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Energy has become an important factor in different aspects of computing 
technologies, such as reducing server energy for lower financial costs, or mobile 
device energy for longer battery life. In fact, energy efficiency is the major challenge 
for Exascale computing and beyond. The goal of our work is to present a unique top-
down design methodology for developing energy aware algorithms based on energy 
profiling. The key idea revolves around identifying and measuring components of 
code with high energy consumption.  Optimizing these software components for 
performance or energy leads to a major impact on overall computational efficiency. As 
a result, there are two major contributions in our work: 1. A method for identifying 
components with high energy consumption in compute-intensive applications. We 
target operations called kernels, which are frequently used operations in the 
algorithm. 2. A method for estimating software energy for the identified software 
components, in particular for kernels and load/store operations. The energy 
evaluation method involves using isolated code with assembly injection. Furthermore, 
to ensure reliable results, we use physical energy measurements conducted on 
specially instrumented circuit boards to provide actual and not just simulated 
measurements. To evaluate the proposed methods, we conducted three cases studies 
using well-known DM algorithms: back-propagation (BP) neural network, K-Nearest 
Neighbors, and Linear Regression. We then conducted a benchmark of energy 
kernelsfor most commonly used DM algorithms. The results highlight the 
contributions of kernels and memory energy to total algorithms’ energy. These 
studies form building blocks for understanding software energy distribution and 
ultimately energy optimization for DM algorithms 
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CHAPTER 1 

INTRODUCTION 

 

Energy has become an important factor in different aspects of computing technologies, 

such as reducing server energy for lower financial costs, or mobile device energy for longer 

battery life. In fact, energy efficiency is the major challenge for Exascale computing and 

beyond [1]. Furthermore, energy costs in large computer centers are having impacts on the 

environment. In fact, it was noted in [2] that Information and Communication Technology 

(ICT) is responsible for 2% of the global emissions, equivalent to aviation. These energy 

challenges have driven the search for efficient ways to save energy. 

Reduction of energy can be achieved by performing optimizations at the platform level, 

or examining different computer layers and their interactions, including hardware, 

architecture, compiler, operating system, and application.  The first step in optimizing energy 

is to address the problem of determining where and how much energy is consumed. While 

many researchers and companies have driven extensive research at the hardware and 

architecture levels, fewer efforts, such as the one in this paper, have focused on starting from 

the application layer, and examining a top-down energy reduction approach.  

Towards the goal of reducing the energy consumed by software applications, we present 

in this work two new contributions related to software energy profiling: 1. A method for 

identifying software components with high energy consumption. We target operations called 

kernels, which are frequently used operations in the algorithm. 2. A method for estimating the 

energy consumed by the identified software components, in particular for kernels and 
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load/store operations. The energy evaluation method involves using isolated code with 

assembly injection. Furthermore, to ensure reliable results, physical energy measurements 

conducted on specially instrumented circuit boards are collected to provide actual and not 

just simulated measurements. 

Previous work on energy profiling aims at providing a hardware component-wise energy 

breakdown that shows the energy contribution of the different hardware components when 

running the whole software application from beginning till the end. Our work is different from 

previous techniques as it provides a software-wise energy breakdown where we show how 

energy is consumed among the different parts of the software code. We demonstrate the 

different steps of our profiling methodology by applying them on data mining (DM) 

algorithms. The reason behind choosing DM algorithms is twofold. First, DM algorithms are 

widely used in many domains (bioinformatics, business, social networks, etc.). The second 

reason is due to the nature of DM algorithms. During the training phase, DM algorithms 

usually have a segment of code that is repeatedly executed for different tuples. Therefore, 

optimizing the energy of these segments will be highly reflected on the overall energy 

consumption. Researchers in the field of data mining have focused on improving accuracy and 

performance of data mining algorithms. To the best of our knowledge, no previous work has 

analyzed these algorithms from the energy efficiency point of view. 

The major contributions of our thesis work are: 

 A four-step method for identifying software components with high energy consumption. 

 An approach for software energy assessment with the use of assembly injection. The 

proposedapproach helps in isolating the impact of cache misses when measuring kernel 

energy. 
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 An approach for measuring the energy cost of memory to cache load and store operations. 

 An energy assessment for popular kernels from basic kernels such as addition and 

subtraction to more aggregate equations and kernel operations such as Euclidean 

distance.  

 Simulation results are supported by physical energy measurements to prove that our 

methods can rely on either simulation tools or special instrumented boards in order to 

profile the studied algorithm. 

 Threecasestudiesare conducted to illustrate our design methods for energy-profiling with 

three algorithms: Back Propagation (BP), K-Nearest Neighbors (KNN) and Linear 

Regression (LR).  

 Two  techniques to reduce the energy of parts with high costs based on approximation-

energy trade off and based on preprocessing techniques to simplify calculations. 

 An energy evaluation for selected data mining algorithms, where we  generalize our 

approach and estimate the energy cost of most frequent kernels that are widely used in 

those different algorithms. 

The rest of the thesis reportis organized as follows: In chapterII, we present literature 

review on the topics of energy optimization and energy profiling. In chapterIII, we present our 

proposed methodologies. We explain in details the different steps of the simplified four-step 

methodology for creating an energy-aware algorithm. We also show the approach to measure 

the kernel’s energy. In chapterIV, we present our case studies and discuss the results. In 

chapterV, we conclude and present our future work. 
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CHAPTER 2 

RELATED WORK 

 

Energy optimization techniques have been suggested for the various layers of the 

computer platform. In this chapter, we overview these techniques in addition to describing 

the methods used in energy profiling. We end the chapterby highlighting how our work differs 

from the other works. 

 

2.1 Overview of Energy Optimization Techniques  

The increasing demand for saving energy has made researchers go beyond the low-level 

circuit layer to explore optimizations in the upper platform layers including the compiler, the 

operating system, and the application layers. 

In the compiler layer, optimization techniques have been used to improve performance 

by transforming codes into more efficient translations with lower execution time. These 

techniques can be also used to save energy. In [6-9], different compiler optimization 

techniques (e.g. loop unrolling and instruction rescheduling) were applied on benchmarks in 

order to save energy. The main limitation of these techniques was that the effects of the 

methods on both performance and energy varied from one code to another. The setof possible 

compiler optimization techniques is huge. Consequently, determining the best combination of 

optimization techniques using brute-force search is infeasible. Therefore, heuristic methods 

were used to determine the combination of techniques with the highest energy saving and 

highest performance for a certain code. An example of such an approach was presented in 
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[10] where the authors proposed a heuristic method that prunedunpromising optimization 

techniques to reduce the search space. Another attempt to overcome the problem of the large 

search space was presented in [11-14]. The authors used machine learning [11-13] and 

genetic algorithms [14] to predict the best combination and the best sequence of compiler 

optimizations such that the energy or the delay for running a given code s minimized. 

