

AMERICANUNIVERSITY OF BEIRUT

DESIGN METHODS FOR SOFTWARE ENERGY-AWARE
PROFILING AND COMPUTING

by

MEHIAR MOHAMED ZOUHAIR DABBAGH

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Engineering
to the Department of Electrical and Computer Engineering

of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
August 2012

AMERICAN UNIVERSITY OF BEIRUT

DESIGN METHODS FOR SOFTWARE ENERGY-AWARE
PROFILING AND COMPUTING

by

MEHIAR MOHAMED ZOUHAIR DABBAGH

Approved by:

Dr. Hazem Hajj, Professor Advisor
Electrical and Computer Engineering

__
Dr. Mohammad Mansour, Professor Member of Committee
Electrical and Computer Engineering

__
Dr. Wassim El-Hajj, Professor Member of Committee
Computer Science Department

Date of thesis defense: August14, 2012

AMERICAN UNIVERSITY OF BEIRUT

THESIS RELEASE FORM

I, MehiarMohamadZouhairDabbagh

 authorize the American University of Beirut to supply copies of my thesis to libraries
or individuals upon request.

 do not authorize the American University of Beirut to supply copies of my thesis to
libraries or individuals for a period of two years starting with the date of the thesis defense.

 Signature

 Date

v

ACKNOWLEDGMENTS

I would like to express my greatest gratitude tomy advisor Professor Hazem Hajj for
all the guidance, the advice and the great support that I received during my masters’ study. I
would like also to thank the committee members Professor Wassim El-Hajj and Professor
Mohamad Mansour for all their help and for the great research experience and the knowledge
that I gained from their supervision throughout this work. I am also grateful to Professor
TawfikArabi and the MER program for supporting my research work.

My deep thanks go to my parents and my sister Rima for their love and continuous

encouragement and support.

Finally, special thanks to the great people and friends that I met here at AUB. You

were my family here in Lebanon. The list of great people that I met here goes forever but I
would like to mention some of them. Thank you FarahYahya, CesarGhali, Naoum Sayegh, Ali
Ali, Jalal Awed, Mounira Sayour, Doaa Al-Otoom, Imad Sarji and the great friends in Qatar lab
and 202 lab for all the great moments that I shared with you in these two years.

vi

AN ABSTRACT OF THE THESIS OF

Mehiar Mohamed ZouhairDabbagh for Master of Engineering
Major:Network and Security

Title: Design Methods for Software Energy-Aware Profiling and Computing

Energy has become an important factor in different aspects of computing
technologies, such as reducing server energy for lower financial costs, or mobile
device energy for longer battery life. In fact, energy efficiency is the major challenge
for Exascale computing and beyond. The goal of our work is to present a unique top-
down design methodology for developing energy aware algorithms based on energy
profiling. The key idea revolves around identifying and measuring components of
code with high energy consumption. Optimizing these software components for
performance or energy leads to a major impact on overall computational efficiency. As
a result, there are two major contributions in our work: 1. A method for identifying
components with high energy consumption in compute-intensive applications. We
target operations called kernels, which are frequently used operations in the
algorithm. 2. A method for estimating software energy for the identified software
components, in particular for kernels and load/store operations. The energy
evaluation method involves using isolated code with assembly injection. Furthermore,
to ensure reliable results, we use physical energy measurements conducted on
specially instrumented circuit boards to provide actual and not just simulated
measurements. To evaluate the proposed methods, we conducted three cases studies
using well-known DM algorithms: back-propagation (BP) neural network, K-Nearest
Neighbors, and Linear Regression. We then conducted a benchmark of energy
kernelsfor most commonly used DM algorithms. The results highlight the
contributions of kernels and memory energy to total algorithms’ energy. These
studies form building blocks for understanding software energy distribution and
ultimately energy optimization for DM algorithms

vii

viii

CONTENTS

ACKNOWLEDGEMENTS…………………………………………….……

 v

ABSTRACT……………………………………………………………….………

vi

LIST OF ILLUSTRATIONS………………………………………….…….

xi

LIST OF TABLES………………………………………………………….…...

 xiii

LIST OF ABBREVIATIONS………………………………………….…....

………..………………………………………………………..

 xiv

Chapter

1. INTRODUCTION ... 1

2. RELATED WORK.. 4

2.1 Overview of Energy Optimization Techniques .. 4

2.2 Overview of Energy Profiling Techniques .. 6

2.3 Conclusion from Related Work .. 8

3. PROPOSED METHODS.. 10

3.1. Methodology for Energy-aware Algorithms .. 10

3.2. Methodology to estimate the energy of the kernels 15

3.2.1. Energy Cost of Primitive Kernels .. 15

3.2.2. Energy Cost of Aggregate Kernels .. 18

3.2.3. Energy Cost of Load and Store Operations 20

4. EXPERIMENTS AND RESULTS ... 22

4.1. Experiment Setup for Energy Measurement .. 23

4.2. Kernel Identification in Common Data Mining Algorithms 25

ix

4.3. Case Study for Energy-Aware Profiling and Computing with Focus on

Primitive Kernels .. 29

4.4. Additional Case Studies with Considerations for Aggregate-level Kernels

and Load/Store Energy .. 39

4.4.1. Energy-Aware Computing – KNN Case Study 40

4.4.2. Energy-Aware Computing – LR Case Study.................................... 45

5. CONCLUSION AND FUTURE WORK .. 48

REFERENCES .. 50

x

ILLUSTRATIONS

Figure Page

3.1 - Proposed four-step methodology for an energy-aware algorithm ……………...11

3.2 - Proposed System for collection of physical energy measurements…………......13

3.3 - Isolated code to determine primitive kernels energy…………………………... 16

3.4 - Isolated code to measure theenergy cost of the addition primitive kernel ……...17

4.1 - Number of times BP primitive kernels are executed……………………….........31

4.2 - WATTCH results for the energy of BP primitive kernels………………….........32

4.3 - Contribution of BP primitive kernels to the overall cost……………………….. 33

4.4 - The impact of reducing different BP primitive kernels by 25%

 on the overall algorithm for different iterations………………….……………. 34

4.5 -A comparison between first output and approximated output…..……….……… 36

4.6 -A comparison between second output and approximated output …….………..... 36

4.7 - Number of required iterations to reach MSE<0.8 …………………….………….39

4.8 - Frequency of KNN aggregate kernels for the considered dataset…….……….... 42

4.9 - Energy cost of KNN aggregate kernels for the considered dataset…….……...... 42

4.10 - Energy contribution of KNN aggregate kernels to the total energy…….……... 43

4.11 - Effect of reducing the energy of KNN aggregate kernels by 25%…………...... 46

4.12 - Energy contribution of LR aggregate kernels to the total energy…………........ 47

4.13 - Energy effect of reducing LR aggregate kernels by 25% on total energy …….. 45

xi

TABLES

Table Page

3.1 - Aggregate kernels that are popular in many Data Mining algorithms
along with the energy cost of these aggregate kernels based on the
energy cost of primitive kernels and dataset properties ……………………………..……… 20

3.2 - Different types of load and store assembly instructions …………………………………….. 21

4.1 - A summary of the studied algorithms, the considered kernel level in the
energy analysis, the energy collection approach, the studied
architecture along with the experiments that will be conducted
for each studied algorithm and the objective of these experiments…………………….. 23

4.2 - Primitive and aggregate kernels of top data mining algorithms based on

the mathematical equations that are executed repeatedly in these
algorithms……………………………….……………………………….……………………………….…….. 27

4.3 - Results of Asymptotic Analysis for of BP primitive kernels…………………………………... 30

4.4 - A cost comparison with and without normalizing the training set………………………... 39

4.5 -Energy cost of primitive kernels using physical measurements…………………………….. 40

4.6 - Energy cost of move operations (load/store) using physical
measurements……………………………….……………………………….……………………………….. 40

4.7 - Order of KNN kernels……………………………….……………………………….……………………….. 40

1

CHAPTER 1

INTRODUCTION

Energy has become an important factor in different aspects of computing technologies,

such as reducing server energy for lower financial costs, or mobile device energy for longer

battery life. In fact, energy efficiency is the major challenge for Exascale computing and

beyond [1]. Furthermore, energy costs in large computer centers are having impacts on the

environment. In fact, it was noted in [2] that Information and Communication Technology

(ICT) is responsible for 2% of the global emissions, equivalent to aviation. These energy

challenges have driven the search for efficient ways to save energy.

Reduction of energy can be achieved by performing optimizations at the platform level,

or examining different computer layers and their interactions, including hardware,

architecture, compiler, operating system, and application. The first step in optimizing energy

is to address the problem of determining where and how much energy is consumed. While

many researchers and companies have driven extensive research at the hardware and

architecture levels, fewer efforts, such as the one in this paper, have focused on starting from

the application layer, and examining a top-down energy reduction approach.

