

AMERICAN UNIVERSITY OF BEIRUT

OPTIMIZING THE EXCHANGE OF PARTIAL

INFORMATION IN INTEGRATED PRODUCT

DEVELOPMENT WITH MULTIPLE ACTIVITIES

by

JOE GERGES JABBOUR

A thesis

submitted in partial fulfillment of the requirements

for the degree of Master in Engineering Management

to the Engineering Management Program

of the Faculty of Engineering and Architecture

at the American University of Beirut

Beirut, Lebanon

August 2012

AMERICAN UNIVERSITY OF BEIRUT

OPTIMIZING THE EXCHANGE OF PARTIAL

INFORMATION IN INTEGRATED PRODUCT

DEVELOPMENT WITH MULTIPLE ACTIVITIES

by

JOE GERGES JABBOUR

Approved by:

__

Dr. Ali Yassine, Associate Professor Advisor

Engineering Management Program

Dr. Bacel Maddah, Associate Professor Advisor

Engineering Management Program

__

Dr. Walid Nasr, Assistant Professor Member of Committee

Suliman S. Olayan School of Business

Date of thesis defense: August 28, 2012

AMERICAN UNIVERSITY OF BEIRUT

THESIS RELEASE FORM

I, Joe Gerges Jabbour

 authorize the American University of Beirut to supply copies of my thesis to

libraries or individuals upon request.

 do not authorize the American University of Beirut to supply copies of my thesis to

libraries or individuals for a period of two years starting with the date of the thesis.

 Signature

 Date

V

ACKNOWLEDGMENTS

First and foremost I offer my sincerest gratitude to my advisors, Dr Ali Yassine and

Dr. Bacel Maddah, who have supported me throughout my thesis with their patience

and knowledge whilst allowing me the room to work in my own way. I attribute the

level of my Masters degree to their encouragement and effort and without them this

thesis, too, would not have been completed or written.

I would also like to thank the Engineering Management Department at the Faculty of

Engineering and Architecture at AUB for funding my research and study. Also the

management at Consolidated Contractors Company who were flexible and

understanding to the demands of the masters degree.

Finally, I thank my parents for supporting me throughout all my studies at

University. It is through their uncountable sacrifices and their continuous

encouragement that I was able to complete this work.

VI

 AN ABSTRACT OF THE THESIS OF

Joe Gerges Jabbour for Master in Engineering Management

 Major: Engineering Management

Title: Optimizing The Exchange of Partial Information In Integrated Product

 Development With Multiple Activities.

Integrated product development (IPD) is the overlapping of nominally sequential

activities while considering downstream concerns, in an effort to reduce the time-to-

market of the product. The IPD practice helps companies to either pre-empt the

competition and beat them to market, or respond quickly to changes in the market and

quickly align their products with evolving customer needs.

Working with incomplete information, downstream activities are subject to the risk

of rework; thus, entailing more development costs. In extreme cases these costs could

surpass expected benefits. Prior research has shown that it may not be optimal to always

consider partial information. On the other hand, research also showed that never

considering partial information could entail high rework costs. Therefore, there is a

need for an optimal policy to manage exchange of partial information in an IPD

environment.

In this thesis, we formulate a dynamic programming model to manage upstream

partial information flow in a multi-activity IPD process (m > 2 activities). The multi-

activity aspect is novel as all previous research considers two-activity models. We then

resort into solving the dynamic program directly and performing an extensive Monte

Carlo simulation study to analyze the behavior of the optimal policy. The simulation

results suggest several important insights regarding the timing and frequency of

considering partial information in an IPD environment. The study showed that upstream

activities would consider more information in IPD environments, and they do so earlier.

Most notably, we observe a reverse bullwhip effect in IPD environments where the

effect of variability of information is dampened rather than amplified downstream.

Finally, we present a decomposition heuristic to easily approximate the decision policy,

by solving a sequence of two-activity models. The heuristic performs very well yielding

near-optimal results at significantly lower computer storage requirement. This enhances

the applicability of the research to real-world problems involving a large number of

activities.

VII

CONTENTS

ACKNOWLEDGMENTS ... V

ABSTRACT................. .. VI

LIST OF ILLUSTRATIONS ... IX

LIST OF TABLES...... ... XI

Chapter

1. INTRODUCTION AND MOTIVATION 1

2. LITERATURE REVIEW ... 6

3. THE PROPOSED MODEL ... 11

3.1. Quality of Exchanged Information ..13

3.2. Potential rework .. 16

3.3. The Multi-Activity DP ...21

4. COMPUTATIONAL RESULTS AND INSIGHTS 25

4.1. Experimental Setup...25

4.2. Simulation Experiments..33

4.3. Results and Insights..34

5. THE TWO-ACTIVITY CHAIN HEURISTIC 47

5.1.The Two-Activity Chain Heuristic Model ...47

5.2. Assesing Heuristic Performance by Simulation ...52

6. CONCLUSION AND DIRECTION FOR FUTURE WORK56

VIII

REFERENCES .. 58

Appendix

A. TABLE OF MODEL PARAMETERS 59

B.ALGORATHIM TO CALCULATE THE N-ACTIVITY

DECISION POLICY AS PER THE PROPOSED MODEL 60

C. MULTI-ACTIVITY SIMULATION MODEL 61

D. MULTI-ACTIVITY MODEL APPLIED FOR A THREE-

ACTIVITY EXAMPLE ... 69

E.CALCULATING THE EXPECTED QUALITY OF

INFORMATION USING THE TWO-ACTIVITY CHAIN

HEURISTIC................ ... 70

IX

ILLUSTRATIONS

Figure Page

1. Sequential Product Development process with three activities 1

2. Integrated Product Development with three activities. .. 2

3. Forms of evolution as described by Yassine et. al (2008). .. 8

4. IPD model with m = 4 activities.. ... 11

5. Sources of information for activity k... ... 13

6. Form of p
C
(i,r

B
) as a function of i and r

B
... ... 15

7. Effect of amount of work completed on rework... .. 17

8. Effect of amount of information missed on rework.. ... 18

9. Possible forms of the sensitivity function �� �ϛ�, Ɛ���		 �	Ɛ����	 for ϛ� � �% 19

10. Possible forms of the sensitivity function �� �ϛ�, Ɛ���		 �	Ɛ����	 for ϛ� ���%... 20

11. The Decision tree for m=3 activities... .. 23

12. Simulated forms of concave evolution... .. 28

13. Simulated forms of convex evolution... .. 28

14. Simulated forms of S-shaped evolution... ... 29

15. Simulated form of Linear evolution.. 29

16. Simulated forms of downstream sensitivity to upstream information changes 30

17. Effect of endogenous information on the amount of Total rework 34

18. Effect of endogenous information on the amount of information considered.... 35

19. Amount of rework done by the downstream activities as a function of the

upstream evolution, for Quick, linear and Convex evolutions... 36

20. Amount of rework done by the downstream activities as a function of the

upstream evolution, for S-shaped evolution forms. .. 37

21. Number of times B considers information as a function of evolution type

and λ .. 39

22. ����,�� and ����,�� 	as a function of evolution type and λ.. .. 41

23. Changes in � when more activities are added... ... 43

24. Effect of evolution of upstream activities on � as a function of evolution type

and λ for Concave-Quick, Linear and Convex-slow evolutions. 44

25. Effect of evolution of upstream activities on � as a function of evolution type

and λ for S-shaped evolution. .. 45

X

26. Decision tree for the activity k at time i showing the possible states that the

activity could attain in the next stage.. .. 49

27. Possible paths of activity k from stage 1 to stage 4 depending on the decision

policy and the quality of information used... ... 50

28. Percent Difference in the amount of rework between the heuristic policy and the

multi-activity policy.. .. 53

29. Percent Difference in the amount of rework between the always-consider policy

and the multi-activity policy.. ... 54

30. Process logic for the discrete event simulation model 62

XI

TABLES

Table Page

1.Simulated cases for the variations of the fixed costs.. ... 32

2.Description of the fields that make up the SQL table's structure................................. 66

3. The decision policy of activity � � 	: ���	��, ��� 70

4. Values of the function ���	��, ������	 as a function of time.. 70

5. Probability matrix for activity � � 	 defining the probability that activity � � 	

would be in state ���	 at time i.. .. 71

6. Calculated values for ����	 as a function of time i.. .. 71

1

CHAPTER 1

INTRODUCTION AND MOTIVATION

In today's fast moving markets, one of the major factors affecting a company's

competitive edge is the time it requires to develop new products. The shorter the time-

to-market of the new products, the faster the company is able to respond to changes in

the market and the better it can preempt the competition in an effort to acquire market

share.

The development process of any new product is made up of a set of diverse activities.

Traditionally, these activities would be done sequentially where the first activity would

complete its tasks and then send complete information to mid-stream activities. These

mid-stream activities would rely on this information to do their tasks and then send

complete information downstream. Downstream activities would then use this

information to complete their tasks. Figure 1 shows an example of a three-activity

product development process, where the first activity is market research (A) , the

second is product Design (B) and the third is Process Design (C).

 Figure 1: Sequential Product Development process with 3 activities.

2

The total time-to-market of this product would be tA + tB + tC which is the time to

complete all the activities sequentially. There are two ways that the time-to-market

could be reduced. The first way is to crash the three activities, by adding many

resources to them in an effort to reduce the time of every activity individually, and thus

decreasing the total time required. This method could become costly in regards to the

number of resources required and the correct management of these resources. The

second approach, as shown in Figure 2, would be to overlay these activities and thus

reduce the time-to-market of the product to tA + tB + tC - tA∩B - tB∩C + trework ,where - tA∩B

and tB∩C are the overlap times of A&B and B&C respectively. In this overlap setting

activities B and C would have to work with partial information, and then suffer rework

costs as information is changed upstream.

Figure 2: Integrated Product Development with three activities.

Integrated Product Development (IPD) is the overlaying of nominally sequential

activities in an effort to decrease the time-to-market of a product. Overlapping will

hence cause activities to work with incomplete information and hence will induce

rework. Considering the worst case scenario is when the total integrated time would be

3

greater than the sequential time. That is why a decision policy is needed to indicate

when integration is profitable and if it is profitable to manage the exchange of

information in an optimal manner thus reducing the time-to-market of the product. Since

overlapping and interaction increase the need for coordination among activities, IPD

compensates using organizational mechanisms (such as cross-functional teams) and

technical mechanisms (such as PIM/PDM tools).
1
 The influence of organizational

mechanisms on integration and coordination have been studied extensively in the

product development literature (e.g., Hauptman and Hirji, 1999; McDonough, 2000;

Hoegl et al., 2004); however, rigorous analysis concerning technical mechanisms within

a development environment is scarce, despite the consensus on its pivotal role

(Nambisan, 2003; Yassine et al., 2004; Banker et al., 2006; Nambisan, 2009).

 In IPD environments, individual decisions are not made in isolation, but are

impacted by information generated and consumed by other development participants.

When an individual participant reacts to newly arrived information, it will modify the

requisite information for other dependent participants. This will create a complex chain

of interdependencies, where the decision of a single participant has the potential to

propagate throughout the development organization involving many other participants

(Yassine et al., 2003). We specifically consider the archetypal scenario where a

development participant is capable of accessing, at any time, unreliable, but related,

development information, which has the potential to change as the development

endeavor progresses. The participant has to decide what the appropriate action should be

1
 PIM stands for Product Information Management, which is

also known as PDM (Product Data

Management). PIM software involves a database system that manages product-related information

including engineering drawings, project plans, assembly diagrams, product specifications, analysis

results, correspondences, bills of material, and many others (Liu and Xu, 2001). They are successful at

managing the access and control of finalized information; however, they fail to handle the evolving nature

of incomplete information that characterizes IPD environments; particularly at the early stages of

development (Banker et al., 2006; Bardhan, 2007).