In the operating system layer, researchers worked on optimizing and efficiently using 

the different power management policies that are used to control power. These policies 

switch idle devices into lower power states if the systems predict that the full capacity of 

these devices will not be needed for the coming events. It is worth noting that in OS power 

policies, the device is not switched into a lower power state whenever it is idle because of the 

high energy required to wake the device up. Therefore, the device is switched into a lower 

power state only if the systempredicts that it will remain idle for a  time long enough to 

compensate for the transition energy. Additional information about how these predictive 

techniques and algorithms work is provided in [15-17].In [18] a comparison is presented 

between the power policies in windows 7 and windows vista. Results showed that windows 7 

achieved higher energy savings due to more available low power-states and better idleness 

predictive techniques. Another technique that operating systems use to manage power is 

Dynamic Voltage and Frequency Scaling (DVFS). In (DVFS), the operating voltage and 

frequency for executing a task are reduced in order to save the consumed energy. (DVFS) 

leads to a great saving of energy but has a negative effect on performance especially if the 

code is computation-bound [19]. 

In the application layer, the focus has been on specific applications.  Examples include 

energy optization for sensor network applications [20], WiMAX frame construction [21], 
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multimedia [22], bioinformatics [23], and file access [24]. The optimization methods for at the 

application layer can be classified according to [25] into three main categories: contextual 

awareness, data efficiency and computational efficiency. In contextual awareness, applications 

change their behavior based on the available energy. A dynamic compilation that adapts 

battery changes was proposed in [26], where precompiled parts of the code that have low 

energy were used when the battery was low.In data efficiency techniques, data was stored, 

accessed, and transferred in an energy efficient way. For instance, in [27] the authors showed 

that considerable energy savings can be achieved by using SSD instead of HDD as a storage 

device.In computational efficiency, the maximum available system capabilities were used so 

that the work finishes early, enabling the switching of the devices into idle mode to save 

energy. Examples of computational efficiency techniques include the use of parallel 

programming to reduce the execution time or any other technique that enhances 

performance. The authors in [28] used parallel programming and examined the number of 

required parallel nodes such that the overall energy for running different benchmarks is 

minimized. Examples of computational efficiency also include the work in [29,30] where the 

authors proposed parallelizing different machine learning and data mining algorithms by 

distributing calculations on different cores in order to improve runtime performance. 

 

2.2 Overview of Energy Profiling Techniques 

Energy profiling is often considered a critical step in identifying bottlenecks for energy   

optimization. In software, energy estimation methods can provide insight into the power 

consumption of the different parts of the code and into the different components of the 

architecture. As a result, energy profiling has also received significant research attention. All 



7 

 

 

the previously mentioned work used one of two ways to estimate the energy required to run a 

program on a given architecture: Physical measurements or Simultation. 

With physically measurements, the current and voltage of the different components 

were collected using ammeters and special acquisition systems. These methods have high 

accuracy but they require special equipment, such as the work in [35 - 38]. Researchers 

executed benchmark applications on special instrumented boards and collected energy 

measurements. However, their work provided a hardware component-wise energy 

breakdown showing energy contribution of each component of the platform when executing 

the whole benchmark code. The main limitation of the work in [35 – 38] is that the methods 

are more hardware centric, and do not show how energy is consumed among the different 

parts of code. 

With simulation, themethodsare inexpensive and allow users to analyze the 

performance and power behavior with a cycle level of granularity for the different platform 

components. However, these methods are less accurate than the methods using physical 

measurements. Simulation is a good alternative when the special equipment and boards of a 

certain architecture are not available. In [39] researchers tried to show how energy is 

consumed among the different parts of code. The main idea was collecting traces from the 

operating system and then estimating the active time and the idle time of the different 

components using performance profiling tools. The active time and idle time were  multiplied 

by two constant powers that represented the active and idle power of the selected devices. 

This approach assumes that the power consumed by any platform component is constant in 

the active state regardless of the nature of workload. Although this work showed how energy 

is consumed among the different parts of code, it had many assumptions about power. As a 
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result, the method is not as accurate as when usingactualphysical energy measurements. Our 

proposed methods for energy profiling are different than the work in [39] as our methods do 

not assume that power is constant during all the active state and thus provide more accurate 

energy estimations. In our work, simulation tools are supported by physical measurements in 

order to validate our profiling methods rather than relying only on simulation tools as in [39]. 

There have been other enhancements to the different energy profiling techniques. In 

[31], the authors proposed different frameworks for providing energy and thermal profiles as 

enhancements to previous techniques. In [32], the authors proposed solutions to reduce the 

time required to estimate the energy cost of long code segments using clustering techniques. 

 

2.3 Conclusion from Related Work 

While previous work has focused on providing a hardware centric energy profiling for  

different applications [35 – 38], none of the previous worktargeted profiling how energy is 

consumed among the different parts of the application code based on accurate energy costs. 

The only attempt to profile how energy is consumed among the different parts of code was in 

[39] and is based on performance simulation tools which have many assumptions about 

power. The objective of our work is to provide methods for  energy profiling that show how 

much percent each part of code contributed to the total energy and that do not assume that 

the power is constant during the active state in order to have higher accuracy. 

After determining the energy contribution of the different parts of code, we provide 

some techniques that can be used to reduce the energy cost of these energy hotspots. Unlike 

all the optimization techniques used to reduce energy in general applications (computational 

efficiency [28-30], data efficiency [27], and power-aware behavior [26]), our technique takes 
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advantage of the algorithm specifics and investigates the opportunities that might lead to 

energy savings. For instance, we updated the BP algorithm to use approximation techniques 

via lookup tables and preprocessing techniques via normalization leading to considerable 

improvements in both performance and energy. 
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CHAPTER 3 

PROPOSED METHODS 

 

This chapter describes the two proposed methods for: energy-awareness, and for 

estimating the energy of compute-intensive components in code. These two methods are 

related in that the energy estimation method is used in one of the steps for creating energy-

aware algorithm.  However, it is described separately due to its importance and general 

applicability. 

 

3.1. Methodology for Energy-aware Algorithms 

We propose a four-step process for creating energy-aware algorithm. We explain briefly 

the objective of each step of our methodology. The purpose of these steps is to analyze the 

program details and identify opportunities for reducing energy consumption. Figure3.1 shows 

the flow of our proposed four-step methodology. 
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Figure 3.1 - Proposed four-step methodology for an energy-aware algorithm. 

 

Step 1: Kernel Identification and Kernel Asymptotic Analysis: Kernels are operations 

that are repeatedly used in the algorithm, often found in “loops”. A typical data mining 

algorithm may have several repeated mathematical operations, producing a specific set of 

kernels. We distinguish two types of kernels normally found in computational algorithms: 

primitive kernels and aggregate kernels. Primitive kernels are the basic operations such as: 

addition, multiplication, division, subtraction, logarithm and exponential. Aggregate kernels 

are equations that are composed of several primitive kernels such as: Information gain, 

Euclidean distance, and normalization. In this step of the methodology, the primitive and 
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aggregate kernels are identified by examination of the code. Asymptotic analysis is then 

conducted, where the number of execution times for each kernel operations is determined as 

a function of the dataset properties such as the number of tuples and the number of features.  

