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             AN ABSTRACT OF THE THESIS OF 

 

 

 

Joe Gerges Jabbour                 for               Master in Engineering Management 

                            Major: Engineering Management 

 

 

Title: Optimizing The Exchange of Partial Information In Integrated Product      

 Development With Multiple Activities. 

Integrated product development (IPD) is the overlapping of nominally sequential 

activities while considering downstream concerns, in an effort to reduce the time-to-

market of the product.  The IPD practice helps companies to either pre-empt the 

competition and beat them to market, or respond quickly to changes in the market and 

quickly align their products with evolving customer needs. 

Working with incomplete information, downstream activities are subject to the  risk 

of rework; thus, entailing more development costs. In extreme cases these costs could 

surpass expected benefits. Prior research has shown that it may not be optimal to always 

consider partial information. On the other hand,  research also showed that never 

considering partial information could entail high rework costs.  Therefore, there is a 

need for an optimal policy to manage exchange of partial information in an IPD 

environment. 

In this thesis, we formulate a dynamic programming model to manage upstream 

partial information flow in a multi-activity IPD process (m > 2 activities). The multi-

activity aspect is novel as all previous research  considers two-activity models.  We then 

resort into solving the dynamic program directly and performing an extensive Monte 

Carlo simulation study to analyze the behavior of the optimal policy. The simulation 

results suggest several important insights regarding the timing and frequency of 

considering partial information in an IPD environment. The study showed that upstream 

activities would consider more information in IPD environments, and they do so earlier. 

Most notably, we observe a reverse bullwhip effect in IPD environments where the 

effect of variability of information is dampened rather than amplified downstream. 

Finally, we present a decomposition heuristic to easily approximate the decision policy, 

by solving a sequence of two-activity models. The heuristic performs very well yielding 

near-optimal results at significantly lower computer storage requirement. This enhances 

the applicability of the research to real-world problems involving a large number of 

activities. 
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CHAPTER 1 

INTRODUCTION AND MOTIVATION 

 

In today's fast moving markets, one of the major factors affecting a company's 

competitive edge is the time it requires to develop  new products. The shorter the time-

to-market of the new products, the faster the company is able to respond to changes in 

the market and the better it can preempt the competition in an effort to acquire market 

share.   

The development process of any new product is made up of a set of diverse activities. 

Traditionally, these activities would be done sequentially where the first activity would 

complete its tasks and then send complete information to mid-stream activities. These 

mid-stream activities would rely on this information to do their tasks and then send 

complete information downstream. Downstream activities would then use this 

information to complete their tasks. Figure 1 shows an example of a three-activity 

product development process, where the first activity is  market research (A) , the 

second is product Design (B) and the third is Process Design (C). 

   

 

   Figure 1: Sequential Product Development process with 3 activities. 
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The total time-to-market of this product would be tA + tB + tC  which is the time to 

complete all the activities sequentially. There are two ways that the time-to-market 

could be reduced. The first way is to crash the three activities, by adding many 

resources to them in an effort to reduce the time of every activity individually, and thus 

decreasing the total time required. This method could become costly in regards to the 

number of resources required and the correct management of these resources. The 

second approach, as shown in Figure 2, would be to overlay these activities and thus 

reduce the time-to-market of the product to tA + tB + tC - tA∩B - tB∩C + trework ,where - tA∩B 

and tB∩C are the overlap times of A&B and B&C respectively. In this overlap setting 

activities B and C would have to work with partial information, and then suffer rework 

costs as information is changed upstream.   

  

 

Figure 2: Integrated Product Development with three activities. 

Integrated Product Development (IPD) is the overlaying of nominally sequential 

activities in an effort to decrease the time-to-market of a product. Overlapping will 

hence cause activities to work with incomplete information and hence will induce 

rework. Considering the worst case scenario is when the total integrated time would be 
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greater than the sequential time. That is why a decision policy is needed to indicate 

when integration is profitable and if it is profitable to manage the exchange of 

information in an optimal manner thus reducing the time-to-market of the product. Since 

overlapping and interaction increase the need for coordination among activities, IPD 

compensates using organizational mechanisms (such as cross-functional teams) and 

technical mechanisms (such as PIM/PDM tools).
1
 The influence of organizational 

mechanisms on integration and coordination have been studied extensively in the 

product development literature (e.g., Hauptman and Hirji, 1999; McDonough, 2000; 

Hoegl et al., 2004); however, rigorous analysis concerning technical mechanisms within 

a development environment is scarce, despite the consensus on its pivotal role 

(Nambisan, 2003; Yassine et al., 2004; Banker et al., 2006; Nambisan, 2009). 

   In IPD environments, individual decisions are not made in isolation, but are 

impacted by information generated and consumed by other development participants. 

When an individual participant reacts to newly arrived information, it will modify the 

requisite information for other dependent participants. This will create a complex chain 

of interdependencies, where the decision of a single participant has the potential to 

propagate throughout the development organization involving many other participants 

(Yassine et al., 2003). We specifically consider the archetypal scenario where a 

development participant is capable of accessing, at any time, unreliable, but related, 

development information, which has the potential to change as the development 

endeavor progresses. The participant has to decide what the appropriate action should be 

                                                           
1
 PIM stands for Product Information Management, which is

 
also known as PDM (Product Data 

Management). PIM software involves a database system that manages product-related information 

including engineering drawings, project plans, assembly diagrams, product specifications, analysis 

results, correspondences, bills of material, and many others (Liu and Xu, 2001). They are successful at 

managing the access and control of finalized information; however, they fail to handle the evolving nature 

of incomplete information that characterizes IPD environments; particularly at the early stages of 

development (Banker et al., 2006; Bardhan, 2007).  
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in response to this information. For instance, it can choose to ignore the information and 

continue with its original mission, or, it can incorporate the information to modify its 

work appropriately in light of this new, but partial, information. The trade-off involved 

here is that acting upon such information may improve the quality of its work; however, 

there is a risk of disrupting its progress (to check this partial information) and then 

discovering that this newly available information is irrelevant. 

In this thesis, we consider an multi-activity, � � 2, development scenario where 

each activity has the option of either to consider the partial information being fed to it 

by upstream activities or to disregard it. The trade-off is between disrupting the flow of 

the activity and incorporating information that may be valid or not, and postponing the 

processing of information to face more costly rework later. We formulate a multi-

activity DP to develop the optimal decision policy for all possible stages, in an effort to 

minimize the overall IPD completion time by controlling the amount of rework 

performed, taking into consideration the quality of partial information exchanged and 

the cost of performing rework. We then resort to simulation to study the dynamics of the 

multi-activity model and draw out a set of insights. The study showed that upstream 

activities would consider more information in IPD environments, and they do so earlier. 

Most notably, we observe a reverse bullwhip effect in IPD environments where the 

effect of variability of information is dampened rather than amplified downstream. 

The remainder of this thesis is organized as follows. In Chapter 2 we briefly review 

some of the literature related to this topic. In Chapter 3 we present our multi-activity 

formulation and in Chapter 4 we simulate different scenarios of an IPD model using the 

optimal decision policy of chapter 3 to draw out a set of insights that could be useful in 

a regular working environment. In chapter 5 we present a decomposition heuristic that 
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gives a near-optimal decision policy with minimal additional rework. Finally we 

conclude in chapter 6 by summarizing our work and proposing future extensions. 
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CHAPTER 2 

LITERATURE REVIEW 

 

There has been extensive research on concurrent engineering and integrated product 

development. The work done has been along two directions. The first direction is 

towards determining the optimal amount of overlap between tasks to reduce 

development lead time. This work was led by Krishnan et al. (1997), Terwiesch (1998) 

and Joglekar et al. (2001). The second direction is towards determining the optimal 

communication policy. Our work is along this second direction to complement the 

efforts started by Ha and Porteus (1995), Yassine et al. (2008, 2012) and Lin et al. 

(2010). 

Krishnan et al.  (1997) investigated the overlapping of two nominally sequential 

dependent Product Development activities. They developed an overlapping framework 

for these activities based on a downstream rework formulation that depends on upstream 

information evolution and downstream sensitivity. The two constructs, upstream 

evolution and downstream sensitivity are at the heart of the IPD study and are 

extensively used in this thesis. Upstream Evolution is used to refer to the refinement of 

the upstream generated information, from its preliminary form to a final value (Krishnan 

et. al 1997). i.e. the way information changes from its initial form to a final complete 

form to be passed down at the end of the upstream activity. Downstream sensitivity is 

the relationship between the duration of downstream rework and the magnitude of the 

change in the upstream information value (Krishnan et. al 1997). Activities are 

considered highly sensitive to upstream changes in information when small changes in 

the upstream information leads to large rework downstream. On the contrary, when 
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large changes in upstream information leads to small rework duration, this means that 

the downstream activity is slightly sensitive to changes in upstream information.   

Loch and Terwiesh (1998) offered a two activity analytical model for overlapping 

activities to minimize the time-to-market. They derived an optimal communication 

policy affected by the uncertainty of changes in information generated by upstream 

activities. The information changes upstream are released to downstream activities as 

batches of data that would induce rework on the downstream tasks. The model also took 

into account the dependence of the downstream activity on the upstream activity. The 

occurrence of these information changes was modelled as non-stationary Poisson arrival 

process with a variable rate defined along the duration of the upstream phase. This non-

linear program had three decision variables: the pre-communication intensity, the 

expected communication frequency and the amount of overlap. Pre-communication 

intensity is the total number of information exchange meetings that are planned to be 

held during the development process. Expected communication frequency is the 

expected rate of occurrence of these meetings. The objective function assess the benefits 

of the overlapping period against the additional cost of rework generated from 

uncertainty in the information and the cost of frequent meetings.  

