:
"Every rational integer greater than one can be expressed
as the product of primes. This representation 1is unique
except possibly for the order in which the prime factors
occur," This is sometimes called the unique factorization
theorem for integers.

If we extend the meaning of integer to include
algebraic integers in a quadratic field, the question
that arises is whether the unique factorization theorem
still holds. There are some quadratic fields in which
uniqueness of factorization is not valid. The quadratic
rield R(1/~5) is one example. The ideal theory is introduced
to restore uniqueness of factorization in such fields. In
a later chapter, we shall define an ideal, an irreducible
ideal, divisibility for ideals and other arithmetics for
ideals. Also we shall see that there is a completely
satisfactory arithmetic for ideals. The problem will be
settled by shifting the emphasis from the factorization of
integers to that of ideals.

The introduction of the 1deal factors is due to

Kummer, but the form that we use here is due to Dedekind.



CHAPTER II

UNIQUE FACTORIZATION IN
OTHER SYSTEMS

1. Unigue factorization for the natural numbers.,

In the set of natural numbers a prime is defined
as a natural number greater than one which 1s divisible
only by 1 and itself., The fundemental theorem of arith=-
metic in this set states that:

"Every positive integer greater than 1 can be expressed
as the product of primes in one and only one way except possibly
for the order." It is to be understood that as a special
case, a "product" of primes may consist of a single prime.

This agreement is to take care of the case in which the
integer 1tself is prime. This means that the process of
factorization of any positive integer will always lead to the
same prime factors. With this in mind, we shall see why 1

1s excluded from the 1list of primes. For if 1 is considered
as a prime, then it will be possible for every positive
integer to be factored as the product of primes in two
different ways. For example, 6 = 2 x 3 1s one factorization
into primes, and 6 = 2 x 3 x 1 is another. Hence 1 is not
considered as a prime unless we wish to change the statement

of the theorem.
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A prime integer in this set may be defined as a number

different from 1, having no factors in C other than 1

and itself. According to this definition 10 and 19 are

primes in C,10 x 19 = 190 is in C, and it is not prime

in C, Hence there are integers in C which are not primes.
The unique factorization theorem does not hold in

C, because we can find a number in C which can be expressed

as a product of prime factors in two different ways?

25630 9 x 281 + 1, Hence 2530 is in C,

46 x 55 and 2530 = 10 x 253,

2530

All these factors are in C because each can be written in

the form 9n+l, where n is a pesitive integer. Also, all

these factors are prime in C. Therefore 2530 is a number

in C and it is possible to express it as the product of

primes in C in the two different ways. This shows that

the unigue factorization theorem does not hold in C, Becguse
of this, we see that C has some unusual properties. 10 and 46
are relatively prime in C, and each is a factor of 2630 in C,
but their product is not a factor of 2530 in C. Such B pro=
perty can't happen in systems where uniqueness of factoriza-

tion holds; 5

4. Factorization of polynomials. [3, p.l42],

Let Flx] denote the ring of polynomial functions in

the indeterminate x over a fleld F. If f(x) and g(x) are
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+
The proof of this theorem [5, p.11] may be found

in any standard text on the theory of numbers.

2. The Unique factorizgtion theorem for integers.

The two integers +1, <1 are factors of every integer.

Thus we exclude * 1 from the list of primes.
An integer p is said to be prime if it is different from
0, * 1 and has no factors other than * 1, + p.

Any integer may be expressed as the product of
primes in more than one way. For example, 10 = 2 x 5
and 10 = (=2)x(=5), and these are two different repre-
sentations of 10 as a product of primes.

With these remarks in mind, the unique factoriza=
tion theorem should be modified to read:
"Every integer other than O, + 1 1s either prime or it
can be expressed as a product of prime factors uniquely,
except possibly for the order and the sign of the factors."

For the proof of this theorem see [5, p.13].

S« A System in which the unigue factorization does.not hold.

Let C denote the set of all integers of the form

9n+l, where n is a positive integer or zero

c =21, 10, 19, ..., 9n+1, }

+
(5, p.11] = Page 11 of the book whose number is 5 in the
entries of the bibliography. Here, and within the text

hereafter, square brackets like this will have corresponding

meaning.



are in F[x], then g(x) is said to be a divisor of f(x) if
there is a polynomial h(x) in F[x] such that f(x) = g(x) h(x).
We say that f(x) is divisible by g(x) or it is a multiple of
z(x) and write g(x)|f(x). |

If K is a non zero constant in F[x], that is K 1is
a non zero polynomial of degree zero over F, then it follows

that K1 1s in F, and

-1(

f(x) = K (K f£(x))

this implies that K f(x) is always a factor of f(x). Thus
if

f(x) = g(x) h(x)
is any factorization of f(x), then

£(x) = (K g(x)) (K™ n(x))

is another.