4

in response to this information. For instance, it can choose to ignore the information and

continue with its original mission, or, it can incorporate the information to modify its

work appropriately in light of this new, but partial, information. The trade-off involved

here is that acting upon such information may improve the quality of its work; however,

there is a risk of disrupting its progress (to check this partial information) and then

discovering that this newly available information is irrelevant.

In this thesis, we consider an multi-activity, � � 2, development scenario where

each activity has the option of either to consider the partial information being fed to it

by upstream activities or to disregard it. The trade-off is between disrupting the flow of

the activity and incorporating information that may be valid or not, and postponing the

processing of information to face more costly rework later. We formulate a multi-

activity DP to develop the optimal decision policy for all possible stages, in an effort to

minimize the overall IPD completion time by controlling the amount of rework

performed, taking into consideration the quality of partial information exchanged and

the cost of performing rework. We then resort to simulation to study the dynamics of the

multi-activity model and draw out a set of insights. The study showed that upstream

activities would consider more information in IPD environments, and they do so earlier.

Most notably, we observe a reverse bullwhip effect in IPD environments where the

effect of variability of information is dampened rather than amplified downstream.

The remainder of this thesis is organized as follows. In Chapter 2 we briefly review

some of the literature related to this topic. In Chapter 3 we present our multi-activity

formulation and in Chapter 4 we simulate different scenarios of an IPD model using the

optimal decision policy of chapter 3 to draw out a set of insights that could be useful in

a regular working environment. In chapter 5 we present a decomposition heuristic that

5

gives a near-optimal decision policy with minimal additional rework. Finally we

conclude in chapter 6 by summarizing our work and proposing future extensions.

6

CHAPTER 2

LITERATURE REVIEW

There has been extensive research on concurrent engineering and integrated product

development. The work done has been along two directions. The first direction is

towards determining the optimal amount of overlap between tasks to reduce

development lead time. This work was led by Krishnan et al. (1997), Terwiesch (1998)

and Joglekar et al. (2001). The second direction is towards determining the optimal

communication policy. Our work is along this second direction to complement the

efforts started by Ha and Porteus (1995), Yassine et al. (2008, 2012) and Lin et al.

(2010).

Krishnan et al. (1997) investigated the overlapping of two nominally sequential

dependent Product Development activities. They developed an overlapping framework

for these activities based on a downstream rework formulation that depends on upstream

information evolution and downstream sensitivity. The two constructs, upstream

evolution and downstream sensitivity are at the heart of the IPD study and are

extensively used in this thesis. Upstream Evolution is used to refer to the refinement of

the upstream generated information, from its preliminary form to a final value (Krishnan

et. al 1997). i.e. the way information changes from its initial form to a final complete

form to be passed down at the end of the upstream activity. Downstream sensitivity is

the relationship between the duration of downstream rework and the magnitude of the

change in the upstream information value (Krishnan et. al 1997). Activities are

considered highly sensitive to upstream changes in information when small changes in

the upstream information leads to large rework downstream. On the contrary, when

7

large changes in upstream information leads to small rework duration, this means that

the downstream activity is slightly sensitive to changes in upstream information.

Loch and Terwiesh (1998) offered a two activity analytical model for overlapping

activities to minimize the time-to-market. They derived an optimal communication

policy affected by the uncertainty of changes in information generated by upstream

activities. The information changes upstream are released to downstream activities as

batches of data that would induce rework on the downstream tasks. The model also took

into account the dependence of the downstream activity on the upstream activity. The

occurrence of these information changes was modelled as non-stationary Poisson arrival

process with a variable rate defined along the duration of the upstream phase. This non-

linear program had three decision variables: the pre-communication intensity, the

expected communication frequency and the amount of overlap. Pre-communication

intensity is the total number of information exchange meetings that are planned to be

held during the development process. Expected communication frequency is the

expected rate of occurrence of these meetings. The objective function assess the benefits

of the overlapping period against the additional cost of rework generated from

uncertainty in the information and the cost of frequent meetings.

Lin (2010) followed a similar approach by assuming a non-homogeneous Poisson

process for the upstream changes occurrences and the dependency function. The

proposed model is also a non-linear program (NLP). However, in this case there are two

decision variables: start time of downstream work and functional interaction duration.

To derive estimates of the rates of the non-homogenous Poisson process, project

engineers first examined the documents which contain all the details of the changes,

such as the root causes, the severity, and the closure date. After that, project engineers

8

jointly estimated the rates of engineering changes for different points in time. Similarly,

the rework impact on downstream rework was also estimated using interviews with

experienced engineers in the company.

Yassine et al. (2008) defined four forms of upstream evolution. These forms are

shown in Figure 3. Concave evolution is when activities evolve the most during early

stages of activity's duration. Convex evolution is when the activities evolve the most

during late stages. Linear evolution is when an activity evolves at a constant pace al

throughout its lifetime. Finally, S-shaped evolution is when an activity evolves the most

in the middle stages. In the same paper, they developed a dynamic programming model

that provides optimal timing and frequency of information exchange for a single activity

in order to minimize it development cost. The model considers discrete times divided

into equal periods where the upstream activity would send information. At the

beginning of each period the downstream activity is faced with the decision of either

considering or not considering the information. If the new information is used then a

rework penalty is incurred. Otherwise, the team would proceed with its normal course of

development. Then, the trade off becomes how to divide the rework packages along the

detailed design time-line such that the total development cost is minimized.

9

Figure 3: Forms of evolution as described by Yassine et. al (2008)

In a sequel paper, Yassine et al. (2012), considered uncertainty in the quality of

exchanged information and derived a threshold policy for the two activity model. They

also analyzed a three-activity model. However, the complexity of the three activity

model made it difficult to find a threshold solution. They resorted to simulation, instead,

in order to understand the dynamics of the problem. The simulation was done in two

steps, first all possible scenarios of the integrated model are enumerated for given

parameters and stored in memory. In the second step, the interaction between the

midstream activity (B) and the downstream activity (C) is simulated using values

obtained from the first step to decide on whether to consider the information or not. The

simulation resulted in three insights: (i) Activity B considered more information in the

integrated model than in isolation in an effort to help (C) in reducing its rework; (ii)

Activity (B) in the integrated model tends to consider more information earlier in order

to improve the quality of the information as early as possible; and (iii) when the fixed

costs of considering information for either activity (B) or (C) were increased up to a

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 2 4 6 8 10 12

P
e

rc
e

n
t

C
o

m
p

le
te

d

Time

Forms of Evolution

S-Shaped

Concave

Convex

Linear

10

certain extent where the integration became costly and prohibitive, which implies that

(B) behaves the same in integration and isolation. In this thesis, we extend the model

from a 3 activity model to an n-activity model. The extended model adds integer

formulation to the DP, making it flexible and extendable to n-activities. We have also

changed the form of the model parameters linking them to upstream evolution and

downstream sensitivity. The most important contribution in our study in integrated

product development, is that our model accounts for downstream concerns. All models

in the literature have not included this major part in their model's frame. This the main

feature that distinguishes the overlapping models presented in earlier studies with the

integrated product development that we present in this thesis. We also confirm the

insights presented in Yassine et al. (2012) for the four activity model over a wider set of

parameter changes. We draw additional insights on the dynamics and behaviour of the

three and four activity model.

11

CHAPTER 3

MODEL AND ASSUMPTIONS

In this chapter, we develop a dynamic programming model to minimize the overall

time of the IPD process of m activities. The model is similar to the DP formulation

devised by Yassine et al. (2012), yet it is extended to m activities. In section 3.1, we

develop the function describing the quality of upstream information for any activity k,

 !"#, ���	$. In section 3.2 we introduce the function defining the variable amount of

rework performed by activity k, in state r
k
, %!"#, &!$. Finally, we present our multi-

activity DP model in section 3.3.

 All activities can be executed sequentially after the completion of the preceding

activity, in which case the overall duration of the development process becomes the sum

of the nominal durations of all activities. Alternatively, as we assume in this thesis, in an

integrated development environment, all downstream activities can be executed

concurrently, over a given time interval related to upstream activities completing a

minimum amount of work, as discussed in Yassine et al. (2012). We divide the duration

of any activity into two parts: “nominal” activity duration and the “rework” activity

duration. The nominal duration of an activity is the time needed for the activity to

complete its assigned work assuming that it is either independent of all other activities

(i.e., does not need information from other activities), or all its requisite information is

available at its start time. The rework duration is the extra time needed to perform

rework in case the activity starts with missing or incomplete requisite information. The

nominal duration of an activity is assumed to be known and fixed; however, rework

12

duration is uncertain and depends on the fraction of nominal work performed prior to

the arrival of the incomplete information. Thus, the minimization of the completion time

of the development process is equivalent to the minimization of the cumulative rework

durations performed by the downstream activity. Figure 4 shows a diagram of the

proposed model for m = 4 activities.

Figure 4: IPD model with m = 4 activities

We adopt a discrete time framework with n time periods. The upstream activities

continuously (i.e., at every time interval i =1, …, n) send information to the downstream

activities. The downstream activities have the ability to consider the information sent or

to ignore it. At every time i, the decision maker has two options: either not to consider

the information at this time which will lead to an accumulation of rework and costly

rework at later time, or to consider the information at this time with a risk of rejecting it

(i.e., not performing rework) due to low information quality. It is mandatory that at the

last time interval (denoted by n) the decision maker considers the information in order

to finalize the integration of the downstream activity with the upstream activity. This

assumption is legitimate since the relation between all activities is of the finish-to-start

type. When an activity decides to consider information, it is incurred a fixed cost. This

cost reflects the preparations needed to consider the information. For example, when an

engineer does some changes in the design of a chip, he sends the new CAD files to be

considered by manufacturing. The costs incurred by the manufacturing department to

Partial information

Time 1 2 … i … n-1 n

Final information
B

A

B

C

D

13

look over these CAD files and see if there are any changes to be made is the fixed cost

of considering information. We denote f
k
, the fixed cost for considering information by

activity k, 1 ()	 (�. Whenever information is considered, there is a chance that the

exchanged information is not valid and does not induce rework to the activity that is

considering the information; on the contrary the considered information could induce

rework. The probability defining the quality of the data and its ability to induce rework

is denoted by !"#, ���		$, being the probability that the information available at time i

for activity k is valid. This probability is also a function of the vector ���	 �
	*&!�+, &!�,, …………&,. where &/ denotes the last time activity j performed rework. A

detailed explanation of the function !"#, ���	$ is given in the next section (3.1). In the

case where the information is valid, the amount of rework performed could be divided

two parts: fixed costs of performing rework, denoted by β
k
 for any activity k, and a

variable cost component denoted by %!"#, &!$. The variable cost of rework for activity

k, %!"#, &!$ is dependent on the time i and &!the last time the activity performed

rework. The function %!"#, &!$ is described in detail in section 3.2.

3.1 Quality of Exchanged Information !"#, ���	$
 The earlier the downstream activities consider upstream information, the less

rework is required. However, considering the information at early stages has a higher

probability of rejection since the quality of information might not be high enough to

justify performing rework.

 The function !�#, ���	 of any activity k refers to the probability that the

information provided by upstream activities is in its finalized form and will not be

changed. Naturally, !�#, ���	 would depend on the activities originating the

14

information, mainly activity) � 1, if we are assuming sequential processes, and is not

affected by activity k. We start our definition of the function !"#, ���	$ by considering

that k only receives information from) � 1	and that !�+"#, ����$ is known. Any

activity has two main sources of information: Endogenous information and exogenous

information, ie information supplied from the upstream activity) � 1. Endogenous

information is the part of information that is available at time 0. !"#, ���	$ also

depends on the exogenous information, that is influenced by the evolution of the activity

) � 1; as such one would expect that the quality of exogenous information to increase

at the same rate as the evolution of the activity) � 1. We would assume that

 !"#, ���	$ would be proportional to evolution function of activity) � 1. Figure 5

shows the sources of information of any activity in the IPD process, Endogenous

information is fed to the activities at time 0 and partial information is sent downstream

at all time periods.