Lin (2010) followed a similar approach by assuming a non-homogeneous Poisson 

process for the upstream changes occurrences and the dependency function. The 

proposed model is also a non-linear program (NLP). However, in this case there are two 

decision variables: start time of downstream work and functional interaction duration. 

To derive estimates of the rates of the non-homogenous Poisson process, project 

engineers first examined the documents which contain all the details of the changes, 

such as the root causes, the severity, and the closure date. After that, project engineers 
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jointly estimated the rates of engineering changes for different points in time. Similarly, 

the rework impact on downstream rework was also estimated using interviews with 

experienced engineers in the company. 

Yassine et al. (2008) defined four forms of upstream evolution. These forms are 

shown in Figure 3. Concave evolution is when activities evolve the most during early 

stages of activity's duration. Convex evolution is when the activities evolve the most 

during late stages.  Linear evolution is when an activity evolves at a constant pace al 

throughout its lifetime. Finally, S-shaped evolution is when an activity evolves the most 

in the middle stages.  In the same paper, they developed a dynamic programming model 

that provides optimal timing and frequency of information exchange for a single activity 

in order to minimize it development cost. The model considers discrete times divided 

into equal periods where the upstream activity would send information. At the 

beginning of each period the downstream activity is faced with the decision of either 

considering or not considering the information. If the new information is used then a 

rework penalty is incurred. Otherwise, the team would proceed with its normal course of 

development. Then, the trade off becomes how to divide the rework packages along the 

detailed design time-line such that the total development cost is minimized.   
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Figure 3: Forms of evolution as described by Yassine et. al (2008) 

 

In a sequel paper, Yassine et al. (2012), considered uncertainty in the quality of 

exchanged information and derived a threshold policy for the two activity model. They 

also analyzed a three-activity model.  However, the complexity of the three activity 

model made it difficult to find a threshold solution. They resorted to simulation, instead, 

in order to understand the dynamics of the problem. The simulation was done in two 

steps, first all possible scenarios of the integrated model are enumerated for given 

parameters and stored in memory. In the second step, the interaction between the 

midstream activity (B) and the downstream activity (C) is simulated using values 

obtained from the first step to decide on whether to consider the information or not. The 

simulation resulted in three insights: (i) Activity B considered more information in the 

integrated model than in isolation in an effort to help (C) in reducing its rework; (ii) 

Activity (B) in the integrated model tends to consider more information earlier in order 

to improve the quality of the information as early as possible; and (iii) when the fixed 

costs of considering information for either activity (B) or  (C) were increased up to a 

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 2 4 6 8 10 12

P
e

rc
e

n
t 

C
o

m
p

le
te

d

Time

Forms of Evolution

S-Shaped

Concave

Convex

Linear



 

10 

 

certain extent where  the integration  became costly and prohibitive, which implies that 

(B) behaves the same in integration and isolation. In this thesis, we extend the model 

from a 3 activity model to an n-activity model.  The extended model adds integer 

formulation to the DP, making it flexible and extendable to n-activities. We have also 

changed the form of the model parameters linking them to upstream evolution and 

downstream sensitivity. The most important contribution in our study in integrated 

product development, is that our model accounts for downstream concerns. All models 

in the literature have not included this major part in their model's frame. This the main 

feature that distinguishes the overlapping models presented in earlier studies with the 

integrated product development that we present in this thesis. We also confirm the 

insights presented in Yassine et al. (2012) for the four activity model over a wider set of 

parameter changes. We draw additional insights on the dynamics and behaviour of the 

three and four activity model. 
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CHAPTER 3 

MODEL AND ASSUMPTIONS 

 

In this chapter, we develop a dynamic programming model to minimize the overall 

time of the IPD process of m activities. The model is similar to the DP formulation 

devised by Yassine et al. (2012), yet it is extended to m activities. In section 3.1, we 

develop the function describing the quality of upstream information for any activity k, 

 !"#, ���	$. In section 3.2 we introduce the function defining the variable amount of 

rework performed by activity k, in state r
k
, %!"#, &!$. Finally, we present our multi-

activity DP model in section 3.3. 

  All activities can be executed sequentially after the completion of the preceding 

activity, in which case the overall duration of the development process becomes the sum 

of the nominal durations of all activities. Alternatively, as we assume in this thesis, in an 

integrated development environment, all downstream activities can be executed 

concurrently, over a given time interval related to upstream activities completing a 

minimum amount of work, as discussed in Yassine et al. (2012). We divide the duration 

of any activity into two parts: “nominal” activity duration and the “rework” activity 

duration. The nominal duration of an activity is the time needed for the activity to 

complete its assigned work assuming that it is either independent of all other activities 

(i.e., does not need information from other activities), or all its requisite information is 

available at its start time. The rework duration is the extra time needed to perform 

rework in case the activity starts with missing or incomplete requisite information. The 

nominal duration of an activity is assumed to be known and fixed; however, rework 
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duration is uncertain and depends on the fraction of nominal work performed prior to 

the arrival of the incomplete information. Thus, the minimization of the completion time 

of the development process is equivalent to the minimization of the cumulative rework 

durations performed by the downstream activity. Figure 4 shows a diagram of the 

proposed model for m = 4 activities. 

 

 

 

 

 

 

 

 

Figure 4: IPD model with m = 4 activities 

We adopt a discrete time framework with n time periods.  The upstream activities 

continuously (i.e., at every time interval i =1, …, n) send information to the downstream 

activities. The downstream activities have the ability to consider the information sent or 

to ignore it. At every time i, the decision maker has two options: either not to consider 

the information at this time which will lead to an accumulation of rework and costly 

rework at later time, or to consider the information at this time with a risk of rejecting it 

(i.e., not performing rework) due to low information quality.  It is mandatory that at the 

last time interval (denoted by n) the decision maker considers the information in order 

to finalize the integration of the downstream activity with the upstream activity. This 

assumption is legitimate since the relation between all activities is of the finish-to-start 

type. When an activity decides to consider information, it is incurred a fixed cost. This 

cost reflects the preparations needed to consider the information. For example, when an 

engineer does some changes in the design of a chip, he sends the new CAD files to be 

considered by manufacturing. The costs incurred by the manufacturing department to 

Partial information 

Time    1      2          …       i   …            n-1      n 

Final information 
B 

A 

B 

C 
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look over these CAD files and see if there are any changes to be made is the fixed cost 

of considering information. We denote f 
k
, the fixed cost for considering information by 

activity k, 1 ( )	 ( �. Whenever information is considered, there is a chance that the 

exchanged information is not valid and does not induce rework to the activity that is 

considering the information; on the contrary the considered information could induce 

rework. The probability defining the quality of the data and its ability to induce rework 

is denoted by   !"#, ���		$, being the probability that the information available at time i 

for activity k is valid. This probability is also a function of the vector ���	 �
	*&!�+, &!�,, …………&,. where &/ denotes the last time activity j performed rework. A 

detailed explanation of the function  !"#, ���	$ is given in the next section (3.1). In the 

case where the information is valid, the amount of rework performed could be divided 

two parts: fixed costs of performing rework, denoted by β
k
 for any activity k, and a 

variable cost component denoted by %!"#, &!$. The variable cost of rework for activity 

k, %!"#, &!$ is dependent on the time i and &!the last time the activity performed 

rework. The function %!"#, &!$ is described in detail in section 3.2.  

 

3.1 Quality of Exchanged Information  !"#, ���	$ 
 The earlier the downstream activities consider upstream information, the less 

rework is required. However, considering the information at early stages has a higher 

probability of rejection since the quality of information might not be high enough to 

justify performing rework.  

 The function  !�#, ���	  of any activity k refers to the probability that the 

information provided by upstream activities is in its finalized form and will not be 

changed. Naturally,  !�#, ���	 would depend on the activities originating the 
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information, mainly activity ) � 1, if we are assuming sequential processes, and is not 

affected by activity k.  We start our definition of the function  !"#, ���	$ by considering 

that k only receives information from ) � 1	and that  !�+"#, ����$ is known. Any 

activity has two main sources of information: Endogenous information and exogenous 

information, ie information supplied from the upstream activity ) � 1. Endogenous 

information is the part of information that is available at time 0.  !"#, ���	$ also 

depends on the exogenous information, that is influenced by the evolution of the activity 

) � 1; as such one would expect  that the quality of exogenous information to increase 

at the same rate as the evolution of the activity ) � 1. We would assume that  

 !"#, ���	$ would be proportional to evolution function of activity ) � 1. Figure 5 

shows the sources of information of any activity in the IPD process, Endogenous 

information is fed to the activities at time 0 and partial information is sent downstream 

at all time periods. 

 

  

 

Figure 5: Sources of information for activity k. 

 The above definition of  !"#, ���	$ is correct if activity ) � 1	is the first activity 

and it is only creating information. On the other hand, midstream () � 1) activities start 

their work with preliminary information, and will have to work with information that is 

still not finalized. If midstream activities do not consider any information or do not do 

any rework all throughout their evolution, they are not able to achieve a full evolution. 