Towards the goal of reducing the energy consumed by software applications, we present

in this work two new contributions related to software energy profiling: 1. A method for

identifying software components with high energy consumption. We target operations called

kernels, which are frequently used operations in the algorithm. 2. A method for estimating the

energy consumed by the identified software components, in particular for kernels and

2

load/store operations. The energy evaluation method involves using isolated code with

assembly injection. Furthermore, to ensure reliable results, physical energy measurements

conducted on specially instrumented circuit boards are collected to provide actual and not

just simulated measurements.

Previous work on energy profiling aims at providing a hardware component-wise energy

breakdown that shows the energy contribution of the different hardware components when

running the whole software application from beginning till the end. Our work is different from

previous techniques as it provides a software-wise energy breakdown where we show how

energy is consumed among the different parts of the software code. We demonstrate the

different steps of our profiling methodology by applying them on data mining (DM)

algorithms. The reason behind choosing DM algorithms is twofold. First, DM algorithms are

widely used in many domains (bioinformatics, business, social networks, etc.). The second

reason is due to the nature of DM algorithms. During the training phase, DM algorithms

usually have a segment of code that is repeatedly executed for different tuples. Therefore,

optimizing the energy of these segments will be highly reflected on the overall energy

consumption. Researchers in the field of data mining have focused on improving accuracy and

performance of data mining algorithms. To the best of our knowledge, no previous work has

analyzed these algorithms from the energy efficiency point of view.

The major contributions of our thesis work are:

 A four-step method for identifying software components with high energy consumption.

 An approach for software energy assessment with the use of assembly injection. The

proposedapproach helps in isolating the impact of cache misses when measuring kernel

energy.

3

 An approach for measuring the energy cost of memory to cache load and store operations.

 An energy assessment for popular kernels from basic kernels such as addition and

subtraction to more aggregate equations and kernel operations such as Euclidean

distance.

 Simulation results are supported by physical energy measurements to prove that our

methods can rely on either simulation tools or special instrumented boards in order to

profile the studied algorithm.

 Threecasestudiesare conducted to illustrate our design methods for energy-profiling with

three algorithms: Back Propagation (BP), K-Nearest Neighbors (KNN) and Linear

Regression (LR).

 Two techniques to reduce the energy of parts with high costs based on approximation-

energy trade off and based on preprocessing techniques to simplify calculations.

 An energy evaluation for selected data mining algorithms, where we generalize our

approach and estimate the energy cost of most frequent kernels that are widely used in

those different algorithms.

The rest of the thesis reportis organized as follows: In chapterII, we present literature

review on the topics of energy optimization and energy profiling. In chapterIII, we present our

proposed methodologies. We explain in details the different steps of the simplified four-step

methodology for creating an energy-aware algorithm. We also show the approach to measure

the kernel’s energy. In chapterIV, we present our case studies and discuss the results. In

chapterV, we conclude and present our future work.

4

CHAPTER 2

RELATED WORK

Energy optimization techniques have been suggested for the various layers of the

computer platform. In this chapter, we overview these techniques in addition to describing

the methods used in energy profiling. We end the chapterby highlighting how our work differs

from the other works.

2.1 Overview of Energy Optimization Techniques

The increasing demand for saving energy has made researchers go beyond the low-level

circuit layer to explore optimizations in the upper platform layers including the compiler, the

operating system, and the application layers.

In the compiler layer, optimization techniques have been used to improve performance

by transforming codes into more efficient translations with lower execution time. These

techniques can be also used to save energy. In [6-9], different compiler optimization

techniques (e.g. loop unrolling and instruction rescheduling) were applied on benchmarks in

order to save energy. The main limitation of these techniques was that the effects of the

methods on both performance and energy varied from one code to another. The setof possible

compiler optimization techniques is huge. Consequently, determining the best combination of

optimization techniques using brute-force search is infeasible. Therefore, heuristic methods

were used to determine the combination of techniques with the highest energy saving and

highest performance for a certain code. An example of such an approach was presented in

5

[10] where the authors proposed a heuristic method that prunedunpromising optimization

techniques to reduce the search space. Another attempt to overcome the problem of the large

search space was presented in [11-14]. The authors used machine learning [11-13] and

genetic algorithms [14] to predict the best combination and the best sequence of compiler

optimizations such that the energy or the delay for running a given code s minimized.

In the operating system layer, researchers worked on optimizing and efficiently using

the different power management policies that are used to control power. These policies

switch idle devices into lower power states if the systems predict that the full capacity of

these devices will not be needed for the coming events. It is worth noting that in OS power

policies, the device is not switched into a lower power state whenever it is idle because of the

high energy required to wake the device up. Therefore, the device is switched into a lower

power state only if the systempredicts that it will remain idle for a time long enough to

compensate for the transition energy. Additional information about how these predictive

techniques and algorithms work is provided in [15-17].In [18] a comparison is presented

between the power policies in windows 7 and windows vista. Results showed that windows 7

achieved higher energy savings due to more available low power-states and better idleness

predictive techniques. Another technique that operating systems use to manage power is

Dynamic Voltage and Frequency Scaling (DVFS). In (DVFS), the operating voltage and

frequency for executing a task are reduced in order to save the consumed energy. (DVFS)

leads to a great saving of energy but has a negative effect on performance especially if the

code is computation-bound [19].

In the application layer, the focus has been on specific applications. Examples include

energy optization for sensor network applications [20], WiMAX frame construction [21],

6

multimedia [22], bioinformatics [23], and file access [24]. The optimization methods for at the

application layer can be classified according to [25] into three main categories: contextual

awareness, data efficiency and computational efficiency. In contextual awareness, applications

change their behavior based on the available energy. A dynamic compilation that adapts

battery changes was proposed in [26], where precompiled parts of the code that have low

energy were used when the battery was low.In data efficiency techniques, data was stored,

accessed, and transferred in an energy efficient way. For instance, in [27] the authors showed

that considerable energy savings can be achieved by using SSD instead of HDD as a storage

device.In computational efficiency, the maximum available system capabilities were used so

that the work finishes early, enabling the switching of the devices into idle mode to save

energy. Examples of computational efficiency techniques include the use of parallel

programming to reduce the execution time or any other technique that enhances

performance. The authors in [28] used parallel programming and examined the number of

required parallel nodes such that the overall energy for running different benchmarks is

minimized. Examples of computational efficiency also include the work in [29,30] where the

authors proposed parallelizing different machine learning and data mining algorithms by

distributing calculations on different cores in order to improve runtime performance.

2.2 Overview of Energy Profiling Techniques

Energy profiling is often considered a critical step in identifying bottlenecks for energy

optimization. In software, energy estimation methods can provide insight into the power

consumption of the different parts of the code and into the different components of the

architecture. As a result, energy profiling has also received significant research attention. All

7

the previously mentioned work used one of two ways to estimate the energy required to run a

program on a given architecture: Physical measurements or Simultation.

With physically measurements, the current and voltage of the different components

were collected using ammeters and special acquisition systems. These methods have high

accuracy but they require special equipment, such as the work in [35 - 38]. Researchers

executed benchmark applications on special instrumented boards and collected energy

measurements. However, their work provided a hardware component-wise energy

breakdown showing energy contribution of each component of the platform when executing

the whole benchmark code. The main limitation of the work in [35 – 38] is that the methods

are more hardware centric, and do not show how energy is consumed among the different

parts of code.

With simulation, themethodsare inexpensive and allow users to analyze the

performance and power behavior with a cycle level of granularity for the different platform

components. However, these methods are less accurate than the methods using physical

measurements. Simulation is a good alternative when the special equipment and boards of a

certain architecture are not available. In [39] researchers tried to show how energy is

consumed among the different parts of code. The main idea was collecting traces from the

operating system and then estimating the active time and the idle time of the different

components using performance profiling tools. The active time and idle time were multiplied

by two constant powers that represented the active and idle power of the selected devices.

This approach assumes that the power consumed by any platform component is constant in

the active state regardless of the nature of workload. Although this work showed how energy

is consumed among the different parts of code, it had many assumptions about power. As a

8

result, the method is not as accurate as when usingactualphysical energy measurements. Our

proposed methods for energy profiling are different than the work in [39] as our methods do

not assume that power is constant during all the active state and thus provide more accurate

energy estimations. In our work, simulation tools are supported by physical measurements in

order to validate our profiling methods rather than relying only on simulation tools as in [39].

There have been other enhancements to the different energy profiling techniques. In

[31], the authors proposed different frameworks for providing energy and thermal profiles as

enhancements to previous techniques. In [32], the authors proposed solutions to reduce the

time required to estimate the energy cost of long code segments using clustering techniques.