Figure 5: Sources of information for activity k.

 The above definition of !"#, ���	$ is correct if activity) � 1	is the first activity

and it is only creating information. On the other hand, midstream () � 1) activities start

their work with preliminary information, and will have to work with information that is

still not finalized. If midstream activities do not consider any information or do not do

any rework all throughout their evolution, they are not able to achieve a full evolution.

This means that the quality of information they generate will deteriorate if the activity

misses information from upper stream activities () � 2). Midstream activities could

k - 1

Time 1 2 … i …............. n-1 n

Complete information

Partial information

K
Endogenous

Information
k

Endogenous

Information

15

enhance the quality of their information by increasing the frequency of considering

information from upstream activities. That is why a more adequate form of !"#, ���	$
for activities receiving information from middle stream activities, would have to take

into account the evolution of the activity) � 1	and the last time) � 1 did rework. It

would also have to take into consideration the quality of information supplied to the

midstream activity. The quality of the information that) � 1	is using is a function of

the information being supplied by the activity) � 2, !�+"#, ����$ to) � 1	and the last

time activity) � 1	received good information, denoted by &!�+. We suggest the

following form of the probability function !"#, ���	$:

 !�#, ���	 � 0�Ɛ1!�+ ∗ 3ϛ!�+ 4 "1 � ϛ!�+$!�+�&!�+, ����5 		 (1)

where 0�Ɛ1!�+	is an increasing function of the evolution of the activity) � 1, and

ϛ!�+ is the fraction of endogenous valid information available to activity) � 1. The two

functions are multiplied to mimic the fact that k-1 would improve the quality of its

information as it evolves. The function Ɛ1!�+ is the evolution of activity) � 1. It is a

normalized function and belong to the range [0,1].

 The function Ɛ1!�+ could have a form of any of the evolution functions discussed

in Chapter 2. See Figure 3 in that chapter. These forms are adopted from Yassine et al

(2008). The degrees of convexity or concavity of the functions below could be varied to

match the IPD situation that the decision maker is faced with.

 The function !"#, ���	$ is an increasing function in &!�+ and i. For example, if

Activity C gets its information from the upper stream Activities B and A having a

convex evolution then we would have the following forms of 6"#, �7$ as a function

16

of time i and &8	the last time B did rework. In this case the vector �7 reduces to &8and

hence 6"#, &8$ has the a shape similar to the one shown below in Figure 6. In Figure 6

we show different curves for 6"#, &8$ as a function of time form 5 (# (10 and

0 (&8 	(4. We plot these values to show the impact of time and the last time B

considered information on the quality of information used by C.

Figure 6: Form of p
C
(i,r

B
) as a function of i and r

B
.

 We can see that the function increases in both i and &8. If B never considers

information &8 would always be 0.

3.2 Potential rework =���, ��	
 Delaying the evaluation of upstream information carries some penalty due to (i)

the increase of nominal work complexity as the development evolves, and (ii) the

increase in the rework complexity of the unfinished work performed downstream

0

0.1

0.2

0.3

0.4

0.5

0.6

5 6 7 8 9 10

P
C
(i

,r
B
)

i

pC(i,rB)

0 1 2 3 4rB:

17

without input from upstream, as delaying the consideration of information will increase

the backlog of activities requiring input from upstream. In other words, the more we

delay considering the information, the more we delay potential rework, and thus the

more rework we have to perform due to the increase in complexity of both the nominal

work and rework. Therefore, the potential rework function at time i, %!"#, &!$		is

divided into two components:

• Rework caused by the increase of nominal work complexity h!"Ɛ1!$ ∶
This component of the rework is a function of the time i; reflects the weight of the

finished work on the rework to be done. As i increases more work is done and hence

when new information is considered at later stages more rework has to be performed.

The function h!"Ɛ1!$ is increasing in i since one would assume that more work done

would require a larger amount of rework. The function h!�Ɛ1!	is best interpreted as

function of the evolution of the Activity k. The Figure below illustrates the need for the

ideas discussed above. In the Figure 7, Case 1 is when a downstream activity does

rework at later stages. Alternatively, case 2 is when the same activity does rework at an

early stage. The amount of work completed is reflected by the size of the bar.

18

Figure 7: Effect of amount of work completed on rework.

• Rework caused by the increase in the rework complexity of the unfinished work

performed downstream without input from upstream @! �ϛ!, Ɛ1!�+	 �	ƐAB!�+
@! �ϛ!, Ɛ1!�+	 �	ƐAB!�+:	is a function of the time i, the amount of endogenous

information and the last time rework was done &!. This factor helps the model

differentiate between two states where the process has just done rework and where the

process has not done any rework in a long time. As such the function @! �ϛ!, Ɛ1!�+	 �
	ƐAB!�+	should reflect the amount of accumulated rework as a result of not considering

information for a long period of time. Figure 8 illustrates the two states discussed above.

Case 1 shows the amount of rework, the white portion, accumulated from period 8, the

last time the activity did rework. Case 2 shows the amount of rework, the white portion,

accumulated from period 2, the last time the activity did rework.

0 1 2 3 4 5 6 7 8 9

Case 2

Case 1

Time

Work done before last rework

Work done before last rework

19

Figure 8: Effect of amount of information missed on rework.

The function @! �ϛ!, Ɛ1!�+	 �	ƐAB!�+	 is then increasing with the amount of

information missed. The rate at which this function increases is related to the sensitivity

of the function to information sent from upper-stream activities. The sensitivity of the

downstream activity is influenced by the type of the activity and by the proportion of

information that the activity takes from exogenous sources. That said, one would

assume that as the amount of endogenous information increases downstream activities

would become less sensitive to upstream information changes. An activity that has all

the information that it needs at time 0 would be insensitive to changes in upper-stream

activities as it is not affected by them. When @! �ϛ!, Ɛ1!�+	 �	ƐAB!�+		increases rapidly

then a small change in the information upstream leads to large rework downstream. In

this case Activity k is highly sensitive to upstream changes. Alternately, when

@! �ϛ!, Ɛ1!�+	 �	ƐAB!�+ increases slowly then large changes in information upstream

induces small amount of rework. In this case, activity k is said to be slightly sensitive to

changes upstream. At any point the largest amount of rework would be h!"Ɛ1!$, which

0 2 4 6 8 10

Case 2

Case 1

Time

Work done before last rework Accumulated work since last rework

20

means that all work that has been done needs to be redone again. As such a natural form

of the function @! �ϛ!, Ɛ1!�+	 �	ƐAB!�+	would belong to the range [0,1].

Thus the function %!"#, &!$, that quantifies the amount of rework done whenever

valid information is communicated to downstream activities is:

 							%!"#, &)$ � h)"Ɛ#)$ D @) �ϛ), Ɛ#)�1	 �	Ɛ&))�1																												"2$

 As discussed earlier the function f!"Ɛ1!$ would be a function of the evolution

function of the activity k, it could have any of the forms discussed in Yassine et. al

(2008). See Figure 3 in chapter 2.

The function @! �ϛ!, Ɛ1!�+	 �	ƐAB!�+ would be an increasing function in the amount of

information that has been accumulating from the last time the activity k did rework. As

discussed earlier this is related to the rate of evolution of the activity) � 1. As such at

any point in time @! �ϛ!, Ɛ1!�+	 �	ƐAB!�+ is increasing in Ɛ1!�+	 �	ƐAB!�+. This function is

also decreasing in ϛ!. The Figures below show possible forms for the function

@! �ϛ!, Ɛ1!�+	 �	ƐAB!�+ in two cases ϛ! � 0 (Figure 9) and ϛ! � 25% (Figure 10).

Figure 9: Possible forms of the sensitivity function @! �ϛ!, Ɛ1!�+	 �	ƐAB!�+ for

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

γ
k
(0

,Ɛ
ik

-1
-

Ɛ
rk

k
-1

)

Ɛi
k-1- Ɛrk

k-1

Possible forms of γk(0,ƐƐƐƐi
k-1- Ɛrk

k-1)

High Sensitivity Moderate Sensitivity Low sensitivity

21

 ϛ! � 0%.

Figure 10: Possible forms of the sensitivity function @! �ϛ!,Ɛ1!�+	 �	ƐAB!�+ for

ϛ! � 25%

3.3 The Multi-Activity DP:

At every time period i = 1,..., n, and depending on the amount of rework previously

performed as measured by the last times rework is done defined by the “state” vector

�� �	*&!, &!, …………&,., the model examines 2
m−1

 cases to minimize the total rework

for all the activities. The cases represent all possibilities of the decision. For example,

when m = 3, then we have three activities where the first activity generates the

information, a midstream activity, and a downstream activity that receives the

information. The last two activities will have to decide whether to consider the

information from the upstream activities or not. So the set of cases would be 2
3−1

 = 4,

the first case being that no activity would consider information, the second case would

be that only the second activity considers the information, and the third case would be

that the third activity alone considers the information, and finally the fourth case would

be that both the second and third activities consider the information. Our general m-

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

γ
k
(0

,Ɛ
ik

-1
-

Ɛ
rk

k
-1

)

Ɛi
k-1- Ɛrk

k-1

Possible forms of γk(0.25,ƐƐƐƐi
k-1- ƐƐƐƐrk

k-1)

High Sensitivity Moderate Sensitivity Low Sensitivity

22

activity formulation evaluates each decision for the corresponding state, &!, and stage, i,

and chooses the least costly alternative.

Let J
k
 = 1 if activity k considers information and 0 otherwise and let Z

k
= 1 if activity

k does rework and 0 otherwise. Note that J
k
 are our decision variables where Z

k
 are

independent Bernoulli random variables with parameters !"#, ���	$. Then, the

minimum expected rework between time i and the end of the concurrent development,

n, Ri(��), when the system is in state �� �	 *&!, &!, …………&,., is given by the

following DP optimality equation.

F1"�G$ � minKBLM,+,!L,,…,N
OP!Q!N
!L, 4	R, SRT S… RN UO P!V!*%! "#, &!$ 4	N

!L, W!. 4 	F1X+"�� 4 Y	⋀	[⋀�\ � ��$]^… ^	"3$
																																																																		F`"��$ � O"%! "a, &!$N

!L, 4 W! 4 Q!$																																																																					"4$

where E
k
[.] is the expectation operator over Z

k
, E

k
[g(x, Z

k
)] =(1- !"#, ���	$) g(x, 0)

+ !"#, ���	$. g(x, 1) , for any function g(.) and scalar x, J = (J
2

 , …, J
m
), Z = (Z

2
 , …,

Z
m
), and "⋀" is a type of vector product, c	⋀	d � (v

2
w

2
 , …, v

m
w

m
), for any two vectors

v and w, and i = (1, …, n).

This m-activity formulation reflects that at every time i, either the information is not

considered (J
k
 = 0) at no additional cost, or information is considered (J

k
 = 1), then (i) a

fixed cost of f
k
 is incurred, and (ii) a rework cost of %! "#, &)$ 4 W! is incurred (with

probability ! "#, ���) and the system moves to state i or no rework is performed and

the system remains in state &! . The DP formulation in (1) could be better understood

when observing the decision tree below. The decision tree below is the expansion of the

above formulation for a specific case, where m=3 activities. We also show how the

23

multi-activity expands into the regular 3-activity model in Appendix D. Reading this

appendix will help the reader to better understand the compacted version of the model.

24

Figure 11: The Decision tree for m=3 activities.