Step 2: Kernel Energy Cost Estimation:Once the kernels are identified from the previous 

step, the goal of this step is to get the energy measurements for the identified kernels, and the 

load/store transactions representing memory and cache interactions.  The measurements are 

then used for profiling the code, and prioritizing energy optimization opportunities. The 

method used to get these measurements step is an essential part of our work, and is described 

separately in section 3.2. The method relies on either simulation tools or on physical 

measurements in order to get energy numbers. Example of simulation tools are Simplescalar 

and WATTCH [7] which emulate the behavior of computer architectures and give an 

estimated energy cost for code execution.  Physical measurements require special 

equipments. The setup for energy collection and the way measurements are collected are 

shown in Figure 3.2. The setup consists of a specially instrumented board that collects the 

current and voltage of the major platform components such as CPU and memory. These 

measurements are fed to a Data Acquisition System (DAQ) which converts collected 

measurements from analog to digital based on a pre-set sampling rate, and stores the 

collected traces. The collected traces are then passed to a monitoring computer that shows 

how power varies over time, and calculates the average power and energy for the executed 

code. 

 



13 

 

 

 

Figure 3.2 - Proposed System for collection of physical energy measurements. 

 

Step 3: Energy Profiling and prioritizing kernels in terms of energy impact:This step 

consists of profiling the code by determining the overall energy of the algorithm and the 

energy contributions of each kernel relative to the overall energy. The energy contribution of 

each kernel is measured based on the results of the two previous steps, by multiplying the 

energy cost of executing a single kernel by the number of time this kernel is executed. Once 

the energies of all kernels are determined, the kernels can be prioritized for optimization 

according to their energy cost. At this stage, further assessment can be conducted into total 

potential energy saving based on kernel energy reduction. The kernel that gives the highest 

overall energy reduction is the best target for energy reduction. 
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Step 4: Energy Optimization:Research on code optimization is extensive, and is beyond 

the scope of our work.  But we propose some options here to close the loop on the energy-

awareness process.  The results of the previous step are used in the optimization process to 

give an indication of which kernels to optimize for energy. Several approaches can be useful 

for compute-intensive application including: 

a) Preprocessing techniques to simplify algorithm computations. Examples of 

preprocessing techniques include data normalization and data reduction. The most 

important aspect when applying these preprocessing techniques is to make sure that 

the energy cost of preprocessing data in addition to the energy cost of running the 

algorithm for the pre-processed dataset is smaller than the energy cost of running the 

algorithm on the original dataset without preprocessing. The results of the algorithm 

with the preprocessed dataset should be within acceptable range of the results with the 

original dataset. 

b) Using alternative approximations to the kernels with less computations and lower 

energy, but with a tradeoff for lower accuracy. In this scenario also, it is important to 

assess the error resulting from the approximation to make sure that the algorithm still 

yields acceptable results. 

c) Using alternative hardware implementation of the instruction set with lower energy 

and without compromising performance. For example a totally new optimized 

instruction set such as those used in DSP processors can be utilized. In this case, there 
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is no need to check for accuracy issues, since it is expected to have the same kernel 

but with different implementation. 

d) Use the best set of compiler optimization techniques for kernels with high energy cost 

rather than searching for the best set of optimization technique for the whole 

algorithm, as it requires less time and it will produce significant energy savings. 

The main focus in our work is on the first three steps as they provide the required 

methodology for energy profiling. However, in one of the case studies with BP algorithm, we 

also study and demonstrate the opportunities for optimizing algorithm by using 

approximation-energy tradeoffs and by using preprocessing techniques. We explain in the 

next subsection how to measure the energy of kernels needed for step 2. 

 

3.2. Methodology to estimate the energy of the kernels 

The goal in this section is to find an accurate and efficient method to measure the energy 

consumed by kernels. We explain first how to measure the energy of primitive kernels and 

then show how to derive the energy cost of aggregate kernels. This section also includes the 

method to measure the energy cost of the load and store operations. 

 

3.2.1. Energy Cost of Primitive Kernels 

As described earlier in the thesis report, primitive kernels are the basic operations in 

code.  Examples include addition, subtraction, logarithmic, etc… To estimate kernel energy, 

the main idea is to isolate the kernel in a separate controlled piece of code, where the kernel 

energy can be measured by itself. To reduce noise in the measurement, to the code is run 
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many times, say N times, then calculate the average energy by dividing total energy measured 

by N.   

The isolated code consists of the kernel and only the needed variables to run the kernel. 

Figure 3.3 gives an illustration of the isolated pseudo-code and desired kernel. The code 

includes the primitive kernel operation, and initialization of the variables. 

 

1) Initialize kernel_variables 

2) For (i=0;i<N;i++){ 

3) Primitive_Kernel_execute(kernel_variables); 

4) } 
 

Figure 3.3 - Isolated code to determine primitive kernels energy 

 

To assess the energy of the kernel alone, three steps are executed: 

1) In the first step, the isolated code is executed N times, and the energy is measured, call it 

𝐸𝐾𝑒𝑟𝑛𝑒𝑙  

2) In the second step, the primitive kernel operation is removed from the code and replaced 

by a “no op”.  The code is then executed again N times, and the energy cost is measured for 

the isolated code, call it 𝐸𝑤𝑜𝐾𝑒𝑟𝑛𝑒𝑙 .  

3) Finally, the two energy measurements are subtracted and then averaged to give the 

average energy of the desired kernel: 

 

EKernel =
Ewkernel −EwoKernel

N
 (1) 

One challenge in the proposed approach is that at compile time, the high-level code of 

the kernel operation is translated into more than one assembly instruction. These assembly 

instructions include load operations and the actual primitive operation instructions. The 
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energy of the load operation depends on whether or not there is a cache hit and thus the 

obtained energy costs for the primitive kernel operation may not be accurate. To address this 

problem, we propose the use of assembly injection in the isolated code to further isolate the 

energy cost of executing the primitive operation without the impact of load/store operations. 

This approach also helps at estimating the impact of load/store operations in code and its 

overall contribution, which is further described in subsection. 3.2.3 

As an example, Figure 3.4 shows the isolated code for assessing the energy of “addition” 

operation using assembly injection. In lines 1 and 2 we declare the variables needed to 

execute the primitive kernel operation. Line 3 represents the “for” loop that is executed N 

times. Lines 4 to 6 show the injected assembly code in the body of the “for” loop. In lines 4 and 

5, the declared variables are loaded from the stack to registers “eax” and “ebx” respectively. In 

line 6, the addition primitive kernel operation is executed on the register values. The energy 

cost of the addition operation is calculated by subtracting the energy cost of executing the 

code without the addition operation (without line 6) from that with the addition operation 

and dividing the result by N. 

 

1) Declare x; 

2) Declare y; 

3) For (i=0;i<N;i++){ 

4) Asm(”move x, eax”); 

5) Asm(”move y, ebx”); 

6) Asm(”add eax, ebx”); 

7) } 

 
Figure 3.4 - Isolated code with assembly injection used to determine theenergy cost of the addition primitive 

kernel. 
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If the isolated codes in Figure 3.4 did not include assembly injected code (lines 4 to 6) 

but rather the high-level code (z=x+y;), the estimated energy cost would be inaccurate. This 

is due to the fact that the high-level code (z=x+y;) gets translated at compile time into 

assembly instructions that include not only the addition operation but also the load and store 

operations. The costs of load and store operations vary depending on whether or not a cache 

miss occurs, which produces even more sources of inaccuracy. 