2.3 Conclusion from Related Work

While previous work has focused on providing a hardware centric energy profiling for

different applications [35 – 38], none of the previous worktargeted profiling how energy is

consumed among the different parts of the application code based on accurate energy costs.

The only attempt to profile how energy is consumed among the different parts of code was in

[39] and is based on performance simulation tools which have many assumptions about

power. The objective of our work is to provide methods for energy profiling that show how

much percent each part of code contributed to the total energy and that do not assume that

the power is constant during the active state in order to have higher accuracy.

After determining the energy contribution of the different parts of code, we provide

some techniques that can be used to reduce the energy cost of these energy hotspots. Unlike

all the optimization techniques used to reduce energy in general applications (computational

efficiency [28-30], data efficiency [27], and power-aware behavior [26]), our technique takes

9

advantage of the algorithm specifics and investigates the opportunities that might lead to

energy savings. For instance, we updated the BP algorithm to use approximation techniques

via lookup tables and preprocessing techniques via normalization leading to considerable

improvements in both performance and energy.

10

CHAPTER 3

PROPOSED METHODS

This chapter describes the two proposed methods for: energy-awareness, and for

estimating the energy of compute-intensive components in code. These two methods are

related in that the energy estimation method is used in one of the steps for creating energy-

aware algorithm. However, it is described separately due to its importance and general

applicability.

3.1. Methodology for Energy-aware Algorithms

We propose a four-step process for creating energy-aware algorithm. We explain briefly

the objective of each step of our methodology. The purpose of these steps is to analyze the

program details and identify opportunities for reducing energy consumption. Figure3.1 shows

the flow of our proposed four-step methodology.

11

Figure 3.1 - Proposed four-step methodology for an energy-aware algorithm.

Step 1: Kernel Identification and Kernel Asymptotic Analysis: Kernels are operations

that are repeatedly used in the algorithm, often found in “loops”. A typical data mining

algorithm may have several repeated mathematical operations, producing a specific set of

kernels. We distinguish two types of kernels normally found in computational algorithms:

primitive kernels and aggregate kernels. Primitive kernels are the basic operations such as:

addition, multiplication, division, subtraction, logarithm and exponential. Aggregate kernels

are equations that are composed of several primitive kernels such as: Information gain,

Euclidean distance, and normalization. In this step of the methodology, the primitive and

12

aggregate kernels are identified by examination of the code. Asymptotic analysis is then

conducted, where the number of execution times for each kernel operations is determined as

a function of the dataset properties such as the number of tuples and the number of features.

Step 2: Kernel Energy Cost Estimation:Once the kernels are identified from the previous

step, the goal of this step is to get the energy measurements for the identified kernels, and the

load/store transactions representing memory and cache interactions. The measurements are

then used for profiling the code, and prioritizing energy optimization opportunities. The

method used to get these measurements step is an essential part of our work, and is described

separately in section 3.2. The method relies on either simulation tools or on physical

measurements in order to get energy numbers. Example of simulation tools are Simplescalar

and WATTCH [7] which emulate the behavior of computer architectures and give an

estimated energy cost for code execution. Physical measurements require special

equipments. The setup for energy collection and the way measurements are collected are

shown in Figure 3.2. The setup consists of a specially instrumented board that collects the

current and voltage of the major platform components such as CPU and memory. These

measurements are fed to a Data Acquisition System (DAQ) which converts collected

measurements from analog to digital based on a pre-set sampling rate, and stores the

collected traces. The collected traces are then passed to a monitoring computer that shows

how power varies over time, and calculates the average power and energy for the executed

code.

13

Figure 3.2 - Proposed System for collection of physical energy measurements.

Step 3: Energy Profiling and prioritizing kernels in terms of energy impact:This step

consists of profiling the code by determining the overall energy of the algorithm and the

energy contributions of each kernel relative to the overall energy. The energy contribution of

each kernel is measured based on the results of the two previous steps, by multiplying the

energy cost of executing a single kernel by the number of time this kernel is executed. Once

the energies of all kernels are determined, the kernels can be prioritized for optimization

according to their energy cost. At this stage, further assessment can be conducted into total

potential energy saving based on kernel energy reduction. The kernel that gives the highest

overall energy reduction is the best target for energy reduction.

14

Step 4: Energy Optimization:Research on code optimization is extensive, and is beyond

the scope of our work. But we propose some options here to close the loop on the energy-

awareness process. The results of the previous step are used in the optimization process to

give an indication of which kernels to optimize for energy. Several approaches can be useful

for compute-intensive application including:

a) Preprocessing techniques to simplify algorithm computations. Examples of

preprocessing techniques include data normalization and data reduction. The most

important aspect when applying these preprocessing techniques is to make sure that

the energy cost of preprocessing data in addition to the energy cost of running the

algorithm for the pre-processed dataset is smaller than the energy cost of running the

algorithm on the original dataset without preprocessing. The results of the algorithm

with the preprocessed dataset should be within acceptable range of the results with the

original dataset.

b) Using alternative approximations to the kernels with less computations and lower

energy, but with a tradeoff for lower accuracy. In this scenario also, it is important to

assess the error resulting from the approximation to make sure that the algorithm still

yields acceptable results.

c) Using alternative hardware implementation of the instruction set with lower energy

and without compromising performance. For example a totally new optimized

instruction set such as those used in DSP processors can be utilized. In this case, there

15

is no need to check for accuracy issues, since it is expected to have the same kernel

but with different implementation.

d) Use the best set of compiler optimization techniques for kernels with high energy cost

rather than searching for the best set of optimization technique for the whole

algorithm, as it requires less time and it will produce significant energy savings.

The main focus in our work is on the first three steps as they provide the required

methodology for energy profiling. However, in one of the case studies with BP algorithm, we

also study and demonstrate the opportunities for optimizing algorithm by using

approximation-energy tradeoffs and by using preprocessing techniques. We explain in the

next subsection how to measure the energy of kernels needed for step 2.

3.2. Methodology to estimate the energy of the kernels

The goal in this section is to find an accurate and efficient method to measure the energy

consumed by kernels. We explain first how to measure the energy of primitive kernels and

then show how to derive the energy cost of aggregate kernels. This section also includes the

method to measure the energy cost of the load and store operations.

3.2.1. Energy Cost of Primitive Kernels

As described earlier in the thesis report, primitive kernels are the basic operations in

code. Examples include addition, subtraction, logarithmic, etc… To estimate kernel energy,

the main idea is to isolate the kernel in a separate controlled piece of code, where the kernel

energy can be measured by itself. To reduce noise in the measurement, to the code is run

16

many times, say N times, then calculate the average energy by dividing total energy measured

by N.

The isolated code consists of the kernel and only the needed variables to run the kernel.

Figure 3.3 gives an illustration of the isolated pseudo-code and desired kernel. The code

includes the primitive kernel operation, and initialization of the variables.

1) Initialize kernel_variables

2) For (i=0;i<N;i++){

3) Primitive_Kernel_execute(kernel_variables);

4) }

Figure 3.3 - Isolated code to determine primitive kernels energy

To assess the energy of the kernel alone, three steps are executed:

1) In the first step, the isolated code is executed N times, and the energy is measured, call it

𝐸𝐾𝑒𝑟𝑛𝑒𝑙

2) In the second step, the primitive kernel operation is removed from the code and replaced

by a “no op”. The code is then executed again N times, and the energy cost is measured for

the isolated code, call it 𝐸𝑤𝑜𝐾𝑒𝑟𝑛𝑒𝑙 .

3) Finally, the two energy measurements are subtracted and then averaged to give the

average energy of the desired kernel:

EKernel =
Ewkernel −EwoKernel

N
 (1)

One challenge in the proposed approach is that at compile time, the high-level code of

the kernel operation is translated into more than one assembly instruction. These assembly

instructions include load operations and the actual primitive operation instructions. The

17

energy of the load operation depends on whether or not there is a cache hit and thus the

obtained energy costs for the primitive kernel operation may not be accurate. To address this

problem, we propose the use of assembly injection in the isolated code to further isolate the

energy cost of executing the primitive operation without the impact of load/store operations.

This approach also helps at estimating the impact of load/store operations in code and its

overall contribution, which is further described in subsection. 3.2.3

As an example, Figure 3.4 shows the isolated code for assessing the energy of “addition”

operation using assembly injection. In lines 1 and 2 we declare the variables needed to

execute the primitive kernel operation. Line 3 represents the “for” loop that is executed N

times. Lines 4 to 6 show the injected assembly code in the body of the “for” loop. In lines 4 and

5, the declared variables are loaded from the stack to registers “eax” and “ebx” respectively. In

line 6, the addition primitive kernel operation is executed on the register values. The energy

cost of the addition operation is calculated by subtracting the energy cost of executing the

code without the addition operation (without line 6) from that with the addition operation

and dividing the result by N.