Hence the definition of a prime polynomial must
exclude all polynomials of degree zero. The polynomial
p(x) of positive degree over a field F is said to be prime
if p(x) can't be expressed as the product of two polynomlals
of positive depgree over F.

Because the degree of the product of two polynomials
over F is the sum of the degrees of the factors, it follows
that any polynomial of degree 1 over F 1s prime over F.

Tt should be pointed out that a polynomial p(x)
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may be prime over a fleld Fl, but ceases to be prime over
another field F,. For example the polynomial x2 + 1 is
prime over the field of real numbers, but it is not prime
over the field of complex numbers.

Thus the unique factorization theorem for F[x]
states that: [3, p.143].

"Any polynomial f(x) of rositive degree over the
field F can be expressed uniguely as the product of prime
polynomials over F except possibly for the order of the

factors."

5. Factorization of permutations. [4, p.70].

A permutation is a one to one mapping of a set onto
{tself. The permutation in which every element is mapped
onto itself is called the identity permutation and is
denoted by (1).

The product of two permutations is defined as the
resultant of the two mappings.

For a set of n sumbols, there are n! possible
mappings. The set of all such permutations forms a group
under the product operation.

Let S =={a1, Bos sees an'} be a set of n symbols. The
permutation m is sald to be a cycle of length r if =

permutes a subset ial, Bos eses ar} of S, such that

ai"[ = 9“1.'.1, 1 =1, 2, sesy =1 and &r’l'[ =l1’
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and leaves all the other elements of S8 unchanged. This

permutation 1s denoted by

(al- 32 e ar).

If ® is a permutation of length 2, then m is called a
transposition.

Every permutation can be expressed as the product
of two disjoint cycles [4, p.68], and every cycle can be
written as a product of transpositions. For example the

permutation

3 5 1 2 6 4

can be written as

(13) (2564)

which can be written as

(13) (25)(26) (24)

and this is a representation of the permutation as the product
of transposition., However, this representation is not unique
because we could have added the transpositions (26)(26)
without affecting the permutation since (26)(26) = (1)

which is the identity permutation. Thus the number of
transpositions, in the representation of a certain permu-

tation as the product of transpositions, is not unique as

asserted by the. following theorem which is due to Cauchy [4,p.70].
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"If a permutation m on n symbols can be factored
into K disjoint cycles, the number of transpositions in
any representation of m as a product of transpositions is
either always even or always odd according as n=-K 1s even

or odd."



CHAPTER III

UNIQUE FACTORIZAPIONS IN
IMAGINARY QUADRATIC FIELDS

l. Introduction.

Let ¥ be a field and © be algebraic over F. F(0)
is defined to be the smallest field containing both F and O,
and is called a simple algebraic extension of F,.

In the following discussion R denotes the field of
real numbers and @ will be of the form'VE, where m is a
square free rational integer. TPhat is R(y/m) will denote
a quadratic field. If m < O, then R(y/m) will denote a
complex quadratic fileld.

R(v/m) will be called simple if every integer in
R(y/m) can be expressed uniquely as the productof prime
integers in R(y/m) except possibly for the order and multi-

plication by units.

2. Gaussian yumbers.
Consider the field R(y/=1) which is called the field

of Gaussian numbers. Every number in this field is ef the form
a + bV:T, where a and b are real numbers. The ring of
Gaussian integers is the set of all numbers of the form

a + bV:T, where a and b are rational integers.

It 1s clear that any rational integer is a Gaussian integer,

but the converse is not necessarily true.

- 30 =



A Gaussian integer is prime if it 1s not zero or a
unit, and its only factors are itself and the units. More
precisely, p is a prime Gaussian integer if every factori-
zation p =« 3 into Ggussian integers implies that either
oA or($ is a unit.

A rational prime may be a Gaussian prime, but there
are rational primes which are not Gaussian primes. For
example 5 = (1 +1/~=2)(1 = V/=2). The set of Gaussian primes
G is divided into three classes [6, p.17].

l. Every positive rational prime of the form 4m + 3
and thelr assoclates in G.

2+ The number 1 + 1 and its associates.

3. All Ggussian integers which are associated with
either x + iy or x - iy, where x > 0, vy > 0 x 1is even and
x° + y2 is a rational prime of the form 4m + 1,

The unique factorigzation theorem for the Gaussian
integers states that [2, p.185].