In our work and to obtain accurate estimation, we propose the use of the assembly 

injection approach to estimate the energy cost of the primitive kernels. 

 

3.2.2. Energy Cost of Aggregate Kernels 

Aggregate kernels are composed of multiple primitive kernels.  Information Gain is such 

an example, where it is composed of logarithmic, addition, and probability, which is in turn 

composed of division. The energy of aggregate kernels can be estimated by isolating the 

kernels as described in the previous section, but isolating load/store operations becomes 

more complex. As an alternative, we describe an approach that can be conducted without the 

need to re-running isolated code for aggregate kernels. The idea is to derive the energy cost of 

executing an aggregate kernel based on the energy costs of the related primitive kernels. First 

the frequencies of the primitive kernels composing the aggregate kernel are determined.  The 

energy of the aggregate kernel is then determined by summing the product of the energies of 

the primitive kernels multiplied by their frequency of occurrence.  

As an example, consider the Euclidean distance given by equation (2). 
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dist X1, X2 =   (x1i − x2i)
2

N f

i=1

           (2) 

Where X1, and X2 are two tuples in the dataset. xji : is the feature number (i) for the 

tuple (j). Nf : is the number of features in the studied dataset. 

From equation (2), it can be seen that the number of subtractions, additions and square 

operations is dependent on the number of features in the dataset. Therefore, the energy cost 

of the Euclidean distance is dependent on the properties of the dataset such as the number of 

features. From equation (2), the Euclidean distance includes: (Nf − 1) additions, (Nf) 

subtractions, (Nf) square operations, and one square root operation. Based on the energy 

costs of the addition, subtraction, square and square root operations (refer to them 

asE+, E−, Esq , Esqrt  respectively), the energy cost of the Euclidean distance can be calculated as 

in equation (3): 

 
EEuclidean = E+ × (Nf − 1) + (E− + Esq ) × Nf + Esqrt      (3) 

 

This method is further applied to well-known data mining algorithms. Table 3.1 

provides the summary of the finding for aggregate kernels in common DM algorithms along 

with the related primitive kernels for each.  The table also includes the energy cost of the 

aggregate kernels as a function of the energy cost of the primitive kernels and the dataset 

properties. We refer to the energy cost of the primitive kernels addition, subtraction, 

multiplication, division, logarithm, square and square root by E+, E−, E×, E\, Elog , Esq , Esqrt  

respectively.Nf , Nclass , Ntuples  refer to the number of features, classes and tuples respectively 

in the dataset. 
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Table 3.1 - Aggregate kernels that are popular in many Data Mining algorithms along with the energy cost 
of these aggregate kernels based on the energy cost of primitive kernels and dataset properties. 

Aggregate Kernel Mathematical Equation 
Energy Cost of Aggregate 

Kernel 

Euclidean Distance dist X1, X2 =   (x1i − x2i)
2

N f

i=1

 

 Nf ×  Esq + E− + (Nf − 1 

× (E+ + Esqrt  ) 

Info Info D = −1 ×  pi × log(pi)

Nclass

i=1

 

(NClass + 1) × E× + (NClass

− 1)  × E+ 

+ NClass  × Elog   

Regression Coefficient 

(w1) 
w1 =

 (xi − x )(yi − y )
Ntuples

i=1

 (xi − x )2Ntuples

i=1

 

Ntuples  × (3 × E− + E× + Esq ) 

+(Ntuples  − 1) × 2 × E+ + E/ 

Regression Coefficient 

(w2) 
w2 = y − w1 × x  

E− + E× 

Average x =
 xi

N
i=1

N
 

(N − 1) × E+ + E/ 

Gini gini D = 1 −  pj
2

Nclass

j=1

 

NClass × Esq + (NClass − 1) × E+ 

+ E−  

Normalization V′ =  
V − min

range
 

(N − 1) × E+ + E/ 

 

3.2.3. Energy Cost of Load and Store Operations 

When executing aggregate kernels like the Euclidean distance, the compiled assembly 

code does not only include primitive kernel operations  subtraction, addition …etc  but also 

includes load and store operations. Assembly injection, as described earlier, can help in 
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isolating the impact of the kernel from the impact of the load/store operation. Furthermore, it 

is important to estimate the energy cost of these load and store operations for memory and 

cache exchange, as they may represent significant contributions of energy consumption. Load 

and store operations can be classified into five types based on the source and destination of 

the move operation as shown in Table 3.2. The source can be either a value, a register or the 

stack whereas the destination is either a register or the stack.  The energy cost of the memory 

and cache exchange is calculated by multiplying the number of times each type of load and 

store operation is executed by the energy cost of the operation. The frequency of execution for 

the load and store operations is determined by examining the compiled assembly code of the 

code and counting the number of times each type of these operations is executed in the 

assembly code. The energy cost of the load and store operations can then be calculated 

following the method described for estimating energy for primitive kernels. The only 

difference is that only a load/store instruction is injected in the “for” loop.  The isolated code 

is then executed with and without the injected load/store assembly operation. The average 

energy of a load/store operation is calculated using equation (1). 

Table 3.2 - Different types of load and store assembly instructions. 

Move Instruction Example 

Move value, stack move $10, esp(4) 

move register, stack move eax, esp(4) 

move stack, register move esp(4), eax 

move value, register move $10, eax 

move register, register move eax, edx 
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CHAPTER 4 

EXPERIMENTS AND RESULTS 

 

In this chapter, we conduct experiments to demonstrate the four-step methodology for 

creating an energy-aware algorithm, and to illustrate the use of the method for estimating 

energies for kernels and load/store operations. 

We explain in the first subsection the experiment setup for the simulation tools and the 

special equipments that are used in our experiments. In the second subsection, we identify 

primitive and aggregate kernels for top Data Mining algorithms. Next, three case studies are 

conducted on three algorithms to validate our four-step methodology for energy-awareness. 

Table 4.1 summarizes the studied algorithms, how energy measurements are collected, the 

studied architecture, the conducted experiments and the objective of these experiments for 

each algorithm. 
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Table 4.1 - A summary of the studied algorithms, the considered kernel level in the energy analysis, the 

energy collection approach, the studied architecture along with the experiments that will be conducted for each 

studied algorithm and the objective of these experiments. 

Algorithm Kernel Level Energy 

Collection 

Approach 

Architecture Experiment Objective of Experiment 

BP NN Primitive 
level 

Simulation 
tools 

RISC Determine the 
contribution of 
primitive kernels to 
the total energy 

- Prioritize primitive kernels in term 
of Energy impact. 

 

Energy-
approximation trade-
off 

 

- Present an approach that trades 
accuracy with energy. 