1) Declare x;

2) Declare y;

3) For (i=0;i<N;i++){

4) Asm(”move x, eax”);

5) Asm(”move y, ebx”);

6) Asm(”add eax, ebx”);

7) }

Figure 3.4 - Isolated code with assembly injection used to determine theenergy cost of the addition primitive

kernel.

18

If the isolated codes in Figure 3.4 did not include assembly injected code (lines 4 to 6)

but rather the high-level code (z=x+y;), the estimated energy cost would be inaccurate. This

is due to the fact that the high-level code (z=x+y;) gets translated at compile time into

assembly instructions that include not only the addition operation but also the load and store

operations. The costs of load and store operations vary depending on whether or not a cache

miss occurs, which produces even more sources of inaccuracy.

In our work and to obtain accurate estimation, we propose the use of the assembly

injection approach to estimate the energy cost of the primitive kernels.

3.2.2. Energy Cost of Aggregate Kernels

Aggregate kernels are composed of multiple primitive kernels. Information Gain is such

an example, where it is composed of logarithmic, addition, and probability, which is in turn

composed of division. The energy of aggregate kernels can be estimated by isolating the

kernels as described in the previous section, but isolating load/store operations becomes

more complex. As an alternative, we describe an approach that can be conducted without the

need to re-running isolated code for aggregate kernels. The idea is to derive the energy cost of

executing an aggregate kernel based on the energy costs of the related primitive kernels. First

the frequencies of the primitive kernels composing the aggregate kernel are determined. The

energy of the aggregate kernel is then determined by summing the product of the energies of

the primitive kernels multiplied by their frequency of occurrence.

As an example, consider the Euclidean distance given by equation (2).

19

dist X1, X2 = (x1i − x2i)
2

N f

i=1

 (2)

Where X1, and X2 are two tuples in the dataset. xji : is the feature number (i) for the

tuple (j). Nf : is the number of features in the studied dataset.

From equation (2), it can be seen that the number of subtractions, additions and square

operations is dependent on the number of features in the dataset. Therefore, the energy cost

of the Euclidean distance is dependent on the properties of the dataset such as the number of

features. From equation (2), the Euclidean distance includes: (Nf − 1) additions, (Nf)

subtractions, (Nf) square operations, and one square root operation. Based on the energy

costs of the addition, subtraction, square and square root operations (refer to them

asE+, E−, Esq , Esqrt respectively), the energy cost of the Euclidean distance can be calculated as

in equation (3):

EEuclidean = E+ × (Nf − 1) + (E− + Esq) × Nf + Esqrt (3)

This method is further applied to well-known data mining algorithms. Table 3.1

provides the summary of the finding for aggregate kernels in common DM algorithms along

with the related primitive kernels for each. The table also includes the energy cost of the

aggregate kernels as a function of the energy cost of the primitive kernels and the dataset

properties. We refer to the energy cost of the primitive kernels addition, subtraction,

multiplication, division, logarithm, square and square root by E+, E−, E×, E\, Elog , Esq , Esqrt

respectively.Nf , Nclass , Ntuples refer to the number of features, classes and tuples respectively

in the dataset.

20

Table 3.1 - Aggregate kernels that are popular in many Data Mining algorithms along with the energy cost
of these aggregate kernels based on the energy cost of primitive kernels and dataset properties.

Aggregate Kernel Mathematical Equation
Energy Cost of Aggregate

Kernel

Euclidean Distance dist X1, X2 = (x1i − x2i)
2

N f

i=1

 Nf × Esq + E− + (Nf − 1

× (E+ + Esqrt)

Info Info D = −1 × pi × log(pi)

Nclass

i=1

(NClass + 1) × E× + (NClass

− 1) × E+

+ NClass × Elog

Regression Coefficient

(w1)
w1 =

 (xi − x)(yi − y)
Ntuples

i=1

 (xi − x)2Ntuples

i=1

Ntuples × (3 × E− + E× + Esq)

+(Ntuples − 1) × 2 × E+ + E/

Regression Coefficient

(w2)
w2 = y − w1 × x

E− + E×

Average x =
 xi

N
i=1

N

(N − 1) × E+ + E/

Gini gini D = 1 − pj
2

Nclass

j=1

NClass × Esq + (NClass − 1) × E+

+ E−

Normalization V′ =
V − min

range

(N − 1) × E+ + E/

3.2.3. Energy Cost of Load and Store Operations

When executing aggregate kernels like the Euclidean distance, the compiled assembly

code does not only include primitive kernel operations subtraction, addition …etc but also

includes load and store operations. Assembly injection, as described earlier, can help in

21

isolating the impact of the kernel from the impact of the load/store operation. Furthermore, it

is important to estimate the energy cost of these load and store operations for memory and

cache exchange, as they may represent significant contributions of energy consumption. Load

and store operations can be classified into five types based on the source and destination of

the move operation as shown in Table 3.2. The source can be either a value, a register or the

stack whereas the destination is either a register or the stack. The energy cost of the memory

and cache exchange is calculated by multiplying the number of times each type of load and

store operation is executed by the energy cost of the operation. The frequency of execution for

the load and store operations is determined by examining the compiled assembly code of the

code and counting the number of times each type of these operations is executed in the

assembly code. The energy cost of the load and store operations can then be calculated

following the method described for estimating energy for primitive kernels. The only

difference is that only a load/store instruction is injected in the “for” loop. The isolated code

is then executed with and without the injected load/store assembly operation. The average

energy of a load/store operation is calculated using equation (1).

Table 3.2 - Different types of load and store assembly instructions.

Move Instruction Example

Move value, stack move $10, esp(4)

move register, stack move eax, esp(4)

move stack, register move esp(4), eax

move value, register move $10, eax

move register, register move eax, edx

22

CHAPTER 4

EXPERIMENTS AND RESULTS

In this chapter, we conduct experiments to demonstrate the four-step methodology for

creating an energy-aware algorithm, and to illustrate the use of the method for estimating

energies for kernels and load/store operations.

We explain in the first subsection the experiment setup for the simulation tools and the

special equipments that are used in our experiments. In the second subsection, we identify

primitive and aggregate kernels for top Data Mining algorithms. Next, three case studies are

conducted on three algorithms to validate our four-step methodology for energy-awareness.

Table 4.1 summarizes the studied algorithms, how energy measurements are collected, the

studied architecture, the conducted experiments and the objective of these experiments for

each algorithm.

23

Table 4.1 - A summary of the studied algorithms, the considered kernel level in the energy analysis, the

energy collection approach, the studied architecture along with the experiments that will be conducted for each

studied algorithm and the objective of these experiments.

Algorithm Kernel Level Energy

Collection

Approach

Architecture Experiment Objective of Experiment

BP NN Primitive
level

Simulation
tools

RISC Determine the
contribution of
primitive kernels to
the total energy

- Prioritize primitive kernels in term
of Energy impact.

Energy-
approximation trade-
off

- Present an approach that trades
accuracy with energy.

- Estimate the energy savings
obtained by this technique

- Study the effect of the
approximation technique on the
behavior of the algorithm

Preprocessing
techniques to save
energy

- Present how preprocessing
techniques can lead into energy
savings

- Estimate the overhead involved in
preprocessing technique

- Estimate the total energy saving
obtained from preprocessing data.

KNN Aggregate
level

Physical
Measurements

CISC Determine the
contribution of
aggregate of kernels
to the total energy

- Prioritize aggregate kernels in term
of Energy impact.

LR Aggregate
level

Physical
Measurements

CISC Determine the
contribution of

aggregate kernels to
the total energy

- Prioritize aggregate kernels in term
of Energy impact.

4.1. Experiment Setup for Energy Measurement

There are two standard methods for collecting energy measurements, either through

the use of specially instrumented boards or through the use of simulation running on top of

computer architecture emulators. In our work, both approaches were used.

24

For simulation setup, we used Simplescalar [33] emulator and WATCH [7] simulation

tools. Simplescalaremulatesthe execution of the code on a RISC architecture and WATTCH is

used to give relative energy numbers that determine the energy cost of the different units of

the architecture when the code is executed. In our simulation experiments, we used the

default configurations forSimplescalar and WATTCH. Details of these configurations are found

in [33]. Simple Scalar and WATTCH operates on any UNIX 32 bit operating system or requires

the installation of a virtual machine in order to operate on Windows operating systems. It also

requires the installation of a number of compiler tools including Bison, Yacc and Flex. Simple

Scalar consists of a collection of microarchitecture simulators that emulate the

microprocessor at different levels of detail. In our experiments, we used the “sim-outorder”

simulator as it provides a detailed emulation of out of order micro architectures and models

the different units including the cache, external memory and the branch prediction. WATTCH

is run on top of Simple Scalar in order to provide an energy model for the studied

architecture.