This means that the quality of information they generate will deteriorate if the activity 

misses information from upper stream activities () � 2). Midstream activities could 
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enhance the quality of their information by increasing the frequency of considering 

information from upstream activities. That is why a more adequate form of  !"#, ���	$ 
for activities receiving information from middle stream activities, would have to take 

into account the evolution of the activity ) � 1	and the last time ) � 1 did rework. It 

would also have to take into consideration the quality of information supplied to the 

midstream activity. The  quality of the information that ) � 1	is using is a function of 

the information being supplied by the activity ) � 2,  !�+"#, ����$ to ) � 1	and the last 

time activity ) � 1	received good information, denoted by &!�+. We suggest the 

following form of the probability function  !"#, ���	$:  
  

             !�#, ���	 � 0�Ɛ1!�+ ∗ 3ϛ!�+ 4 "1 � ϛ!�+$	 !�+�&!�+, ����5 		           (1) 

where 0�Ɛ1!�+	is an increasing function of the evolution of the activity ) � 1, and 

ϛ!�+ is the fraction of endogenous valid information available to activity ) � 1. The two 

functions are multiplied to mimic the fact that k-1 would improve the quality of its 

information as it evolves. The function Ɛ1!�+  is the evolution of activity  ) � 1. It  is a 

normalized function and belong to the range [0,1]. 

 The function Ɛ1!�+ could have a form of any of the evolution functions discussed 

in Chapter 2. See Figure 3 in that chapter. These forms are adopted from Yassine et al 

(2008). The degrees of convexity or concavity of the functions below could be varied to 

match the IPD situation that the decision maker is faced with. 

 The function  !"#, ���	$ is an increasing function in &!�+ and i. For example, if 

Activity C gets its information from the upper stream Activities B and A having a 

convex evolution then we would have the following  forms of  6"#, �7$   as a function 
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of time i and &8	the last time B did rework. In this case the vector �7 reduces to &8and 

hence  6"#, &8$ has the a shape similar to the one shown below in Figure 6. In Figure 6 

we show different curves for  6"#, &8$ as a function of time form 5 ( # ( 10 and 

0 ( 	 &8 	( 4. We plot these values to show the impact of time and the last time B 

considered information on the quality of information used by C. 

 

 

Figure 6: Form of p
C
(i,r

B
) as a function of i and r

B
. 

  We can see that the function increases in both i and &8. If B never considers 

information  &8  would always be 0.  

 

3.2  Potential rework =���, ��	 
 Delaying the evaluation of upstream information carries some penalty due to (i) 

the increase of nominal work complexity as the development evolves, and (ii) the 

increase in the rework complexity of the unfinished work performed downstream 
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without input from upstream, as delaying the consideration of information will increase 

the backlog of activities requiring input from upstream. In other words, the more we 

delay considering the information, the more we delay potential rework, and thus the 

more rework we have to perform due to the increase in complexity of both the nominal 

work and rework. Therefore, the potential rework function at time i, %!"#, &!$		is 

divided into two components: 

• Rework caused by the increase of nominal work complexity h!"Ɛ1!$ ∶ 
This component of the rework is a function of the time i; reflects the weight of the 

finished work on the rework to be done. As i increases more work is done and hence 

when new information is considered at later stages more rework has to be performed. 

The function h!"Ɛ1!$ is increasing in i since one would assume that more work done 

would require a larger amount of rework. The function h!�Ɛ1!	is best interpreted as 

function of the evolution of the Activity k. The Figure below illustrates the need for the 

ideas discussed above. In the Figure 7, Case 1 is when a downstream activity does 

rework at later stages. Alternatively, case 2 is when the same activity does rework at an 

early stage. The amount of work completed is reflected by the size of the bar.  
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Figure 7: Effect of amount of work completed on rework. 

• Rework caused by the increase in the rework complexity of the unfinished work 

performed downstream without input from upstream @! �ϛ!, Ɛ1!�+	 �	ƐAB!�+ 
@! �ϛ!, Ɛ1!�+	 �	ƐAB!�+:	is a function of the time i, the amount of endogenous 

information and the last time rework was done &!. This factor helps the model 

differentiate between two states where the process has just done rework and where the 

process has not done any rework in a long time. As such the function @! �ϛ!, Ɛ1!�+	 �
	ƐAB!�+	should reflect the amount of accumulated rework as a result of not considering 

information for a long period of time. Figure 8 illustrates the two states discussed above. 

Case 1 shows the amount of rework, the white portion, accumulated from period 8, the 

last time the activity did rework. Case 2 shows the amount of rework, the white portion, 

accumulated from period 2, the last time the activity did rework.  
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Figure 8: Effect of amount of information missed on rework. 

The function @! �ϛ!, Ɛ1!�+	 �	ƐAB!�+	 is then increasing with the amount of 

information missed. The rate at which this function increases is related to the sensitivity 

of the function to information sent from upper-stream activities. The sensitivity of the 

downstream activity is influenced by the type of the activity and by the proportion of 

information that the activity takes from exogenous sources. That said, one would 

assume that as the amount of endogenous information increases downstream activities 

would become less sensitive to upstream information changes. An activity that has all 

the information that it needs at time 0 would be insensitive to changes in upper-stream 

activities as it is not affected by them. When @! �ϛ!, Ɛ1!�+	 �	ƐAB!�+		increases rapidly 

then a small change in the information upstream leads to large rework downstream. In 

this case Activity k is highly sensitive to upstream changes. Alternately, when 

@! �ϛ!, Ɛ1!�+	 �	ƐAB!�+ increases slowly then large changes in information  upstream 

induces small amount of rework. In this case, activity k is said to be slightly sensitive to 

changes upstream. At any point the largest amount of rework would be h!"Ɛ1!$, which 
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means that all work that has been done needs to be redone again. As such a natural form 

of the function @! �ϛ!, Ɛ1!�+	 �	ƐAB!�+	would belong to the range [0,1].  

Thus the function %!"#, &!$, that quantifies the amount of rework done whenever 

valid information is communicated to downstream activities is:   

                    							%!"#, &)$ � h)"Ɛ#)$ D @) �ϛ), Ɛ#)�1	 �	Ɛ&))�1																												"2$ 

 As discussed earlier the function f!"Ɛ1!$ would be a function of the evolution 

function of the activity k, it could have any of the forms discussed in Yassine et. al  

(2008). See Figure 3 in chapter 2.  

The function @! �ϛ!, Ɛ1!�+	 �	ƐAB!�+ would be an increasing function in the amount of 

information that has been accumulating from the last time the activity k did rework. As 

discussed earlier this is related to the rate of evolution of the activity ) � 1. As such at 

any point in time @! �ϛ!, Ɛ1!�+	 �	ƐAB!�+ is increasing in Ɛ1!�+	 �	ƐAB!�+. This function is 

also decreasing in ϛ!. The Figures below show possible forms for the function  

@! �ϛ!, Ɛ1!�+	 �	ƐAB!�+ in two cases ϛ! � 0 (Figure 9) and ϛ! � 25% (Figure 10).    

 

Figure 9: Possible forms of the sensitivity function @! �ϛ!, Ɛ1!�+	 �	ƐAB!�+ for 
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 ϛ! � 0%. 

 

Figure 10: Possible forms of the sensitivity function @! �ϛ!,Ɛ1!�+	 �	ƐAB!�+ for 

ϛ! � 25% 

3.3 The Multi-Activity DP:       

At every time period i = 1,..., n, and depending on the amount of rework previously 

performed as measured by the last times rework is done  defined by the “state” vector  

�� �	*&!, &!, …………&,., the model examines 2
m−1

 cases to minimize the total rework 

for all the activities. The cases represent all possibilities of the decision. For example, 

when m = 3, then we have three activities where the first activity generates the 

information, a midstream activity, and a downstream activity that receives the 

information. The last two activities will have to decide whether to consider the 

information from the upstream activities or not. So the set of cases would be 2
3−1

 = 4, 

the first case being that no activity would consider information, the second case would 

be that only the second activity considers the information, and the third case would be 
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be that both the second and third activities consider the information. Our general m-
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activity formulation evaluates each decision for the corresponding state, &!, and stage, i, 

and chooses the least costly alternative.  

Let J
k
 = 1 if activity k considers information and 0 otherwise and let Z

k
= 1 if activity 

k does rework and 0 otherwise. Note that J
k
 are our decision variables where Z

k
 are 

independent Bernoulli random variables with parameters  !"#, ���	$. Then, the 

minimum expected rework between time i and the end of the concurrent development, 

n, Ri(��), when the system is in state  �� �	 *&!, &!, …………&,., is given by the 

following DP optimality equation.    

F1"�G$ � minKBLM,+,!L,,…,N
OP!Q!N
!L, 4	R, SRT S… RN UO P!V!*%! "#, &!$ 4	N

!L, W!. 4 	F1X+"�� 4 Y	⋀	[⋀�\ � ��$]^… ^	"3$
																																																																		F`"��$ � O"%! "a, &!$N

!L, 4 W! 4 Q!$																																																																					"4$
 

                                                                                               

 

where E
k
[.] is the expectation operator over Z

k
, E

k
[g(x, Z

k
)] =( 1- !"#, ���	$) g(x, 0) 

+  !"#, ���	$. g(x, 1) , for any function g(.) and scalar x, J = (J
2

 , …, J
m
), Z = (Z

2
 , …, 

Z
m
), and "⋀" is a type of vector product, c	⋀	d � (v

2
w

2
 , …, v

m
w

m
), for any two vectors 

v and w,  and i = (1, …, n).    