25

The DP formulation in (3) provides a compact, mathematically elegant, and

computationally effective way (i.e., easy to program through iterative nested loops) to

manage the flow of information in an IPD environment with any number of activities m

≥ 2. We provide in Appendix A, a pseudo code that can used to compute the decision

matrix. For every stage, and all the states the system could be in. The code quantifies the

costs of all possible decisions at that state and stage and chooses the decision with the

least cost and records it a decision matrix. The code utilizes the multi-activity model

described in equation 3 to do its calculations. This is one of the main contributions of

the current study. This contribution is significant given today’s computing power where

large storage and efficient retrieval is possible. Note that to utilize the DP in (1) in

practice, one needs to store the corresponding decisions J at every time i, and in every

state �!, in a large hyper matrix. Then, as the system evolves dynamically over time,

starting from state �! = (0, …,0) at time i = 1, one retrieves the optimal decision from

the matrix. We acknowledge that the calculation of the decision matrix could become

tedious and somewhat prohibitive as more activities are added. For instance, when

� � 10 activities the model would have to compare 2
10

= 1024 possible decisions and

will have to do this comparison for e # � 1N�+ �`�+1L+ 	387,420,489	 possible states if

a � 10 time periods. The calculation of this decision matrix could be done using the

pseudo-code found in appendix A. We have been able to calculate such matrices in a

respectively short period of time using a regular desktop PC for three and four activities.

For larger IPD problems we propose a decomposition heuristic in Chapter 5.

26

CHAPTER 4

COMPUTATIONAL RESULTS AND INSIGHTS

 In order to draw out a series of insights or 'rules of thumb' that would help

decision makers without having to calculate the decision matrix every time, we have

simulated a set of cases that would cover a large set of the cases in real IPD

environments.

4.1 Experimental Setup:

The numerical experiment was built in Anylogic
2
 simulation environment for the

two, three and four activities models. The experiment is made up of two parts. First a

decision matrix is computed for all possible stages and states utilizing the formulation in

Chapter 3. Then a Monte Carlo simulation is run, where we generate information

qualities according to the probabilities p
B
(i), p

C
(i,�7), and p

D
(i,�i), when needed and

using the stored policy, from step 1, to decide on considering the information or not.

The analysis focuses on comparing the behavior of both activities B and C as more

activities are added. Accordingly, we draw out some important insights that can be used

in an IPD environment. We utilize a set of metrics that would help us in quantifying

some of the behavioral changes.

The Percentage Variation of Information (PVI) stated below is used to compare the

actions of the activities B and C as more activities are added.

2 AnyLogic is a multi-method simulation modeling tool developed by XJ Technologies.

27

 jklN,NXm! � O ∑ 3KoBpqrs�	KoBpq 5tupvwt
ovwO ∑ KoBpqtupvwt

ovw
																																	"5$

where k = B, C denote the activity, m is the number of integrated activities in the model,

and ns is the number of simulations, and Jikl
m
 is the number of times activity k considers

information at time i of simulation l in an m-activity model. We use m = 2 3, and 4 for

B. That is, we compare the amount of information considered by B in the two, three,

and four-activity models. For example, if PVI
B

2,3> 0, then B considers more

information, on average, in the three-activity (A-B-C) model then in the two activity (A-

B) model. For C, we use m = 3 and 4. In the simulation, Jikl
m
 is determined based on an

exhaustive a priori storage of the values of the decision policy.

 We utilize the duration xN! to compare the timing of considering information of

the of the activities B and C as more activities are added.

																																				xN! � ∑1̀L+ �∑ P1!yN`uyL+ ∗ #∑1̀L+ ∑ P1!yN`uyL+ 																									"6$

 where k = B, C denote the activity, m is the number of integrated activities in the

model, and ns is the number of simulations, and Jikl
m
 is the number of times activity k

considers information at time i of simulation l in an m-activity model. For example x8T

is the average time activity B considers information in the three-activity model.

28

We define a base IPD process that has 10 periods (n =10) and the following data. For

activity B the setup cost for considering the information and the costs of performing

rework are Q8 	� 	0.01 and W8 	� 	0.02, respectively. The values are the same for both

activities C and D. All activities have the same “nominal” rework rates %!"#, &!$	and

quality of information probabilities	 !"#, ���	$, k = B, C, D. The simulation is run

under a series of variations to cover the majority of possible cases a decision maker may

be face with. These variations are as follows.

• Variations in evolution types:

We vary the forms of these functions to cover all shapes of evolution. We simulate

convex, concave, S-shaped and Linear evolution. We also vary the degree of concavity

and convexity of all the possible forms to cover most scenarios that a decision maker

would come across.

We utilize the functions below to calculate the evolution of the activities as follows:

1. Concave-fast evolution: Ɛ1 � 1 4 {|o}�{|t}
{|t}�+ for λ=0.3,0.5,1,2,4,7 and 10.

 and thus having the following shapes:

29

Figure 12: Simulated forms of concave evolution.

2. Convex-slow evolution: Ɛ1 � 1 4 {|o}�{|t}
{|t}�+ for λ=-0.3,-0.5,-1,-2,-4,-7 and -10.

 and thus having the following shapes shown in Figure 13.

Figure 13: Simulated forms of convex evolution.

3. S-shaped evolution: Ɛ1 � ++X{|}∗or~ for λ=0.5, 0.8, 1, 1.2, 1.5, 2, 3.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 2 4 6 8 10

P
e

rc
e

n
t

C
o

m
p

le
te

d

Time

Forms of Concave evolution

10 7 4 2 1 0.5 0.3λ values:

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 2 4 6 8 10

P
e

rc
e

n
t

C
o

m
p

le
te

d

Time

Forms of Convex evolution

-10 -7 -4 -2 -1 -0.5 -0.3λ values:

30

and thus having the following shapes shown in Figure 14.

Figure 14: Simulated forms of S-shaped evolution.

4. Linear evolution: Ɛ1 � λi for λ=0.1. This is the only form of evolution for the

linear case since the activity has to be 100% complete at the i=n. The suggested form is

shown in Figure 15.

Figure 15: Simulated form of Linear evolution.

• Variation in the sensitivity of downstream activities:

As for the sensitivity function, our study is limited to linear sensitivity. The function

below describes our sensitivity function:

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 2 4 6 8 10

P
e

rc
e

n
t

C
o

m
p

le
te

d

Time

Forms of S-Shaped evolution

0.5 0.8 1 1.2 1.5 2 3λ values:

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 1 2 3 4 5 6 7 8 9 10

P
e

rc
e

n
t

C
o

m
p

le
te

d

Time

Form of Linear evolution

31

@! �ϛ!,Ɛ1!�+	 �	ƐAB!�+ � 	�	"1 � ϛ!$��Ɛ1!�+	 �	ƐAB!�+									#Q	� � +�					1 � ϛ!										#Q	� � 	 +�					

ν=0.5 (Low),1 (Moderate),2 (High).

The three cases for linear sensitivity are shown in the Figure 16.

Figure 16: Simulated forms of downstream sensitivity to upstream information

changes.

• Variations in the amount of endogenous information

 We vary the amount of endogenous information (Ϛ$ over four values: 0%,

10%,40% and 70%. We assume that all activities would have the same amount of

endogenous information.

• Variations in the fixed costs of considering information and performing rework

 As for the variations of the fixed costs of considering information and

performing rework. These costs could have low, medium or high values, and thus for the

set of 3 activities would have 3
6
=729 cases to compare. However, most of these cases

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

γ
K
(Ɛ

K
-1

(i
)

-
Ɛ

K
-1

(r
K
))

ƐK-1(i)- ƐK-1(r)

Forms of Sensitvity

Moderate Sensitivity Low sensitivity High Sensitivity

32

would not make sense, or whose logic would resemble the logic of other cases. To

narrow down our scenarios we shall assume that as you go further downstream these

values would have to increase which are summarized in Table 1. We considered various

rates at which these costs can increase. For the Base Case there is no increase in these

fixed costs. The values of these costs are also normalized, for instance a fixed cost of

0.01 would reflect a cost equivalent to 1% of the nominal work required to finish the

activity
3
. Cases 1,2 and 3 represent cases were the fixed costs increase at different rates

as one goes downstream, i.e. increasing in k. Case 4 examines the case where all the

activities have no fixed costs. Case 5 represents the cases where we have no cost of

performing rework. On the contrary Case 6 represents cases where activities have no

costs of considering information. Case 7 is an exotic case and is used to represent cases

where midstream activities have extremely high fixed costs. This case is used mimic

cases where the midstream's activity's team could be working in a different country,

such as outsourcing to China. This is much like the design of a project is done by

specialist companies in different countries so any changes in the requirements of the

design would have to be sent to the team, regularly some people would have to travel to

explain the new details to the team. Thus ensuing huge costs.

Case Change To Base Case Description

Base Case None Fixed costs do not change as

we go downstream.

Case 1 fc=0.02, βc= 0.03, fD = 0.03, βD =

0.04

f and β increase linearly at a

rate of 0.01

Case 2 fc=0.03, βc= 0.05, fD = 0.05, βD = f and β increase linearly at a

rate of 0.02

3 This assumption is not restrictive, yet we made this assumption to give a sense of meaning to fixed costs.

33

0.08

Case 3 fc=0.05, βc=0.06, fD=0.09,βD= 0.1 f and β increase linearly at a

rate of 0.04

Case 4 fB = 0, βB = 0, fc= 0, βc= 0, fD= 0,

βD = 0

All activities have no fixed

costs.

Case 5 βB = 0, βc= 0, βD = 0 All activities have no fixed

costs for rework.

Case 6 fB = 0, fc= 0, fD= 0 All activities have no fixed

costs for considering

information.

Case 7 fc=0.15, βc=0.15, fD=0.01, βD=

0.02

C has very high fixed costs

Table 1: Simulated cases for the variations of the fixed costs.

A Monte-Carlo simulation is run for ns = 200,000 replications for each case of fixed

costs, evolution type, λ,	Ϛ and ν. Thus amounting to 2,112 simulation scenarios. All the

activities would have the same evolution type, λ,	Ϛ and ν. We record the PVI, x and

amount of rework done by every activity. The large number of simulation runs per case

yielded tight confidence intervals on all of the recorded metrics.

4.2 Simulation Experiments

We devised three simulation experiments. The first experiment studies the changes in

the behavior of the upstream activities as more activities are added downstream. Our

study is limited to the analysis of the two- activity (A-B), three- activity (A-B-C) and

four- activity (A-B-C-D) models. The purpose of this experiment is to see if the addition

of the downstream activities would affect the decisions of upper stream activities. We

vary the evolution type and λ for all the activities and monitor how the upstream

activities (B) changes its behavior as the changes occur. Specifically we monitor the

34

change in the number of times information is considered and the timing of considering

the information. We also observe the effect of these changes on the total amount of

rework done.

After we learn how the changes in downstream affects the upstream activity's

behavior we set up the second experiment to better understand the effects of changes in

the nature of upstream activities on downstream behavior. The experiment only takes

into consideration the four activity (A-B-C-D) model. We vary the evolution type and λ

of the first activity (A) and monitor how the downstream activities (B-C-D) change their

behavior as the changes occur. Specifically we monitor the change in the number of

times information is considered and the timing of considering the information. We also

observe the effect of these changes on the total amount of rework done. The evolution

type of activities (B-C-D) is not changed all throughout the experiments and is

considered to be convex with λ=10. The same variations discussed in the simulation

setup are repeated in cases, evolution type, λ,	Ϛ and ν, only varying the evolution type of

the first activity (A). We record the amount of information considered by every activity,

PVI metric for all downstream activities and the average time of considering

information x. We also monitor how the changes in the upstream activity A's evolution

affect the total rework of the system and the rework done by each activity. We draw out

a series of insights listed in the next section.