For the physical measurements, the hardware setup is shown in Figure 3.2. We run the

code on a special board instrumented by Intel with sensors on all the platform components to

measure current and voltage. The platform had an Intel® Core™ i7 CPU, 2.80GHz with 2 GB

RAM memory. Windows 7 was installed as the operating system for the specially

instrumented board. The power plan of Windows 7 was set to the balanced mode for all the

experiments. A power plan is defined to be a collection of system and hardware settings that

manage how power is consumed in the computer. There exist three power plan modes in

Windows: power saver, balanced and high-performance modes. The balanced mode was

chosen for our study since it is the default power plan mode that is used in Windows and since

25

it does not sacrifice neither performance nor energy but tries to find the balance between

these two constraints.

When running experiments to collect energy, all unnecessary programs are stopped,

except for the OS and the basic processes it requires. Example of processes that must be

running always in the background is the “Explorer.exe”, a user interface process that runs the

windows graphical shell for the desktop, task bar, and Start menu.

The DAQ was collecting the current and voltage for the major components of the board.

The DAQ was Fluke 2680 Series [40] data acquisition system. The sampling rate was set to the

highest supported rate which is 20 samples/second.

The collected traces were passed through a hub from the data acquisition system to the

monitoring computer. PACS program was installed on the monitoring computer. PACS is a

software that shows how the collected traces are varying over time and that calculates the

average power, peak power and energy of the different components of the platform over a

certain period of time.

In both simulation and physical setups, measurements were repeated five times and the

median value of the five measurements was taken to minimize noisy measurements.

4.2. Kernel Identification in Common Data Mining Algorithms

To illustrate the types of kernels commonly found in software, we test the methodology

with data mining algorithms. The first step in the energy-aware method was used to derive

the primitive and aggregate kernels for common Data Mining algorithms. The identified

kernels are presented in Table 4.2. The aggregate kernels are composed of a collection of

primitive kernels. As an example, the normalization aggregate kernel is composed of the two

26

primitive kernels: subtraction and division. Based on the proposed method for estimating

energy for aggregate kernels, the energy cost of the primitive kernels are sufficient to derive

the energy cost of aggregate kernels.

Several observations can be concluded from the table, and that are relevant for the

study of energy optimization for the DM field. It can be seen that the basic operations:

addition, subtraction, multiplication and division are very common primitive kernels among

the different algorithms compared to other less frequent primitive kernels such as the

exponential function and the square root. Some of the aggregate kernels in Table 4 such as:

Euclidean distance, average, probability and pattern matching are very common among a

large set of algorithms. Other aggregate kernels are used specifically for a certain algorithm,

but not in others. Example of such aggregate kernels is the kernel that is used to calculate the

first and second regression coefficients in Linear Regression.

27

Table 4.2 - Primitive and aggregate kernels of top data mining algorithms based on the mathematical
equations that are executed repeatedly in these algorithms.

DM

Algorithm
Equation

Aggregate Kernels Primitive Kernels

K-Nearest

Neighbors

𝑣 =
𝑣 − 𝑚𝑖𝑛

𝑟𝑎𝑛𝑔𝑒

𝑑𝑖𝑠𝑡 𝑋1, 𝑋2 = (𝑥1𝑖 − 𝑥2𝑖)2

𝑁𝑓

𝑖=1

𝑑𝑖𝑠𝑡1 < 𝑑𝑖𝑠𝑡2?

Normalization

Distance

Compare

Subtraction

Division

Square root

Square

Addition

Linear

Regression

𝑥 =
 𝑥𝑖

𝑁
𝑖=1

𝑁

𝑤1 =
 (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

𝑁𝑡𝑢𝑝𝑙𝑒𝑠

𝑖=1

 (𝑥𝑖 − 𝑥)2𝑁𝑡𝑢𝑝𝑙𝑒𝑠

𝑖=1

𝑤2 = 𝑦 − 𝑤1 × 𝑥

Average

Regression coefficient

(𝑤1)

Regression coefficient

(𝑤2)

Addition

Division

Subtraction

Multiplication

Square

K-means

Clustering 𝑑𝑖𝑠𝑡 𝑋1, 𝑋2 = (𝑥1𝑖 − 𝑥2𝑖)2

𝑁𝑓

𝑖=1

𝑥 =
 𝑥𝑖

𝑁
𝑖=1

𝑁

𝑑𝑖𝑠𝑡1 < 𝑑𝑖𝑠𝑡2?

Distance

Compare

Average

Square root

Square

Subtraction

Addition

Division

28

Back

Propagation

Neural

Network (BP

NN)

𝑆𝑘
𝑝

= 𝑤𝑗k𝑦𝑗𝑘
𝑝−1

j

 + 𝑏𝑘

𝑦𝑝 =
1

1 + e−Sp

𝑒𝑗 𝑛 = 𝑑𝑗 𝑛 − 𝑦𝑗 𝑛

∆𝑤𝑗𝑘 = 𝛾𝛿𝑘
𝑝𝑦𝑗

𝑝

𝑤𝑗𝑘
, = 𝑤𝑗𝑘 + ∆𝑤𝑗𝑘

Forward Stage

Calculations

Backward Stage

Calculations

Multiplication

Addition

Division

Exponential

Subtraction

Decision

trees - Id3

and C4.5

𝑖𝑛𝑓𝑜 𝐷 = − 𝑝𝑖 ×

𝑁𝑐𝑙𝑎𝑠𝑠

𝑖=1

log(𝑝𝑖)

𝑖𝑛𝑓𝑜𝐴 𝐷 =
|𝐷𝑖 |

|𝐷|
× 𝑖𝑛𝑓𝑜(𝐷𝑖)

𝑁𝑙𝑎𝑏𝑒𝑙

𝑖=1

𝐺𝑎𝑖𝑛 𝐴 = 𝑖𝑛𝑓𝑜 𝐷 − 𝑖𝑛𝑓𝑜𝐴(𝐷)

Pattern Matching

Probability

Information

Multiplication

Addition

Logarithm

Division

Subtraction

Decision

trees - Gini

index

𝑔𝑖𝑛𝑖 𝐷 = 1 − 𝑝𝑗
2

𝑁𝑐𝑙𝑎𝑠𝑠

𝑗 =1

𝑔𝑖𝑛𝑖𝐴 𝐷 =
 𝐷1

 𝐷
× 𝑔𝑖𝑛𝑖 𝐷1 +

 𝐷2

 𝐷

× 𝑔𝑖𝑛𝑖 𝐷2

∆𝑔𝑖𝑛𝑖 𝐴 = 𝑔𝑖𝑛𝑖 𝐷 − 𝑔𝑖𝑛𝑖𝐴 𝐷

Pattern Matching

Probability

Gini

Subtraction

Addition

Square

Division

Multiplication

29

Naïve

Bayesian

Classification

𝑃 𝐶 𝑋 = 𝑃 𝑋 𝐶 × 𝑃(𝐶)

𝑃(𝑋|𝐶𝑖) = 𝑃 𝑥𝑘 𝐶𝑖

𝑁

𝑘=1

Pattern Matching

Probability

Posteriori

Multiplication

4.3. Case Study for Energy-Aware Profiling and Computing with Focus on Primitive

Kernels

BP algorithm was used as a case study for demonstrating the applicability of the four-

step methodology in creating energy awareness, and the energy estimation method. The

following notations are used to represent the data properties for the BP Neural Network:

IN: Number of input neurons. IN also represents the number of features in the dataset.

HN: Number of hidden neurons

ON: Number of output neurons

The training was repeated (N) times on different tuples from the dataset. To validate the

theoretical findings and get actual energy measurement, a stand-alone code was developed in

C to implement the BP algorithm, with the following typical choices of parameters: IN=2,

HN=3, ON=2, N=10000. Here are the results of the method at each step as applied to BP

algorithm.

Step 1: The kernels of the BP algorithm were first identified as described in Table 4.2.

Asymptotic analysis was then conducted to determine the frequency of execution for the

30

primitive kernels as a function of the dataset properties. The frequency of the kernel

operations were based on the equations that are executed in the BP. Table 4.3 shows the

result of the asymptotic analysis for the primitive kernels. Further details on how we

determined the order of these kernels is available in [5].

Table 4.3 - Results of Asymptotic Analysis for of BP primitive kernels

Primitive Kernels Order

× 𝜃(𝑁 × 2 × IN × HN + 3 × ON × HN + 5 × HN + ON + IN)

+ 𝜃(𝑁 × 2 × HN × IN + HN + 3 × HN × ON + ON)

÷ 𝜃(𝑁 × HN)

- 𝜃(𝑁 × [ON + HN])

Exp 𝜃(𝑁 × HN)

Counters were placed in the code to validate the asymptotic analysis. The resulting

frequencies of BP primitive kernels are shown in Figure 4.1. We observe that counter

simulation results are consistent with the asymptotic analysis in Table 4.3 which proves the

correctness of our asymptotic analysis.