This m-activity formulation reflects that at every time i, either the information is not 

considered (J
k
 = 0) at no additional cost, or information is considered (J

k
 = 1), then (i) a 

fixed cost of f
k
 is incurred, and (ii) a rework cost of %! "#, &)$ 4 W! is incurred (with 

probability  ! "#, ���	) and the system moves to state i or no rework is performed and 

the system remains in state &! . The DP formulation in (1) could be better understood 

when observing the decision tree below. The decision tree below is the expansion of the 

above formulation for a specific case, where m=3 activities. We also show how the 
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multi-activity expands into the regular 3-activity model in Appendix D. Reading this 

appendix will help the reader to better understand the compacted version of the model. 
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Figure 11: The Decision tree for m=3 activities. 
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The DP formulation in (3) provides a compact, mathematically elegant, and 

computationally effective way (i.e., easy to program through iterative nested loops) to 

manage the flow of information in an IPD environment with any number of activities m 

≥ 2. We provide in Appendix A, a pseudo code that can used to compute the decision 

matrix. For every stage, and all the states the system could be in. The code quantifies the 

costs of all possible decisions at that state and stage and chooses the decision with the 

least cost and records it a decision matrix. The code utilizes the multi-activity model 

described in equation 3 to do its calculations. This is one of the main contributions of 

the current study. This contribution is significant given today’s computing power where 

large storage and efficient retrieval is possible. Note that to utilize the DP in (1) in 

practice, one needs to store the corresponding decisions J at every time i, and in every 

state �!, in a large hyper matrix. Then, as the system evolves dynamically over time, 

starting from state �! = (0, …,0) at time i = 1, one retrieves the optimal decision from 

the matrix.   We acknowledge that the calculation of the decision matrix could become 

tedious and somewhat prohibitive as more activities are added.  For instance, when 

� � 10 activities the model would have to compare  2
10 

= 1024 possible decisions and 

will have to do this comparison for  e # � 1N�+ �`�+1L+ 	387,420,489	 possible states if 

a � 10 time periods. The calculation of this decision matrix could be done using the 

pseudo-code found in appendix A. We have been able to calculate such matrices in a 

respectively short period of time using a regular desktop PC for three and four activities. 

For larger IPD problems we propose a decomposition heuristic in Chapter 5. 
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CHAPTER 4 

COMPUTATIONAL RESULTS AND INSIGHTS 

 

 In order to draw out a series of insights or 'rules of thumb' that would help 

decision makers without having to calculate the decision matrix every time, we have 

simulated a set of cases that would cover a large set of the cases in real IPD 

environments.  

 

4.1  Experimental Setup: 

The numerical experiment was built in Anylogic
2
 simulation environment for the 

two, three and four activities models. The experiment is made up of two parts. First a 

decision matrix is computed for all possible stages and states utilizing the formulation in 

Chapter 3. Then a Monte Carlo simulation is run, where we generate information 

qualities according to the probabilities p
B
(i), p

C
(i,�7), and p

D
(i,�i), when needed and 

using the stored policy, from step 1, to decide on considering the information or not. 

The analysis focuses on comparing the behavior of both activities B and C as more 

activities are added. Accordingly, we draw out some important insights that can be used 

in an IPD environment. We utilize a set of metrics that would help us in quantifying 

some of the behavioral changes. 

The Percentage Variation of Information (PVI) stated below is used to compare the 

actions of the activities B and C as more activities are added.  

                                                           
2 AnyLogic is a multi-method simulation modeling tool developed by XJ Technologies. 
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where k = B, C denote the activity, m is the number of integrated activities in the model, 

and ns is the number of simulations, and Jikl
m
 is the number of times activity k considers 

information at time i of simulation l in an m-activity model. We use m = 2 3, and 4 for 

B. That is, we compare the amount of information considered by B in the two, three, 

and four-activity models. For example, if PVI
B

2,3> 0, then B considers more 

information, on average, in the three-activity (A-B-C) model then in the two activity (A-

B) model. For C, we use m = 3 and 4. In the simulation, Jikl
m
 is determined based on an 

exhaustive a priori storage of the values of the decision policy. 

 We utilize the duration xN!  to compare the timing of considering information of 

the of the activities B and C as more activities are added. 

 

																																				xN! � ∑1̀L+ �∑ P1!yN`uyL+  ∗ #∑1̀L+ ∑ P1!yN`uyL+ 																									"6$ 

 

 where k = B, C denote the activity, m is the number of integrated activities in the 

model, and ns is the number of simulations, and Jikl
m
 is the number of times activity k 

considers information at time i of simulation l in an m-activity model. For example x8T  

is the average time activity B considers information in the three-activity model.  
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We define a base IPD process that has 10 periods (n =10) and the following data. For 

activity B the setup cost for considering the information and the costs of performing 

rework are Q8 	� 	0.01 and W8 	� 	0.02, respectively. The values are the same for both 

activities C and D. All activities  have the same “nominal” rework rates %!"#, &!$	and 

quality of information probabilities	 !"#, ���	$, k = B, C, D. The simulation is run 

under a series of variations to cover the majority of possible cases a decision maker may 

be face with. These variations are as follows. 

• Variations in evolution types: 

We vary the forms of these functions to cover all shapes of evolution. We simulate 

convex, concave, S-shaped and Linear evolution. We also vary the degree of concavity 

and convexity of all the possible forms to cover most scenarios that a decision maker 

would come across.  

We utilize the functions below to calculate the evolution of the activities as follows: 

1. Concave-fast evolution: Ɛ1 � 1 4 {|o}�{|t}
{|t}�+   for λ=0.3,0.5,1,2,4,7 and 10. 

 and thus having the following shapes: 
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Figure 12: Simulated forms of concave evolution. 

 

2. Convex-slow evolution: Ɛ1 � 1 4 {|o}�{|t}
{|t}�+   for λ=-0.3,-0.5,-1,-2,-4,-7 and -10. 

 and thus having the following shapes shown in Figure 13. 

 

Figure 13: Simulated forms of convex evolution. 

3. S-shaped evolution: Ɛ1 � ++X{|}∗or~  for λ=0.5, 0.8, 1, 1.2, 1.5, 2, 3. 
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and thus having the following shapes shown in Figure 14. 

 

Figure 14: Simulated forms of S-shaped evolution. 

4. Linear evolution: Ɛ1 � λi  for λ=0.1. This is the only form of evolution for the 

linear case since the activity has to be 100% complete at the i=n. The suggested form is 

shown in Figure 15. 

 

Figure 15: Simulated form of Linear evolution. 

• Variation in the sensitivity of downstream activities: 
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@! �ϛ!,Ɛ1!�+	 �	ƐAB!�+ � 	�	"1 � ϛ!$��Ɛ1!�+	 �	ƐAB!�+									#Q	� � +�					1 � ϛ!										#Q	� � 	 +�					                   

ν=0.5 (Low),1 (Moderate),2 (High). 

The three cases for linear sensitivity are shown in the Figure 16. 

 

Figure 16: Simulated forms of downstream sensitivity to upstream information 

changes.  

 

• Variations in the amount of endogenous information 

 We vary the amount of endogenous information (Ϛ$ over four values: 0%, 

10%,40% and 70%. We assume that all activities would have the same amount of 

endogenous information. 

    

• Variations in the fixed costs of considering information and performing rework 

 As for the variations of the fixed costs of considering information and 

performing rework. These costs could have low, medium or high values, and thus for the 
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would not make sense, or whose logic would resemble the logic of other cases. To 

narrow down our scenarios we shall assume that as you go further downstream these 

values would have to increase which are summarized in Table 1. We considered various 

rates at which these costs can increase. For the Base Case there is no increase in these 

fixed costs. The values of these costs are also normalized, for instance a fixed cost of 

0.01 would reflect a cost equivalent to 1% of the nominal work required to finish the 

activity
3
. Cases 1,2 and 3 represent cases were the fixed costs increase at different rates 

as one goes downstream, i.e. increasing in k. Case 4 examines the case where all the 

activities have no fixed costs. Case 5 represents the cases where we have no cost of 

performing rework. On the contrary Case 6 represents cases where activities have no 

costs of considering information. Case 7 is an exotic case and is used to represent cases 

where midstream activities have extremely high fixed costs. This case is used mimic 

cases where the midstream's activity's team could be working in a different country, 

such as outsourcing to China. This is much like the design of a project is done by 

specialist companies in different countries so any changes in the requirements of the 

design would have to be sent to the team, regularly some people would have to travel to 

explain the new details to the team. Thus ensuing huge costs.  

 

Case  Change To Base Case Description 

Base Case None Fixed costs do not change as 

we go downstream. 

Case 1 fc=0.02, βc= 0.03, fD = 0.03, βD = 

0.04 

f  and β increase linearly at a 

rate of 0.01  

 

Case 2 fc=0.03, βc= 0.05, fD = 0.05, βD = f  and β increase linearly at a 

rate of 0.02 

                                                           
3  This assumption is not restrictive, yet we made this assumption to give a sense of meaning to fixed costs. 
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0.08  

Case 3 fc=0.05, βc=0.06,  fD=0.09,βD= 0.1 f  and β increase linearly at a 

rate of 0.04 

 

Case 4 fB = 0, βB = 0, fc= 0, βc= 0, fD= 0, 

βD = 0 

All activities have no fixed 

costs. 

Case 5  βB = 0, βc= 0, βD = 0 All activities have no fixed 

costs for rework. 

Case 6 fB = 0, fc= 0, fD= 0 All activities have no fixed 

costs for considering 

information. 

Case 7 fc=0.15, βc=0.15,  fD=0.01, βD= 

0.02 

C has very high fixed costs 

Table 1: Simulated cases for the variations of the fixed costs.  