35

4.3 Results and Insights:

In this section, we first present a set of observations that to validate our model.

Observation 1: When endogenous information is high, midstream and downstream

activities would consider less information. Integration would be very lucrative.

When endogenous information is high, then the amount of exogenous information

used by downstream activities would be low. Thus the variability in the flow of

information would decrease. Downstream activities would no longer have to consider

more information when compared to the case where endogenous information is low. The

improvement in the quality of information resulting from the evolution of upstream

activities would be minimal, therefore activities will not consider information and incur

fixed costs. As such we would observe a decrease in the amount of information

considered. Figures 17 and 18 show how the increase in the endogenous information

decreases the amount of information considered and the total rework.

Figure 17: Effect of endogenous information on the amount of Total rework

0

0.5

1

1.5

2

2.5

3

3.5

0% 10% 40% 70%

T
o

ta
l

R
e

w
o

rk

Proportion of Endogenous Information of total information

Total Rework as a function of Preliminary Information

BaseCase Case1 Case2 Case3

Case4 Case5 Case6 Case7

36

Figure 18: Effect of endogenous information on the amount of information

considered.

Observation 2: In the absence of fixed costs, activities would always consider

information.

This insight has been proven by Yassine et al. (2011) for the case of two activities

with linear evolution, we confirm this phenomenon in the linear evolution case

described in that study. We also generalize this finding over all possible forms of

evolution. For a more detailed explanation as to why this phenomenon occurs, please

refer to Yassine et al. (2011). The simulation results, for Case 4 across all possible

iterations of the model parameters, show that the activities would consider information

at any stage and state.

0

500000

1000000

1500000

2000000

2500000

0% 10% 40% 70%

A
m

o
u

n
t

o
f

in
fo

rm
a

ti
o

n
 c

o
n

si
d

e
re

d

Proportion of Endogenous Information of total information

Amount of information considered as a function of

Endogenous Information

BaseCase Case1 Case2 Case3

Case4 Case5 Case6 Case7

37

Observation 3: The faster the information evolves upstream the fewer the rework is

done by downstream activities.

When upstream information evolves quickly, downstream activities will use valid

information early on. As such the amount of accumulated rework at later stages would

become minimal, thus reducing the total rework costs. Figures 19 and 20 show this

phenomenon. For the Base Case with Ϛ = 0% and ν=0.5. Figures 19 and 20, indicate that

when upstream activities evolve slower downstream activities do more rework. This is

evident as one goes over the Figures from left to right, going through the evolution

types from the fastest :Concave-Quick with λ= 0.3 to the slowest: Convex-Slow with λ=

-0.3 and form the fastest S-Shaped evolution at λ=3 to the slowest one at λ=0.5.

Figure 19: Amount of rework done by the downstream activities as a function of the

upstream evolution, for quick, linear and convex evolutions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.3 0.5 1 2 4 7 10 0.1 -10 -7 -4 -2 -1 -0.5 -0.3

 Concave-Quick Linear Convex-Slow

R
e

w
o

rk
 p

e
r

a
ct

iv
it

y

Evolution Type / (λ)

Rework as a function of Upstream Evolution

B C D

38

Figure 20: Amount of rework done by the downstream activities as a function of the

upstream evolution, for S-shaped evolution forms.

Next, we present a set of useful managerial insights. These insights could be used as

general guidelines in any IPD environment.

Insight 1: When upper stream activities evolve too fast or too slow, lower stream

activities tend to consider less information than activities that evolve at medium rate.

 As the information in the upstream activity tend to evolve fast during the early

stages, lower stream activities tend to consider less information. This is due to the fact

that as lower stream activities are working with incomplete data, the probability

reflecting the chances that this data will induce rework, and thus taking these activities

into a better state, is higher when the upper stream activities evolve faster. On the

contrary when lower stream activities evolve slower this probability is lower and the

chances for the activity considering the information to go to a better state, would be

lower. That is why activities getting information from slow-evolving activities would

0

0.1

0.2

0.3

0.4

0.5

0.6

3 2 1.5 1.2 1 0.8 0.5

S-Shaped

R
e

w
o

rk
 p

e
r

a
ct

iv
it

y

Evolution Type / (λ)

Rework as a function of Upstream Evolution

B C D

39

have to consider more information as the chances for them to actually benefit from that

information is low, so they are most likely going to go to the next stage with

accumulated rework and will have to consider information again. Another reason for

this phenomenon would be that as upstream activities evolve fast during the early

stages, the amount of rework accumulated in the last stages would decrease and as such

these activities would prefer to consider the information at the terminal time n. At the

other extreme and when upstream activities evolve the most during the last stages,

activities would only benefit from considering information at the last stages because the

information used at the early and middle stages would not be of good quality to

consider; i.e. such activities would only have a few stages where the quality of

information is good enough to use thus using less information all in all. Figure 21 shows

the number of times activity B considers information in the base case where Ϛ = 0%

and � � 0.5 for all activities. We ordered the evolution types and the λ's from fastest to

slowest order of evolution. It is evident that as λ increases in the quick evolution, B

tends to consider more information reaching a maximum at λ = 10. When moving to the

linear part one could see that the amount of information considered is almost the same

as Quick evolution with λ=10 and Slow evolution with λ= -10. At the Slow evolution

section one could see that the amount of information considered decreases as the

activities evolve later on. As for the S-shaped evolution type one could also see the

phenomenon where as the amount of information considered is the most at middle

stages.

40

Figure 21: Number of times B considers information as a function of evolution type

and λ.

Insight 2: As more activities are added, up-stream activities tend to consider more

information.

 When the size of the IPD system increases as more activities are added, the

upper stream activities tend to consider more information. This is attributed to the fact

that the upper stream activities would work on improving the quality of information

delivered to downstream activities. The increase in the frequency of considering

information enhances the information supplied by these upstream activities, as such the

lower stream activities would have their concerns dealt with as early as possible and

would thus work with better information leading to fewer accumulation of rework and

less amount of times needed to consider information. Again the chances for the

upstream activities to help downstream activities are in times where the evolution is

moderate, neither very fast nor very slow. As the evolution of the upper stream activities

is spread over many time intervals, downstream activities are bound to consider more

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0
.3

0
.5

1 2 4 7 1
0

0
.1

-1
0

-7 -4 -2 -1 -0
.5

-0
.3

3 2 1
.5

1
.2

1 0
.8

0
.5

Concave-Quick Linear Convex-Slow S-ShapedN
u

m
b

e
r

o
f

ti
m

e
s

in
fo

rm
a

ti
o

n
 i

s
co

n
si

d
e

re
d

Evolution -Type / λ

Number of times B considers information

as Evolution changes

41

information and as such upper stream activities would work on enhancing the

information for downstream activities to reduce the risks of sending bad information

that would not lead to considering information without any rework. When the upstream

activities evolve fast in early stages, extreme concave, the midstream activities would

consider the information after the sharp increase in the quality of the information and as

such would send information downstream with very good quality without having to

consider more in later stages. In Figure 22, we could see how the midstream activity

(B) behaves in the 3- and 4-activity scenarios. It is evident that when B considers more

information to help C in the 3-activity model. It even uses more information to help C

and D in the four activity model. jkl,,T8 is used to show the difference in the amount of

information considered by activity B when in the two-activity model and three-activity

integration model. The same is applied for jkl,,�8 to show the difference in the behavior

of B in the two- and the four-activity model. Figure 22 shows these results for the base

case only. However, similar results are observed in cases 1,2, 4, 5 and 6. Cases 3 and 7

do not show this phenomenon due to high fixed costs as discussed in observation 2.

42

 Figure 22: jkl,,T8 and jkl,,�8 	as a function of evolution type and λ.

Insight 3: Midstream activities with high fixed costs block the integration.

 When observing the behavior of activity B in Case 7, across all possible

combinations for the model parameters, B behaves in the two-activity model the same

as it behaves in the three- and four-activity model. i.e. jkl,,T8 and jkl,,�8 are zero for all

the combinations. It is normal for B not to consider information to help C because the

latter activity has high fixed costs. However, jkl,,�8 was also 0 for all the

combinations; meaning that B did not even help D. Therefore the high fixed costs

associated with midstream activity C blocked any possible help from B to D and thereby

blocking all possible integration efforts. This insight is important in showing the effects

0%

5%

10%

15%

20%

25%

30%

35%

0.3 0.5 1 2 4 7 10 0.1 -10 -7 -4 -2 -1 -0.5-0.3 0.5 0.8 1 1.2 1.5 2 3

Concave-Quick Linear Convex-Slow S-Shaped

Base Case: PVIB by Evolution Type and λ

PVIB2,3 PVIB2,4

43

of outsourcing midstream activities in integrated product development. Outsourcing the

work of midstream activities to other companies may entail large fixed costs for

considering information and performing rework, especially when these companies are

outside the country. That is why it is crucial to invest in modern communication

software that would ease the communication between the participants, thereby

decreasing these fixed costs and unblocking the integration process.

Insight 4: When more activities are added upstream activities consider more

information earlier.

 This insight confirms the findings of Yassine et al. (2011) for all forms of

evolution. Since downstream activities (C and D) must consider the information at the

terminal time period n, then the “help” of upstream activities (B) by improving the

quality of information will be mostly needed in earlier time periods. Accordingly, we

expect that (B) considers the information at earlier time periods in the integrated model.

When observing the changes in the duration of upstream activity B and midstream

activity C, we noticed that this metric would decrease as more activities are added, in

cases where B or C consider more information. In Figure 23 below, we show 	xT8 �		x,8,

where 	x,8 and xT8 are the duration of activity B in the two-activity and the three-

activity models. If xT8 �		x,8	> 0 then B would consider information earlier. We also

show x�8 �		x,8 to reflect the difference in the timing of information considered by

activity B in the four activity model and the two activity model. Figure 23 indicates that

B would consider information earlier thus justifing our insight. The same pattern is

observed for all the other cases but we choose to display the base case alone for

presentation purposes.

44

Figure 23: Changes in x when more activities are added.

Insight 5: Timing of considering information: The duration of downstream

activities increases, i.e. downstream activities consider information later, as upstream

activities evolve slower.

 The average time of considering information x is influenced by the evolution

type of the activity originating the information. As the evolution changes from quickest

at evolution type Concave at λ=0.3 to the slowest at evolution type Convex at λ= -0.3

and from S-shaped starting quickest with λ=3 and slowest at λ=0.5, we observe that x�8

increases along this variation, observation shown in Figures 24 and 25. This is in

accordance with Insight 1, showing that downstream activities working with bad

information are more likely to consider information again to reach a better status. This

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 4 7 10 -10 -7 -4 0.1 1 1.2 1.5 3

Concave-Quick Convex-Slow Linear S-Shaped

BaseCase

D
if

fe
re

n
ce

 i
n

 t
im

e
 u

n
it

s

Evolution type / (λ)

Changes in T as more activities are added

T3-T2

T4-T2

45

will increase the average time of considering information. Moreover, activities working

with bad information are more likely to choose not consider it. So activities would

prefer to wait until the quality of information supplied is good enough to justify paying

the fixed cost of considering the information.

Figure 24: Effect of evolution of upstream activities on x as a function of evolution

type and λ for Concave-Quick, Linear and Convex-slow evolutions.

0

2

4

6

8

10

12

0.3 0.5 1 2 4 7 10 0.1 -10 -7 -4 -2 -1 -0.5 -0.3

Concave-Quick Linear Convex-Slow

T

Evolution type / (λ)

Effect of Upstream evolution on Downstream T4
B

46

Figure 25: Effect of evolution of upstream activities on x as a function of evolution

type and λ for S-shaped evolution.

Insight 6: The IPD Reverse Bullwhip effect: The effect of changes in upstream

evolution on downstream rework is dampened as information is sent further

downstream.