31

Figure 4.1 - Number of times BP primitive kernels are executed for IN=2, HN=3, ON=2 and N=10000.

The asymptotic analysis and the simulation for the studied BP NN consistently showed

that the highest numbers of primitive kernels executed were multiplications followed by

additions.

Step 2: For this step, the energy estimation method was applied per kernel as described

in 3.2.1. The resulting energy costs are shown in Figure 4.2. The numbers were normalized

(relative to subtraction) to show relative impact across kernels. Figure 4.2 shows that the

exponential kernel has the highest energy cost.

0

100

200

300

400

500

600

Multiplication

Addition

Subtraction

Division

Exp.

32

Figure 4.2 - WATTCH results for the energy cost of BP primitive kernels on RISC architecture

Step 3: For energy profiling, the overall energy was then calculated by multiplying the

number of times each kernel is executed by the corresponding cost of each kernel. The overall

energy of the algorithm based on Figure 4.1 and 4.2 was calculated as shown in equation (4).

𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑒𝑛𝑒𝑟𝑔𝑦= 152.7× 490 + 141.8 ×350 + 141.1 ×50

 +208.4 × 30 + 1612.6× 30 = 186138(in thousands) (4)

Based on this calculation, we can determine the contribution of each kernel to the

overall energy as shown in Figure 4.3.

0

200

400

600

800

1000

1200

1400

1600

1800

Subtraction

Addition

Multiplication

Division

Exp.

33

Figure 4.3 - Contribution of BP primitive kernels to the overall cost

The results show how the two proposed methods can collectively contribute to energy

awareness and prioritization. It can be seen that although the exponential function was

executed only a few times (as shown in Figure 4.1), it has a high contribution to the overall

energy due to its high relative energy cost. It is also clear from Figure 4.3, that the

multiplication kernel has the highest impact followed by addition and exponential. It is also

noted that the energy contribution of the exponential kernel is higher than that of the division

kernel despite the fact that there are more division computations than there are exponentials.

To further study the potential savings to the overall energy, we simulated the impact of

reducing each kernel’s energy cost by 25%. Figure 4.4 shows the overall energy cost of the

algorithm as the number of iterations increases. Results confirm that the largest overall

energy reduction is obtained by reducing the cost of multiplication followed by reducing the

cost of the exponential function. Reducing in the cost of the other kernels (subtraction,

division and addition) has smaller impact on energy reduction.

40%

27%

4%

3%

26% Multiplication

Addition

Subtraction

Division

Exponentiation

34

Figure 4.4 - The impact of reducing different BP primitive kernels by 25% on the overall algorithm for

different iterations.

Step 4: The last step in the method consists of picking the most consuming kernels,

reducing their energies, and then determining the overall impact. Although energy

optimization is outside the scope of our work, we still wanted to illustrate the potentials of

this step. We proposed two approaches for reducing the energy of BP algorithm. The first

approach is based on using approximations to reduce energy but at the expense of accuracy.

The second approach involves data pre-processing or transformation to enable faster

convergence of the algorithm. These two approaches can be used for any algorithm, but we

show their usefulness as applicable to BP.

Step 4A – Approximate LUT: From the results of step 3, exponential kernel was one of

the top energy-consuming kernels. As a result, we considered alternatives to the high energy

consuming exponential operation by using approximation techniques [34]. The basic idea is to

pre-calculate the exponential function for the numbers in the range 0 to 1000 with a step of 1

and store the results in a Look-up Table (LUT). Then at each iteration of the training phase,

Overall Energy

Number of Iterations

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

2500 5000 7500 10000

No reduction

25 %reduction On
Multiplication

25 %reduction On
addition

25 %reduction On
Subtraction

25 %reduction On
Division

25 %reduction On Exp

35

instead of calculating the exponential function of the variables, the stored result is fetched

from the LUT that is maintained in the cache. The LUT is considered an approximation

technique since only a discrete number of values are calculated the exponential in the range

[0, 1000] with a step of one. Therefore, the exponential function of (2.3) is approximated by

the pre-calculated exponential value of (2 or 3) already stored in the LUT.

To evaluate the impact of using LUT as alternative to the exponential, the energy

estimation method was used to determine the energy cost of fetching an element from LUT in

addition to the overhead incurred once in populating the LUT. The energy cost of fetching an

element from the LUT was 94.49% less than the cost of calculating the exponential function.

This will reduce the energy of running the whole BP algorithm by 24.57% as the exponential

function contributes 26% to the total energy of the algorithm. The energy cost of populating

the LUT population was calculated based on the energy cost of (exp) kernel as shown in

equation (5):

𝐸𝐿𝑈𝑇_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 1000 × 𝐸𝑒𝑥𝑝 = 1000 × 1612.62 (5)

Where Eexp is the cost of one exponential function operation based on Figure4.2.

36

Figure 4.5 –A comparison between the first output and the approximated output (a) 1st desired output (b)

1st NN output using exp. (c) 1st NN output using lookup table approximation

Figure 4.6 -A comparison between the second output and the approximated output (a) 2nd desired output
(b) 2nd NN output using exp. (c) 2nd NN output using lookup tables approximation

The output of BP NN in figures 4.5 and 4.6 show the effect of using the LUT

approximation versus the effect of the exponential function. Figure 4.5(a) represents the first

desired output of NN. Figure 4.5(b) represents the first output of NN using normal

37

exponentiation function and figure 4.5(c) represents the first output of NN using LUT. The

same comparison is shown in Figure 4.6 for the second output of NN. Visually, it can be seen

that the output of the NN with the LUT approximation technique is very close to the output of

NN with no approximation, except for right upper edge of the hyper-plane.

The relative error in the approximation was also measured by taking difference

between the two computed expoenential values= |exp s − exp_LUT s | and then divide it

by exp(s) as shown in (6):

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑒𝑟𝑟𝑜𝑟 𝑠 =
|𝑒𝑥𝑝 𝑠 − exp_𝐿𝑈𝑇 𝑠 |

|𝑒𝑥𝑝 𝑠 |
 (6)

The average of all relative errors was calculated to be 25.64%. This approach trades

accuracy at the expense of energy. Significant energy savings can be gained if we tolerate this

error.

Step 4B – Normalize for Faster Convergence: In the second approach for energy

optimization, we examine ways that are specific to the algorithm beyond the general

examination of kernels. In particular, we look at preprocessing the data to simplify algorithm

computations for reducing energy impact.

Based o previous mathematical modeling of NN [3], the input values of the NN training

phase can be normalized to the range of [0, 1] for faster convergence of the NN algorithm. To

examine the impact of the normalization on energy efficiency, we examine the energy

consumption of BP NN with and without data normalization. The energy cost of the

normalization process is also added to the cost when normalizing.

Min-max Normalization was used to normalize the training set into [0, 1] as follows:

𝑣′ =
𝑣 − 𝑚𝑖𝑛𝑎

𝑚𝑎𝑥𝑎 − 𝑚𝑖𝑛𝑎

 𝑛𝑒𝑤_𝑚𝑎𝑥𝑎 − 𝑛𝑒𝑤_𝑚𝑖𝑛𝑎 + 𝑛𝑒𝑤𝑚𝑖𝑛 𝑎
 (7)

38

Where new_max=1 and new_min=0. It can be seen that normalization process requires

two operations: subtraction and division. The relative costs of these operations were

measured to be 141.1 and 208.4 respectively based on the relative energy costs from Figure

4.2. One subtraction operation and one division operation is performed for each attribute

value in each training tuple. As a result, the total energy cost for normalization can be

determined as shown in (8):

𝐶𝑛𝑜𝑟 = (141.1 + 208.4) × 𝑁𝑡𝑢𝑝𝑙𝑒𝑠 × 𝑁𝑎𝑡𝑡 (8)

Where Cnor is the cost of normalization, Ntuples is the number of tuples in the training

set, and Natt is the number of attributes in each tuple.

To demonstrate the savings in energy that are obtained by normalization, an experiment

was conducted on a training set with 400 tuples. Each tuple contained two attributes with

values between 0 and 2.8. The stopping criterion for the MSE was set to 0.8.

Table 4.4 shows the cost comparison for running the algorithm with and without

normalization. It can be clearly seen that normalizing the training set has led to reducing the

energy cost. There is an energy overhead for the normalization process. However, this

overhead will be compensated as normalizing the training set before the learning phase

makes the algorithm converge faster with fewer iterations, and hence resulting savings in

energy.