A Monte-Carlo simulation is run for ns =  200,000 replications for each case of fixed 

costs, evolution type, λ,	Ϛ and ν. Thus amounting to 2,112 simulation scenarios. All the 

activities would have the same evolution type, λ,	Ϛ and ν. We record the PVI, x and 

amount of rework done by every activity. The large number of simulation runs per case 

yielded tight confidence intervals on all of the recorded metrics.  

 

4.2 Simulation Experiments  

We devised three simulation experiments. The first experiment studies the changes in 

the behavior of the upstream activities as more activities are added downstream. Our 

study is limited to the analysis of the two- activity (A-B), three- activity (A-B-C) and 

four- activity (A-B-C-D) models. The purpose of this experiment is to see if the addition 

of the downstream activities would affect the decisions of upper stream activities. We 

vary the evolution type and λ for all the activities and monitor how the upstream 

activities (B) changes its behavior as the changes occur. Specifically we monitor the 



 

34 

 

change in the number of times information is considered and the timing of considering 

the information. We also observe the effect of these changes on the total amount of 

rework done.  

After we learn how the changes in downstream affects the upstream activity's 

behavior we set up the second experiment to better understand the effects of changes in 

the nature of upstream activities on downstream behavior. The experiment only takes 

into consideration the four activity (A-B-C-D) model. We vary the evolution type and λ 

of the first activity (A) and monitor how the downstream activities (B-C-D) change their 

behavior as the changes occur. Specifically we monitor the change in the number of 

times information is considered and the timing of considering the information. We also 

observe the effect of these changes on the total amount of rework done. The evolution 

type of activities (B-C-D) is not changed all throughout the experiments and is 

considered to be convex with λ=10. The same variations discussed in the simulation 

setup are repeated in cases, evolution type, λ,	Ϛ and ν, only varying the evolution type of 

the first activity (A). We record the amount of information considered by every activity, 

PVI metric for all downstream activities and the average time of considering 

information x. We also monitor how the changes in the upstream activity A's evolution 

affect the total rework of the system and the rework done by each activity. We draw out 

a series of insights listed in the next section. 
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4.3 Results and Insights: 

In this section, we first present a set of observations that to validate our model.  

Observation 1: When endogenous information is high, midstream and downstream 

activities would consider less information. Integration would be very lucrative. 

When endogenous information is high, then the amount of exogenous information 

used by downstream activities would be low. Thus the variability in the flow of 

information would decrease. Downstream activities would no longer have to consider 

more information when compared to the case where endogenous information is low. The 

improvement in the quality of information resulting from the evolution of upstream 

activities would be minimal, therefore activities will not consider information  and incur 

fixed costs. As such we would observe a decrease in the amount of information 

considered. Figures 17 and 18 show how the increase in the endogenous information 

decreases the amount of information considered and the total rework. 

 

Figure 17: Effect of endogenous information on the amount of Total rework 
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Figure 18: Effect of endogenous information on the amount of information 

considered. 

 

Observation 2: In the absence of fixed costs, activities would always consider 

information. 

This insight has been proven by Yassine et al. (2011) for the case of two activities 

with linear evolution, we confirm this phenomenon in the linear evolution case 

described in that study. We also generalize this finding over all possible forms of 

evolution. For a more detailed explanation as to why this phenomenon occurs, please 

refer to Yassine et al. (2011). The simulation results, for Case 4 across all possible 
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Observation 3: The faster the information evolves upstream the fewer the rework is 

done by downstream activities.  

When upstream information evolves quickly, downstream activities will use valid 

information early on. As such the amount of accumulated rework at later stages would 

become minimal, thus reducing the total rework costs. Figures 19 and 20 show this 

phenomenon. For the Base Case with Ϛ = 0% and ν=0.5. Figures 19 and 20, indicate that 

when upstream activities evolve slower downstream activities do more rework. This is 

evident as one goes over the Figures from left to right, going through the evolution 

types from the fastest :Concave-Quick with λ= 0.3 to the slowest: Convex-Slow with λ= 

-0.3 and form the fastest S-Shaped evolution at λ=3 to the slowest one at λ=0.5. 

 

Figure 19: Amount of rework done by the downstream activities as a function of the 

upstream evolution, for quick, linear and convex evolutions. 
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Figure 20: Amount of rework done by the downstream activities as a function of the 

upstream evolution, for S-shaped evolution forms. 
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have to consider more information as the chances for them to actually benefit from that 

information is low, so they are most likely going to go to the next stage with 

accumulated rework and will have to consider information again.  Another reason for 

this phenomenon would be that as upstream activities evolve fast during the early 

stages, the amount of rework accumulated in the last stages would decrease and as such 

these activities would prefer to consider the information at the terminal time n. At the 

other extreme and when upstream activities evolve the most during the last stages, 

activities would only benefit from considering information at the last stages because the 

information used at the early and middle stages would not be of good quality to 

consider; i.e. such activities would only have a few stages where the quality of 

information is good enough to use thus using less information all in all. Figure 21 shows 

the number of times activity B considers information in the base case where  Ϛ = 0% 

and � � 0.5 for all activities. We ordered the evolution types and the λ's from fastest to 

slowest order of evolution. It is evident that as λ increases in the quick evolution, B 

tends to consider more information reaching a maximum at λ = 10. When moving to the 

linear part one could see that the amount of information considered is almost the same 

as Quick evolution with λ=10 and Slow evolution with λ= -10. At the Slow evolution 

section one could see that the amount of information considered decreases as the 

activities evolve later on. As for the S-shaped evolution type one could also see the 

phenomenon where as the amount of information considered is the most at middle 

stages. 
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Figure 21: Number of times B considers information as a function of evolution type  

and λ. 
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information and as such upper stream activities would work on enhancing the 

information for downstream activities to reduce the risks of sending bad information 

that would not lead to considering information without any rework. When the upstream 

activities evolve fast in early stages, extreme concave, the midstream activities would 

consider the information after the sharp increase in the quality of the information and as 

such would send information downstream with very good quality without having to 

consider more in later stages.  In Figure 22, we could see how the midstream activity 

(B) behaves in the 3- and 4-activity scenarios. It is evident that when B considers more 

information to help C in the 3-activity model. It even uses more information to help C 

and D in the four activity model. jkl,,T8  is used to show the difference in the amount of 

information considered by activity B when in the two-activity model and three-activity 

integration model. The same is applied for jkl,,�8 to show the difference in the behavior 

of B in the two- and the four-activity model. Figure 22 shows these results for the base 

case only. However, similar results are observed in cases 1,2, 4, 5 and 6. Cases 3 and 7 

do not show this phenomenon due to high fixed costs as discussed in observation 2.     
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             Figure 22:  jkl,,T8  and jkl,,�8 	as a function of evolution type and λ.   

Insight 3: Midstream activities with high fixed costs block the integration. 
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of outsourcing midstream activities in integrated product development. Outsourcing the 

work of midstream activities to other companies may entail large fixed costs for 

considering information and performing rework, especially when these companies are 

outside the country. That is why it is crucial to invest in modern communication 

software that would ease the communication between the participants, thereby 

decreasing these fixed costs and unblocking the integration process.  

Insight 4: When more activities are added upstream activities consider more 

information earlier.  

 This insight confirms the findings of Yassine et al. (2011) for all forms of 

evolution. Since downstream activities (C and D) must consider the information at the 

terminal time period n, then the “help” of upstream activities (B) by improving the 

quality of information will be mostly needed in earlier time periods. Accordingly, we 

expect that (B) considers the information at earlier time periods in the integrated model. 

When observing the changes in the duration of upstream activity B and midstream 

activity C, we noticed that this metric would decrease as more activities are added, in 

cases where B or C consider more information. In Figure 23 below, we show 	xT8 �		x,8, 

where 	x,8 and  xT8  are the duration of activity B in the two-activity and the three-

activity models. If xT8 �		x,8	> 0 then B would consider information earlier. We also 

show x�8 �		x,8 to reflect the difference in the timing of information considered by 

activity B in the four activity model and the two activity model. Figure 23 indicates that 

B would consider information earlier thus justifing our insight. The same pattern is 

observed for all the other cases but we choose to display the base case alone for 

presentation purposes.   
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Figure 23: Changes in x when more activities are added. 
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will increase the average time of considering information. Moreover, activities working 

with bad information are more likely to choose not consider it. So activities would 

prefer to wait until the quality of information supplied is good enough to justify paying 

the fixed cost of considering the information.  

 

Figure 24: Effect of evolution of upstream activities on x as a function of evolution 

type and λ for Concave-Quick, Linear and Convex-slow evolutions. 
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Figure 25: Effect of evolution of upstream activities on x as a function of evolution 

type and λ for S-shaped evolution. 
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the observed reverse bullwhip effect is attributed to two factors: The first is the 

downstream activity's fixed costs of considering the information, forcing the 

downstream activities to disregard upstream changes at some stages in the IPD process. 

The second factor causing this reverse bullwhip effect is fact that the information 

supplied by the midstream activities to the downstream activities is a function of the 

information supplied by the upstream activities, relying on midstream evolution. Thus, 

the changes in upstream activity A's evolution type and hence the early improvement of 

the information is dampened by the ability of midstream activities to process this 

information and transmit it in usable form for the downstream activities. This delay 

would decrease the potential benefit that the downstream activities could attain thus 

resulting in more rework costs for the downstream activities.  
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CHAPTER 5 

THE TWO-ACTIVITY CHAIN HEURISTIC 

  

In this chapter, we propose a heuristic that could be used in any decision environment 

instead of the current n-activity formulation. The insights presented in Chapter 4 could 

be used as general guidelines. However, they do not present a precise decision policy. 