"A Caussian integer, which is not zero or a unit,
can be expressed as the product of primes uniquely, except

possibly for the order and multiplication by units."

3. The fields R(y/=2) R(/=3).
The fields R(v/=2), R(y/=3) are Euclidean in the sense

that if p and 5 are integers in R(Vﬁ), with g ¥ 0, there

exist integers 5 and & of R(y/m) such thatp =0 7 + &6 with
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N(8) < N( o). N(8) being defined as the product of 6 and

1ts conjugate 1in R(v/m).
But since every Euclidean quadratic field is simple,

it follows that R(V/~2) and R(/=3) are simple. [5, p.192,193].

4, The fields R(ym), m < = 3.

The following two theorems are needed for later
development in the subject. We state them here for

reference.

Theorem 3,1: [1, p.154].

If m< -~ 3 and if R(ym) is simple then

m=1 (mod 4)

Theorem 3.2: [1, p.154].

If m< -3 and R(Ym) 1s simple, then all the following

numbers are rational primes
N = a2 - ab = qb2
' m=1
(where q = =2 ) provided that
l1<N< qg and g.c.d(a,b) =1

Theorem 3.3:

Let m < = 5,If m = 1(mod 4) and q(q = Eil) is not

prime, then R(y/m) 1s not simple.

Proof:
-q =1=1=-gqg



therefore
-qg = N in theorem 3,2, with a = b =1
Now
(a,b) =1
and o
-q < q becguse =q is a rational integer
also by definition of g, and because

-q)I
m< = 5,

Applying theorem 3.2 we have 3
If =g i1s not prime then R(ym) is not simple. But =-q is
prime if and only if q 1s prime. Hence, if q is not prime,
then R(3/m) 1s not simple.

Theorem 3.4¢

Ilet m < =11, If m = 1(mod 4) and m is not prime,
then R(y/m) is not simple.

Proof:
Since
m =1 (mod 4) , it follows that
q = Eil is an integer.,
m=4q + 1
|m|= =1 -4q
=1 =2 - 4q
Therefore |m| = N in theorem 3.2, with a = 1 and b = 2
Now

(1,2) = 1
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and
|m| > 1 because m < =11
Since
m< =11
we have
q < =3 or |q| > 3.
Therefore
lal > 4
and this implies that
lal® > 4 |al
or
2
la“| > ¢4 |q| -1.
That is o
q“ > =4q =1
or
q% > |m|
Therefore o

|<im| < q.

Applying theorem 3.2 we have:
If |m| is not prime, then R(ym) is not simple. The
theorem follows since |m| is prime if and only if m is prime.

Theorem 3.5

Tet m < =7. If m % 5(mod 8), then R(ym) is not
simple.
Proof:

Suppose that R(ym) is simple, then

m = 1l(mod 4), by theorem 3.1

Hence
m =1 or 5(mod 8)
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We have to show that m ¢ 1(mod 8).
If m = 1(mod 8), that is m = 8u + 1, then q = 2u which is
not prime when m < =7,
This implies that R(ym) 1s not simple by theorem 3.5.
Therefore

m % 1(mod 8)

and hence
m= 5(mod 8)

And this is a contradiction.
Hence the theorem follows.

Theorem 3.6

Let m < =11, If m # 5(mod 24) then R(ym) is not

8 1Tﬂple .
Proof:
Suppose that R(y/m) is simple, then
m s 5(mod 8) by theorem 3.5

or

m=5, 13 or 21 (mod 24)

t

we shall prove that m % 13 or 21 (mod 24).
1) If m s 13(mod 24), that is m = 24u + 13, where
u < =1, because m < =11

then
q =6u+3 and this is not prime

because u < =1,
By theorem 3.3 R(Vﬁ) is not simple.

Therefore
m% 13(mod 24).
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2) If m = 21(mod 24)
that is if m = 24u + 21, where u < -1, because m < =11 then
m is not prime when u < =1, that is when m < =11.
Therefore R(ym) is not simple by theorem 3.3, therefore
m % 21(mod 24).
Therefore m = 5(mod 24), and this is a contradiction.

Therefore the theorem follows.