39

Table 4.4 - A cost comparison with and without normalizing the training set

Without

Normalization
With Normalization

Overall Cost
Cost of

Normalization

Training

Cost

Overall

Cost

6,775,400 279,600 2,773,500 3,053,100

Figure 4.7shows the number of iterations that was required to reach the stopping

criterion with and without normalization. We can see that the larger the values of the input

are, the more iterations were required to reach the MSE threshold.

Figure 4.7 - Number of required iterations to reach MSE<0.8

4.4. Additional Case Studies with Considerations for Aggregate-level Kernels and

Load/Store Energy

While the previous sub-section focused on assessing primitive kernels with the BP NN

case study, this sub-section shows experiment results for aggregate kernels with KNN and LR

0

50

100

150

200

250

300

350

400 Without normalization

With normalization

Iteration

40

case studies. The proposed methods are used to profile the energy contribution of the

aggregate kernels in the algorithms. The measurements were conducted using instrumented

boards that provided actual physical numbers rather than simulated evaluation using the

setup described in section 4.1. We present our energy profiling results for KNN and LR

algorithms and end this subsection with an analysis for the obtained results.

4.4.1.Energy-Aware Computing – KNN Case Study

This sub-section describes how the method can be used for other algorithms and derive

an assessment of aggregate-level kernels. In the following experiments, physical

measurements are collected using instrument boards for the CISC architecture instead of

simulation tools in order to obtain energy estimates. Table 4.5 and Table 4.6 show the energy

cost of primitive kernels and load and store operations based on the approach proposed in

section 3.2. From Table 4.2, the identified aggregate kernels for KNN are normalization,

Euclidean distance and comparisons.

As proposed in our four-step methodology explained in section 3.1, asymptotic analysis

is first conducted to determine the frequency of the aggregate kernels. The results are shown

in Table 4.7. Ntuples , and Nfeatures are the number of tuples and the number of features in the

dataset respectively.

For this experiment, 1st nearest neighbor (K = 1) is considered, with the dataset having

Ntuples = 150, and Nfeatures = 5. The resulting frequencies for the aggregate kernels are

shown in Figure 4.8.

41

Table 4.5 - Energy cost of primitive kernels using physical measurements

 + - × / Square
Square

Root
Log Exp

Energy

(10
-10

 Joule)

33.66

39.94

10.89

1058.62

64.78

2025.74

7347.46

49961.21

Table 4.6 - Energy cost of move operations (load/store) using physical measurements

Move Operation Energy (10
-10

 Joule)

move value, stack 27.94

move register, stack 34.51

move stack, register 57.46

move value, register 22.96

move register, register 26.92

Table 4.7 – Order of KNN kernels

Aggregate Kernel Order

Normalization 𝑁𝑡𝑢𝑝𝑙𝑒𝑠 × 𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

Euclidean Distance 𝑁𝑡𝑢𝑝𝑙𝑒𝑠

Compare 𝑁𝑡𝑢𝑝𝑙𝑒𝑠

42

Figure 4.8 - Frequency of KNN aggregate kernels for the considered dataset.

The second step in the method consists of estimating the energy cost each aggregate

kernel, which can be derived based on the energy cost of primitive kernels in Table 4.5 and by

following the approach described in section 3.2.2. The resulting energy numbers for KNN

aggregate kernels are shown in Figure 4.9.

Figure 4.9 - Energy cost of KNN aggregate kernels for the considered dataset.

0

100

200

300

400

500

600

700

800

Distance Normalization Compare

0

5

10

15

20

25

30

Distance Normalization Compare

𝟏𝟎−𝟖 Joule

43

The third step consists of calculating the total energy of the algorithm, which was

implemented in C++. The energy contribution of each aggregate kernel was calculated

bymultiplying the frequency of kernels (Figure 4.8) by the energy cost of kernels (Figure 4.9).

Asymptotic analysis was also conducted to determine the frequencies of the load/store

operations. Their energies were then estimated using the method proposed in3.2.3.

Figure 4.10 - Energy contribution of KNN aggregate kernels to the total energy.

Figure4.10 shows a pie chart for the energy distribution of the different aggregate

kernels relative to the total energy. The chart provides interesting insight towards energy-

aware computing. It can be seen that the normalization aggregate kernel has the highest

energy contribution for the studied dataset. Although the Euclidean distance has higher cost

than normalization (Figure 4.9), the frequency of normalization is higher than the distance

(Figure 4.8) and thus the energy contribution of normalization is higher than the distance.

The data move portion in Figure 4.10 represents the energy involved in the load and store

47%

23%

1%

12%

17%

Normalization

Distance

Compare

Data Move

Rest of the Code

44

operations in the algorithm. The rest of the code represents the energy involved in executing

operations other than the aggregate kernels such as the overhead in the “for” loop.

Towards energy optimization, we also study the savings of the overall energy that can

be achieved by reducing each kernel’s cost by 25%. This helped in reflecting which kernels

can be targeted for maximizing the reduction of energy. Figure 4.11 shows the overall energy

cost of the algorithm after reducing each kernel’s cost by 25%. Results indicate that the

largest overall energy reduction is obtained by reducing the cost of normalization followed by

Euclidean distance, which is consistent with the results of the pie chart in Figure 4.10. Figure

4.11 also gives an estimate of what would be the total energy of the algorithm when the

energy of any of the kernels is reduced by 25%.

45

Figure 4.11 - Effect of reducing the energy of KNN aggregate kernels by 25%.

4.4.2.Energy-Aware Computing – LR Case Study

This sub-section covers an additional experiment on demonstrating the use of the

method for energy profiling and developing energy-awareness for an algorithm, and to

illustrate that the findings are algorithm-dependent. This experiment targeted LR. The LR

kernels were determined in Table 4.2to be the average, the first regression coefficient (𝑊1),

and the second regression coefficient (𝑊2). The algorithm was implemented using C++ code,

and tested with a dataset that has Ntuples = 150. The profiling results are shown in Figure

4.12, and it can be seen that a large percent of the algorithm’s energy is spent in load and store

operations. The findings indicate that significant energy is consumed by the memory and

0

20

40

60

80

100

120

140

160

180

200

No reduction Compare
kernel

Data Move Distance Kernel Normalization
kernel

Rest of the code

Data Move

Compare

Normalization

Distance

𝟏𝟎−𝟔 Joule

46

cache exchanges rather than by computations. This is due to the fact that LR does not involve

intensive computational operations that have high energy cost such as exponential or square

root and thus the energy cost of load and store operation constitutes a large percent of the

total energy. Another insight from the results is that the first regression coefficient (𝑊1) has a

high energy contribution as it involves many computations compared to average and to the

second regression coefficient(𝑊2).

Figure 4.12 - Energy contribution of LR aggregate kernels to the total energy.

Here also, we examined the effect of reducing each kernel’s cost by 25%. Figure

4.13shows the overall energy cost of the algorithm after reducing each kernel’s cost by 25%.

Results indicate that the largest overall energy reduction is obtained by reducing the cost of

memory fetches, followed by reducing the energy cost of calculating the first regression

coefficient. Figure 4.13 also gives an estimate of what would be the total energy of the

algorithm after optimization.

6%

36%

0%

39%

19%

Average

W1

W2

Data Move

Rest of Code

47

Figure 4.13 - Energy effect of reducing LR aggregate kernels by 25% on total energy.

0

20

40

60

80

100

120

No reduction W2Kernel Average kernel W1kernel Move Data

Move Data

Rest of the code

W2

W1

Average

𝟏𝟎−𝟕 Joule

48

CHAPTER 5

CONCLUSION AND FUTURE WORK

Our work on energy profiling has introduced two methods for developing energy-aware

algorithm. The first method is a four-step process for energy analysis and profiling with

particular emphasis on kernel-based evaluation. The second method provides a methodology

for kernel and load/store energy estimation. The energy estimation method shows how to get

energy for primitive kernels based on assembly injection, and then derive energy for

aggregate kernels from the primitive kernels.

Experiment results were conducted with accurate physical measurements instead of

relying on simulation only. Specially instrumented boards were used for that purpose. Case

studies were considered with three common data mining algorithms: BP NN, KNN and LR. The

case studies show the successful use of the methods for energy profiling and developing

energy awareness. The BP NN case study also showed two efficient approaches for energy

optimization based on creating an approximate LUT for the kernel, or data preprocessing for

faster convergence. In some cases, the energy saving came at the expense of accuracy.

Furthermore, the experiments show that different algorithms have different kernels as top

energy consumers. The experiments showed how to prioritize the highest cost kernels that

can be targeted for energy optimization.