- Estimate the energy savings 
obtained by this technique 

- Study the effect of the 
approximation technique on the 
behavior of the algorithm 

Preprocessing 
techniques to save 
energy 

- Present how preprocessing 
techniques can lead into energy 
savings 

- Estimate the overhead involved in 
preprocessing technique 

- Estimate the total energy saving 
obtained from preprocessing data. 

KNN Aggregate 
level 

Physical 
Measurements 

CISC Determine the 
contribution of 
aggregate of kernels 
to the total energy 

- Prioritize aggregate kernels in term 
of Energy impact. 

 

LR Aggregate 
level 

Physical 
Measurements 

CISC Determine the 
contribution of 

aggregate kernels to 
the total energy 

- Prioritize aggregate kernels in term 
of Energy impact. 

 

4.1. Experiment Setup for Energy Measurement 

There are two standard methods for collecting energy measurements, either through 

the use of specially instrumented boards or through the use of simulation running on top of 

computer architecture emulators.  In our work, both approaches were used. 
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For simulation setup, we used Simplescalar [33] emulator and WATCH [7] simulation 

tools.  Simplescalaremulatesthe execution of the code on a RISC architecture and WATTCH is 

used to give relative energy numbers that determine the energy cost of the different units of 

the architecture when the code is executed. In our simulation experiments, we used the 

default configurations forSimplescalar and WATTCH. Details of these configurations are found 

in [33]. Simple Scalar and WATTCH operates on any UNIX 32 bit operating system or requires 

the installation of a virtual machine in order to operate on Windows operating systems. It also 

requires the installation of a number of compiler tools including Bison, Yacc and Flex. Simple 

Scalar consists of a collection of microarchitecture simulators that emulate the 

microprocessor at different levels of detail. In our experiments, we used the “sim-outorder” 

simulator as it provides a detailed emulation of out of order micro architectures and models 

the different units including the cache, external memory and the branch prediction. WATTCH 

is run on top of Simple Scalar in order to provide an energy model for the studied 

architecture. 

For the physical measurements, the hardware setup is shown in Figure 3.2.  We run the 

code on a special board instrumented by Intel with sensors on all the platform components to 

measure current and voltage.  The platform had an Intel® Core™ i7 CPU, 2.80GHz with 2 GB 

RAM memory. Windows 7 was installed as the operating system for the specially 

instrumented board.   The power plan of Windows 7 was set to the balanced mode for all the 

experiments. A power plan is defined to be a collection of system and hardware settings that 

manage how power is consumed in the computer.  There exist three power plan modes in 

Windows: power saver, balanced and high-performance modes. The balanced mode was 

chosen for our study since it is the default power plan mode that is used in Windows and since 
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it does not sacrifice neither performance nor energy but tries to find the balance between 

these two constraints.  

When running experiments to collect energy, all unnecessary programs are stopped, 

except for the OS and the basic processes it requires. Example of processes that must be 

running always in the background is the “Explorer.exe”, a user interface process that runs the 

windows graphical shell for the desktop, task bar, and Start menu. 

The DAQ was collecting the current and voltage for the major components of the board. 

The DAQ was Fluke 2680 Series [40] data acquisition system. The sampling rate was set to the 

highest supported rate which is 20 samples/second.  

The collected traces were passed through a hub from the data acquisition system to the 

monitoring computer. PACS program was installed on the monitoring computer. PACS is a 

software that shows how the collected traces are varying over time and that calculates the 

average power, peak power and energy of the different components of the platform over a 

certain period of time. 

In both simulation and physical setups, measurements were repeated five times and the 

median value of the five measurements was taken to minimize noisy measurements. 

 

4.2. Kernel Identification in Common Data Mining Algorithms 

To illustrate the types of kernels commonly found in software, we test the methodology 

with data mining algorithms.  The first step in the energy-aware method was used to derive 

the primitive and aggregate kernels for common Data Mining algorithms. The identified 

kernels are presented in Table 4.2. The aggregate kernels are composed of a collection of 

primitive kernels. As an example, the normalization aggregate kernel is composed of the two 
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primitive kernels: subtraction and division. Based on the proposed method for estimating 

energy for aggregate kernels, the energy cost of the primitive kernels are sufficient to derive 

the energy cost of aggregate kernels.  

Several observations can be concluded from the table, and that are relevant for the 

study of energy optimization for the DM field. It can be seen that the basic operations: 

addition, subtraction, multiplication and division are very common primitive kernels among 

the different algorithms compared to other less frequent primitive kernels such as the 

exponential function and the square root. Some of the aggregate kernels in Table 4 such as: 

Euclidean distance, average, probability and pattern matching are very common among a 

large set of algorithms. Other aggregate kernels are used specifically for a certain algorithm, 

but not in others. Example of such aggregate kernels is the kernel that is used to calculate the 

first and second regression coefficients in Linear Regression. 
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Table 4.2 - Primitive and aggregate kernels of top data mining algorithms based on the mathematical 
equations that are executed repeatedly in these algorithms. 

 

DM  

Algorithm 
Equation 

Aggregate Kernels Primitive Kernels 

K-Nearest 

Neighbors 

𝑣 =
𝑣 − 𝑚𝑖𝑛

𝑟𝑎𝑛𝑔𝑒
 

𝑑𝑖𝑠𝑡 𝑋1, 𝑋2 =   (𝑥1𝑖 − 𝑥2𝑖)2

𝑁𝑓

𝑖=1

 

𝑑𝑖𝑠𝑡1 < 𝑑𝑖𝑠𝑡2? 

Normalization 

Distance 

Compare 

 

 

Subtraction 

Division 

Square root 

Square 

Addition 

 

Linear 

Regression 

𝑥 =
 𝑥𝑖

𝑁
𝑖=1

𝑁
 

𝑤1 =
 (𝑥𝑖 − 𝑥 )(𝑦𝑖 − 𝑦 )

𝑁𝑡𝑢𝑝𝑙𝑒𝑠

𝑖=1

 (𝑥𝑖 − 𝑥 )2𝑁𝑡𝑢𝑝𝑙𝑒𝑠

𝑖=1

 

𝑤2 = 𝑦 − 𝑤1 × 𝑥  

 

Average 

Regression coefficient 

(𝑤1) 

Regression coefficient 

(𝑤2) 

Addition 

Division 

Subtraction 

Multiplication 

Square 

 

 

K-means 

Clustering  𝑑𝑖𝑠𝑡 𝑋1, 𝑋2 =   (𝑥1𝑖 − 𝑥2𝑖)2

𝑁𝑓

𝑖=1

 

𝑥 =
 𝑥𝑖

𝑁
𝑖=1

𝑁
 

𝑑𝑖𝑠𝑡1 < 𝑑𝑖𝑠𝑡2? 