We demonstrate this heuristic for decision makers that are keen on  making precise 

decisions, yet they do not want to suffer the hassle of working with the n-activity model, 

especially in terms of computer storage. This heuristic is an approximation of the multi 

activity model explained in Chapter 3. First, we present the heuristic. Then, we compare 

the performance of the heuristic with the multi-activity model, and a naive always 

consider information policy. We conclude with a discussion about the advantages and 

the disadvantages of this heuristic.  

 

5.1 The Two-Activity Chain Heuristic Model 

The proposed heuristic works in the following manner. A participant in the IPD 

environment would consider all the activities that precede his activity as one origin of 

information, whose quality of information is known ahead of time and considered static 

for any time i. The participant will also ignore all downstream activities and will act 

selfishly, disregarding any information that would enhance the quality of information to 

the downstream activities only without giving direct benefit to the concerned 

participant. Thus the participant does not have to know what is current status of all the 

upstream and downstream activities, his decision will totally be based on his own status. 

This act would help decrease the complexity of the decision for the participants at every 
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time i. Thus, activity k would rely on the decision policy of activity ) � 1, in turn ) � 1 

would rely on the policy of ) � 2, thus the naming of the heuristic as the two-activity 

chain heuristic. The heuristic works in three steps: 

Step 1: Estimate the quality of information sent from all the upstream activities to the 

concerned participant (activity k) as a function of time i.  

An estimate of   ! �#, ���	 need be used. All the parameters used in the n-activity 

model, presented in Chapter 3, are used in the calculation of this heuristic.  

We will start our explanation of the scheme to calculate �����	 by assuming that ������ 

is known, as such the function  !�+�#, ������	 could be calculated as described in 

Chapter 3 by substituting the values of ����� by the average vector ������. The resulting 

function would only depend on the time i and the estimated vector ������; it is 

independent of the dynamic state of the upstream activities. We also assume that a 

decision policy for the activity k-1 is available and that it was computed using this 

heuristic thus depending only on &!�+.  

Calculating &1!�+ and amending it to ������ would be sufficient to get the estimation 

vector �����	. At any time i, the activity k-1 could be at any state &!�+ 	 ∈ 	 �0, # � 1� with 

a certain probability depending on the decision policy of the activity k-1 and the quality 

of information this activity uses  !�+�#, ������	. At every time stage an activity could 

choose to consider information or not consider the information. This is decided by its 

decision policy. If it does not consider information it will move to the next stage with 

the same state. On the other hand if it chooses to consider the information it could move 

to the next stage with a state equal to the current stage if the information is valid. 

However, if the information is not valid it will remain in the same state. Figure 26 
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illustrates these ideas and shows how the state of the activity could change depending 

on the decision policy and the quality of information it is using. 

 

 

Figure 26: Decision tree for the activity k at time i showing the possible states that the 

activity could attain in the next stage. 

Therefore at every time i, the activity could remain in its state or attain the state of 

the current time i. Once the activity considers information it may move to the next stage 

with &! � #, no matter what its current state is, as long as it considers the information 

and receives valid information inducing rework. If it does not do any rework, it can only 

move to the next stage with its current state. Figure 27 shows these possible transitions 

for an activity from time 1 until time 4.  
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Figure 27:  Possible paths of activity k from stage 1 to stage 4 depending on the 

decision policy and the quality of information used.  

As illustrated in Figure 27, the probability that an activity would be in a certain state 

at a certain stage depends on its path, thus depending on the probability of being in its 

previous state at the previous stage "# � 1, &!$, its decision policy and the quality of 

information used. As such we compute the probability matrix �!"#, &!$ (6) that 

describes the probability that activity k would be in stage i with state 	&!. After finding 

this probability matrix, we could calculate &1!	as the weighted average of the possible 

states the activity k could attain at the time i. The function �!"#, &!$	is defined as 

follows: 

�!"#, &!$ � 	
��
�
�� 1 # � 	&! � 0	�!"# � 1, &!$	31 � �!"#, &!$ ! �#, ����		5 0 ( &! ( # � 1, 1 � # ( a

O �!"# � 1, �$�!"#, �$ !"#, �$AB�+
�LM &! � #, 1 � # ( a "6$	

1 ( # ( a
 

Where the function �!"#, &!$ is the decision matrix defining the actions of activity k 

at time i and state &!; �!"#, &!$ � 1 when k considers information and 0 otherwise. 

Although �!"0,0$	does not exist in practice we define it as a starting point for the 
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matrix. The third term shows the fact that the activity belonging to any state could attain 

&! � # as long as it considers valid information.  

After calculating the probability matrix �!"#, &!$	one could easily estimate the value 

of  &1!, by computing the weighted average of the possible values of &! using function 

(7) as described below. 

																																						&1! 	� 	O�!"#, �$ D ��
�LM 0 � # ( a																																													"7$ 

 The calculation of the matrix and the corresponding values of &1!,		assumes that when 

upstream activity (k) receives valid information, information sent to downstream 

activity (k+1) would be affected simultaneously. As such one could observe values for  

&1! � # meaning that for sure the activity is going to perform rework at this time i. 

Using the above formulations one could get the �����	 from the preceding activity's (k-

1) decision matrix and using  !�+�#, ������	. Finally we conclude this first step by 

calculating  ! �#, �����		 using the function described in Chapter 3 with the state 

estimation matrix &�̅1!�+. 

An example showing all the calculations done in step 1, could be found in Appendix 

E. 

Step 2: Use the estimated  ! �#, �����			in Step 1 to calculate the decision matrix of 

activity k, utilizing the two-activity format of the multi-activity model. 

This step is by far less complex than the first one. We just use the estimate of the 

quality of information  ! �#, �����		 calculated in Step 1 as the quality of exchanged 

information. Solving the recursive DP would result in a decision policy for the activity k 

depending only on &!. 
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5.2 Assessing Heuristic Performance by Simulation. 

In an effort to assess the performance of the heuristic, an experiment of 2,112 

simulation scenarios was conducted. The iterations were identical to the ones described 

in Section 4.1. The simulation would calculate the decision matrix for every activity 

using the proposed heuristic, as described in Section 5.1. The simulated scenarios were 

limited to the four-activity (A-B-C-D) model. These decision matrices would be stored 

in memory and then used in the simulation to decide whether to consider information at 

every time stage i. While calculating the decision matrices, the vector �����		would be 

used to estimate the quality of information. However, while running the simulation we 

would generate values for   ! �#, �����		 using the dynamic values of the state vector 

�����		to mimic real life situations.  

We compared the total amount of rework for the activities when using the multi -

activity policy and the heuristic's policy. The results show that the amount of total 

rework when using the heuristic were very close to the optimal multi-activity policy, 

found as discussed in chapter 3. In some cases the heuristic policy would perform the 

same as the multi-activity policy, this was observed in Case 4 where both policies would 

advise to consider information at all stages and states. The worst result recorded was for 

Case 5 in the s-shaped evolution with λ=1.5, ϛ
k
=0% and ν=1; where the heuristic led to 

1.87% more rework. On average the heuristic's policy performed worse than the multi-

activity policy by 0.04% more rework.  Statistically both policies are the same as their 

means are not very far from each other. For instance, the average rework for worst 

result, reported above, was 2.67 with a standard deviation of 0.17 when the optimal 

policy is used. On the other hand, using the heuristic's policy the average rework was 

2.72 with a standard deviation of 0.12, thus showing that these numbers are statistically 
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the same. Figure 28 shows the percent difference between these two policies. The 

horizontal axis shows an index for the simulated cases, we did not indicate the 

parameters for the specific case because it is not needed in this presentation. Figure 28 

is only used to show the variations and the set of input that this Figure corresponds to is 

not relevant to the study. A positive percentage shows that the heuristic led to more 

rework. We observe that in no case the heuristic performed better than the multi-activity, 

thus giving a sense of validation to our work.  

 

Figure 28: Percent Difference in the amount of rework between the heuristic policy 

and the multi-activity policy. 
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in the amount of rework is 80% more rework and on average the naive heuristic 

performs worse by 30% more rework than the optimal multi-activity model. 

Considering  the small size of the problem, a � 10, a 30% more rework is significant 

for such a small project. It is expected that this amount would increase when the project 

becomes bigger, a	 � 20.  

 

Figure 29: Percent Difference in the amount of rework between the always-consider 

policy and the multi-activity policy. 
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calculation of the matrix. This will help companies in applying this study the need of 

PIM/PDM system as it is easy to compute and use. The participants would not have to 

worry about the statuses of the preceding and succeeding activities, thus making this 

model more applicable in any IPD environment. Moreover, a setup meeting is only 

required at the beginning of the product development processes where all the decision 

policies are computed and no further coordination would be required, to adjust this 

policy or update the remaining participants to the current status of the remaining 

activities. Nevertheless, the heuristic policy can also be updated during the project-cycle 

in case the need arises. 

The major drawback of this heuristic is that upstream activities act selfishly and 

hence do not cater for downstream concerns. Thus downstream activities will have to 

work with any information available from upstream activities. The optimal information 

exchange policy reduces the risks of working with this incomplete data by adjusting the 

behavior of the downstream activity to the expected changes in upstream information, 

this act lessens the effects of the selfishness of the upstream activities.  