5., Conclusionse.
Fpom the previous theoremswe concluce the following
1) If m= -1, -2, =3, then R(Ym) 1s simple.
2) If m= =5, =6, then R(ym) is mot simple by
theorem 3.1
3) If m= -7, then R(Vm) is simple [2, p.213]
4) If m= =10, then R(v/m) is not simple by
theorem 3.1
5) If m= =11, then R(ym) is simple [2, p.213]
6) If m< =11, then for all m such that
m ¢ 5(mod 24) R(Ym) is not simple. Thus the possible values

of m, =170 < m < =11, for which R(ym) is simple are
-19, -43, =67, =91, =-115, =139, -163.

But if m = =91 or =115, then by theorem 3.4 R(ym) is not
simple.
If m = =139, then by theorem 3.3 R(ym) is not simple.

Therefore, the remaining values of m for which R(y/m) 1s
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is possibly simple are
-19, =43, =67, =163

an@ for these values R(y/m) is simple. [1, p.156].

If m < =170, then there is at most one value of m
for which R(y/m) is simple. This fact was proved by Heilbronn
and Iinfoot in their book "On the imaginary quadratic corpora
of class number one"; Lehmer proved that if such value of m

9
exists it should be < =5 x 10 .



CHAPTER IV

IDEALS

1. Definitions.

Let K be a number field. An ideal A in K is a
nonempty subset of integers in K poissessing the following
property: If o and o belong to A, so does 8§ p + n o, where

& and m are also integers in K.

Let p 15 0ps eves Op be integers of K, we say

that the ideal A is generated by 0 1, Pg, ees, Pn if A

consists of integers of the form

1 P 2% n9n’
where o ;'s are integers of K. This ideal will be denoted
by [ P1s Pgseess P n].

If A is generated by one element p, then A 1s called
a prineipal ideal, and 1s denoted by [pll. The ideal [0]
is the ideal consisting of O only. A set of integers
8 19 6 gssees & is said to be a basis for the ideal A
if every number 5 of A can be uniquely represented in
the form

0151+0252+...+cn5n

where c4 are rational integers.

It is obvious that 1f § 7, 6g,e+s, 5m is & basis

for A, then 813-Bogseess Opy generate A. But the converse
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i{s not necessarily true. To show this consider the ideal
A = [3] in R(y/=3).This iseenerated by 3, but 5 1is not a
basis for A, because any number in A is of the form

3q + 3b /-3, where a and b are rational integers. Hence

3, 3 VCE is a basis for A in R(VCE).

o, Arithmetic of ideals.

Tf A and B are two ideals, then A is sald to be
equal to B if A and B sonsist of the same elements,

If
A"—'—' [ pl, pz,.oo, pn]

and

o}
|

= [6 15 Bgreees 5m]

then the product AB is defined as the ideal

[ p1 619 P2 81se**s P 615 P Bopseces P Boseessd 5]11].

From this definition of product we can see that multiplica=

tion of ideals is commutative and associgtive. i.e.
AR = BA and A(BC) = (AB)C.

If A and B are two ideals, 1t is said that A
divides B, written A|B, if an ideal C exists so that
B = AC. A is then called a factor of B. A divisor is
defined in a different way; A is called a divisor of B
if every element of B is contained in A.

An ideal P,which is not [1] or [0] is called



ippeducible if it has no factors except P and [1].

3. Restoration of wnigue factorization in germs of ideals.[7,253].
Let C be the set of positive integers which are

= 1l(mod 5), that 1s
¢ = {1, 8, 11, X6, = }

an integer a in C is sald to be divisible by another integer

b in C if there exlsts an integer ¢ in C such that
a = be

An integer p ¥ 1 in C 1s sald to be prime if 1ts only
divisors in C are 1 and p.

The unique factorization theorem does not hold 1n
C, because it is possible to find an integer in C which
can be expressed as the product of prime factors in C in

two different ways.

1806

1(mod 5), hence 1806 is in C.

1806 21 x 86 and 1806 = 6 x 301.

A11 these factors are in C, because each is = l(mod 5).
Also, all are prime integers in C.

Therefore, 1806 is an integer in C which can be expressed
as the product of two integers in C in two different ways.
Hence the unique factorization theorem does not hold in (53

The reason for this failure of the theorem lies in the



absence of the remalning positive integers from C. This
failure can be remedied by introducing a new kind of
numbers in C. Each of these new numbers is defined as the
ereatest common divisor of a pair of integers in C. That
i1g i1t 1is defined by a pair of 1integers in C,

Consider

1806 = 21 x 86 = 6 x 301

0] is a factorofgx 301 and it is neither a factor of 6 nor

a factor of 301. Therefore it is the product of two factors,
one is contained in 6 and the other is contained 1n 301.
Denote these two factors by the pairs (21,6) and (21,301)
respectively. In this case, (21,6) is the greatest common
divisor of 21 and 6, and the same for (21,301).