Distance 

Compare 

Average 

 

Square root 

Square 

Subtraction 

Addition 

Division 
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Back 

Propagation 

Neural 

Network (BP 

NN) 

 

𝑆𝑘
𝑝

=  𝑤𝑗k𝑦𝑗𝑘
𝑝−1

j

 + 𝑏𝑘  

𝑦𝑝 =
1

1 +  e−Sp  

 
𝑒𝑗  𝑛 =  𝑑𝑗  𝑛 −  𝑦𝑗  𝑛  

∆𝑤𝑗𝑘 = 𝛾𝛿𝑘
𝑝𝑦𝑗

𝑝  

𝑤𝑗𝑘
, = 𝑤𝑗𝑘 + ∆𝑤𝑗𝑘  

Forward Stage 

Calculations 

 

Backward Stage 

Calculations 

Multiplication 

Addition 

Division 

Exponential 

Subtraction 

 

Decision 

trees - Id3 

and C4.5 

𝑖𝑛𝑓𝑜 𝐷 = −  𝑝𝑖 ×

𝑁𝑐𝑙𝑎𝑠𝑠

𝑖=1

log(𝑝𝑖) 

𝑖𝑛𝑓𝑜𝐴 𝐷 =   
|𝐷𝑖 |

|𝐷|
× 𝑖𝑛𝑓𝑜(𝐷𝑖)

𝑁𝑙𝑎𝑏𝑒𝑙

𝑖=1

 

𝐺𝑎𝑖𝑛 𝐴 = 𝑖𝑛𝑓𝑜 𝐷 −  𝑖𝑛𝑓𝑜𝐴(𝐷) 

 

Pattern Matching 

Probability 

Information 

Multiplication 

Addition 

Logarithm 

Division 

Subtraction 

 

Decision 

trees - Gini 

index 

𝑔𝑖𝑛𝑖 𝐷 = 1 −  𝑝𝑗
2

𝑁𝑐𝑙𝑎𝑠𝑠

𝑗 =1

 

𝑔𝑖𝑛𝑖𝐴 𝐷 =
 𝐷1 

 𝐷 
× 𝑔𝑖𝑛𝑖 𝐷1 +

 𝐷2 

 𝐷 

× 𝑔𝑖𝑛𝑖 𝐷2  

∆𝑔𝑖𝑛𝑖 𝐴 = 𝑔𝑖𝑛𝑖 𝐷 − 𝑔𝑖𝑛𝑖𝐴 𝐷  

 

 

Pattern Matching 

Probability 

Gini 

Subtraction 

Addition 

Square 

Division 

Multiplication 
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Naïve 

Bayesian 

Classification 

 

𝑃 𝐶 𝑋 = 𝑃 𝑋 𝐶 × 𝑃(𝐶) 

𝑃(𝑋|𝐶𝑖) =  𝑃 𝑥𝑘  𝐶𝑖 

𝑁

𝑘=1

 

 

 

Pattern Matching 

Probability 

Posteriori 

Multiplication 

 

 

4.3. Case Study for Energy-Aware Profiling and Computing with Focus on Primitive 

Kernels 

BP algorithm was used as a case study for demonstrating the applicability of the four-

step methodology in creating energy awareness, and the energy estimation method. The 

following notations are used to represent the data properties for the BP Neural Network: 

IN: Number of input neurons.  IN also represents the number of features in the dataset.  

HN: Number of hidden neurons 

ON: Number of output neurons 

 

The training was repeated (N) times on different tuples from the dataset. To validate the 

theoretical findings and get actual energy measurement, a stand-alone code was developed in 

C to implement the BP algorithm, with the following typical choices of parameters: IN=2, 

HN=3, ON=2, N=10000.  Here are the results of the method at each step as applied to BP 

algorithm. 

Step 1: The kernels of the BP algorithm were first identified as described in Table 4.2. 

Asymptotic analysis was then conducted to determine the frequency of execution for the 
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primitive kernels as a function of the dataset properties.  The frequency of the kernel 

operations were based on the equations that are executed in the BP. Table 4.3 shows the 

result of the asymptotic analysis for the primitive kernels. Further details on how we 

determined the order of these kernels is available in [5]. 

 
Table 4.3 - Results of Asymptotic Analysis for of BP primitive kernels 

Primitive Kernels Order 

× 𝜃(𝑁 ×  2 × IN × HN + 3 × ON × HN + 5 × HN + ON + IN ) 

+ 𝜃(𝑁 ×  2 × HN × IN + HN + 3 × HN × ON + ON ) 

÷ 𝜃(𝑁 × HN) 

- 𝜃(𝑁 × [ON + HN]) 

Exp 𝜃(𝑁 × HN) 

 

 
Counters were placed in the code to validate the asymptotic analysis. The resulting 

frequencies of BP primitive kernels are shown in Figure 4.1. We observe that counter 

simulation results are consistent with the asymptotic analysis in Table 4.3 which proves the 

correctness of our asymptotic analysis. 
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Figure 4.1 - Number of times BP primitive kernels are executed for IN=2, HN=3, ON=2 and N=10000. 

 

The asymptotic analysis and the simulation for the studied BP NN consistently showed 

that the highest numbers of primitive kernels executed were multiplications followed by 

additions.  

Step 2: For this step, the energy estimation method was applied per kernel as described 

in 3.2.1. The resulting energy costs are shown in Figure 4.2. The numbers were normalized 

(relative to subtraction) to show relative impact across kernels. Figure 4.2 shows that the 

exponential kernel has the highest energy cost.  
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Figure 4.2 - WATTCH results for the energy cost of BP primitive kernels on RISC architecture 

 

Step 3: For energy profiling, the overall energy was then calculated by multiplying the 

number of times each kernel is executed by the corresponding cost of each kernel. The overall 

energy of the algorithm based on Figure 4.1 and 4.2 was calculated as shown in equation (4). 

𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑒𝑛𝑒𝑟𝑔𝑦= 152.7× 490 + 141.8 ×350 + 141.1 ×50 

    +208.4 × 30 + 1612.6× 30 = 186138(in thousands)  (4) 

Based on this calculation, we can determine the contribution of each kernel to the 

overall energy as shown in Figure 4.3. 
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Figure 4.3 - Contribution of BP primitive kernels to the overall cost 

 

The results show how the two proposed methods can collectively contribute to energy 

awareness and prioritization.  It can be seen that although the exponential function was 

executed only a few times (as shown in Figure 4.1), it has a high contribution to the overall 

energy due to its high relative energy cost. It is also clear from Figure 4.3, that the 

multiplication kernel has the highest impact followed by addition and exponential. It is also 

noted that the energy contribution of the exponential kernel is higher than that of the division 

kernel despite the fact that there are more division computations than there are exponentials. 

To further study the potential savings to the overall energy, we simulated the impact of 

reducing each kernel’s energy cost by 25%. Figure 4.4 shows the overall energy cost of the 

algorithm as the number of iterations increases.  Results confirm that the largest overall 

energy reduction is obtained by reducing the cost of multiplication followed by reducing the 

cost of the exponential function. Reducing in the cost of the other kernels (subtraction, 

division and addition) has smaller impact on energy reduction. 
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Figure 4.4 - The impact of reducing different BP primitive kernels by 25% on the overall algorithm for 

different iterations. 

Step 4:  The last step in the method consists of picking the most consuming kernels, 

reducing their energies, and then determining the overall impact. Although energy 

optimization is outside the scope of our work, we still wanted to illustrate the potentials of 

this step.  We proposed two approaches for reducing the energy of BP algorithm. The first 

approach is based on using approximations to reduce energy but at the expense of accuracy. 