 When observing Figures 19 and 20, it is noticed that activity B is most affected

by the changes in A's evolution type going from a minimum of 0.15 to a maximum of

0.52. Activity C comes second where its minimum rework costs were 0.3 and maximum

rework costs were 0.52. Activity D follows with a minimum of 0.42 and a maximum of

0.52. This observation suggests that upstream activity A's power to affect downstream

rework is dampened as we move further downstream. Middle stream activities process

the information they receive from upstream activities and will send information to

downstream activities with a quality related to their evolution speed, so upstream's

power to affect downstream activities is dampened by slow midstream activities. Hence

0

2

4

6

8

10

12

3 2 1.5 1.2 1 0.8 0.5

S-Shaped

T

Evolution type / (λ)

Effect of Upstream evolution on Downstream T4
B

47

the observed reverse bullwhip effect is attributed to two factors: The first is the

downstream activity's fixed costs of considering the information, forcing the

downstream activities to disregard upstream changes at some stages in the IPD process.

The second factor causing this reverse bullwhip effect is fact that the information

supplied by the midstream activities to the downstream activities is a function of the

information supplied by the upstream activities, relying on midstream evolution. Thus,

the changes in upstream activity A's evolution type and hence the early improvement of

the information is dampened by the ability of midstream activities to process this

information and transmit it in usable form for the downstream activities. This delay

would decrease the potential benefit that the downstream activities could attain thus

resulting in more rework costs for the downstream activities.

48

CHAPTER 5

THE TWO-ACTIVITY CHAIN HEURISTIC

In this chapter, we propose a heuristic that could be used in any decision environment

instead of the current n-activity formulation. The insights presented in Chapter 4 could

be used as general guidelines. However, they do not present a precise decision policy.

We demonstrate this heuristic for decision makers that are keen on making precise

decisions, yet they do not want to suffer the hassle of working with the n-activity model,

especially in terms of computer storage. This heuristic is an approximation of the multi

activity model explained in Chapter 3. First, we present the heuristic. Then, we compare

the performance of the heuristic with the multi-activity model, and a naive always

consider information policy. We conclude with a discussion about the advantages and

the disadvantages of this heuristic.

5.1 The Two-Activity Chain Heuristic Model

The proposed heuristic works in the following manner. A participant in the IPD

environment would consider all the activities that precede his activity as one origin of

information, whose quality of information is known ahead of time and considered static

for any time i. The participant will also ignore all downstream activities and will act

selfishly, disregarding any information that would enhance the quality of information to

the downstream activities only without giving direct benefit to the concerned

participant. Thus the participant does not have to know what is current status of all the

upstream and downstream activities, his decision will totally be based on his own status.

This act would help decrease the complexity of the decision for the participants at every

49

time i. Thus, activity k would rely on the decision policy of activity) � 1, in turn) � 1

would rely on the policy of) � 2, thus the naming of the heuristic as the two-activity

chain heuristic. The heuristic works in three steps:

Step 1: Estimate the quality of information sent from all the upstream activities to the

concerned participant (activity k) as a function of time i.

An estimate of ! �#, ���	 need be used. All the parameters used in the n-activity

model, presented in Chapter 3, are used in the calculation of this heuristic.

We will start our explanation of the scheme to calculate �����	 by assuming that ������

is known, as such the function !�+�#, ������	 could be calculated as described in

Chapter 3 by substituting the values of ����� by the average vector ������. The resulting

function would only depend on the time i and the estimated vector ������; it is

independent of the dynamic state of the upstream activities. We also assume that a

decision policy for the activity k-1 is available and that it was computed using this

heuristic thus depending only on &!�+.

Calculating &1!�+ and amending it to ������ would be sufficient to get the estimation

vector �����	. At any time i, the activity k-1 could be at any state &!�+ 	 ∈ 	 �0, # � 1� with

a certain probability depending on the decision policy of the activity k-1 and the quality

of information this activity uses !�+�#, ������	. At every time stage an activity could

choose to consider information or not consider the information. This is decided by its

decision policy. If it does not consider information it will move to the next stage with

the same state. On the other hand if it chooses to consider the information it could move

to the next stage with a state equal to the current stage if the information is valid.

However, if the information is not valid it will remain in the same state. Figure 26

50

illustrates these ideas and shows how the state of the activity could change depending

on the decision policy and the quality of information it is using.

Figure 26: Decision tree for the activity k at time i showing the possible states that the

activity could attain in the next stage.

Therefore at every time i, the activity could remain in its state or attain the state of

the current time i. Once the activity considers information it may move to the next stage

with &! � #, no matter what its current state is, as long as it considers the information

and receives valid information inducing rework. If it does not do any rework, it can only

move to the next stage with its current state. Figure 27 shows these possible transitions

for an activity from time 1 until time 4.

51

Figure 27: Possible paths of activity k from stage 1 to stage 4 depending on the

decision policy and the quality of information used.

As illustrated in Figure 27, the probability that an activity would be in a certain state

at a certain stage depends on its path, thus depending on the probability of being in its

previous state at the previous stage "# � 1, &!$, its decision policy and the quality of

information used. As such we compute the probability matrix �!"#, &!$ (6) that

describes the probability that activity k would be in stage i with state 	&!. After finding

this probability matrix, we could calculate &1!	as the weighted average of the possible

states the activity k could attain at the time i. The function �!"#, &!$	is defined as

follows:

�!"#, &!$ � 	
��
�
�� 1 # � 	&! � 0	�!"# � 1, &!$	31 � �!"#, &!$! �#, ����		5 0 (&! (# � 1, 1 � # (a

O �!"# � 1, �$�!"#, �$!"#, �$AB�+
�LM &! � #, 1 � # (a "6$	

1 (# (a

Where the function �!"#, &!$ is the decision matrix defining the actions of activity k

at time i and state &!; �!"#, &!$ � 1 when k considers information and 0 otherwise.

Although �!"0,0$	does not exist in practice we define it as a starting point for the

&!0 0

1 1

2 2

3

0

1

0

Time 1 2 3 4

State of activity k at time i

52

matrix. The third term shows the fact that the activity belonging to any state could attain

&! � # as long as it considers valid information.

After calculating the probability matrix �!"#, &!$	one could easily estimate the value

of &1!, by computing the weighted average of the possible values of &! using function

(7) as described below.

																																						&1! 	� 	O�!"#, �$ D ��
�LM 0 � # (a																																													"7$

 The calculation of the matrix and the corresponding values of &1!,		assumes that when

upstream activity (k) receives valid information, information sent to downstream

activity (k+1) would be affected simultaneously. As such one could observe values for

&1! � # meaning that for sure the activity is going to perform rework at this time i.

Using the above formulations one could get the �����	 from the preceding activity's (k-

1) decision matrix and using !�+�#, ������	. Finally we conclude this first step by

calculating ! �#, �����		 using the function described in Chapter 3 with the state

estimation matrix &�̅1!�+.

An example showing all the calculations done in step 1, could be found in Appendix

E.

Step 2: Use the estimated ! �#, �����			in Step 1 to calculate the decision matrix of

activity k, utilizing the two-activity format of the multi-activity model.

This step is by far less complex than the first one. We just use the estimate of the

quality of information ! �#, �����		 calculated in Step 1 as the quality of exchanged

information. Solving the recursive DP would result in a decision policy for the activity k

depending only on &!.

53

5.2 Assessing Heuristic Performance by Simulation.

In an effort to assess the performance of the heuristic, an experiment of 2,112

simulation scenarios was conducted. The iterations were identical to the ones described

in Section 4.1. The simulation would calculate the decision matrix for every activity

using the proposed heuristic, as described in Section 5.1. The simulated scenarios were

limited to the four-activity (A-B-C-D) model. These decision matrices would be stored

in memory and then used in the simulation to decide whether to consider information at

every time stage i. While calculating the decision matrices, the vector �����		would be

used to estimate the quality of information. However, while running the simulation we

would generate values for ! �#, �����		 using the dynamic values of the state vector

�����		to mimic real life situations.

We compared the total amount of rework for the activities when using the multi -

activity policy and the heuristic's policy. The results show that the amount of total

rework when using the heuristic were very close to the optimal multi-activity policy,

found as discussed in chapter 3. In some cases the heuristic policy would perform the

same as the multi-activity policy, this was observed in Case 4 where both policies would

advise to consider information at all stages and states. The worst result recorded was for

Case 5 in the s-shaped evolution with λ=1.5, ϛ
k
=0% and ν=1; where the heuristic led to

1.87% more rework. On average the heuristic's policy performed worse than the multi-

activity policy by 0.04% more rework. Statistically both policies are the same as their

means are not very far from each other. For instance, the average rework for worst

result, reported above, was 2.67 with a standard deviation of 0.17 when the optimal

policy is used. On the other hand, using the heuristic's policy the average rework was

2.72 with a standard deviation of 0.12, thus showing that these numbers are statistically

54

the same. Figure 28 shows the percent difference between these two policies. The

horizontal axis shows an index for the simulated cases, we did not indicate the

parameters for the specific case because it is not needed in this presentation. Figure 28

is only used to show the variations and the set of input that this Figure corresponds to is

not relevant to the study. A positive percentage shows that the heuristic led to more

rework. We observe that in no case the heuristic performed better than the multi-activity,

thus giving a sense of validation to our work.

Figure 28: Percent Difference in the amount of rework between the heuristic policy

and the multi-activity policy.

We also tried a naive policy, where at every time any participant in the IPD process

would consider the information they get from upstream activities. We simulated the four

(A-B-C-D) activity setting across all the 2112 scenarios described in section 4.1. The

results, shown in Figure 29, show that this naive policy does not perform as well as

heuristic. In fact it performs the same as the multi-activity model in cases where this

model would advise to always consider information, like case 4. The biggest difference

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%

2.00%

1

7
7

1
5

3

2
2

9

3
0

5

3
8

1

4
5

7

5
3

3

6
0

9

6
8

5

7
6

1

8
3

7

9
1

3

9
8

9

1
0

6
5

1
1

4
1

1
2

1
7

1
2

9
3

1
3

6
9

1
4

4
5

1
5

2
1

1
5

9
7

1
6

7
3

1
7

4
9

1
8

2
5

1
9

0
1

1
9

7
7

2
0

5
3

P
e

rc
e

n
t

D
if

fe
re

n
ce

Percent Difference in the amount of rework between the

heuristic policy and the multi-activity policy

Percent Difference in the amount of rework

55

in the amount of rework is 80% more rework and on average the naive heuristic

performs worse by 30% more rework than the optimal multi-activity model.

Considering the small size of the problem, a � 10, a 30% more rework is significant

for such a small project. It is expected that this amount would increase when the project

becomes bigger, a	 � 20.

Figure 29: Percent Difference in the amount of rework between the always-consider

policy and the multi-activity policy.

The most notable contribution that this heuristic presents is the reduction in the size

of the decision matrix thus reducing the complexity of the decision for the participants.