For future work, we plan to develop an automated tool that predicts the energy cost of

any given code based on the energy cost of the primitive kernels that were already calculated

in our work. We also plan to target the identified expensive kernels in the three profiled

49

algorithms and find opportunities for energy optimization in the compiler layer. Our intention

is to develop a compiler that focuses on transforming the codes of expensive kernels into

more efficient assembly codes with lower energy price.

50

REFERENCES

[1] P. Kogge, ―The Tops in Flops‖, IEEE Spectrum magazine, Feb. 2011.

[2] C. Pettey, ―Gartner Estimates ICT Industry Accounts for 2 Percent of Global CO2 Emission,‖

Gartner Press Release, 26 April 2007. URL: http://www.gartner.com/it/page.jsp?id=503867.

[3] S. Haykin, ―Neural Networks: A Comprehensive Foundation (2nd Edition),‖ Prentice Hall,

July 1998.

[4] J.Han, M.Kamber, ―Data Mining: Concepts and Techniques,‖ 2nd Edition, Morgan

Kaufmann, January 2006.

[5] M. Dabbagh, H. Hajj, A. Chehab, W. El-Hajj, A. Kayssi and M. Mansour, "A design
methodology for energy aware neural networks," in Wireless Communications and Mobile

Computing Conference (IWCMC), 2011 7th International, 2011, pp. 1333-1340.

[6] S. Daud, R. B. Ahmad and N. S. Murhty, "The effects of compiler optimizations on

embedded system power consumption," in Electronic Design, 2008. ICED 2008. International
Conference, 2008, pp. 1-6.

[7] D. Brooks, V. Tiwari and M. Martonosi, "Wattch: A framework for architectural-level power

analysis and optimizations," ACM SIGARCH Computer Architecture News, vol. 28, pp. 94,
2000.

[8] G. Sinevriotis and T. Stouraitis, "A novel list-scheduling algorithm for the low-energy

program execution," in Circuits and Systems, 2002. ISCAS 2002. IEEE International

Symposium, 2002, pp. IV-97-IV-100 vol.4.

[9] S. Wiratunga and C. Gebotys, "Methodology for minimizing power with DSP code," in

Electrical and Computer Engineering, 2000, pp. 293-296 vol.1.

[10] N. P. Desai, "A novel technique for orchestration of compiler optimization functions using

branch and bound strategy," in Advance Computing Conference, 2009. IACC 2009, 2009, pp.
467-472.

[11] A. M. Malik, "Spatial based feature generation for machine learning based optimization

compilation," in Machine Learning and Applications (ICMLA), 2010 Ninth International
Conference, 2010, pp. 925-930.

http://www.gartner.com/it/page.jsp?id=503867

51

[12] C. Dubach, T. M. Jones, E. V. Bonilla, G. Fursin and M. F. P. O'Boyle, "Portable compiler

optimisation across embedded programs and microarchitectures using machine learning," in

Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International Symposium,
2009, pp. 78-88.

[13] S. Hung, C. Tu, H. Lin and C. Chen, "An automatic compiler optimizations selection

framework for embedded applications," in Embedded Software and Systems, 2009. ICESS

'09. International Conference, 2009, pp. 381-387.

[14] K. D. Cooper, D. Subramanian, and L. Torczon, "Adaptive optimizing compilers for the 21st

century," in Proceedings of the 2001 Symposium of the Los Alamos Computer Science

Institute, October 2001.

[15] Y. Lu and G. De Micheli, "Comparing system level power management policies," Design &
Test of Computers, IEEE, vol. 18, pp. 10-19, 2001.

[16] S. Albers, ―Energy-Efficient Algorithms,‖Communications of the ACM, vol. 53, no. 5, pp.

86-96, May 2010.

[17] Y. Lu and G. De Micheli, ―Comparing System-Level Power Management Policies,‖IEEE

Design & Test, v.18 n.2, p.10-19, March 2001.

[18] B.P. John, A. Agrawal, B. Steigerwald, and E.B. John, "Impact of Operating System

Behavior on Battery Life", presented at J. Low Power Electronics, 2010, pp.10-17.

[19] S. Kaxiras and M. Martonosi, ―Computer Architecture Techniques for Power-Efficiency‖.

Morgan and Claypool, 2008.

[20] P. K. Dutta, D. E. Culler, ―System Software Techniques for Low-power Operation in
Wireless Sensor Networks,‖ ICCAD '05 Proceedings of the 2005 IEEE/ACM International

conference on Computer-aided design, pp. 925- 932, 6-10 Nov. 2005.

[21] N. Abbas, H. Hajj and A. Yassine, "Optimal WiMAX frame packing for minimum energy

consumption," in Wireless Communications and Mobile Computing Conference (IWCMC),
2011 7th International, 2011, pp. 1321-1326.

[22] T. H. Darwish, R. Chabukswar, ―Intel Hardware Accelerated High Definition Video

Playback Power Analysis,‖ Intel Software & Service Group, 2009.

52

[23] S. Pawaskar, H. H. Ali, ―A Dynamic Energy-aware Model for Scheduling Computationally

Intensive Bioinformatics Applications,‖ High Performance Computing and Simulation

(HPCS), 2010 pp.216-223, June 28 2010-July 2 2010.

[24] B. Steigerwald, R. Chabukswar, K. Krishnan, J. D. Vega, ―Creating Energy – Efficient
Software,‖ Intel white paper, 2008.

[25] P. Larson, ―Energy-Efficient Software Guidelines,‖ Intel Software Solution Group, 2008.

[26] P. Unnikrishnan, G. Chen, M. Kandemir and D. R. Mudgett, "Dynamic compilation for
energy adaptation," in Computer Aided Design, 2002. ICCAD 2002. IEEE/ACM

International Conference, 2002, pp. 158-163.

[27] D. Schall, V. Hudlet and T. Harder, ―Enhancing Energy Efficiency of Database Applications

Using SSDs‖, ACM Proceedings 2010.

[28] R.Ge, X.Feng, S. Song, H.Chang, D. Li and K. W. Cameron, "PowerPack: Energy Profiling

and Analysis of High-Performance Systems and Applications," Parallel and Distributed

Systems, IEEE Transaction, vol. 21, pp. 658-671, 2010.

[29] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Yu, G. R. Bradski, A. Y. Ng, K. Olukotun, ―Map-

Reduce for Machine Learning on Multicore,‖ Neural Information Processing Systems, pp.

281—288, 2006.

[30] B. Negrevergne, A. Termier, J. Méhaut, T. Uno, ―Discovering Closed Frequent Itemsets on
Multicore: Parallelizing Computations and Optimizing Memory Accesses,‖ High

Performance Computing and Simulation (HPCS), 2010 pp.521-528, June 28 2010-July 2

2010

[31] M. Marcu, D. Tudor, H. Moldovan, S. Fuicu and M. Popa, "Energy characterization of

mobile devices and applications using power–thermal benchmarks," Microelectron. Journal,

vol. 40, pp. 1141-1153, 7, 2009.

[32] C. Hu, D. A. Jimenez and U. Kremer, "Toward an evaluation infrastructure for power and
energy optimizations,"19th IEEE International Symposium on Parallel and Distributed

Processing, 2005.

[33] D. Burger , T. Austin, ―The SimpleScalar tool set, version 2.0‖, ACM SIGARCH Computer

Architecture News, v.25 n.3, p.13-25, 1997.

53

[34] A. Yamamoto, ―Computational Efficiencies of Approximated Exponential Functions for

Transport Calculations of the Characteristics Method,‖ Annals of Nuclear Energy,

31(9):1027- 1037, June 2004.

[35] F. Hamady, A.Chehab and A. Kayssi, ―Energy Consumption Breakdown of a Modern
Mobile Platform under Various Workloads‖, International Conference on Energy Aware

Computing (ICEAC), November 30–December 2, 2011, Istanbul, Turkey.

[36] H. Kothuru, G. Virupakshaiah, S. Jadhav, ―Component-wise Energy Breakdown of Laptop,‖
in Proceedings of the 6

th
 Annual GRASP Symposium, Wichita State University, 2010.

[37] A. Mahesri and V. Vardhan, ―Power Consumption Breakdown on a Modern Laptop,‖ in

Proceedings Workshop on Power Aware Computing Systems, December 2004.

[38] Chinn, Desai, DiStefano, Ravichandran, and Thakkar, ―Mobile PC Platforms Enabled with
Intel Centrino,‖ Intel Technology Journal, May 2003.

[39] A. Kansal and F. Zhao, ―Fine-grained energy profiling for power-aware application

design,‖ SIGMETRICS Perform Eval. Rev., 36(2):26–31, 2008.

[40] Fluke 2680 Series Data Acquisition Systems,

http://us.flukecal.com/products/data-acquisition-and-testinstruments/data-acquisition/2680-

series-data-acquisitionsystems.