The second approach involves data pre-processing or transformation to enable faster 

convergence of the algorithm.  These two approaches can be used for any algorithm, but we 

show their usefulness as applicable to BP.  

Step 4A – Approximate LUT: From the results of step 3, exponential kernel was one of 

the top energy-consuming kernels. As a result, we considered alternatives to the high energy 

consuming exponential operation by using approximation techniques [34]. The basic idea is to 

pre-calculate the exponential function for the numbers in the range 0 to 1000 with a step of 1 

and store the results in a Look-up Table (LUT). Then at each iteration of the training phase, 
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instead of calculating the exponential function of the variables, the stored result is fetched 

from the LUT that is maintained in the cache. The LUT is considered an approximation 

technique since only a discrete number of values are calculated the exponential in the range 

[0, 1000] with a step of one. Therefore, the exponential function of (2.3) is approximated by 

the pre-calculated exponential value of (2 or 3) already stored in the LUT.   

To evaluate the impact of using LUT as alternative to the exponential, the energy 

estimation method was used to determine the energy cost of fetching an element from LUT in 

addition to the overhead incurred once in populating the LUT.  The energy cost of fetching an 

element from the LUT was 94.49% less than the cost of calculating the exponential function. 

This will reduce the energy of running the whole BP algorithm by 24.57% as the exponential 

function contributes 26% to the total energy of the algorithm. The energy cost of populating 

the LUT population was calculated based on the energy cost of (exp) kernel as shown in 

equation (5): 

𝐸𝐿𝑈𝑇_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 1000 × 𝐸𝑒𝑥𝑝 = 1000 × 1612.62           (5) 

Where Eexp  is the cost of one exponential function operation based on Figure4.2. 
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Figure 4.5 –A comparison between the first output and the approximated output (a) 1st desired output (b) 

1st NN output using exp. (c) 1st NN output  using lookup table approximation 

 

 

 

Figure 4.6 -A comparison between the second output and the approximated output (a) 2nd desired output 
(b) 2nd NN output using exp. (c) 2nd NN output using lookup tables approximation 

 

The output of BP NN in figures 4.5 and 4.6 show the effect of using the LUT 

approximation versus the effect of the exponential function. Figure  4.5(a) represents the first 

desired output of NN.  Figure 4.5(b) represents the first output of NN using normal 
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exponentiation function and figure 4.5(c) represents the first output of NN using LUT. The 

same comparison is shown in Figure 4.6 for the second output of NN. Visually, it can be seen 

that the output of the NN with the LUT approximation technique is very close to the output of 

NN with no approximation, except for right upper edge of the hyper-plane.  

The relative error in the approximation was also measured by taking difference 

between the two computed expoenential values= |exp s − exp_LUT s | and then divide it 

by exp(s) as shown in (6): 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑒𝑟𝑟𝑜𝑟  𝑠 =
|𝑒𝑥𝑝 𝑠 − exp_𝐿𝑈𝑇 𝑠 |

|𝑒𝑥𝑝 𝑠 |
         (6) 

The average of all relative errors was calculated to be 25.64%. This approach trades 

accuracy at the expense of energy. Significant energy savings can be gained if we tolerate this 

error. 

Step 4B – Normalize for Faster Convergence: In the second approach for energy 

optimization, we examine ways that are specific to the algorithm beyond the general 

examination of kernels. In particular, we look at preprocessing the data to simplify algorithm 

computations for reducing energy impact. 

Based o previous mathematical modeling of NN [3], the input values of the NN training 

phase can be normalized to the range of [0, 1] for faster convergence of the NN algorithm. To 

examine the impact of the normalization on energy efficiency, we examine the energy 

consumption of BP NN with and without data normalization.  The energy cost of the 

normalization process is also added to the cost when normalizing. 

Min-max Normalization was used to normalize the training set into [0, 1] as follows: 

𝑣′ =  
𝑣 − 𝑚𝑖𝑛𝑎

𝑚𝑎𝑥𝑎 −  𝑚𝑖𝑛𝑎

 𝑛𝑒𝑤_𝑚𝑎𝑥𝑎 −  𝑛𝑒𝑤_𝑚𝑖𝑛𝑎 + 𝑛𝑒𝑤𝑚𝑖𝑛 𝑎
            (7) 
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Where new_max=1 and new_min=0. It can be seen that normalization process requires 

two operations: subtraction and division.  The relative costs of these operations were 

measured to be 141.1  and 208.4 respectively based on the relative energy costs from Figure 

4.2. One subtraction operation and one division operation is performed for each attribute 

value in each training tuple.  As a result, the total energy cost for normalization can be 

determined as shown in (8): 

𝐶𝑛𝑜𝑟 = (141.1 + 208.4)  × 𝑁𝑡𝑢𝑝𝑙𝑒𝑠  × 𝑁𝑎𝑡𝑡             (8) 

Where Cnor  is the cost of normalization, Ntuples  is the number of tuples in the training 

set, and Natt  is the number of attributes in each tuple. 

To demonstrate the savings in energy that are obtained by normalization, an experiment 

was conducted on a training set with 400 tuples.  Each tuple contained two attributes with 

values between 0 and 2.8. The stopping criterion for the MSE was set to 0.8. 

Table 4.4 shows the cost comparison for running the algorithm with and without 

normalization. It can be clearly seen that normalizing the training set has led to reducing the 

energy cost. There is an energy overhead for the normalization process. However, this 

overhead will be compensated as normalizing the training set before the learning phase 

makes the algorithm converge faster with fewer iterations, and hence resulting savings in 

energy.  
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Table 4.4 - A cost comparison with and without normalizing the training set 

Without 

Normalization 
With Normalization 

Overall Cost 
Cost of 

Normalization 

Training 

Cost 

Overall 

Cost 

6,775,400 279,600 2,773,500 3,053,100 

 

Figure 4.7shows the number of iterations that was required to reach the stopping 

criterion with and without normalization. We can see that the larger the values of the input 

are, the more iterations were required to reach the MSE threshold. 

 
Figure 4.7 - Number of required iterations to reach MSE<0.8 

 

4.4. Additional Case Studies with Considerations for Aggregate-level Kernels and 
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While the previous sub-section focused on assessing primitive kernels with the BP NN 

case study, this sub-section shows experiment results for aggregate kernels with KNN and LR 
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case studies.  The proposed methods are used to profile the energy contribution of the 

aggregate kernels in the algorithms.  The measurements were conducted using instrumented 

boards that provided actual physical numbers rather than simulated evaluation using the 

setup described in section 4.1. We present our energy profiling results for KNN and LR 

algorithms and end this subsection with an analysis for the obtained results. 

 

4.4.1.Energy-Aware Computing – KNN Case Study 

This sub-section describes how the method can be used for other algorithms and derive 

an assessment of aggregate-level kernels. In the following experiments, physical 

measurements are collected using instrument boards for the CISC architecture instead of 

simulation tools in order to obtain energy estimates. Table 4.5 and Table 4.6 show the energy 

cost of primitive kernels and load and store operations based on the approach proposed in 

section 3.2. From Table 4.2, the identified aggregate kernels for KNN are normalization, 

Euclidean distance and comparisons. 