The size of the matrix for the multi-activity matrix would be ∑ aN1̀L+ whereas for the

matrix size of the heuristic is only ∑ �a1̀L+ . For a 50-stage, 20-activity IPD

environment, the multi-activity policy would have 2,763,020,625 decision values for the

set of states. On the other hand, for the same example and while using the heuristic's

policy only 25,500 decisions states need be stored for the whole system. This 99.999%

reduction in the size of the decision matrix is very important in terms of storage and

0.000%

10.000%

20.000%

30.000%

40.000%

50.000%

60.000%

70.000%

80.000%

90.000%

1

7
7

1
5

3

2
2

9

3
0

5

3
8

1

4
5

7

5
3

3

6
0

9

6
8

5

7
6

1

8
3

7

9
1

3

9
8

9

1
0

6
5

1
1

4
1

1
2

1
7

1
2

9
3

1
3

6
9

1
4

4
5

1
5

2
1

1
5

9
7

1
6

7
3

1
7

4
9

1
8

2
5

1
9

0
1

1
9

7
7

2
0

5
3

P
e

rc
e

n
t

C
h

a
n

g
e

Percent Difference in the amount of rework between the Always

Consider policy and the multi-activity policy

Always Consider Policy

56

calculation of the matrix. This will help companies in applying this study the need of

PIM/PDM system as it is easy to compute and use. The participants would not have to

worry about the statuses of the preceding and succeeding activities, thus making this

model more applicable in any IPD environment. Moreover, a setup meeting is only

required at the beginning of the product development processes where all the decision

policies are computed and no further coordination would be required, to adjust this

policy or update the remaining participants to the current status of the remaining

activities. Nevertheless, the heuristic policy can also be updated during the project-cycle

in case the need arises.

The major drawback of this heuristic is that upstream activities act selfishly and

hence do not cater for downstream concerns. Thus downstream activities will have to

work with any information available from upstream activities. The optimal information

exchange policy reduces the risks of working with this incomplete data by adjusting the

behavior of the downstream activity to the expected changes in upstream information,

this act lessens the effects of the selfishness of the upstream activities.

A good extension to the study of this heuristic could be to consider a 3 activity chain

heuristic, where all upstream activities are collapsed into one source of information and

all downstream activities are collapsed into one downstream activity. The concerned

activity k would then shape its policy by considering the quality of information sent by

upstream activities and by catering to downstream activity's concerns, thus achieving

near optimal solution to this problem.

57

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we have developed a multi-activity policy to manage the exchange of

partial information in an integrated development policy. We based the model on

upstream information evolution and downstream sensitivity. The proposed model is first

of its kind to propose a quantitative, precise, method to calculate a decision policy for a

multi-activity IPD environment. This the major contribution that this thesis offers to the

literature of this type of study.

After building the model, we resorted to simulation it to study the dynamics of the

model and draw out some observations and insights. The insights are considered as

general guidelines for any participant in an IPD process. The simulation covered a vast

array of possible IPD cases, covering most of the variations of the model's parameters.

We utilized two experiments, the first experiment was tailored to study the effects of

downstream changes on upstream' behavior. The second experiment was used to study

effects of upstream variations on downstream activities' behavior. The simulations

showed that upstream activities would consider more information in integration than in

isolation, they would do so at early stages. The most important of these insights is the

reverse bullwhip effect in the IPD environment: The effect of changes in upstream

evolution on downstream rework is dampened as information is sent further

downstream.

In chapter 5 we proposed our two-activity chain heuristic. This decomposition

heuristic eases the use of this study by sacrificing a small amount of potential rework

savings. A simulation study compared the performance of the heuristic to the multi-

58

activity model, showing very close results. The heuristic would be a less costly solution

in terms of policy calculation, decision matrix storage and coordination amongst the

participants.

One limitation of the proposed multi-activity model is that it does not take into

consideration the effect of the exchange of information on the evolution of the activities.

When information is changed upstream the activity receiving the information would

have to incorporate this change, taking time to do so and thus affecting the evolution of

the activity. We considered that these costs are incurred concurrently, however in

practice this the changes would take time to finish and hence would be incurred over

several time stages. The integration of such a scheme could be a dense subject for future

work.

Another important limitation is the fixed length of the activity duration. The

assumption that all activities should complete their work before a defined deadline in

time is a binding in real applications. A good extension to the model would be to feature

different sizes for the activities' duration.

Finally, another interesting extension to our proposed model is to include feedback

between these activities. This requires more fundamental changes to our model and is

worthy of further investigation.

59

REFERENCES

Clark, K., Fujimoto, T., 1991. Product development Performance: Strategy,

Organization, and Management in the World Auto Industry. Harvard Business

School Press, Boston.

Gerwin, D., Barrowman, N., 2002. An Evaluation of Research on Integrated Product

Development. Management Science 48(7), 938-953.

Ha, A. Y., E. L. Porteus. 1995. Optimal timing of reviews in concurrent design for

manufacturability. Management Science 41(9) 1431–1447.

Hauptman, O., Hirji, KK., 1999. Managing Integration and Coordination in Cross

Functional Teams: An International Study of Concurrent Engineering Product

Development. R&D Management, 29(2), 179-192.

Lee, HL, Padmanabhan, V., and Wang, S., 1997. Information distortion in a supply

chain: the bullwhip effect. Management Science, 43,(4): 546-558

Joglekar, N., Yassine, A., Eppinger, S., Whitney, D., 2001. Performance of Coupled

Product Development Activities with a Deadline. Management Science 47 (12),

1605–1620.

Krishnan V and Ulrich KT. 2001. Product development decisions: A review of the

literature. Management Science 47(1),1-21.

Krishnan V, Eppinger SD, Whitney DE. 1997. A model-based framework to overlap

product development activities. Management Science 43(4):437-51.

Lin J, Qian Y, Cui W, Miao Z., 2010. Overlapping and communication policies in

product development. Eur J Oper Res 201(3),737-50.

Loch CH and Terwiesch C. 1998. Communication and uncertainty in concurrent

engineering. Management Science 44(8):1032-48.

Nambisan, S., 2003. Information systems as a reference discipline for new product

development. MIS Quarterly. 27(1), 1-18.

Yassine, A., Joglekar, N., Braha, D., Eppinger, S., Whitney, D., 2003. Information

Hiding in Product Development: Design Churn Effect. Research Engineering

Design 14 (3), 145–161.

Yassine A., Sreenivas RS, Zhu J. 2008. Managing the Exchange of Information in

Product Development. European Journal of Operational Research 184 (1), 311 –

326.

Yassine, A., Maddah, B., Nehme, N., 2012. “Optimal Information Exchange Policies

in Integrated Product Development,” Submitted.

60

Appendix A

PARAMETERS FOR THE MULTI-ACTIVITY MODEL

• �i
k
: The evolution function of the activity k.

• f
k
: Fixed cost of considering information for activity k.

• β
k
: Fixed cost for performing rework for activity k.

• &!: The last time activity k did rework.

• �����	: State vector containing all the states of the activities preceding k+1 except

the first activity (rk, rk-1, …… r2)

• �
k
 : Proportion endogenous information out of required information available

for activity k at time 0.

• %!"#, &!$: The potential rework at time i for activity k.

• !�#, �����	: Is the probability that the information considered is valid

information and as such would induce rework.

61

Appendix B

ALGORITHM TO CALCULATE THE MULTI-ACTIVITY

DECISION POLICY AS PER THE PROPOSED MODEL

It can be shown that the algorithm below is equivalent to the formulation of the DP in (1).

 For rk = 0 to n−1,

 For rk-1 = 0 to n−1,

 .

 .

 .

 For r1= 0 to n−1,

 For K=1 to K=m

 Set F`"r1, r2,....., rm-1, rm)=	F`"r1, r2,....., rm-1, rm) + %! "#, &!$ 4 W� 4 Q� 	

 For i = n-1 to 1

 For rm = 0 to n−1,

 For rm-1 = 0 to n−1,

 .

 .

 .

 For r1= 0 to n−1,

 { Set F1"r1, r2,....., rm-1, rm) = F1X+"r1, r2,....., rm-1, rm)

 For Jm = 0 to 1,

 For Jm-1 = 0 to 1,

 .

 .

 .

 For J1= 0 to 1,

 {

 set rework=0

 For Zm = 0 to Jm,

 For Zm-1 = 0 to Jm-1,

 .

 .

 For Z1= 0 to J1,

 {

 Set probability = 1

 Set work=0;

 for k=1 to m

 {

probability=probability*(Jk+Jk*(Zk+ ! "#, &1, &2, , &� � 1, &�$ � 2	V!	 ! "#, &1, &2, , &� � 1, &�$))
 work=work+ Jk*(Zk *(%�"#, &!$ 4 W!$ 4 Q!$	
 }

 rework=rework + probability *(work +F1X+"V+ ∗ # 4 "1 � V+$ ∗r1,, VN ∗ # 4 "1 � VN$ ∗rk))

 }

 If rework < F1"r1, r2,....., rm-1, rm)

 {

 Set F1"r1, r2,....., rm-1, rm) = rework

 Set decisioni(r1, r2,....., rm-1, rm)={Z1,Z2,......Zm-1,Zm}

 }

 }

 }

62

Appendix C

MULTI-ACTIVITY SIMULATION MODEL

In this appendix, we describe the simulation tool that was used to simulate the

various variations of the model as depicted in chapter 3.

The model was built in Anylogic Professional simulation environment. Anylogic is a

multi method simulation software, used to simulate Discrete Event Simulation, System

Dynamics and Agent Based Simulation. The software is developed by XJ technologies

headed by Dr. Adrei Borchev. Its client base expands across various industries.

Companies such as CCC, NASA, Schlumberger , HSBC, Booz & co and many other

Fortune 500 companies rely on Anylogic for their heavy simulation analysis.

The simulation tool is divided into two parts. The first part is the simulation software

that is developed in Anylogic. The second part is the results analysis software,

developed in SQL server and SQL server reporting services.

C.1 Simulation Software

Before any simulation is launched, the software computes the multi activity policy

and stores in memory the hyper-matrix representing the decision policy for the activities

at any stage and state the system may be in. The software utilizes the algorithm found in

Appendix B to calculate this policy. The chosen policy is stored in a global array

decision[n][n]....[n][k][i], having k+2 dimensions. The first k dimensions are of size

n(number of time stages), used to refer to the possible states, and a dimension for the

activity and time. So for a certain state &�!=(rk, rk-1, …… r2, r1) you would have k

decisions(for all the activities) and for every time hence the k+2 dimensions. This array

will hold the optimal decision for all possible states the system can attain at any stage.

63

After setting up the simulation by calculating the corresponding decision matrix an

entity is injected into the discrete event system. The process logic is shown in Figure 30

below.

Figure 30: Process logic for the discrete event simulation model.

The process flow of the simulation is made up of an entity source(Enter_Simulation),

two nested loops and a sink(Exit_Simulation). Entities enter the system through the

Enter_Simulation node. One would think of an entity entering the system as a set of

activities belonging to the IPD system starting at time 0. When entering the system the

entity will hold a status vector (rk[k]), and an array of number equal to the number of

activities. This array called reworkactivity[k] will hold the amount of rework performed

by each participant belonging to the IPD system. The index of the participant starting

from 0 all the way to m-1 will be the key to all the saved arrays. Along with the

rework[k] array the entity holds the Decision[k] array and stage. The Decision[k] array

holds the entity's decision for the next stage. The stage variable holds the current stage

of the system. Two global arrays, that are not entity specific, are also worth mentioning;

consideredact[k][i] and didrework[k][i].These two arrays are used record for every

activity k at time i if it considers information or not, and if it does so it records if the

activity performs rework.