A good extension to the study of this heuristic could be to consider a 3 activity chain 

heuristic, where all upstream activities are collapsed into one source of information and 

all downstream activities are collapsed into one downstream activity. The concerned 

activity k would then shape its policy by considering the quality of information sent by 

upstream activities and by catering to downstream activity's concerns, thus achieving 

near optimal solution to this problem.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

In this thesis, we have developed a multi-activity policy to manage the exchange of 

partial information in an integrated development policy. We based the model on 

upstream information evolution and downstream sensitivity. The proposed model is first 

of its kind to propose a quantitative, precise, method to calculate a decision policy for a 

multi-activity IPD environment. This the major contribution that this thesis offers to the 

literature of this type of study.  

After building the model, we resorted to simulation it to study the dynamics of the 

model and draw out some observations and insights. The insights are considered as 

general guidelines for any participant in an IPD process. The simulation covered a vast 

array of possible IPD cases, covering most of the variations of the model's parameters. 

We utilized two experiments,  the first experiment was tailored to study the effects of 

downstream changes on upstream' behavior. The second experiment was used to study 

effects of upstream variations on downstream activities' behavior. The simulations 

showed that upstream activities would consider more information in integration than in 

isolation, they would do so at early stages. The most important of these insights is the 

reverse bullwhip effect in the IPD environment: The effect of changes in upstream 

evolution on downstream rework is dampened as information is sent further 

downstream.  

In chapter 5 we proposed our two-activity chain heuristic. This decomposition 

heuristic eases the use of this study by sacrificing a small amount of potential rework 

savings. A simulation study compared the performance of the heuristic to the multi-
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activity model, showing very close results. The heuristic would be a less costly solution 

in terms of policy calculation, decision matrix storage and coordination amongst the 

participants. 

One limitation of the proposed multi-activity model is that it does not take into 

consideration the effect of the exchange of information on the evolution of the activities. 

When information is changed upstream the activity receiving the information would 

have to incorporate this change, taking time to do so and thus affecting the evolution of 

the activity. We considered that these costs are incurred concurrently, however in 

practice this the changes would take time to finish and hence would be incurred over 

several time stages. The integration of such a scheme could be a dense subject for future 

work.  

Another important limitation is the fixed length of the activity duration. The 

assumption that all activities should complete their work before a defined deadline in 

time is a binding in real applications. A good extension to the model would be to feature 

different sizes for the activities' duration.  

Finally, another interesting extension to our proposed model is to include feedback 

between these activities. This requires more fundamental changes to our model and is 

worthy of further investigation.  
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Appendix A 

PARAMETERS FOR THE MULTI-ACTIVITY MODEL 

• �i
k
: The evolution function of the activity k.  

• f
k
: Fixed cost of considering information for activity k. 

• β
k
: Fixed cost for performing rework for activity k. 

• &!: The last time activity k did rework. 

• �����	: State vector containing all the states of the activities preceding k+1 except 

the first activity (rk, rk-1, …… r2) 

• �
k
 : Proportion endogenous information out of required information available 

for activity k at time 0.  

• %!"#, &!$: The potential rework at time i for activity k. 

•  !�#, �����	: Is the probability that the information considered is valid 

information and as such would induce rework.  
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Appendix B 

ALGORITHM TO CALCULATE THE MULTI-ACTIVITY 

DECISION POLICY AS PER THE PROPOSED MODEL 
 

It can be shown that the algorithm below is equivalent to the formulation of the DP in (1). 

 For rk = 0 to n−1, 

   For rk-1 = 0 to n−1, 

        . 

       . 

       . 

     For r1= 0 to n−1, 

      For K=1 to K=m 

        Set F`"r1, r2,....., rm-1, rm)=	F`"r1, r2,....., rm-1, rm) + %! "#, &!$ 4 W� 4 Q� 	     

  

 

 For i = n-1 to 1 

    For rm = 0 to n−1, 

       For rm-1 = 0 to n−1, 

   . 

  . 

  . 

         For r1= 0 to n−1, 

  { Set F1"r1, r2,....., rm-1, rm) = F1X+"r1, r2,....., rm-1, rm)  

          For Jm = 0 to 1, 

      For Jm-1 = 0 to 1, 

     . 

    . 

    . 

       For J1= 0 to 1, 

        { 

         set  rework=0 

          For Zm = 0 to Jm, 

           For Zm-1 = 0 to Jm-1, 

      . 

     . 

             For Z1= 0 to J1, 

    { 

                  Set probability = 1 

      Set work=0; 

      for k=1 to m 

       { 

probability=probability*(Jk+Jk*(Zk+ ! "#, &1, &2, . . . . . , &� � 1, &�$ � 2	V!	 ! "#, &1, &2, . . . . . , &� � 1, &�$)) 
     work=work+ Jk*( Zk *(%�"#, &!$ 4 W!$ 4 Q!$	    
       } 

 rework=rework + probability *(work +F1X+"V+ ∗ # 4 "1 � V+$ ∗r1, ....., VN ∗ # 4 "1 � VN$ ∗rk)) 

       } 

                    If rework < F1"r1, r2,....., rm-1, rm)   

        { 

           Set F1"r1, r2,....., rm-1, rm) = rework 

           Set decisioni(r1, r2,....., rm-1, rm)={Z1,Z2,......Zm-1,Zm} 

         } 

       } 

   } 
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Appendix C 

MULTI-ACTIVITY SIMULATION MODEL 

In this appendix, we describe the simulation tool that was used to simulate the 

various variations of the model as depicted in chapter 3.  

The model was built in Anylogic Professional simulation environment. Anylogic is a 

multi method simulation software, used to simulate Discrete Event Simulation, System 

Dynamics and Agent Based Simulation. The software is developed by XJ technologies 

headed by Dr. Adrei Borchev. Its client base expands across various industries. 

Companies such as CCC, NASA, Schlumberger , HSBC, Booz & co and many other 

Fortune 500 companies  rely on Anylogic for their heavy simulation analysis. 

The simulation tool is divided into two parts. The first part is the simulation software 

that is developed in Anylogic. The second part is the results analysis software, 

developed in SQL server and SQL server reporting services.  

C.1 Simulation Software 

Before any simulation is launched, the software computes the multi activity policy 

and stores in memory the hyper-matrix representing the decision policy for the activities 

at any stage and state the system may be in. The software utilizes the algorithm found in 

Appendix B to calculate this policy. The chosen policy is stored in a global array 

decision[n][n]....[n][k][i], having k+2 dimensions. The first k dimensions are of size 

n(number of time stages), used to refer to the possible states, and a dimension for the 

activity and time. So for a certain state &�!=(rk, rk-1, …… r2, r1) you would have k 

decisions(for all the activities) and for every time hence the k+2 dimensions. This array 

will hold the optimal decision for all possible states the system can attain at any stage. 
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After setting up the simulation by calculating the corresponding  decision matrix an 

entity is injected into the discrete event system. The process logic is shown in Figure 30 

below. 

 

Figure 30: Process logic for the discrete event simulation model. 

The process flow of the simulation is made up of an entity source(Enter_Simulation),  

two nested loops and a sink(Exit_Simulation). Entities enter the system through the 

Enter_Simulation node. One would think of an entity entering the system as a set of 

activities belonging to the IPD system starting at time 0. When entering the system the 

entity will hold a status vector (rk[k]), and an array of number equal to the number of 

activities. This array called reworkactivity[k] will hold the amount of rework performed 

by each participant belonging to the IPD system. The index of the participant starting 

from 0 all the way to m-1 will be the key to all the saved arrays. Along with the 

rework[k] array the entity holds the Decision[k] array and stage. The Decision[k] array 

holds the entity's decision for the next stage. The stage variable holds the current stage 

of the system. Two global arrays, that are not entity specific, are also worth mentioning; 

consideredact[k][i] and didrework[k][i].These two arrays are used record for every 

activity k at time i if it considers information or not, and if it does so it records if the 

activity performs rework.  
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The entity enters the system with its status vector rk[k] = {0} meaning that all 

activities haven't done any rework. All other variables are set to zero except stage, it is 

set to 1 to signify the system has reached the first stage of the decision process. After 

leaving the Enter_Simulation node, the entity goes to the DUMMY_OBJECT node, this 

node is used as a dummy node for technical purposes, not related to the actual 

simulation process. At this node the entity fetches the set of decisions for all its 

activities from the decision stored in decision[n][n]....[n][k][i]. It then goes to the next 

node with its variable activities=0, meaning that we are going to simulate the first 

activity of the IPD system. At the consider node the activity checks it current decision, 

if it was to consider the info it will leave through the True branch and goes to 

Valid_Information and increments the global array consideredact[activities][stage] at the 

correct activity index and stage index; else it will leave through the False branch then 

goes to Next_Activity. Entities reaching the Valid_Information node are entities 

representing activities that have considered information. Once the entities enter the node 

we generate a probability according to  !"#, &�!$ where in this simulation is called 

proba(stage, activities, rk[k]), the function computes the probability of good information 

for the current activity. The select node generates this probability and if the information 

is valid the entity exits the node through the False branch, adding to the amount of 

reworkactivity[k] and rework the amount of rework done an updates the state of the 

system by updating rk[k] at k=activities. It also increments the corresponding value for 

didrework[k][i] at k=activities and i=stage. If the activity does not do rework it will 

leave through the True branch. Reaching the Next_Activity node, the activities variable 

is incremented. If activities is less than the number of activities the entity is sent through 

the True node back to the consider node where we simulate the actions of the next 
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activity. The entity loops between the Consider node and the Next_Activity node until 

all the activities are simulated, after that it leaves the Next_Activity node through the 

False branch to the Next_Stage node where the stage variable is incremented. If the 

stage variable is less than n the entity is sent back to the DUMMY_OBJECT node 

where all the activities are simulated for another stage, else the entity leaves through the 

False branch to the Exit_Simulation node where it is destroyed.  