As proposed in our four-step methodology explained in section 3.1, asymptotic analysis 

is first conducted to determine the frequency of the aggregate kernels. The results are shown 

in Table 4.7.   Ntuples , and Nfeatures  are the number of tuples and the number of features in the 

dataset respectively. 

For this experiment, 1st nearest neighbor (K = 1) is considered, with the dataset having 

Ntuples = 150, and Nfeatures = 5. The resulting frequencies for the aggregate kernels are 

shown in Figure 4.8. 
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Table 4.5 - Energy cost of primitive kernels using physical measurements 

 

 + - × / Square 
Square 

Root 
Log Exp 

Energy 

(10
-10

 Joule) 

33.66 

 

39.94 

 

10.89 

 

1058.62 

 

64.78 

 

2025.74 

 

7347.46 

 

49961.21 

 

 

Table 4.6 - Energy cost of move operations (load/store) using physical measurements 

 

Move Operation Energy (10
-10

 Joule) 

move value, stack 27.94 

move register, stack 34.51 

move stack, register 57.46 

move value, register 22.96 

move register, register 26.92 

 
 

Table 4.7 – Order of KNN kernels 

 

Aggregate Kernel Order 

Normalization                                            𝑁𝑡𝑢𝑝𝑙𝑒𝑠 × 𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠  

Euclidean Distance 𝑁𝑡𝑢𝑝𝑙𝑒𝑠  

Compare 𝑁𝑡𝑢𝑝𝑙𝑒𝑠  
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Figure 4.8 - Frequency of KNN aggregate kernels for the considered dataset. 

 
The second step in the method consists of estimating the energy cost each aggregate 

kernel, which can be derived based on the energy cost of primitive kernels in Table 4.5 and by 

following the approach described in section 3.2.2. The resulting energy numbers for KNN 

aggregate kernels are shown in Figure 4.9. 

 
Figure 4.9 - Energy cost of  KNN aggregate kernels for the considered dataset. 
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The third step consists of calculating the total energy of the algorithm, which was 

implemented in C++. The energy contribution of each aggregate kernel was calculated 

bymultiplying the frequency of kernels (Figure 4.8) by the energy cost of kernels (Figure 4.9).  

Asymptotic analysis was also conducted to determine the frequencies of the load/store 

operations.  Their energies were then estimated using the method proposed in3.2.3. 

 
Figure 4.10 - Energy contribution of KNN aggregate kernels to the total energy. 

 
Figure4.10 shows a pie chart for the energy distribution of the different aggregate 

kernels relative to the total energy. The chart provides interesting insight towards energy-

aware computing.  It can be seen that the normalization aggregate kernel has the highest 

energy contribution for the studied dataset. Although the Euclidean distance has higher cost 

than normalization (Figure 4.9), the frequency of normalization is higher than the distance 

(Figure 4.8) and thus the energy contribution of normalization is higher than the distance. 

The data move portion in Figure 4.10 represents the energy involved in the load and store 
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operations in the algorithm. The rest of the code represents the energy involved in executing 

operations other than the aggregate kernels such as the overhead in the “for” loop. 

Towards energy optimization, we also study the savings of the overall energy that can 

be achieved by reducing each kernel’s cost by 25%. This helped in reflecting which kernels 

can be targeted for maximizing the reduction of energy. Figure 4.11 shows the overall energy 

cost of the algorithm after reducing each kernel’s cost by 25%. Results indicate that the 

largest overall energy reduction is obtained by reducing the cost of normalization followed by 

Euclidean distance, which is consistent with the results of the pie chart in Figure 4.10.  Figure 

4.11 also gives an estimate of what would be the total energy of the algorithm when the 

energy of any of the kernels is reduced by 25%. 
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Figure 4.11 - Effect of reducing the energy of KNN aggregate kernels by 25%. 

 

4.4.2.Energy-Aware Computing – LR Case Study 

This sub-section covers an additional experiment on demonstrating the use of the 

method for energy profiling and developing energy-awareness for an algorithm, and to 

illustrate that the findings are algorithm-dependent.  This experiment targeted LR.  The LR 

kernels were determined in Table 4.2to be the average, the first regression coefficient (𝑊1), 

and the second regression coefficient (𝑊2). The algorithm was implemented using C++ code,  

and tested with a dataset that has Ntuples = 150. The profiling results are shown in Figure 

4.12, and it can be seen that a large percent of the algorithm’s energy is spent in load and store 

operations. The findings indicate that significant energy is consumed by the memory and 
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cache exchanges rather than by computations. This is due to the fact that LR does not involve 

intensive computational operations that have high energy cost such as exponential or square 

root and thus the energy cost of load and store operation constitutes a large percent of the 

total energy. Another insight from the results is that the first regression coefficient (𝑊1) has a 

high energy contribution as it involves many computations compared to average and to the 

second regression coefficient(𝑊2). 

 

 
Figure 4.12 - Energy contribution of LR aggregate kernels to the total energy. 

 
Here also, we examined the effect of reducing each kernel’s cost by 25%. Figure 

4.13shows the overall energy cost of the algorithm after reducing each kernel’s cost by 25%. 

Results indicate that the largest overall energy reduction is obtained by reducing the cost of 

memory fetches, followed  by reducing the energy cost of calculating the first regression 

coefficient. Figure 4.13 also gives an estimate of what would be the total energy of the 

algorithm after optimization. 
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Figure 4.13 - Energy effect of reducing LR aggregate kernels by 25% on total energy. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

Our work on energy profiling has introduced two methods for developing energy-aware 

algorithm.  The first method is a four-step process for energy analysis and profiling with 

particular emphasis on kernel-based evaluation.  The second method provides a methodology 

for kernel and load/store energy estimation.  The energy estimation method shows how to get 

energy for primitive kernels based on assembly injection, and then derive energy for 

aggregate kernels from the primitive kernels.   

Experiment results were conducted with accurate physical measurements instead of 

relying on simulation only.  Specially instrumented boards were used for that purpose.  Case 

studies were considered with three common data mining algorithms: BP NN, KNN and LR. The 

case studies show the successful use of the methods for energy profiling and developing 

energy awareness.  The BP NN case study also showed two efficient approaches for energy 

optimization based on creating an approximate LUT for the kernel, or data preprocessing for 

faster convergence.   In some cases, the energy saving came at the expense of accuracy. 

Furthermore, the experiments show that different algorithms have different kernels as top 

energy consumers.  The experiments showed how to prioritize the highest cost kernels that 

can be targeted for energy optimization.   

For future work, we plan to develop an automated tool that predicts the energy cost of 

any given code based on the energy cost of the primitive kernels that were already calculated 

in our work. We also plan to target the identified expensive kernels in the three profiled 
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algorithms and find opportunities for energy optimization in the compiler layer. Our intention 

is to develop a compiler that focuses on transforming the codes of expensive kernels into 

more efficient assembly codes with lower energy price. 
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