64

The entity enters the system with its status vector rk[k] = {0} meaning that all

activities haven't done any rework. All other variables are set to zero except stage, it is

set to 1 to signify the system has reached the first stage of the decision process. After

leaving the Enter_Simulation node, the entity goes to the DUMMY_OBJECT node, this

node is used as a dummy node for technical purposes, not related to the actual

simulation process. At this node the entity fetches the set of decisions for all its

activities from the decision stored in decision[n][n]....[n][k][i]. It then goes to the next

node with its variable activities=0, meaning that we are going to simulate the first

activity of the IPD system. At the consider node the activity checks it current decision,

if it was to consider the info it will leave through the True branch and goes to

Valid_Information and increments the global array consideredact[activities][stage] at the

correct activity index and stage index; else it will leave through the False branch then

goes to Next_Activity. Entities reaching the Valid_Information node are entities

representing activities that have considered information. Once the entities enter the node

we generate a probability according to !"#, &�!$ where in this simulation is called

proba(stage, activities, rk[k]), the function computes the probability of good information

for the current activity. The select node generates this probability and if the information

is valid the entity exits the node through the False branch, adding to the amount of

reworkactivity[k] and rework the amount of rework done an updates the state of the

system by updating rk[k] at k=activities. It also increments the corresponding value for

didrework[k][i] at k=activities and i=stage. If the activity does not do rework it will

leave through the True branch. Reaching the Next_Activity node, the activities variable

is incremented. If activities is less than the number of activities the entity is sent through

the True node back to the consider node where we simulate the actions of the next

65

activity. The entity loops between the Consider node and the Next_Activity node until

all the activities are simulated, after that it leaves the Next_Activity node through the

False branch to the Next_Stage node where the stage variable is incremented. If the

stage variable is less than n the entity is sent back to the DUMMY_OBJECT node

where all the activities are simulated for another stage, else the entity leaves through the

False branch to the Exit_Simulation node where it is destroyed.

To create a Monte Carlo simulation a set of entities need be injected in the system.

That is why we inject ns entities, each resembling one simulation of the system. The

results of all the simulated entities are aggregated and stored in an excel file. Once all

the runs are completed the data is read by Anylogic from these files and stored in an

SQL database. We resorted to this style of data analysis because we wanted to split the

analysis section from the simulation section, this way we would record all the

simulation output at a very raw level, then compute all the metrics. Following this

policy, we didn't have to run the simulations again every time we wanted to compute a

new metric. In the next section we explain how the data is manipulated to get the needed

results.

C.2 Data Analysis

At a first, the results of the simulation is dumped into an excel document. In the

document are computed, where all the formulas are set before hand. The simulation

software dumps the data into the excel document, and then asks excel to update all the

results according to the new data, it reads the data and then dumps them back to the

SQL server as a final destination to the processed data. The results are stored in a results

table. The fields of this table are described in table 2.

66

Field Name Data Type Description

fb float Fixed cost of considering information for activity B

bb float Fixed cost of performing rework for activity B

fc float Fixed cost of considering information for activity C

bc float Fixed cost of performing rework for activity C

fd float Fixed cost of considering information for activity D

bd float Fixed cost of performing rework for activity D

evolution varchar(255) Evolution Type

[R-value] float λ

[B-2] float Number of Times B consider information in 2

activity model

[B-3] float Number of Times B consider information in 3

activity model

[B-4] float Number of Times B consider information in 4

activity model

[C-3] float Number of Times B consider information in 3

activity model

[C-4] float Number of Times B consider information in 4

activity model

[D-4] float Number of Times B consider information in 4

activity model

[PVIB-3] float jkl,,T8

[PVIB-4] float jkl,,�8

[PVIC-4] float jklT,�6

[ReworkB-2] float Amount of rework done by B in 2-activity model

[ReworkB-3] float Amount of rework done by B in 3-activity model

[ReworkB-4] float Amount of rework done by B in 4-activity model

67

[ReworkC-3] float Amount of rework done by C in 3-activity model

[ReworkC-4] float Amount of rework done by C in 4-activity model

[ReworkD-4] float Amount of rework done by D in 4-activity model

[EarlyB-2] float Number of Times B consider information in 2

activity model between time [1-3]

[EarlyB-3] float Number of Times B consider information in 3

activity model between time [1-3]

[EarlyB-4] float Number of Times B consider information in 4

activity model between time [1-3]

[MediumB-2] float Number of Times B consider information in 2

activity model between time [4-6]

[MediumB-3] float Number of Times B consider information in 3

activity model between time [4-6]

[MediumB-4] float Number of Times B consider information in 4

activity model between time [4-6]

[LateB-2] float Number of Times B consider information in 2

activity model between time [7-9]

[LateB-3] float Number of Times B consider information in 3

activity model between time [7-9]

[LateB-4] float Number of Times B consider information in 4

activity model between time [7-9]

[EarlyC-3] float Number of Times C consider information in 3

activity model between time [1-3]

[EarlyC-4] float Number of Times C consider information in 4

activity model between time [1-3]

[MediumC-3] float Number of Times C consider information in 3

activity model between time [4-6]

[MediumC-4] float Number of Times C consider information in 4

activity model between time [4-6]

[LateC-3] float Number of Times C consider information in 3

activity model between time [7-9]

68

[LateC-4] float Number of Times C consider information in 4

activity model between time [7-9]

[EarlyD-4] float Number of Times D consider information in 4

activity model between time [1-3]

[MediumD-4] float Number of Times D consider information in 4

activity model between time [4-6]

[LateD-4] float Number of Times D consider information in 4

activity model between time [7-9]

[DurationB-2] float x8for 2 activities model

[DurationB-3] float x8for 3 activities model

[DurationB-4] float x8for 4 activities model

[DurationC-3] float x6for 2 activities model

[DurationC-4] float x6for 3 activities model

[DurationD-4] float x6for 4 activities model

[Totalrework-2] float Amount of rework for all activities in 2 activity

model

[Totalrework-3] float Amount of rework for all activities in 3 activity

model

[Totalrework-4] float Amount of rework for all activities in 4 activity

model

[Sensitivity-

Type]

varchar(255) Type of sensitivity function

Slope float Slope of sensitivity function

initialinfo float Proportion of endogenous information out of total

information (%)

casenum varchar(255) Case Description

Table 2: Description of the fields that make up the SQL table's structure.

69

After the simulations are run with all the possible iterations, the data is stored in the

table above. A set of queries and views are run on top of that data to mine the results and

insights. It is through these aggregated reports that we drew out our observations that

led to the listed insights.

70

APPENDIX D

MULTI-ACTIVITY MODEL APPLIED FOR A THREE-

ACTIVITY EXAMPLE

In this appendix we show how the multi-activity compact model can be expanded to

the regular formulation for the three-activity model (A-B-C). The purpose of this

exercise is to illustrate the method of calculating the decision policy using the model.

As shown in Figure 11, there are four policies to compare at every time stage: No

activity considers information, B considers information alone, C considers information

alone, both B and C consider information. This is shown when the DP formulation for

the three activity model as shown below:

F1"�G$ � minKBLM,+,!L,,…,N
OP!Q!N
!L, 4	R, SRT S… RN UO P!V!*%! "#, &!$ 4	N

!L, W!. 4 	F1X+"�� 4 Y	⋀	[⋀�\ � ��$]^… ^	
																																																																		F`"��$ � O"%! "a, &!$N

!L, 4 W! 4 Q!$																																																																					

So for the four cases we get the following:

J
B
=0, J

C
 =0 : Ri+1(r

C
)

J
B
 =1, J

C
 =0: f

B
 + Ri+1(r

C
)p

B
(i) +(1 ϛ p

B
(i)) [α

B
(i,r

B
)+β

B
 + Ri+1(r

C
= {i,r

C
})]

J
B
 =0, J

C
 =1: f

C
 + Ri+1(r

C
) p

C
(i, r

B
) + (1 ϛ p

C
(i, r

B
)) [α

C
(i,r

C
)+β

C
+ Ri+1(r

C
= {r

B
,i})]

J
B
 =1, J

C
=1: f

B
 + f

C
 + p

B
(i) [Ri+1(r

C
) p

C
(i, r

B
) + (1 ϛ p

C
(i, r

B
)){ α

C
(i,r

C
) +β

C
 +

Ri+1(r
B
,i)}]+ (1- p

B
(i)) [p

C
(i, r

B
) { α

B
(i,r

B
)+β

B
 + Ri+1(r

C
= {i,r

C
})}+ (1 ϛ p

C
(i, r

B
)){

α
B
(i,r

B
)+β

B
+ α

C
(i,r

C
) + β

C
 + Ri+1(r

C
= {i,i})]

Thus the resulting 3-activitiy DP would be:

 F1"�i	$ � min{ Ri+1(rB,rC),

 f
B
 + Ri+1(r

C
)p

B
(i) +(1 ϛ p

B
(i)) [α

B
(i,r

B
)+β

B
 + Ri+1(r

C
= {i,r

C
})] ,

 f
C
 + Ri+1(r

C
) p

C
(i, r

B
) + (1 ϛ p

C
(i, r

B
)) [α

C
(i,r

C
)+β

C
+ Ri+1(r

C
= {r

B
,i})],

 f
B
 + f

C
 + p

B
(i) [Ri+1(r

C
) p

C
(i, r

B
) + (1 ϛ p

C
(i, r

B
)){ α

C
(i,r

C
) +β

C
 +

 Ri+1(r
B
,i)}]+ (1- p

B
(i)) [p

C
(i, r

B
) { α

B
(i,r

B
)+β

B
 + Ri+1(r

C
=

{i,r
C
})}+ (1 ϛ p

C
(i, r

B
)){ α

B
(i,r

B
)+β

B
+ α

C
(i,r

C
) + β

C
 + Ri+1(r

C
= {i,i})]}

pi
B

71

APPENDIX E

CALCULATING THE EXPECTED QUALITY OF INFORMATION

USING THE TW0-ACTIVITY CHAIN HEURISTIC

 In this appendix we present an example of the calculation done to estimate the

quality of information being sent from upstream activities for an activity). We shall

assume that the decision policy for activity) � 1 is given. Also the quality of

information being used by) � 1 is given, and depends only on time i. Assume the

decision policy for the activity) � 1 is as follows:

r
k-1

 / i 1 2 3 4 5 6 7 8 9 10

0 0 0 1 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 1 1

2 0 0 1 1 1 1 1 1

3 0 1 1 1 1 1 1

4 0 0 1 1 1 1

5 0 1 1 1 1

6 0 1 0 1

7 0 0 1

8 0 1

9 1

Table 3: The decision policy of activity) � 1: �!�+"#, &!�+$
In the above table the first vertical column represents the possible values for &!�+,

these values represent the state of the activity) � 1. The first horizontal column

represents the time stages i. Thus the table represents a matrix of two dimensions,

&!�+	and i. The activity considers information when �!�+"#, &!�+$ =1 and disregards

the information otherwise. Also assume that !�+�#, ������	 is linear and has the values

presented in table 4:

i 1 2 3 4 5 6 7 8 9 10 ���	��, ������	 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Table 4: Values of the function !�+�#, ������	 as a function of time.

72

Using formula 6 in Chapter 5 we can compute the probability matrix. The results are

shown in table 5.

r
k-1

 / i 1 2 3 4 5 6 7 8 9 10

0 1 1 0.7 0.42 0.21 0.084 0.0252 0.0050 0.000504 0

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0.3 0.3 0.15 0.06 0.018 0.0036 0.00036 0

4 0.28 0.28 0.28 0.084 0.0168 0.00168 0

5 0.36 0.36 0.108 0.0216 0.00216 0

6 0.216 0.216 0.0432 0.0432 0

7 0.548 0.5488 0.5488 0

8 0.3609 0.36096 0

9 0.04233 0

10 1

 Table 5: Probability matrix for activity) � 1 defining the probability that activity) � 1 would be in state &!�+ at time i.

Now that we have all the probabilities for the stages and states, we can calculate the

expected state of activity) � 1 at every time i. We do so by using formula 7 of Chapter

5. The expected &1!�+ is presented in table 6.

time 1 2 3 4 5 6 7 8 9 10 ����	 0 0 0.9 2.02 3.37 4.396 6.0676 7.17448 7.388104 10

Table 6: Calculated values for &1!�+ as a function of time i.

After calculating &1!�+ we append it to the vector ����� to get the state vector ����	.	
Thus getting ! �#, �����		 that we can calculate using equation (1). Thus we get the

quality of information used by activity) � 1 ∶ 	 ! �#, �����		. We use this function to

calculate the policy using the two-activity version of the multi-activity model.