To create a Monte Carlo simulation a set of entities need be injected in the system. 

That is why we inject ns entities, each resembling one simulation of the system. The 

results of all the simulated entities are aggregated and stored in an excel file. Once all 

the runs are completed the data is read by Anylogic from these files and stored in an 

SQL database. We resorted to this style of data analysis because we wanted to split the 

analysis section from the simulation section, this way we would record all the 

simulation output at a very raw level, then compute all the metrics. Following this 

policy, we didn't have to run the simulations again every time we wanted to compute a 

new metric. In the next section we explain how the data is manipulated to get the needed 

results. 

C.2 Data Analysis 

At a first, the results of the simulation is dumped into an excel document. In the 

document are computed, where all the formulas are set before hand. The simulation 

software dumps the data into the excel document, and then asks excel to update all the 

results according to the new data, it reads the data and then dumps them back to the 

SQL server as a final destination to the processed data. The results are stored in a results 

table. The fields of this table are described in table 2. 
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Field Name Data Type Description 

fb float Fixed cost of considering information for activity B 

bb float Fixed cost of performing rework for activity B 

fc float Fixed cost of considering information for activity C 

bc float Fixed cost of performing rework for activity C 

fd float Fixed cost of considering information for activity D 

bd float Fixed cost of performing rework for activity D 

evolution varchar(255) Evolution Type  

[R-value] float λ 

[B-2] float Number of Times B consider information in 2 

activity model 

[B-3] float Number of Times B consider information in 3 

activity model 

[B-4] float Number of Times B consider information in 4 

activity model 

[C-3] float Number of Times B consider information in 3 

activity model 

[C-4] float Number of Times B consider information in 4 

activity model 

[D-4] float Number of Times B consider information in 4 

activity model 

[PVIB-3] float jkl,,T8  

[PVIB-4] float jkl,,�8  

[PVIC-4] float jklT,�6  

[ReworkB-2] float Amount of rework done by B in 2-activity model 

[ReworkB-3 ] float Amount of rework done by B in 3-activity model 

[ReworkB-4] float Amount of rework done by B in 4-activity model 
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[ReworkC-3] float Amount of rework done by C in 3-activity model 

[ReworkC-4] float Amount of rework done by C in 4-activity model 

[ReworkD-4] float Amount of rework done by D in 4-activity model 

[EarlyB-2] float Number of Times B consider information in 2 

activity model between time [1-3] 

[EarlyB-3] float Number of Times B consider information in 3 

activity model between time [1-3] 

[EarlyB-4] float Number of Times B consider information in 4 

activity model between time [1-3] 

[MediumB-2] float Number of Times B consider information in 2 

activity model between time [4-6] 

[MediumB-3] float Number of Times B consider information in 3 

activity model between time [4-6] 

[MediumB-4] float Number of Times B consider information in 4 

activity model between time [4-6] 

[LateB-2] float Number of Times B consider information in 2 

activity model between time [7-9] 

[LateB-3] float Number of Times B consider information in 3 

activity model between time [7-9] 

[LateB-4] float Number of Times B consider information in 4 

activity model between time [7-9] 

[EarlyC-3] float Number of Times C consider information in 3 

activity model between time [1-3] 

[EarlyC-4] float Number of Times C consider information in 4 

activity model between time [1-3] 

[MediumC-3] float Number of Times C consider information in 3 

activity model between time [4-6] 

[MediumC-4] float Number of Times C consider information in 4 

activity model between time [4-6] 

[LateC-3] float Number of Times C consider information in 3 

activity model between time [7-9] 
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[LateC-4] float Number of Times C consider information in 4 

activity model between time [7-9] 

[EarlyD-4] float Number of Times D consider information in 4 

activity model between time [1-3] 

[MediumD-4] float Number of Times D consider information in 4 

activity model between time [4-6] 

[LateD-4] float Number of Times D consider information in 4 

activity model between time [7-9] 

[DurationB-2] float x8for 2 activities model 

[DurationB-3] float x8for 3 activities model 

[DurationB-4] float x8for 4 activities model 

[DurationC-3] float x6for 2 activities model 

[DurationC-4] float x6for 3 activities model 

[DurationD-4] float x6for 4 activities model 

[Totalrework-2] float Amount of rework for all activities in 2 activity 

model 

[Totalrework-3] float Amount of rework for all activities in 3 activity 

model 

[Totalrework-4] float Amount of rework for all activities in 4 activity 

model 

[Sensitivity-

Type] 

varchar(255) Type of sensitivity function 

Slope float Slope of sensitivity function 

initialinfo float Proportion of endogenous information out of total 

information (%) 

casenum varchar(255) Case Description  

Table 2: Description of the fields that make up the SQL table's structure. 
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After the simulations are run with all the possible iterations, the data is stored in the 

table above. A set of queries and views are run on top of that data to mine the results and 

insights. It is through these aggregated reports that we drew out our observations that 

led to the listed insights. 
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APPENDIX D 

MULTI-ACTIVITY MODEL APPLIED FOR A THREE-

ACTIVITY EXAMPLE 

 

 
In this appendix we show how the multi-activity compact model can be expanded to 

the regular formulation for the three-activity model (A-B-C). The purpose of this 

exercise is to illustrate the method of calculating the decision policy using the model.  

As shown in Figure 11, there are four policies to compare at every time stage: No 

activity considers information, B considers information alone, C considers information 

alone, both B and C consider information. This is shown when the DP  formulation for 

the three activity model as shown below: 

F1"�G$ � minKBLM,+,!L,,…,N
OP!Q!N
!L, 4	R, SRT S… RN UO P!V!*%! "#, &!$ 4	N

!L, W!. 4 	F1X+"�� 4 Y	⋀	[⋀�\ � ��$]^… ^	
																																																																		F`"��$ � O"%! "a, &!$N

!L, 4 W! 4 Q!$																																																																					
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Thus the resulting 3-activitiy DP would be:  
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APPENDIX E 

CALCULATING THE EXPECTED QUALITY OF INFORMATION 

USING THE TW0-ACTIVITY CHAIN HEURISTIC 

 

 In this appendix we present an example of the calculation done to estimate the 

quality of information being sent from upstream activities for an activity ). We shall 

assume that the decision policy for activity ) � 1 is given. Also the quality of 

information being used by ) � 1 is given, and depends only on time i.  Assume the 

decision policy for the activity ) � 1 is as follows: 

r
k-1

 / i 1 2 3 4 5 6 7 8 9 10 

0 0 0 1 1 1 1 1 1 1 1 

1  0 0 1 1 1 1 1 1 1 

2   0 0 1 1 1 1 1 1 

3    0 1 1 1 1 1 1 

4     0 0 1 1 1 1 

5      0 1 1 1 1 

6       0 1 0 1 

7        0 0 1 

8         0 1 

9          1 

Table 3: The decision policy of activity ) � 1: �!�+"#, &!�+$ 
In the above table the first vertical column represents the possible values for &!�+, 

these values represent the state of the activity ) � 1. The first horizontal column 

represents the time stages i. Thus the table represents a matrix of two dimensions, 

&!�+	and i. The activity considers information when �!�+"#, &!�+$ =1 and disregards 

the information otherwise. Also assume that  !�+�#, ������	 is linear and has the values 

presented in table 4: 

i 1 2 3 4 5 6 7 8 9 10 ���	��, ������	 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Table 4: Values of the function  !�+�#, ������	 as a function of time. 
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Using formula 6 in Chapter 5 we can compute the probability matrix. The results are 

shown in table 5. 

r
k-1

 / i 1 2 3 4 5 6 7 8 9 10 

0 1 1 0.7 0.42 0.21 0.084 0.0252 0.0050 0.000504 0 

1 0 0 0 0 0 0 0 0 0 0 

2  0 0 0 0 0 0 0 0 0 

3   0.3 0.3 0.15 0.06 0.018 0.0036 0.00036 0 

4    0.28 0.28 0.28 0.084 0.0168 0.00168 0 

5     0.36 0.36 0.108 0.0216 0.00216 0 

6      0.216 0.216 0.0432 0.0432 0 

7       0.548 0.5488 0.5488 0 

8        0.3609 0.36096 0 

9         0.04233 0 

10          1 

  Table 5: Probability matrix for activity ) � 1 defining the probability that activity ) � 1 would be in state &!�+ at time i. 

Now that we have all the probabilities for the stages and states, we can calculate the 

expected state of activity ) � 1 at every time i. We do so by using formula 7 of Chapter 

5. The expected &1!�+ is presented in table 6.  

time 1 2 3 4 5 6 7 8 9 10 ����	 0 0 0.9 2.02 3.37 4.396 6.0676 7.17448 7.388104 10 

Table 6: Calculated values for &1!�+ as a function of time i.  

After calculating &1!�+ we append it to the vector ����� to get the state vector ����	.	 
Thus getting  ! �#, �����		 that we can calculate using equation (1). Thus we get the 

quality of information used by activity   ) � 1 ∶ 	  ! �#, �����		. We use this function to 

calculate the policy using the two-activity version of the multi-activity model. 