According to this notation

21 = (21,6)(21,301).

The change of the order of the integers in paranthesis
has no effect, that is (6,21) = (21,6).

Similarly we have?

a6 = (86,6)(86,301)
6 = (6,21)(6,86)
and
301 = (301,21)(301,86).
and hence
1806 = 21 x 86 = (21,6)(21,301)(86,6)(86,301)
=6 x 301 = (6,21)(6,86)(301,21)(301,86)
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and the factorization is seen to be the same except for
the order.

The same reasoning ﬁay be applied to the example
of section 3, chapter ITI,

In that example
2530 = 46 x 55 = 10 x 253

using the same notation as above, we have

46 = (46,10)(46,253)

55 = (55,10)(55,253)

10 = (10,46)(10,55)
253 = (253,46) (253,55)

and
2530 = 46 x 55 = (46,10)(46,253)(55,10)(55,258)

= 10 x 253% (10,46)(10,55) (253,46)(253,55).

The factorization is seen to be the same.

We have seen that uniqueness of factorization, in
certain domains, may be restored by introducing a new kind
of numbers defined by palrs of integers of the domain.

Egch of these numbers is the greatest common divisor of the
defining pair of integers. These numbers may be called the
jdeal numbers of the domain.

This idea can't be extended to the fields R(ym) in
which uniqueress: of factorization does not hold. However,

new numbers may be introduced in such fields to restore

uniqueness of factorization. These numbers are not taken
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to be the greatest common divisors of pairs of integers of
R(Jﬁ), but as the greatest common divisors of an infinite

number of intepers of R(Ym). That is, if A is one of these
numbers, then it is defined as the greatest common divisor

of the integers
S:{‘xl’ dz’ ds, - 'i

whereofi 1s an integer in R(ym).

A will be defined by a finite number of these integers. That 1s
A= ﬁl, ﬁe,..., ﬁn] , Piin 8,
such that for all ‘d in S
8 =N Byt A Pt oeee A B

where )\i is an integer in R(Vm),
These numbers are the ideals of R(y/m) that we defined at
the begining of this chapter.

To see how the introduction of ideals, in a field
in which uniqueness of factorization does not hold, may
restore uniqueness of factorization, consider the following
example.

Consider R(Y/=5) . It has been pointed out that this fleld
is not simple. If we shift the emphasis from factorization
into prime factors to factorization into irreducible ideals,
then Any ideal in R(1/=5) can be factored, in one and only

one way, as the product of prime ideal factors.



Example:
Consider the integer 6 in R(/=5).

6 can be factored into its prime factors in two different

ways.

6 =2x3 and 6= (1 +V=5)(1 = V-5).

Corresponding to these two different factorizations of 6,
there are two different factorizations of 6 into principal

ideal factors, namely:
[6] = [2]1[3] and [6] = [1 +=51[1 - V-5].
All these factors are not irreducible ideals

[2] = [2, 1 ++/=5][2, 1 +V=61= [2, 1 + VB I°

because

[2, 1 +V=51° = [4, 2 + 2/-5, -4 + 2 y/=5]

by definition of multiplication. This ideal contalns

(2 + 21=5) - (=2 + 2/=5) =6

and

Hence it contains all multiples of 2 and therefore it is [2].
Similarly
(3] = [3, 1 +/=51[3, 1 - V/-5]

and

[1 + V5] = [2, 1 +/-51[3, 1 ++/-5]
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and

[1-vV=5]1=1[2, 1++=51[3, 1-+-51.

All these factors are irreducible ideals [15,264].

Therefore

(6]

[2]1(3] = [2, 1 +\/-—5]2[5, 1 ++/-51[3, 1 - V/=5]

and

(6] = [1 +V=5][1 -+/~5] = [2, 1+ \/-—5]2[3,1+ V=51[3,1= y/<5],

and hence these two factorizations of [6] are not distinct,

and they lead to the same 1rreducible ideal factors.

Hence [6] can be factored in one and only one way
as the product of irreducible ideal factors except possibly
for the order. ‘

In the fields which are not simple, the unique factorization
property can be restored by considering multiplication of
ideal factors instead of multiplication of integers. The
representation of 1deals as the product of irreducible

ideal factors 1is unique as asserted by the following
theorem. [6, p.S1].

"Every ideal not [0] or [1] can be factored into
the product of irreducible idegals. This factorization is

unique except for the order of the factors."
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